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, ABSTRACT

'A finite element or Galerkin type semidiscrete method is proposed for numerical

solution of a linear hyperbolic partial differential equation. The question of

stability is reduced to the stability of a system of ordinary differential

_ equations for which Dahlquist theory applies.

_-. We also present some results of separating the part of numerical solution which

- causes the spurious oscillation near shock-like response of semidiscrete scheme

to a step function initial condition. In general all methods produce such
Z

oscillatory overshoots on either side of shocks. This overshoot pathology,
• !
=

which displays a behaviour similar to Gibb's ?henomena of Fourier series, is !
!

explained on the basis of dispersion of separated Fourier components which
I

relies on linearized theory to be satisfactory. We present expository results,

polished formal proofs will appear elsewhere.

i

INTRODUCTION _' 4

Our model of one and two dimensional linear hyperbolic equations are

•(I) _-_+c_--v-_=o

_, (2) _--9-u+ a%V.u+ _-u: o
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2 I.

Introducing c= oz_-_&=,C-Cf.QsoC and Cd=cS,_oL equation (2) can be written as

(2') _U_t c_ _aU c_-_ o
--;-+G ._ + =

Galerkin or finite element semidiscretization [1], [2] , [3] , [4] ,seeks an

approximate solution for equation (2') in the form

"" where

(4) _)_= {0 0therwise.
4

We obtain a system of ordinary differential equations by requiring that the

-. residual _,,_--_tcC_._._.cS.,_]__,beorthogonal to the basis functions _O i.e

_? <_L_ , R,>=O. Candidates for L_m are too many producing algorithms with

increasing complexity proportional with their smoothness. We only present bilinear

finite elements on squares. The orthogonality requirement y;elds, say in one

dimensional case.

where _¢and L kare discrete Toeplitz operators with eigenvectors _).

If _is an identity operator then scheme is explicit, otherwise implicit. If

the real part of the corresponding eigenvalue _0_) is zero then the scheme is _

conservative [6] , [7] . The quantity

( _) _ (.c_ :. _ ,1._':),__
u)

is the velocity of propagation of numerical solutions in comparison with exact

propagation velocity C in (l). The quotient _'_);c_or difference C_}-C in

an appropriate northis the measure of spurious oscillations and dispersions in

numerical solutions. Purely mathematical treatment without the effects of

discretization i.e nonnumerical can be fecundin [8].

In the next sections, to study the response of semidiscrete scher_eto sharp

¢
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;;gradientchangeswe simulatea shockby a step functioninitialconditionin (I)

herewe presentan heuristicargumentfor the cause of parasiticoscillations
A

' arounda pointof discontinuity.

_, Considerthe weightedGalerkinsemidiscretization

_ (7) ._. 4.(,- +_ =

i of our model equation(l), where _e[o, 1]is a parameter.Note thatoc-ocorresponds

i :to the equation

(8) _w---_=centereddifferenceapproximationto C-C'_LL_• _L- . _ ,,' '

il Since for any n , in equation(7), indicestake three successiveinteger
4
-_ valueswe may relabelthem for n even as LL_and for n odd as t_ we then
-
_ obtainrespectivelythe followingsystems

(9)
d,,, c u.,2) i.

;'t;for=.o,and ))

•_ zh.. -
,- (lO) _T + �:-

'* (_-_') +'_" + _t; / u.,,,,
; These equationsare consistentapproximationsfor the followingsystems

1
" I

I

., I,. _ "a,(

Eliminatingu or I/In (Illwe obtainrespectively

(13) _'L" "__._

; .--- C7-r_'z'w,
_t_ _
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Showing that in a doubly spaced grid wave equation is satisfied. This indicates

that finite differencing is consistent with (13) rather than (1). Also adding

' the equations in (ll}

; we see that discretization is consistent for the avarage of the solutions at

two successive grid points• However _ubtracting equations in (ll) we obtain

This shows that due to discretlzation difference, however small, of two successive

C solutions propagates as an error wave in tilediscrete medium in the opposite

direction.

