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_' ABSTRACT

_.

_: A lifting surface theory has been developed with a stationary observer, whereas the lifting
; for a helicopter rotor in forward flight for surface theory is essentially concerned with the

compressible and incompressible flow. The details of the near-field case for a co-moving
L'i method utilizes the concept of the linearized observer as well as the satisfaction of certain

_-! acceleration potential and makes use of the of certain boundary conditions. Runyan (1973)
I vortex lattice procedure. Calculations demon- utilized the acceleration potential approach to

_trating the application of the _thod are given obtain a solution to the oscillating propeller
' : in terms of the lift distribution on a single in compressible flow. Dat, (1973), has derived

_I rotor, a two-bladed rotor, and a rotor with a general expression for an acceleration doublet "
swept-forward and swept-back tips. In addition, for any motion. Pierce and Vaidyanathan (1983)
the lif% on a rotor which is vibrating in a have treated the helicopter rotor in forward
pitchin_ mode at 4/rev is given. Compressibi- flight using the method ef matched asymptotic

lity effects and interference effects for a expansion for _he _ncompres_ihle case. Thetwo-bladed rotor are discussed, procedure developed here involve_ the precise
• numerical integration over the surface of the

i! rotor in a time frame. The method sets forth a

INTRODUCTION formulation of a fundamental three dimensional,
compressible, unsteady aerodynamic then_y for

Rotating lifting surfaces are an integral propellers and helicopter rotors.
part of the propulsive unit of every aeron-
autical and nautical vehicle, from the The next section contains a brief

compressor and turbine blades of jet engines, derivation of the fundamental equations, i_clud-
the pumps for rocket engines, to propeller and ing a discussion of some implications of the
helicopter rotors. The aerodynamics of these equations. The third section contains a

rotating elements has been under extensive study description of the method of solution. Finally, ,
since the advent of the airplane and with a the results of some calculations for the several
combination of experimental and analytical specific examples a e yiv_n.
approaches, succcessful designs have been
achieved. In many cases, two-dimensional theory SYMBOLS

has been used, usually modified by an assumed /
spanwise distribution, and inflow velocities. A' rotor blade area
This paper presents a compressible, lifting Anm aerodynamic influence
surface method for a helicopter rotor in forward coetficients
flight within the limits of linearized theory. An,Bn Fourier coefticients _.

c speed of sound _w_-c
The method is based on the concept of the C chord of rotor

acceleration potential, originally introduced by CT thrust coefficient per blade

Kussner (1941). The method was first applied to vector distance(thrust/w°_2R*4)from doublet "an oscillating wing in uniform translatory _ to

motion including effects of compressible flow by downwash point
Runyan and Woolston (1957). The acceleration 1) absolute value of _

potential approach has now become standard for D = _/D unit vector of _ (
; the determination of the unsteady aerodynamic
¢I forces for flutter studies of lifting surfaces I value of singular integral
I in rectilinear motion. K kernel function
I

unit vector at downwash point,
I The first use of the acceleration potential normal to wlocity vector

iI approach for a rotating system was made in _ _o unit vector at doublet point,

paper by Hanaoka (Ig62) for the loading on a normal to velocity vector
marine propeller in incompressible flow. The
acceleration potential has been used in the past £,m,n direction cosines of

_J in studying the propeller noise problem, but in _o, me, no direction cosines of _o
I a11 of these noise propagation cases the problem p pressure

was specialized early in the analytical develop- _o position vector of doublet
ment to the so-called far-field case usually from inertial frame origin

position vector of downwash

•J point from inertial frame origin
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I
"'_ q sourceor doubletstrength liftingrotor is assumedto lie in the skewed
"_ Rt rotor tip radius helicalpath taken by the rotorblade. One
_:; Rs rotor root radius reasonfor adoptingthe accelerationpotential

r distanceof downwashpoint approachis that the pressur_discontinuity
.'; along the span occursonly on the surfaceof the blade and thus
_; ro distanceof doubletalong the the boundaryconditionsneed only be appliedon
_ span the blade surfaceand not throughoutthe wake. 4

The blade is treatedas a very thin surfaceof
_. ru upper limitof spanwlsepanel discontinuityacrosswhich a pressurejump
_ rL lower limitof spanwisepanel occurs. Th effectof cnmpressibiityis taken

into accountby utilizingthe complete
_i'i r0 distanceof doubletalong linearizedpotentialfor a liftingdoublet,

span at singularpoint time
_i t field time along with the effects_f retardedtime.

