COUPLED ROTOR-BODY VIBRATIONS WITH INPLANE DEGREES OF FREEDOM

Huang Ming-Sheng
Research Assistant and
David A. Peters
Professor and Chairman
Department of Mechanical Engineering Washington University, Campus Box 1185

St. Louis, Missouri 63130

conventional fixed-wing aircraft, the helicopter suffers an intrinsic, severe vibration source - the main rotor. The main rotor is connected flexibly to the fuselage by a hub-pyion system which makes the problem sophisticated. The fuselaye motions due to rotor vibrations can cause the hub to move in all degrees of freedom which, in turn, can alter the hub loads obtained for a fixed-hub condition. This alteration can often be an order-ofmagnitude change. Therefore, what we are studying is a feedback or coupled system.

The concept of performing a coupled rotor/airframe vibration analysis by impedance matching goes back about 20 years, Reference 1. That reference points out two important facts. First, a coupled rotor/airframe analysis can be performed in a rigorous manner by separate calculation of rotor and fuselage impedances followed by a matching of forces and displacements at the hub. Second, the rotor impedance need only be calculated for a single blade and then appropriately transforned to apply to any iumber of blades. In 1974, Staley and Sciarra treated the vertical vibrations of a coupled rotor and fuselage, includ:ng the effect of vertical hub motions. ${ }^{2}$ rher used a risid-body mass as a model for rotor impedarce and showed that hub motions could create order-ofmagnitude changes in hub loads. In Reference 3, Honenemser and yin further investigate the effects of rotor-body coupling. Their model for rotor impeance is based on a iotor representation that includes two masses (each equal to onehalf of the total rotor mass) connected by a spring to represent the first flapping frequency. Thus, Reference 3 contains a more sophisticated rotor impedance than does Reference 2. Keference 3 presents some very interesting conclusions that pertain $=0$ fuselage design. Particularly, it notes that under certain conditions it may be desirable to tune a fuselage frequency to the blade passage frequency in order to eliminate hub loads. Also, it outlines a method of computing the complete rotor impedance by finite elements and transfer matrices. Other work on the impnrtance of hub impedance may be found in keferences 4-6.

When one considers the rather crade models that have been used for hub impedance (rigid mass, no aerodynamics, etc.) one might wonder why more sophisticated models were not used. The answer is straightforward. These were unly the initial investigations into this efferit. Furthermore, although most analysts reaiized the importance of detailed blade modeling (biade mudes, unsteady aervdynamics, fersodic coefficients, etc.) for fixed hub lcads, it was rot clear in the beginning which of these effects would be important for finding the role of hub motion on loads. Because of the high frequencies involved ($4 / \mathrm{rev}, 8 / \mathrm{rev}$), many felt thai inertial terms would dominate.

Reference 7 offers a sophisticated (but linear) rotor flapping model that allows for a detailed investigation of both rotor loads and impedance (even in the presence of periodic coefficients). The method, generalized harmonic balance, involves a computer-based manipulation of equations that allows many degrees of freedom, many modes, and many harmonics. In Reference 0, Hsu and Peters apply this method to \exists flexible rotor and then use impedance matching to include plunge, pitch, and roll of the hub. This combined solution technique proves to be very efficient on two counts. First, the calculation for only one blade can be used for n-blades (as in Reference 1). Second, wholesale changes in fuselage properties can be made without a requirement to recalculate rotor properties. It is interesting that other investigators who began with a full-blown, coupled analyses later changed to the impedance matching technique, References 9-10.

The next step, outiined in this paper, is to add inplane loads and inplane motions to the work of Reference 8. To do this, we need to consider a model for the inplane blade dynamics. Our plan is to begin with a rigid-blade rotor analysis, as outlined in Reference 11, and then to add hub motions to it. Later, we plan to do the same for the elastic flap-lag model of Reference 12. The work reported here is the former of these and is based on a Master of Science Thesis by the first author, Reference 13.

Rotor Model

The rotor model used here is that of Reference 9 but with the addition of hub motions. Fig. l shows the rotor model used in this paper.

The equations of motion of this system can be obtained from LaGrange's method with appropriate linearization about an equilibrium condition, $\bar{\beta}$. The aerodynamic terms are ohtained from invjscid, linear, quasi-steady strip theory with the small-angle assumptions. Details of the derivation are given in Reference 11 , upon which this paper is based. They can be expressed in matrix form as follows.

