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ABSTRACT

An aeroelastic stability of three-degree
flap-lag-torsion blade in forward flight is
examined. Quasisteady aerodynamics with a
dynamic inflow model is used, The nonlinear
time dependent perfodic blade response is
calcylated using an iterative procedure based
on Floquet theory. The periodic perturbation
equations are solved for stability using
Floquet transition matrix theory as well as
constant coefficient approximation in the
fixed reference frame. Results are presented
for both stiff-inplane and soft-inplave blade
configurations. The effects of several para-
meters on blade stability are examined,
including structural coupling, pitch-flap and
pitch-lag coupling, torsion stiffness, steady
inflow distribution, dynamic inflow, blade
response solution and constant coefficient
approximation,

HOTATIONS

a = 1ift curve slope

A * matrix in first order
equations in rotating system

Qf s matrix in first order
equations in fixed system

81,82 = matrices in dynamic inflow

e equations

4 s Dblade chord

cd = blade section drag coef-
ficient

Cl = blade section 1ift coef-
ficient

cm = blade section moment coet-
ficient
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Srr Np

damping matrices in response
and perturbed equations
respectively

thrust coefficient, T/mpn?R"

weight coefficient, W/non2R"

differential aerodynamic
coefficients wrt a

drag force of the helicopter
hinge offset divided by
rotor radius

equivalent drag area of
helicopter

nonlinear force vector in
response equation

moment lnertial of blade
(flap)

ratio of torsyonal inertia
to blade flap inertia
distance of hub from heli-
copter c.g.

rotor drag force, pasitive
rearward

pitch-flap and pitch-lag
couplings cespectively
stiffness matrices in response
and stabilty equations

coefficients in Drees model
coefficient matrices in
dynamic inflow equation
mass matrices in response
and stability equations
Aerodynamic rolling and
pitching moments respectively
aerodynamic flap, lag and
pitch moments respectively
number of blades

matrix tn fixed system
defined by eqn. (29)
transition matrix

rotor radius

structural coupling para-
meter



T = rotor thrust force

Up, U, 2 blade section normal
and inplane velocity

v = blade section resultant

velocity, /Utz +U 2
P

v = forward speed

W = helicopter gross weight

X = blade radial coordinate
(nondimensionalized wrt
radfus)

XA = chordwise offset of blade
aerodynamic center behind
pitch axis

X = chordwise offset of blade
center of gravity behind
pitch axis

X = yector consistiny degrees of

freedom in rotating system

Y = state vector in rotating

system

Y = rotor side force, positive
towards advancing side

Y¢ = fuselage side force

] = blade section angle of attack

ay = real part of kth charac-
teristic exponent

85,0 = angular deflections (flap,
lag, torsion)

8 = precone angle

Y = blade lock number, pacR®/I

50'61c’els collective, lateral cyclic,
longitudinal cyclic pitch

angles

rator inflow ratio

kth characteristic exponent

advance ratio, V cos a/fR

A
A
u

VsV Vg
' frequencies

nonrotating flap, lag and tor-

sional frequencies

air density

solidity ratio, N_c/#R

wa. wc, we

[
o
)
bg lateral) tilt of shaft

v azimuth angle of the blade
ll‘k

1 speed of rotation
&()

perturbation quantity

INTRODUCTION

Several researchers have examined the
aeroelastic stabilicy of a helicopter blade
In hover and forward flight (see recent reviews
=3). The phenomenon s complex involving non-
linear structural, inertial and aerodynamic
forces, With a forward flight, the equations
of blade motion get more involved because of
the presence of many periodic terms, Due to
the complexities of formulation and analysis
of rotorary-wing dynamics problems, most of
the analytical studies are of limited scope;
more so, in forward flight conditions. The
objective of the present paper is to examine
aeroelastic stability in forward flight,
including the effects of dynamic inflow on
stability results, For this a simple flap-
lag-torsion blade model consisting of three
degrees of motion will be studied,

rotating flap, lag and torsional

section induced ahgle, tan-! Up/Ut

imaginary part of the kth exponent

For design and analysis of a helicopter

rotor, it is essential to analyze its
aeroelastic stability. For this, 2 study on
the dynamics of a single blade forms an
important fundamental step to the complete
understanding of the rotor-body dynamics, The
blade stability analysis consists of three
major phases; vehicle trim, blade steady
response and stability of perturbation
motion, The vehicle trim solution determines
control settings for perscribed flight con-
ditions and is calculated from the vehicle
overall equilibrium equatfons. The blade
response solution consists of time Jependent
blade position and is calculated fron the
blade equilibrium equations. In the calcula-
tions of blade response one needs the vehicle
trim solution, For stability solution, a
perturbation 1s given to the blade at its
equilibrium position and the subiequent
response amplitude 1s investicated fur stabi-
lity, For stability calculations, one needs
tne vehicle trim solution as well as blade
response solution, These three phases of
study are inherently coupled. A complete
coupled solution is very involved and there-
fore most of the researchers uncouple these
three phases and study each phase separately.
It is possible however to achieve a certain
degree of coupling between three phases
through an iterative process.