'_ U velocityof rotorsystem, As shown in Fig. I, an inertialcoordinate
parallelto x-axis,positivein systemhas been used in which the originof

Yl negativex-direction coordinatesis fixedto a point on the ground.I,, The helicopterrotoris moving in the negative

V velocityat downwashpoints x-directionwith velocityU, in the positive

iil + z-directionwith velocityW and Is rotating

Vn velocitycomponentof V at :ounterclockwisewith a constantangular
the downwash pointnormalto velocityft. A pointof intereston the rotor
the rotor leadingedgeVo velocityof doublet blade is designatedby the radiusvectorXo(1) •

W velocityof rotor system, from the origin of the groundbased coordinate
parallelto ; axis system.

wn downwashvelocity
xa distancefrom pitch axis to Let ¥ be the accelerationpotentialof a

downwashpoint source(or doublet),the perturbationpressure
x,y,z Cartesiancoordinatesof is then given by

downwashpoint
xo,Yo,Zo Cartesiancoordinatesof p = -pY (1)

doubletposition
a twist angle at downwash point This expressionrepresentsthe pressure p at
ok) twist angle at doublet +

position point X due to a singlesource

ar angle of axis of rotationrelativeto z-axis (or doublet)locatedat Xo. The potentialY

a constant"q" which representst_e

B Vo/c strengthof the sourceand thus the ma_:,itudeof ,

B*oV the pressure, in this form,there i_ no
i _ 1 boundaryconditionavailableto deter,,.i-_theo/_ = c _ valueof "q" and the resultingpressure.(
.! e angularpositionof blade at Recoursecan be made to the velocity potential,

time t since the spatialderivativeof a velocity
:-: eo angularpositionof blade at potentialrepresentsa velocity. The

time T relationshipbetweenthe pressure and velocity
0w blade _ngle of attack potentialfor an inertialcoordinatesystem is

eB blade angle relativeto plane _ I

of rotation _t- p advanceratio p - - (2)
p air density
T,I0 time where_-_+is the substantialderivative.
A

time at which integrandin Eq, Droppingout the secondorder terms
(24) becomessingular and integratingwith respectto fieldtime

¢ velocitypotential resultsin
Vs sourceaccelerationpotential t

_ YD doubletacceleration ¢(t) = _ Y(t')dt' (3)
potential

"L i _ azimuthangle --
•I _ rotationspeedof rotor

_ m vibrationfrequencyof rotor The accelerationpotentialYs satisfies
the wave equation

1 _2YS =
BASIC FORMULATION V2ys - _ _ -4, f(_,t) (4)The formulationof the aerodynamic

equations Is based on the llneartzed *
accelerationpotentialapproach. The fluid is where f(X,t) is a sourcedistribution. Further-
consideredperfect,with no separationand the more, if the path of an isolatedsourceis a

upon the assumptionof functionof time variable,_o(t), thenformulationis based
small perturbations.The wake createdby the f(X,t) • _(_ " _O) where 8 is the delta function.
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acceleration potential expression for a moving the flight path at the location of the downwash
source, Ys can be _.rittenas (Morse and point, as follows

Feshbach, 1978, p. 841) @¢D
_i awn = =

'! . _ q(Io,T)

L:! Is(X,t)..: tO obtain

; : , °o+C),) n 4wcD2[1_6 • _3 " �no"

# �_c+_. (b) +(_o" g _" _ " -'Co _';
where Xo(_) designates the position of the

' ') + " _ 6 6 _ • 6 + _ 6 6 _ • _)/(1 - 6 • _) (9)"; source at time T, X is the position of the

i + " _ _ " D[I'B2+- " + )I(I-6. _)}IO

Cl field point at the time t, Vo(T) is the -(n o
velocity of the source point at time T, c is
the speed of sound and q is the strength of

the source. An auxiliary equation which relates /To(ro) _ -_o 3_o'-_" _
the time interval (t - T) to the distance 1 " -

between the two _ints is + _ -. q [ D3 ] dT

1 J "= Eq. (9) gives the downwash at a field pointt c,> (x.y.z.t>duetoadoubletplacedatapoint
• (xO,Yo,Zo,T) having a strength q. In

which is usually referred to as the causality order to represent a lifting surface such as a
condition. Eq. (5) expresse: the potential as rotor, it is necessary to distribute the
an explicit function of T, and only through Eq. doublets over the lifting surface and integrate

over the surface to obtain the downwash at a

(6) as an implicit function of tans 3. From field point. If the downwash is known, the

Eq. (3), the velocity potential due to a moving quantity "q" can be determined. Letting K be
_ source is the expression on the RHS of Eq. (g), the final
- equation is

t t q(_,) dr' w : K dA' (10)

Cs(t) = I _s(t') dt' = I 4wLD _ • (7) n _/...... gJt'

_ where A' is the area of the rotor surface.

