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• _ Abstract c = chord, m

•he _mbined effects of blade torsion Cdo = profile drag coefficient
I and dynamic inflow on the aeroelastic sta-

_-_ bility of an elastic rotor blade in forward Cmx,Cmy = rotor steady pitch and roll °
_ I flight are studied. The governing sets of moments, Eq. (II) _
_-I _uations of motion (fully nonlinear, line-

ii arized, and multiblade equations} used in CT,CH,Cw = rotor steady thrust, drag force,

this study are derived symbolically using a and weight coefficient, Eq. (11)
program written in FORTRAN. Stability

results are presented for different struc- CT,CM.C L = harmonic perturbation coeffi-
tural models with and without dynamic cients of thrust, pitching ;
inflow. The study shows that symbolic and moment, and rolling moment,
numerical programs written in FORTRAN can Eq. (3}

be conveniently used in a complicated
helicopter-rotor aeroelastic modeling and D = partial derivative matrix,
analytical process. It is observed that Eq. (14} _._
for a large number of degrees of freedom
and for fully nonlinear models, the amount f = flat-plate area
of data needed for the symbolic program
increases exponenti_ily, making it incon- F = forcing function, Eq. (6)
venient to consider the multiblade equa-
tions explicitly. However, a combination J = number of points used in har-
of symbolic and numerical programs at the monic analysis, Eq. (5)
proper stage in the derivation process

makes the obtainment of final stability KA = blade cross-section polar radius ::
results an efficient and straightforward of gyration, m
procedure. The symbolically generated _

equations are subsequently used to investi- Km = blade cross-section mass radius
gate the influence of elastic torsion modes of gyration, m _. ,
and dynamic inflow on isolated rotor _

inplane stability in forward flight. Km,,Kmz = principal mass radii of gyration,
ReLults are presented for both single- m

rotor-blade models and multiblade rotor i
systems. For both soft inplane and stiff L = number of harmonics used in the

inplane hingeless rotors, the elastic tor- harmonic analysis, Eq. (i0) |
sion mode significantly affects the pre-
dicted inplane damping. Dynamic inflow [m],[£] = dynamic inflow matrices
does change the magnitude of the predicted

damping, but the influence on damping [M],[C], = constant mass, damping, and
trends is generally small with varying [K] stiffness matrices, Eq. (6) I
advance ratio or elastic coupling parameter. 1

n = number of the harmonics in har-

monic analysis, Eq. (9)
N_otation

N = total number of blade modes used
a = lift-curve slope, 2w/rad

I q = perturbation degrees of freedom,

b = number of blades Eq. (15)

Presented at the Second Decennial Special- qo,qc,qs = vectors of collective and cyclic
ists' Meeting on Rotorcraft Dynamics, Ames modes, respectively

Research Center, Moffett Field, Californ£a,
November 7-9, 1984. R = rotor radius, m . i
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j ] u = dynamic inflow quantities, Introduction 4
Eq. (19)

_ Hingeless rotor blades are less com-
,* UT,U P = tangential and perpendicular plex mechanically and provide more rotor

velocity components, m/sec control power and damping than articulated ,
rotor blades. However, the complex aero-

; v i = induced velocity elastic behavior of hingeless rotors !
_ requires a rigorous analysis for an effec-

w,v,_ = flap, lag, and torsion tire design procedure. The modeling

2 deflections requirements of hingeless-rotor-blade
_ aeroelasticity have been studied for many .

_,_,_ = steady flap, lag, and torsion years and are briefly reviewed here.
', deflections, Eq. (2) }

Initial analyses focused on the inves-
x = blade coordinate along the tigation of flap-lag stability of torsion- ;

radius ally rigid blades with spring-restrained ._
- hinges at the hub to slmulate bending

z = first-order variable degrees of flexibility. The stability of this type °
freedom, Eq. (15) of model was analyzed for both hover I and

_- forward flight. 2 Flap-lag stability of
__ _ = rotor-shaft plane angle of elastic blades with uniform properties was

attack, Eq. (ii) studied by Ormiston and Hedges, I based on
_: a derivation of nonlinear partial differ-

aR = wake skew angle, Eq. (4) ential equations suitable for elastic
hingeless blades. Similar equations were

Bpc = precone angle, rad studied by Friedmann and Tong. _ Efforts
were also made to investigate the complete

7 = Lock number blade problem by including blade torsional _:
deflections. Friedmann and Tong s approxi-

Aw,_v,_ = perturbation flap, lag, and tor- mated the torsional deflection by rigid-
sion deflections, Eq. (2) body pitching motion (root torsion); they .:

found that torsion motion was important
_K,_K = real and imaginary parts of the and that the stability characteristics I

• characteristic exponent were sensitive to the number and type of _ ,
assumed bending-mode shapes used. Flap-

ni,_i,Si = mode shapes for flap, lag, and lag structural coupling was not included. ,
_ torsion Hedges and Ormiston _ presented extensive
• numerical results for the stability char-

8 - pitch angle, red acte_istics of elastic hingeless blades
with flap-lag-torsion motion in hover.

AK - characteristic exponent They found that torsional deflections of
hingeless rotor blades are strongly influ-

= steady inflow (free stream plus enced by the nonlinear structural moments +. .
induced flow) caused by flap and lead-lag bending. This _._

bending-torsion structural coupling is
- advance ratio proportional to the product of the flap

and lead-lag bending curvatures and to the [
- inflow parameter, Eq. (5) difference between the two bending flexl- I

bilities. This study also showed the
_o,Vc,_s = uniform, longitudinal, and fat- effect of precone, structural coupling,

eral inflow components and torsional rigidity on the isolated
blade stability boundaries. I

o - solidity ratio - bc/_R ]

Frie_ann and Kottapalli _ analysed the
- azimuth angle, nondimensional coupled flap-lag-torsional dynamics of i

time hingeless rotor blades in forward flight.
They noted that nonlinearitles are impor-

_w,_v,_ - nondimensional rotating flap, tent in an aeroelastic stability analysis
lag, and torsional frequencies and that forward flight is strongly coupled

_* with the trim st&re. However, only flap- '
C _ - blade rotational speed, rad/sec ping motion was used in calculating the

,- rotor trim condition. It was observed i
;_ (') - nondimen_ionalized quantity, that forward flight (increasing advance

'_" equilibrium deflection ratio) is stabilising for soft inplane
rotors and destabilising for stiff Inplane

(') - time derivative rotors. In all these s_udies, the aero-

_ dynamic forces were obtained from strip

%,
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theory based on a quasi-static approxima- erning equations of motion for an elastic ,-
! tion of two-dimensional, unsteady airfoil rotor blade in forward flight. A Lagran-
. theory, gian formulation is used to obtain the

equations in generalized coordinates. The

i Simultaneous efforts have been made to program generates the steady-state and
i improve the aerodynamic model used in these linearized perturbation equations in sym-

