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i. Introduction

Detection of air showers with primary energies above 1019eV with

enough statistics is extremely important in an astrophysical aspect related

to the Greisen cut off and the origin of such high energy cosmic rays.

Recently, Linsley proposed a method to observe such giant air showers by

measuring the arrival time distributions of air-shower particles at large

core distances with a mini array(1)_

We started experiments to measure the arrival time distributions of

muons in 1981 and those of electrons in early 1983 in the Akeno air-shower

array (930gcm -2 atmospheric depth, 900m above sea level), During our

observation,_b_ detection area of the Akeno array was expanded from ikm 2 to
4km 2 in 1982_) and to 20km in 1984 . _ow the arrival time distribu-

tions of electrons and muons can be measured for showers with primary

energies above 1019eV at large core distances.

In this paper, the possibility of Linsley's proposal is examined on
the basis of the arrival time distributions of particles measured with

unshielded scintillation detectors for following three points:

(I) Is the time dispersion as proposed by Linsley a stuitable parameter?

(2) How large area is needed for the detector?

(_) Are core distances and shower sizes determined accurately enough?

Also reported in this paper are signals delayed by longer than ins

from the shower front, together with a discussion on the nature of these

signals.

2. Experimental

In the first run from January 1983 to October 1984, the arrival time

distributions ofair-shower particles was measured using a 4m 2 unshielded

scintillation detector with a 5in fast photomultiplier (Hamamatsu Photo-

nics R1250) located above both the M4 and ME3 muon stations in the Akeno

array. Details of the measurement aredescribed in the preceding paper (4)
(hereafter called paper I).

Since the detection area of the Akeno array was expanded from 4km 2

to 20km 2 in October 1984 (3) , the scintillation detectors located at the

M4 and ME3 muon stations were rearranged. In this second run four 4m 2
unshielded scintillation detectors were installed near the center of this

new 20km 2 array and two 4m 2 scintillation detectors were located above

the M4 muon station, separated by about 2km from the center of the new

array. The added signal from these detectors was stored in the waveform
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recorder (Biomation 8100) with a sampling interval of 50ns in each station,
when the local trigger pulse generated by a passage of at least one par-

ticle through any one of the detectors was coincident with a master pulse
from the array to observe air showers with electron sizes larger than
108.0.

The time response of the whole system in the first run was 39ns for

rise time between 20% and 70% of the integrated full signal (T20-70),

while this value in the second run became larger due to the larger sampl-

ing interval of the recorder but this is not serious for observation of

the arrival time distributions of particles at large core distances.

3. Arrival time distributions of particles at large core distances
On the basis of the observed arrival time distributions, the time dis-

persion (a) proposed by Linsley as well as the rise time (T20_70) were

calculated for each shower. Average values both of a and T20_70 are

plotted against core distances in figure l(a) and (b), respectively, for
air showers with electron sizes from 108.0 to 108.5 and sec6 from 1.0 to

1.2 in the first run. Also shown in figure l(a) is the value of a given by

Linsley's empirical formula. Although the average values of a obtained

at core distances smaller than 500m are larger than the value of a by

Linsley, those at large core distances are consistent with each other.

As is seen in figure l(b) average values ofT20_70 show a steeper depend-
ence on the core distance than those of a.

Though the sample of showers is limited at present, time dispersions
for Showers with electron sizes above 109.0 observed in the two runs are

plotted against core distances in figure 2. A large fluctuation in a is

seen at given core distances. The distribution of a depends upon the

number of observed particles. For a sample of showers with electron

sizes of 108"0-108.5 at core distances of 500-600m, the standard devia-

tion of a is lOOns for more than lO particles while 30ns for more than 30

particles.

4. Signals delayed by longer than Ipsec

Signals, which correspond to the passage Of more than 0.5 particles,

delayed by longer than lws from the shower front have been seen in 15% of

arrival time distributions measured for showers with electron sizes larger

than 108"0. Figure 3 shows the delay time distribution for air showers
with electron sizes from I08"0 to 108.5 and sece from 1.0 to 1.2. The

frequency decreases monotonously up to 4_s with delay time while, after

that Time, this frequency is almost constant up to lObs. The frequency

of accidental signalsis as low as 8×lO-4(4mZ.l_s) -I . Moreover, during
first run, we observed five interesting showers in which one or suc-

cessive delayed signals appeared in both the arrival time distribution

of muons and that of electrons with almost same delay times, one of which

, is shown in figure 4(a), and observed one shower in which four successive

delayed signals appeared in both arrival time distributions of electrons

with almost same delay times at the M4 and ME3 muon stations separated

by 100m from each other, which is shown in figure 4(b).

5. Discussion and conclusion

From the fluctuation in the time dispersions (a) shown in figure 2,
we may tentatively argue that the core distance and the shower size would

+120oj
be determined within an accuracy of lO0-150m and _ 70 m, respectively, if
the number of particles observed in the detectors exceeds ten and the core
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distance is around 1.5km. fiuw_ver, it should be mentioned from the

present analysis that the value of time dispersion (a) is more sensitive
to the existence of delayed particles than that of T20_70 and the values

of T20_70 show asteeper dependence on core distance than that of a.
Needless to say, it is most importnat to accumulate the sample of showers
and examine further the dependence of the dispersion on the electron size

and the zenith angle to make a final conclusion on the possibility of the

proposal made by Linsley.

The delayed signals observed in the present experiment seem to be

explained qualitatively as originated from low-energy neutrons which made
interactions in the scintillator. However, the successive delayed sig-

nals as described at the end of §4 look very interesting and more samples

should be necessary to clarify their origin.
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