The LHS, Wn, represents the known boundary ,LI : _ dT', condition and is the velocity normal to the

where _ = _ - 0 = _ the no flow condition for the velocity

_. perpehdicular to the blade surface, the velocity
component in the _ direction is Vn tanOw or

_] Wn(r,t) = VntanOw = K dA' (II)

The quantities T', t' and t, _ satisfy Eq.
(6) where Vn is the velocity component of V _t the #_._

• downwash point and is normal to the rotor
leading edge and 0w is the angle of attack.

By definition, the doublet velocity Thus the problem requires setting up a method of

potential _ of a _oublet aligned along _o solution of Eq. (II) from which a value of q,
• can he written a_ the unknown doublet strength, can be determined

which satisfy the known velocity boundary

"I : B wn.

i CD(t) _ Cs(t) : to • V_o¢s : - no • V_ ¢s
This represents a rather formidable

_ (R) computing task and the history of lifting
') _ • _ T _ , _ surface theory even for non-rotating wings has
;i :L o o

JT + y q--_._di' centered on devising approximate methods to4wc(0-_._) -- ___ accomplish the integration in an economical

manner. One method, termed the vortex lattice

Note that for incompressible flow, c + ®, the meth.d, has been very successfully applied to
first term and the integral remains aircraft wings, and is probably the more

• unchanged except for the upper limit where c - economical procedure of the many variants. This
t. method was first demonstrated for the unsteady

' case by Runyan and _oolston (1957) and was later
To obtain the final equation for downwash expanded by Albano and Rodden (196g). This is

AWn, a second directional derivative is the method adopted in this paper and the
application will be discussed later.

)
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. Specificationof CoordinateSystem W(U + roO sln(QT)+ (C/4)_COS(OT)COS_0)
L0

l The blade has the cord C and length Rt - ' /W 2 + V_2
_i Rs' Rs being distanceto the the root of Vo

the blade,Rt is the distanceto the tip of

1 the blade. Let the blademomentarilycoincide W(ro_ cos (_t) - (C/4)_sin(_T)COSao)
",! with the coordinatesystemalongthe positive = (16)x-axlsat t = 0 and executea counterclockwise mo -{

I rotationwith angularvelocity_ while moving V
._ with velocity U along the negativex direction o o

i_t and velocity W along the positivez V '
;4 directidn. Since the vortex latticemethod has = o

_ been adopted,the doubletpoint lies C/4 ahead no /W; '2
and the downwashpoint lies C/4 aft of the + Vo•_ sectionmidchord. The positionof the doublet
pointas _II as the downwashpointcan be

• establishedas follows. The Cartesian where
componentsof the doubletpositionare

\
VO'2 = (U + ro_ sin(gt)+ {C/4)_cos(Qt)cosao)2xo = -Ut + r0 cos(_t)- (C/4)sin(Qt)cosOk)

' YO = ro sin(_t)+(C/4)cosSeT)cosoo

z0 = Wt + (C/4) sin % (12) + (togcos(gt)- (C/4)_sin(_t)cosao)2 (17)

-. where ro is the radi_ldistanceof the doublet
_" along the span. With the substitutionof + + �C + -C, ro t + t the positionof the By the same procedure,n = _i + mj + nk,

downwashpoint is given by where

4 x = -Ut + r cos(_t)+(C/4)sin(_t)cosa t = W(U + r_ sin(_t)-(C/4)_cos(_t)cosa)

= r si,1(_t)- (C/4)cos(_t)cos _ (13)
Y
z = Wt - C/4 sin a V'/W 2 + V'2

(18)
In Eqs. (12) and (13),the angles a,_o are the -W(r_ cos(Qt)+(C/4)_sin(_t)cos_)
twist anglesof the velocityvectors_ and _o, m =

°/ ,2respectively,definedby V W2 + V

W

; tan _ = U sin(_t)+r_ V'
i n -

W (14) _

:anao = U sin(_t)+ro_ and

The referencepl_)_ definedby the doubletsand V'2 (U + r_ sin(_t)- (C/4)_cos(£t)cosa)2
downwashpointsis a twistedsurface. From = .:_:

,L Eq. (12) the doubletvelocitycan be computed, + (r_ cos(_t)+ (C/4)_sin(_t)cos¢)2 (Ig) /_
namelythe time derivativeof the position
vectors. + +the vectorD = X-Xo definedin Eq. (7) can be -%

+ expressed as• "T ;; "Vo = Xo + 0 + Zok
" D " {[U(t-t)+ r cos(_t)- r0 cos(_t)

The unit vector_o is chosento be + (C/4)(sln(_t)cos_+ sin(_t)cos_o)]2_" perpendicularto the twistedsurfacecreated
• by the velocityvectorVo which is a function + [r sin(_t)- ro sin(_t) (20)

of ro, throughEq. (14).