! analyses by including unsteady airflow bolic form and then codes them into
effects. One approach is to model the FORTRAN subroutines. Subsequently the

i induced velocity as a time-dependent, coefficients for each equation and for

i three-degree-of-freedom system. This each mode are identified through a numcri-
dynamic inflow theory has been applied to cal program. The harmonic balance equa-

i rigid-blade flap-lag analyses, both in tions, if required in the calculation of
hover and forward flight, 6-I and to the the deflected equilibrium position of the
coupled rotor-fuselage problem in hover. 9,1° blade, can also be obtained from the sym-
It was observed that the dynamic inflow bolic program. The governing multiblade
increased the lag regressing-mode damping equations are deriveC explicitly using
and reduced the body pitch and roll damping HESL. This is the first ulm& that multi-
for the parameters considered. These ana- blade equations are derived explicitly
lytical results correlated well with exper- using this symbolic formulation approach
imental results, x° However, the conclu- to study the stability of an elastic rotor
sions presented in Refs. 6-10 were based blade in forward flight. The multiblade

on several restrictive assumptions; for equations are capable of accommodating any
example, zero elastic coupling, fixed number of elastic blade modes. Because

solidity ratio, and rigid flap-lag rotor- the complete analytical process, from

blade models with no torsional flexibility, derivation to numerical calculation, is
The effects of dynamic inflow and torsion automated, it is an efficient and accurate

flexibility on the aeroelastic stability means for analyzing helicopter rotor
of an elastic rotor blade in hover to a aeroelasticity. 2
number of parameters was recently pre-

sented, x_ It was shown that for torsion- The present study differs from previ- .
ally flexible blades, the dynamic inflow ous ones in the following respects:
effects depend on the elastic coupling I) symbolic manipulation with FORTRAN is
parameter. For certain values of elastic used to derive the governing equations in
coupling, the dynamic inflow effect may in forward flight for an elastic rotor blade; _
fact be negligible. 2) complete elastic flap-lag-torsion blade

degrees of freedom are used for the trim
In summary, general nonlinear differ- calculation; _) explicit multiblade equa-

ential equations for the elastic rotor tions are derived symbolically for stabil-
blades (used in the above analyses) have ity calculation to compare with the single-
been developed by several researchers. 12-1_ blade solution; 4) dynamic inflow is

These models have elastic flap, lead-lag, included in the aeroelastic stability /
and torsion degrees of freedom, with non- solution of an elastic blade in forward

linearities owing to moderate elastic flight; and 5) damping data in forward ,_ _deflections. In those studies, it was flight are presented for varying elastic
observed that for a given ordering scheme, structural coupling.
the final equations differed by a number of

small nonlinear terms. These differences To demonstrate the usefulness of this
depend in part on the stage at which, in analytical capability, stability results J
the process of derivation, the ordewing are presented for several hingeless-rotor-
scheme is applied. The application of the blade structural models. The influence of

ordering scheme at a later stage in the dynamic inflow in forward flight with an
derivation process requires much time in elastic hingeless rotor is also investi-

deriving and independently checking the gated. The hingeless-rotor stability
final equations. This has led to attempts results presented in this paper using the
to share the algebra with computers through symbolic program reflect the combined
symbolic processors. Both general and effect of an improved structural model
special purpose programs have been devel- (by including torsion} and an improved
oped and are available. _! The program aerodynamic model (by including dynamic
_'_ icopter Equations for Stability and inflow). Results are presented for elas-
Lu_s (HESL}, appropriate to rotary-wlng tic blade flap-lag-torsion analysis and
aeroelasticity investigations written in for flap-lag analysis with and without i
FORTRAN IV, was presented in Ref. 16. The dynamic inflow.

approach used in developing this program I
and its use in analyzing the aeroelastic
stability of an elastic rotor blade in Formulation

hover was presented in Ref. 11. _
Figure I shows an elastic blade with

In the present paper, the HESL pro- the coordinate system used in this study. . t
gram has been extended to derive the gov- The blade has uniform mass and stiffness,

a23 _ ,
r
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no twist, and no chordwise offsets of the NF

: elastic axis, tension axis, or center of
mass. The elastic axis is coincident with w = _ Rwi(_}ni(x)

the x-axis of the x,y,z coordinate sys- i=I 4
tam rotating with a constant angular veloc-
ity (_) about a fixed point at the origin. NL

The y-axis lies in the plane of rotation, v = _ Rvi(_)_i(R) (la) 4
and the x-axis is rotated through a small i=i

angle (Bnc) from the plane of rotation.

The defl_ctions of the beam are u (axial NT !
deflection), v (lagwise bending), and w

(flapwise bending} of the elastic axis ¢ = _ ¢i(_)8i(R)
parallel to the x,y,z coordinates, i=i

respectively. A second coordinate system, and by expressing the induced velocity as '
x', y', and z', is fixed to the blade, with
y' and z' axes parallel to the principal }
axes of the deformed blade cross section, vi = _ + Vo + vcR cos _ + VsR sin

This coordinate system moves wit), the blade (Ib)
cross section as it undergoes bending, tar- ,
siena1 displacements, and pitch a;_gle (e) where _ = _t, R = x/r, and _i,_i,8i are
rotation. Before deformation, the princi- mode shapes; R is the blade radius; and °

) pal axes of the blade cross section are NF, NL, and NT are the numbers of flap,
rotated with respect to the undeformed lag, and torslon modes, respectively, used
coordinates by the pitch angle. After in the analysis. In this study uncoupled
deformation, the elastic axis is displaced rotating modes evaluated et zero pitch are
by u,v,w, and the blade is twisted through used. This yields N nonlinear, non-

the angle ¢. The aerodynamic inflow homogeneous ordinary differential equa-

dynamics couple with the blade dynamics as tions in terms of modal generalized coor- I
a feedback loop (Fig. 2). The total inflow dinates wi, vi, and _i, where N is the
(vi) is assumed to consist of a steady total number of flap, lag, and torsion
value (_) and dynamic inflow components modes used in the analysis. The equations 3
(re, Vc, and vs ) that vary with time. have periodic coefficients in the mass,

damping, and Stiffness matrices. These
In this study, the entire problem equations ;Are then linearized for small

formulation is performed by the computerl perturbation motlens about the deformed
there is minimum user interface other than blade time-dependent equilibrium position
specifying blade geometry and the desired by expressing the generalized coordinates n

blade model representation. In general, in terms of the equilibrium quantities and
the formulation of the rotary-wing aero- small perturbation quantities:
elastic problem consists of the following:

writing the transformation matrices between wi = wi(¥} + Awi(_)
the coordinate systems before and after

deformation; calculating the position vec- v i = vi(_) + Avi(_) (2)
tar of a mass point of the deformed blade

section; forming strain disnlacement rela- ¢i " _i(_} + A¢i(_)

tions; and calculating stresses and air @
velocity components in the flap, lag, and Two sets of equations are obtained _._
torsion directions (see Refs. 12-14 for from this operationr a set of N non-

more details). These expressions include linear equations in %i, Q$, and _i, which #geometrical nonlinearities owing to the define the deflected equillbrium position I

assumption of small strains and moderate of the blade, and a set of N equations I
deflections which give rise to numerous obtained by subtracting the equilibrium
higher-order nonlinear terms. So an order- equations and discarding all nonlinear !
ing scheme, based on assigning orders of products of the perturbation quantities, (

magnitude to the various physical parem- Aw i, _v i, and A¢ i. Three more equations !
eters, is used to reduce the number of are obtained for the dynamic inflow cam- i
terms. The governing equations of motion ponents from rotor perturbations in aero- !

are then obtained using Hamilton's princi- dynamic thrust (CT) and in pitch (CM) and i'

ple. Those equations are nonlinear, par- roll (CL) moments (see Dynamic Inflow,
tial differential equations in u,v,w, and be_ow). The coefficients of these aqua-
e deflections. These ere converted to tions are also functions of the equilib-
ordinary differential equations using rium solution.
Galorkin'| method by vxprosslng the bend-

"_ ing and torsion defleetion_ in terms of
generalized coordinates and mode-shape

functions, i

224 •,
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D_namic Inflow cally, the program assigns numbers to the
variables forming the required expressions 4

The dynamic inflow equations are and then manipulates those numbers to
related to the blade degrees of freedom obtain the required algebraic quantities.
through the variations in thrust, pitch- The integration, differentiation, pertur-
ing, and rolling moments: bation, and multiblade coordinate trans-

formation are performed by substituting

{_o} lUol ICT} known relations required for these opera- {

tions. The symbolic program can handle
[m] _c + [£]-1 _c = CM (3) both individual expressions and matrices.