CRIGINAL PACE IS
OF POOR QUALTTY

Where,		
	$\begin{aligned} & r / 8 \\ & +r / 6 \cdot \mu s \psi \end{aligned}$	$\begin{aligned} & \frac{Y}{6} \lambda+\frac{Y}{6} \bar{\beta} \mu \psi \psi \\ & -\frac{Y}{x} \theta-\frac{Y}{\theta} \bar{\theta} \mu s \psi \\ & +2 \bar{\beta} \end{aligned}$
$C(\psi)=$	$\frac{\gamma}{6} \theta+\frac{Y}{6} \mu \bar{\theta} S \psi$ $-\frac{\gamma}{3} \lambda-\frac{Y}{3} \mu \bar{\beta} C \psi$ $-2 \bar{\beta}$	

$(D(\psi)\}\left[\begin{array}{c|c|c|c:c}C \psi & S \psi & -A \bar{\beta} C \psi & A \bar{\beta} S \psi & A \\ \hline \bar{\beta} S \psi & -\bar{\beta} C \psi & -A S \psi & -A C \psi & 0\end{array}\right]$

and $\quad 5 \psi=\sin \psi$
($1 \mathrm{~b}-\mathrm{g}$)
$c \psi=\cos \psi$
One can also derive a detailed set of equations for hub loads (pitch moment, roll moment, propulsive force, side force, thrust) in terms of known parame $=\frac{\bar{x}}{}$, blade motions $(\bar{\beta}, \bar{\zeta})$.

The equations expressed by Eqs. (1) and (2) are systems of ordinary di.fferential equations with periodic coefficients. These can be solved for the periodic response by tiiz harmonic balance method, Reference 3. Shis method involves operator matrices [π] and [0] which can be used to transform a system of periodiccoefficient differential equations into a set of linear, algebraic equations. For example, the single equation

$$
\begin{equation*}
\left.M(\psi) \ddot{x}+C^{\prime} \psi\right) \ddot{x}+K(\psi) X=F(\psi) \tag{3}
\end{equation*}
$$

(where M, C, and F are periodic), (an be transformed into algebraic equatiuns for the unknown Fourier coefficients of x

$$
\begin{align*}
& x=a_{0}+\sum_{n=2}^{N} a_{n} \cos (n \psi)+b_{n} \sin (n \psi) \\
& {[\pi(M)][a]^{2}\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{x}+[\pi(C)][a]\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{x}} \tag{4}\\
& +[\pi(K)]\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{x}=\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{F} \tag{5}\\
& \left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{x}=\left[\pi(M) a^{2}+\pi(C) \square+\pi(K)\right]^{-]}\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{F} \tag{6}
\end{align*}
$$

where [π] is a function of the Fourier coefficients of ts argument. The same operations car be applied to Eqs. (1) anc' (2) t : give equations for the unknown harmonics of blade motions and loads,

$$
\begin{align*}
& \{\delta\}=\left[S_{1}\right]\{\theta\}+\left[S_{2}\right]\{z\} \tag{7}\\
& \{F\}=\left[S_{3}\right]\{\theta\}+\left[S_{4}\right]\{z\}+\left[S_{5}\right]\{\delta\} \tag{8}
\end{align*}
$$

where $\{\delta\}$ are the harmon f of $\tilde{\beta}$ and $\tilde{\zeta}$, $\{F\}$ are the harmonics of hub loads, $\{\mathbf{z}\}$ are harmonics of hub motions, and (θ) are specified rotor paramerezs.

$\{\theta\}=\left(\begin{array}{c}\theta_{1} \\ \theta_{1} \\ \theta_{2} \\ \lambda \\ \overline{1} \\ \alpha_{2} \\ \frac{e_{4}}{2} \\ \alpha_{2}\end{array}\right)$
(9a-b)

(9c-d)

Equation (7) can be substituted into Eq. (8) to remove the blade motions. This gives rotor loads in thes iorm

$$
\begin{equation*}
\{F\}=\{e+[z]\{z\} \tag{10}
\end{equation*}
$$

where
$[0]=\left[S_{3}\right]+\left[S_{5}\right]\left[S_{1}\right]$
$[2]=\left[S_{4}\right]+\left[S_{5}\right]\left[S_{2}\right]$
The matrix $[\theta]\{\theta\}$ represents the rotor loads with a fixed hub (e.y., without feedback due to hub motion), and the impedance matrix [2] represents the effect of hub notion on rotor loads. The calculation of $[\theta]$ and [Z] in Eq. (10) need be performed for a single blade oniy. Subsequantly, the corresponding ma rices for a b-bladed rotor can be found by simply eliminating all harmonics that are not integer multiples of b. (Complete details are in Reference 3.)