-(C/4)(COS(gt)COS _+ cos(nt)COS _0)] 2
Express no as

+ � �)]_11/_
no = _01 + moJ + nor (15) + [W(t-t)-(C/4)(sln_o+ sin a

m

"'i With the substitutionof the quantities,the
:_ integralEq. (11) was solved for the unknown

where _o'mo'no are the directionalcosinesof q(ro,t)by using a collocationprocessbased
¢ the unit vector no . It can be shown that

92 _'_
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on the vortex lattice assumption. The kernel Is singularity. The Integration domain was divided ) C_
stngular whenC • O, and this was handled by use tnto area_ as shown in Fig. 2. Areas 1-4

i i I of the finite part technique. (hatched) were computednumerically using a
"_I tv_-dlmonsionalR_berg Integration(Davisand"@ Pablnowltz,1967) and the contrlbutlo_of the

_/. SOLUTIONOF INTEGRALEQUATION singular region (unhatched) was obtained in
'_,_ closedform by considerationof the finitepart

In followingthe vortex lattlcetechnique as shown in the next section. 4
_,T the rotoris dividedinto a numberof J

_ predeterminedpanels,both spanwlseand Treatmentof SingularTerm it,Integral- The
,;j chordwise, In each chordwlsepanel,a line of integralin the downwashequation,Eq. (11), is

doubletsof unknownstrengthql Is locatedat singularwhen D+O and producesa complication
-_ the 25% chordwiselocationof the particular which must be treatedproperly. It shouldbe

_ panel,and the downwashis evaluatedat the rememberedthat the integrationpath along "T"point locatedat 75% chordwlselocationof the is the path the doublethas taken in arrivingat
panel. Therefore,a collocatinnprocedureis the finaldoubletpoint at (c/4, rob measured
used to obtain a set of equations in terms of in the local blade coordinates and can be

i_t theunknown loadingsqi • Itisalsoassumed consideredasthewake. Theintegration takes

that the spanwlseloadln9ql is constantalong place along the path from -- to the final ,i
:_ each of the panels. A set of equationsis thus doubletpositionat To• The distanceO is the
• obtainedas shown below, distancefrom the integrationpoint at time T to

_] Wn'_Anmq m (21) the downwashpoint at _•
r There is a particularset of valuesof ro

. / u dro ano where n refersto and T for which the denominatorD approaches
where Anm r_ Knm zero, thus resultingin an infiniteintegrand.The singularpart of the Eq. (11) is

| ._r

the downwashpoint and m refersto the vortex ru z2 _'_o " + + ;_"

I whichlattice'involvesThekernelanintegrationKIs a complicatedoverT. function I = JrL Jxl - 3(D.n)(D • no) dT dro (24)
:4 u3

The term q(ro,i)representsthe strength As _ at the downwashpoint,D becomesof the doubletlocatedat ro and at time T, ° j
and is proportionalto the unknownloading. In perpendicularto _, therefore,at the singular
orderto accountfor unsteadiness,a solu_lon point,the _econdterm is zero and will be
was formulatedto take into accountthe time neglectedin the treatmentof the singularity _
variationof the strengthof the wake• This was However,this secondterm is retainedin all of ,
done by assuminga Fourierseriesof the form the numericalintegrationsinvolvingAreas I-4 _ _'

m since it representsan importantcontribution _
particularlywhen the blade is passingover a _ ":_

q(ro,T)" Ao + _ (AnCOS(nOi)+ Bnsin(n_T))(22) trailingwake.I
The time and distanceat which the integralI

M M

If q(ro,T)Is assumedtu be a functionof ro becomessingularare designatedby T and ro.

alone,which mans that the w_ke strengthdoes The do,rainof the integrationin Eq. (24) _
not vary with time.the Fourierseriesreduces consistsof a rectanglein which the duration .r .:_

to q(ro) - Ao. A solutionobtainedwlth 12-11 Is kept extremelysmall. In other _,

thls approximationis termedthe quasi- words, the integrationIs performedalonga slit ___steadysolution, in ro. over which the 2nd term in Eq. (24) is
) negligible. Thereforethe IntegralI can be .,-"

L i This series was inserted tn the basic approximated by
equation and integrated with respect to _.