The simpliest form of a rotor blade
representation is the rigid blade model with
spring restrained hinges, Many researchers
have examined the aeroelastic stability of
this simple blade configuration. For
example, Peterd and Kaza and Kvaternikb
investigated the aeroelastic stability of
two-degree flap-lag blade in forward flight,
An improvement for this type of modelling is
to introduce a third degree of motion, i.e.,
feather rotation, A better representation
for a hingeless blade is to treat it as an
elastic beam, As an example, Friedmann and
Kottapal1i6 have investigated aercelastic
stability of flap bending, lag bending and
torsion of an elastic hingeless blade in for-
ward flight, In the present paper, a simple
blade representation consisting of three
degrees of motion, flap, lag and feather
rotations, 1s used to study the stability
phenomena in forward flight,

There are many forms of vehisle trim
solutions available in literature. Johnson?,
for example, presented in a summary form
many trim options, For free flight con-
ditions, the control settings and the
vehicle angles are determined from the
satisfaction of three force and three moment
equilibrium equations. Ong of the popular
trim procedure is to neglect altogether
yawing moment equilibrium equation and
thereby neglect the influence of tail rotor
on solution, This form of trim solution is
used in the present paper, The next simple
form of trim procedure® {s to neglect the
lateral force equilibrium equation, and
thereby exclude the determination of latera)
shaft tilt angle (¢.) from equilibrium
equations, Generall » this may cause
only slight influence on trim and
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stabil1ty solutions, because the shaft
lateral t{lt ang'e does not introduce any
vertical flow component on the blade. Some
researchers?»5:8 have simplified the trim
procedure further by assuming that the
vehicle center of gravity lies at the rotor
hub, and thereby neglect the equilibrium of
pitching and rolling moments of the vehicle.
This will cause cyclic flap angles By, and
81 (with respect to % 5 plane) to be zero.
Here, the control s.. ings and shaft angle

ag are calculated from the vertical and
longitudinal force equilibrium equations.
This may again have a smail influence on trim
solution for free level flight conditions at
low forward speeds. At high forward speeds,
the cyclic flap angles are not small and
therefore must not be naglected. Another
form of trim procedure called moment trim is
often used by many researchers#,9,10  and for
this the solution is calcutated from the
rolling moment and the pitching moment
equilibrium equations. The force equilibrium
equations are not considered. Here, the
rotor cyclic controls (91 and 814) are
calculated for a prescri%ed shaf% angle ag.
Some people refer it as a wind tunnel trim
and it can be quite different from propulsive
trim®s0,

The blade time dependent positon is
calculated from biade equilibrium equatiors.
These are coupled equations and contain
nonlinear geometric terms as well as periodic
terms. The objective is to calculate steady
periodic response solution. In the present
paper, the nonlinear equations are solved in
the rotating frame in an_iterative procedure
based on Floquet theoryll, A somewhat similar
type of quasilinearization procedure was used
by Friedmann and Kottapalli®, The solution
contains all harmonics for flap, lag and tor-
sion response amplitudes. Another popular
method, harmonic balancingl? (Fourier Series)
is quite commonly used to calculate the blade
steady response where response is assumed
periodic and consists of sum of finite har-
monics. This procedure gets quite involved
for coupled systems with nonlinearities.
Quice frequently, researchers? nhave obtained
simple response solution using harmonic
balance method where the flap response is
assumed to undergo a single harmonic motion
(8g, B81c ard 81¢) and the lag and torsign
responses are ne lected, In literaturel,2,
the importance of accurate determination of
blade equilibrium position on blade stability
has been pointed out, including nonlir ar
terms as well as higher blade harmonics,

For stability amalysis, t- - .urbation
equations of motion are linear -Jout the
blade equilibrium position ana v..~e equations
contain many periodic terms. Thesu !inearized
equations are solvad using three different
approachgs in the present paper. The first
approach® is to analyze the stability of the
blade 1n the rotating reference frame using

Floquet transition matrix theory, This approach

is applicable if the infiow {s assumed to be
steady. The second and third approach analyze

the stability or rotor perturbation equations in

the fixed reference frame. It is assumed that
the rotor is tracked and all the blades are 1den-
tical. The blade equations in the rotating
reference frame are transfor-ad to the fixed
referance frame as rotor fguations using Fourier
coordinate transformationt®, In the present
paper, these transformations are performed numeri-
cally and thus the working through the laborious
algebraic expressions 1s avoided, In the second
approach, the rotor equations in the fixed frame
are solved using Floquet transition matrix theory.
Through the coord.. ite transformation, many
periodic terms present in the rotating frame get
cancelled out in the fixed frame. Therefore, the
rotor equations in the fixed frame contain only
selected periodic terms, for example, third
harmonic for inree-bladed rotor and second and
fourth harmonic for four-bladed rotor. In the
third aoproachl4, a constant coefficiant appr xi-
mation is made by averagirg out periodic terrs
and solving the resul*ing equations,

In all these three approaches an eigen-
analysis is made and the nature of eigenvalues
explains the stabjlity of the blade, Another com-
monly used methodld is npumerical inteyration of
complete equations. This approach is though
simple in implementation, but is quite heavy from
computation point of view.

