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I. Introduction

Most investigations of the muon arrival time distribution in EAS during

the past decade made use of parameters which can collectively be called
rise time parameters. We will follow the definition of Blake et al.

(1981) and de_ine the rise time parameter TA/B as the time taken for the
integrated pulse from a detector to rise from A% to B% of its full
amplitude. The use of these parameters are usually restricted to the

determination of the radial dependence thereof. This radial dependence
of the rise time parameters are usually taken as a signature of the par-
ticle interaction characteristics in the shower. As these parameters
have a stochastic nature, it seems reasonable to us that one should also

take notice of this aspect of the rise time parameters. The aim of this

paper is therefore to present a statistical approach to the rise time

parameters, as this has not been done in the past.

2. Order statistics and rise time parameters

From the definition of TA/B it is reasonable to assume that on the ave-
rage A% of the total number of particles which gave rise to the output

pulse from the detector have arrived in the time TO./A. A sample quantile
of order p is defined as follows: Let (XI, X2 ...Xn7 be a random sample
of size n of _ randqm variable X with probability density function (pdf)

f(t). Let (X_n), X_n) x_n)) be an arrangement of (XI, X? Xn) such" " " H w _ • el ii

that _XIn) < X_n) < ...X_n). XIn) iscalled the i-th order statistic. The

sgm_le'qua_ti_e oT orde_ p, 0<_<I, is defined to be the order statistic

X_n! for which k = [np] + I, where [np] is the greatest integer not larger
than np. Thi§ _efinition states that a fraction p of the sample values

is less than X_n). This corresponds exactly to the definition of T0/A.
The rise time parameter TA/R corresponds therefore to the difference
between two order statistics of the sample. The statistical properties

of TA/B can therefore be determined from the properties of the difference
between two order statistics.

" We now aive a number,o_ properties which a_e.very useful. The following

ngt_tiop_is used: f_nJ(t) is the pdf of X_n), W_£(t) is the pdf of
X_nJ-X,_n), F(t) is t_e distr_bvtion function of t_e random variable

, X_ i.e_F(t) = P(X_t), and gln)(t) is the pdf of the arrival times of
muons with respect to the first detected muon.

.(n)(t):_ C f(t) _F(t)]k'1[1-F(t)] n-k with C = n!/(k-1)!(n-k)!(i) t k

• (n)(t) = C _f(t)f(x+t) IF(t)]k-1 [F(x+t)-F(x)]£-k-1[1-F(x+t)]n-kdx
(i i) Wke . ,

with C = n!/(k-1)!(n-k)!(£-k-1)!
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P(IX(n)'apI->K E:) = 0 for E:>0, k = [np] + 1 and a is the
(iii) lira

n.= ' P

population quantile of order p.

I P(I"P)I (Fisz(1963))"(n)(t) = Nap(iv) l im 1"k , nf2(ap)jn.+oo

[aq-ap; nf'P'_l-P) ...q(1-q) apaq ](v) IiraWk)(t)=. (%}+ nf2(aq) nf (Up) f (aq)n.oo

(Swanepoel (1985)) •

(vi) l im g(n)(t) = f(t) (Van der Walt (1984)).
n.oo

Property (iii) states that the sample quantile converges stochastically to
the population quagt_le. Pr,operties (iy)q (v) and (vi) give the limiting

distributions of fl_n)(t), Wl_)(t) and g(n)(t). The rise time parameters
will then also have the above properties.

The significance of these results is further that it is possible to examine
specific properties of the rise time parameters without having to simulate
air showers. It must be made clear at this point that points (i) to (vi)
does not add directly to the understanding of the physics involved in
shower development. We feel, however, that it qives one a firm basis from
which one can understand the properties of the measured rise time para-
meters,

Discussion

Consider, for example, property (iii). For the case of EAS, the arrival of
the hypotherical shower front can be considered as the time t=O from which
timing measurements can be made. In this c_s¢ f(t) = 0 for all t < O, and
we can allow p to be equal to zero. Then X_nJ, corresponds to th¢--_eroth

order sample quantile while ap = ao = O. 'We then have ]im P(Ix_n)-oI>_)n._
= 0, which means that the arrival time of the first detected muonwith
respect to the shower front converges stochastically to zero. This means
that for large samples one can consider the first detected particle as the
time t = 0. Property (vi) is equivalent to what has just been said.

In figure 1 we show the arrival time distribution of muons together with
the arrival tin_ distribution of muonswhen the first detected muon was
taken as the time t = 0. She difference at small delays is due to the fact
that the sample size was only ten.

In figure 2 we present the relationship between <XtS)- X!5)>and <X> for the
case when f(t) is a gammadensity function. The same relationship was
found to exist for larger samples. Is is also possible to show that this
linear relationship exists for a wide variety o_ density functions. In

figure 3 we present the relq_?nship between <xt_O}- X(]0)> and <X> for
shower simulation data. X_ is the i-th order statistic for a sample
of 10 muonarrival times measured in a detector and <X> is the mean muon
arrival time. It can be seen that the relationship is also linear even
though we do not know the parametric form of the muon arrival time distri-
bution. This example also illustrates that it is not necessary to
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determine the properties of the rise time parameters through the simula-

tiqn.of ai[ showers. It shou]d also be noted from figure 2 that
<X_ n)- x_n/>does not determine <X> uniquely. This is an example of
some of the limitations of rise time parameters.

Conclusion

With the above examples we have tried to ||lustrate that there exist a
statistical basis for the rise time parameters. We believe that the
statistical properties of rise time parameters maybe of use not only for
the analysis of experimental data but also for the planning of experiments.
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Figure 1 Comparison between g(lO)(t) and f(t)
for 14 F¢-initiated showers. _ f(t),
--- g_lO)(t). 110m < R < 120m,
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Figure 2 Relationship between <X_5)- XlS)> an d
<X> .for a number of gamma random

variables for which 1 < <l>2/cr.} <_ 2.
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Figure 3 Relationship between <X(10)'10 X} 10)> and
<X> for 14 Fe-initiated showers.
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