" For (12), adding we obtain

and subtracting we find

which is the cause of oscillations in general.
t

GALERKIN S_IDISCRETIZATION FOR EQUATION (2') !

On the square with vertices (_,_.,__ n_,), (_r_+l,_1)' (_m+l,%n-i) and

(_-l_ _-_ ) we take basis functions to be {

, I

%-

i 0 otherwise
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i. These are pyramids whose basc.is a square with vertices are given above, centered

: at (_, u ) with unit height.Forming the inner products with the residual we

obtainh
,4

Only nonvanishing terms come for the values of indices I-_=n_..t_m.,fr_4and L, n-_,_.,_'_t.

" l',husequation (19) reduces to

_.._-_ --_ .'_'_,,_ _%.,.._>:o
Computation of inner products as double integrals are straightforward but

" tedious. Replacing the values of various integrals in equation (20), we obtain

_. (21) _-__ u_p.,-l-_m.,,n-_ . .

where B=c_-'T-_G_h'=C_-c_'_G _'3 _ and e_3= :ZC_._.

i: oystem of equations (21) can be written in matrix notation on a rectangle [ O,(M+l)h_
T

_. X[O,(N+l)h in various ways. Let LJl:_,lal6 .... _I] ' _.:_,:L,..N , IN be the_

NxN identity matrix, and LN=[_U_Nx N where

_.i_{I j-L-t0 otherwise,

_4.Q
superscript T indicates transposition. Then

_ _E.t4 (.L,_+ _i _.LI) U, + ( L,_+ 4::i., + L_) U_1 , ,n',

(,c*_-,+_-_.I, �oLI)U,1- k t'_°*'_'+_'-('_L, $�ˆ�].,,,-eLi)_Jo_-
4-

.\
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3_ _t

wherewe introducedvectorsin IR,14
4

: " "_T •

:e _%-- - .lu'_O_'"., ' t , _= %_Z,...,

_k= [_a , ,.... aE,_+_ , ...,
. "T

. _=[ o .. o _.. 1 ,_-o,_...,_*_
-_.

We 1et

"4 l o _

_, 4., 0 -_o 0

"i-N=LH+4Z,+L,= , _= ',.
1,I (:_-- N

--(') "'., 0 -% .
V

I 4-. _ -,_o
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+\

" ,¢. Thenthe system (22)in vectorand block tridiaganalmatrixnotationbecomes

• w .

36 at _-_ I
• 1

"-" % " 0 .e. i '
. t.,_.., - 4T_I.U. .{_,,% i .+;,. I I1i ,

(23) . .
-e_ "Uo: '.,o+,,+_<._ _-r. u<>i

o 0, t + o °: t" -_ i-t- I1 I._ • '. i,I 3G 44: " i+J, . i

" O " " ] 0 .i
"d 0 o o ;

1
1

where -_ i

" = I , _r t "i "
L'A,*_,":++.>_,+<_-"_" ' _>""_" %_+"_ iiwl

Hereentriesof matricesare NXN matricesand entriesof vectorsare N vectors.

Note thatfor time independentboundaryconditionsthe last term in this equation

vanishes,Furthersimplificationis obtainedby introducingNM dimensionalvectors

or M dimensionalcompoundvectorsi.e wctors whose componentsare N dimensional

vectors,

u= , ,_}= ,_: J,N=. ,_=• k[z :+x]. . , Z:- .44,

and the squarematricesof order NM,_ for the matrixon the left and(_ for

_+the matrixon the right hand side of equation(23),

_ The linearsystem (22)or equivalently(23)can be writtenas

;_, (24) _ :-]=_ "i-
#,#
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._ withthe initialcondition_L:_-_o whent:0.

