ENGINEERING AND PROGRAMMING

MANUAL

TWO-DIMENSIONAL KINETIC

REFERENCE COMPUTER PROGRAM

(NASA-CF-178628)
ENGINEEFING ANL
FEOGRAMMING MANUEL: TWO-DIMENSIONALKINETIC
feference comeutef frogeam (TLK) final
Report JSoftware and Engiaeering Associates

TDK

Final Report
Contract No. NAS8-35931

April 1985
By: G. R. Nickerson
L. D. Dang
D. E. Coats

Prepared For
George C. Marshall Space Flight Center
Marshall Space Flight Center, AI. 35812

Software And Engineering Associates, Inc.
1050 East William Street, Suite 402
Carson City, Nevada 89701

ENGINEERING AND PROGRAMMING MANUAL

TWO-DIMENSIONAL KINETIC REFERENCE COMPUTER PROGRAM

T D K

Final Report
Contract No. NAS8-35931
April 1985
By: G. R. Nickerson
L. D. Dang
D. E. Coats

Prepared For
George C. Marshall Space Flight Center
Marshall Space Flight Center, AI. 35812

Software And Engineering Associates, Inc.
1050 East William Street, Suite 402
Carson City, Nevada 89701
This report contains an engineering and programming
description for the revised April/85 version of the
Two-Dimensional Kinetic Thrust Chamber Analysis Computer
Program, TDK, developed.by Software and Engineering Associates,
Inc., Carson City, Nevada. Revision of the TDK Computer Program
was performed under Contract Numbers NAS8-34974, NAS8-35046, and
NAS8-35931. The work performed was monitored by Mr. Klaus
Gross and Mr. A. Krebsbach of the NASA George C. Marshall Space
Flight Center, Huntsvilie, Alabama.

The TDK Computer Program consists of the following computational modules:

MCM	Master Control Module
ODE	One-Dimensional Equilibrium Nozzle Analysis
ODK	Module
	One-Dimensional Kinetic Nozzle Analysis
TRANS	Module
MOC	Transonic Analysis Module
	Method of Characteristics Module for
BLM	Equilibrium, Kinetic, or Frozen Nozzle Flow
	Boundary Layer Module

The reference procedure which utilizes the above computer programs is given in the JANNAF Rocket Engine Performance Prediction and Calculation Manual, CPIA246, Reference $\boldsymbol{1}$.

Page_№.
FOREWORD

NOMENCLATURE

ABBREVIATIONS

1. INTRODUCTION
2. ANALYSIS

$$
1-1
$$

2-1
2.1 ANALYSIS FOR THE ODK COMPUTER PROGRAM 2-6
2. 2 CHEMISTRY 2-12
2.3 CONSERVATION EQUATIONS FOR TWO DIMENSIONAL 2-15
2.4 INITIAL LINE CONSTRUCTION 2-17
2.5 METHOD OF CHARACTERISTICS FOR KINETIC
EXPANSIONS 2-32
2.6 THE BOUNDARY LAYER MODULE, BLM 2-41
3. NUMERICAL METHODS 3-1
3.1 ØDK NUMERICAL INTEGRATION METHOD
3.2 TDK NUMERICAL INTEGRATION METHOD 3-10
3.3 SUMMARY OF THE TDK COMPUTATIONAL PROCEDURE 3-17
4. PROGRAM STRUCTURE
5. PROGRAM SUBROUTINES
5.1 MCM SUBROUTINES

$$
5-2
$$5.2 DDE MODULE SUBROUTINES4-15-1

$$
5-27
$$

5.3 ODK MODULE SUBROUTINES5-53
5.4 TRANS MODULE SUBROUTINES 5-99
5.5 MOC MODULE SUBROUTINES 5-119
5. 6 BLM SUBROUTINES

TABLE OF CONTENTS (Continued)

6. PROGRAM USER'S MANUAL 6-1
6.1 THERMODYNAMIC DATA 6-4
6.1.1 THERMODYNAMIC DATA BELOW $300^{\circ} \mathrm{K}$ 6-13
6.2 TITLE CARDS 6-16
6.3 DATA DIRECTIVE AND \$DATA NAMELIST INPUT 6-17
6.3.1 SPECIFICATION OF MODULES TO BE EXECUTED 6-18
6.3.2 INPUTS FOR CONTROL FOR THE PROGRAM 6-20
6.3.3 SPECIFICATION OF NOZZLE GEOMETRY 6-22
$\begin{array}{lll}6.3 .3 .1 & \text { EXHAUST NOZZLE GEOMETRY } & 6-25 \\ & \text { SPECIFICATION, FOR ODK AND } & \end{array}$
6.4 ODE INPUT DATA

6-27
6.4.1 REACTANTS CARDS 6-27
6.4.2 OMIT AND INSERT CARDS 6-31
6.4.2.1 ØMIT CARDS 6-31
6.4.2.2 INSERT CARDS 6-31
6.4.3 \$0DE NAMELIST INPUT 6-33
6.4.3.1 VARIABLE MIXTURE RATIO OPTION 6-37
6.4.3.2 OPTION TO PUNCH TABLES FOR 6-39 BOUNDARY LAYER PROGRAM INPUT
6.5 ØDK INPUT DATA 6-40
$\begin{array}{lllll}6.5 .1 & \text { SPECIES } & & 6-40 \\ & 6.5 .1 .1 & \text { ODK OPTION FOR .NPUT OF } & 6-41\end{array}$

Page_No.

6.5.2	THE INPUT OF CHEMICAL REACTIONS		6-43
	6.5 .2 .1	REACTIONS through LAST REAX	6-44
	6.5.2.2	INERT SPECIES OPTION	6-47
	6.5.2.3	THIRD BODY REACTION RATE RATIOS	6-47
	6.5 .2 .4	LAST CARD	6-49
	6.5.2.5	MASTER REACTION SET	6-49
6.5 .3	\$ $\emptyset \mathrm{DK}$ NAMELIST INPUT		6-52
	6.5.3.1	SPECIFICATION OF NOZZLE GEOMETRY	6-52
	6.5.3.2	INTEGRATION CONTROL	6-53
	6.5.3.3	PRINT CONTROL	6-54
	$6.5 \cdot 3.4$	SPECIES SELECTION AND MOLE/MASS FRACTION CHECK	6-56
	6.5 .3 .5	FROZEN EXPANSIONS WITH THE ODK MODULE	6-57
	6.5.3.6	ØDK PROBLEM INPUT	6-58
	6.5 .3 .7	MASS AVERAGED ODK ISP	6-60
6.6	\$TRANS NAMELIST INPUT		6-61
6.7	\$MOC NAMELIST INPUT		6-62
	6.7 .1	CHARACTERISTICS MESH CONTROL	6-64
	6.7 .2	MOC SHOCK. OPTION	6-66
	6.7 .3	PRINT COIJTROL	6-69
	6.7 .4	INPUTS FROM DER	6-70

TABLE OF CONTENTS (Continued)

Page No.
6.7.5 EXIT PLANE OPTION 6-71
6.8 BOUNDARY LAYER MODULE (BLM) INPUT 6-72 DATA, \$BLM
6.8.1 BLM GAS PROPERTIES 6-73
6.8.2 BOUNDARY LAYER EDGE 6-76 CONDITIONS
6.8.3 INTEGRATION STEP SIZE 6-78 CONTROL
6.8.4 REGENERATIVE COOLING HEAT 6-79 TRANSFER
6.8.5 BLM PLOTTED OUTPUT 6-82
6.9 SPECIAL OPTIONS
6.9.1 CONSTANT PROPERTIES GAS 6-87 OPTION
6.10 INITIAL VALUES FOR THE ODK, \$TRANS, 6-89 AND \$TDK INPUTS
7. INPUT AND OUTPUT FOR SAMPLE CASES 7-1
7.1 THE STRATIFIED FLOW ENGINE, CASE 1 7-3
7.2 PRATT AND WHITNEY TEST ENGINE, RL-10 7-53 OTV PROPULSION
7.3 ROCKETDYNE PROTOTYPE ADVANCED SPACE 7-59 ENGINE FOR OTV PROPULSION
7.4 DISCUSSION OF SUMMARY OUTPUT 7-69
8. ERROR DIAGNOSTICS 8-1

REFERENCES R-1
APPENDIX A A-1

Page_No.

2-1a	Schematic for TDK Analysis	2-3
$2-1 b$	Master Flow Chart for TDK	2-3
2-2	Nozzle Throat Geometry	2-22
2-3	Nomenclature for the Numbering of Zones	2-25
2-4a	Right-Running Shock Point	2-39
2-4b	Shock Reflection Point at the Axis	2-39
2-4c	Left-Running Shock Point at the Axis	2-39
$2-4 d$	Left-Running Shock Point	2-39
2-4e	Shock Reflection Point at the Wall	2-39
2-4f	Right-Running Shock Point at the Wall	2-39
2-5	Gas Properties Tables	2-48
3-1	Flow Field Calculation	3-11
4-1	Basic Modules of TDK	4-2
4-2	Suggested Overlay Structure	4-3
5-1	Nozzle Geometry for ODK	5-90
5-2	Nomenclature for Numbering Zones	5-101
5-3	Flow Diagram for Subroutine BLSEG	5-159
6-1	Nozzle Geometry, all Coordinate Values are Normalized by RSI $=r_{t}$	6-23
6-2	Boundary Layer Momentum Thickness vs. Axial Position	$6-83$
6-3	Boundary Liyer Displacement Thickness vs. Axial fosition	6-84

$6-4$	Wall Temperature (Input) vs. Axial Position	$6-85$
$6-5$	Velocity and Temperature Profiles at a Given Area Ratio	$6-86$
$7-1$	Flow Schematic; P \& W OTV Concept	$7-55$
$7-2$	Flow Schematic; Rocketdyne OTV Concept	

Tab		Page No
2-1	Maximum Dimensions for TDK	$2-2$
4-1	Files used by TDK	4-7
4-2	Subroutine Entry Point Cross-References	4-11
4-3	Common Block Cross-References	4-15
5-1	Species Names and ID's, Subroutine MUK	5-12
5-2	Iteration Equations for $O D E$ Assigned P, H or P,S	5-32
5-3	ODE Equations for Derivatives with Respect to log P at constant P	5-34
5-4	ODE Equations for Derivatives with Respect to $\log \mathrm{A}$ at constant T	5-36
5-5	Expressions for the Reaction Rate Constants	5-86
5-6	Equivalence Table for the MOC Variables	5-128
5-7	Definitions for fortran, etc.	5-140
5-8	Arrays Used by the BLM	5-150
6-1	Input Data Set Description	6-2
6-2	Format for Thermodynamic Data Cards	6-6
6-3	Thermo Data Cards for an $\mathrm{O}_{2} / \mathrm{H}_{2}$ Propellant	6-7
6-4	Species with Thermodynamic Data Provided	6-8
6-5	Low Temperature Thermodynamic Data Input Propellant	6-15
6-6	Usage of the Module Flags	6-19
6-7	Reactants Cards	6-28
6-8	Listing of Sample Reactants Cards	6-29

```
LIST OF TABLES (Continued)
```

Table_No.

6-9	Variables in \$øDE Namelist	6-35
6-10	Reactions and Rate Data for C, CL, F, H, N , and 0 Systems	6-50
6-11	Listing of Reaction Cards for an $\mathrm{O}_{2} / \mathrm{H}_{2}$ Propellant	6-51
6-12	Input Data for a Hydrazine Monopropellant Engine	6-59
6-13	Sample Case for the Constant Properties Gas Option	6-88
7-1	TDK Sample Case Input and Output	7-5
7-2	TDK Input Data for RLio OTV Test Engine	7-56
7-3	TDK Performance Summary, 1 Zone RL10	7-58
7-4	TDK Input Data for ASE Test Engine	7-62
7-5	TDK Performance Summary, 1 Zone ASE	7-64
7-6	TDE Input Data for ASE Test Engine	7-65
7-7	TDE Gas Tables Output	7-66
7-8	TDE Performance Summary, 1 Zone ASE	7-67
8-1	Error Diagnostics	8-4
8-2	Error Messages	8-8

a Nozzle area ratio, also reaction rate parameter
$a_{k i}$ Gram atoms of the $k^{\text {th }}$ element in the $1^{\text {th }}$ spectes
A Adiabatic heat addition term linking fluld dynamic and relaxation processes, also total mass reactant in ODE
b Reaction rate parameter
B Energy exchange term linking fluld dynamic and relaxation processes
c Specles mass fraction
$c_{F} \quad$ Thrust coefficlent
C_{p} Frozen heat capacity
$C_{\text {pe }}$ Equllibrlum heat capacity
C* Characteristic exhaust velocity
σ_{1} Heat capacity per mole of $1^{\text {th }}$ species $/ R$
f Derlvative
F Free energy, also function defined by Equation (2.5-5)
Free energy per mole of $i^{\text {th }}$ species $/ R$
G Function defined by Equation (2.5-6)
h Enthalpy, also Integration Increment
H Total enthalpy, also function defined by Equation (2.5-7)
ΔH_{F} Heat of formation
${ }_{1}$ Enthalpy per mole of $1^{\text {th }}$ species/RT
$I_{\text {sp }} \quad$ Specific Impulse
k. Varlable increment, also reaction rate parameter
K Equillbrlum constant
m Reaction rate ratio
Mw Molecular welght
M Mach number, also third body reaction term
n Reaction rate parameter, also summation or Iteration Index
$n_{1} \quad$ Moles of $1^{\text {th }}$ species
\mathbf{N}_{e} Average equllibrium pressure expansion coefficient
P Pressure
r Radial distance coordinate, from axis
r* Nozzle throat radius
R Gas constant
R* Nozzle wall radius of curvature at throat
R Universal gas constant
S Entropy, also summation term
\mathbb{C}_{1} Entropy per mole of $1^{\text {th }}$ species $/ R$
T Temperature
$u \quad$ Velocity in x-direction
v Velocity in r-direction
V Velocity
x Axlal distance coordinate, from throat
y Dependent varlable
$Y_{1} \quad$ Slipline height
$\alpha \quad$ Mach angle, angle between streamline and Mach line characteristics
$\alpha_{1} \quad$ Partlal derivative, $\partial f_{1} / \partial x$
$\boldsymbol{B}_{1, j}$ Partlal derlvative, $\partial f_{l} / \partial y_{j}$
$\boldsymbol{\gamma} \quad$ Frozen heat capacity ratio
$\boldsymbol{\gamma}_{\mathrm{e}}$ Equillbrium heat capacity ratlo
$\boldsymbol{\delta}_{1}$ Incremental error
$\delta_{1, j}$ Kronecker delta
c Area ratio
p . Density
θ Nozzle cone angle
ω_{1} Net species production rate

Subscrlpts:

c Refers to chamber conditions
1 Refers to $1^{\text {th }}$ spectes or equation
) Refers to $f^{\text {th }}$ reaction or variable

- Refers to reference concitions

Superscript:

* Refers to throct conditions or sonic conditions.

ABBREVIATIONS

BLIMP	Boundary Layer Integral Matrix Procedure, JANNAF computer program
BLM	Boundary Layer Module, computer program
JANAF	Joint Army-Navy-NASA-Air Force
MOC	Method of Characteristics, module of SPP and TDK
ODE	One-Dimensional Equilibrium, module of SPP and TDK
ODK	One-Dimensional Kinetics, module of SPP and TDK
OTV	Orbit Transfer Venicle
PSS	Performance Standardization Subcommittee of JANNAF
SEA	Software and Engineering Associates, Inc.
SPP	Solid Performance Program, JANNAF computer program
TDE	Two-Dimensional Equilibrium, module of TDK
TDK	Two-Dimensional Kinetics, JANNAF computer program

THIS PAGE LEFT INTENTIONATMY BLANK

The Two-Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology. ${ }^{1}$ This computer program and the performance prediction methodology were originally developed under the auspices of the Performance standardization Subcommittee (PSS) of the JANNAF. The goal of the PSS is the development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference.

Recent interest in rocket engines that operate at high expansion ratio, such as most orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program that is described in Reference 2. Although much material from the 1973 document is included in this manual, other material is entirely new. This new material reflects the new capabilities of the TDK computer program, the most important of which are described below.

```
Ref. 2: Nickerson, G. R., Coats, D. E., and Bartz, J. L., "The Two-Dimensional Kinetic (TDK) Reference Computer Program", Engineering and Programming Manual, Ultrasystems, Inc., December 1973, prepared for Contract No. NAS9-12652, NASA JSC.
```

a) A Boundary Layer Module (BLM) has been included within the TDK program. The BLM can be used to automatically calculate the wall boundary layer after execution of the Method of Characteristics (MOC). The resulting wall displacement and the heat transferred through the wall are computed. The ODE-ODK-TRANS-MOC series of calculations can then be automatically repeated with the appropriate parameters (wall contour and propellant enthalpy) updated. This feature allows the "rigorous analytical procedure" of the JANNAF rocket engine performance prediction methodology ${ }^{1}$ to be carried out with a single computer run for a regeneratively cooled engine.
b) The ODE module of TDK has been modified so that it will compute transport properties for the nozzle exhaust composition. This information is required by the BLM.
c) The ODE module of TDK has been modified so that it will provide tables of gas properties versus temperature for the stream tube mixture ratio adjacent to the nozzle wall. This information is required by the BLM.
d) New nozzle wall geometry options have been added to the program.
e) The $O D K$ and MOC modules can contain condensed phases that are in thermal and velocity equilibrium with the gas.
f) The transonic flow module (TRANS) has been modified to analyze flow with variable mixture ratio.
8) The $M O C$ module has been rewritten to allow for the presence of a shock wave in the flow. The shock can be either attached to the nozzle wall, or induced by the nozzle wall curvature. Regular reflections from the nozzle axis and the nozzle wall can be computed. The shock option can be used for flows with gas properties along streamlines that are either:

1) constant,
2) chemically frozen (i.e., fixed composition, but properties varying with temperature), or
3) governed by finite rate kinetics.
h) The thermodynamic data and kinetic rate data (see Appendix A) for the program have been updated.

The TDK Computer Program is designed for engineering use and is specified and programmed in a straight forward manner to facilitate its application. The FORTRAN IV programming language has been used in an attempt to make the computer program as machine independent as possible. A complete engineering and programming description of the $T D K$ Computer Program is contained in this report.

Section 2 of this report contains a description of the methods of analysis used in the computer program.

Section 3 contains a description of the numerical rethods used to integrate the fluid dynamic and chemical relioxation equations in the computer program.

Section 4 contains a description of the program structure.

Section 5 contains a detailed engineering and programming description of the program subroutines.

Section 6 contains a program user's manual describing the use of the computer program with an explanation of the program input and output.

Section 7 contains input and output for a sample case using the TDK option of the program.

Section 8 contains a discussion of program usage and error diagnostics.

The TDK Computer Program has been written for the purpose of evaluating two-dimensional effects on the performance of liquid propellant exhaust nozzles. An important feature of the TDK program is its ability to consider nonequilibrium chemical processes. The basic method of analysis used by TDK is the method of characteristics. The program constructs a finite-difference mesh by tracing gas streamiines and characteristic surfaces. The mesh points are located at the intersections of these surfaces. Systems of large size can be considered by the program as is indicated by Table 2-1 which gives maximum dimensions for the program.

The method of characteristics calculation is capable of considering either continuous mixture ratio variation, or flow striations. Striated regions are separated by slipline conditions, i.e., adjacent streamlines with matched pressure and gas streamline angle, but at different mixture ratio, temperature, etc. Mixing between striated zones, is not considered. The initial data line required to start the method of characteristics is calculated using a transonic analysis provided for this purpose. The characteristic equations governing the fluid dynamic variables are integrated using a second order (modified Euler) explicit integration method while the chemical relaxation equations are integrated using a first order implicit integration method to insure numerical stability in near equilibrium flows.

In order to start the method of characteristics calculation, it is necessary to approximate an initial data line across the nozzle throat. This initial data line must be supersonic and

Number of defined elements provided
Number of possible species per case
Number of species in the Master Thermodynamic Data File

Number of possible reactions with implied third body
Number of reactants per reaction
Number of products per reaction
Maximum stoichiometric coefficient total
Number of possible third body efficiencies to be considered
Maximum number of streamlines (i.e. mesh points per left
running characteristic)
Maximum number of zones (i.e. striations)
must be compatible with the mesh construction methods used by TDK. The calculations performed by TDK to generate this initial data line are carried out in two stages. First chemical information is computed by use of the ODK module as described in Section 2.1. Chemical and fluid properties, obtained from this calculation are retained in the form of tables. The second stage of the calculation makes use of this information and employs a perturbation method to estimate two dimensional effects in the transonic region of the nozzle throat. Variable mixture ratio flows and striated flows are treated by means of a straight forward extension of the procedure described above.

The description given above is shown schematically in figure 2-1a. The TDK Computer Program is divided into modules as shown in the figure. The modules are illustrated in the master flow chart presented in Figure 2-1b. For a description of the analysis used by ODE, Reference 3 should be used.

Figure 2-1a. Schematic for TDK Analysis

In Section 2.1 of this report the analysis for the ODK computer program is given. In Section 2.2 a discussion of the finite rate chemistry used by both ODK and TDK is presented. In Section 2.3 the conservation equations governing two dimensional axisymmetric inviscid flow are presented. In Section 2.4 the transonic flow method used to construct an initial data line for the method of characteristics solution is presented. The method of characteristics relations are presented in Section 2.5. The boundary layer solution is presented in Section 2.6.

PERFORMANCE PREDICTION METHODOLOGY

The JANNAF thrust chamber performance prediction methodology is defined in Reference 1. In this methodology the predicted delivery specific impulse for the thrust chamber can be expressed as:

$$
I_{\text {sp }}^{\text {deliv }} 1=\eta_{D E R} I_{S_{T D K}}-\Delta_{B L M} / \dot{M}_{T D K}
$$

The factor $n_{D E R}$ in the above expression represents the distributed energy release of the combustion process. The terms
$I_{\text {sp }} \quad$, $M_{T D K}$, and $\Delta E_{B L M}$ represent the values predicted by TDK'
TDK for nozzle specific impulse and mass flow, and by the BLM for boundary layer thrust deficit. The prime denotes that these quantities have been corrected using the prandtl procedure. Thus, a second TDK calculation has been made with the nozzle wall displaced inwards a distance equal to the boundary layer displacement thickness. Also, in this calculation the heat picked up by the regen cooling circuits has been returned to the thrust chamber as increased propellant enthalpy. Care is taken
in the procedure to assure that a complete energy balance is maintained.

The boundary layer thrust deficit is evaluated by integrating across the boundary layer at the nozzle exit for momentum thickness, θ, and displacement thickness, δ^{*}, and applying the resulcs as follows:

$$
\begin{aligned}
F_{B L M} & =2 \pi r_{e} \cos \alpha_{e} \rho_{e} U_{e}^{2} \theta_{B L M} \\
& -2 \pi r_{e} \cos \alpha_{e}\left(P_{e}-P_{B L M}\right) \delta_{B L M}^{*}
\end{aligned}
$$

The first term in the above expression represents the momentum deficit in the boundary layer and includes the effects of wall skin friction and heat transfer. The second term represents the pressure force acting on the annular portion of the nozzle exit plane that is between the real wall and the invisid edge of the boundary layer. The quantities r_{e}, ρ_{e}, P_{e}, and U_{e}, are boundary layer edge properties obtained from the second TDK calculation.

2.1 ANALYSIS FOR THE $\varnothing D K$ COMPUTER PROGRAM

The One Dimenslonal Kinetic nozzle analysis computer program ($\varnothing \mathrm{DK}$) described in this section has been developed for performing reference liquid propellant thrust chamber performance calculations. The ODK computer program calculates the inviscid one dimensional equilibrium, frozen and nonequilibrium nozzle expansion of gaseous propellant exhaust mixtures. The $\varnothing \mathrm{DK}$ program is also used as a subprogram by TDK. The \varnothing DE computer program, which is described in Reference 3, is used to perform the equillbrium composition computatlons. The $\varnothing \mathrm{DE}$ program computations are based on the assumption that species compositions at any pressure and enthalpy point will be distributed such that the free energy of the system is minimized. Solid and liquid phases can be included In $\varnothing D E$ computations, and to a certain extent in the $\varnothing D K$ and $T D K$ computations.

The ODK one dimensional nonequilibrium calculation is performed beginning at the converging section of the nozzle and ending at an axial station located beyond the throat plane. In this calculation pressure defined relations are used to integrate the differential equations for a one dimensional streamtube until the flow becomes supersonic. This pressure profile is obraned by computing an average value of expansion coefficient based on a chemical equilibrium gas composition at the nozzle chamber and throat. These parameters are supplied automatically by ODE. Pressure and its axial derivative are then obtained for the exact prescribed inlet geometry from the relations for isentropic expansion. Once the pressure profile has been determined the one dimensional nonequilibrium flow relations are integrated starting with an equilibrium calculation obtained at the thrust chamber contraction ratio. The advantage of using the pressure defined boundary condition is that the differential equations are not singular at Mach one so that no difficulties are encountered when integrating through the nozzle throat region. The throat (minimum area) occurs when the product of density and velocity maximizes and thus determines the mass flux corresponding to the choke flow condition. Using this mass flux, the nozzle area profile can then be determined. Experience has shown good agreement between this area profile and the original input geometry. Once supersonic conditions are reached the program automatically changes over to area defined differential equations.