For trim and response solutions, the quasi-
steady appro.imation is used for the determination
of aerodynamic loads. For the perturtation
solution, the unsteady aerodynamics effects ran
be important and these are introduced in an
approximate manner, through a dynamic inflow
modelling. The effect of dynamic inflow on
coupled flap-lag two degrees - f motfgn in forward
flight has been investigate: earlier3-10 and nas
been snown tr be gquite impo.tant for blac stabi-
1ity. In the present paper, the influence of
inflow dynamics has been investigated for a
coupled flap-lag-torsion motion with improved trim
and response solutions. The dynamic inflow
modelling is based on the actuatcr disk tnheory.
This necessitates the transformation of blade
aerodynamic forces to the fised reference frame
and therefore only second and third approach can
be conveniently used to analyze blade stability,

In the paper, the effects of several para-
meters on bl de stabiiity is examined, including,
structural ccipling, pitch-flap coupling, pitch-
lag coupling, lag stiffness, torsion stiffness,
steady irflow distribution, dynamic inflow, blade
response and constant coefficient approximation,

EQUATIONS OF MOTION

The blade is assumed to undergo three degrees
of motion: rigid body flap, lag and feather rota-
tions about hinges at the btlade 3ot, with hinge
springs to obtain arbitrary natural frequencies,
The hinge sequence is fl»p inboard, lag, ann then
feather outboard. The flap angle g is pnsitive up
the lag angle ¢ is positive aft (opposite to
rotation) and the feather angle 6 is posicive nose
up. The equations of motion zre derived for this
configuration, and in general, terms up to second
order are retained in the flap ana lag equations
and terms up to tiird order are retalsed in the
feather equation. The equations are
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Flap Equation:

* 2 * * 3X1 *k
B+ Vg8 + 2ugle8 - 26;--——5(94' 8)

N

* Ak R
+ 1 (28 + g8) + = (w.? - «,?) sin 6 cos o
& 4 8

;S

M
B+ u?s

1,07 P (1)

Lag Equation:

*k * * X *k *
T v e+ 2u g T+ 268 - -;-—RI- (88 + 288)

*
R
+ Ifse + = (wc2 - “62) sin 8 cos 88 = H;/[buz
A

Feather Equation:

* kK 2 * *&
Te(o + vy%0 + 2ugg,8 + 5B + B7)
*k X1 **x  %xx * M
+§.l1_(-e;+2—l-e-‘+28:-8) -2
2R R 1,9°
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£
¥ lewg® 8 con

*
where I. is the ratio of the feathering inertia to
flapping inertia; X, is the chordwise offset of
the center of gravi{y from the pitch axis
(positive aft), the rg ¢ and gg are the viscous
damping coefficients; the w,, w_and wy are the
nonrotating natural frequenfies®of the’blade
(divided by rotational speed ) and 8_1is the pre-
cone angle. The Mg, M., Mg are *he agrodynamic
flap, lag and featﬁer moments r-spectively, For a
uniform blade the nondimensiona! rotating freguen-
cies are given as

<
[
u
—

3 e . Rs, 2 2y i 2
+E-1—_gfr(w8 +Rs(w§ - ug }sin 9)

2_ 2
W, =

= - B 2

b =1+ R (1 Rs) "'T"Er sin‘e
(I)B w;

The e is the hinge offset (divided by radfus of
the blade) and R_ is +rha structural coupling para-
meter, A simplemeans of representing structur.:
coupiing effect in the r1gid blade representation
is illustrated in Fig. 1(a). It is used to charac-
terizc the hub to biade stiffness and 1s defined as

Kg. K Keo K
RS.E.L.EB_ where K = _8 Bk - B M
K K K, +K LT
B P B3 By % %y

Kg, K. are the ccabined hub and blade stiffnesses
in f‘§p and lag directions. The Rg=0 represents
the configuration with blade part as rigid and all
the flexibility concentrated at the hub. The
structural fully coupled is represented by Rg=1
and this idealizes flexible blade with rigid hub,
The intermediate values of Rg represent the case
where both blade as well as hub are flexible.