The program generates the steady and per-
us &,Us2 CL turbed equations in a single operation and i

outputs them individually. This is con-

The elements of (m] and [£] define the venient in the case of forward flight
various dynamic inflow models that can be because of the large number of terms pres-

ent in each equation; it is also convenient •
included in an analysis. Reference 8 pre- for the different analytical processessents a hierarchy of models having uiffer-
ent elements for [m] and [£] from actuator required for the steady and perturbed sets
disk theory in forward flight. The ele- of equations.

_" ments of [£] depend on the wake skew angle '
_ at the rotor: The inputs to the program are the

I relations, in alphanumeric format, for the

[_] position vector, for the strain expres-uR = tan-* (4) sions, for the air-velocity components,
and for the transformation matrices as

where _ is the steady inflow, given b_ Kaza and Kvaternik. *_ The inte- )
gration relations (if known), differentia-

Of the 13 models presented in Ref. 8, tion relations, the order of the variables, ._
the partially constrained model gave good the ordering scheme to be used, and the

variables for which coefficients are to be
i results. In the present paper, this par-

tially constrained theory is used to collected are also given as data. In the
obtain the dynamic inflow results. The present paper, the order of the variables I

and the ordering scheme used are the same
elements of [m] and [£] are given by ias those followed in Ref. 4. All the

128 -16 0(e) _ terms, compared to 0(I), except ! '

, m:, = 75---_' m2z = m3s = 45----_' those that contribute to lead-lag and tor-
sion damping, are negleched. Nonlinear
rate products (_, _2, etc.) are retained

mij = 0 , i # j since they contribute to the linearized

_ stability analysis. Although any general _ i

/i _I/2 ordering scheme could have been used to !

i 15_ - sin aR

!_ £z, = _ ' £:s = _ L1 + sin _R/I , obtain the final equations of motion, this
ordering scheme is considered representa- +, I
tive and adequate for demonstrating the _

i £22 = 1 -4 capability of the symbolic analysis pro- _ .
i aR cess. The program calculates the strain ,

+ sin

energy, kinetic energy, and generalized

-4 sin _R forces for a given orderin_ scheme in gen-

£sl = £*s ' £_s = 1 + sin _R ' eralized coordinates using Eq. (I). The
perturbation relations as given in Eq. (2)

£I_ = £s: = _2s = £s2 = 0 are substituted to obtain the steady andp_rturbed terms. The program generates
both the steady-state (nonlinear) and

1 _2 + _2_ - _ tan a) linearized perturbation equations and the

£ij " _ £ij ' _ = (U2 + _2)_/2" loading terms necessary for an aeroelasticstability and response analysis. The
rotor-thrust, pitch-moment, and roll-

(5) moment equations required in the dynamic
inflow equations are also obtained using
the perturbed aerodynamic forces. The

Equations from HESL equations are written into FORTRAN sub-
routines for subsequent numerical calcula-

The governing equations of motion of tions. A numerical program subsequently
the rotor blade are derived using HESL with identifies the mass, damping, stiffness,
two modes for each blade degree of freedom, and forcing coefficients for each general-
The principles involved in the development ized degree of freedom. For the results
of the symbolic program HESL are described presented here, it took about 300 sec to

in detail in Refs. 11, 15, and 17. Basi- symbolically derive both the structural .

%.
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and aerodynamic equations on a VAX 11/780 librlum position and the trim settings.
_;" computer. This procedure 16 consists of the follow-

ing. An iterative inner loop in wh%ch the
A brief description of the program solution for the periodic motion is

input and output follows. Figure 3 is a obtained with fixed values of the trim
flow diagram of the aeroelastic a_alysis variables is nested within an outer loop
using the symbolic and numerical programs, in which the solution for the trim vari-
Table 1 shows the FORTRAN _ymbol defini- ables is obtained. The rotorcraft motion

_ tions used for the original variables, is solved for the periodic motion by the
Table 2 shows the input required to calcu- harmonic analysis method, which directly

-' late tangential and perpendicular blade calculates the harmonics of a Fourier
cross-section velocities UT and Up, using series representation of the motion. The
the transformation matrix T__FP(REAb MATRIX} procedure advances the rotor around the
and the air-velocity vector VEL(READ azimuth, calculating the forcing functions

i MATRIX}. By multiplying the two matrices in _he time domain and then updating the
(FORM MATRIX) with ordering scheme *E2DI, harmonics of the response. The forcos and
the recto: AVEL is obtained, which gives moment_ acting on the rotor are calculated

i the components of the velocities in radial, from this response and the controls are
_ tangential, and perpendicular directions, adjusted until the eguilibrlttm of forces f

f
The vector components are redefined as and moments required for the specified

_i expressions by command MATRIX EXPRESSION. operating state is achieved.

The actual velocity components are the neg-

ative of the original expression, and are For the harmonic analysis method, the

therefore negated by calling the NEGATE governing equations of motion are written,
command, thus giving the actual velocity with all the time-dependent and nonlinear
expressions. This procedure is slightly terms as a forcing function, as

i different from the one presented in

Ref. ii, where manipulations were per- [M]{X} + [C]{X} + [K]{X} = F(X,X,_) (6)
formed at the expression level. Here the -;
manipulations are extended to include where matrices M, C, and K are the con-

matrix operations. It should be noted stant mass, damping, and stiffness
that for a hingeless rotor, the axial dis- matrices and x is the vector of degrees
placement can be solved for a priori as a of freedom. The function F is evaluated

function of flap and lag bending. In the at J points around the rotor azimuth
present paper, expressions for axial dis-

placement and axial velocity are taken Fj = F(_j) (7)
from Ref. 4 and supplied as data to the

program, and the harmonics of a complex Fourier
series representation of F are given by

Trim and Periodic Equilibrium Solution j

The nonlinear periodic coefficient Fn = _ ._ Fj e-in_j (8)

equations obtained earlier can be solved ]=z _.
for the periodic response in the time _
domain using a Floquet method or in the Then the nth harmonic of the motion is
frequency domain using a harm6nic balance given by
method. Either will yield the time- i
dependent equilibrium position about which Xn = Hn_Fn (9) j
the nonlinear equations can be linearized
for an eigensolution. In forward flight, where
this equilibrium p_sition i8 coupled with
the entire trim state of the helicopter. H = K - n2M + iCn !
The trim state is the steady-state condi-
tion achieved by the system as time The iterative solution proceeds as follows. !

increases without bound, with the controls At a given azimuth _ the blade motion I
fixed and no external output. Calculation is calculated using current estimates
of trim position requires establishing the of the harmonics:
control settings for a given flight condi-

tion. The control settings are collective L ein_ _
pitch, longitudinal and lateral cyclic X _ _ X n
pitch, and the rotor-shaft angle of attack, n--L j

(lo) i
The induced velocity, which depends on the L , !

generated thrust and advance ratio, is also _ . _ Xnin ein_jcalculated. _ t
I na-L i

Ir thl| paper, the harmonic analysis
method, coupled with an iteration on the where L is the number of terms used in !