2.1.1 Conservation Equations for One Dimensional Kinetic Expansions

The conservation equations governing the inviscid one dimensional flow of reacting gas mixtures have been given by Hirschfelder, Curtiss and Byrd, ${ }^{4}$ Penner 5 and others. The basic assumptions made in the derivation of these equations are:
o There are no mass or energy losses from the system
o The gas is inviscid

- Each component of the gas is a perfect gas
o The internal degrees of freedom (translational, rotational and vibrational) of each component of the gas are in equilibrium.

The conservation equations are presented here in the form used in the present analysis.

For each component of the gas the continuity equation is

$$
\frac{d}{d x}\left(\rho_{i} V a \dot{a}\right)=\omega_{i} r^{\star \bar{a}}
$$

where the axial coordinate (x) has been normalized with the throat radius. Summing over all components of the mixture, the overall continuity equation is obtained

$$
\frac{d}{d x}(\rho V \bar{a})=0
$$

Combining the above two equations gives

$$
\frac{d c_{i}}{d x}=\frac{\omega_{1} r^{*}}{\rho V}
$$

The momentum equation is

$$
\rho V \frac{d V}{d x}+\frac{d P}{d x}=0
$$

The energy equation is

$$
h+\frac{1}{2} v^{2}=H_{c}
$$

where

$$
h=\sum_{i=1} c_{i} h_{i}
$$

and

$$
h_{i}=\int_{0}^{T} C_{p i} d T+h_{i o}
$$

For each component of the gas, the equation of state is

$$
P_{1}=\rho_{i} R_{1} T
$$

Summing over all components of the mixture, the overall equation of state is obtained

$$
P=\rho R T
$$

where

$$
R=\sum_{i=1} c_{i} R_{i}
$$

Since the expansion through a nozzle can be specified either by the expansion process or by the nozzle geometry, two forms of the above equations are of interest.

If the expansion process is specified and the pressure is known as a function of distance through the nozzle, the above equations become

$$
\frac{\mathrm{dc}}{1} \mathrm{dx}=\frac{\omega_{\mathrm{i}} \mathrm{r}^{*}}{\mathrm{oV}}
$$

$$
\begin{gathered}
\frac{d V}{d r}=-\frac{1}{\rho V} \frac{d P}{d x} \\
\frac{d \rho}{d x}=\left[\frac{1}{\gamma^{2}} \frac{d P}{d x}-A\right] \rho \\
\frac{d T}{d x}=\left[\frac{Y-1}{\gamma} \frac{1}{P} \frac{d P}{d x}-B\right] T
\end{gathered}
$$

while if the nozzle geometry is specified, the above equations become

$$
\begin{gathered}
\frac{d c_{i}}{d x}=\frac{\omega_{i} r^{t}}{\rho V} \\
\frac{d V}{d x}=\left[\frac{1}{\bar{a}} \frac{d \bar{a}}{d x}-A\right] \frac{V}{M^{2}-1} \\
\frac{d \rho}{d x}=-\left\{\left[\frac{1}{\bar{a}} \frac{d \bar{a}}{d x}-A\right] \frac{M^{2}}{M^{2}-1}+A\right\} p \\
\frac{d T}{d x}=-\left\{\left[\frac{1}{\bar{a}} \frac{d \bar{a}}{d x}-A\right] \frac{(Y-1) M^{2}}{M^{2}-1}+B\right\} T
\end{gathered}
$$

$$
P=\rho R T
$$

where

$$
\begin{gathered}
A=\frac{r^{*}}{P V}\left[\sum_{i=1} \omega_{i} R_{i} T-\frac{Y-1}{Y} \sum_{i=1} \omega_{i} h_{i}\right] \\
B=\frac{Y-1}{Y} \cdot \frac{r^{*}}{P \bar{V}} \sum_{i=1} \omega_{i} h_{i} \\
M=\frac{V}{\sqrt{Y R T}} \\
Y=C_{P}^{-R}
\end{gathered}
$$

and

$$
c_{p}=\sum_{i=1} c_{i} c_{p i}
$$

The first set of equations is completely specified at the sonic point while the second set of equations is singular. Thus, if the expansion through the nozzle is specified by the pressure distribution, the equations governing the expansion can be directly integrated through the sonic point without mathematical difficulty.

The expansion from the chamber through the sonic point is specified by the pressure distribution in the present program in order to eliminate numerical difficulties at the sonic point. In the expansion section downstream of the sonic point, however, the area variation is specified and the second set of equations is integrated through the supersonic expansion section.

In specifying the nozzle pressure distribution from the chamber through the sonic point, rather than the known area distribution, a question naturally arises regarding how accurately the calculation represents the flow through a specified nozzle geometry. It has been shown by Bray ${ }^{6}$ and others that the pressure distribution through a nozzle is essentially identical with the equilibrium pressure distribution up to the freeze point which generally occurs downstream of the throat (or sonic point). Thus, the difference in the expansion and predicted performance caused by utilizing the equilibrium pressure distribution rather than the nozzle geometry to specify the expansion from the chamber to the sonic point is negligible. If a case does arise in which the equilibrium pressure distribution is not an adequate representation of the expansion, the pressure distribution can be iterated to obtain the correct pressure distribution. Experience has shown that this is rarely if ever required.

In the above analysis the chemistry is brought into the conservation equations through the net species production rates, ω_{i}. The analysis pertaining to the chemistry is given in the following section.

2.2

The method by which the net species production rate, $\dot{\omega}_{1}$, required by the preceeding analysis is determined is described below.

A chemical reaction can be written in terms of its stoichiometric coefficients ($\nu_{i j}$ and $\nu_{i j}^{\prime}$) as

$$
\sum_{i=1} v_{i j} \bar{M}_{i} \neq \sum_{i=1} \nu_{i j}^{\prime} \bar{M}_{i}
$$

where \bar{M}_{i} represents the $i^{\text {th }}$ chemical species name and j represents the $j^{\text {th }}$ reaction.

Given a system of chemical reactions, the net species production rate ω_{i} for each species (component) is calculated from

$$
\omega_{1}=m_{w_{i}} \sum_{j=1} \rho{ }^{\sum_{\ell=1} \nu_{\ell j}}\left(\nu_{i j}^{\prime}-\nu_{i j}\right) x_{j}
$$

where

$$
\begin{equation*}
x_{j}=\left[K_{j} \prod_{i=1} \bar{c}_{i} \nu_{i j}-\rho_{j}^{\lambda_{j}}{ }_{i=1}^{\pi} \bar{c}_{i}^{\nu_{i j}^{\prime}}\right] k_{j} M_{j} \tag{2.2-1}
\end{equation*}
$$

The reaction rate, k_{j}, is from right to left (reverse) in the above equation and is represented by the Arrhenius form

$$
k_{j}=a_{j} T^{-n_{j}} e^{\left(-b_{j} / R T\right)}
$$

where

a_{j}	is the pre-exponential coefficient
n_{j}	is the temperature dependence of the pre-exponential factor
b_{j}	is the activation energy

The term M_{j} is provided so that the reaction rate can be modified for reactions involving a third body, i.e.

$$
\begin{array}{ll}
M_{j}=\sum_{i=1} m_{j, 1} \bar{c}_{i} & \text { for reactions requiring a third body } \\
M_{j}=1 & \text { for all other reactions }
\end{array}
$$

where the constants $m_{j, 1}$ are specified, and

$$
\bar{c}_{1}=c_{i} / M w_{i}
$$

The integer, λ_{j}, is determined for a given reaction from the stoichometric coefficients

$$
\lambda_{j}=\sum_{i=1}\left(v_{i j}^{\prime}-v_{i j}\right)
$$

The equilibrium constant, K_{j}, is*

$$
K_{j}=e^{-\Delta F / R T} \quad(R T)^{-\lambda_{j}}
$$

where

$$
\Delta F=\sum_{i=1} f_{i} \nu_{i j}-\sum_{i=1} f_{i} \nu_{i j}^{\prime}
$$

Reactions involving a third body have a distinct reaction rate for each particular third body, so that the net production rate should be calculated from

$$
\begin{equation*}
x_{j}=\sum_{k=1}\left[k_{j} \prod_{i=1} \bar{c}_{i}^{\nu_{i j}}-\rho_{i=1}^{\lambda_{j}} c_{i}^{\nu_{i j}^{\prime}}\right] \bar{c}_{k} k_{k j} \tag{2.2-2}
\end{equation*}
$$

rather than Equation (2.2-1). Benson and Fueno 7 have shown theoretically that the temperature dependance of recombination rates is appioximately independent of the third body. Available experimental recombination rate data also indicates that the temperature dependence of recombination rates is independent of the third body within the experimental accuracy of the measurements. Assuming that the temperature dependence of recombination rates is independent of the third body, the recombination rate associated with the $k^{\text {th }}$ species (third body) can be represented as

$$
\begin{equation*}
k_{k j}=a_{k j} T^{-n_{j}} e^{\left(-b_{j} / R T\right)} \tag{2.2-3}
\end{equation*}
$$

where only the constant $a_{k j}$ is different for different species (third bodies). From Equation (2.2-2) it can be shown that

$$
\begin{aligned}
& =\left[K_{j} \underset{i=1}{\pi} \bar{c}_{i}^{i j}-p_{i=1}^{\lambda_{y}} \bar{c}_{i}^{v_{i j}^{\prime}}\right]\left[\sum_{i=1} \frac{a_{i j}}{a_{k j}} \bar{c}_{i}\right] a_{k j} T^{-n_{j}} e^{-b_{j} / R T}
\end{aligned}
$$

[^0]Thus the recombination rates associated with each third body can be considered as in Equation (2.2-1) by calculating the general third body term (M_{j}) as

$$
M_{j}=\sum_{i=1} m_{j, 1} \bar{c}_{i}
$$

where $m_{j, i}$ is the ratio $\left(\frac{a_{i j}}{a_{k j}}\right)$ of the recombination rate associated with the $i^{\text {th }}$ species (third body) to the recombination rate associated with the $k^{\text {th }}$ species (third body) which is the reference species (third body) whose rate in the form of Equation (2.2-3) is specified in the program input.

Chemical kinetic rate data is discussed in Appendix A.

2.3 CONSERVATION EQUATIONS FOR TWO DIMENSIONAL KINETIC EXPANSIONS

The conservation equations governing the axisymmetric inviscid flow of reacting gas mixtures have been given by Hirschfelder, Curtiss and Bimi ${ }^{4}$ Penner ${ }^{5}$ and others. The basic assumptions made in the derivation of these equations are:

- There are no mass or energy losses from the system
- The gas is inviscid
- Each component of the gas is a perfect gas
- The internal degrees of freedom (translational, rotational, and vibrational) of each component of the gas are in equilibrium.

The conservation equations are presented here in the form used in the present analysis.

For each component of the gas, the continuity equation is

$$
\begin{equation*}
\left(P_{i} u\right)_{x}+\frac{1}{r}\left(r \rho_{i} v\right)_{r}=\omega_{i} r^{*} \tag{2,3-1}
\end{equation*}
$$

where the coordinates (r, x) have been normalized with the throat radius. Summing over all components of the mixture, the overall continuity equation is obtained

$$
\begin{equation*}
(\rho u)_{x}+\frac{1}{r}(r \rho v)_{r}=0 \tag{2.3-2}
\end{equation*}
$$

Combining the above two equations gives

$$
\begin{equation*}
u\left(c_{i}\right)_{x}+v\left(c_{i}\right)_{r}=\frac{\omega_{i} r^{*}}{\rho} \tag{2.3-3}
\end{equation*}
$$

The momentum equations are

$$
\begin{align*}
& \rho\left(u u_{x}+v u_{r}\right)+P_{x}=0 \tag{2.3-4}\\
& \rho\left(u v_{x}+v v_{r}\right)+P_{r}=0 \tag{2.3-5}
\end{align*}
$$

The energy equation is

$$
\begin{equation*}
h+\frac{1}{2}\left(u^{2}+v^{2}\right)=H_{c} . \tag{2.3-6}
\end{equation*}
$$

where

$$
\begin{equation*}
h=\sum_{i=1} c_{i} h_{i} \tag{2.3-7}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i}=\int_{0}^{T} C_{p i} d T+h_{i o} \tag{2.3-8}
\end{equation*}
$$

For each component of the gas, the equation of state is

$$
\begin{equation*}
P_{i}=\rho_{i} R_{i} T \tag{2.3-9}
\end{equation*}
$$

Summing over all components of the mixture, the overall equation of state is obtained

$$
\begin{equation*}
P=\rho R T \tag{2.3-10}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\sum_{i=1} c_{i} R_{i} \tag{2.3-11}
\end{equation*}
$$

2.4 INITIAL LINE CONSTRUCTION

The solution to equations 2.3-1 through 2.3-11 becomes highly complex in the subsonic-transonic domain. Because of the elliptic character of the partial differentlal equations for the case of steady-state, choked flow in a rocket nozzle, the known boundary conditions are improperly set. Thus, it is necessary to construct by approximate means an Inltial data line sultable for the calculation by method of characterlstics of the flow field in the supersonic domaln. The method used by the TDK Computer Program in constructing this initial line is summarized below.

2.4.1 Uniform Expansions

For the purpose of calculating a transonic solution in the region of the nozzle throat, an average expansion coefficient is determined. To accomplish this, a one-dimensional calculation is performed from the chamber to throat for the propellant system and nozzle geometry specifled using the ODK subprogram.

Tables of flow properties ($0, V, T, C_{i}$) are constructed as a function of pressure. These tables span the nozzle throat region. An average expansion coefficient is computed using these tables as*

$$
\gamma=\frac{\ln \left(P_{\ell} / P_{1}\right)}{\ln \left(o_{\ell} / O_{1}\right)}
$$

where the subscripts 1 and ℓ refer to the first and last table entrles, respectively.

Using the above expansion coefficient and the throat wall geometry, the transonic flow fleld is constructed using the method of Sauer in a somewhat modifled form as described in section 2.4.3. The initial line calculated by this method is an approximation to the constant pressure surface emanating from the throat minimum point. Along a constant property line it is a reasonable assumption that a constant value for expansion coefficient can be used.

$$
\gamma \equiv \frac{d \ell n P}{d \ell n n_{0}} \doteq \frac{\ln P_{\ell}-\ell n P_{1}}{\ln P_{\ell}-\ln \rho_{1}}=\frac{\ln \left(P_{\ell} / P_{1}\right)}{\ln \left(\rho_{\ell / Q_{1}}\right)}
$$

The TDK transonic analysis computes the pressure value at the throat minimum point, the location of the corresponding isobar, and the variation of streamline flow angle along this isobar. This particular surface has been chosen because it is advantageous from the standpoint of the assumptions made in the transonic analysis. It satisfies boundary conditions exactly at the wall, as well as at the axis and will yield a constant Mach number which is usually slightly greater than unity. If supersonic, this surface will be upstream of its characteristics, both left and right running. Should this surface be subsonic due to nonequilibrium effects, a provision exists for displacing the initial line downstream. Once the pressure surface described above has been calculated, all of the other gas dynamic properties are obtained by interpolation from the tables constructed by ODK.

2.4.2 Zoned Expansions

Many rocket thrust chambers are designed to operate with a cool (fuel rich) barrier zone near the wall to help shield the wall from excessive heat tiañfer. In auduitioun thrusi chamber and injector design usually result in a mal-distribution of the fuel/oxidizer ratio so that the resultant flow is striated into numerous zones of varying mixture ratio. In order to obtain an estimate of the effect of these phenomena on engine performance, a zoned expansion capability is included in the TDK computer program. Each zone is assumed to have a distinct mixture ratio and to contain a specified fraction of the total nozzle mass flow rate. The zones are assumed to be axially symmetric and are distributed radially from the nozzle axis to the nozzle wall.

The procedure used in constructing an initial line for zoned expansions Is analogous to that described above for uniform expansions. For the purpose of calculating a transonic solution in the region of the nozzle throat, an average expansion coefficient is determined for each zone. To accomplish this, a one dimensional calculation is performed from the chamber to throat for the propellant system and nozzle geometry specified using the ODK Computer Program. One such calculation is performed for each zone (i.e. for each mixture ratio).

Tables of flow properties ($\rho, \mathrm{V}, \mathrm{T}, \mathrm{C}_{1}$) are constructed as a function of pressure for each zone. These tables span the nozzle throat region. An average expansion coefficient, $\bar{\gamma}_{n}$, is computed for each of N zones using these tables as

$$
\bar{\gamma}_{\mathrm{n}}=\frac{\ln \left(P_{\ell} / P_{1}\right)_{n}}{\ln \left(\rho_{\ell} / \rho_{1}\right)_{n}} \quad n=1, \ldots N
$$

where the subscripts 1 and ℓ refer to the first and last table entries, respectively.

Using the above expansion coefficient vector and the throat wall geometry, the transonic flow field is constructed using the method described in section 2.4.3. The initial line calculated by this method is an approximation to the constant pressure surface emanating from the throat minimum point. Along this line each zone is separated by a double point defining the properties on either side of the contact discontinuity.

These points, which have equal pressure and gas streamline angle, become dividing streamline points in the method of characteristics calculation (see subroutine DSPT, Section 5). Properties other than pressure and flow angle are discontinuous across a dividing streamline and these discontinuities may be large. Within a given zone only the gas streamline angle will vary with location (r, x) along the start line. Properties other than pressure and flow angle are obtained by interpolation on pressure from the tables constructed as described above by use of the ODK subprogram.

2.4.3 Transonic Analysis

The basic assumptions made in carrying out the transonic analysis are summarized below (see Reference 9 for a more complete discussion):
o The flow is inviscid and compressible

- The flow is near the sonic speed and directed nearly along the nozzle axis
- The flow is axially symmetric
o The flow is divided into annular zones, each of which is characterized by a single adiabatic expansion coefficient, γ.
- In the nozzle throat region the flow is dependent only on the local wall geometry

With the above assumptions equations 2.3-1 through 2.3-11 reduce to the equations governing the irrotational flow of a perfect gas, i.e.:

$$
\frac{\partial v}{\partial x}-\frac{\partial u}{\partial r}=0
$$

and

$$
\left(a^{2}-u^{2}\right) \frac{\partial u}{\partial x}-2 u v \frac{\partial u}{\partial r}+\left(a^{2}-v^{2}\right) \frac{\partial v}{\partial r}+\frac{a^{2} v}{r}=0
$$

The method of analysis used to approximate a transonic solution to these equations is a small perturbation technique. For a one zone expansion the method reduces to that given by Sauer. ${ }^{8}$ The method consists of normalizing the velocity to the critical speed of sound

$$
\begin{aligned}
& \tilde{u}=\frac{u}{a^{*}} \\
& \tilde{v}=\frac{v}{a^{*}}
\end{aligned}
$$

Perturbation variables u^{\prime} and v^{\prime} (both of which are assumed of small magnitude with respect to unity) are then introduced.

$$
\begin{aligned}
& \tilde{u}=1+u^{\prime} \\
& \tilde{v}=v^{\prime}
\end{aligned}
$$

It can be shown that substituting these relations into the governing equations and retaining only terms through first order gives*

$$
\begin{gathered}
\frac{\partial v^{\prime}}{\partial x}-\frac{\partial u^{\prime}}{\partial r}=0 \\
(\gamma+1) u^{\prime} \frac{\partial u^{\prime}}{\partial x}-\frac{\partial v^{\prime}}{\partial r}-v^{\prime} / r=0
\end{gathered}
$$

An exact solution for the above equations can be constructed and is found to be

$$
\begin{aligned}
u^{\prime}= & \frac{1}{4}(\dot{\gamma}+1) B_{1}^{2} r^{2}+C_{1} \ln r+B_{0}+B_{1} x \\
v^{\prime}= & \frac{1}{16}(\dot{\gamma}+i)^{2} \dot{o}_{1}^{3} r^{3}+\frac{1}{2}\left(\gamma+i j B_{1} C_{1} r\left(\ln r-\frac{1}{2}\right)\right. \\
& +\frac{1}{2}(\gamma+1) B_{1} B_{0} r+C_{2} / r \\
& +\left[\frac{1}{2}(\gamma+1) B_{1}^{2} r+C_{1} / r\right] x
\end{aligned}
$$

where B_{0}, B_{1}, C_{1}, and C_{2} are constant coefficients which must be determined from boundary conditions. For the case of a nozzle throat with constant radius of curvature, R, (i.e. a circular arc, see Figure 2-2) these coefficients are found to be

$$
\begin{aligned}
& B_{0}=-\frac{1}{4 R} \\
& B_{1}=+\left(\frac{2}{(\gamma+1) R}\right)^{\frac{1}{2}} \\
& C_{1}=C_{2}=0
\end{aligned}
$$

which is the classical solution given by Sauer. ${ }^{8}$

* \bar{A} complete derivation of the material presented here is given in Reference 9 .

Figure 2-2 Nozzle Throat Geometry

Nearly all exhaust nozzles for engines using liquid propellants are constructed with a radius of curvature smaller than appropriate to the small perturbation methods of analysis. Fortunately a simple modification to the method yields results which compare favorably both with experimental measurement and with the results of other analysis when applied to throat geometries such as occur in rocket exhaust nozzles of practical interest. The basis for this modification is to bound the method such that the computed pressure proceeds to a physically reasonable limit for a zero radius of curvature throat. The bound is applied at the wall boundary condition and is chosen such that the ratio of pressure to sonic pressure be zero at this limit. This assumption leads to the result that

$$
\mathrm{P} /\left.\mathrm{P}^{*}\right|_{\text {throat }}=1-(\gamma / 4) /(\mathrm{R}+\gamma / 4)
$$

rather than the usual result

$$
P /\left.P *\right|_{\text {throat }}=1-(\gamma / 4) / R
$$

which is divergent for $R=0$. Results obtained from the transonic analysis (see Reierence $\overline{8}$) have deen found to compare favorably to both available experimental data and to the results of other, more complex, analytical methods.

To apply the small perturbation analysis to striated flow the analysis assumes that the nozzle flow is divided into N axially symmetric zones, each of which is characterized by a constant (i.e. average) specific heat ratio. These N zones are bounded by $\mathrm{N}-1$ sliplines, i.e. dividing streamlines, such that pressure and streamline angle are matched but other properties such as velocity, temperature, and Mach number are discontinuous. A first order method is used to determine the radial coordinate location, Y_{n}, of each slipline. Once these locations are known, boundary conditions are applied at the wall, axis, and each slipline to complete the solution.

The indices $\mathrm{n}=0,1, \ldots$. N identifying each zone and slipline boundary are taken numbered from nozzle axis to wall as shown in Figure 2-3. The sliplines are located at

$$
y_{n} ; n=0,1, \ldots, N
$$

The total mass flow rate for the nozzle is

$$
\dot{\mathbf{M}}
$$

and for each zone the partial mass flow rate is

$$
\dot{m}_{\mathrm{n}}=\frac{\text { mass flow rate, zone } \mathrm{n}}{\dot{M}} \quad, n=1,2, \ldots N
$$

so that

$$
\sum_{n=1}^{N} \dot{m}_{n}=1=\dot{m}_{1}+\dot{m}_{2}+\ldots+\dot{m}_{n}
$$

Figure : 2-3 Nomenclature for the Numbering of Zones

Applying the continuity relation it can be shown that to first order the Y_{n}^{2} are solutions to the tridiagonal system shown below.
where

$$
\begin{array}{ll}
K_{n} & \frac{\dot{m}_{n+1}}{\dot{m}_{n}} \\
A_{n}=\frac{\rho_{n}^{*} a_{n}^{*}}{\rho_{n+1}^{*} a_{n+1}^{*}} & n=1,2, \ldots N-1 .
\end{array}
$$

Once the slipline locations Y_{n}, are known it is necessary to apply boundary conditions sufficient to determine the constant coefficients $B_{0_{n}}, B_{1_{n}}, C_{1_{n}}, C_{\mathbf{2}_{n}}$ 。 The conditions applied are:
at the axis;
the radial velocity component is zero.
at the sliplines;
the gas pressure and streamline angle match through first order.
at the wall;
the gas streamline follows the wall streamline through first order.
These conditions require that the following relations be satisfied by the constant coefficients:
at the axis (for $n-1$) ;

$$
c_{1_{1}}=C_{2_{1}}=0
$$

at the sliplines (for $n=2, \ldots ., N=1$);

$$
\begin{aligned}
& \frac{1}{16}\left(\gamma_{n}+1\right)^{2} B_{1_{n}}^{3} Y_{n}^{3} \quad+\frac{1}{2}\left(\gamma_{n}+1\right) B_{1_{n}} C_{1_{n}} Y_{n}\left(\ln Y_{n}-\frac{1}{2}\right) \\
& +\frac{1}{2}\left(\gamma_{n}+1\right) B_{1} B_{n} X_{n} Y_{n}+C_{2} Y_{n}^{-1}= \\
& \frac{1}{16}\left(\gamma_{n+1}+1\right)^{2} B_{1}^{3} Y_{n+1}^{3}+\frac{1}{2}\left(\gamma_{n+1}+1\right) B_{1_{n+1}} C_{1_{n+1}} Y_{n}\left(\ln Y_{n}-\frac{1}{2}\right) \\
& +\frac{1}{2}\left(y_{n+1}+1\right) B_{1_{n+1}} B_{O_{n+1}} Y_{n}+C_{2_{n+1}} Y_{n}^{-1}
\end{aligned}
$$

and

$$
\frac{1}{2}\left(\gamma_{n}+1\right) B_{1_{n}}^{2} Y_{n}+C_{1_{n}} Y_{n}^{-1}=\frac{1}{2}\left(\gamma_{n+1}+1\right) B_{1_{n+1}}^{2} Y_{n}+C_{1_{n+1}} Y_{n}^{-1}
$$

and

$$
\begin{aligned}
& P_{n}^{*}\left\{1-\gamma_{n}\left[\frac{1}{4}\left(\gamma_{n}+1\right) B_{1_{n}}^{2} Y_{n}^{2}+C_{1_{n}} \ln Y_{n}+B_{0_{n}}\right]\right\}= \\
& P_{n+1}^{*}\left\{1-\gamma_{n+1}\left[\frac{1}{4}\left(\gamma_{n+1}+1\right) B_{1_{n+1}}^{2} Y_{n}^{2}+C_{1_{n+1}} \ln Y_{n}+B_{0_{n+1}}\right]\right\}
\end{aligned}
$$

and

$$
P_{n}^{*} \dot{\gamma}_{n} B_{1}=P_{n+1}^{*} \quad \gamma_{n+1} B_{1_{n+1}}
$$

at the wall $(\mathrm{n}=\mathrm{N})$;

$$
\begin{aligned}
& \frac{1}{16}\left(\gamma_{N}+1\right)^{2} B_{1_{N}}^{3}-\frac{1}{4}\left(\gamma_{N}+1\right) \cdot{ }_{B_{1}} C_{1_{N}} \\
& \quad+\frac{1}{2}\left(\gamma_{N}+1\right) B_{1_{N}} B_{0_{N}}+C_{2}=0
\end{aligned}
$$

and

$$
\frac{1}{2}\left(\gamma_{N}+1\right) B_{1_{N}}^{2}+C_{1_{N}}=1 / R
$$

The above equations form a system of 4 N non-linear equations in 4 N unknowns ($B_{0_{n}}, B_{1_{n}}, C_{1_{n}}, C_{2_{n}}$). For given values of R and of the vectors \dot{m}_{n}, A_{n}, γ_{n}, and Y_{n} the above system of equations can be used to determine the 4 N unknown coefficients by employing standard numerical technique.