It should be noted here that the present method of calrulation of rotor impedance has experimental verifisation which can be found in Referpice 8.

Fuselage Model

The mathematical Cescription of the flexible fuselage incl:ides 3 degrees of freedom. These ars: 1) vertical rigidbody, 2) rigid-body pitch, 3) rigid-body roll, 4) rigid-body lateral, 5) rigidbody longitudinal, 6) elastic vertical, 7) elastic lateral, 8) elastic pylon in pitch, and 9) elastic pylon in roll. The monel also includes vertical offsets between the fuselage center of mass, the pyion focus, the pylon center of mass,. and the rotor center. Fig. 2 illustrates the vertical, longitudinal, and pitch degrees of freedom. The plunge and lateral model is the same as that of the plunge model in Reference 8 , which is a uniform beam with a lumped mass MC added at the center. The mass and inertial moment of the pylon arn separated from the fuselage. The offsets are shown in Fig. 2. One can imagine thit the laterai anc roll directions have a similar sctamatic as that in Fig. 2 if X, α_{c} and $\alpha_{C F}$ ε re replaced by Y, α_{s} and $\alpha_{S F}$.

The fuselage equations of motion are obtained f:om Lagrange's Method and the Rayleigh-Ritz Method. They are given in nondimensional form below iwhere blank elements are taken to be zero).

(12)

Using the harmonic-balance method, Eq. (12) can be easily solved as the form below.

$$
\left\{\begin{array}{l}
\{z\} \tag{13a}\\
\left\{z_{F}\right\}
\end{array}\right\}=[H][T][F]
$$

Where:

$$
\left\{z_{F}\right\}=\left\{\begin{array}{l}
\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{\overline{z_{F}}} \tag{13b}\\
\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{\bar{F}_{F}} \\
\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{a_{c_{F}}} \\
\left\{\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right\}_{\alpha_{S F}}
\end{array}\right\}
$$

$\dot{\chi}_{F}, \bar{Y}_{F}, \alpha_{C F}, \alpha_{S F}$ are elestic deflections in plunge, lateral, pitch, roll directions respectively.
[H] is receptance (inverse of impedance) of the fuselage.
[T] is a transformation matrix which is lefined as

As before, only integer-multiple harmonics of the blade number ($b, 2 b, \ldots$) are retained. Furthermore, higher harmonics may be truncated as deemed appropriate.

The combined rotor/airframe vibrations may be perfczmed by the matching of the impedances from Eq. (10) with those of Eq. (13). This implies the matching of harmonics of both loads $\{F\}$ and displacements $\{z\}$ at the hub. Therefore, we have
$\{F\}=[\theta]\{\theta\}+[Z \mid 0][H][T]\{F\}$
$\{F\}=[I-[Z \mid O][H][T]]^{-1}[\theta]\{\theta\}$
It is noted that these loads include vertical, inplane, and radial loads.

Coupled Response
We now calculate vibrations. To begin, we look at the coupled rotorfuselage response of a syitem with the following baseline parameters.

$$
\text { Rotor: } \quad \begin{aligned}
& \text { 4 Liades, } p=1.09, \omega_{\zeta}=0.7 \\
& \\
& \\
& \\
& \text { (soft inplane) and } \omega_{\zeta}=1.4 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \bar{C}_{L}=6.0, \bar{C}_{Z}=0.0144, \\
& \\
& \mu=0.3, \bar{C}_{M}=\bar{C}_{X}=\bar{C}_{Y}=0, \\
& \\
& a=5.73 \\
& \\
& \\
& \lambda=0.0306, \hat{C}_{Z}=0.0058
\end{aligned}
$$

$$
\text { Fuselage: } \begin{aligned}
& \bar{\gamma}_{\mathrm{Fm}}=.379, \bar{\gamma}_{\mathrm{FL}}=.143 \\
& \bar{\gamma}_{\mathrm{pm}}=.171, \bar{\gamma}_{\mathrm{pL}}=.148 \\
& \bar{\omega}_{\mathrm{fz}}=1.45 \bar{\omega}_{\mathrm{CZ}}, \bar{\omega}_{\mathrm{fL}}=1.18 \bar{\omega}_{\mathrm{fm}} \\
& \bar{\omega}_{\mathrm{fm}}=10.0 \bar{\omega}_{\mathrm{Fm}}, \bar{\omega}_{\mathrm{fL}}=4.47 \bar{\omega}_{\mathrm{CL}} \\
& \bar{\omega}_{\mathrm{CZ}}=1.06, \bar{\omega}_{\mathrm{Cm}}=0.26 \\
& \mathrm{~g}_{\mathrm{z}}=\mathrm{g}_{\mathrm{Y}}=\mathrm{g}_{\mathrm{m}}=\mathrm{g}_{\mathrm{L}}=0.02,0.002
\end{aligned}
$$