Ill trim state, is used to calculate the equl- 225 the complex expansion of X. The forcing _ii " _!
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Then the change in the harmonics owing to D = _-_ = . _v i
the change in the forcirg function is cal-
culated and added to the harmonics calcu-

lated in the last revolution. After every [ M(vi) - M(vi - Avi) ]revolution, the old and new harmonics _re .... _v i --. (14)
c_ecked until convergence.

After obtaining the harmonics of the where vi is the ith control variable
blade motion, the equilibrium uf the and _v i i_ its increment. The conver-
forces _nd moments is checked. If equi- gence is checked when the tolerance level,
librlum is not satisfled, the trim set- as specified by the parameter E, is met. i
tings are increased and the procedure is For more details on this procedure see
repeated until equilibrium is met. The Ref. 18. In the present paper, all the I
following assumptions are made in arriving degrees of freedom- blade flap, lead-lag,
at the equilibrium of the forces and and torsion degrees of freedom - are used

moments. The helicopter is in straight in calculating the trim state and periodic _
and level steady flight; the rotor-hub response.
moments are trimmed to zero; and tail,

I fuselage moments, and side-force compo- The periodic response can also be •
nents are neglected. Then the equilibrium obtained using Floquet methods. 3 A review i
forces and moments are given by of the use of these methods to obtain the

initial conditions, forced response, and

CT cos _ + CH sin _ = Cw , stability data is given in Ref. 19. ._

-CT sin _ + CH cos _ = -C x (ll) Aeroelastic Stability Solution:

Single Blade i

Cmx = Cmy = 0.0 Once the time-dependent equilibrium
position is determined, the nonlinear

where C x = (1/2)_p 2 and s is the angle equations are perturbed about this equi-
b of attack of the shaft, librium position, as given by Eq. (2). As

mentioned earlier, the symbolic program
In calculating thrust, horizontal generates the perturbed equations and

force, and the hub moments, the steady writes them into subroutines. It should

inflow appears as a parameter that in turn be noted that squares of the perturbation

depends on the rotor thrust and shaft quantities are neglected by the symbolic
angle of attack. In this paper, the program by employing the ordering scheme•
steady inflow is taken as an equation of The final system of equations for stabil- i
constraint and solved along with the four ity is
equations above:

[P]{_q) + [0]{_} + [r]{_q} = 0 (15) '_

- _ tan a - CT/[2(_ 2 + _2)I/2] = 0.0
or

I12_ '_.j
{_} = (As]{Z}

The increments in the trim settings are

calculated using a modlfied Newton-Raphson The stability of this linearized sys-
method. 18 If v is the control variable tem is determined from Floquet theory by
and M is the target to be achieved, then evaluating the characteristic exponents

a first-order approximation of M(v) is of [As] '
_M

M(target) = Mn+ _ = M n + _ (Vn+ _ - Vn ) (13) AK = _K + i_K (16)

or The mass, damping, and stiffness terms are

identified by a numerical program for each
Vn+ _ - vn + D'*[M(target) - Mn]F time-step. The linearized system is stable

when _K < 0.

where v n and Vn9 _ indicate the current
and new estimates of v, respectively, and
F _ i is included to avoid overshoot Multiblade Coordinate Transformation

oscillations in the trim iteration by
reducing the step size. The partial deriv- To provide a better understanding and
ative matrix D is to include dynamic inflow effects, which

are referenced to the _ixed system, it is
necessary to convert the equations into a
fixed coordinate system. In the case of

%
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hovering f]ight, this transformation can be part_, with the coefficient of each bar-
easily performed by rearranging the coeffi- monic separated, and writes them into sub- 4
cients of the equations, s_nce the coeffi- routines. In this manner, the constant-

cients are constant. For forward flight, coefficient approximation is easily done.
the degrees of freedom, as well as the In the present paper, the perturbed gov-
coefficients, are periodic. Hence, the erning equations of motion and perturba-
multiblade coordinate t_ansformation (MCT) tions in thrust and moment equations are
is more complicated. The MCT or Fourier converted into multiblade coordinates.
coordinate transformation is a linear The multiblade solution was checked for

transformation of the degrees of freedom acc racy with a single-blade solution
from the rotating to nonrotating frame, without dynamic inflow. It should be
Let X be a degree of freedom (dimension- noted that the trim-value harmonics enter-
less) in the rol ring frame for the ith ing as nonlinear contribution_ should be

blade. Then, for a three-bladed rotor, defined as symbolic data. The input data
the relations increase as more nonlinear terms are taken

into account in addition to the data given

Xi = Xo + Xc cos _i + Xs sin _i for the multiblade expansion of the
degrees of freedom. However, the output

Xi = Xo + (Xc + Xs)C°S _i + (Xs - Xc)sin _i may be smaller since only terms that are
multiples of the number of blades are

Xi = Xo + (Xc + 2Xs - Xc)C°S _i retained. Since this is a feasibility
study undertaken to obtain explicit multi-

+ (Xs - 2Xc - Xc)sin $i (17) blade equations using a symbolic program
in FORTRAN, the nonlinear quantities are .,

give the ith blade degree of _reedom, assumed to provide only first harmonic
using multiblade coordinates in the non- forcing contributions. For the results

rotating frame. The variables XQ, X c, presented here, the p_:ogram was rut on a
and Xs are the rotor degrees of freedom, VAX 11/780 computer. It took about
and describe the motion of the rotor as a 250 sac to de:ire tb_ multiblade equasi_ns

whole in the nonrotating frame, for each blade dearee of freedom, and
about 120 sec to write these into subrou-

The MCT involves the following tines for numerical analysis.
steps2°: i) expansion of each degree of
freedom into multiblade coordinates; It should be noted that by giving the J
2) multiplying the resulting expression expansion of each d_gree of freedom into

its harmonics and by giving the trigono-
with multiblade functions like i, cos _, metric relations as data to the symbolic tsin _, cos 25, sin 2_, etc., depending on
the number of blades; 3) replacing products program, explicit harmonic balance equa-
of sines and cosines as sums of sines and tions can also be derived. However,

cosines, using trigonometric relations; and because of the amount of input required

4) deleting terms that are not multiples of to perform a syn_bolic formulation of the "_
the number of blades (stmm,ation rules), harmonic balance and multiblade equations, J