To apply a numerical method (such as the Newton method) to obtain a solution to the ajuve sysiem of equaiiuns requites an esimate ior the solution vector ($\mathrm{B}_{\mathrm{O}_{\mathrm{n}}}, \mathrm{B}_{1_{n}}, \mathrm{C}_{1_{n}}, \mathrm{C}_{\mathbf{2}_{\mathrm{n}}}$). The TDK program uses the one zone solution to provide a first estimate. A good estimate is obtained since if

$$
\gamma_{n}=\gamma_{n+1} \quad n=1,2, \ldots, N-1
$$

the one zone solution satisfies the above system identically. The program also takes advantage of the banded property of the Jacobian, J, for the above system

The method described above has also been bounded so as to give reasonable answers for nozzle geometries where R is small.

The transonic model used by TDK which is described in the preceding section divides the flow into regions of constant mixture ratio that are separated by silplines. Each region contains a specified fraction of the total mass flow. This method, which is called the striated plow option, has been modified so that flows with continuous mixture ratio variation can be analyzed. This variable mixture ratio option is described below.

When the variable mixture ratio option is used, there are no sliplines in the flow. Instead, the flow mixture ratio, will vary from the axis $(\Psi=0)$ to the wall $(\Psi=1)$ as specified by an input table of r versus Ψ. The streamiine function, Ψ, represents the mass flow between the streamine and the axis, divided by the total nozzle mass flow. An ODK calculation is done for each entry in the above table. Values along the initial data line for the MOC are obtained by interpolation in the $O D K$ results using pressure and radial coordinate position , Y, as independent variables. The transonic analysis is used to provide a table of Ψ versus Y. The method used is described below.

The $O D K$ program constructs tables of flow properties (ρ, V, T, and c_{1}) as a function of pressure. These tables span the nozzle throat region. An average expansion coefficient is computed using these tables as

```
Y}=\operatorname{ln}(\mp@subsup{P}{\ell}{\prime}/\mp@subsup{P}{1}{})/\elln(\mp@subsup{p}{\ell}{}/\mp@subsup{\rho}{1}{}
```

where the subscripts 1 and ℓ refer to the pirst and last table entries, respectively. Values of γ are found from $\bar{\gamma}$ and from input to the transonic analysis

$$
\gamma_{n}=\left(\bar{\gamma}_{n}+\bar{\gamma}_{n-1}\right) / 2 \quad n=1,2, \ldots N
$$

and also

$$
\begin{aligned}
& P_{c_{n}}=\left(\bar{P}_{c_{n}}+\bar{P}_{c_{n-1}}\right) / 2 \\
& \xi_{n}=\Psi_{n}-\Psi_{n-1}
\end{aligned}
$$

Using these values, the transonic analysis calculates

$$
Y_{0}=0, Y_{1}, Y_{2}, \ldots Y_{N}=Y_{\text {Wall }} .
$$

The above Y_{n} values represent the radial location at which the input mixture ratios

$$
r_{0}, r_{1}, r_{2}, \ldots r_{N}
$$

are located. In this way the input table of r versus ψ is converted to a table of r versus Y.

Next, the transonic analysis is used to compute the coefficients ($B_{0_{n}}, B_{1_{n}}, C_{1_{n}}, C_{2_{n}}$). These are used to compute $P(X, Y)$ and $\theta(X, Y)$ in the transonic region (see Reference 9 , pp.2-20) at points $n=0,1 \ldots N$. Using each of these $N+1$ values of P as an independent variable, the corresponding values for ρ, V, T, and c_{i} are obtained by linear interpolation from the corresponding table that was computed by ODK. These tables are then used to linearly interpolate for P, P, V, θ, T, and c_{1} at each MOC initial line point using ψ as the independent variable.

The program will not function properly if the spacing in the mixture ratio table, r_{n}, is too large. The required spacing depends on the chemcial system. As a rule each entry must differ no more than 4 or 5% from its adjacent values, depending on the stoichiometry of the system.

The average engine mixture ratio, rave, is also calculated:

$$
r_{\text {ave }}^{Y_{\text {wall }}}=\int_{0}^{\left(\frac{r}{r+1}\right)} d \dot{m} / \int_{0}^{Y_{\text {wall }}}\left(\frac{1}{r+1}\right) d \dot{m}
$$

where
r is the mixture ratio at position Y, and
$d \dot{d}=\rho V \sin \frac{(\phi-\theta)}{\sin \phi} \quad Y d Y$.

2.5 METHOD OF CHARACTERISTICS FOR KINETIC EXPANSIONS

 By standard methods the characteristic relationships for the conservation equations 2.3-1 through 2.3-11 can be shown to be (see Volume 2, Section 18-3, Zucrow and Hoffman ${ }^{10}$).$$
\begin{gathered}
\frac{d r}{d x}=\tan \theta \\
d \frac{V^{2}}{2}+\frac{d P}{\rho}=0 \\
\frac{d P}{Y P}-\frac{d \rho}{P}=\frac{A}{\cos \theta} d x \\
\frac{Y-1}{Y} \frac{d P}{P}-\frac{d T}{T}=\frac{B d x}{\cos \theta} \\
d c_{i}=\frac{i_{i} x^{t}}{\rho V \cos \theta} d x
\end{gathered}
$$

along streamlines,

$$
\begin{gather*}
\frac{d x}{d r}=\cot (\theta+a) \tag{2.5-1}\\
\frac{d P}{P}=G\left[\left(A-\frac{\sin \theta}{r}\right) F d r-d \theta\right] \tag{2.5-2}
\end{gather*}
$$

along left running characteristics, and

$$
\begin{gather*}
\frac{d r}{d x}=\tan (\theta-a) \tag{2.5-3}\\
\frac{d P}{P}=-G\left[\left(A-\frac{\sin \theta}{r}\right) H d x-d \theta\right] \tag{2.5-4}
\end{gather*}
$$

along right running characteristics, where

$$
\begin{aligned}
& A=\frac{r^{*}}{P V}\left(\sum_{i=1} \omega_{i} R_{i} T-\frac{Y-1}{Y} \sum_{i=1} \omega_{i} h_{i}\right) \\
& B=\frac{r^{*}}{P V} \frac{Y-1}{Y} \sum_{i=1} \omega_{i} h_{i} \\
& V=\left(u^{2}+v^{2}\right)^{1 / 2} \\
& \theta=\tan ^{-1}\left(\frac{v}{u}\right) \\
& a=\sin ^{-1}\left(\frac{1}{M}\right) \\
& M=\frac{V}{\left(\gamma R^{T}\right)^{1 / 2}} \\
& Y=\frac{C_{p}}{C_{p}-R} \\
& C=\sum_{i=1}^{c_{i} C}
\end{aligned}
$$

$$
\begin{equation*}
F=\cos \theta-\sin \theta \cot (\theta+a) \tag{2.5-5}
\end{equation*}
$$

$$
\begin{equation*}
G=\frac{y}{\sin a \cos a} \tag{2.5-6}
\end{equation*}
$$

$$
\begin{equation*}
H=\cos \theta \tan (\theta-a)-\sin \theta^{\circ} \tag{2.5-7}
\end{equation*}
$$

The above form of the characteristic relationships remains determinant when the streamline is horizontal, when the left running characteristic is vertical, or when the right running characteristic is horizontal. Rarely (if ever) will the inverse of the three situations occur in nozzle flow field calculations.

In the analysis above the chemistry is brought into the conservation equations through the net species production rates, ω_{i}. The analysis pertaining to the chemistry is identical to that used by the ODK program as presented in Section 2.2.

2.5.1 Method of Characteristics for Frozen_Expansions (TDF)

The methods developed in the preceding section for kinetic expansions apply with the exception that

$$
\dot{\omega}_{i}=0
$$

so that

$$
A=B=0
$$

and

$$
d c_{1} / d x=0
$$

Ordinarily the TDF expansion assumes the chemical
composition to be frozen at the equilibrium values at the
chamber contraction ratio (ECRAT). However, initial species
compositions and flow conditions can be input. This is the
procedure that must be followed when analyzing hydrazine
monopropellant thrusters.

The supersonic expansion can be analyzed using the method of characteristics assuming that the process is in a state of shifting chemical equilibrium. This option is called a TDE analysis. It can be used both for striated flow, and flow with streamilne to streamine mixture ratio variation. Like the TDF analysis, it is very much faster than a TDK analysis. The methods used by TDE are described below.

The conservation equations to be solved are:
continuity: $\quad(\rho u)_{X}+\frac{1}{r}(r \rho v)_{r}=0$
momentum: $\quad \rho\left(u u_{x}+v u_{r}\right)+P_{x}=0$
$\rho\left(u v_{x}+v v_{r}\right)+P_{r}=0$
energy: The energy equation is not used explicitly. Instead, property distributions are provided in the form of tables by a separate equilibrium computation. The energy equation is then satisfied in an implicit manner as*

$$
v=\left(2 h_{0}-2 h\right)^{1 / 2}
$$

where

$$
h=h(P)
$$

is supplied by the chemical equilibrium module, $O D E$, in the form of a table.

FEntropy is a constant for the expansion so that a function of
only one variable, p, is required.

```
state: The state equation is also satisfied in an
``` fmplicit manner as
\begin{tabular}{|c|c|c|}
\hline & \(\rho\) & \[
\begin{aligned}
& \mathrm{PM} \\
& \overline{\mathrm{R}}^{\mathrm{T}}
\end{aligned}
\] \\
\hline where & T & T (P) \\
\hline and & \(M_{W}\) & \(M_{W}(P)\) \\
\hline
\end{tabular}
are supplied by the chemical equilibrium module, ODE, in the form of tables.

The above conservation equations have been transformed to the characteristic form and are solved numerically in the same manner as by TDK. For convenience tables of specific heat ratio and Mach number are also tabulated. The complete set of tables used are:
\begin{tabular}{llll}
h & vs & \(\log (P)\) & enthalpy \\
\(M\) & vs & \(\log (P)\) & Mach number \\
\(M_{W}\) & vs & \(\log (P)\) & molecular weight \\
\(T\) & vs & \(\log (P)\) & temperature \\
\(Y\) & vs & \(\log (P)\) & ratio of specific heats
\end{tabular}
where each of the above tables has been constructed for each zone (i.e., region of constant mixture ratio) of the expansion. The above choice of curve fit form (i.e., vs por log \(P\)) was made after investigating the graphical form of the above functions for typical equilibrium expansions. A spline fit method is used to interpolate in the above tables.

The supersonic expansion can be analyzed using the method of characteristics assuming that the gas properties are defined by a set of tables prepared by the ODK module. The procedures and tables are the same as presented in the preceding subsection describing TDE expansions, except that ODK is used to prepare the tables, not ODE.

An expression for the kinetic variable, \(A, i s\) also required. It is found as (see the third equation in Section 2.5):
\[
A=\left(\frac{1}{Y \bar{P}} \frac{d P}{d \bar{X}}-\frac{1}{\rho} \frac{d \rho}{d \bar{X}}\right) \cos \theta
\]
where \(d P / d X\) and \(d \rho / d X\) are found by numerical differencing.
The kinetic variable, \(B\), is not required, since the gas temperature is found as a tabular function of the logarithm of the pressure.

A significant advantage of this option is that it gives an order of magnitude reduction in computer time for a given case. Although exact results can be obtained in the frozen and equilibrium limits, error can be introduced when the expansion is in chemical nonequilibrium.

\subsection*{2.5.4 SUPERSONIC_FLOW_WITH_SHOCK_WAVES}

For the case of continuous variation (or no variation) in mixture ratio, the TDK computer program can calculate the effects of a single shock wave that is caused by the nozzle wall. The shock can either be attached to the wall, or induced by the wall. The latter case is the more difficult to treat. The program logic utilizes a series six of point calculation procedures to locate and compute the shock. These procedures are illustrated in Figures \(2-4 a\) through f. The flow direction

Fig. 2-4a: Right-Running Shock Point

Fig. 2-4b: Shock Refloction Point at the Axis

Fig. 2-4d: Left-Rumine Bhock Pofnt

Fig. 2-4c:Left-Running Shock. Point at the Axis

Fig. 2-4e: Shock Reflection Polnt at the Wall Fig. 2-4f: KLeht-Runnin; :3kx:k Point, :At the thal
is left to right with streamiines shown as double lines. As shown in fig. 2-4a the shock is initiated by a crossing of right-running characteristics. A shock point, labeled \(3 a\) (front) and \(3 b\) (back) is computed by iteration of the streamline, characteristic, and shock relations. When completed, the point location and the front and back side properties satisfy all of these relations. This right running shock is traced to the flow axis and reflected as a left running shock. The procedure for calculating the reflection is shown in Fig. 2-4b. If at any point in the shock tracing it is found that regular reflection is not possible, then a right regular cylinder of radius, \(r_{c}\), is inserted centered along the flow axis. The shock is reflected from this cylinder, which is located so that regular reflection is still possible. In this way Mach shocks are removed from the flow. The first point off the axis (or cylinder) behind the shock reflection is calculated by the special procedure shown in Fig. 2-4c. Next, the shock is traced as a left running shock using the point calculation procedure shown in Fig. \(2-4 d\). This procedure is the inverse of the right running shock point procedure shown in fig. \(2-4 a\). When the shock reaches the wall, it is reflected using the procedure shown in Fig. \(2-4 e . \quad A \quad\) special point calculation procedure is then required for the first point behind this reflection as shown in Fig. 2-4f. The resultant right running shock is then traced as before, etc. Thus, multiple reflections are allowed from the axis and the wall. In general the shock strengthens as it travels towards the axis (right running), and weakens as it travels away from the axis and towards the wall (left running).

The shock option is not applicable to the TDE and TTDK options.

The purpose of the Boundary Layer Module (BLM) is to provide a method for computing compressible laminar and turbulent wall boundary layers in axisymmetric nozzles. The BLM can also be used to calculate two-dimensional and axisymmetricexternal flows. The method utilizes an efficient two-point finite difference method developed by Keller and cebeci \({ }^{11}\). Turbulence modeling is achieved through the use of Cebeci-Smith eddy-viscosity formulation \({ }^{12}\) which has been tested for a large class of flows with various boundary conditions.

In this section the method is described and the relavant equations, turbulence model, fluid properties and solution procedure are presented. Description of the numerical procedure is not presented, since it has already been described in several sources, for example Reference 13.

The computer program on which the BLM is based was developed for SEA, Inc. by CBC Enterprises, Inc.
 Methods for Boundary Layer Flows, Pt. 2, Two-Dimensional Turbulent Flows. AIAA J., 10, 1972, pg. 1193.
Ref. 12 Cebeci, T., and Smith, A. M. O.: Analysis of Turbulent_Boundary_Layers, Academic Press, N.

Ref. 13 Bradshaw, P., Cebeci, T., and Whitelaw, J. H.: Engineering_Calculation_Methods_for Turbulent Fiows. Academic press, London, \(19 \overline{8} \overline{1}\).

\subsection*{2.6.1 Boundary-Layer Equations}

For a compressible boundary-layer flow in a symmetric nozzle, the governing equations are well known and can be written as

Continuity
\[
\begin{equation*}
\frac{\partial}{\partial x}\left(\rho u r^{k}\right)+\frac{\partial}{\partial y}\left(\overline{\rho v} r^{k}\right)=0 \tag{2.6-1}
\end{equation*}
\]

Momentum
\[
\begin{equation*}
\rho u \frac{\partial u}{\partial x}+\overline{\rho v} \frac{\partial u}{\partial y}=\rho e^{u} e \frac{d u}{d x}+\frac{1}{r^{k}} \frac{\partial}{\partial y}\left[r^{k}\left(\mu \frac{\partial u}{\partial y}-\rho \bar{u}^{\top} v^{\top}\right)\right] \tag{2.6-2}
\end{equation*}
\]

Energy
\[
\begin{equation*}
\rho u \frac{\partial H}{\partial x}+\overline{\rho v} \frac{\partial H}{\partial y}=\frac{1}{r^{k}} \frac{\partial}{\partial y}\left\{r^{k}\left[\frac{\mu}{\rho r} \frac{\partial H}{\partial y}+\mu\left(1-\frac{1}{P r}\right) u \frac{\partial u}{\partial y}-\rho H^{\top} v^{\top}\right]\right\} \tag{2.6-3}
\end{equation*}
\]
where \(k\) denotes the flow index which is zero for a two-dimensional flow and is unity for an axisymmetric flow, and
\[
\begin{aligned}
& \overline{\rho v}=\rho v+\bar{\rho}^{\top} v^{\top} \\
& r=r_{0}-y \cos \phi
\end{aligned}
\]

The boundary conditions for Eqs. (7-1) to (7-3) are
\[
\text { at } \quad \begin{align*}
y & =0, \quad u=0, \quad v=v_{w}(x), \\
\quad T & =T_{w}(x) \quad \text { or } \quad \dot{q}_{w}(x) \text { (heat transfer specified) } \tag{2.6-4a}
\end{align*}
\]
at \(\quad y=\delta, \quad u=u_{e}, \quad H=H_{e}\)

The above equations require initial conditions and a turbulence model for Reynolds shear stress and heat flux terms, \(-\rho \overline{u^{\top} v^{\top}}\) and \(-\rho H^{\top} v^{\top}\), respectively. Here we use the concepts of eddy viscosity and turbulent Prandtl number and define
\[
\begin{equation*}
-\rho \overline{u^{\top} v^{\top}}=\rho \varepsilon_{m} \frac{\partial u}{\partial y}, \quad-\rho \overline{H^{\top} v^{\top}}=\rho \frac{\varepsilon_{m}}{P r_{t}} \frac{\partial H}{\partial y} \tag{2.6-5}
\end{equation*}
\]

We also use transformed variables to provide the initial conditions for a stagnation point flow and to reduce the sensitivity of the solutions to the \(\Delta x\)-spacing. They are defined by
\[
\begin{array}{r}
d \xi=\left(\frac{r_{0}}{L}\right)^{2 k} d x \\
d \eta=\left(\frac{u_{e}}{\rho_{e^{\mu}} e^{\xi}}\right)^{1 / 2} \rho\left(\frac{r^{k}}{L}\right) d y \tag{2.6-6b}
\end{array}
\]

We also use a dimensioniess stream function \(f(\xi, \eta)\) defined by
\[
\begin{equation*}
\psi=\left(u e^{\rho} e^{\mu} e^{\xi)^{\frac{1}{2}}} L^{k} f(\xi, \eta)\right. \tag{2.6-7}
\end{equation*}
\]
where
\[
\begin{equation*}
\rho u r^{k}=\frac{\partial \psi}{\partial y}, \quad \quad \overline{\rho v r^{k}}=(\rho v)_{w} r_{0}^{k}-\frac{\partial \psi}{\partial x} \tag{2.6-8}
\end{equation*}
\]

With these transformations and with the definition of the relations given by Eqs (2.6-6 to 8) . it can be shown that the momentum and energy equations can be written as
\[
\begin{align*}
& \left(b f^{\prime \prime}\right)^{\prime}+m_{1} f^{\prime \prime}+m_{2}\left[c-\left(f^{\prime}\right)^{2}\right]-m_{3} f^{\prime \prime}=\xi\left(f^{\prime} \frac{\partial f^{\prime}}{\partial \xi}-f^{\prime \prime} \frac{\partial f}{\partial \xi}\right) \tag{2.6-9}\\
& \left(e g^{\prime}\right)^{\prime}+\left(d f^{\prime} f^{\prime \prime}\right)^{\prime}+m_{1} f g^{\prime}-m_{3} g^{\prime}=\xi\left(f^{\prime} \frac{\partial g}{\partial \xi}-g^{\prime} \frac{\partial f}{\partial \xi}\right) \tag{2.6-10}
\end{align*}
\]

Here primes denote differentiation with respect to \(\eta\) and
\[
\begin{equation*}
f^{\prime}=u / u_{e}, \quad g=H / H_{e} \tag{2.6-11}
\end{equation*}
\]

The parameters \(b, e, d\) denote parameters defined by
\[
\begin{align*}
& b=\left(1+\varepsilon_{m}^{+}\right) c(1-t)^{2 k}, \quad e=\frac{C}{P r}\left(1+\varepsilon_{m}^{+P r} \frac{P r}{P r_{t}}\right)(1-t)^{2 k} \tag{2.6-12}\\
& d=\frac{C u_{e}^{2}}{H_{e}}\left(1-\frac{1}{\operatorname{Pr}}\right)(1-t)^{2 k}
\end{align*}
\]
where
\[
c=\frac{\rho u}{\rho e^{\mu} e}, \quad c=\frac{\rho e}{\rho}
\]

The parameters below denote dimensionless pressure gradients
\[
\begin{equation*}
m_{1}=\frac{1+m_{2}+m_{4}}{2}, \quad m_{2}=\frac{\xi}{u_{e}} \frac{d u_{e}}{d \xi}, \quad m_{4}=\frac{\xi}{\rho_{e^{\mu}}} \frac{d}{d \xi}\left(\rho_{e} \mu_{e}\right) \tag{2.6-13}
\end{equation*}
\]
and \(m_{3}\) denotes dimensionless mass transfer parameter
\[
\begin{equation*}
m_{3}=\frac{(\rho v)_{w}}{\rho_{e} u_{e}} R_{\xi}^{1 / 2}\left(\frac{L}{r_{0}}\right)^{k} \tag{2.6-14}
\end{equation*}
\]

The boundary conditions given by (2.6-4) can be written in the following form
\[
\begin{align*}
& \text { at } n=0, \quad f=f^{\prime}=0, \quad g=g_{W}(\xi) \text { given } \\
& \quad \text { or } \quad g_{w}^{\prime}(\xi)=\text { given } \\
& \text { at } \quad \eta=\eta_{e}, \quad f^{\prime}=1, \quad g=1 \tag{2.6-15a}
\end{align*}
\]

Note that the wall mass transfer quantity \((\rho V)_{W}\) does not appear in the above boundary conditions, instead it appears in the differential equations through \(m_{3}\). This is a useful convenient form when dealing with mass transfer (suction or blowing) problems.

\subsection*{2.6.2 Turbulence Model}

Here we use the eddy-viscosity formulation due to cebeci and Smith to model the Reynolds shear stress term. We assume a constant turbulent Prandtl number and take it equal to 0.9.