; However, there were more unknownsthan jru ix2 _ " _o
?i simultaneous equations to solve for the I - _ dr o (25)

unknowns. The additional required equations r[ _1 d_!
were obtained by evaluating Eq. (11) at a number
of azimuthlocations. For instanceIf m • 1, Furthermore,noticingthat D2 is quadraticin
then ro, if _ is independentof ro, then the

q(ro,l) • Ao + A1 cosnl + BlstnO_. (23) integration on ro can be performed
analytically. Thls can be achievedby

The azimuth was divided into equal segments of recognizing that tn the vortex lattice method,
120o and the proper boundary conditions the rotor is divided into spanwise panels from

_! applied at + • 0O, 1200, and 2400 thus r_ to r u. If these spanwtse panels are
providing the necessary additional equations, small then the variation in aots small.

d% . _n
4 Numrlcal"Integrationof Kernel _ " (U sineo+ron)2 + W2 (26)
• The integration was performed by numerical

integration, except for the area surrounding the If the value of is approximated by its mtd
panel value, it _ possible to Integrate Eq.
(24), in closed form in the ro direction.
Thts ts quite acceptable tn the helicopter modem
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because dee/dr o is in the order of as At is kept large because the very large
values of the integrand near the singularity are

magnitude 10-3 or smaller. The value _o is avoided. On the other hand, regarding the
also a functionof ro, hut in the reglonof fin4tepart integration,the denominatorwas
the singularity it has a very small variation expanded in a Taylor sertes about the
and is evaluated at the singular position,

- singular point, ¢. Therefore, tt is desirable
(_,_o). Performing the r o integration to matntaia A_ as small as,possible to keep
results in the form wtthtn the ltmtts of the applicability of the

T2 _ series expansion. Numerouscalculations were
I = JT1 .k_l dz (27) made, varying Az until a reasonable

convergence was found. This value was found to
A

where _j(T)is a functioncontainingall the be .Ol(t-z),i.e. I% of,the time difference.
non-singularpart afterperformingthe re Actually,there is very littledifference
integrationand t(T) - O, at betweenI% or 10% of the time differenceand the

- - computing time and cost is considerably reduced
T=T (Z1 < Z < _). It can be argued by using 10%. For trend studies 10% is

,I physically that since the quantity D(T,Po; recommendedprincipally to reduce computer
t,r) as well as its modified form f(T) (after costs. Flowever. for final design type analysis,

tegratton over ro) represents the distance a smaller value of time difference &T is more
betweentwo points in space it must be positive appropriate.
and real for all its arguments,and ne_erbecome

negative. Denote the value, of ,ro and T at For the spanwise direction, Aro is also
which D becomeszero as ro and To. Thus, in an integrationlimitvariable. The finitepart

integralwas obtained by approxiraatingthe angle
the neighborhoodof T the functionf(T) behaves of twist of the velocityvectoracrossa segment
like a parabolicfunctionand has a secondorder by assuming it constantacrossthe segment,
zero. havinga value as determinedat the centerof

segment. Numericalexperimentationindicates
Expandingf(_) in a Taylor seriesabout the that for a helicopter,Aro = 0 is satis-A

singularpoint T resultsin factory.

f(,) = f(;) + f'(;)(,-;) + f'(;) (z - ;)2/2 +...
(28) APPLICATIONTO SPECIFICEXAMPLES

Since T is a second order zero
4 The foregoinganalysishas been appliedto
" severalspecificexampleswhich are given in

and f(_) = f'(_) - 0 (2g) Figs. (3) and (4). The followingsection
presentsresultsfor severalpaneling

.; Eq. (29) has been verifiednumerically. If only configurations;e.g. 5 spanwiseand I chordwise
the squareterm is kept in Eq. (28),Eq. (27) panels (designated(5-i))and 7 spanwiseand 3 ,
can be writtenas chordwlse(designated(7-3)). The rotor blade

was maintainedat a constantpitch settingof
j_ 2 + g'(z) + J dT (30)I " _ f"(_) [(T-T) (T-r) BB = .I radiansfor all the calculations.

In Eq. (30), if T2 and TI are chosen Sln_le Blade
)A

symmetricallyabout T, then the odd derivative In order to investigatethe convergenceof i

terms integrateto zero. Futhermore,the third the methodwhen using the vortex lattice I _'.:._procedure,the programwas run for several 1
te*m can be neglectedsince g"(_) is small. The chordwiseand spanwiseelementsfor the incom- _
majorcontributioncomesfrom the firstterm. presslblecase. The thrust coefficientCT
Then usingthe standardintegrationtechnique vs. the azimuthangle is shown in fig. (5), (In
{Mangler,1952)the final resultfor the all of the followingplots for thrustcoeffl-
integralis clent vs. azimuthangle,the thrustwas )

I • - g{_)4__4_... (31) calculatedfor 16 uniformlyspacedazimuth i
f"(T) &_ anglesand each curvewas fairedusing acubic spllne). The rotor was firstdividedinto