Using the symbolic program, this is the program HESL is convenient for |

as follows. The multiblade expan- explicit_ 7 considering the symbulically *_,_
achieved

sions of each degree of freedom and their derived equations only if the number of
time derivatives are given as a table of degrees of freedom is small. As pointed
relations (Eq. (17}). The multiblade func- out in Ref. 20, numerical schemes are
tions like i, cos _, sin _, cos 2_, sin 2_, bettur suited to general models for effi-
etc., requirel in transforming the equa- ciently obtaining the harmonic balance
tions, are read as data (or can be gener- equations and multibla_e e%uatiors after
ated within the program). The trigonomet- the steady and perturbed equations are
ric relations givinq the product of sines obtained from the symbolic program.
and cosines as sums of sines and cosines

are given as a table of relations. These The symbolic program separates the
require that the equatJon derivation be terms containing the periodic variable
several runs until all the required rela- cos N_ and sin l_t and writes the equation
tions are included in the table of rela- as
tions. Then the ¢omr_and PERFORM MULTIBLADE

TRANSFORMATION multiplies the equation with A(t) - A o + AN cos Nt + BN sin Nt (18)
each of the multiblade functions, substi-

tutes the multiblade expansion for each In subroutine form they are referred to a_

degree of freedom, substitutes the trlgo- A(1), A(2), and A(3). This allows for

nometric relations (from the given tables direct elimination of the matrices A(2)

of relstions), and checks Eor the multiples and A(3) for a simple constant-coefficient
of the blade ha_monlo8. Only terms con- approximation analysis.
talning multiples of the number of blades
are retained. The interface routines sep-

arate the terms into constant and periodic

2_8 "
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] Stabilit_ Solution: Multiblade and for a flap-lag model are 24 x 24 and

i Dynamic Inflow 27 x 27, respectively.
j
( The final governing equations of

{ motion can be written as Results and Discussion

! [P]{q} + [Q]{_} + [R]{q} + [T]{u} = 0 Pesults are presented for a uniform '

blade with zero built-in twist, zero pre-
! (19a) ccne angle and zero blade offsets.

Reversed-flow effects are neglected. A i
+

for the blade equations, and as three-bladed rotor is considered. Two
rotating modes for each flap, lag, and

[A]{q} + [B]{q} + [C]{q} + [S]{u} torsion degrees of freedom are used in the :
• calculation. These modes are calculated

ffi[m]{6) + [£]-I{u} (19b) at zero pitcL and are obtained from five
nonrotating modes. Results for both a

for the dynamic inflow equations, where single-blade solution and a multiblade
solution are presented for dilferent blade /:

{q} is {qc,qc,qs ) structural models. All results are for
a propulsive trim condition, specifie_ "

{qo } is vector of all collective modes for a weight coefficient of CW/O = 0.07 _"
and an equivalent drag area ;

{qc } is vector of all lateral cyclic modes D/q = f = 0.: "(_R2), where D is the
drag force, 1 q is the dynamic

{qs } is vector of all longitudinal cyclic pressure.
modes

In the derivation of the equations,
{u} is {Vo,Vc,gs} the order of magnitude assigned for each /

parameter is the same as that followed in
Ref_ 4. The o_her p_rameters used for the '_Defining _ = {u}, Eqs. (19a) and (19b) can

be combined as rumerical study are

[oP (X} + {X} c/R = 0.07854; _ = 5." o = 0.I;

LA B (G - £-I)J a = 2_; Cdo = 0.01; Bpc = 0.0; ,

[: :] Km_IKm2 ffi0"0; KmlR = 0.025;+ fX} = 0 (20) (KAIKm)_ = 1.5

I,ead-]ag damping values (real @art of ,,.
where {X} is the characteristic exponent) are presented

_ for a soft inplane "md a stiff inplane

q rotor with and without dynamic inflow.

_ The results are presented for investigat- _,
ing 1) the effect of degrees of freedom _ %_._

The final stability equations in state used in the _rim analysis on the lead-lag
dam_ing, 2) the effect of using only one

vector form are torsion mode, 3) the inclusion of a I
{Y} - [As]{Y} (21) dynamic inflow model, and 4) the differ-

ence between periodic and a constant- ' I
where coefficient approximation. , .

Sin_le-Blade Results

{¥} " The effect of the number of degrees
of freedom used in the trim analysis on

The stability results are obtained by cal- the lead-lag damping is shown in Figs. 4

culating the eigenvaluea o_ [As], in a and 5. Figure 4 shows the lead-lag damp-
manner similar to that use_ in the single- ing plotted versus advance rat_ . for a
blade case. soft inplane rotor (_v " 0.7). It can be

seen that a flap-lag-torsion stability

The size of the state matrix depends analysis from a flap-trim analysis under-
on the number of modes and blade_. For the predicts the lead-lag damping. The second

flap-lag-torsion model with two modes each, mode shows the same trend with the differ-
the size of the state matrix is 36 _ 36 ence in predicted damping increaainq with
without dynamic inf ow and 39 _ 39 with advance ratio. Figure 5 shows the lead-

dynamic inflow. The correapondlng values lag damping plotted for a stiff inplane

%
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rotor (_, = 1.4) as a function of advance while varying the elastic coupling param-
ratio. The results also show an increase eter fol a stiff inplane rotor. Here a 4
in damping when a f_ap-lag-torsion trim flap-lag model predicts positive damping

/ ana]ysis is used. It is also noted that for all values of R, whereas for a flap-
for an advance ratio of 0.37 < U < 0.41, l_g-torsion model the damping varies with

_ the first-mode roots separate and one root the elastic coupling value, increasing

., becomes less stable and the other becomes with the elastic coupling parameter.
more stable. The damping does reduce as
the advance ratio is increased. The second Multiblade-Equation Kesults
mode remains stable at all advance ratios
considered. The following figures present the

-' lead-lag regressing mode damping results
_t The increase in damping observed above obtained from multiblade equations. The

for both soft inplane and stiff inplane multiblade equations were explicitly

rotors is @erhaps a result of the differ- derived using the symbolic program. This
ent time-dependent equilibrium positions required explicit definition uf all non-
used. A full flap-lag-torslon trim analy- linear contributions and degrees of free- /
sis is consistent in that the blade model dom in terms of their harmonics. The
has the same degree of complexity in both result was a significant increase in the

, the trim ano the stability analysis. It amount of data required by the symbolic _
should be noted that qualitatively the same program. Since this is a feasibility

type of trend w_ reported in Ref. 5, for study on the use of symbolic programs in

_--i both soCt inplane and stiff inplane rotors. FORTRAN, only first harmonics were con-
., This verifies the symbolic and numerical sidered in the nonlinear contributions.