According to the Cebeci and Smith eddy-viscosity formulation, the dimensionless eddy-viscosity \(\varepsilon_{m}^{+}\)is defined by two separate formulas: in the inner region of the boundary layer, \(\varepsilon_{m}^{+}\)is defined by a modified mixinglength expression and in the outer region by an expression based on the velocity defect. This formulation is defined by the following expressions:
\[
\varepsilon_{m}^{+}=\left\{\begin{array}{lll}
\frac{L^{2}}{v} \frac{\partial u}{\partial y} \gamma \gamma_{t r} & y \leq y_{c} & \text {,inner } \\
\frac{0.0168}{v} \int_{0}^{\infty}\left|\left(u_{e}-u\right)\right| d y \gamma \gamma_{t r} & y>y_{c} & \text {,outer }
\end{array}\right.
\]

Here \(y_{c}\) is obtained from the continuity of eddy-viscosity expression. The definition of \(L\) is:
\[
\begin{equation*}
L=0.4 y[1-\exp (-y / A)] \tag{2.6-17}
\end{equation*}
\]
where
\[
\begin{align*}
& A=26\left(\frac{\rho_{0}}{\rho_{w}}\right)^{1 / 2} \frac{v}{N} u_{\tau}^{-1} \quad u_{\tau}=\left(\frac{\tau_{w}}{\rho_{w}}\right)^{1 / 2} \\
& N^{2}=\frac{\mu}{\mu_{e}}\left(\frac{\rho_{e}}{\rho_{w}}\right)^{2} \frac{p^{+}}{v_{w}^{+}}\left[1-\exp \left(11.8 \frac{\mu_{w}}{\mu} v_{w}^{+}\right)\right]+\exp \left(11.8 \frac{\mu_{w}}{\mu} v_{w}^{+}\right) \tag{2.6-18}\\
& p^{+}=\frac{v_{e} u_{e}}{u_{\tau}^{3}} \frac{d u_{e}}{d x}, \quad v_{w}^{+}=\frac{v_{w}}{u_{\tau}}, \quad R_{\xi}=\frac{u_{e} \xi_{e}}{v_{e}}, \quad \frac{\mu}{\mu_{e}}\left(\frac{\rho_{e}}{\rho_{w}}\right)^{2}=C c c_{w}^{2}
\end{align*}
\]

When there is no mass transfer,
\[
N^{2}=1-11.8 \frac{\mu_{w}}{\mu_{e}}\left(\frac{\rho_{e}}{\rho_{w}}\right)^{2} p^{+}=1-11.8 C_{w} c_{w}^{3} p^{+}
\]

The parameter \(\gamma\) is an intermittency term defined by
\[
\begin{equation*}
Y=\frac{1}{1+5.5(y / \delta)^{6}} \tag{2.6-19a}
\end{equation*}
\]
and \(\gamma_{t r}\) is a parameter which accounts for the transitional region which exists between a laminar and turbulent flow. At high Reynolds number flows, though the transition region is small and \(\gamma_{\text {tr }}\) has negligible effect on the results, this expression is still useful because it avoids a jump from laminar to turbulent flow calculations by allowing \(\varepsilon_{m}^{+}\)to change gradually. It is given by:
\[
\begin{equation*}
\gamma_{t r}=1-\exp \left[-G r_{0}^{k}\left(x_{t r}\right)\left(\int_{x_{t r}}^{x} \frac{d x}{r_{0}^{k}}\right)\left(\int_{x_{t r}}^{x} \frac{d x}{u_{e}}\right)\right] \tag{2.6-19b}
\end{equation*}
\]
where \(G\) is a spot-formation-rate parameter
\[
\begin{aligned}
& G=\left(3 / C_{1}^{2}\right)\left(u_{e}^{3} / v_{e}^{2}\right) R_{\xi_{t r}^{-1}}^{-1.34} \\
& C_{1}=60+4.86 M_{e}^{1.92}
\end{aligned}
\]

In terms of transformed variables, the eddy-viscosity formulas become:
\[
\varepsilon_{m}^{+}= \begin{cases}\varphi_{1} f^{n} & 0<\pi<\pi_{c} \tag{2.6-20}\\ \left.\left.\varphi_{2}\right|_{0} ^{f^{n} e} \frac{c}{(1-t)^{k}}\left(1-f^{\prime}\right) d n \right\rvert\, & \eta_{c} \leqslant \eta<\pi_{e}\end{cases}
\]

Here
\[
\begin{align*}
& \varphi_{1}=\frac{0.16}{c^{2}}\left(\frac{L}{r_{0}}\right)^{k}(1-t)^{k} \cdot \frac{\mu_{e}}{\mu} R_{\xi}^{1 / 2} I_{1}^{2}[1-\exp (-y / A)]^{2} r_{t r} \\
& \Phi_{2}=\frac{0.0168}{c} \frac{\mu_{e}}{\mu}\left(\frac{L}{r_{0}}\right)^{k} R_{\xi}^{1 / 2} r_{t r} \tag{2.6-21}
\end{align*}
\]
\(\frac{y}{A}=\frac{N}{26} c^{-3 / 2}\left(\frac{L}{r_{0}}\right)^{k / 2} \frac{C_{w}^{1 / 2}}{C} \frac{R}{\xi}_{1 / 4}^{I_{1}}\left(f_{w}^{n}\right)^{1 / 2}, \quad I_{1}=\int_{0}^{\eta} \frac{c}{(1-t)^{k}} d \eta\) \(p^{+}=\left(\frac{u_{e}}{u_{\tau}}\right)^{3} \frac{m}{2}_{R_{\xi}}^{R_{L}}\left(^{r_{0}}\right)^{2 k}\),
\[
u_{\tau}=\frac{u_{e}}{R_{\xi}^{T / 4}} \sqrt{c_{W}{ }_{W}{ }_{W}^{\prime \prime} c_{W}\left(r_{0} / L\right)^{k}}
\]

Values of specific heat at constant pressure, \(C_{p}\), and ratio of specific heats, \(\gamma\), static enthalpy, \(h\), and the gas constant \(R\), are required by BLM. These properties are evaluated along the wall streamline as a function of temperature using the ODE module. The tables are prepared using a series of (\(T, S\)) equilibrium calculations, where \(T\) varies from \(600^{\circ} \mathrm{R}\) to \(7000^{\circ} \mathrm{R}\) at \(200^{\circ} \mathrm{R}\) increments. The chamber entropy value is used for \(S\). Values at \(100^{\circ} \mathrm{R}\) are then extrapolated and added to the table. The table is printed with the BLM output. An example of this output is presented in Figure 2-5.

Since the ODE module did not contain a (\(T, S\)) option, it was added using the following procedure. Using known values of \(P_{a}\), \(T_{a}\), and \(Y_{a}\), and the given value of temperature, \(T\), a first estimate for pressure \(p^{(1)}\) was found as
\[
P^{(1)}=P_{a}\left(T / T_{a}\right) \cdot{ }^{\gamma_{a} /\left(\gamma_{a}-1\right)}
\]

The (T,P) option of ODE is used to obtain \(S^{(i)}\) as a function of \(p^{(i)}\). The procedure is iterated using the secant method (subroutine ITER plus a driver) to find \(P^{(i)}\) such that
\[
\left|\left(S^{(1)}-S_{c}\right) / S_{c}\right|<5 E-5
\]
where \(S_{c}\) is the chamber entropy. The procedure is repeated for each temperature in these tables. The procedure is internal to the program and not callable through the ODE input.

If the chemical system contains a condensed phase, then equilibrium solutions made during phase change can yield values for \(\gamma\) that are unacceptable to BLM, e.g., values of \(\gamma<1\).

NNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNN NOMOOOOOOOOOOOOOOOOOOOOOOOOO9O+901
 390

P1gure 2-5: Tables of \(h, \mu, k, C_{p}, Y\), and \(R\) versus \(T^{\circ} R\) for use by the BLM
 ○Onnnugno00000000000000000000000000

 \(70+366 \angle 5^{\circ}\)
\(60+38200^{\circ}\) \(2.5799 E+04\)
\(2.7917 E+04\)
\(3.0350 E+04\)
 \(3.5857 E+04\)
\(3.8712 E+04\) \(70+3 \angle 877^{\circ}\)
\(70+327 \angle 8^{\circ}\) 35
0
4
4
1
0
0
30
30
-3 \begin{tabular}{c}
\(\vec{Z}\) \\
+ \\
+ \\
\(N\) \\
\(N\) \\
\multirow{2}{*}{} \\
\hdashline \\
0
\end{tabular}

 7
0
4
3
0
0
\(\cdots\)
0

Since condensation is an isothermal process, using (\(T, S\)) solutions avoid this problem. It also avoids the "temperature out of range" problem that can occur had other, existing options been used.

The fluid properties shown in Fig. 2-5 are \(h, \mu, k, C_{p}, \gamma\), and \(R\) versus \(T^{\circ} R\). The values of \(\mu\) and \(k\) are prepared as described in Section 2.6.4. The values for \(h, C_{p}, \gamma\), and \(R\) are prepared as described above, i.e., they are equilibrium properties including condensed phases (no gas particle lag). The gas constant, \(R\), is the universal gas constant divided by the molecular weight of the equilibrium mixture.

If the invisid core flow is frozen, it is more appropriate to use gas properties prepared using a frozen expansion of the chemical species. The program will prepare frozen tables that are analogous to the equilibrium tables described above when the TDF option is used, or if requested.

Values of gas viscosity, \(\mu\), gas conductivity, \(K\), Prandtl number, Pr, are required by BLM. These transport properties are evaluated along the wall streamline as a function of temperature using the ODE module. It is assummed that the expansion is in equilibrium, including condensed species. In the model these properties are then computed as "frozen" properties using the local gas composition with condensed phases included.

The viscosity and thermal conductivity of the individual gaseous species are calculated from formulas given in Reference 14 as follows:
\[
\begin{aligned}
\mu_{i} & =\frac{4.15822 \times 10^{-8} \sqrt{M_{w_{i}}}}{\sigma_{i}^{2} \Omega_{i}} \\
\kappa_{i} & =\frac{\mu_{i} R}{M_{w_{1}}}\left(.45+1.32 \frac{C_{p_{i}}}{\left(\Omega / M_{W_{i}}\right.}\right)
\end{aligned}
\]

The required Lennard Jones parameters, (\(\sigma_{i}, \Omega_{i}\)) are internally stored in the computer program for 206 gas phase species. (See Subroutine MUK in Section 5 of this report, for a list of the species.) The viscosity of the mixture is calculated from Wilke's semi-empirical formula \({ }^{15}\).
\[
\mu=\sum_{i=1}^{N}\left[\mu_{i}\left(1+\sum_{\substack{j=1 \\ j \neq 1}}^{N} \phi_{i j} \frac{x_{j}}{x_{i}}\right)^{-1}\right]
\]
where \(N\) is the number of species, \(x_{i}\) the mole fraction of species \(i\), and \(\Phi_{i j}\) is defined by:

Ref. 14: Svehla, R. A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures," NASA TR-132, 1962.
Ref. 15. Bird, R. B., Stewart, U. E., and Lightfoot, E. N., Transport Phenomena, John Wiley \& Sons, 1960.
\[
\Phi_{i j}=\frac{1}{2^{3 / 2}}\left[1+\frac{M_{1}}{M_{j}}\right]^{-1 / 2}\left[\begin{array}{cc}
u_{i} & M_{j}^{1 / 2} \\
1+\left(\frac{\mu_{j}}{\mu_{j}}\right) & \left(\frac{M_{i}}{M_{1}}\right)
\end{array}\right]^{2}
\]

The thermal conductivity, \(k\), is based on the equation given by Mason and Saxena \({ }^{16}\) which is a slight modification of Eucken's relation,
\[
k=\sum_{i=1}^{N} \kappa_{i}\left[1+1.065 \sum_{\substack{j=1 \\ j \neq 1}}^{N} \phi_{i j} \frac{x_{j}}{x_{i}}\right]^{-1}
\]

The results calculated as described above are used to provide the BLM with properties using the following procedure.

The viscosity at the nozzle throat, \(\mu^{*}\), and the corresponding temperature, \(T^{*}\), are calculated. Using these values, an exponent, \(\omega\), is computed such that the expression
\[
\mu=\mu^{*}\left(T / T^{*}\right)^{\omega}
\]
provides a best fit in a least square manner to the chamber and exit values for viscosity. Next, a constant value for Prandtl number is computed as
\[
\operatorname{Pr}^{*}=\left(\frac{\mu C_{p}}{\kappa}\right)^{*}
\]
where \(\mu, \kappa\), and \(C_{p}\) are evaluated at the nozzle throat. The "frozen" \(C_{p}\) value is used. The values transmitted to BLM are then \(\mu^{*}, T^{*}, \omega\), and \(\mathrm{Pr}^{*}\). Actually, BLM only uses the ratio \(\operatorname{Pr} / \mu\), and does not require \(k\) or the frozen \(C_{p}\) versus \(T\).

Ref. 16. Mason, E.A., and Saxena, S. C., Physics of Fluids, Vol. 1, No. 5, pp. 361-369, 1958.

\subsection*{2.6.5 Use of Boundary Conditions and Gas Properties by BLM}

In general, the flow properties at the boundary layer edge as computed by TDK are not isentropic. The TDK expansion is isentropic only if the flow is in a state of equilibrium, or if the flow is frozen in composition. When the TDK expansion is not isentropic, there are inconsistencies between TDK and BLM with respect to edge values and gas properties. Thus it is important to describe the methods by which these parameters are treated.

TDK supplies BLM with tables of \(V\), and \(P\) vs \(X\). Corresponding values of static enthalpy, \(h\), are computed from the relation:
\[
h=H_{t}-v^{2} / 2
\]
i.e., the BLM is given the condition that total enthalpy at the boundary layer edge is constant. In BLM enthalpy profiles and velocity profiles at constant pressure are used as state variables. Temperature and the gas constant, \(R\), are obtained as a function of \(h\) by interpolation in the gas properties tables that were computed by the ODE module (see Section 2.6.3). Temperature is not a state variable, but together with the gas constant, it is used to obtain the gas density from the equation of state, i.e.,
\[
\rho=P / R T .
\]

Thus, in general the gas density used by BLM at the boundary layer edge does not match the TDK value, although the values of \(P, V\), and \(h\) do match.

The only other gas properties required by BLM are the Prandtl number, \(P_{r}\), and the viscosity, \(\mu\). A constant value is input for \(P_{r}\) and the viscosity, \(\mu\), is computed (see section 2.6.4) as
\[
\mu=\mu^{*}\left(T / T^{*}\right)^{\omega}
\]
where the reference values \(\mu^{*}\) and \(T^{*}\) are taken at the nozzle throat.

Values for \(C_{p}(T), Y(T)\), and \(K(T)\) are made available to BLM for auxillary calculations, but are not used in the boundary layer solution procedure.
2.6 .6

Solution Procedure

The solution procedure uses the numerical method described in Bradshaw et.al., Reference 13, to solve the governing equations presented in Section 2.6.1. This is an efficient two-point finite-difference method developed by Keller and Cebeci and extensively used by Cebeci for two-dimensional and three-dimensional flows. A detailed description is presented in Reference 13 , and is not repeated here.

One of the advantages of this numerical method is that nonuniform net spacings can be used in the x-direction as well as across the boundary layer. In the latter case, the nonuniform grid is a geometric progression with the property that the ratio of lengths of any two adjacent intervals is a constant; that is, \(\Delta \eta_{j}=K \Delta \eta_{j-1}\). The distance to the \(j-t h\) line is given by the following formula:
\[
\eta_{j}=\Delta \eta_{1}\left(K^{j}-1\right) /(K-1) \quad K>1
\]

There are two parameters in the above equation: 1) \(\Delta \eta_{1}\), the length of the first step, and: 2) \(K\), the ratio of two successive steps. The total number of points, \(J\), can be calculated from the following formula:
\[
J=\frac{\ln \left[1+(K-1)\left(n_{e} / \Delta n_{1}\right)\right]}{1 n}+1
\]

Default values used by the computer program for \(\Delta \eta_{1}\) and \(K\) are 0.01 and 1.14 , respectively.

NOMENCLATURE FOR SECTION 2.6, BLM

Alphabetic Symbol

A
c

C
\({ }^{c} \mathrm{f}\)

8
h
H
k

L
M
\({ }_{\mathrm{p}}^{\mathrm{M}} \mathrm{W}\)
Pr
\(\mathrm{Pr}_{\mathrm{t}}\)
\(q\)
\(r\)
\(\mathrm{r}_{\mathrm{r}} \mathrm{O}\)
\({ }^{R}{ }_{S}\)
S
\(t\)
u,v
ue
u
\(x^{\top}\)
X
\(y\)

Definition
\begin{tabular}{|c|c|}
\hline & damping length density ratio, \(\rho e^{/ \rho}\) \\
\hline & dimensionless density-viscosity ratio \\
\hline f & local skin-friction coefficient, \(\tau_{w} /(1 / 2) \rho e^{u} e^{2}\) \\
\hline & specific heat at constant pressure \\
\hline p & dimensionless stream function \\
\hline & total emthalpy ratio, \(\mathrm{H} / \mathrm{H} \mathrm{e}\) \\
\hline & total enthalpy \\
\hline & flow index, 0 for two dimensional flow, 1 for axisymmetric flow \\
\hline & reference length \\
\hline & Mach number \\
\hline & molecular weight \\
\hline & static pressure \\
\hline & molecular Prandtl number \\
\hline \(r_{\text {t }}\) & turbulent Prandtl number \\
\hline \(t\) & heat-transfer rate \\
\hline & radial distance from axis of revolution \\
\hline & local radius of body of revolution \\
\hline & gas constant \\
\hline & local Reynolds number, \(u_{e} \xi^{\prime / v} e\) \\
\hline & entropy \\
\hline & transverse curvature term, y \(\cos \phi / r_{0}\) \\
\hline & static temperature \\
\hline , v & \(x\) and \(y\) components of velocity, respectively \\
\hline & velocity at the edge of the boundary layer \\
\hline & friction velocity \(\left(\tau_{w} \rho_{w}\right)^{1 / 2}\) \\
\hline & surface distance \(w^{W}\) \\
\hline & axial distance \\
\hline & distance normal to the surface of the body \\
\hline
\end{tabular}

850803

\section*{NOMENCLATURE (Continued)}
```

Greegk Symbol
Definition
r ratio of specific neats, C P/C
\delta boundary-layer thickness
\delta* displacement thickness
\varepsilonm+ eddy viscosity
\eta similarity variable
0 momentum thickness
\kappa
\mu
v
\rho
\tau
\$
\psi

```
Subscripts
Definition
\begin{tabular}{ll}
\(c\) & chamber (stagnation) conditions \\
\(e\) & edge of the boundary layer \\
\(r\) & reference conditions \\
\(t r\) & transition \\
\(w\) & evaluated at the wall \\
\(x\) & \(x\)-direction
\end{tabular}

Superscripts Definition
 nozzle throat conditions
Primes designate differentiation with respect to \(\eta\)

\section*{3. NMERICAL METHODS}

In this Section numerical methods used by the ODK and TDK programs are discussed. The ODK subprogram,integrates the system of differential equations presented in Section 2.1.1. Standard integration methods, such as Runge-Kutta, are impractical when applied to these differential equations because of the very small step sizes often required for stability. Consequently a fully stable integration method has been developed and applied as described in Section 3.1.

Solution of the characteristic differential equations presented in Section 2.5 also requires a numerically stable integration method. A highly stable implicit finite difference method is presented in Section 3.2 for integration of these characteristic relationships.
3.1 ODK NUMERICAL INTEGRATION METHOD

It has been shown by Tyson \({ }^{17}\) that in the numerical integration of relaxation equations in near equilibrium flow regions (such as the chamber and nozzle inlet in rocket engines), explicit integration methods are unstable unless the integration step size is of the order of the characteristic relaxation distance of the relaxation equations. Since the characteristic relaxation distance is orders of magnitude smaller than the characteristic physical dimensions of the system of interest (such as the nozzle throat diameter and length) in near equilibrium flow regions, the use of explicit methods to integrate relaxation equations in these regions results in excessively long computation times. Implicit integration methods were shown to be inherently stable in integrating relaxation equations in all flow situations (whether near equilibrium or frozen) and can thus be used to integrate with step sizes of the order of the physical dimensions of the system of interest throughout the integration reducing the computation time per case several orders of magnitude. Since it has been demonstrated that there are significant advantages in using implicit rather than explicit integration of the relaxation equations, a second order implicit integration method has been chosen for use in the ODK computer program.

\subsection*{3.1.1 Stability Considerations}

The numerical considerations leading to the above conclusions can be lllustrated by considering the simple relaxation equation
\[
\begin{equation*}
\frac{d y}{d x}=-\frac{y-y_{e}}{\tau} \tag{3.1-1}
\end{equation*}
\]
which represents the relaxation toward equilibrium of chemical reactions, gas particle lags, etc. In this equation \(y_{e}\) is the equilibrium condition and \(\tau\) is the characteristic relaxation distance of the equation. In the equilibrium limit, \(\tau\) is very small compared to the physical dimensions of the system of interest while in the frozen limit, \(\tau\), is very large compared to the physical dimensions of the system of interest. The mathematical behavior of solutions to the above equation can be found by considering the simple case where \(\tau\) is constant and
\[
y_{e}=y_{e o}+a\left(x-x_{o}\right)
\]
which is equivalent to terminating the Taylor series for \(y_{e}\) after the first term. The exact solution for this case can be shown to be
\[
y\left(x_{0}+h\right)=y\left(x_{0}\right)+\left[y_{e 0}-y\left(x_{0}\right)-a r\right]\left[1-e^{-h / r}\right]+a h
\]
where \(y\left(x_{0}\right)\) is the initial value of \(y\) and \(h\) is the integration step.
It is seen that the solution consists of two parts, a term which varies slowly with \(x\) and a term which exponentially decays with a relaxation length of \(\tau\), the characteristic relaxation length of Equation (3.1-1). Thus after a few relaxation lengths
\[
\mathrm{y}(\mathrm{x}) \simeq \mathrm{y}_{\mathrm{eo}}+\mathrm{ah}, \quad \mathrm{~h} \gg \tau
\]
which is independent of \(y\left(x_{0}\right)\) the initial condition. Since explicit integration methods construct the solution of Equation (3.1-1) as a Taylor series about the initial condition \(y\left(x_{0}\right)\), the above example indicated that explicit integration methods should be limited to step sizes of the order of a few relaxation lengths.

That this is indeed the case can be shown by explicitly integrating Equation (3.1-1) using Euler's method. The explicit finite difference form is
\[
\frac{y\left(x_{0}+h\right)-y\left(x_{0}\right)}{h}=-\frac{y\left(x_{0}\right)-y_{e o}}{T}
\]
which yields the truncated Taylor series
\[
y\left(x_{0}+h\right)=y\left(x_{0}\right)\left(1-\frac{h}{\tau}\right)+y_{e o} \frac{h}{\tau}
\]
when solved for \(y\left(x_{0}+h\right)\). After \(n\) integration steps, it is found that
\[
y\left(x_{0}+n h\right)=y\left(x_{0}\right)\left[1-\frac{h}{\tau}\right]^{n}+\sum_{i=1}^{n}\left[y_{00}+(i-1) a h\right]\left[1-\frac{h}{\tau}\right]^{n-i} \frac{h}{\tau}
\]

Examination of this equation shows that the independence on the initial condition \(y\left(x_{0}\right)\) will decay only if \(|1-h / T|<1\), otherwise \(y\left(x_{0}+n h\right)\) will oscillate with raptuly incieastūy amplitude. IIEnce the calculation will be stable only if hí \(<2\). Similar results are obtained for other explicit integration methods. (The stable step size for Runge-Kutta integrations is \(h / \tau<5.6\).) Thus the stable step size for explicit integration of relaxation equations is of the order of the relaxation distance which explains the large computation times associated with explicit integration of relaxation equations in near equilibrium flow regions. As shown below, the use of implicit integration methods allows the integration of relaxation equations on a step size which is independent of the relaxation length.

Implicitly integrating Equation (3.1-1) using Euler's method, the finite difference form of Equation (3.1-1) is
\[
\frac{y\left(x_{0}+h\right)-y\left(x_{0}\right)}{h}=-\frac{y\left(x_{0}+h\right)-y_{e 0}-a h}{T}
\]
which yields
\[
y\left(x_{0}+h\right)=\frac{y\left(x_{0}\right)+\left(y_{e o}+a h\right) \frac{h}{T}}{1+\frac{h}{T}}
\]
when solved for \(y\left(x_{0}+h\right)\). After \(n\) integration steps it is found that
\[
\begin{equation*}
y\left(x_{0}+n h\right)=\frac{y\left(x_{0}\right)}{\left[1+\frac{h}{\tau}\right]^{n}}+\sum_{i=1}^{n} \frac{y_{e 0}+i a h}{\left[1+\frac{h}{\tau}\right]^{n+1-i}} \frac{h}{T} \tag{3.1-2}
\end{equation*}
\]

Examination of this equation shows that the dependence on the initial condition \(y\left(x_{0}\right)\) always decays, regardless of the step size. Hence the implicit calculation will always be stable. As an extreme example, consider one integration step, \(h=x-x_{0}\). From Equation (3.1-2), it is seen that
\[
y(x) \simeq y_{e \mathrm{e}}+a h \quad, \quad h \gg \tau
\]
when the step size is large compared to the relaxation length and
\[
y(x)=y\left(x_{0}\right)\left(1-\frac{h}{\tau}\right)+y_{e o} \frac{h}{\tau}+\ldots, h \gg \tau
\]

When the step size is small compared to the relaxation leingth.
It is seen that in the equilibrium limit (\(\tau\) small, \(\mathrm{h} / \tau\) large) the exact solution and the implicit integration of the relaxation equation go to the same limit which is independent of the relaxation distance and depends only on the rate of change of the equilibrium condition. In the frozen case (\(\tau\) large and \(h / \tau\) small) the implicit and explicit methods are essentially the same (terminated Taylor series). Thus, implicit numerical integration methods can be used to integrate relaxation equations using step sizes of the order of the physical dimensions of the system of interest in all flow situations whether near equilibrium or near frozen. For a complete discussion of the numerical integration of relaxation equations, see Reference 17.

In choosing a numerical integration method, the primary items of concern are the stability, accuracy and simplicity of the method. As shown by Tyson \({ }^{21}\) and discussed above, implicit methods are to be preferred for numerically integrating relaxation equations due to their inherent stabllity. Having chosen the basic integration method for stabllity reasons, the order of the integration method is determined by accuracy and simplicity considerations. In general, the higher the order of the integration method, the more complex the method becomes requiring more information in the form of past value or past derivatives of the function being integrated.

