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ABSTRACT 

Concerns about environmental effects of large-scale 
deforestation have prompted efforts to map forests over large 
areas using various remote sensing data and Image processing 
techniques. Basic research on the spectral characteristics of 
forest vegetation are required to form a basis for development of 
new techniques, and for Image Interpretation. Examination of 
Landsat data and image processing algorithms over a portion of 
boreal forest have demonstrated the complexity of relations 
between the various expressions of forest canopies, environmental 
varlabl I ity, and the relative capacities of different Image 
processing algorithms to achieve high classification accuracies 
under these conditions. AIS data may In part provide the means 
to Interpret the responses of standard data and techniques to the 
vegetation based on Its relatively high spectral resolution. 

INTRODUCTION and OVERVIEW 

Available forest maps are of Insufficient accuracy, currency 
and scale to evaluate the effect massive forest cutting is having 
on global carbon balance (Houghton and Woodwell, 1981). 
Scientists are concerned that an imbalance In the global carbon 
cyc lew i I I promote a "greenhouse effect" by the ml dd I e of the 
next century (Sagan et al., 1979). To help evaluate this concern, 
they have advocated the use of space-based remote sensing to 
produce accurate maps of the world's forests (Botkin et al., 
1984; Woodwell et al., 1983). The accuracies of such maps, 
particularly in areas of high spatial complexity, may depend upon 
both the environmental characteristics of the area, and the data 
processing algorithms used to generate these maps. 

This paper summarizes our work on the relative performance 
of image processing algorithms, and discusses our preliminary 
findings on the potential of data from the Airborne Imaging 
Spectrometer (AIS) to supplement existing remote sensing 
technology for distinguishing forest type classes. We describe 
our study area In the forests of northern Minnesota, and 
summarize results of performance tests of standard processing 
algorithms developed to reduce undesirable variations In spectral 
reflectance data. This Is fol lowed by description of the AIS data 
from fhe study site, and a discussion of the potential of these 
data to complement the vegetation classification process. 

Surface spectral variations are needed to classify forest 
types. Undesirable spectral variations related to the angles of 
the sun and sensor, the state of the atmosphere, and the type of 
background sol I, however, typically have an adverse effect on 
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classification accuracy. Algorithms have been developed to 
reduce these undesirable spectral variations and enhance features 
In agricultural and rangeland vegetation (Kriegler et al., 1969; 
Carn~ggle et al., 1974; Richardson and Wiegand, 1977; Tucker, 
1979; Holben and Justice, 1980). We have tested whether such 
algorithms offer advantagos over unprocessed data when large and 
complex forested areas are classified. 

SUMMARY OF CURRENT WORK 

Landsat MSS data from a complex forested area In northern 
Minnesota were used to analyze the relative performances of 
waveband ratios, statistical filters, and principal components 
for classification of natural vegetation In the forests of 
Northern Minnesota. We analyzed performances of spectral 
variables produced using standard Image processing algorithms 
(Table 1), grouping categories of ground cover Into 9 classes 
(Table 2). 

Tab I e 1. 
Spectra I Var i ab I es of Landsat Data, Minnesota Study Area. 

Score l%J Type Description A B C D E F G H 

48 14 0 MSS7,MSS5 ... ... .. "''' 
... "' ... . .. 

47 17 RT (7/5),MTex '" * .. *"'* *'" .. * .. 
I 

46 15 0 MSS6,MSS5 * • * ** * •. "'* *. 

45 7 R VIG * * •• ** ... "'''' 
45 10 R TV17 .. .. .... ** .. * • 

44 5 R MSS7/MSS5 .. .. ..* ** • * 

44 8 R VI7 • ** .* ** • ** 

44 9 R TVI6 * ** ... .. • * ** 

43 6 R MSS6/MSS5 ... ... •• . .. '" "'* 
~ 

42 3 0 MSS6 ... ...... ** ** *. 

42 4 0 MSS7 ** ** ** •• 
42 18 C (7/5)/PC2 * •• * .'" • * 

38 11 T MSS5,MTex * .* • .* • 
37 1 0 MSS4 • * • • •• • 
36 2 0 MSS5 •• .... • •• • 
28 16 RT (7/5)SDTex • •• • 
28 19 C «7/5),SDTex)/PC2 • •• * • •• 
26 21 RT (1/5)/(7/5),SDTex •• 
22 20 RT 7,SDTex/5,SDTex *.* • •• 
22 13 T MSS7,SDTex ... • '" 
20 12 T MS55,SDTex • 
10 22 C PC1 •• 

9 23 C PC2 •• 
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Table 2. 
Groundcover Classes 

Class A = Evergreen needle':leaved woodland with round crowns, ENLWRC (Pinus 
banksianafJack pine; PInus resinosa/Red pine; Pinus strobus/WhIte pIne) 