. 5 spanwiseand one chordwise([.I)panel and the :
:= where 2AT • T2 - TI and TI < T < _Z , resultsare shownby the solid line. The

chordwtse division was increased to (5-2) and
A numerical problem arises because the the results are shown by the long dashed line.

finite part integration results in a negative It can be seen that very little change has taken /number which is close to the total of the place. The spanwtse divisions were increased to
I surrounding numerical integration areas which (7-1) and the largest change occurred at

are positive. Thus, it is necessary to take the $ • O O where the difference in CT ts about

difference be_weeh large numbers, and the final 11%. Increasing the chordwtse divisions to 3 i
! integration accuracy ts depend_t on the (7-3) showsconvergence of the (7-1) case to be

accuracyof the two integrations. On the one very good.
hand,the numericalintegrationis more accurate

An Interc:tingphenomenaoccurs in the

_i region of small azimuth angles. For SmOtO
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1 "_ _ ,.

_ ! 37o, the lift increases to a local maximumat Blade Oscillatin_ in Pitch "
;_', ,,i )-37o then the ltft abruptly falls to a local

v;_ i mtntmumfor _.60o and then rapidly increased An example of unsteady loads on a rotor '_" to a maximumat _-100o. t A simtlar phenomenon blade wlth (5-12 paneling which ts oscillating
_, , is shownanalytically by Eglof and Landgrebe in a pitching modeabout the mid-chord at a

._ (1983)In Fig. 60 of that reportwhere a frequencyof 4 per revolutlon(120 cycles/sec)
localminimumand a localmaximumoccur in the is given on fig. 11. For thls case a 17 ter_ 4
same range of azimuthangles,even thoughthe Fourierseries(m=8) was used to simulatethe t
geometryof the two bladesand the flight oscillatlngload,which was comprisedof one
conditionsare different. Also, in Fig. 93 of constantterm, 8 cosineterms,and 8 sine
the same reportsome test data shows a similar terms, The steadyand unsteadyrotor blade
variationof loadingin the same azimuthrange, loadingis given for one revolution. The blade

was oscillatedthroughan angle of .1 rid. )
The chordwisepressuredistributionsfor about a mean angle of .1 rad. The effectof the

the (7-32case are presentedin figure6. It oscillationis readilyapparentas comparedto
shouldbe rememberedthat in using the vortex ;he steadycase. With the harmonic
latticemethod,the loadingis concentratedat representationof the loading,the magnitudeand

the locationof the vortexwhich for the (7-3) phaseof the severalharmonicloads are easily !
case is locatedat .0833C,.416C,and .75C. The determined. The magnitudesare plottedin
pressurewas fairedusinga cubic spllnethrough Fig. 12. The only harmonicloads that were
the threevortex locationsand the known value significantlychangedfrom the steadycase were !,
of zero at the trailingedge. The distributions the 3rd, 4th and 5th. Both the 3rd and 5th Lr
are given for 7 spanwisepositions. In general, harmonicswere inc ,_;_d and the 4th harmonic
the curvesexhibitthe expectedshape,having was dramaticallyincr.,sed. Anothercalculation •
the largestvaluesas the leadlngedge is was made for the non-oscillatoryunsteadycase ....
approached. For the span distributionthe and comparedto the quasi-steadycase. _.

values at r/R T - .8t are slightly largerthan Virtuallyno differencewas observed,indicatingthe valuesat r/RT ,%,, indicatinga falling that, at least for this case,the rate of change '
off In the tlp region, of loadingin a revolutionof the blade is small _;

enough so that the effectof a variablewake is
From theseconcentratedforces,the section negligible.

pitchingmomentcan be calculated. Figure7
presentstheseresultsfor _= 90 degrees. The
sectionmomentwas taken about the I/4 C and a CompressibleEffects (5-i) " J:
nose down moment is taken as positive. The
pitchingmoment showssome ratherdramatic For a one-bladedrotor,the effect of _
changesalong the span. The moment is nose up compressibilityis illustratedin Fig. 13, in _
near the tip (r/RT - .95),changesto a small which the CT is plottedagainstazimuth
nose dOwn value,then becomesnose up for most angle. The incompressibleresultis included _" _'

._.
of the Inboardregion. Integrationof the for comparison. As expected,the compressible j .
momentwould resultin a total pitchmoment up load is largerthan the incon,pressible
at _- goo. throughoutone revolution. The effect is ,

greatestin the regionof the advancingblade
and smallestin the retreatingregionas would

SweptTIp be expected. _.