Second order methods (accurate to \(h^{2}\) with error of order \(h^{3}\)) have the advantage of simplicity and flexibility since they require only one past value of the function while retaining sufficient accuracy to allow the use of reasonably economical step sizes. For these reasons, a second order implicit numerical integration method was chosen for use in the present program. A complete derivation of this numerical integration method is given in the following section.
3.1.2 Derivation of the ODK Numerical Integration Method

Consider the coupled set of first order simultaneous differential equations.
\[
\frac{d y_{i}}{d x}=f_{i}\left(x, y_{1}, \ldots, y_{N}\right), i=1,2, \ldots, N
\]

It will be assumed that the equations are not singluar and that a solution exists which may be developed as a Taylor serles about the forward point
\[
k_{i, n+1}=\left.\frac{d y_{i}}{d x}\right|_{x_{n}+h} h-\left.\frac{d^{2} y_{i}}{d x^{2}}\right|_{x_{n}+h} \frac{h^{2}}{2}+\left.\frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}+h} \frac{h^{3}}{6}-\left.\frac{d^{4} y_{i}}{d x^{4}}\right|_{x_{n}+h} \frac{h^{4}}{24}+\cdots
\]
where \(k_{i, n+1}\) is the increment in \(y_{i}\) and \(h\) is sufficiently small. For equal integration steps
\[
\begin{aligned}
k_{i, n+1}+k_{i, n} & =\left.2 \frac{d y_{i}}{d x}\right|_{x_{n}+h} h-\left.4 \frac{d^{2} y_{i}}{d x^{2}}\right|_{x_{n}+h} \frac{h^{2}}{2}+\left.8 \frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}+h} \frac{h^{3}}{0} \\
& -\left.16 \frac{d^{4} y_{i}}{d x^{4}}\right|_{x_{n}+h} \frac{h^{4}}{24}+\cdots
\end{aligned}
\]

Solving these equations for the derivative at the forward point, it is found that
\[
\left.\frac{d y_{i}}{d x}\right|_{x_{n}+h}=\frac{3 k_{i, n+1}-k_{i, n}}{2 h}+\left.\frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}+h} \frac{h^{2}}{3} \cdots
\]

Expanding the function \(f_{i}\left(x, y, \ldots, y_{N}\right)\) as a Taylor's series about the back point \(\left(x_{n}\right)\), it is found that
\[
\left.\frac{d y_{i}}{d x}\right|_{x_{n}+h}=f_{i, n}+\alpha_{i, n} h+\sum_{j=1}^{N} \beta_{i, j, n} k_{j, n+1}+\left.\frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}} \frac{h^{2}}{2}+\cdots
\]
where
\[
\begin{gathered}
f_{i}=f_{i}\left(x, y_{1}, \cdots, y_{N}\right) \\
\alpha_{i}=\frac{\partial f_{i}}{\partial x} \\
\beta_{i, j}=\frac{\partial f_{i}}{\partial y_{j}}
\end{gathered}
\]
and the subscript \(n\) refers to the functions \(f_{1}, \alpha_{i}\) and \(\beta_{i, j}\) evaluated at the point \(x_{n}\). Since
\[
\left.\frac{d^{3} y}{d x^{3}}\right|_{x_{n}}=\left.\frac{d^{3} y}{d x^{3}}\right|_{x_{n}+h}-\left.\frac{d^{4} y}{d x^{4}}\right|_{x_{n}+h} h+\cdots
\]
and
\[
\left.\frac{d^{4} y}{d x^{4}}\right|_{x_{n}}=\left.\frac{d^{4} y}{d x^{4}}\right|_{x_{n}+h}
\]

Thus the formula for Taylor Series expansion about the back point can be written as
\[
\left.\frac{d y_{i}}{d x}\right|_{x_{n}+h}=r_{i, n}+\alpha_{i, n} h+\sum_{j=1}^{N} \beta_{i, j, n^{k} j, n+1}+\left.\frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}+h} \frac{h^{2}}{2} \cdots
\]

Equating the expressions for the derivative at the forward point and back point, it is found that
\[
\frac{3 k_{i, n+1}-k_{i, n}}{2 h}=f_{i, n}+\alpha_{i, n} h+\sum_{j=1}^{N} \beta_{i, j, n} k_{j, n+1}+\left.\frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}+h} \frac{h^{2}}{6}+\cdots
\]
or
\[
k_{i, n+1}=\frac{1}{3}\left[k_{i, n}+2\left(f_{i, n}+\alpha_{i, n} h+\sum_{j=1}^{N} \beta_{i, j, n} k_{j, n+1}\right) h\right]+\left.\frac{d^{3} y_{i}}{d x^{3}}\right|_{x_{n}+h} \frac{h^{3}}{9}+\cdots
\]

Neglecting the third order derivative term and solving the set of N linear nonhomogeneous algebraic equations
\[
\left(1-\frac{2}{3} \beta_{i, i, n^{h}}\right) k_{i, n+1}-\sum_{j=1}^{N}\left(1-\delta_{i, j}\right) \beta_{i, j, n} k_{j, n+1}=\frac{1}{3}\left[k_{i, n}+2\left(f_{i, n}+\alpha_{i, n} h\right) h\right]
\]
where \(\delta_{i, j}\) is the Kronecker delta thus yields a second order implicit solution of the above coupled first order simultaneous differential equations.

For unequal step sizes, it can be similarly shown that solving the set of N linear nonhomogeneous algebraic equations
\[
\begin{gathered}
\left(1-\frac{h_{n+1}+h_{n}}{2 h_{n+1}+h_{n}} \beta_{i, i, n} h_{n+1}\right) k_{i, n+1}-\frac{h_{n+1}^{2}}{\left(2 h_{n+1}+h_{n}\right) h_{n}} \sum_{j=1}^{N}\left(1-\delta_{i, j}\right) \beta_{i, j, n} k_{j, n+1} \\
=\frac{h_{n+1}^{2}}{\left(2 h_{n+1}+h_{n}\right) h_{n}}\left[k_{i, n}+\left(f_{i, n}+\alpha_{i, n} h_{n+1}\right) \frac{h_{n}}{h_{n+1}}\left(h_{n+1}+h_{n}\right)\right]
\end{gathered}
\]
yields a second order implicit solution of the above set of coupled first order simultaneous differential equations.

The reacting gas characteristic relationships given in Section 2.5 are usually integrated using second order explicit methods. It has been shown, however, that implicit integration methods are superior to explicit methods for integrating chemical relaxation equations \({ }^{17}\). Thus, in the present program the fluid dynamic equations are integrated using an explicit Euler method while the chemical relaxation equations are integrated using a first order implicit integration method.

In numerically calculating flow fields using the method of characteristics, only two (previously calculated) known points are directly usable in calculating a forward point. In equilibrium flows, only two known points are required to calculate a forward point and the calculation is straightforward and unambigous. In nonequilibrium flows, however, more than two known points are required to calculate a forward point so that a cholce must be made as to which points in the flow field will be used directly and which will be interpolated. Since even small interpolation errors in species concentrations are known to cause serious stability and accuracy problems in the numerical integration of the chemical relaxation equations, the back streamline point and one characteristic point were chosen as the known points. This choice avoids interpolation for the species concentrations in that only fluid dynamic properties (velocity, pressure, etc.) and the kinetic coupling terms (A and \(B\)) need be interpolated at one of the back characteristic points. Since these quantities are all slowly varying across the characteristics mesh, they can be accurately interpolated. Experience has shown that this choice of numerical integration methods and known data points is satisfactory for reacting gas characteristics calculations. A derivation of the numerical integration methods used in the program are given in Sections 3.2.1 and 3.2.2 below.
3.2 .1

Integration of the Fluid Dynamic Equations Consider the flow field shown in figure \(3-1\), below:

Figure 3-1. Flow Field Interior Point Calculation

Between points 3 and 4 the streamline characteristic relationships are integrated as:
\[
\begin{equation*}
r_{3}=r_{4}+\left(x_{3}-x_{4}\right) \tan \theta_{34} \tag{3.2-1}
\end{equation*}
\]
\(V_{3}=\left\{v_{4}^{2}-4\left(P_{3}-P_{4}\right) /\left(\rho_{3}+\rho_{4}\right)\right\}^{1 / 2}\)
or
\[
\begin{equation*}
V_{3}=\left\{2\left(H_{T}-\sum \quad c_{i} h_{i}\right)\right\} 1 / 2 \tag{3.2.2b}
\end{equation*}
\]
\(\rho_{3}=\rho_{4}{\left(\frac{P^{\prime}}{P_{4}}\right)^{\left(\frac{1}{Y}\right)}}_{43} \exp \left\{-\left(\frac{-1}{\cos }-\frac{1}{\theta}\right)\left(x_{3}-x_{4}\right)\right\}\)

850917
where the double subscripts imply averaged values, egg.:
\(\theta_{34}=\left(\theta_{3}+\theta_{4}\right) / 2\),
\(\left(\frac{1}{\gamma}\right)_{43}=\left(1 / \gamma_{4}+1 / \gamma_{3}\right) / 2\), etc.

The integration formula (3.2-1) relating the coordinates of points 3 and 4 is exact if the streamline is a circular arc between points 3 and 4. Equation (3.2-2a) is the Bernoulli Equation and is used to obtain a first estimate for \(V_{3}\). Successive estimates are made using the energy equation directly, i.e., equation \(3.2-2 b\), so that energy is conserved exactly along streamlines. In integrating the energy equation and the perfect gas relationship to obtain Equations (3.2-3) and (3.2-4), the coefficients \(\gamma^{-1}, A / \cos \theta,(\gamma-1) / \gamma\), and \(B / \cos \theta\) appearing in these equations were assumed to be equal to their average value between points 3 and 4 .

Between points 1 and 3 the right running characteristics relationships are integrated as:
\[
\begin{equation*}
r_{3}=r_{1}+\left(x_{3}-x_{1}\right) \tan (\theta-\alpha)_{31} \tag{3.2-5}
\end{equation*}
\]
\(P_{3}=P_{1}+P_{13}\left\{\left[-(\mathrm{AGH})_{13}+(\mathrm{GH})_{13} \frac{\sin \theta}{r_{13}} \frac{13}{}\right]\right.\)
\[
\left.\left(x_{3}-x_{1}\right)+G_{13}\left(\theta_{3}-\theta_{1}\right)\right\}
\]

The above equations are a finite difference form of equations (2.5-3) and (2.5-4), respectively.

850917

If point 3 is an axis point then \(r_{3}\) and \(\theta_{3}\) are zero and the indeterminate quantity \(\left(\sin \theta_{3}\right) / r_{3}\) appearing in Equation (3.2-9) can be approximated by using the value obtained at point 1.

Between points 2 and 3 the left running characteristics relationships are integrated as:
\[
\begin{equation*}
x_{3}=x_{2}+\left(r_{3}-r_{2}\right) / \tan (\theta+\alpha)_{32} \tag{3.2-7}
\end{equation*}
\]
\(P_{3}=P_{2}+P_{23}\left\{\left[(A G F)_{23}-(G F)_{23} \frac{\sin { }^{\theta}-23}{r_{23}}\right]\right.\)
\[
\left.\left(r_{3}-r_{2}\right)-G_{23}\left(\theta_{3}-\theta_{2}\right)\right\}
\]

The above equations (3.2-7) and (3.2-8) are a finite difference form of equations (2.5-1) and (2.5-2), respectively.

If point 2 is an axis point, then \(r_{2}\) and \(\theta_{2}\) are zero and the indeterminate quantity \(\left(\sin \theta_{2}\right) / r_{2}\) appearing in Equation (3.2-8) can be approximated using the values estimated for point 3.

Equations (3.2-6) and (3.2-8) can be combined to yield:
\(\theta_{3}=\left\{P_{2}-P_{1}+P_{23}\left[+(A G F)_{23}-(G F){ }_{23}-\frac{\sin \theta_{23}}{r_{23}}-3\right]\left(r_{3}-r_{2}\right)\right.\)
\[
\begin{align*}
& -P_{13}\left[-(A G H)_{13}+(G H)_{13}-\frac{\sin \theta_{13}}{r_{13}}\right]\left(x_{3}-x_{1}\right) \\
& \left.+P_{23} G_{23} \theta_{2}+P_{13} G_{13} \theta_{1}\right\} /\left\{P_{23} G_{23}+P_{13} G_{13}\right\} \tag{3.2-9}
\end{align*}
\]

850917

The modified Euler iteration method is used by TDK to solve the above equations in the various point calculations. The implicit method used by \(T D K\) to integrate the chemical relaxation equations is presented next in Section 3.2.2.
3.2.2 Derivation of the TDK Numerical Integration Method

The chemical relaxation equations are a coupled set of first order simultaneous differential equations of the form
\[
\frac{d c_{i}}{d x}=f_{i}\left(c_{1}, c_{2}, \cdots, c_{N}, y_{1}, y_{2}, y_{3}, y_{4}\right) \quad i=1,2, \ldots, N
\]
along the streamline where \(Y_{1}, Y_{2}, Y_{3}\), and \(y_{4}\) refer to the fluid dynamic variables \(V, \rho, T\), and \(\theta\), respectively. Assuming that the equations are not singular and that a solution exists which may be developed as a Taylor series about the forward point, one obtains
\[
i_{i}=\left.\frac{d c_{i}}{d x}\right|_{x_{n+h}} h
\]
where \(k_{i}\) is the increment in \(c_{i}\) and \(h\) is sufficiently small. The first coefficient of the Taylor series may be calculated as
\[
\frac{d c_{i}}{d x}=f_{i}\left(c_{1}, c_{2}, \cdots, c_{N}, y_{1}, y_{2}, y_{3}, y_{4}\right)
\]

Expanding as a Taylor series about the point \(x_{n}\), it is found that
\[
\left.\frac{d c_{i}}{d x}\right|_{x_{n+h}}=f_{i, n}+\sum_{j=1}^{N} \beta_{i, j, n^{k}}+\sum_{j=1}^{4} o_{i, j, n} \Delta y_{j}+o\left[h^{2}\right]
\]
where
\[
\begin{gathered}
\beta_{i, j}=\frac{\partial f_{i}}{\partial c_{j}} \\
\phi_{i, j}=\frac{\partial f_{i}}{\partial y_{j}}
\end{gathered}
\]
and the subscript \(n\) refers to the functions \(f_{i}, \beta_{i, j}\), and \(\Phi_{i, j}\) evaluated at the point \(X_{n}\).

Thus neglecting the second order error and derivative terms yields the integration formula for the increment \(k_{i}\)
\[
k_{i}=\left[i_{i, n}+\sum_{j=1}^{N} \quad \beta_{i, j, n} k_{j}+\sum_{j=1}^{4} \sigma_{i, j, n} \quad \Delta y_{j}\right] h
\]
3.3 SUMMARY OF THE TDK COMPUTATIONAT PROCEDURT

The steps below summarize the computational procedure used by the TDK Computer Program (ODE-ODK-TDK input option):

Step 1. (Zone 1, inner zone \(O / F\) ratio)
1.1 ODE is used to compute: •
1.1.1 \(\mathrm{P}, \mathrm{H}\) solution at stagnation (chamber \(\mathrm{V}=0\)) condition
1.1.2 P,S solution at throat (\(\rho \mathrm{V}\) maximum) condition. Entropy, S, is computed in step l.l.l above.
1.1.3 \(\epsilon_{\mathrm{c}}\), S solution at input contraction ratio.
1.2 An average expansion coefficient, \(N_{e}\), is computed by Subroutine SIJPNE . This expansion coefficient is the perfect gas expansion coefficient which would yield the throat pressure ratio computed in step 1.1.2.
1.3 A pressure table \(P(x)\) and its derivative \(d P(x) / d x\) are computed using the perfect gas relations, \(N_{e}\), and the input thrust chamber geometry.
1.4. The ODK Computer Program is used to integrate the finite rate equations for one dimensional flow. The integration begins at \(\epsilon_{c}\). So that the flow will not be singular at the throat, \(P(x)\) and \(d P(x) / d x\) are used until the flow is supersonic (\(M \leqslant 1.02\)). For supersonic flow the area defined relations are used.

Step 2.
The sequence described in Step l, above, is repeated for zones 2 through N 550 , the outer zone.

The following throat property tables are constructed during each of the above calculations:
\[
\rho, V, T, c_{1} \text { vs. } P .
\]

These tables begin at the ODK determined throat (\(\rho \mathrm{V}\) maximum) and end when the flow attains a Mach number of 1.5 .

Step 3.
An average expansion coefficient, \(\gamma_{n}\), is computed for each zone using the tables constructed in Step 2.
\[
\gamma_{\mathrm{n}}=\frac{\ln \left(\mathrm{P}_{\ell} / \mathrm{P}_{1}\right)}{\ln \left(\rho_{\ell} / \rho_{1}\right)} \quad \mathrm{n}=1 \ldots \mathrm{~N} \leq 50
\]

The subscripts 1 and \(\ell\) refer to the first and last table entries (at the ODK throat and at \(M=1.5\)). Thus if the flow through the throat is in equilibrium \(\gamma\) will attain the equilibrium value and if the flow is frozen \(\gamma\) will attain the frozen value.

Step 4.
4.1. Using the above values of \(\gamma_{n}\) and the upstream radius of curvature at the nozzle throat, \(\mathrm{R}_{\mathrm{u}}\), a two dimensional (axially symmetric) initial data line is constructed using a small perturbation method. The location of the iritial data line across the nozzle throat region is determined. The location of the slipline positions is also determined by the small perturbation method (from the continuity relation). Pressure and flow angle are matched (through a first order of approximation) at the sliplines.
4.2 Flow properties of \(\rho, V, T\), and \(c_{i}\) are interpolated from the tables constructed in Step 2 using the pressure determined in Step 4.1.

Step 5.
A method of characteristics solution is computed for the nozzle. Boundary conditions are the initial data line and nozzle wall with a symmetry condition used along the nozzle axis and slip conditions (matched pressure and flow angle) used along the streamlines dividing zones of different \(O / F\). The finite difference mesh is constructed at gas streamline and left running characteristic intersections.

\section*{4. PROGRAM STRUCTURE}

This section contains an over-all description of the structure of the TDK computer program. TDK consists of a master control module (MCM) and five major computational modules, as follows: ODE, ODK, TRAN, MOC, and BLM. Each module is described briefly in Figure 4-1. The computational modules have been combined with the MCM so that they can be run together automatically. The extensive use of internal communication between the modules has eliminated the need for redundant inputs by the user.

A schematic of an overlay structure for TDK is presented in Figure 4-2. This figure should prove useful to programmers who wish to convert TDK to a computer, such as CDC or Univac, on which an overlay structure is mandatory. TDK has been developed for the DEC \(11 / 780\) Virtual Address Extension (VAX) computer for which no overlay structure is required.

MODULE

MCM

ODE

ODK

TRANS

MOC

BLM

The Master Control Module is used to control the execution of \(T D K\) by selecting the computation modules to be exercised. The MCM is also used to process output files for the purpose of creating printed and plotted output.

The One-Dimensional Equilibrium module is used to calculate ideal engine performance. Engine performance can also be calculated assumming that the chemical composition is frozen at chamber (stagnation) conditions.

The One-Dimensional Kinetics module is used to calculate the loss in nozzle performance caused by finite-rate chemistry of the expansion products.

The Transonic flow module is used to calculate two-dimensional flow conditions in the throat region of the nozzle. It is used to obtain an initial data line for the MOC module.

The Method of Characteristics module is used to calculate the loss in nozzle performance caused by flow divergence, including the effects of chemistry and mixture ratio variation.

The Boundary Layer Module is used to calculate the loss in nozzle performance due to a viscous boundary layer and its interaction with the nozzle wall. The effects of both drag and heat transfer are included.

850107

4-4

The files used by TDK are listed in Table 4-1. For those files referred to by a fortran variable name, the name is listed. The description of the file includes the name of the labeled common block in which the file name is communicated. Subroutines using the file are also listed.

The type of file is indicated by the following codes:
\begin{tabular}{ll}
B & binary \\
F & formated \\
MS & mass storage (saved) \\
DA & direct access \\
MS & temporary mass storage
\end{tabular}

For Univac machines, write statements to unit 50 must be replaced by PUNCH statements.

Table 4-1: Files Used by TDK
\begin{tabular}{llll}
Logical Fortran & Type & Description \\
& Variable & \\
& Name &
\end{tabular}
5 MUN F \begin{tabular}{ll}
Data input stream \\
COMMON/NUCM3O/
\end{tabular}

6

8
IPUNIT F,TMS
Printed output stream
-

Initial Data Line file, \$line, COMMON/PCHILF, Subroutine CHAR

10
LU
F,TMS Temporary input, COMMON/NUCM 30/, Subroutines MAIN, SAVDAT,CHAR, LTCPHS, ODES, OKDINP, REACT, REAXIN, TDK, TTAPE
\begin{tabular}{rl}
11* LUBLM \(\quad\) F,TMS,MS & TDK-BLM interface data, \\
& COMMON/BLM2/, Subroutines \\
& BLKDTA, ODES, PRINT, PRINTS, \\
& PTAB, READAT, READBL,
\end{tabular}

12 LUøUT
F,TMS,MS
BLM-TDK
interface data Subroutines BLMAIN, BLW, RBL

13
NUPLT
\[
\begin{aligned}
& \text { B,TMS } \quad \text { BLM plots } \\
& \text { Subroutine BLMAIN }
\end{aligned}
\]

14
NUPRDF
B,TMS
BLM plots
Subroutine WRPRøF

\footnotetext{
\({ }^{*}\) Files 11,15 , and 29 must be saved if the restart option, IRSTRT = 1 , is to be used on later runs.
}

\subsection*{4.2 SUBROUTINE AND COMMON BLOCK CROSS-REFERENCES}

This section provides tables that contain cross-references for subroutines and common blocks. Referal to these tables, or their equivalent, is usually necessary if the program is to be modified.

Table 4-2 ifsts in alphanumeric order each TDK subroutine. All modules are included. Opposite each subroutine name are the names of all subroutines that call the subroutine.

Table 4-3 lists in alphanumeric order each TDK common block. Again, all modules are included. Opposite each common block name are the names of all subroutines that contain the common block.

Tables 4-2 and 4-3 do not contain the names of system supplied subroutines, such as SIN, COS, or the I/ \(\quad\) subroutines.