Quasisteady airfoil characteristics are used
tv obtain the aerodynamic forces. The pertur-

bation section aerodynamic forces and pitch moment
(in the shaft axis) are
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where Xa is the chordwise offset of the aerodynamic

center from elastic axis (positive aft), ¢ is the

chord, V is the resultant velocity and Uy and Ug

are airflow velocity ~omponents in tangential and

normal directions (Fig. 1(b)). The steady and per-

turbation flov components for forward flight are
Steady:

Ut = {x{1-e) - x(l-e)z + psin g - gy cos ¢}

up 2 (A - x(l-e) Bz + x(l-e)E + up cos v}
Perturbation: (3)

&, = [6gn cos v - x(l-e)s?}

*
“Up = [-x(l-e)péc - x{1-e)zés + x(1-e)sp +

*
usB cos y - £ (l+ﬂ) 80}
R 2 ¢



The perturbation aerodynamic moments required for
the stability analysis aie written as

B
M8=efx-&-'z-dx

- 3
"
™.

X e GFX dx (4)

B B8
Me efdMa:lxi»efHNCdx

where My. is the noncirculatory aerodynamic pitch

moment and is expressed as

1 2 3 1 XA 1¢ 2% 3,
M S - 2 —_ —_—) = o [—— -
ne woRcR [8 x(= ¢+ ( )

*
1,%, 1¢C ,2%a 3
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fu *(4 c) 4R(c 8)}

- ; {{xtu sin v)(-;— + :_A)} (5)

X
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where x is the nondimensional distance from the
hub and u is the advance ratio (V cos us/rR).

The final blade equations of motion in for-
ward flight can be written as

it * * 6
MX o+ C(OX + K (X = Ey (WX KD (6)

where the inertia matrix M., the damping matrix
Lr and stiffness matrix K. contain periodic terms,
The vector X, consists of three states; flap, lag

and torsion deflectiors in the rotating system,
The (*) shown in the equations refers differen-
tiations with respect to ¢ and ¢ is the azimuth
angle (nondimensional time, at). A1l the
geometric nonlinearities are put into the force
vector FyL. The blade response is calculated
from the solution of above equations.

For the stability solution, the flutter
motion is assumed to be a small perturbation
about the blade equilibrium position,

Ll (7

The final 1inearized perturbed equations are
obtained as

” p 1 1] p * * *
AT SHC 0 X ) XK Pk X )88 = 0 (8)

The perturbation inertia matrix M.V, damping
matrix C.P, stiffness matrix KeP also contain
periodic terms. To determine blade stability one
needs blade response solution. To calculate this
blade response solution one needs the vehicle trim
solution.

VEHICLE TRIM SOLUTION

The propulsion trim which is described here
simulates the free flight condition. The trim
solution in forward flight involves the calcula-
tions of pilot-control setting as well as the
vehicle orientation for a prescribed flight con-
ditions. For a specified weight coefficient
C" and a fixed forward speed (u) the trim solution

evaluates 90, Blc. BIS' aut elc- alsl GHP’ ’S and
A. The trim solution is calculated from the
vehicle equilibrium equations. Fig. 1(c) shows
the forces and moments acting on the vehicle.
Vertical force equilibrium:

W-T cos {a - eFP) cos ¢ + D sin eFP - H sin

(a- qFP) + Y sin ’s =0 (9)

Longitudinal force equilibrium:

D cos aFP*H cos (a-eFP)—T sin (a - eFP) =0 (10)
Lateral force equilibrium:

Yo+ ¥ cos ¢+ T sin ¢ =0 (11)
Pitching moment:

My + Myf - H(xcg - h sin a) - D cos

(a+ GFP)h - D sin (a+ eFP)axcg=u (12)

Rolling moment:
Mx + fo + onh cos ‘s + Yf ch sin ‘s

+ Wh sin o - WY cos o = 0 (13)

c9

Where T is the rotor thrust and Y and H are the
side and drag forces. These are five vehicle
equilibrium equations. For trim solution one
also needs rotor equilibrium equations in
simplified form. These are

E% jz' (Flapping equation) dy = 0 (14)

EL jz" (Flapping equations) cos ¢ d v = 0  (1%)
T0

EL fz' (Flapping equations) sin v d ¢y = 0 (16)
"0
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The induced inflow is related to the rotor thrust
as

Cy
= o tan a b e (1+kx-x cos K x sin ¢)

2/u2+x (17)

where Ky and K, are obtained from Drees
mode113 and s’ expressed as

K, = 4/3((1-1.80%)21 - (Vw2 - W)

K, = -2
y u

For hover Kx = Ky =0

These are nine equations with nine unknowns (8,
Blc» Bigs % Oc» B> *» G ) and these are
solved numerically by iterative method.

BLADE RESPONSE SOLUTION

The blade response solution involves the
determnation of time dependent blade position and
is calculated from the blade equations (6). For
the calculation of response solution one needs
vehicle ‘rim sclution, The nonlinear response
solution is obtained from nonlinear periodic
equations (6) using Floyuet theoryll, These
equations are expressed in the state vector form

* ®
Yoo Ay =6 (n Y, 1) (18)

r «~r

where Y. is the state variable vector involving
six states.

