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ABSTRACT

This paper is a report on the continuation of the author's work with
V. Bond of NASA-JSC performed in 1981-82. The subject is the formulation
of computational and analytical techniques which simplify the solution of
complex problems in orbit mechanics, Astrodynamics and Celestial Mechanics.

The major tcol of the simplification is the substitution of trans-
formations in place of numerical or analytical integrations. In this way
the rather complicated equations of orbit mechanicsmicht sometimes be
reduced to linear equations representing harmonic oscillators with con-
stant coefficients.

The first part of this work was reported in several papers and reports
by V. Bond and V., Szebehely, which are listed and discussed in the body
of this paper. One outcome of the previous work was the derivaticn
of an equation from which the transformations may be computed for a given
protlem. This equation is known today in the literature as the "Szebehely-Bond-
Equ..ion."

The recently performed work renorted here, generalizes tha p e/inus
results to multi-dimensional problems, investigates the role of 1ntegrals
fn conjunction with the transformations and discusses some of the, as yet
unsolved problems.

Center Research Advisor: Victor R, Bond,
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INTRODUCTION

The method of transforming non-linear differential equations of

orbit mechanics into linear differential equations is one of the major .
problems in celestial mechanics. Hamiltonian canonical transformations

in the extended phase-space attack this problem and the relation of this

approach to regularization is discussed in detail in several reference .
books, see for instance Szebehely, 1967, Regularization is the technique

to eliminate the singularities of the differential equations of motion

and the associated transformations often lead to linearization, see for

instance Levi -Civita, 1903 or Stiefel and Scheirele, 1971.

One of the first general investigation of regularization was performed
by Sundman, 1912 who introduced a new independent variable and regularized
binary collisions in the general problem of three bodies. The purpose of
Sundman's work was not to linearize the equaticns of motion but to show
the existence of soiutions of the non-linear but regular differential
equations of motion. For this reason Sundman's work was not generally
accepted and was seldom used by workers in orbital mechanics until close-
approach trajectories had to be computed in connection with lunar and planetary
missions. Regularization and linearization were rediscovered and were
described usually as "transformations" since, as it will be shown, new

independent and dependent variables are to be introduced to linearize,
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THEORY

The basic idea of this project is deceivingly simple. The execution

is, on the other hand, extremely complicated and difficult.

i’
-

The equations of motion in Astrodynamics are second order differential

equations with non-linear terms and with singularities. A1l three difficulties

LI - LI

(second order, non-linear, singular) were already known to Sir Itcaac Newton;
they are due to Newton's second law of motion (according to which the
accelation, x is related to the force), and are connected with Newton's law
of gravity (according to which the force is inversely proportional to the
square of the distance). The simplest demonstration of the problem uses

a one-dimensional example which is represented by the equation

X = -tz (1)

where dots denote derivatives with respect to time, x is the distance
between the participating bedies and u is a constant depending on the masses
of the participating bodies and on the constant of gravity. Equation (1) is
= a second order, non-linear differential equation with a singularity

at x=0. In this, simplest of all cases, linearization is easily accomplished
by introducing a new independent variable and consequently measuring

time (t) with a new clock. The two times s and t) are connected (Sundman, 1912)

{ by:

- dt
ds = ;. (2)
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: It might be seen that this equation introduces a new time s. As x -
_ ; becomes small and the usual time step At is reduced during numerical
integration, the new time step As remains approximately constant. This
. might be Tooked upon as a built-in time step control, popular in numerical
;? integration techniques. If we rewrite Equation (1) in terms of s instead '
of t we obtain another non-linear equation, which, however, with the use
of the integral of the energj, might be written in a linear form, The
analysis is simple, nonetheless, it reveals some fundamental aspects of :

the problem and, therefore, it will be reproduced here. The two

Lm

e
I

"time derivatives", i.e. the two velocities

[

. 4

‘.-...g..x_. ':.:-——
X T and X

. [}
: are related by x = —%— (3)

and the two accelerations by

- =X - (xS (4)
¥ X"

So the new equation of mot1oB becomes

)2 ‘
(5)

Iyt
y x" = -y X

which is just as unpleasant as the original equation was, see Equation (1).
So the famous Sundman transformation (Equation 2) neither regularizes nor

lineariz~s the equation of motion. Nevertheless, it might be shown that
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the term

(x")%/x
becomes 1inear when the principle of energy conservation is used.