ATSHCK
AXIS
AXISPT
BANDI
BLEDGE
BLH
BLKDTA
BLMAIN
BLOCKD
BLPLTS
BLSEG
BLTABL
BLW
CHAR
CHECK

CHTYPE
CKEXIT
CKSHCK
CNTR12
CNTR13
CNTR14
CNTR16
CNTR2 1
CNTR31
CNTR41
CNTR91
CNTRL
CNTRLI
CNTRL2
COEF
COEFl
CONVRT
CPHS
CRIT
CUBIC CUBICB DERIV DETON DIFF DSPT ECNVI EDDY EF EF2D EFMT ENCALC EQLBRM

ERRORZ FCALC

CNTR16
BLPLTS
CNTR14
NEWT
BLMAIN
MAIN
MAIN
BLMAIN
BLMAIN
BLEDGE
MAIN
TDK
ATSHCK
INPTR
WLPT
PREAX
CNTR21
CNTRL2
CNTRLI
CNTR91
CNTR91
CNTR91
CNTR91
CNTR91
CNTR91
CNTR91
TDK
TDK

BLSEG
BLSEG
PACK
EQLBRM
ROCKET
CHECK
SHCKR
WALL
BLTABL
IAUX
ODES
BLEDGE
CNTRL
MGET
BLSEG
DERIV
SDERIV
OUTI
SHOCK
DETON TPCALC
CHAR
TRAN

CNTR13 CNTR21 CNTR31 CNTR41
CNTR12 CNTR14 CNTR16 CNTR41
CNTR21
CNTRL
CNTR31
CNTR4 1
CNTRLI
SHCKAI

INPUTB
\begin{tabular}{lll}
AXISPT & DSPT & INPT \\
INPTRI & INPTRS & INPTS
\end{tabular}

CNTR3
CNTR4 1
CNTRLI
(SUBROUTINE NOT USED)

IVPL

FROZEN
HCALC
SHCKAI SHCKI

\section*{DSPT} SHCKW1

INT

PRATES
tcalc ROCKET

CNTRI
SHCK
TDK
\begin{tabular}{|c|c|c|c|c|}
\hline SUBROUTINE & \multicolumn{4}{|l|}{REFERRED BY ...} \\
\hline \multirow[t]{3}{*}{FIND} & CHAR & CPHS & ENCALC & GPFPG \\
\hline & IAUX & MAIN1D & MUK & PACK \\
\hline & PRES & PTAB & STF & THERM \\
\hline FINDT & GETIL & \multicolumn{3}{|l|}{GETILV} \\
\hline FLU & DERIV & & & \\
\hline FNDIM & MGET & PRATES & REAXIN & \\
\hline FROZEN & ROCKET & & & \\
\hline \multirow[t]{2}{*}{FTHRST} & CNTR12 & CNTR13 & CNTR14 & CNTR16 \\
\hline & CNTR2 1 & CNTR31 & CNTR41 & \\
\hline GAUELM & \multicolumn{4}{|l|}{SKPBI} \\
\hline GAUSS & \multicolumn{4}{|l|}{EQLBRM} \\
\hline GETIL & \multicolumn{4}{|l|}{TRAN} \\
\hline GETILV & \multicolumn{4}{|l|}{TRAN CNTR13 CNTR14 46} \\
\hline \multirow[t]{2}{*}{GETPT} & CNTR12 & CNTR13 & CNTR14 & CNTR16 \\
\hline & CNTR41 & INPTRS & INPTS & SUBIIR \\
\hline \multirow[t]{5}{*}{GPF} & ATSHCK & AXISPT & DSPT & INPT \\
\hline & INPTR & INPTR1 & INPTRS & INPTS \\
\hline & INSRT & SHCKA & SHCKAI & SHCKL \\
\hline & SHCKR & SHCKW & SHCKW1 & SUBIL \\
\hline & SUBIIR & WLPT & & \\
\hline GPFKIN & GPF & SUBIL & & \\
\hline GPFPG & \multicolumn{4}{|l|}{GPF} \\
\hline GTF & DERIV & MAINID & & \\
\hline HCALC & DETON & SAVE & SHCK & \\
\hline IAUX & INT & MAINID & & \\
\hline INPT & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{CNTRL1}} \\
\hline INPTR & & & & \\
\hline INPTR1 & \multicolumn{4}{|l|}{CNTR16} \\
\hline INPTRS & \multicolumn{4}{|l|}{CNTR14} \\
\hline INPTS & \multicolumn{4}{|l|}{CNTR13} \\
\hline INPUTB & \multicolumn{4}{|l|}{BLMAIN WLCALC} \\
\hline INSRT & CNTRL & CNTRLI & CNTRL2 & WLCALC \\
\hline \multirow[t]{2}{*}{INTEXT} & \multicolumn{4}{|l|}{MAINID} \\
\hline & CNTR12 & CNTR14 & CNTR16 & CNTR21 \\
\hline \multirow[t]{2}{*}{ITER} & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\(\begin{array}{lll}\text { PRINT } & \text { PRINTS } \\ \text { TSCALC } & & \\ \text { ENCALC }\end{array}\)}} \\
\hline & & & & \\
\hline ITERI & \multicolumn{2}{|l|}{ENCALC} & & \\
\hline ITER2 & \multicolumn{4}{|l|}{SHOCK} \\
\hline ITER3 & \multicolumn{4}{|l|}{ATSHCK} \\
\hline IVPL & \multicolumn{4}{|l|}{BLMAIN} \\
\hline LESK & \multicolumn{4}{|l|}{IAUX} \\
\hline LINE & BLPLTS & & & OUTPBL \\
\hline \multirow[t]{2}{*}{LINI} & BLEDGE & BLTABL & INPUTB & \\
\hline & \multicolumn{4}{|l|}{WRPROF} \\
\hline LTCPHS & MAIN & & & \\
\hline \multicolumn{5}{|l|}{MAIN} \\
\hline MAINID & \multicolumn{4}{|l|}{ODK} \\
\hline MATCH & ODKBLM & ROCKET & & \\
\hline MATRIX & \multicolumn{4}{|l|}{EQLBRM} \\
\hline MGET & \multicolumn{4}{|l|}{REAXIN CNTRI4 \({ }^{\text {CNT }} 6\)} \\
\hline MLCK & CNTR12 & CNTR14 & CNTR16 & CNTR41 \\
\hline MRCK & CNTR13 & CNTR21 & CNTR31 & \\
\hline MRCK1 & CNTRLI & & & \\
\hline MUK & ODKBLM & ROCKET & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline SUBROUTINE & REFERRED & & & \\
\hline NESK & SINT & & & \\
\hline NEWOF & DETON & ROCKET & SHCK & THERMP \\
\hline NEWT & TRAN & & & \\
\hline NUMBER & BLPLTS & & & \\
\hline ODES & MAIN & & & \\
\hline ODK & MAIN & & & \\
\hline ODKBLM & ODK & & & \\
\hline ODKINP & ODK & & & \\
\hline ODWALL & ODKINP & & & \\
\hline OMEGA & ODKBLM & ROCKET & & \\
\hline OUT1 & DETON & RKTOUT & SHCK & THERMP \\
\hline OUT2 & DETON & RKTOUT & SHCK & THERMP \\
\hline OUT3 & DETON & RKTOUT & SHCK & THERMP \\
\hline OUTPBL & BLMAIN & BLSEG & & \\
\hline OUTPUT & INT & MAINID & PRNTCK & \\
\hline PACK & ODK & & & \\
\hline PACKCD & REAXIN & & & \\
\hline PLOT & BLPLTS & & & \\
\hline PLOTS & BLPLTS & & & \\
\hline PRATES & REAXIN & & & \\
\hline PREAX & REAXIN & & & \\
\hline PRES & PACK & & & \\
\hline PRINT & CNTRL & & & \\
\hline PRINTS & & & CNTR14 & CNTR16 \\
\hline & CNTR21 & CNTR31 & CNTR41 & CNTRLI \\
\hline & CNTRL2 & & & \\
\hline PRNTCK & INT & MAINID & & \\
\hline PROBLM & MAIN & & & \\
\hline PTAB & TRAN & & & \\
\hline RBL & BLH & BLW & & \\
\hline REACT & ODES & & & \\
\hline READAT & MAIN & & & \\
\hline READBL & INPUTB & & & \\
\hline REAXIN & ODKINP & & & \\
\hline RKTOUT & ROCKET & & & \\
\hline ROCKET & ODES & & & \\
\hline SAUER & TRAN & & & \\
\hline SAVDAT & MAIN & & & \\
\hline SAVE & DETON & ROCKET & SHCK & THERMP \\
\hline SAVPT & CNTR12 & CNTR13 & CNTR14 & CNTR16 \\
\hline & CNTR31 & CNTR41 & CNTRLI & CNTRL2 \\
\hline & SUBILR & WLCALC & & \\
\hline SCALE & BLPLTS & & & \\
\hline SCK & CNTR12 & CNTR14 & & \\
\hline SDERIV & GPFKIN & SINT & & \\
\hline SEARCH & ODES & & & \\
\hline SELECT & ODKINP & & & \\
\hline SETID & CNTR12 & CNTR13 & CNTR14 & CNTR16 \\
\hline & CNTR21 & CNTR31 & CNTR41 & CNTRL1 \\
\hline & CNTRL2 & SUBIIR & WLCALC & \\
\hline SHCK & ODES & & & \\
\hline SHCKA & CNTR12 & CNTR14 & & \\
\hline SHCKAl & CNTR13 & & & \\
\hline SHCKL & CNTR13 & SHCKW & & \\
\hline SHCKR & CNTR12 & CNTR14 & CNTR16 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline SUBROUTINE & \multicolumn{2}{|l|}{REFERRED BY ...} & & \\
\hline SHCKW & CNTR13 & & & \\
\hline SHCKW1 & CNTR14 & CNTR16 & & \\
\hline \multirow[t]{2}{*}{SHOCK} & ATSHCK & SHCKA & SHCKAI & SHCKL \\
\hline & SHCKR & SHCKW & SHCKW1 & \\
\hline \multirow[t]{4}{*}{SINT} & ATSHCK & AXISPT & DSPT & INPT \\
\hline & INPTR & INPTRI & INPTRS & INPTS \\
\hline & SHCKA & SHCKAI & SHCKL & SHCKR \\
\hline & SHCKWl & SUBIL & SUBILR & WLPT \\
\hline SKPBl & ODWALL & SKPB2 & WALI & \\
\hline SKPB2 & ODWALL & WALL & & \\
\hline SLP & PACK & TDK & WALI & \\
\hline SOLV5 & BLSEG & IVPL & & \\
\hline \multirow[t]{4}{*}{SPLN} & CHAR & CNTRL & CPHS & ENCALC \\
\hline & FLU & GPFPG & IAUX & MAINID \\
\hline & MUK & PACK & PRES & PTAB \\
\hline & STF & THERM & & \\
\hline STF & CONVRT & DERIV & MAIN1D & ODKBLM \\
\hline STOICC & CONVRT & PACK & & \\
\hline STORNU & REAXIN & & & \\
\hline SUBIL & CNTRL & & & \\
\hline SUBILR & CNTR21 & CNTR31 & CNTR41 & \\
\hline SUBNE & PRES & & & \\
\hline SUMPRT & MAIN & & & \\
\hline SUMPRTI & SUMPRT & & & \\
\hline SYMBOL & BLPLTS & & & \\
\hline TABGEN & IAUX & MAINID & & \\
\hline TCALC & SHOCK & & & \\
\hline TDK & TWOD & & & \\
\hline THERM & ENCALC & SDERIV & & \\
\hline THERMP & ODES & & & \\
\hline \multirow[t]{2}{*}{TIMERX} & CHAR & CNTRL & MAIN & MAIN1D \\
\hline & MLCK & MRCK & TRAN & \\
\hline tPCALC & TSCALC & & & \\
\hline TRAN & TWOD & & & \\
\hline TRIM & TRAN & & & \\
\hline TSCALC & ODES & & & \\
\hline trape & MAIN & & & \\
\hline TWOD & MAIN & & & \\
\hline UNIT & MAIN & & & \\
\hline VARFMT & RKTOUT & & & \\
\hline WALL & CHAR & & & \\
\hline WLCALC & CNTR21 & CNTR31 & CNTR41 & \\
\hline \multirow[t]{2}{*}{WLPT} & CNTR13 & CNTRL & CNTRL2 & SHCKW1 \\
\hline & WLCALC & & & \\
\hline WRPROF & BLSEG & & & \\
\hline
\end{tabular}

REFERRED by SUBroutine
-.............................
REAXIN
STORRNU
PRATES
PREAX

MAIN
TDK
FLU
CHAR
GPFKIN
BLMAIN
INPUTB
OUTPBL
BLEDGE

\section*{MAIN \\ 8LKDTA \\ OOES
PACK
REACT \\ SEARCH DETON
OOKINP \\ OUT1 \\ OUTPUT}

\section*{OOES}

PROBLM
OOKINP

\section*{REACT
SUMPRT \\ TWOD}

MAIN10
BLOCKD
INPUTB
READBL
BLEDGE
BLOCKD
BLMAIN
INPUTB
IVPI
OUTPBL
READBL SOLV5

LABELED COMMON

BLCO
BLEDGE
8LSEG
COEF
COEF 1
EDOY
URPROF
IVPL OUTPBL
SOLVS
BLSEG
CDEF COEF 1
EDOY
WRPROF
OUTPBL
COEF 1
EDOY
IVPL
SOLV5
BLSEG
SOLV5
COEF
BLOCKO
INPUTB
BLEDGE
MAIN
PROBLM
READAT
SAVDAT
PRINT
PTAB
PRINTS
8LKDTA
COES
READAT
READBL
OOKBLM
TOK
PRINT
PTAB
PRINTS
\begin{tabular}{|c|c|c|c|}
\hline LABELED COMMON & REfERRED BY SUBROUTIME & LABELED COMMON & REFERRED BY SUBR \\
\hline & & CINT & MAIN1O \\
\hline BLM3 & ROCKET & & IAUX \\
\hline & ROCKE & & INT \\
\hline BLM4 & CoEs & & LESK \\
\hline & OU1 & CXSHCK & CHAR \\
\hline 8LMF & cok & & \\
\hline & PROBLM & Cmaxit & TOK \\
\hline & SUMPRT & & CHAR \\
\hline BLMPLT & BLOCKD & & Prints \\
\hline & blmais & COOTDK & \\
\hline & 1 MPUTB & cootok & MAIN \\
\hline & BLSEG & & mainio \\
\hline & WRPROF & & OOKINP \\
\hline BLMSPR & BLH & & fok \\
\hline & BLH & COEFFX & \\
\hline & SUMPRT & COEFFX & SEARCH
CPHS \\
\hline BLPLOT & & COM4 & \\
\hline & BLMAIN & & MAIN SUMPRT \\
\hline & & & tran \\
\hline BLTK & blmain & & CHAR \\
\hline & OUTPBL & con6 & tran \\
\hline BLTKPR & PROOLM & & GETIL \\
\hline CCINT & & & getilv \\
\hline & SINT & & SAUER \\
\hline CDELHX & NESK & COMCAS & main \\
\hline Cothx & Main & & \({ }^{\text {BLH }}\) \\
\hline & SAVE & & PACK \\
\hline & TH00 & & READAT \\
\hline & MAINID & & SAVDAT \\
\hline CDELHY & & & CONVRT \\
\hline & DDES & & mainld \\
\hline & SAVE & & OCKBLM \\
\hline & TW00 & & OOKINP \\
\hline & MAIN1D & & \begin{tabular}{l}
OUTPUT \\
PRES
\end{tabular} \\
\hline COINTG & SUMPRT & & REAXIN \\
\hline & SUMPRT1 & & SELECT
STf \\
\hline & tran & & Stornu \\
\hline CImILN & CHAR & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{38}{*}{COMCAS} & & comy & \\
\hline & SUMPRT 1 & & OOKINP \\
\hline & TRAN & & OUTPUT \\
\hline & CHAR & & PRES \\
\hline & CNTRL & & REAXIN \\
\hline & DERIV & & STF \\
\hline & DSPT & & TRAN \\
\hline & EF & & CHAR \\
\hline & FCALC & & DERIV \\
\hline & FLU & & EF \\
\hline & GETIL & & FLU \\
\hline & GETILV & & GTF \\
\hline & GTF & & I AUX \\
\hline & IAUX & & INT \\
\hline & INPT & & SDERIV \\
\hline & INT & & EF2D \\
\hline & COWALL & CONSTS & \\
\hline & PRATES & & MA:N \\
\hline & PRINT & & LTCPHS \\
\hline & PTAB & & ODES \\
\hline & SINT & & SAVE \\
\hline & SUBIL & & SUMPRT \\
\hline & WLPT & & UNIT \\
\hline & AXISPT & & CONVRT \\
\hline & GPFKIN & & EQLBRM \\
\hline & INPTR & & FROZEN \\
\hline & [NPTR1 & & MAIN10 \\
\hline & INPTRS & & OOKINP \\
\hline & INPTS & & OUT1 \\
\hline & NESK & & Output \\
\hline & PRINTS & & RKTOUT \\
\hline & SDERIV & & SUMPRT 1 \\
\hline & SUBILR & & TOK \\
\hline & TCALC & & TPCALC \\
\hline & THERM & & TRAN \\
\hline & ATSHCK & & CHAR \\
\hline & Ef2D & & I AUX \\
\hline & ENCALC & & © WALL \\
\hline \multirow[t]{5}{*}{COMXP} & & & PRINT \\
\hline & MAIN & & PTAB \\
\hline & ODES & & WALL \\
\hline & SUMPRT & & GPFPG \\
\hline & TRAN & & PRINTS \\
\hline \multirow[t]{8}{*}{COMY} & & & ENCALC \\
\hline & MAIN & COOLC & \\
\hline & PACK & & BLH \\
\hline & READAT & & BLW \\
\hline & SAVDAT & & 1 INPUTB \\
\hline & CONVRT & CPEES & \\
\hline & MAIN1D & & ROCKET \\
\hline & OOKBLM & & CPHS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CPEES & & CUTIL & \\
\hline & OUT1 & & STF \\
\hline \multirow[t]{6}{*}{CPRNT} & & & TDK \\
\hline & MAIN & & tran \\
\hline & PACK & & CHAR \\
\hline & Main10 & & CNTRL \\
\hline & OOKINP & & FLU \\
\hline & INT & & GETIL \\
\hline \multirow[t]{3}{*}{CPUNCH} & cowall & & inux \\
\hline & PRINT & & PRINT \\
\hline & PRINTS & & SUBIL \\
\hline \multirow[t]{8}{*}{CSPRXC} & & & GPFPG \\
\hline & MAIN & & PRINTS \\
\hline & PACK & & SUBILR \\
\hline & STOICC & & therm \\
\hline & CONVRT & CHALL & \\
\hline & REAXIN & & MAIN \\
\hline & SELECT & & CoEs \\
\hline & Stornu & & PACK \\
\hline \multirow[t]{6}{*}{CTRBDY} & & & READAT \\
\hline & AxISPT & & savoat \\
\hline & CNTR14 & & Mainid \\
\hline & CNTRLI & & COK1NP \\
\hline & SHCKA & & PRES \\
\hline & SHCKA1 & & CHAR \\
\hline \multirow[t]{20}{*}{CUTIL} & & & FLL \\
\hline & MAIN & & OOVALL \\
\hline & OOES
OOK & & PTAB
WALL \\
\hline & PACK & cualli & \\
\hline & REACT & & Problm \\
\hline & READAT & DASTOI & WALL \\
\hline & SAVAAT & & PACK \\
\hline & SEARCH & & readat \\
\hline & SPLL & & SAVDAT \\
\hline & TWOO & & Eff \\
\hline & CONVRT & & Sderiv \\
\hline & CPHS & DELHM & Ef2d \\
\hline & mainid & & BLH \\
\hline & OOKBLM & & OOES \\
\hline & OOKINP & DFSAV & \\
\hline & OUT1 & & OUTP日L \\
\hline & OUTPUT PRES & & SUMPRT \\
\hline & REAXIN & & SUMPRT 1 \\
\hline & RKTOUT & diracc & \\
\hline & SELECT & & TDK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline labeled common & REFERRED by SUBroutine & LABELED COMmon & REFERRED By Su \\
\hline \multicolumn{4}{|l|}{dirace} \\
\hline \multirow[b]{3}{*}{DOLOOP} & CNTR91 & \multirow[t]{2}{*}{ERR} & \\
\hline & GETPT & & \\
\hline & \multirow[t]{2}{*}{SAVPT} & & WLPT \\
\hline \multirow[t]{11}{*}{} & & & CNTR12 \\
\hline & Main & & CNTR13 \\
\hline & READAT & & CNTR14 \\
\hline & Savoat
Mainio & & CNTR16 \\
\hline & OOKINP & & CNTRL1 \\
\hline & PRNTCK & & \({ }_{\text {CNTRLI }}^{\text {GPFG }}\) \\
\hline & deriv & & INPTR \\
\hline & Iaux & & [NPPR1 \\
\hline & 1 TH & & InPTRS \\
\hline & SDERIV & & INPIS
PRINTS \\
\hline & \multirow[t]{2}{*}{EF20} & & SDERIV \\
\hline dovble & & & SHCKA \\
\hline \multirow[t]{5}{*}{} & ODES & & SHCKA1 \\
\hline & SHCK & & SHCKL \\
\hline & gauss & & SHCKR \\
\hline & \multirow[t]{2}{*}{MATRIX} & & SHCKW1 \\
\hline & & & SUBILR \\
\hline \multirow{6}{*}{edge} & BLOCKD & & WLCALC \\
\hline & BLMAIN & & ArshCK \\
\hline & inputb & EXTRAP & ENCALC \\
\hline & OUTPBL bledge & flags & Pack \\
\hline & & & CNTR91 \\
\hline & COEF1 & & CNTR 12 \\
\hline \multirow[t]{2}{*}{ENDFLG} & WRPROF & & CNTR13
CNTR14 \\
\hline & & & CNTR16 \\
\hline \multirow[t]{12}{*}{ERR} & \multirow[t]{2}{*}{CNTR91 PRINTS} & & CNTR21 \\
\hline & & & CwTR31 \\
\hline & MAIN & & CNTR49
CNTRL1 \\
\hline & TTAPE & FLOW2D & CNTRL2 \\
\hline & tran & & \\
\hline & & & tran \\
\hline & CNTRL
DSPT & & CHAR \\
\hline & GETIL & & CNTRL \\
\hline & GETILV & FNALBT & \\
\hline & \multirow[t]{2}{*}{INPT
PRINT
SUALL} & & MAINIO \\
\hline & & & DERIV
FLU \\
\hline & SUBIL & & itauk \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline LABELED COMMON & REFERRED BY SUBROUTINE & LABELED COMMON & REFERRED BY SU \\
\hline \multirow[t]{15}{*}{INDXX} & & KINFO & \\
\hline & ROCKET & & MAIN \\
\hline & SAVE & & 8LH \\
\hline & SHCK & & COES \\
\hline & THERMP & & PACK \\
\hline & CPHS & & REACT \\
\hline & DETON & & READAT \\
\hline & EQLBRM & & ROCXET \\
\hline & FROZEN & & SAVDAT \\
\hline & GAUSS & & SUMPRT \\
\hline & HCALC & & TW00 \\
\hline & MATRIX & & FROZEN \\
\hline & OUT1 & & MAINID \\
\hline & RKTOUT & & COKINP \\
\hline & TPCALC & & OUT 1 \\
\hline \multirow[t]{3}{*}{INERTS} & & & OUTPUT \\
\hline & REAXIN & & PRES \\
\hline & SELECT & & REAXIN \\
\hline \multirow[t]{3}{*}{IOFF} & & & RKTOUT \\
\hline & PROBLM & & SELECT \\
\hline & READBL & & TOK \\
\hline \multirow[t]{3}{*}{IRRC} & & & TRAN \\
\hline & CHAR & & CHAR \\
\hline & INPTR & & GETIL \\
\hline \multirow[t]{6}{*}{IRSTRT} & & & \\
\hline & MAIN & & PRINT \\
\hline & PROBLM & & PTAB \\
\hline & READAT & & PRINTS \\
\hline & SUMPRT & LASTM & \\
\hline & SUMPRT 1 & & CNTR16 CNTRL2 \\
\hline \multirow{2}{*}{ISPLN} & PROBLM & LKE QKN & \\
\hline & SPLN & & ROCKET \\
\hline \multirow[t]{16}{*}{IUSE} & & LKMELT & \\
\hline & MAIN
ODES & & MAIN1D DERIV \\
\hline & ROCKET & LOWTH & \\
\hline & Save & & MAIN \\
\hline & SEARCH & & LTCPHS \\
\hline & SHCK & & READAT \\
\hline & THERMP & & SAVDAT \\
\hline & CPHS & & CPHS \\
\hline & DETON & & STF \\
\hline & EQLBRM & & THERM \\
\hline & FROZEN & M1 & \\
\hline & HCALC & & READAT \\
\hline & MATRIX & & SAVDAT \\
\hline & OUT1 & & SINT \\
\hline & RKTOUT & & GPFKIN \\
\hline & SELECT & & SDERIV \\
\hline
\end{tabular}

4-21

\begin{tabular}{|c|c|c|c|}
\hline LABELED COMHON & REFERRED BY SUBROUTINE & LABELED COM\% & REFERRED BY SUBROUTINE \\
\hline \multirow[t]{2}{*}{MUCOH4} & & OOKCOM & \\
\hline & \begin{tabular}{l}
PRINT \\
PRIMTS
\end{tabular} & & MAIN
OOES \\
\hline \multirow[t]{6}{*}{nucons} & & & COK \\
\hline & MAIN & & PACK \\
\hline & COES & & READAT \\
\hline & TDK & & ROCKET \\
\hline & TRAN & & SAVDAT \\
\hline & CHAR & & CONVRT \\
\hline \multirow[t]{7}{*}{MUCOM6} & & & MAINID \\
\hline & MAIN & & COK8LM \\
\hline & TRAN & & OOKINP \\
\hline & PRINT & & OUT 9 \\
\hline & CNTR21 & & OUTPUT \\
\hline & CNTR31 & & PRES \\
\hline & CNTR41 & & PRNTCK
REAXIN \\
\hline \multirow[t]{7}{*}{NuCOn7} & PRINTS & & RKTOUT \\
\hline & main & & SELECT \\
\hline & COES & & CHAR \\
\hline & COKINP & & DERIV \\
\hline & OUT1 & & EF \\
\hline & tran & & FLU \\
\hline & CHAR & & IAUX \\
\hline \multirow[t]{3}{*}{MUCOM8} & & & INT \\
\hline & COES & & PRINT \\
\hline & CHAR & & PTAB \\
\hline \multirow[t]{4}{*}{NUCOMM} & & & SINT \\
\hline & COES & & PRINTS \\
\hline & ROCKET & & SDERIV \\
\hline & OUT1 & & EF2D \\
\hline \multirow[t]{2}{*}{nut} & & OOKRX & \\
\hline & TDK & & MAIN \\
\hline \multirow[t]{5}{*}{OAE} & & & READAT \\
\hline & COES & & SAVDAT \\
\hline & PROBLM & & CONVRT \\
\hline & COKINP & & DERIV \\
\hline & TRAN & & EF \\
\hline \multirow[t]{3}{*}{ODEOUT} & & & SDERIV \\
\hline & ROCKET & & EF20 \\
\hline & OUT1 & COKSP & \\
\hline \multirow[t]{3}{*}{ODERG} & & & \\
\hline & ODES & & \begin{tabular}{l}
PACK \\
READAT
\end{tabular} \\
\hline & ROCKET
OUT1 & & READAI
SAVDAT \\
\hline \multirow[t]{5}{*}{coesav} & & & TWOO \\
\hline & TVOD & & CONVRT \\
\hline & MAIN1D & & MAIN1D \\
\hline & OUT1 & & ODKBLM \\
\hline & RKTOUT & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LABELED COMHON & REFERRED BY SUBROUTINE & LABELED COMWON & REFERRED BY SUBR \\
\hline \multirow[t]{15}{*}{COKSP} & & PCTBL & PTAB \\
\hline & OOKIAP
OUTPUT
REAXIM & PERF & main \\
\hline & REAXIN & & OOES \\
\hline & CHAR & & ROCKET \\
\hline & DERIV & & SECK \\
\hline & EFLU & & EOLSRM \\
\hline & GTF & & FROZEN \\
\hline & \({ }_{\text {I }}^{\text {IAUX }}\) & & RKTOUT \\
\hline & PRINT
SUBIL & & tPCaLC \\
\hline & GPFKIN & PERFX & \\
\hline & GPFPG
PRINTS & & ROCKET \\
\hline & PRINRS
SDERIV & & SHCK \\
\hline & SUBILR & & DETOM \\
\hline & THERM & & frozen \\
\hline & \begin{tabular}{l}
EF20 \\
ENCALC
\end{tabular} & & autp \\
\hline \multirow[t]{3}{*}{OPTION} & & & RKIOUT \\
\hline & INPUTB
PROBLM & PEXIT & SUMPRT \\
\hline & PROBLIM
SUMPRT & & SUMPRT1 \\
\hline \multirow[t]{7}{*}{OUPT} & & & CNTR91 \\
\hline & SLCKIA & PLUMEC & \\
\hline & THERMP & & SUMPRT
TW00 \\
\hline & DETON & & CHAR \\
\hline & OUT1 & & CWTRL \\
\hline & RKIOUT & & PRINT
CNTR21 \\
\hline & Varfmt & & CNTR31 \\
\hline \multirow[t]{6}{*}{PATHL} & & & CNTR4 \\
\hline & READAT & POINTS & \\
\hline & & Points & MAIN \\
\hline & SINT & & ROCXET \\
\hline & SUBIL & & SHCX \\
\hline & SUBILR & & THERMP \\
\hline PChilf & & & EQLBRM \\
\hline \multirow[t]{5}{*}{PCTBL} & CHAR & & frozen \\
\hline & readat & & HCALC \\
\hline & SAVDAT & & Matrix \\
\hline & SUMPRT & & RKTOUT \\
\hline & & & TPCALC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline POINTS & & PRMTRX & \\
\hline \multirow[t]{10}{*}{POINTX} & Char & ptable & BLPLTS \\
\hline & coes & & Mainio \\
\hline & ROCKET & & COKINP \\
\hline & SHCK & & PRES \\
\hline & THERMP & & FLU \\
\hline & DETOM & & laux \\
\hline & EOLBRM & ptsave & \\
\hline & FROZEN & & MAIN \\
\hline & hcalc & & DOES \\
\hline & matrix & PUNCHC & \\
\hline \multirow[t]{4}{*}{PPPXX} & RKTOUT & & PROBLM
PRINT \\
\hline & CHAR & & PIAB \\
\hline & CNTRL & & PRINTS \\
\hline & SUBILR & RATES & \\
\hline \multirow[t]{7}{*}{PRES} & & & OOKINP \\
\hline & blmain & & REAXIN \\
\hline & INPUTB & & PRATES \\
\hline & bledge & RDCARD & \\
\hline & COEF & & Main \\
\hline & COEF 1 & RDIREX & \\
\hline & EDOY & & MAIN \\
\hline \multirow[t]{25}{*}{PRFGAS} & & & COES \\
\hline & MAIN & & PACK \\
\hline & PROBLM & & SEARCH \\
\hline & SUMPRT & & STOICC \\
\hline & TW00 & & CONVRT \\
\hline & TDK & & REAXIN \\
\hline & CHAR & & SELECT \\
\hline & DSPT & & PRATES \\
\hline & GPF & RELPOT & \\
\hline & INPT & & BLW
PROBLM \\
\hline & SINT & & SUMPRT \\
\hline & WLPT & & SUMPRT1 \\
\hline & AXISPT & REPEAT & \\
\hline & INPTR & & MAIN \\
\hline & INPTR1 & & ODES \\
\hline & INPTRS & & PROBLM \\
\hline & INPTS & & Readat \\
\hline & PRINTS & & OOKINP \\
\hline & SHCKA & & \\
\hline & SHCKA1 & & CHAR \\
\hline & SHCKL & & CNTR91 \\
\hline & SHCKR & & GETIL \\
\hline & SHCKU1 & & GETILV \\
\hline & ATSHCK & & PRINT \\
\hline & ENCALC & & PIAB \\
\hline
\end{tabular}