First a linear solution is calculated after
dropping all nonlinear terms. For this the
initial conditions are calculated from Floquet
theory as

¥0) = (L - 9@ y, (20 (19)

where Yo(2x) is the complete solution after one
revolution with rest initial conditions and Q(2w)
is the Floquet transition matrix. For numerical
integration of the equations, a fourth order Runge-
Kutta algorithm is used. The next step is to
obtain the initial conditions for the compiete
nonlinear praoblem., This is done in an iterative
manner. As a first guess, the above linear solu-
tion is used as an initial ..ctor Y (0) for the
nonlinear solution and the complete” response
Jeo(2x) after one revolution is calculated. The
updared Floquet transition matrix Q 1s function of
respunse ampiitude and is calculated by perturbing
the estimated initial conditions le(o) by a smail
perturbation vector g.

a(zn) = L ((Mam - ypeem), L (1@ 20
! 2

- 1e(z»>)....?:(v£°’(zn)-le(zwm (20)

Where 1(1)(2w) is the response with initial con-
ditions of
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So a new set of initial conditions for the nonli-
near analysis are obtained

20) = ¥g(0) + T - 917F (v (2 - ¥ (0))  (21)

This procedure is repeated till a converged set of
initial conditions is obtained. Typically it
takes about 2 to 3 iterations to obtain converged
solution. Once the initial conditions Y(0) are
obtained, then the total response Y(y) for any

time in a revolution is calculated numerically
using time integration (Runge Kutta). This gives

us the nonlinear equilibrium deflection of the
blade along the azimuth,

FLUTTER SOLUTION

The linearized perturbed equations of motion
(8) is written in the state vector form as

* *
o =AY, Y. W8, (22)

*
where Y., Y are the blade equillibrium positjon

in the rotating reference frame and &Y_ and &Y
are perturbation states. These linearfzed
equations are solved for gtability using Floquet
transition matrix theoryl3, Here the eigenvalues
of transition matrix of A £-a be written in
characteristic exponents .-m

o= q * i“k (23)

and the mode in stable when °k<0'

For the perturbation solution the unsteady
aerudynamics effect can be important and these are
introduced in an approximate manner, through a
dynamic inflow modelling. The wake inflow is
perturbed about the steady inflow A

A= a4 82 (24)

where &) is the perturbed inflow
component.

A linear variation of perturbed inflow
is used

8 = 8 + sxlc X COs ¥+ A X sin ¢ (25)

The dynamic inflow components &ig,
Scs 87 are related to rotor unsteady
aerodynam?c forces and moments



* -l
mér + £ Sy = &  (26)

Np | Ly S“o
where & = § m"‘x 8= /Ao
i=] $my i l”lc
The &, Gme, &:my are the perturped

thrust, roll moment and pitch moment and
these are obtained for the ith olade.
The m and £-) matrices used here are
evaluated analytically based on the
actuator disk theoy in Ref, 16, The
nonzero elements of m and Lare

128 16

M1%3s, M™2" M35,

A "33 4.1

11 ° % 22 * STne. " Tsina v
l-sina , 1

,31-7 l+sina v

2

+A( A+ A -
where v = L_(——i—) and a = tan 1 (A)

/u2+x2 u

is the indu~ed inflow due to steady
rotor thrust. This model gives a quite
accurate description of dynamic inflow
2s concluded in reference 7.

The disk loading is approximated in
terms of the blade loading, &F as

m:g—
Tk

L

Ny
)
cc"x = - :n:kzl eI (451'-'1)k xdx sin y
(27)

d:H "_FI(

xdx cos
Y W kel %

With the inclusion of dynamic inflow, it
js convenient to analyze blade stability
in the fixed reference frame. The
coupied blade equations are transformed
to the fixed reference frame from
rotating frame gsing Fourier co-ordinate
Eran:;ormationl . For four bladed rotor
N =

b
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Zb Differential equation)/2 cos #
=1 2sin v

"
(28)

b
N m

These transformations are carried out
numerically. The final equations of
motion in fixed co-ordinate frame can be
written as

*

B = A9 8 + N(er  (29)

The unsteady force & in dynamic inflow
equations is given as

& =81 (v +By(v)82 (30)

Putting togetier the rotor equations
with the inflow equation, one gets

*

el |9 Ao o

* - - -] -

8 wle,  wlgalsl o
(31)

The above equations in the fixed frame
contain only selected harmonics, for
example third harmonic for 3 bladed
rotor, second and fourth for 4 bladed
rotor. These linearized periodic
equations are solved usiny Floquet tran-
sition matrix theory and constant coef-
ficient approximation approach. In the
constant coefficient apsroximation
approach the periodiz terms are averaged
out by applying the operator

(-==--- ) dv (32)

and then solved as an eigenvalue problem,

RESULTS AND DISCUSSION

=0

The aeroelastic stability is examined for
a four-bladed rotor with Lock number y = 5.0,
solidity ratio a = 0,05, feather inertia to

flap ratio IF-O U003 and with zero precone.