Frequencies with subscript "c" denote cantilevered modes in which the hub degree of freedom is constrained but the remainder of the fuselage is free to move elastically. Frequencies with subscript "f" denote free modes for which neither the hub nor the fuselage is fixed. The parameters above are very close to those in Reference 8 (for comparison purposes) except for the parameters of inplane characters and offsets.

Results are presented for $g_{y}=g_{z}=$ $0.02,0.002$, and $g_{m}=g_{L}=0.02,{ }^{9} 0.002$. Also shown are curves labeled "without feedback", which give the fixed-hub loads. As mentioned in Reference 8, for the coupled response, the natural frequency with the rotor is different from the frequency without the rotor.

The C_{z} curve $\left(g_{z}=0.02\right)$ in Fig. 3 is nearly identical to the corresponding curve in Reference 8. Therefore, the rigid, inplane degree of freedom does not affect vertical vibratiors very much in the case considered. Figs, 4 and 5 show the lateral and longitudinal forces versus the fuselage bending frequency, which is assumed to_de equal for vertical and lateral modes, $\bar{\omega}_{C z}=\omega_{c y}$. It is seen that the lateral response is significant. The lateral response, therefore, can be an important consideration in helicopter dynamic design. Figs. 6 and 7 show that pitch and roll loads are not affected by the vertical vibration. Figs. 8-12 show the hub loads as a function of fuselage vertical frequency with a stiff inplane rotor and without offsets. The response is a little bit larger than that of soft inplane mentioned above, but the same conclusions hold.

Figs. 13-17 and Figs. 18-22 present the hub loads versus $\bar{\omega}_{\mathrm{cm}}=\bar{\omega}_{\mathrm{CL}} / 1.18$, the prlon pitch and roll frequencies. Both the soft inplane and stiff inplane cases are shown. Because of aerodynamic coupling, all loads are affected by $\bar{\omega}_{c m}$ and wct. For the smaller damping, $g_{m} \mathrm{~cm}$ $g_{L}=0.002$, mest of couplings are apparent (two resonant $p \in i^{-}:$), while at large damping they are less noticeable (one resonant peak).

Fig. 23 shows the effect of hub offsets on the vertical vibration. Comparison with Fig. 3 shows that there is little effect of hub offsets for plunge. For the pitch and roll modes, however, the effect
of offsets is very significant, as shown in Figs. 24-28. (Compare with Figs. 18-22). In addition to the large change in magnitude due to the offsets, one notices that the resonance point is moved -o approximately $\omega_{\mathrm{cm}}=0.95$. The reason for this is that the rotor-fuselage coupling due to offsets ($\bar{h}, \vec{d} F$) shifts the fuselage natural frequency, so that the resonance with $4 / r e v$ is moved.

This phenomenon is illustrated ir, Fig. 29, which presents the fuselage natural frequency (without the rotor) vs. offsets \bar{h} and dF . Similarly, Figs. 30-31 show fuselage natural frequencies without the rotor vs. fuselage constrained vertical and pitch frequencies, respectively.

One can further appreciate that the rotor itself has an effect on the system frequencies, therefore, the $4 / \mathrm{rev}$ resonances in Figs. 29-31 do not exactly match the $4 / r e v$ resonances of the coupled rotor/ tody system. (See Reference 13 for cetails.) More calculations have been made, and one can find more figures in Reference 13. A few of the more interesting curves have been presented here.

Conclusions

The conclusions based on the assumptions and results of this study are:

1) Helicopter coupled rotor/fuselage vibrations with inplane degrees of freedom of both rotor and fuselage can be easily solved by harmonic balance and impedance matching and a single-blade analysis.
2) The addition of inplane degrees of freedom does not significantly affect the plunge vibrations for the cases considered, and these cases are for reasonable configurations.

د) The laterai response is significant, it should not be neglected in helicopter vibration analysis.
4) The hub offsets will significantly affect the coupled response.