Equation (1) has an energy integral which might be written as

2 24
= £l 4
or as
2
(x")
~ w2 hx. (7)
Consequently, Equation (5) becomes
x* -2hx=uy (8)

This simple example reveals several difficulties of fundamental importance
in the theory of linearization, some of which have still not heen over-

come in the case of the n-dimensional perturbed motion.

As we have seen, the use of Sundman's transformation was not sufficient
to linearize the equation of motion and an integral of the system had to be
used to accomplish linearization, Furthermore, the dependent variable x
was not transformed. The fact is that with a proper x=f(y) transformation,

Equation (1) may be linearized without the use of the energy integral.
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Consequently, in principle, non-linear equations witnout energy conservatior

might be linearized when the proper dependént variable is selected, This

is discussed in considerable detail in Szebehely (176a,b) ; Schrapel (1978);
Szebehely and Bond (1982 and 1983); Bond and Szebehely (1982)¢ Mittleman and
Jezewski (1982); Belen'kii (1981), etc. '

Now that the basic approach and some fundamental problems have been
presented, we are ready to increase the dimensionality from one to two. One
of the recent papers on this problem is by Szebehely and Bond (1983) in

which the Szebehely-Bond equation is derived in the form:
_ <40 d 2
Ao + B = " /2= ()" 6], (9)

where r=F(p) is the transformation of the 21d radial cordinate r to the
new one p, g(r) is the function controlling the time transformation which

now becomes

__dt )
ds= E(F)’ (10)
the functio~ T
G=2h + & . ¢t (11)
r- .2 .
represents the energy integral and
_ dF -
=3 - (12)
Those functions (F and g) which satisfy Equation (9) will linearize
the two-dimensional equatioas of motion. Various combinations of these
functions were and are discussed in the literature (beginning with Kepler). !
1
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The most recent is by Ferrer, to be published in Celestial Mechanics,

[Ferrer, 1983].

Similar techniques are available and apnlicable to accurate
orbit calculations for relative motion of sate11itegfor docking of

space probes. etc. [Nacozy and Szebehely, 1976; Szebehely, 1975 and 1976c;
etc.]

Transformations leading from unsolved ron-linear differential equations
to solved non-linear equations are alsn popular in the mathematical literature.
These transformations do not transform the independent variable and,
consequently, might not be ideal for problems pertinent to celestial mechanics,
nevertheless, they are mentioned here since they may open up new avenues
of research [Dasarathy and Srinivasan, 1968; de Spautz and Lerman, 1967

and 1969].
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RESULTS

The generalization to n-dimensional motion was performed during
the period of May 9 - July 15, 1983. The results will be summarized in

this section using analytical description. The verbal evaluation of these

results is in the serction entitied CONCLUSIONS.

The two-pronged attack may be described as using the direct and

the inverse approaches,

The analytical formulation may be represented by matrix notation

or by subscript notation.
Consequently, four basic equations represent the results.

The direct approach starts with given non-linear differential equations

and attempts to find the transformations which result in linear differential

equations. The transformations of the independent and dependent variables.

are
dt
dsz ——
s 9 (13)
and
Using matrix notation these become
P=F (R); R=2¢ (P). (15)
24-8
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Here g=g(xi) or g=g(R) is the function which controls the transformation
s of the independent variable t. Furthermore X; is the i-th comnonent
of the pusition vector appearing in the original, nonlinear differential
equation. The corresponding vector in matrix notation is R. The dependent
v variabie of the transformed linear equation is y; or in matrix notation P,
. . Consequently, Equations(14) reprecent the cuordinate transformations in
subscript notation and Equations (15) in matrix notation., A1l symbols

E represent vectors (R, F, R, & ) or components of vectors (yi’Fi’Xi’fi)

ol

excepting the function g which is a scalar depending on the original

[
LI

dependent variable. The function g in the literature is often called a

o

scalar - vector function,

The original nonlinear equation to be transformed is

L3

; Ri o+ Hi(xos x5, t) =0 (16)

or R+H (R, R, t) =0 (17) E

where dots represent deriva’'ves with respect to time,

The d:sired result of the transformation is

Yi*tay ¥ tbyy ;=0 (18)
or

P+ AP' +BP =0,
(19)
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where primes are derivatives with respect to the transformed time s

and A(aij)’ B(bij) are matrices with cc-stant or s -dependent elements.