The segments used for the vortex lattice
for the swept tip studieswere(5-1),where two Two-B'adedRotor in CompressibleFlow (5-1 per _"
equal segments were used in the tip region and _ @" ,
three equal segments were used tn the unswept _
inboard sectton. In Fig. 8 the lift is shown The method has been extended to the
plotted against azimuth for the two sweep two-bladed rotor for the compressible case and '
conditions and for zero sweep. In general, the the results are shown in Fig. 14. The thrust
three results show little difference. The coefficient CT per olade is given vs. azimuth i
sweptbackconfigurationhas a largerllft from angle for a singlebladed rotor and for a

- 3000 to 400. For _ - 100o to 2400, two-bladed rotor. For azimuth angles from
the swept forward configuration has a slfyntly _ • 200 to 1200 the single blade rotor has a

: larger lift. It appears that the total lift for larger CT. For _, 1200 to ?600, the CT
_ one rotation for the swept-back case and the on the one and two-bladed rotors are

sweptforwar_ case would gtve about the same ltft approximately the same. However, for _ • 2600 (
l_ as producN by the unsweptrotor. In Fig. g to _U o a dra.atlc reductionin 11ft occurs

the ltft distribution along the _otor span Is for the two-bladed rntor as compared to the one {
_'_ _tven for _- 0o. The major effect of sweep bladed results. The lowest lift occurs at ;

ts concentrated at the tip, where the swept-back _- 2920 which places the other blade of the
_1 ttp load Is greater than both the unswept and two-bladed rotor at _- 112o, the point of

sweptback cases . In ftg, 1U, _'- 180°, maximumlift on the other blade. Apparently the )
Comparing to ftg. g, the swept-back tip load Is htgh lift on the blade at ) • 1120 creates a i
larger than bOth the unswept and the very unfavorable induced velnctty on the second

._ swept-forward tips, blade at _, 2920 which re_Jtres the loading t
,_ to go to Zero tn order to satisfy the boundary ,

conditions at @- 2g2o.

)
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iil CONCLUDINGREMARKS Pierce,G. A.; and Valdyanathan,A. R. 1983:

HelicopterRotor Loads Using -_
A llnearlzedliftingsurfacetheory DlscretlzedMatchedAsymptoticExpansions, '

includingthe effectsof compressibilityhas NASA CR 166092.
been developedfor a helicopterrotor in forward

flight. The method utilizesthe conceptof the Runyan,H. L., and Woolston,g. S. 1957: Method

accelerationpotential,and makes use of the for Calculatingthe Aenodynamlc
vortex-lattlceprocedurefor performingthe Loadingon an OscillatingFiniteWing in
requiredintegrations. In addition,the method Subsonicand Sonic Flow. NACA TR 1322. 4
has been extended to includethe effects of ,
unsteady flow. Runyan, H. L. 1973: Unsteady Lifting Surface

Theory Applied to a Propeller and

Samplecalculations have been done for Helicopter Rotor, /h.D. Thesis,
several cases. These include the effect of Lou_nborough, University of Technology.
swept-backand swept-forwardtip. The effectof +
thesetwo tlp configurationswas minimalon the (
total loadingfor one revolution. However,the
loadingdistributionchangedconsiderablyfor

several azimuth positions. A comparison of the Z
thrust coefficient, CT, of a one bladed rotor
and a two bladed rotorwas made. In the I
azlmuthalrangebetween20o and 12flo, the Ione bladedrotor showedhigherlift. However

rotor indicateda lower CT. Compressibility
was investigatedfor onP configuration.As

expected, the effect was greatest in the + X-O(T)/j// ... advancingblade region ( $= goo) and was i'"-- %
minimal in the retreating blade region. The / J _/s"

'+' effect°n CT °f a bladu°sclllatingIn pltch t _" "at 4/rev ts given. The effect on the total _...._..
:_l blade lift is shownand the effect of the ill

oscillation iS readily apparent. The harmonic _y
.)_ contentwas calculatedand the greatest

differencebetweenthe oscillatoryand

harmonic.n°n'°scillat°rYcases was found in the 4th _ j/l
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+1
DISCUSSION

•, _ Paper go. 7

;_+'.] Bob SophermSlkorsk_j Alrorat't: Just a couple of questions. One, you had a rigid :otor In this
_! analysis?

_ Tai : Yes.

J Sophar: There is no aeroelastlcity and you went up to a , of .177

Ta___l:That's correct.

/_ Sopher: First of all, I think that as soon as you put aeroelasticlty In you are going to see
_ different trends whenyou put sweep on In comparison without sweep.