_i p_ograms for the single-blade results and consequently, damping data determined from
_ _ ferms the basis for checking tha symboli- the multiblade equations may differ from "
_-_ cally derived multiblade equations (and the single-blade solution. Additionally, '

nu_.erical results) subsequently, the multiblade results are obtained by
retaining only one torsion mode, although

Figures 6 and 7 present the lead-la_ the nonlinear contribution from both tor-
damping plotted versus ae',ance ratio from sion modes is used. This significantly
a flap-lag model, flap-lag-torsion model reduces the time required for the Floquet
(tw_ modes for each degree of freedom), and stability analysis.
flap-lag-torsion model with only one tor-
sion mode, for a soft inplane rotor The damping values were first checked

,_v = 0.7). Figure 6 presents the damping with those obtained from a s_ngle-blade
results for full elastic coupling (R = 1.0). solution obtained previously to validate
It can be seen that the flap-iag model the multiblade equation derivation pro-

: underpredicts the lead-la_ damping. The cess. It was found that the approximation
model wi%h only one torsion mode increases cos 8 = 1.0, used in deriving the explicit

the damping above _hat of the model with multiblade equationL, will predict slightly
two _odes each. Figure 7 shows the lead- higher (but less than 2%) damping for stiff ":,
lag damping value plotted for zero elastic inplane rotozs with full elastic coupling

coupling (R = 0.0), The damping levels.are parameter; this is because the approxima- _i_
very m" =h reduced compared with those in tion has its greatest effect on the cou- __:
the fu_l elastic coupling case. However, pling elements. For all other values of
the flap-lag model is again the least the elastic coupling parameter, this

damped, approximation does not affect the resul-
tant damping values. Where required for I

Lead-lag dampig is plotted for a comparisons, the single-blade damping
stiff inplane rotor (_v = 1.4) with varying values are recalculated using this approx- I
advance ratio in Figs. 8 and 9. Figure 8 i_ation; this is done to avoid the rederi-

presents the damping results for f_'il ration of the multiblade equations.
elastic coupling. The same trend that was

observed for the case of soft inplane Figures ii and 12 show the lead-lag
(Fig. 6) exists. Here, it is to b_ noted regressing mode damping plotted for a
that root splitting for high advance ratios varying advance ratio with and without
occurs even when only o_e torsion mode is dynamic inflow from a flap-lag-torsion and
used. Figure 9 presents _he lead-lag damp- flap-lag model for a soft inplane rotor.
ing for increasing advance ratio for a Figure ii shows the damping for full elas-
stiff inplan_ rotor for zero elastic cou- tic coupling (R - 1.0). For the flap-lag-

_ pling parameter. Although a flap-lag model torsion model, the dynamic inflow reduces

,_ predicts a stable system, the rotor is the damping at practically all advance i

_! unstable. This demonstrates the importance ratios. Its effect is negligible at i
of elastic blade torsion in a forward- advance ratios of 0.15 to 0.25. For the
flight stability analysis, flap-lag model, the dynamic inflow

increased the damping up to an advance
Figure I0 shows the lead-lag damping ratio of 0.33_ at higher advance ratios it _-

plotted for an advance ratio of _ - 0.25 reduced the damping. Figure 12 presents o i

%,.

_30
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the damping results for the zero elastic Conclusions
coupling (R = 0.0). It is seen that for
the flap-lag-torsion model, the dynamic A symbolic manipulation program
inflow again reduced the damping in hover, written in FORTRAN wa_ used to derive the
Yet at intermediate advance ratios, dynamic aeroelastic analysis equations of an
inflow increased the damping, and at higher elastic blade with flap-lag-torsion
advance ratios, it once again reduced the aegrees of freedom in forward flight.
damping. For the flap-lag model, the The feasibility o_ using the program to

dynamic inflow increased lead-lag damping obtain explicit equations in a harmonic
for all advance ratios. This is consis- balance method and multiblade equations

t tent with the flap-lag model results of was studied. Numerical results were pre-J
previous studies (e.g., Ref. 7). sented, with and without dynamic inflow

i for a propulsive trimmt_ rotor. Both a• The lead-lag regressing mode damping flap-lag-torsion model and a flap-lag ;
J is plotted for a stiff inplane rotor for a model were analyzed. Soft inplane and

I varying advance ratio in Figs. 13 and 14. stiff inplane rotors were considered.!

| Figure 13 is for a rotor with full elastic J
!• coupling. For a flap-lag-torsion model, The following conclusions were drawn

the dynamic inflow reduced the damping up from this study of the use of a symbolic
| to an advance ratio p of 0.41. For program for predicting rotor aeroelastic

> 0.41, this model slowed a slightly stability.

| increased damping value. The flap-lag o
model with dynamic inflow shows a small i) The symbolic program can be used

-7 increase in damping. This damping incre- to obtain explicit equations.
ment gets smaller with hlgher advance

ratios, Figure 14 is for a rotor with 2) With the present program capa-
zero elastic coupling. For this config- bility, the amount of data to the sym-

i! uration, the dynamic inflow increases bolic program increases greatly with the

damping for all advance ratios. Conse- n_mtber of harmonics and degrees of
quently both the flap-bag-torsion and freedom.
flap-lag model show the same t2end.

3) In deriving the explicit harmonic
Figure 15 shows the lead-lag regress- balance equations and multiblade equations,

ing mode damping plotted for a stiff the following should be noted: a) to
inplane rotor at an advance ratio of 0.25, obtain the harmonic balance equations, a

I for varying elastic coupling. For the numerical method is suggested since an

flap-lag-torsion model, dynamic inflow arbitrary number of harmonics can be used
reduces the damping for R > 0.3, but it without increaslng the input data to the

increases the available damping for symbolic program; b) to obtain the multi- '
R < 0.3. However, this increase is not blade equations, the perturbed equations
sufficient to stabilize the inplane mode. in their Fourier series form are derived 1

! With the flap-lag model, dynamic inflow using the symbolic program. Then the
shows an increase in damping for all values multiblade equations themselves are

of elastic coupling. This is the same obtained numerically. _ _
trend as was observed in Ref. II for the !

case of hover with both flap-lag and flap- It is recommended that a selective I

lag-torsion blade model_. (judicious) combination of symbolic and I "" }%-,

numerical programs is required for an I _._
Constant-Coefficient Approximation Results efficient derivation and numerical-study

process.
The effect of a constant-coefficient

approximation (CCA) is presented in Fig. 16, The following conclusions were drawn ;
where the real part of the exponent is from the numerical study of a single-blade '
plotted for a stiff inplane rotor with full solution.

elastic coupling thr._ did show a splitting
of roots with a full periodic coefficient I) A flap-lag-torsion stability
analysis (Fig. 13). The CCA ._oes not show analysis from a trim procedure in which
this splitting, since the frequencies are enly the flap degree of freedom is used
very much away from the real axis. For underpredicts the lead-lag damping.
this analysis, the regressing and collec-t

_--_I tire modes did predict the same damping 2) In the case of stiff inplaneF trend with advance ratio as shown by the rotors, high forward flight speed is
_ full Floquet analysis. However, the pro- destabilizing. At high advance ratios, a
:_ gressing mode showed poor agreement between splitting of the roots is encountered, '
.w_, a CCA analysis and a Floquet-theory analy- yielding two real-part characteristic

_ sis. This is because the constant- exponents a' '.he same frequency.
coefficient approximation will only be

•_ good for low-frequency modes, !
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3) Using only one torsion mo_o usu- 5. Friedmann, P. P. and Kottapalli,
ally increases the damping value f.om the S.B.R., "Coupled Flap-Lag-
flap-lag structural model. Torsional Dynamics of Hingeless

Rotor Blades in Forward Flight, =

4) The damping values for a stiff Journal of the American Helicopter
inplane rotor are very sensitive to elas- Society, Vol. 27, No. 4, Oct. 1982,
tic coupling parameter Depending on this pp. 28-36.
parameter, the rotor c_n be either stable

or unstable. 6. Peters, D. A. and Gaonkar, G.H., _
=Theoretical Flap-Lag Damping with i