\title{
this page left intentionally blank
}

This section contains descriptions of the TDK subroutines. TDK is organized into 6 modules, as follows: MCM, \(O D E, \quad D D K\), TRANS, MøC, and BLM. The subroutines descriptions are presented by modules, i.e., the MCM subroutines are given in Section 5-1, the \(\varnothing D E\) subroutines are given in section 5-2, etc. At the present time, complete descriptions are not avallable for all of the MOC subroutines.

\subsection*{5.1 MCM SUBROUTINES}

The Master Control Module is used to control the execution of TDK by selecting the computation modules to be exercised. The MCM is also used to process output flles for the purpose of creating printed and plotted output. The MCM consists of the following subroutines:
\begin{tabular}{ll}
MAIN & SAVDAT \\
BLKDTA & SKPB1 \\
FIND & SKPB2 \\
GAUELM & SLP \\
ITER & SPLN \\
LTCPHS & SUMPRT \\
MATCH & TTAPE \\
MUK & UNIT \\
ØMEGA & \\
PRØBLM & \\
READAT &
\end{tabular}

MAIN provides the entry point to \(T D K\) and is the master subroutine for the entire program.

This is the main program for TDK and as such provides communication between modules, defines the upper level labeled common blocks, and initializes certain logical control variables. MAIN calls the thermodynamic tape generation subroutine, TTAPE, as required. Subroutine PROBLM is called to read the \(\$ D A T A\) namlist and determine the sequence of modules to be executed. Subroutines \(\varnothing D E\) and \(\emptyset D K\) are called to perform equilibrium/frozen and one dimensional kinetic calculations. Subroutine \(T W \varnothing D\) is called to perform transonic and two dimensional method of characteristics calculations. Subroutine BLMAIN is called to perform the boundary layer calculations. Subroutine BLW is called to calculate the displaced nozzle wall. Subroutine BLH is called to calculate the increase in propellant enthalpy contributed by the regenerative cooling circuits. The \(\triangle D E, ~ O D K, T R A N S\), and \(M O C\) calculations are then repeated if the repeat option has been specified.

\subsection*{5.1.2 SUBROUTINE BLKDTA}

BLKDTA contains atomic data stored in \(A T \varnothing M(1, j)\) and many of the variables used with the variable format, FMT. The AT \(\varnothing \mathrm{M}\) variables are defined in appendix B, Reference 3. The format variables are stored in the common labeled \(\varnothing\) UPT and are described here.

A variable format was used so that one format, FMT, could be used in the final output with changes in the number of decimal places according to the sizes of the numbers. The format is used to print a label and from 1 to 13 associated numbers. The labels contain 14 alphanumeric characters stored in four words and printed with \(3 A 4, A 2\). The numbers are all printed in a field of 9 . FMT is initially set in BLKDTA as follows:
\begin{tabular}{llllllllllll}
FMT & \((1)\) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\) & \((8)\) & \((9)\) & \((10)\) & \((11)\) \\
& \((14\) &, \(3 A 4\) & A2, & F9. & 0, & F9. & 0, & F9. & 0, & F9. & 0, \\
FMT & \((12)\) & \((13)\) & \((14)\) & \((15)\) & \((16)\) & \((17)\) & \((18)\) & \((19)\) & \((20)\) & \((21)\) \\
& F9. & 0, \\
FMT & \((22)\) & \((23)\) & \((24)\) & \((25)\) & \((26)\) & \((27)\) & \((28)\) & \((29)\) & \((30)\) & \\
& F9. & 0, & F9. & 0, & F9. & 0, & F9. & 0 & 1
\end{tabular}
where the spaces are stored as blanks.
Some variables set in BLKDTA to modify FMT are as follows:
\begin{tabular}{lllllllllll}
Variable: & F 0 & F 1 & F 2 & F 3 & F 4 & F 5 & FB & \(\mathrm{FMT13}\) & FMT9X & FMT19 \\
Storage: & 0, & 1, & 2, & 3, & 4, & 5, & 13, & \(9 X\) & I9,
\end{tabular}

The following is a llst of variables used as labels and printed with 3A4, A2 in FMT:
\begin{tabular}{|l|l|}
\hline Variable & Stored label \\
\hline FP & P, ATM \\
FT & T, DEG K \\
FH & H, CAL G \\
FS & S, CAL/(G) (K) \\
FM & M, MOL WT \\
FV & (DLV/DLP) T \\
FD & (DLV/DLT) P \\
FC & CP, CAL/(G) (K) \\
FG & GAMMA (S) \\
FL & SON VEL, M/SEC \\
FRI & PC/P \\
FCl & CF \\
FN & MACH NUMBER \\
FR & CSTAR, FT/SEC \\
Fl & ISP, LB-SEC/LB \\
FA & IVAC, LB-SEC/LB \\
FA1,FA2 & AE/AT \\
\hline
\end{tabular}

\subsection*{5.1.3 SUBROUTINE FIND}

This subroutine locates the index, \(I\), in a table such that \(X(I) \leq X \leq X(I+1)\).

\subsection*{5.1.4 Subroutine GAUELM(\(A, B, X, N, M, N O I M, M D I M, L D I M, E P S, K E R R)\)}

This subroutine solve a linear system of equations using Gaussian elimination with row interchange. The equation is put in matrix form as:

\section*{\(A X=B\)}
where \(A, B\) and \(X\) are matrices of proper dimensions.

\section*{Calling Sequence}
\begin{tabular}{ll}
A, \(B, X\) & Matrices coefficients \\
\(N, M\) & Dimensions used: \(A(N, N), X(N, M), B(N, M)\) \\
NDIM & Maximum row dimension of \(A\) \\
MDIM & Maximum row dimension of \(B\) \\
LDIM & Maximum row dimension of \(X\) \\
EPS & Lower bound for the absolute value of the pivot \\
KERR & Error indicator, nonzero means error
\end{tabular}

\subsection*{5.1.5 SUBROUTINE ITER (Fl, X1, XNEW, Nめめ)}

The purpose of this subroutine is to find the root or zero of the algebralc equation
\[
f(X)=0
\]
using the method of secant or false position. In particular this subroutine is designed to take advantage of the fact that the secant method will always find the root of the above equation if the root has been spanned.

\section*{Calling Sequence:}

F1 Is the value of the dependent varlable, \(f\), corresponding to
XI Is the value of the independent variable, X , which corresponds
to Fl .
XNEW is the predicted or new value of the Independent variable
\(N \varnothing \varnothing \quad\) is a flag such that
\[
\begin{array}{ll}
N \varnothing \varnothing=-1 & \text { the first time ITER is called. } \\
N \varnothing \varnothing=+1 & \text { upon subsequence calls. }
\end{array}
\]

\section*{Restrictions:}

The user is expected to check for convergence as there are no internal checks made in ITER.

\section*{Method:}

Subroutine ITER utllizes the secant method predictor formula
\[
x_{1+1}=x_{1}-f_{1} \cdot\left(x_{1}-x_{1-1}\right) /\left(f_{1}-f_{1-1}\right)
\]
where the subscript 1 refers to the current value of \(X\) and \(f\) except for the first iteration in which the value of \(X\) is perturbed only slightly. When the root has been spanned the subroutine saves 2 back value of \(f\) and \(X\) In order that the root may always be straddled and thus found. The linkage to the subroutine is set up so that if bounds on the root are known, then the value of XINEW may be disregarded and bounded values may be used for the first two guesses. This type of linkage necessitates that the value of XI must be set equal to XNEW or the bounded value of \(X\). In order to speed up convergence, If the error within the bound \(d\) domain of the dependent variable exceeds a ratio of 10 , then the new value of \(X\) is set equal to one half of the range.

\subsection*{5.1.6 SUBROUTINE LTCPHS}

This subroutine processes the low temperature \(C_{p}\), \(H\), \(S\) Thermodynamic Data extension input as described in detail in Section 6.1.

\subsection*{5.1.7 SUBROUTINE MATCH}

This subroutine is called by RoCKET to supply subroutine MUK with a vector of internal sequence numbers which point to the appropriate Lennard-Jones parameters used by MUK to calculate transport properties. The input to MATCH is the species name (from the SUB array) and the output corresponds to the index numbers in the table in the MUK write up.

\subsection*{5.1.8 Subroutine MUK (CP, XW, T, C, IT, N, XM, XMT, TK, PR)}

This routine calculates the viscosity, thermal conductivity and Prandtl number for a gas composed of a mixture of species.

\section*{CALLING SEQUENCE:}
\begin{tabular}{|c|c|c|}
\hline CP & is an array of N specific heats of the species (\(f t^{3} / \sec ^{2} \mathrm{R}\)) & (INPUT) \\
\hline XW & is an array of N molecular welghts of the species (slug/slug mole) & (INPUT) \\
\hline T & Is the temperature of the gas \({ }^{(} \mathrm{R}\)) & (INPUT) \\
\hline C & is an array of N mass fractions of the species & (INPUT) \\
\hline IT & Is an array of N Indlices of the species into a table of collision diameter (\(\sigma\)) and energy of attraction (\(\epsilon / k\)) & (INPUT) \\
\hline N & is the number of species in the gas & (INPUT) \\
\hline XM & Is an array of N viscosities of the specles, \(\quad\) (\(1 \mathrm{bf} \cdot \mathrm{sec} / \mathrm{ft}^{2}\)) & (\(\varnothing\) UTPUT) \\
\hline XMT & is the total viscosity of the gas, (\(\mathrm{lbf} \cdot \mathrm{sec} / \mathrm{ft}^{2}\)) & (ØUTPUT) \\
\hline TK & is the thermal conductivity of the gas. (\(\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{ft}^{2} \sec \left({ }^{(} \mathrm{R} / \mathrm{ft}\right)\)) & (ØUTPUT) \\
\hline PR & is the Prandtl number of the gas, & (\(\varnothing\) UTPUT) \\
\hline
\end{tabular}

Method:
\[
\begin{aligned}
& c_{p}=\sum_{i=1}^{N} c_{1} c_{p_{i}} \\
& M_{w}=\frac{1}{\sum_{i=1}^{N} \frac{C_{i}}{M_{w_{i}}}}
\end{aligned}
\]
\[
\begin{aligned}
& x_{1}=C_{1} \cdot \frac{M_{w}}{M_{w_{1}}} \\
& T_{i}^{*}=\frac{T / 1.8}{(\epsilon / k)_{1}} \\
& \Omega_{1}=\text { table }\left(T_{1}^{*}\right) \\
& \sigma_{i}=\text { table (i) } \\
& \mu_{1}=\frac{4.15822 \times 10^{-8} \sqrt{M_{w_{i}} T}}{\sigma_{i} \Omega_{i}} \\
& \text { table of } \Omega \mathrm{vs} \mathrm{~T}^{*} \\
& \Phi_{I_{j}}=\frac{1}{2^{3 / 2}}\left(1+\frac{M_{w_{1}}}{M_{w_{j}}}\right)^{-1 / 2}\left[1+\left(\frac{\mu_{i}}{\mu_{j}}\right)^{1 / 2}\left(\frac{M_{w_{j}}}{M_{w_{1}}}\right)^{1 / 4}\right]^{2} \\
& \mu=\sum_{i=1}^{N}\left[\mu_{1}\left(1+\sum_{\substack{j=1 \\
j \neq 1}}^{N} \Phi_{i_{j}} \frac{X_{1}}{X_{1}}\right)^{-1}\right] \\
& K_{i}=\frac{\mu_{1} R}{M_{w_{1}}}\left(.45+1.32 \frac{C_{p_{1}}}{\left(\Omega / M_{w_{1}}\right.}\right) \\
& K \quad=\left[\sum_{i=1}^{N} \quad K_{1}\left(1+1.065 \sum_{\substack{j=1 \\
j \neq 1}}^{N} \Phi_{i j} \frac{X_{j}}{X_{i}}\right)^{-1}\right] \\
& P_{r}=\frac{C_{p} \mu}{K}
\end{aligned}
\]

Equations for \(K_{1}\) and \(\mu_{1}\) are from Reference 14, The values of the collision Integral are from Table 2 of Appendlx Bin Reference 15. The relations used to calculate \(\mu\) and \(K\) of the mixture are from References 15 and 16, respectively. Also from Reference 14 are the values of the collision diameters, \(\sigma\), and energy of attraction, \(\varepsilon / k\).

Table 5-1 correlates the chemical name of the species to the internal number assigned to it by the subroutine. Also included is the key-punch name assigned to the species, since lower-case letters and subscripts are non-standard features in most computer configurations.

Ref.14. Svehla, R. H. , "Estimated Viscosities and Thermal Conductivities of Gases at High Temperagures", NASA TR R-132, 1962.

Ref. 15. Bird, R. B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, John Wiley \& Sons. Ine. New York, 1960.

Ref.16. Mason, E. A., and Saxena, S. C., Physics of Fluids, Volume 1, No. 5, pp. 361-369, 1953.
\(\left.\begin{array}{ccc}\text { Table } \begin{array}{c}\text { 5-1: } \\
\text { Specles } \\
\text { Number }\end{array} & \begin{array}{c}\text { SPECIES NAMES AND IDENTIFIERS } \\
1\end{array} & \begin{array}{c}\text { Chemical } \\
\text { Name }\end{array} \\
2 & \mathrm{Al} & \text { Key Punch } \\
\text { Name }\end{array}\right]\)\begin{tabular}{c}
AL \\
3
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Species \\
Number
\end{tabular} & Chemical Name & Key Punch Name \\
\hline 35 & Br & BR \\
\hline 36 & BrF & BRF \\
\hline 37 & \(\mathrm{BrF}_{3}\) & BRF3 \\
\hline 38 & BrO & BRO \\
\hline 39 & \(\mathrm{Br}_{3}\) & BR2 \\
\hline 40 & C & C \\
\hline 41 & \(\mathrm{CBrF}_{3}\) & CBRF3 \\
\hline 42 & \(\mathrm{CBr}_{4}\) & CBR4 \\
\hline 43 & CCl & CCL \\
\hline 44 & \(\mathrm{CClF}_{3}\) & CCLF3 \\
\hline 45 & \(\mathrm{CCl}_{2}\) & CCL2 \\
\hline 46 & \(\mathrm{CCl}_{3} \mathrm{~F}_{3}\) & CCL2F2 \\
\hline 47 & \(\mathrm{CCl}_{3}\) & CCL3 \\
\hline 48 & \(\mathrm{CCl}_{3} \mathrm{~F}\) & CCL3F \\
\hline 49 & \(\mathrm{CCH}_{4}\) & CCL4 \\
\hline 40 & CF & CF \\
\hline 51. & \(\mathrm{CF}_{3}\) & CF2 \\
\hline 52 & \(\mathrm{CF}_{3}\) & CF3 \\
\hline 53 & \(\mathrm{CF}_{4}\) & CF4 \\
\hline 54 & CH & CH \\
\hline 55 & CHBrCl & CHBRCLF \\
\hline 56 & \(\mathrm{CHBrCl}_{2}\) & CHBRCL 2 \\
\hline 57 & \(\mathrm{CHBr}_{3}\) & CHBR3 \\
\hline 58 & \(\mathrm{CHClFa}_{3}\) & CHCLF2 \\
\hline 59 & \(\mathrm{CHCl}_{3}\) & CHCl3 \\
\hline 60 & \(\mathrm{CHF}_{3}\) & CHF3 \\
\hline 61 & \(\mathrm{CH}_{3} \mathrm{BrCl}\) & CH 2 BRCL \\
\hline 62 & \(\mathrm{CH}_{3} \mathrm{Cl} \mathrm{F}\) & CH 2 CLF \\
\hline 63 & \(\mathrm{CH}_{3} \mathrm{CL}_{3}\) & CH 2 CL 2 \\
\hline 64 & \(\mathrm{CH}_{2} \mathrm{~F}_{3}\) & CH2F2 \\
\hline 65 & \(\mathrm{CH}_{2} \mathrm{I}_{3}\) & CH2I2 \\
\hline 66 & \(\mathrm{CH}_{3} \mathrm{Br}\) & CH3BR \\
\hline 67 & \(\mathrm{CH}_{3} \mathrm{Cl}\) & CH 3 CL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Species & Chemical Name & Key Punch
Name & \(\checkmark\) \\
\hline 68 & \(\mathrm{CH}_{3} \mathrm{~F}\) & CH3F & \\
\hline 69 & \(\mathrm{CH}_{3} \mathrm{I}\) & CH3I & \\
\hline 70 & \(\mathrm{CH}_{3} \mathrm{OH}\) & CH 3 OH & \\
\hline 71 & \(\mathrm{CH}_{4}\) & CH4 & \\
\hline 72 & CN & CN & \\
\hline 73 & CO & CO & \\
\hline 74 & cos & cos & \\
\hline 75 & \(\mathrm{CO}_{3}\) & CO 2 & \\
\hline 76 & CP & CP & \\
\hline 77 & Cs & CS & \\
\hline 78 & \(\mathrm{CS}{ }_{\text {}}\) & CS2 & \\
\hline 79 & \(\mathrm{C}_{2}\) & C2 & \\
\hline 80 & \(\mathrm{C}_{2} \mathrm{H}_{2}\) & C2H2 & \\
\hline 81 & \(\mathrm{C}_{3} \mathrm{H}_{4}\) & C 2 H 4 & \\
\hline 82 & \(\mathrm{C}_{3} \mathrm{H}_{8}\) & C2H6 & \\
\hline 83 & \(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{Cl}\) & C2H5CL & \\
\hline 84 & \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OH}\) & C 2 H 5 OH & \\
\hline 85 & \(\mathrm{C}_{2} \mathrm{~N}_{2}\) & C2N2 & \\
\hline 86 & \(\mathrm{CH}_{3} \mathrm{OCH}_{3}\) & CH3OCH3 & \\
\hline 87 & \(\mathrm{CH}_{2} \mathrm{CHCH}_{3}\) & CH2CHCH3 & \\
\hline 88 & \(\mathrm{CH}_{3} \mathrm{CCH}\) & CH 3 CCH & \\
\hline 89 & \(\mathrm{cyclo}-\mathrm{Ca}_{3} \mathrm{H}_{8}\) & CYCLO-C3H6 & \\
\hline 90 & \(\mathrm{C}_{3} \mathrm{H}_{8}\) & C3H8 & \\
\hline 91 & \(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{OH}\) & \(\mathrm{N}-\mathrm{C} 3 \mathrm{H7OH}\) & \\
\hline 92 & \(\mathrm{CH}_{3} \mathrm{COCH}_{3}\) & CH3COCH3 & \\
\hline 93 & \(\mathrm{CH}_{3} \mathrm{COOCH}_{3}\) & CH 3 COOCH 3 & \\
\hline 94 & \(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{1}\) 。 & \(\mathrm{N}-\mathrm{C} 4 \mathrm{H10}\) & \\
\hline 95 & iso- \(\mathrm{C}_{4} \mathrm{H}_{2}\) 。 & ISO-C4H10 & \\
\hline 96 & \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}\) & C 2 H 50 C 2 H 5 & \\
\hline 97 & \(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\) & CH 3 COOC 2 H 5 & \\
\hline 98 & \(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}\) & N-C5H12 & \\
\hline 99 & \(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}\) & C(CH3)4 & \\
\hline 100 & \(\mathrm{C}_{6} \mathrm{H}_{8}\) & C6H6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Spectes \\
Number
\end{tabular} & Chemical Name & Key Punch Name \\
\hline 101 & \(\mathrm{C}_{8} \mathrm{H}_{2}{ }^{2}\) & C6H12 \\
\hline 102 & \(n-\mathrm{C}_{8} \mathrm{H}_{24}\) & N-C6H14 \\
\hline 103 & Cd & CD \\
\hline 104 & Cl & CL \\
\hline 105 & CICN & CLCN \\
\hline 106 & ClF & CLF \\
\hline 107 & \(\mathrm{ClF}_{3}\) & CLF3 \\
\hline 108 & ClO & CLO \\
\hline 109 & \(\mathrm{Cl}_{\text {a }}\) & CL2 \\
\hline 110 & F & F \\
\hline 111 & FCN & FCN \\
\hline 112 & \(F_{3}\) & F2 \\
\hline 113 & H & H \\
\hline 114 & FBr & HBR \\
\hline 115 & HCN & HCN \\
\hline 116 & HCl & HCL \\
\hline 117 & HF & HF \\
\hline 118 & HI & HI \\
\hline 119 & HS & HS \\
\hline 120 & Ha & H2 \\
\hline 121 & \(\mathrm{H}_{2} \mathrm{O}\) & H 2 O \\
\hline 122 & \(\mathrm{H}_{3} \mathrm{O}_{3}\) & \(\mathrm{H}_{2} \mathrm{O} 2\) \\
\hline 123 & \(\mathrm{Ta}_{5} \mathrm{~S}\) & H2S \\
\hline 124 & He & HE \\
\hline 125 & Hg & HG \\
\hline 126 & \(\mathrm{Hg} \mathrm{Br}_{3}\) & HGBR2 \\
\hline 127 & \(\mathrm{HgCl}_{2}\) & HGCL2 \\
\hline 128 & \(\mathrm{HgI}_{3}\) & HGI2 \\
\hline 129 & I & I \\
\hline 130 & ICl & ICL \\
\hline 131 & 12 & I2 \\
\hline 132 & Kr & KR \\
\hline 133 & \(\underline{I}\) & LI \\
\hline 134 & \(\underline{\mathrm{LiBr}}\) & LIBR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Specles Number & Chemical Name & Key Punch Name \\
\hline 135 & LICN & IICN \\
\hline 136 & LICl & LICL \\
\hline 137 & Lif & LIF \\
\hline 138 & LII & LII \\
\hline 139 & LIO & LIO \\
\hline 140 & Lia & LI2 \\
\hline 141 & \(\mathrm{LH}_{2} \mathrm{O}\) & LI2O \\
\hline 142 & Mg & MG \\
\hline 143 & MgCl & M GCL \\
\hline 144 & \(\mathrm{MgCl}_{2}\) & M GCL2 \\
\hline 145 & MgF & MGF \\
\hline 146 & \(\mathrm{MgF}_{2}\) & MGF2 \\
\hline 147 & \(\mathrm{Mg}_{2}\) & MG2 \\
\hline 148 & N & N \\
\hline 149 & NF3 & NF3 \\
\hline 150 & NH & NH \\
\hline 151 & \(\mathrm{NH}_{3}\) & NH3 \\
\hline 152 & NO & NO \\
\hline 153 & NOCl & NOCL \\
\hline 154 & \(\mathrm{N}_{2}\) & N2 \\
\hline 155 & \(\mathrm{N}_{2} \mathrm{O}\) & N2O \\
\hline 156 & Na & NA \\
\hline 157 & NaBr & NABR \\
\hline 158 & NaCN & NACN \\
\hline 159 & NaCl & NACL \\
\hline 160 & NaF & NAF \\
\hline 161 & NaI & NAI \\
\hline 162 & NaO & NAO \\
\hline 163 & NaOH & NAOH \\
\hline 164 & Na & NA2 \\
\hline 165 & \(\mathrm{Na}_{2} \mathrm{O}\) & NA2O \\
\hline 166 & Ne & NE \\
\hline 167 & 0 & 0 \\
\hline 168 & OF & OF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Species \\
Number
\end{tabular} & Chemical Name & Key Punch Name \\
\hline 169 & \(\mathrm{OF}_{2}\) & OF2 \\
\hline 170 & OH & OH \\
\hline 171 & \(\mathrm{O}{ }_{3}\) & O2 \\
\hline 172 & P & P \\
\hline 173 & PCl & PCL \\
\hline 174 & \(\mathrm{PCl}_{3}\) & PCL3 \\
\hline 175 & PF & PF \\
\hline 176 & \(\mathrm{PF}_{3}\) & PF3 \\
\hline 177 & \(\mathrm{PH}_{3}\) & PH3 \\
\hline 178 & PN & PN \\
\hline 179 & PO & PO \\
\hline 180 & PS & PS \\
\hline 181 & \(P_{2}\) & P2 \\
\hline 182 & \(\mathrm{P}_{4}\) & P4 \\
\hline 183 & S & S \\
\hline 184 & \(\mathrm{SF}_{6}\) & SF6 \\
\hline 185 & SO & SO \\
\hline 186 & \(\mathrm{SO}_{2}\) & SO 2 \\
\hline 187 & \(\mathrm{S}_{2}\) & S2 \\
\hline 188 & \(\mathrm{S}_{3} \mathrm{~F}_{3}\) & S2F2 \\
\hline 189 & Si & SI \\
\hline 190 & Sicls & SICL \\
\hline 191 & Such & SCL 4 \\
\hline 192 & SIF & SIF \\
\hline 193 & \(\mathrm{SiFCl}_{3}\) & SIFCL3 \\
\hline 194 & \(\mathrm{SiF}_{3} \mathrm{Cl}_{3}\) & SIF2CL2 \\
\hline 195 & \(\mathrm{SiF}_{3} \mathrm{Cl}\) & SIF3CL \\
\hline 196 & \(\mathrm{SiF}_{4}\) & SIF4 \\
\hline 197 & \(\mathrm{SiH}_{4}\). & SIH4 \\
\hline 198 & SiO & SIO \\
\hline 199 & \(\mathrm{SIO}_{3}\) & SIO 2 \\
\hline 200 & SIS & SIS \\
\hline 201 & \(\mathrm{SH}_{2}\) & SI2 \\
\hline 202 & \(\mathrm{SnBr}_{3}\) & SNBR2 \\
\hline 203 & \(\mathrm{SnCl}_{4}\) & SNCL4 \\
\hline 204 & \(\mathrm{UF}_{3}\) & UF6 \\
\hline 205 & Xe & XE \\
\hline 206 & Zn & ZN \\
\hline
\end{tabular}