Acknowledgment

The work was sponsored by the United States Army Research Effice, Grant No. ARO-DAAG-29-80-C-0: 12 . The view, opinions, and/or findings contained in this report are those of the author and should not be construed as an cfficial Department of the Army position, policy, or decision, unless so designated by other documentation.

References

(1) Gestenberger, Walter and Wood, Edward R., "Analysis of Helicopter Aeroelastic Characteristics in HighSpeed Flight," AIAA Journal, Vol. I, No. 10, October 1964.
2) Staley, J.A. end Sciarra, J.J., "Coupled Rotor/Airframe Vibration Prediction Nothods," Rotorcraft Dynamica, NASA SP-352, 1974.
(3) Hohenemser, Kurt H. and Yin, ShengKuang, "The Role of Rotor Impedance in the Vibiation Analysis of Rotorcraft," Fourth European Powered Lift Aircraft Forum, Stressa, Italy, September 1978.
(4) Kato, Kanichiro and Yamane, Takaski, "Calculation of Rotor Impedance for Hovering Articulated-Rotor Helicopters," AIAA Journal, Vol. 16, No. 1.
(5) Kuczynski, W.A. and Sissingh, G.J., "Characteristics of Hingeless Rotors with Hub Moment Feedback Controls Including Experimental Rotor Frequency Response," NASA CR 114427, January 1972.
(6) Viswanthan, S.P. and Meyers, A.w., "Reduction of Helicopter Vibration through Conitrsi of Hub Impedance," Journal of the American Helicopter Society, Vol. 25, No. 4, October 1980, pp. 5-12.
(7) Peters, David A. and Ormiston, Robert A., "Flapping Response Characteristics of Hingeless Rotor Blades by a Generalized Harmonic Balance Method," NASA TN D-7856, February 1975.
(8) Hsu, T-K and Peters, David A., "Coupled Rotor/Airframe Vibration Analysis by a Combined HarmonicBalance, Impedance-Matching Method," Journal of the American Helicopter Society, Vol. 27, No. 1, January 1982, pp. 25-34.
(9) Kunz, D., "Effects of Rotor-Body Coupling in a Linear Rotorcraft Vibration Model," Proceedings of the 36th Annual Forum of the American Helicopter Society, Washington, DC, May 1980.
(10) Kunz, D., "A Nonlinear Response Analysis and Solution Method for Rotorcraft Vibration," Journal of tne American Helicopter Society, Vol. 28, No. 1, January 1983.
(11) Schrage, Daniel P., Effect of Structural Parameters on Elastic Flap-Lag Forced Response of a Rotor Blade in Forward Flight, Doctor of Science Thesis, Tashington University in St. Louss, May, 1978.
(12) Eipe, Abraham, Effect of Some Structural Parameters on Elastic Rotor Loads by an Iterative Harmonic Balance, Doctor of Science Thesis, Washington University in St. Louis, December, 1979.
(13) Huang, Ming-Sheng, Coupled RotorAirframe Vibrations With Elastic Fuselage and Inplane Degrees of Freedom, Master of Science Thesis, Washington University, June, 1983.

Figure 1. Rotor Model

Thare 2. Fugelaga Hobel is toasitudtadi and Pitch Direction.

Fis. 3 4/rov rartical loads as a function of funolege

Fis. 4 4/rov interal lated at a function of fusolage vertical eonstrained Arequency

Fis. 5 h/rav longirudional loada at a function of funolage vortical conarralnad trequancy

Cajginal PAGE IS OF POOR QUALTY

ORIGNAL PACE IS
OF POOR QUALITY

Fis. 10 4/rov Lonsfrudiani boads an a function of furctact

F16. 12 u/rov roll loads as a function of fusolage

fis. L 4/rev gitch loads at a function of fuselage vareleal eonatraind frequancy

71. 13 4/rov reatical londe at anction of funelage pireh

IIs. is w/rev bongitudinel loeds at a function of fuselage

ORIGiNaL pace is OF POOR QUALITY

ris. $104 /$ rov vertical loads an a function of fuselage pirch Conetrainod froquancy
$\omega_{j}=1,4,5={ }_{p}=0$

Fig. $18 \mathrm{u} / \mathrm{rov}$ Latarel LoAde as a Anetion of funelage pitch

15. 21 W/rop pitah loeda es a furction of turelage piteh constralned atequancy

ORIGINAL PAGE IS OF POOR QUALITY

 4 P

ORIGNAL PAGE IS
 OF POOR QUALITY

FLs. 31 Ansolage matural traquency without rotor we fugelage cocertilaed giteh frequency