The following conclusions were drawn Various Inflow Models," Journal of

from the numerical study of a multiblade the American Helicopter Society, :
solution with dynamic inflow. Vol. 25, No. 3, 1980, pp. 29-36.

i
i) For a flap-lag model, and for both 7. Gaonkar, G. H. and Peters, D. A.,

soft inplane and stiff inplane rotors with "Use of Multiblade Coordinates :
zero elastic coupling, the dynamic inflow for Helicopter Flap-Lag Stability
increased damping at all advance ratios with Dynamic Inflow," Journal of
considered; with full elastic coupling, the Aircraft, Vol. 17, No. 2, 1980, "

d_namic inflow increased the damping at low pp. 112-118. _
advance ratios, but reduced damping at high
advance ratios. 8. Gaonkar, G. H., Sastry, V. V. S. S.,

Reddy, T. S. R., Nagabhushanam, J.,
2) For a flap-lag-torsion model, and Peters, D. A., "The Use of

dynamic inflow slightly reduced lead-lag Actuator-Disk Dynamic Inflow for
regressing-mode damping for full elastic Helicopter Flap-Lag Stability,"

coupling. The same trend was observed for Journal of the American Helicopter

both soft inplane and stiff inplane rotors. Society, Vol. 28, No. 3, 1983,
pp. 79-88.

3} For a given advance ratio, the

variation of damping with elastic coupling 9. Gaonkar, G. H., Mitra, A. K., Reddy,
parameter for a stiff inplane rotor showed T.S.R., and Peters, D. A.,
the same trend as did tF_ hover case. "Sensitivity of HelicoTter Aero-

mechanical Stability tJ Dynamic
4} The constant-coefficient approxi- Inflow," Vertica, Vol. 6, No. i, •

marion for the stiff inplane rotor does not 1982, pp. 57-59.
show the splitting of the roots, since the

f.:equency of the lag mode is away from the I0. Johnson, W., "Influence of Unsteady
re_l axis. Aerodynamics on Hingeless Rotor

Ground Resonance," Journal of Ai_-
craft, Vol. 19, No. 8, Aug. 1982,
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Table I. FORTRAN symbols

Original FORTRAN Original FORTRAN -
variable symbol variable symbol

R RAD v' VS

u U vi LAMB
UD w W

UT UT w' WS
Up uP _ WD
VF UF x XCOR 'i
UF UF_ 8 THTA ._
v V _ PHI

VD _ OMEG

i

I

IF
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Table 2. Typical input to HESL and output to 4t
. calculate tangential and normal velocities

(UT and Up}

READ MATRIX _ 02
#LAFP0303 -i.0 PHI THTA

_ 03 1.0 IEFUR
• 1.0 READ MATRIX

-0.5 VS VS #VEL0301
-0.5 WS WS 04 i
01 -1.0 UD
I. 0 VS i. 0 UFD
01 1.0 OMEG V
I. 0 WS i.0 MU OMEG RAD CSCY
02 03

-i. 0 VSIEONE -I. 0 VD _
-i. 0 WS%ETWO -i. 0 tXUUF OMEG

! 03 -I.0 MU OMEG RAD SNCY .
"_ 1.0 ,ETRE 02 ._.

il -1.0 PHI THTA -1.00MEG RAD,LAMD
-i. 0 VS WS THTA -I. 0 WD
02 FORM MATRIX

I. 0 PHI |LAFF J VEL#AVEL*E2D1
1.0 %EFUR THTA MATRIX EXPRESSION

02 02#AVEL
1.0 VS%ETWO % UT0201% UP0301
-I. 0 WS_EONE NEGATE EXPRESSION
03 % UT " ._
-1.0 %ETRE THTA NEGATE EXPRESSION
-i. 0 PHI % UP
-i. 0 VS WS --

Note: %EONE, _ETWO etc. are expressions read

earlier in the program. •

!

Output of UT

******************************************* _

* DETAILS OF THE EXPRESSION UT *
* NUMBER OF TERMS 22 *

******************************************* _)

1 1.000" VS*OMEG* V*
2 1.000" VS*OMEG* NU* RAD*CSCY*
3 1.000*THTA* WS*0MEG* NU* RAD*CSCY*
4 1.000" PHI* WS*OMEG* MU* RAD*CSCY*

5 1.000" VD* I

6 1.000*XCOR*OMEG* i
7 1.000" U*OMEG*
8 -i.000" UF*OMEG* *
9 1.000*ONEG* MU* RAD*SNCY*
I0 -0.500* VS* VS* VD*
11 -0.500" VS* VS*XCOR*OMEG* I
12 -0.500* VS* VS*OMEG* MU* RAD*SNCY* !

13 -0.500* PHI* PHI* VD* i
14 -0.500* PHI* PHI*XCOR*OMEG*
15 -0.500* PHI* PHI*OMEG* MU* RAD*SNCY*
16 -i.000" PHI*THTA* VD*
I? -i.000" PHI*THTA*XCOR*OMEG* i

18 -!.000" PHI*THTA*OMEG* MU* RAD*SNCY* }

19 1.000" PHI*LAMB*OMEG* RAD* J
20 1.000' PHI* WD* !
21 1.000*THTA*I_MB*0MEG* RAD*

22 1.000*THTA* WD* _ i
i i i

t

• i
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: I INPUT BASIC RELATIONS 4I

A 1

I SYMBOLIC DERIVATION OF

NONLINEAR AND
LINEARIZED EQUATIONS

1 '; AXIS OF ROTATION i

" MULTIBLADE EQUATIONS :

Pig. 1 Rotor-blade coordinate systems and Fig. 3 Flowchart of the aeroelastic _
deflections, analysis,

I

I v
"_.-.o16

o FLAP-LAG "sURSiON TRIM

'" • FLAP TRIM
z -,014 s

INFLOW INDUCED _ O _ 1ST LEAD-LAG MODEFLOW THEORY L
X ------ 2ND LEAD-LAG MODE /_mU,I

-.010 ""
M,I

ANGLE OF LINEAR I
- _ _ -.o08 _;...

ATTACK QUASISTEADY l - ¢
> _ AEROFOIL I CIRCULA-_ < .:i

AERODYNAMICS I TION _ -.006
AND " .

I

LOADS __ -.004 L "O_g'_r_" "_//
ROTOR

-." _ _ - STABLEDYNA.,_,S _ 0 0E ,_ ,? 2'0 is Ao _ 10
¢ ADVANCE RATIO, p

Fig. 2 InfZow dynamics. Fig. 4 The effect of the number of
degrees of freedom used in trim analysis
on lead-lag damping versus advance ratio:

soft inplane, _v = 0.7, R = 1.0, propulsive

trim. i

%
%
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a , _ "_"- - ' : -_ '" ..... 2

•x' ,

-'4"\ " 1

o FLAP.LAG-TORSIONTRIM dl,
_,_ • FLAPTRIM
I-" _ 1STLEAI>LAGMODE
Z ,.