Equations (16) and (17) are the equations to be transformed and are
represented here in their most general forms. After the transformations,

Equations (16) and (17) become

-

i "] ] ] 2 -
Y + g F],i (fi,jg )’k kaJ - g F],iHi =0 (20)
and
*
P" + (@*)'] [@**- %— 1 g% ¢*)P']P'-g2(®*)'lu =0 (21)
Here
' dy] ' dP
y = — P = = s
F *

Consider Equations (19) and (21), In order to accomplish linearity
the two last terms of Equation (19) must be equal to the two last terms

of Equation (21). Similarly for Equations (18) and (20). These are the

conditions to be <atisfied by the transformation fuuctions, 4 and F in order

to obtain linearizaticn.
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The problems associated with these requirements will be discussed in
the section entitled CONCLUSIONS. Several examples were investigated and

interesting and unexpected results were obtained.

The inverse approach starts with the linear Equations (18) and (19),
then the transformations, given by Equations (14) and (15), are applied and

the following results are obtained:

. + - * =
% aljkxj xk+81kxk+Y1 0

(22)

and

R+[ARJR+BR+T =0 (23)

where
a]jk s B]k s Yi» A, B and T depend on
X5 R, Fy, g, aij’ A, bij’ B .
Equations (22) and (23) describe the type of non-linear equations which
might be Tinearized by properly selected transformations. Once again,
the requirements placed or the transformations will be discussed in the next
section, It is noted here tha. Equations (22) and (23) for in other words

a B Y,AB,T) are available in forms similar to the details given in

Equations (20) and (21).
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CONCLUSIONS

(1) The two major approaches, using two different notations were
formulated and a thorough study of the comparison revealed complete
agreement, From this it may be concluded that the main results, i.e.

Equations (20) - (23) are reliable,

(2) Specific examples pertinent to orbit mechanics have shown that
irtegrals of the motion play an important role in addition to the tran--

formations selected.

(3) Transformations given in the literature were substituted and the

requirements mentioned in the previous section were satisfied.

(4) It was found that the linearized systems did not necessarily
represent th:: final solutions of the problems and presently diagonalization

and triangularization requirements of the matrices A and B are investigated.

(5) The literature concerning transformations of nonlinear differential
equations is impressive, to say the least, and the number of referencsas

given here could be easily tripled.

(6) The transformations described in this report are restricted and

their generalizations might be of considerable interest.

(7) Linear differential equations do not necessarily have Lyapunov-stable

sulutions. This should influence the selection of the transformation functions.

(8) There are several dynamical systems of considerable importance

in orbit mechanics which represent so-called non-integrable systems, If

24-12
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these systems are investigated in the light of the present repc.. we arrive

at one of the following conclusions:

(i) Non-integrable dynamicai systems cannot be transformea

to linear systems since linear systenws are integrable and i ir
integrals, transformed back into the system of the original
variables, would produce integrals o7 the system, The con-
tradiction ..¢ht be resolved by claiming that the transformations

do not exist.

(11) Another resolution is that non-integrable systems are in reality

not-integrated systems, meaning that the non- .i.egrability

condition exists only under ccrtair conditions, see Po1ﬁcaré's
and Bruns® assumptions concerning the non-integrability of

the restricted and of the general problems of three bodies.
Accordingly, transcendental *ransformation functions might
result in linearization and corsquently ir showing integrability
of these famous “non-integrable" dynamical systems since some of
the above-quoted conditions claim non-intesrapility in terms of

algebraic functions,

(111) Furthermore, it is known that certain non-intejrable systems
have locally valid integrals. These should correspond *o locally
valid transformations which s.ould satisfy the requirements mentiuned

in the previous section.
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(9) The two, seemingly most significant conclusions are left

to items (9) and (10). From a practical point of view, transformations
which reduce or eliminate numerical integrations are of the utmost
importance. Numerical accuracy is increased and the time requirement
for computations is reduced. Autonomous operations require such im-
provements and their executions are associated closely with the success

of establishing the proper transformations.

(10) Establishing transformations either to linear systems or to
integrated non-linear systems might be considered one of the greatest
accomplishments of modern celestial mechanics. Accurate long-time
predictions would be possible for any length of time, This is intimately
associated with the study of the stability of the solar system and of the
origin and evolution of the Universe. To integrate "non-integrable"
systems would show that these systems should have been called "not-integrated"
systems to begin with and would challenge the foundation and the famous

and classical results of celestial mechanics.
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