The blade of

sets such as the X1, the chord-

wise center of g vity offset from pitch axis
in terms of radius and Xp aerodynamic centre

offset from elastic axis are set to zero,

The




fuselage centre of gravity lies on the shaft
axis and is assumed to be at a distance 0.2R
below the rotor center. The aerofofl charac-
teristics used are

CD. =5.7a
Cd = 0,01
Cm = -0.02

The helicopter drag coefficlent in terms of
flat plate area ratio (f/sR°) of .01 is used.
The blade flap and torsion frequencies
(rotating) are 1.15/rev and 5.0/rev respec-
tively, Two different lag frequencies are
used; 0.57/rev for soft inplane rotor and
1.4/rev for stiff inplane rotor. The soft
inplane rotor configuration was taken as a
matched stiffness case (wB = wc).

First, results were calculated for some
selected cases to make comparison with those
cf cther authors for identical conditions.

Tha vehicle trim was calculated for uniform
inflow conditon with the center of gravity
lying at the rotor hub (h=0) and the results
obtained were identical to those of Ref, 18.
The blade stability of two-degree flap-lag
blade was calculated using simple response
solution (single flap harmonic) and for uni-
form steady inflow condition. The lag damping
values calculated for various flight con-
ditions were quite identical to those of Ref.
4. The inclusion of dynamic inflow on the
stability of this two-degree motion blade was
checked with the results of Ref, 9, and again,
the comparison was quite satisfactory. Then,
the flap-lag-torsion stability results were
calculated for soft and stiff inplane con-
figurations for steady inflow conditions.

For perturbation solution, a nonlinear
equilibrium position was used. The stability
results showed some comparable trends with
those of Ref. 6, in which results are obtained
with impi oved structural modelling for the
blade (elastic beam).

Figs. 2{a) and 2{b) show the vehicle trim
solutions for W Cw of .2 and .1 respectively.

The propulsive trim parameters 8g, 0]c, 6]s,
OHP, ég, A, B, B Bls are plotted for dif~
ferent  forward speeds fin terms of advance
ratio y=V/qp). The solution is calculated
iteratively from nonlinear equilibrium
equations (large angles). The flight path
angle g, is assumed to be zero, For steady
inflow, g tinear distribution model {(Drees) is
used, These trim parameters are defined in
the hub plane axes system and so the cyclic
flap angle 8 ¢ Is small for even large u. For
larger yu, thl shaft has to tilt more to com-
pensate the increase in parasite drag and
hence oy, increases with y and thereby cause
inflow A to increase. For large thrust levels
Cw/g» COntrol requirements are large but the
angle a,, is small. The reasor for lower
shaft angle at high Cy/, 1is due to the fact
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that, for same parasite drag (for a given for
ward speed) the shaft has to tilt less to
balance the parasite drag as the thrust magni-
tude is more. It §s also observed that trim
calcylated from linearized equilibrium
equations (small angles assumption) is quite
close to the above nonlinear solution except
for large advance ratios. The influence of
inflow distribution is primarily on longitudi-
nal and lateral cyclic pitch e;5, 61c. The

effect of uniform inflow for %! = 0.1 is shown

by dotted line in Fig. 2(b). The effect of
inflow distribution on other trim parameters
is quite small.

Figs. 3(a)-(c) present time dependent
equilibrium position of blade for one
complete revolution. The response solution
in terms of flap, lag and torsion deflections
(angles) is calculated iteratively from nonli-
near blade equations (rotating frame) using
the floquet theory described earlier. These

results correspond to a‘gl = 0,1 and advance

ratio y = 0.2. For comparison, the linear
response solution (dotted) is also presented.
The geometric nonlinearities are important for
1ag response and play less important riale in
flap and torsion response calculations.

For numerical results, a convergence
study was conducted to determine time steps
needed in one revolution for time integration
(Runge-Kutta) for both response as well as
stability calculations using Floquet Theory.
It was concluded that 120 time steps are quite
adequate for well converged (four
significant-digit) response and stability
solutions, For stability results, only the
lowest damped lag mode is presented. The flap
and torsion modes are comparitively high
damped modes and are not presented here. The
damping in terms of real part of complex
eigenvalue, ag is shown., Note a, = <
where ¢y damping ratio of lag moae and m;/
frequency of lag mode nondimensionalized’w th
respect to rotational speed.