Class B = Evergreen needle-leaved forest with round crowns, ENLFRC (PInus 
banksiana/Jack pine; PInus resinosa/Red pine; Pinus strobus/White pine) 
Class C = Grass 
Class D = Dwarf Shrub/Bog (Picea mariana/Black spruce <Sm and >10% cover; Sphagnum, 
Typhus) 
Class E = Evergreen needle-leaved woodland with conical crowns, ENLWCC (Picea 
mariana/Black spruce; Pice a glauca/White spruce; Abies baisamea/Balsam fir) 
Class F = Evergreen needle-leaved forest with conical crowns, ENLFCC (Picea 
mariana/Black spruce; Picea glauca/WMte spruce; Abies balsamea/Balsam fir) 
Class G = Deciduous broad-leaved forest, DBLF (Populus spp./Aspenj Betula 
papyrifera/Paper birch; Acer rubrum/Red maple) 
Class H '" Mixed evergreen needle-leaved and deciduous broad-leaved forest, MF (Classes B, 
F, and G) 

Class I = Water 

Differences In performances of the spectral variables 
apparently result In part from the relative capacities of data 
processing algorithms to reduce undesirable variations In 
background reflectance and surface I I lumlnatlon, and to enhance 
the spectral reflectance of different classes. 

Performance differences between two-dimensional ORIGINAL 
variables and the RATIO variables were Insignificant overall. 
RATIO or "vegetation Index" variables appear to be functionally 
equivalent, and do not perform significantly better than the 
Individual ORIGINAL Landsat variables. Overall r.:lasslflcatlon 
accuracy for any given RATIO variable Is <50%. ORIGINAL MSS6 Is 
the best unprocessed one-dimensional spectral variable overal I, 
whl Ie a local-mean fl Iter of MSS7/MSS5 performed best of both 
processed and unprocessed one-dimensional spectral variables. 
RATEX and COMPLEX variables performed poorest overal I, but RATEX 
var I ab les 20 and 21 performed best on C I asses A and H, 
respectively. 

These results of these tests suggest the complexity of 
relations between the physical expression of natUral vegetation, 
environmental variability, and data processing techniques that 
Is likely to exist when large geographic areas are surveyed by 
satellite-borne sensors. Based on these results, the processing 
of the original Landsat MSS bands does not result In significant 
Increases In performance for the majority of classes. We belIeve 
in the excel lent performances of certaIn variables on certaIn 
classes. However, further examinatIon Into the spectral 
characteristics of vegetation is required to enable future 
development of Image processing algorithms. 
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THE POTENTIAL OF AIS TECHNOLOGY 

The AIS was flown over the Northern Minnesota Study Area on 
August 6, 1983. The time of the overflight was roughly local 
noon. The Instrument was flown at 24,000 feet above the ground, 
which suggests a 14.8 m pixel size (based on the stated FOV = 
3.10 ) at nad I r. The data appear blurred, so a prec I se 
Identification of the ground characteristics Is not possible. 

Based on our knowledge of ground conditions below the AIS 
f light path, however, severa I trends are' notlceab I e. 

* There are clear gradations In brightness, which show 
changes In the amount of vegetation along the scan track. 
The contrast ratios appear to be significantly higher In the 
1.4~m than the 1.2~m region. 

* The dark areas are water bodies. The Imagery picks up 
deta I I I n the water, wh I ch probab I y I nc I udes surface and 
partially-submerged vegetation. 

* Differences In gray tone patterning and Intensity probably 
relate to the dlfferen~ mixtures of broadleaf and coniferous 
vegetation typical of this area. 

* A lake and Island are Imaged at the bottom of Figure 2. 
The relative Intensity Is higher on the Island due to the 
greater amount of bulk vegetation compared with non-Island 
vegetation, which is often patchy due to logging or fire 
disturbances. 

SUMMARY AND CONCLUSIONS 

Previous research completed In the forests of Northern 
Minnesota demonstrated the complexity of relations between 
natural vegetation, remotely-sensed data from Landsat, and the 
algorithms used to process these data. Though the current 
spectral resol utlon of AIS Is not comparable to Landsat MSS, the 
Airborne Imaging Spectrometer appears to be a powerful tool for 
studying the spectral behavior of natural vegetation. AIS data 
may clarify the results from processing and classification of 
natural vegetation. 

We examined AIS data collected along a corridor within our 
Minnesota study area. Our data cannot be Interpreted precisely, 
but we are convinced that very subtle changes In the land complex 
In this area can be detected with the aid of the AIS. The 
spectral responses to changes In vegetation are particularly 
apparent In several bandpasses. This Information could be useful 
In the Interpretation of data from the Thematic Mapper and SPOT~ 
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