+. Ta__li:Oh, sure. _

++ t+is+_o.+.n--.----.--not+-_; be a very good approximation to the actual wake, which will be substantially distorted--more
"_] like a wake that you would get under hover conditions. So I question the utility of' assuming a
_J skewed h_£1cal wake.

processes. You can go back and calculate the wake and put it back again. Hopefully, that
procedure would -4re you a better result.

So,her: The third question is what advance ratios do you expect to apply the analysis up to?
"'-=..

Tal: The answer Is I don't know. However, I wouJd think Uhat the higher forward speed would ;^+-.

i_I probably have a better answer. Because you don'_ depend on the wake that much. _

Sopher: [ question that because as you go up to higher speeds you are going to find that you __._._*._;_l_:
run into si_,uatlons where you get transonic flow on the advancing blade and I do not believe _ +_+_.
that the linear analysis will apply accurately under those conditions. I_-+

Ta___l:Perhaps you are right. : -_

_" Sopher: As a matter of" fact this research center has developed transonic flo_ analyses which _; _=_-
apply to three dimensional lifting blades so I would say that the primary utility that I would i.'_..
see in this analysis is for hover applications where the linear analysis is valid, but you would L_
have to use a distorted wake. _',""

Ta_._l: For hover cases you would really expect the wakes to stank up and then you end up with a _'_ '-/ •
very dltTicult mathematical problem. However, I guess _'rommy past experienoa you probably can _/

_.. get the loading by s,_e numerical procedure. For example, you can do extrapolation. Assuming a
certain W and then you extrapolate for _ : O. I don't know. _e don't have a olmar under-
standir,_. I admit that.

i Jim HoCrosksymU.$. Ar_ AeromechunicaLaboratory: You have made somenice progress on this ,..
,- approach since you talked w_th us a year or so ago. It's interesting; it's nice to see some i

results being generated %r some _e_lls_:lc oases. I wanted to ask a couple oP minor questions.• I presume this blade is untwisted, is tha_ right? " "' "

I• HcCroskey: Howdid you treat the reverse t],_w region?

Ta..._l: The twist can be added on very easily because [we only have to] add on the boundary condi-
tion. T_ avoid a reverse phenomenon we deliberately use very larle outo_'P. You can see [that
it is]jix rest. We try to avoid that region.

,_ _: the sketch the book is a little misleading because the output is more "_.
In tact in

like 30_ instead o_ the 10 or 15_ [that appears in the Pi_ure]. 30 you Just avoided It by
having a root out out. _

Ta_.!i:Yes. , +,_,

;co ++-:+:;:"., _+,;+_.<+
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i NoCroskey: The flnsl thing Is on the Influence of compressibility. Bo you have some Idea of r

what you predict In Wlgure 13; Is that a luger effect than you would predict It" you Just used
m kind of Prandtl-Glausrt scaling on the Incompressible solution?

"4 Tale Well, T guess we should be blamed for not making the abstract very elmer. We used a very,'i_ very honest way of doing that. We didn't use ,-ny approximation at 411. In other words, as I
pointed out, you Elnd the • as t_notlon of" r_. In other words, you give It the radius or" the

_it doublet [and] you go there and find the T wgl_h serves as your upper limit--which is not a 4

trivlal matter. To answer your question we say that we use true, honest compressibility et'fect.

HeCroskey: But the question is how goo_ would the Prandtl-Glauert type approximation be to what
you actually calculated?

Ta.11: Well, to honestly answer that question--we don't know. We didn't check [it], but I think
it Is not very easy to check It out.

I Bob OmIst_n_ U.S. Army Aeromeehanfus Laboratory: I want to comend your results. It looks

like you have made some pretty good progress in the last year or so. The methods we are using
now for routine rotor loads analysis are usually based on some fairly primitive assumptions like
strip theory and 2-D airfoil ooefElolents and so forth and what we ultimately have to get to Is
very, very sophisticated t mmybe, 3-D CFD kinds of" analyses. It looks like what you've got Is an
lntemediate type of analysis which ,my be very practical. My question Is do you think there Is
a practical way to generalize the results you have gotten, say, to com_ up with generalized
forcing flalotions for specific loading distributions, a family of" loading distributions that you
might be able to calculate and then not have to repeat the integration problem for each particu-
lar oonflsuration that you are analyzing? Is there a practical way to do that?

Ta.I: Well to answer your question, the answer is yes. I did not mention that when we break the

blade Into dit'ferent segments. Apparently the matrix Is highly diagonal. In other words ot'E _ _
di_onal matrix you can use less accurate methods to generate. Beyond that, to answer your
questl_,l, I think in a practical sense we can generate those matrix elements and store them and
only change the boundary conditions to do all the types or" calculations. In other words, the

- answer Is indeed It can be very practical.

• i
I
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