In Fig. 4, the effect of torsion
flexibility on the blade stability is
shown, For these solutions, the simple
blade response is used and the stability
roots are obtained in the rotating frame
with steady uniform inflow conditions.
There is a cdisparity between two results,
clearly showing the importance of inclusion
of torsion flexibility for blade stability
analysis. This has been pointed out by
other authors6,

Fig. 5 shows the effect of blade
response solutions on statility., The lag
mode damping is calculated using three
types of blade equilibrium solutfons; these
are complete nonlinear solution, linear
solution and simple soiution, The linear
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and nonlinear solutions contain ail har-
monics for flap, lag and torsion modes
whereas the simple solution consists of
single flap harmonic only. These solutions
are obtained in the rotating frame with
steady uniform inflow conditions. Though it
is computationally less involved to use
simple response solution, the results are
poor in accuracy. For accurate results it
is needed to use a complete nonlinear blade
response solution.

Fig. 6 presents the influence of
steady inflow distribution on the blade
stabflity. These solutions are obtained in

the fixed frame with dynamic inflow included.

In the figure the damping of the lowest
damped, low frequency cyclic lag mode
(regressive mode) is presented. Two types
of steady inflow model are used; uniform
distribution and linear distribution
(Drees). The uniform distribution
underpredicts lag damping. For subsequent
results, the linear inflow model (Drees) is
used,

Figs. 7 and 8 present the damping of
low frequency cyclic lag mode for different
advance ratio y. Three sets of results are
shown and these respectively represent
dynamic inflow Floquet results (full line),
dynamic inflow constant coefficient
approximation results (big dots) and steady
inflow results (small dots). In Figures
7(a) and 7(b), the stability results are
shown for stiff inplane rotor for Cy/, = .1
and .2 respectively, For this case the low
frequency mode is a regressive mode. The
constant coefficient approximation is quite
satisfactory for small advance ratios u.
The inclusion of dynamic inflow is impor-
tant for low forward speeds. This shows
that for large forward speeds unsteady
aerodynamic effects are not important and
quasisteady approximation is quite adequate
for blade stability analysis. At large
thrust levels the influence of dynamic
inflow and constant coefficient approxima-
tion is large because of larger aerodynamic
forces involved. Figs. 8(a) and 8(b)
show the blade stability results for soft
inplane rotor for Cy,/, of .1 and .2 respec-
tively. For this case the low frequency
mode is a progressive mode. Again for the
matched stiffness configuration, the
results are quite identical to the stiff
configuration. Constant coefficient
approximation less satisfactory for high
advance ratios, the dynamic inflow inc.: -
sion is more important for low advance
ratios.

In Figs. 9 and 10 the effect of struc-
tural coupling on lag mode stability is
presented for stiff inplane and soft
inplane rotors respectively for Cy/, of
0.1, The earlier results were caYculated
for blades with no structural coupling
(Rg=0). This idealizes the configurations
wigh blade part as rigid and all the flexi-
bility concentrated at the hub. The struc-
turally fully coupled is represented by
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Re=1 and this idealizes flexible blade with
r?gid hub. The value of Rg less than 1
represents intermediate cases where both
blade as well as hub are flexible. The
stability results are obtained using
Floquet theory with dynamic inflow effects
included. The structural coupling has an
important effect on blade stability for
stiff inplane rotor. In fact with large
structural coupling the blade becomes more
stable, This is because with a large
structural coupling R_, the weakly damped
lag mode gets coupled with well damped flap
mode and thereby stabilizes the lag mode.
The effect of structural coupling is negli-
gible on the soft lag configuration and
this is because the configuration con-
sidered is matched stiffness case. On
these figures the results are also plotted
with steady linear inflow aerodynamics.

For stiff lag rotors, the effect of inclu-
sion of dynamic inflow is large for con-
figurations with zero structural coupling,
and the influence is quite stabilizing,
With large structural coupling R_, the
effect of dynamic inflow is less”and it is
destabilizing.

Figs. 11 and 12 show the effect of
torsional stiffness on lag mode stability
for stiff inplane and soft inplane rotors
for Cy/, of .1. Results are obtained for
three different torsional frequencies and
these are 2.5, 5 and 10 per revolution,
For both soft inplane and stiff inplane
rotors, increasing torijonal stiffness
increases lag damping (more stable) for
lower forward speeds (low u) and decrease
lag damping (less stable) at higher forward
speeds.

The effect of pitch-flap and pitch-lag
coupling terms on blade stability is
studied by modifying the feather angle in
the flap-lag equations
{two-degree-of-freedom)