' Thissystemhasa uniquesolutionforJ.--_. Letting_= A_+_K:,wlth

-TN ckl, .o T.
-r.0 T.o 0

,b

0 o ,".
. -r. T.o.

directmultiplication_howsthat A1 and A2 co,,,,,ute,thisis a directcon-

.., sequenceof bothbeingT_eplltzmatrices,thereforetheyhavethe sameelgenvectors. '

Elgenvaluesof Al, as easilyverified,are

_._.=_Cz_-_ _.L__ , k. _+z,...,_.NM+rl ..

with correspondingeigenvectors
k

_+ -- Ib • " It _ '

': Nhk+X N_rX
"_ J t
T- f

+ Let(_kbeanelgenvalueof A2 associat+d.it, t,e e,genvector_<k'sinceA,: A_ )
.+

we have
!

"T

t

_kL)O , hence_ Is nonslngular[g].It Is knownthatJ)kis unltarlly

similarto a dlagoml matrix_) wlthelgenvaluesof_ , whicharethesumof the

etgenvalues of A1 and A2, are thedlagona_entries.This slmllarltjtransfor-

•"_.._,,_ ] l.e columns of S arematlonis performedby taking_ .... "_N_-I

. ,5"_elgenvectorsof,_ LettingS I_L=_.)andmultiplying(24) by theInitial )

value problemreducesto +

(2s)

5" IJL.-L1
dl *oNotethatonedoesnotne:_to compute , since S -._

Forthesolutionof (25)one stepmethodssuchas Runge-Kuttamethodcanbe used.

+ Alsoa largenumberof multlstepmethods,implicitor explicitin time(predictor- ',

J 5-8 , '.
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ilit:
corrector),o.ce a starting procedure is realized by a one step method, are

available,and their stability theory is well understood and detailed treatment

ca_ be found in [lO] , [Ill .

._ To show that the finite differencing scheme is conservative, we must show that

the eigenvalues_(_J,_)ofGalerkin difference operators in (21) belonging to

eigenvectors expI.[_c_t_'ru_<l_rL_,are purely imaginary where _-u._c_, and

cz ,_c_ L
_<_=u_S;_cx.Substituting _L _CE_=L(t)cX_._ x. _u_,_n_ in (21) after some

manipulationyields for the left hand side

_ and for the right hand side

_-_ R.H.S=-_-_._¢ " " L _ --

I

"_. ,.:

Hence !

. where

which is imag,nary. Setting u_r(_,_L_,_J_n._L(.%oc)wefind the numerical solution I_

The discrepancy between C(_,d,} ar,d C or more precisely the order of zero of

C_c_,o(_-C about cu,_-.C)is the the order of accuracy of the semidiscrete method.

To show that this method is of order four, K'eexpand _(_o,eL) in a Taylor series

L and a straightforwardcomputation shows that
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C ERROR ESTIMATES FOR PRE A_IDPOST 03CILLATIONS ABOUT DISCONTINUITIES

To justify the heuristic argument _reser.tedearlier we may assume that this

spurious oscillations are rapresented by small perturbations in _0 , and rep]ace

_) by u_ Œtrial solutions

(28) _L¢o%£)= 0.__ ,

Expanding ¢'_u_-r_) in a Taylor series about g_:O and retaining only the

linear terms we obtain

L Sincecu>>F.., terms of order L_can be neglected and introducing group velocity

". (29)_c_): _ C__c_)

= (28) can be written as

Straightforward computation shows that eigenvalues of (7) corresponding to

eigenvectors { _'L_A_ , are

%

ar.dtherefore

Using (29),_u_) is easil_ computed as

',_l)_= c _+(_-,_),Co_o_

Due to the discretization of the domain of the equation, the group velocity

corresponding to 2h wavelenght, from equation (31) is

which is the same as depicted in (17) and for _=_ in (15).