COUPLED ROTOR-BODY VIBRATIONS WITH INPLANE DEGREES OF FREEDOM
Huang Ming-Sheng
and
David A. Peters

Dev Banerfee, Hughes Hellcopters: Dave, I'm glad to see a concerted effort at doing impedance matching at the hub and coupling the rotor with the fuselage. I think that's an important contribution to determining hub loads and hence fuselage vibrations. I'd like to go back to the 1964 paper of Gerstenberger and Wood. I think the displacement formulation approach that you've taken would require adding additional hub motion as degrees of freedom. However, if you take the mixed form iation approach as taken by Gerstenberger and Wood, that'll all come out as part of the solutior In other words your 6×6 complex hub-impedance matrix which is the exact hub coupling of the cotor with the fuselage would be included in the solution of the problem.

Peters: It would solve the whole problem at once.
Banerjee: Exactly.
Peters: There's nothing wrong with that, except you lose the advantage of making small changes to the fuselage at a very cheap computational cost [since] you have to do the whole problem. Another thing, remember the rotor impedance now is more complicated than normal rotor impedance because of the periodic coefficients. Now you have four per rev due to 4 per rev, and four per rev due to 8 per rev. If you had read Tom Hshu's original paper, he's got a whole section dedicated to figuring out how all these sines and cosines and phases come together. It's a big job.

Bob Loewy, Rensselaer Polytechnic Institute: Dave, I want to add my voice raised in praise for your work here. I think it's excellent and you're making a major contribution to helicopter vibrations in this. Maybe I should stop there, but I can't resist the urge to play "Trivial Pursuit." Just sort of really as a historical curiosity: the first time I ever saw a roter impedance derivation, it was in the work of Alexander Flax--some of you may remember--and this was dated in the late 40 s .

Peters: Oh, I'd love to have a copy of that or get the reference.
Loewy. It was never published as far as I know, and I wouldn't want you to think I was there, but I found it in some of the old Piasecki Helicopter Company literature. What he did was, he was solving a drive system vibration problem, and he derived the polar moment of inertia impedance of a rotor. It's interesting that John Burkram, as far as I know, was the first one to do an inplane impedance with a rigid hinged blade, and if you took his impedance expression and put it on a mass on a spring and then ran the equations out, you found that you got the ground resonance equations. As a third point of this kind, Bob Yntema then took blades which were flexible and derived impedances in ajl directions, for twisted blades as well as untwisted blades. And I remember being amazed to see that in those expressions, even though you shook inplane, you got flapping deflections of the blades, of course, because they were twisted. None of those included aerodynamice, but they were very early efforts in rotor impedance calculation.

Peters: Oh, I'd love to have those. Why don't you write them down on a piece of paper for me and let me go run them down?

Loewy: Sure will.
Don Kunz, U.S. Army Aeromechanics Laboratory: Dave, when you were doing your presentation, \bar{I} was wondering if you were linearizing your equations. At the end you said you did--would you explain what you did?

Peters: Yes, on the very first slide where I showed the blade equations, those were already inearized. Since we're running a trimmed condiuion, that means there's no B_{s} and no b_{c}, we linearized about a steady coning angle. So the very first flapping equations up there are linearized, and that's why B, that steady coning angle appears as a forcing function. Now, if we weren't trimmed, then we'd have to linearize about a periodic equilibrium including the B_{s} and ${ }_{8}{ }_{c}$.

Bob Wood, Hughes Helicopters: Dave, I fust wanted to comment--I thought it was particularly interesting, your fuselage model and the fact that you could study the parameters and move that on. I wanted to add just one point to It, and that is what a number of us are looking at right now, which ties your paper really together somewhat with Dick Gabel's [paper]. If you think about it, if you're interested puraly in getting the forced response in detall for a [production] helicopter, with dynamic NASTRAN now it's extremely simple to calcuiate that hub impedance matrix, just by putting in the three-unit loads and the three-unit moments. [You can
then] sol'e the combined problem and then [combine] by superposition the appropriate NASTRAN responses.

Peters: And just match that to your rotor impedance and see what happens.
Wood: So in other words, a full dynamic NASTRAN model, such as Dick has, can be 1 sated relatively easily.

Bob Taylor, Boeing Vertol: I'd just like to comment that I wouldn't want to use that in a preliminary design study. I'd much rather depend upon something like Dave has here; but your point is well taken, Bob.