Oeff =0 - KpB B - Kp; 14
The pitch-fiap ccupling Kp, is positive
flap up/pitch down, and :”g pitch-lag
coupling is positive lag back/pitch down,
These couplings are caused due to torsion
dynamics or kinematic couplings, Figs,
13(a) and 13(b) show the influence of
pitch. .ag coupling on lag mode stability
for stiff inplane and soft inplane rotors
respectively for Cy/o of 0.1. The positive
pitch-lag coupling stabilizes the low fre-
guency cyclic lag mode for stiff inplane
rotors, and destablizes this lag mode for
soft inplane rotors. The opposite effect
is seen with the negative pitch-lag
coupling, A similar type of observation is
made for hovering blade stability in Ref.
17, Figs. 14(a) and 14(b) show the effect
of pitch-flap coupling on lag mode stabi-
11ty for stiff inplane and soft inplane
rotors respectively Yor C,/c of O.1. A
negative pitch-flap coupling reduces the
flap frequency, and it produces a



stabilizing effect on lag mode for low for-
ward speeds and a destabilizing effect at
higher forward speeds. A positive pitch-
flap coupling raises the flap frequency,
and it has a comparatively small effect on
lag mode stability. Also, it can be seen
the effect of pitch-flap coupling on blade
stability is much smaller as compared to
that of pitch-lag coupling.

CONCLUSIONS

An aeroelastic stability of a simple
three-degree-of-freedom blade model in for-
ward flight is examined. The nonlinear
time dependent blade equilibrium position
is calculated using a quasilinearization
procedure based on Floquet theory, The
perturbation solution is obtained using
Floguet transition matrix theory as well as
constant coefficient approximation in the
fixed reference frame. The stability
results are calculated for both stiff-
inplane and soft-inplane blade con-
figurations. The inclusion of torsion
degree of motion is important for blade
stability. The nonlinear time dependent
periodic blade response has a significant
influence on blade stability. For steady
inflow distribution, the linear variation
(Drees) is somewhat stabilizing for lag
mode damping as compared to uniform distri-
bution., The effect of dynamic inflow on
lag mode stability is small at high forward
speeds {uy >.3). The constant coefficient
approximation appears satisfactory for low
forward speeds {u< .2). The structural
coupling produces stabilizing effect on
blade stability for stiff lag rotors, For
matched-stiffness configurations, there is
no effect of structural coupling on blade
stability., Raising of torsional stiffness
increases lag mode damping (more stable) at
lower forward speeds (u<.l15) and decreases
lag damping (less stable) at higher forward
speeds (u>.15). A positive pitch-lag
coupling stabilizes the low frequency
cyclic lag mode for stiff lag rotors and
destabilizes this mode for soft-lag rotors.
An opposite effect is seen with negative
pitch-lag coupling, The effect of pitch-
flap coupling on lag mode damning is small
as compared to pitch-lag cou.ling effect,
The negative pitch-flap coupling stabilizes
lag mode at low forward speeds and destabi-
lizes it at higher forward speeds. The
positive pitch-flap coupling has a little
influence cn lag mode stability,
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Fig. 1{a) Spring model for elastic blade and hub

LANE ‘l"’

J°, HuB P
4
A

X

HUB PLANE Uy g
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HUB PLANE

Fig. 1(c) Helicopter in forward flight
showing vehicle trim configuration
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Fig. 3{c) Torsion equilibrium angle
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DISCUSSION
Paper No. 16

FLAP-LAG-TORSION STABILITY IN FORWARD FLIGHT
Brahmananda Panda
and
Inderjit Chopra

Wayne .' anson, NASA Ames Rlesearch Center: <Could you describe again the manner in which you
trimmad the rotor in forward flight? I noticed in your plot of flapping motion that you had
about one degree of 1 per rev flapping motion, so could you tell us how the rotor was trimmed
for these results?

Panda: First, we obtained the vehicle trim equations and calculate the control 85 0100 and
845+ And using that with the coupled flap-lag-torsion blade equations for solving t.e grim.

Jrhnson: Did you trim to zero moment about some center of gravity of a helicopter below the
rotor hub, ic cthat what you did?

Panda: Yes.
Peretz Friedmann, University of California, Los Angeles: I wanted to be sure that I understand

what kind of model you are using. You have an offset-hinged, spring-restrained blade model with
flap, lag, and torsion degrees of freedom, is that correct?

Panda: Yes.

Friedmann: Then I just wanted to comment that at the European Rotorcraft Forum this August a
gentleman by the name of Neelakanthan did exactly the same problem. He also did the elastic
blade with two flap, two lag, and two torsional degrees of freedom and his results indicated
that the model you are using is not safe at all times, so I am just suggesting that maybe you
should qualify your conclusions.

Bill Bousma: , U.S. Army Aeromechanics Laboratory: I haven't had time to look at these last two
papers, but I think that most of the stuff Peretz has done over the years and other people--Dave
Peters--ha< not shown an 'nstability at high speed and there is none shown here in the lag

mode. It's just the continuing stabilizing effect as the inflow increases. Dr. Reddy showed
Ploquet splitting roots and a destabi::izing effect and I guess it's an open question [whether)
this is something new. Was it just that his torsion [frequency) was 3 per rav or what?

Friedmann: I just wanted %o say. Bill, that the instability that Reddy has snown is one which
appeared for a stiff inplane case in the paper which hottapalli and I have written and he just
checked it out and he got tae same instability.
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