To obtain estimates on loca_ and global error of numerical solution we recall

the definitions. [5] p.43, [13_. We say an infinite series __._k_is (C,1)

5-I0
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11plp_j iI_% . • "t •

:S,. E

su_.anableif lim O'_-_lim£°+S'+-'_'=S existswhere Sk_'KT-z_u_. in this case
C

.i we write ____t_--.S (C,l)sense.

An infiniteseries ZtL_. is said robesummableby Abel'smethod ( some say,.

. Poisson's)or simplyA-summableto s, if _-_tEr_ is convergentfor_r_<:'land

lim_-tt F_ . k
=11,_(l-r)___skr=Swhere Skis definedabove.

We need two results,the firstis that the series

I

is (C,l)and also A-summableto zero.

It is known that, [5] p.20

L and from the t.-igonometricidentity

it followsthat

2_
: Thus _ C

Stn.Ck+ -.r..= .... ac z ,vr
le.--_

and lim(l'_O_.-{oshowA-summability,recallthe Poisson'sformula[5], p.6l;
_r_ -_(xa

- e_

I r_ _- r_

Lettingr._,(we see that the assertionis true.

The secondresultis that

is (C,l)and also A-summableto 4"(aa_

It is knownthat [5], p.21;

! O.A;_.x - _

R.

Using the trigonometricidentity-z

m 2.

we find

_ = ..... = _co_c_C ....

and the result followsby letting r_.-_

: 5-11
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To showA-summabilitywe use Poisson'sformula

F

• n=_ 4 - _LFF'-cL_JC+r Z

and let r-_l.

We now estimatetheJ_znormof the globalerror.As a directconsequenceof

Parseval'sidentity,it is knownthat Fouriertransformis an isometricisomorphism

betweenthe Hilbertspacesinvolved[16] p.51°52,[15] p.25.Thereforeit

sufficesto co:,_putethe &norm of the Fouriertransformof the error.To simulate

the shock,we let the initialconditionto be the step function

: Withoutlossof generalitywe may assumethat the discreteFouriertransformof
E

-; the net initialcondition_L_(o)is equal to the Fouriertransformof (35) , and
: )

i
we obtain

(36) U(.uJo_--_r_C_u,o_-- ,,
.eo 13.=0 t t '

• It followsfrom the proofsof statementsconcerning equations(33)and (34)that I
f
l

serieson the Hght of equation(36) is (C,l)and henceA-sunTnableto

: (37)U(_o)= _(_,o)=
_L 5L_

Fromequation(1),Fouriertransform,of the exact solutionis easilycomputed
^ ', -_.c_l:
uc_o,_)=U(_,o)e "4

LL_(_)is the solutionof semidiscreteequation,for simplicitywe assume Kh

to be the identityoperator,takingthe discreteFouriertransformof the

semidiscreteequationand solvingthe resultingdiffer._ntialequationone

obtains

^ ^ %£_")_:

For conservativeschemes _k(uo3=-_._C'{._), thereforethe_. norm of the global

error is __

I 1'-, tlEIi -
'Ell _'
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• • ' i'_I " _. . . + . . - . .4

• 4

i'_ Introducing dimensionless variables _._tc and _=_)_ , a straightforward

computation shows that

--  Ce+( -c)
_ • r_ _._2__ ay.
.'_ o 2.

II

: CONCLUSION

The semidiscrete method proposed here has a reasonable Courant number and a fourth
t

: order accuracy. Results are theoretically conclusive. Computational evidence for

detailed comparison of this method with conventional methods will await our

: numerical experiments.

The measure of oscillations in the numerical solution, in a neighborhood of sharp
+

"S changes is the pointwise error. We were able to show with a lenghty argument,

• although there are some gaps in details of proofs, that maxima of the difference

between the exact and the numerical solutions continually diminish and minima
]

: continually increase in an interval of lenght 4h on each side of the sharp i

_ gradient change. Numerical solution is approximately 0.28h larger in the
I

upstream direction.
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