± " uJ ------ 2NDLEAD-LACMODE
Z _ NUMBEROFMODESO

• ' " I-:-.014 o 2 FLAP,2 LAG,2 TORSIONX Z
IM IM
u Z _ 2 FLAP,2 LAG,1TORSION

_ -.012 o 2 FLAP,2 LAG
_-- X
¢¢ la

_. u -.010

-.o2 I__

i i
E

,. b'-"_ =: 1 TORSIONUO 0
k- uJ

-- ¢ UNSTABLE _ -,004
•- ,_ ,. _ MODES

I- -.002 FLAP-LAG

¢ _ STABLE

.02 "_ _ 'o ' ' ' _o '0 .05 .10 .15 .20 .25 .30 .35 .40 .45 < 0 • .I .15 .20 .25 • .35 .
u,l

•,v ADVANCERATIO,/_ ADVANCERATIO,/_

_ Fig. 5 The effect of number of degrees of _ig. 7 Lead-lag mode damping versus
freedom used in trim analysis on lead-±ag advance ratio for a flap-lag-torsion model

__ damping versus advance ratio: stiff and a flap-lag model: soft inplane,
inplane, _v = 1.4, R = 1.0, propulsive _v s 0.7, R t 0.0.
trim. i

NUMBEROFMODES ! j
-.06

o 2 FLAP_ LAG,2 TORSION

2 FLAP,2 LAG,1 TORSION /#_

' _-,016 r NUMBEROFMODES _" a 2 FLAP,2 LAG ] _1' "'

-.014 _ 2FLAP, 2LAG, 1TORSION .. ._ , ,.,..,.,. w f . , , .

LO _" O 2 FLAP.2 LAG // _ _,_ _,

-.o,2I // io ,TORSION

' _ _ X _ STABLE
_" I _ 2TORSION _ 0 I I I I ,_ I UN_TABt_E :

r '_'_o._,-c--'-_ LAP-LAG ¢<

...-,00,_
I STABLE
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_v = 0.7, R = 1.0 (multiblade equations). =v -- 1.4, R - 1.0 (multiblade equations).

, _ ,_--.o2 o FLAP.LAG.TORSION

-,014 o FLAP-LAG-TORSION ,z, n FLAP-LAG

o FLAP.LAG _ i -- WITHOUT DYNAMIC INFLOW _"

-,012 _ WITHOUT DYNAMIC INFLOW I '" ------ WITH DYNAMIC INFLOW ,,,,Q,_ _"
----- WITH DYNAMIC INFLOW _ "----_" ...... -- _'

UNSTABLE _,.¢"

- .,,._
""O" -- --O-" "" j

-.oo= =<<
=. STABLE .a

" ' 'o ii ' ' ; ' _ o,0 ' ' ,E ' i ' ' ;<1: O .05 .1 ,I .20 ,25 .30 5 .40 e_ .05 .10 .20 § ,30 .35 0
¢ ADVANCE RATIO, # ADVANCE RATIO. #

_ Fig. 12 The effect of torsion and dynamic Fig. 14 The effect of torsion and dynamic
"_ inflow on lead-lag regressing mode dam_Ing inflow on lead-lag regressing mode damping

versus advance ratio: loft inplane, versus advance ratio, stiff inplane,
"_l _v " 0.7, R - 0.0 (multiblade equations). _v " 1.4, R - 0.0 (multiblade equations).

238 ".,,
.i

i I "_"i'--=.l_-- ,.',, • -.

1986005810-244



I
+t

4

.I

_i o FLAP-LAG-TORSION

' "_1 u FLAP-LAG
! -- WITHOUT DYNAMIC INFLOW

I ------ WITH DYNAMIC INFLOW
-- WITHOUT DYNAMIC INFLOW

-.03 2
o REGRESSING MODE /_

/ ,_ COLLECTIVE MODE ?/ -.De
/ o PROGRESSINGMODE/

Z _ ------ WITH DYNAMIC INFLOW/
O-.02 I-" o REGRESSING MODE J ;

Wt_ _ t_[Z --..._

u / "' "_ Z
I- / 0 :_
ee wuJ

-.01
<C n," _--,o--- _u.I
z I-
¢.1 _
w _ -.02Z STABLE ¢

0 I I I I I < :'u. .r
O UNSTABLE ¢j ,:_
I-- uJ

<[ t-
" "" , STABLE ,
< .01 _- "UNSl:ABLE'
m n-
= _

<
w ?

2..02 .02 0 +0 .2 .4 ,6 .8 1.0 .uo .lu .l'E .20 .25 .30 ,35 .40 ,45

ELASTIC COUPLING PARAMETER, R ADVANCE RATIO, p ':,

Fig. 15 The effect of torsion and dynamic Fig. 16 Comparison of constant-coefficient
inflow on lead-lag regressing mode damping approximation and Floquet analysis: stiff

versus elastic coupling, stiff Inplane, inplane, mv = 1.4, R = 1.0 (multiblade +. !
_v = 1.4, p = 0.25 (multiblade equations}, equations). _,"

f
I
]

.i

239 _

1986005810-245



DISCUSSION
Paper No. 15

THE INFLUENCE OF DYNAMIC INFLOW AND TOP_IONAL FLEXIBILITY ON ROTOR DAMPING IN FORWARD FLIGKr
FROM S_BOLICALLY GENERATEDEQUATIONS

T. S. R. Reddy
and

' _ William Warmbrodt

J
Peretz Frledmann, University of California, Los Angeles: I'd llke to congratulate you on a very
nice paper. Obviously I have a vested interest because for the last three years I have been

" waiting for somebody to redo the problem to find out whether Kottapalli and I have done It
correctly. Now that you have shown these results and Neelakanthan has shown some results at the
last European Forum where also the same trends were exhibited I guess I can sleep In peace.

What I really wanted to emphasize are two things. One is the contribution you have made Is a
really significant one because as somebody who has derived equat ,-s by hand for a long time I
definitely believe that the way to go Is to use a computer. The - end comment which I have--
and it is In the form of a question--Is if I correctly understanO one results you have shown
then It see,_ to be that dynamic inflow doesn't have an awful lot of Influence In the case of
coupled flap-lag-torsion In forward flight. I was wondering If you would agree with this
statement? ,

Reddy: Yes, that's what our results show, "_
e

Wayne Johnson t NASA Ames Research Center: Following along these lines of what Peretz was dis- ._
_" cussing about using the computer: In dealing with this subject, If you were going to do the ! -_
_ same work, but do It over again were there any pieces of the problem that you did with pencil _-
_I and r_per, [that you] did by hand that lr you had to do It all over again you would automate '

it thes_ pieces also. In other words, was there anything left to put Into the computer?

Red__: Yes, we are now finding that the required Input data has increased tremendously so we
will have to change the program to minimize data Inputs.

Friedrlch Straub, Hushes Helicopters: How long did It take you to Include the forward flight In _.
the equations coming from the hover results?

Reddy: I attended the SDH Conference on the 14th to the 16th of Nay. Then we came hack to this
area and submitted the abstract--that was the end of Nay. We finished the paper by August, but
most of this time was spent on developing _he trim and response solution program, so It took
even less time.

J

BIll Warmbrodt, NASA Ames Research Center: You might point out that the original derivation was
done Including the influence of forward flight; ,.owever, the program was first exercised to
develop the hover results presented at the SDM Conference.
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