\subsection*{5.1.9 Subroutine OMEGA}

This subroutine calculates the exponent, \(\omega\), used in the viscosity-temperature relationshlp
\[
\mu=\mu_{\text {ref }}\left(\frac{T}{T_{\text {ref }}}\right)^{\omega}
\]
using the method of least squares. That ls, it calculates the value of \(\omega\) which gives the smallest sum of the errors squared. This form of the viscosity-temperature relationship was selected since the BLM module requires viscosity data in this manner.

In order to supply the maximum amount of accuracy and also to minimize the variation in data due to the selection of an exit area ratio, it was decided to match the throat value of viscosity exactly and select an \(\omega\) which would provide the best fit for viscosity at the chamber and exit of the motor.

The form of the error, \(E\), was taken to be
\[
E=\ln \omega / \mu^{*}-\omega \ln T / T^{*}
\]

Squaring the errors, differentlating with respect to \(\omega\), and setting the results equal to zero, yields the following value for \(\omega\)
\[
\left.\omega=\left(\ln T_{c} / T^{*} \ln \mu_{c} / \mu^{*}+\ln T_{e^{\prime}} / T^{*} \ln \mu_{e} / \mu^{*}\right) /\left(\ln T / T^{*}\right)^{2}+\left(\ln T_{e} / T^{*}\right)^{2}\right)
\]
where
\[
\begin{aligned}
& \mathrm{T}=\text { temperature } \\
& \mu=\text { viscosity } \\
& \mathrm{e}=\text { refers to the exit plane } \\
& \mathrm{c}=\text { refers to the chamber } \\
& *=\text { refers to the throat plane }
\end{aligned}
\]

Subroutine PRøBLEM sets those default values that are concerned with the computational options of the program, such as the module execution flags (\(\varnothing D E, ~ Ø D K, ~ T D K, ~ B L M, T D E, ~ I R P E A T, ~ a n d\) IRSTRT). The \$DATA namlist is read (see Section 6.). Flags controliing the sequence of module execution are set as determined by the options requested through the \$DATA input. Nozzle geometry parameters are placed into the GEOM array for communication to the various modules.
5.1.11 SUBROUTINE READAT(NTAPE)

Subroutine READAT is called by Program MAIN to read data written by subroutine SAVDAT on unit NTAPE (\(=15\)) for the purpose of restarting the \(O D E\) and \(O D K\) modules.
5.1.12 SUBROUTINE SAVDAT (NTAPE)

Subroutine SAVDAT is called by Program MAIN to write data on unit NTAPE (\(=15\)) to be used later for restarting the ODE and ODK modules. This data is read later by subroutine READAT.
5.1.13 Subrout ine SKPB1 (XA, YA, XE, YE, THA , THR, C1, O1, E1)

This subroutine computes the coefficients for the skewed parabola defined by two points and the tangent at one of these points and the axis angle. The equation of a skewed-parabola is
\[
(Y-\tan (T r) X)^{2}+C X+D Y+E=0
\]
where Tr is the axis angle.

The subroutine solves for the coefficient \(C, D\) and \(E\) by using the condition on the two points and their tangents. The resulting equations form a linear system of 3 equations in 3 unknowns which is solved by Gaussian el imination with improvenent correction using subroutin GAUELM.

Calling sequence:
\(X A, Y A \quad\) coordinates of attachment point
XE,YE coordinates of nozzle exit lip
THA attachment angle
THR axis angle, Tr
\(C 1, D 1, E 1\) coefficient \(C, D, E\) in above equation

5.1.14 Subroutine SKPB2(XA, YA , XE, YE, THA ,THE, B1, C1, D1, E1)

This subroutine computes the equation for a skewed parabola defined by two points and their tangents. The equation for a skewed parabola is
\((B X+Y)^{2}+C X+D Y+E=0\)
Subroutine SKPB1 and the secant method are used to solve for the axis angle that gives rise to the given exit lip angle.

Calling sequence:
\(X A, Y A \quad\) coordinate of attachment point
\(X E, Y E \quad\) coordinate of exit lip point
THA attachent angle
THE exit lip angle
B1,C1, coefficients \(B, C, D\) and \(E\) \(D 1, E 1\) in above equation
5.1.15 SUBROUTINE SLP (\(\mathrm{X}, \mathrm{Y}, \mathrm{N}, \mathrm{MFLAG}, \mathrm{YP}, \mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3\), IFLAG)

The purpose of this subroutine is to supply derivatives for a tabulated function. The end point derivatives may be specifled or are calculated internally by parabolic interpolation. Interior point derivatives may be found by a cublc spline fit procedure.

\section*{Calling Sequence:}
\(X \quad\) is a table of independent variables, \(X_{1}\)
\(Y\) is a table of the dependent variables, \(Y_{1}\)
\(N\) is the number of entries in each of the tables \(X, Y\), and \(Y P\). \(1=1, \ldots N\)

MFLAG this entry is a flag, \(m\), such that
\(m>0 \quad\) implles \(x\) is equally spaced
\(m<0 \quad\) implles \(x\) is not equally spaced
\(|m|=1 \quad y^{\prime}\) will be continuous
\(|m|=2 \quad y^{\prime}\) and \(y^{\prime \prime}\) will be continuous
YP is a table of the derivative, \(y_{i}^{\prime}\)
Wl working storage of length N
W2 working storage of length N
W3 working storage of length \(N\)
IFLAG this entry is a flag, 1 , such that
\[
\begin{array}{ll}
1=0 & \text { Implles value for } Y P(1) \text { and } Y P(N) \text { will be calculated } \\
& \text { Internally by parabollc differencing } \\
1=1 & \text { Implles values for } Y P(1) \text { and } Y P(N) \text { will be input }
\end{array}
\]

\section*{Method}

The cubic spline fit procedure utilizes the interpolation formula given below:
\[
\begin{aligned}
& y=A\left(x-x_{0}\right)^{3}+B\left(x-x_{0}\right)^{2}+C\left(x-x_{0}\right)+D \\
& y^{\prime}=3 A\left(x-x_{0}\right)^{2}+2 B\left(x-x_{0}\right)+C \\
& y^{\prime \prime}=6 A\left(x-x_{0}\right)+2 B
\end{aligned}
\]

The plecewise cublc fit to a tabular function by the above relations will yleld a discontinulty in the second derlvative \(y^{\prime \prime}\), between adjacent fits of:
\[
y_{1}^{\prime \prime}-y_{01}^{\prime \prime} i_{12}=\frac{1}{h_{01}}\left(2 y_{0}^{\prime}+4 y_{1}^{\prime}-6 \frac{k_{01}}{h_{01}}\right)-\frac{1}{h_{12}}\left(6 \frac{k_{12}}{h_{12}}-4 y_{1}^{\prime}-2 y_{2}^{\prime}\right)
\]
where
\[
\begin{aligned}
& h_{01}=x_{1}-x_{0} \\
& h_{12}=x_{2}-x_{1} \\
& k_{01}=y_{1}-y_{0} \\
& k_{12}=y_{2}-y_{1}
\end{aligned}
\]

The method consists of setting the left-hand side of the above relation equal to zero so that the second derlvative is continuous across juncture points. As applled to a tabular function, the above procedure results in a set of linear simultaneous equations (tri-diagonal) to be solved for the \(y_{1}^{\prime}\), provided that values for \(y^{\prime}\) at the end points are known.
5.1 .16 SUBROUTINE SPLN

Performs either cubic or linear interpolation between two given points. Cubic interpolation for a function and its first two derivatives is performed as described below:
Given function values \(y_{n}\) and \(y_{n+1}\) and first derivative values \(y_{n}\) and \(y_{n+1}^{\prime}\) at \(x_{n}\) and \(x_{n+1}\), this subroutine evaluates \(y(x), y^{\prime}(x)\), and \(y^{\prime \prime}(x)\) for \(x_{n} \leq x<x_{n+1}\) using:
\[
\begin{aligned}
& y=A\left(x-x_{n}\right)^{3}+B\left(x-x_{n}\right)^{2}+C\left(x-x_{n}\right)+D \\
& y^{\prime}=y_{n}^{\prime}+\frac{x-x_{n}}{x_{n+1}-x_{n}} \cdot\left[y_{n+1}^{\prime}-y_{n}^{\prime}\right] \\
& y^{\prime \prime}=\left(y_{n+1}^{\prime}-y_{n}^{\prime}\right) / h
\end{aligned}
\]
where:
\[
\begin{aligned}
& A=\frac{1}{h^{3}} \cdot\left[\left(y_{n+1}^{\prime}+y_{n}^{\prime}\right) h-2 k\right] \\
& B=-\frac{1}{h^{2}} \cdot\left[\left(y_{n+1}^{\prime}+2 y_{n}^{\prime}\right) h-3 k\right] \\
& C=y_{n}^{\prime} \\
& D=y_{n} \\
& h=x_{n+1}-x_{n} \\
& k=y_{n+1}-y_{n}
\end{aligned}
\]

Linear interpolation for a function and its first two derivatives is performed as described below:
\[
\begin{aligned}
& y=y_{n}+\frac{x-x_{n}}{x_{n+1}-x_{n}} \cdot\left[y_{n+1}-y_{n}\right] \\
& y^{\prime}=\frac{y_{n+1}-y_{n}}{x_{n+1}-x_{n}} \\
& y^{\prime \prime}=0.0
\end{aligned}
\]

\subsection*{5.1.17 SUBROUTINE SUMPRT}

This subroutine is called by Program MAIN to write the "TDK PERFORMANCE SUMMARY" output that is printed after the execution of the MOC and/or BLM modules. An example of this output together with a detailed description is given in Section 7 of this report, Input and Output for Example Cases.

\subsection*{5.1.18 SUBROUTINE TTAPE}

When a THERMØ directive card is read by the main program this subroutine is called to generate a master Thermodynamic Data tape (Logical Unit 25). The input Thermodynamic Data is in curve fit form and is identical to that required for the oDE computer program described in NASA SP-273, Reference 3 . The format for this curve fit data is described in the User's Manual, Section 6.1.

\subsection*{5.1.19 SUBROUTINE UNIT}

This subroutine is called by Program MAIN and is used to establish a consistent set of physical constants and conversion factors for the engineering units that are used throughout the program. The values are stored in CDMMDN/CDNSTS/COOO(25). The values used have been taken from the back cover of zucrow and Hoffman, Reference 10.
this page left intentionally blank

The one-Dimensional Equilibrium module is used to calculate ideal engine performance. Engine performance can calculated assuming that the che mi the chamber (stagnation) including transport properties, Gas mixture properties, module to be used by are also calculated by the ODE program. The oDE TDE, BLM and other options of the Equilibrium Compositions is modified version of the chemical Reference 3. Reference (CEC) program that is described in complete description of this should be referred to for a more of the following subroutines:
\begin{tabular}{ll}
iDES & REACT \\
CPHS & RKTØUT \\
DETOX & ROCKET \\
EFMT & SAVE \\
EQLBRM & SEARCH \\
FRoZEN & SHCK \\
GAUSS & THERAP \\
HCALC & TPCALC \\
MATRIX & TSCALC \\
OUT & VARFMT
\end{tabular}

\subsection*{5.2.1 SUBROUTINE \(\varnothing D E S\)}

This is the main program for \(\varnothing D E\) and corresponds to the Maln Program described in Reference 3. Generally, the routine performs the following functions:
1. Reads code cards THERM \(\varnothing\), REACTANTS, \(\varnothing\) MIT, INSERT, and NAMELISTS and directs flow of program accordingly.
2. Stores THERM \(\varnothing\) data on tape.
3. Calls subroutine REACT to read and process REACTANTS cards.
4. Reads \(\varnothing\) MIT and INSERT cards and stores species names.
5. Initializes variables in namelist \(\$ \varnothing \mathrm{DE}\).
6. Reads and writes namelist \(\$ \varnothing D E\).
7. Converts assigned densities, if any, (\(\mathrm{RHO}(\mathrm{i}\)) in \(\$ \varnothing \mathrm{DE}\)) to specific volumes: \(\operatorname{VLM}(1)=1 / \mathrm{RHO}(\mathrm{i})\).
8. Stores the number of pressures or volumes in NP.
9. Stores values of \(0 / \mathrm{f}\) in \(\phi \mathrm{XF}\) array. If \(\mathrm{o} / \mathrm{f}\) values have not been input directly, they are calculated as follows:

10. Makes necessary adjustments to consider charge balance if \(I \varnothing N S=\) .TRUE. . This is done by adding 1 to NLM and E to LIMT array.
11. Calls SEARCH to pull required THERM \(\varnothing\) data from tape and to store the data in core.
12. Sets initial estimates for compositions. These estimates are set with each \(\$ \varnothing D E\) read. They are used only for the first point in the lists of variables in namelist (e.g., the first \(0 / \mathrm{f}\) and the first T and \(P\) in a TP problem). All succeeding points use results from a previous point for estimates.

For the first point the program assigns an estimate of 0.1 for \(n\), the total number of kllogram-moles per kllogram. The initial estimate of number of moles of each gaseous species per kllogram of mixture \(n_{j}\) is set equal to \(0.1 / \mathrm{m}\) where \(m\) is the total number of gaseous species. Condensed species are assigned zero moles.
13. Sets IUSE (j) positive for condensed specles listed on INSERT cards (see IUSE array).
14. Calls THERMP if TP, HP, SP, TV, UV, or SV is true.
15. Calls DETØN if DETN is true.
16. Calls SHCK if \(\mathrm{SH} \varnothing \mathrm{CK}\) is true.
17. Calls R \(\varnothing\) CKET is RKT is true.

\subsection*{5.2.2 SUBROUTINE CPHS}
\(\frac{S_{T}}{S_{T}}\) from the curve fine evaluates the thermodynamic functions \(\frac{\mathrm{Cp}^{\circ}}{R}, \frac{\mathrm{H}^{\circ}}{\mathrm{RT}}\), adjacent adjacent temperature intervals. The functions evaluated are presented below:
\[
\begin{aligned}
& \frac{C p_{T}^{\circ}}{R}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3}+a_{5} T^{4} \\
& \frac{H_{T}^{\circ}}{R T}=a_{1}+\frac{a_{2} T}{2}+\frac{a_{3} T^{2}}{3}+\frac{a_{4} T^{3}}{4}+\frac{a_{5} T^{4}}{5}+\frac{a_{6}}{T} \\
& \frac{S_{T}^{\circ}}{R}=a_{1} \ln T+a_{2} T+\frac{a_{3} T^{2}}{2}+\frac{a_{4} T^{3}}{3}+\frac{a_{5} T^{4}}{4}+a_{7} \\
& \frac{G_{T}^{\circ}}{R T}=\frac{H_{T}^{\circ}}{R T}-\frac{S_{T}^{\circ}}{R}
\end{aligned}
\]

When the temperature falls below the lower limit of the curve fit coefficients, the above thermodynamic functions are obtained vla linear interpolation from the input for subroutine LTCPHS.

\subsection*{5.2.3 SUBROUTINE DET N}

This subroutine does the calculations required to obtain Chapman-Jouget detonation properties as described in the section CHAPMAN-JOUGET DETONATIONS of Reference 3. The calculation involves a Newton-Raphson iteration to determine detonation conditions in addition to the iteration for determining equilibrium compositions.

\subsection*{5.2.4 SUBROUTINE EFMT}

Subroutine EFMT (E-format) writes statements in a special exponent form. This form is similar to the standard FORTRAN E-format, but the letter E and some of the spaces have been removed for compactness. It is used to write density ind mole fractions with the TRACE option.

\section*{SUBROUTINE EQLBRM}

EQLBRM is the control routine for the equilibrium module which calculates equillbrium compositions and thermodynamic properties for a particular point. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states \((T, P),(H, P),(S, P),(T, V),(U, V)\), or \((S, V),(2)\) theoretical rocket performance for both equilibirum and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species. A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given in Reference 3. Figures 4 (a) through 4 (c) of Reference 3 gives a complete flow diagram for this subroutine.

The equilibrium compositions are obtalned by a Newton-Raphson iteration. The iteration equations are those of the modified Huff method. These equations are presented as Table 5-2. The corrections to the estimates that are obtained from this set of iteration equations are unaffected by the choice of components and are only affected by the current estimates. These equations make no distinction between components and constituents, and thus any species can be dropped from the calculation. The iteration equations give corrections to the moles of each condensed species and the variables \(A\) and \(T\) directly. The corrections to the moles of gaseous species are obtained from the following equation:
\[
\Delta \ln n_{i}=-J_{i}+\sum_{k=1}^{\ell} a_{k i} \Delta \ln u_{k}+a_{i} \Delta \ln T \quad(i=1,2, \ldots m)
\]

It is sometimes disadvantageous to apply the entire correction called for by the iteration equations. Consequently an empirical convergence parameter \(\lambda(0<\lambda \leq 1)\) is used to control the size of the corrections. A numerical value for \(\lambda\) is determined at each iteration. Methods for evaluating \(\lambda\) are discussed later under Evaluation of Convergence Parameter \(\lambda\). New estimates are obtained from the following equations:
\[
\begin{gathered}
\ln n_{i}^{(j+1)}=\ln n_{i}^{(j)}+\lambda \Delta \ln n_{i} \quad(i=1,2, \ldots m) \\
n_{i}^{(j+1)}=n_{i}^{(j)}+\lambda \Delta n_{i} \quad(1=m+1, m+2, \ldots, n) \\
5-31
\end{gathered}
\]
, \(=1\),
\[
\begin{aligned}
& \ln A^{(j+1)}=\ln A^{(j)}+\lambda \Delta \ln A \\
& \ln T^{(j+1)}=\ln T^{(j)}+\lambda \Delta \ln T
\end{aligned}
\]

The indices \(j\) and \(j+1\) signify the estimates for the \(j^{\text {th }}\) and \((j+1){ }^{\text {st }}\) iterations. When the iteration has converged, the moles of gaseous species \(n_{i}\) will be numerically equal to the partial pressures \(p_{i}(i=1,2, \ldots m)\).

After the equilibrium compositions have been determined, the three independent first derivatives \(c_{p^{\prime}}(\partial \ln \mathrm{Mw} / \partial \ln \mathrm{T}){ }_{\mathrm{p}^{\prime}}\), and \((\partial \ln \mathrm{Mw} / \partial \ln \mathrm{P})_{\mathrm{T}}\) can be evaluated by a procedure analogous to that described in reference 19 The calculation of \(c_{p}\) and \((\partial \ln \mathrm{Mw} / \partial \ln T)_{p}\) requires the derivatives \(\left(\partial \ln n_{i} / \partial \ln T\right)_{p}\) \((i=1,2, \ldots m),\left(\partial n_{i} / \partial \ln T\right)_{p}(i=m+1, m+2, \ldots, n)\), and \((\partial \ln A / \partial \ln T)_{p}\). Following the procedure of reference 19 for the elimination of linear combination terms, the set of equations in Table 5-2 is obtained for the derivatives \(\left(\partial \ln u_{i} / \partial \ln T\right)_{p}(i=1,2, \ldots, \ell),\left(\partial r_{i} / \partial \ln T\right)_{p}\) \((i=m+1, m+2, \ldots, n)\), and \((\partial \ln A / \partial \ln T)_{p}\). The \(\left(\partial \ln n_{i} / \partial \ln T\right)_{p}\) are related to the se by
\[
\left|\frac{\partial \ln n_{i}}{\partial \ln T}\right|_{p}=\sum_{k=1}^{\ell} a_{k i}\left|\frac{\partial \ln u_{k}}{\partial \ln T}\right|_{p}+v_{i} \quad(i=1,2, \ldots \ldots m)
\]

Writing the equation for evaluating the specific heat and substituting the above equation gives
\[
\begin{aligned}
& c_{p}=\frac{R}{A}\left[\sum_{k=1}^{\ell} \sum_{i=1}^{m}\right. \\
& \begin{array}{c}
a_{k i} z_{i} n_{i}\left|\frac{\partial \ln u_{k}}{\partial \ln T}\right|_{p}+\sum_{i=m!1}^{n} z_{i}\left(\frac{\partial n_{i}}{\partial \ln T_{p}}\right)+\sum_{i=1}^{m} z_{i} n_{i}\left|\frac{-\partial \ln A}{\partial \ln T}\right|_{p} \\
\left.+\sum_{i=1}^{m} v_{i} n_{i}+\sum_{i=1}^{m} z_{i} z_{i} n_{i}\right]^{m}
\end{array} \\
& \text { 5-3? }
\end{aligned}
\]
TABLE 5-3 - EQUATIONS FOR EVALUATING DERIVATIVES WITH RESPECT TO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\left(\frac{\partial \ln u_{1}}{\partial \ln T}\right)_{P}\) & \(\left(\frac{\partial \ln u_{2}}{\partial \ln T}\right)_{P}\) & \(\left(\frac{\partial \ln u_{3}}{\partial \ln T}\right)_{P}\) & -•• & . . . & \(\left(\frac{\partial n_{n-1}}{\partial \ln T}\right)_{P}\) & \(\left(\frac{\partial n_{n}}{\partial \ln T}\right)_{P}\) & \(-\left(\frac{\partial \ln A}{\partial \ln T}\right)_{P}\) & Constant \\
\hline \({ }_{11}\) & \(\mathrm{r}_{12}\) & \(r_{13}\) & -•• & -•• & \(a_{1, n-1}\) & \({ }^{a_{1, n}}\) & \[
\sum_{k=1}^{n} a_{1, k} n_{k}
\] & \[
-\sum_{k=1}^{m} a_{1, k} H_{k} n_{k}
\] \\
\hline \({ }^{21}\) & \(\mathrm{r}_{22}\) & \({ }_{23}\) & -•• & -•• & \(\mathrm{a}_{2, \mathrm{n}-1}\) & \(\mathrm{a}_{2, n}\) & \(\sum_{k i=1}^{n}{ }^{n} 2, k^{n_{k}}\) & \[
-\sum_{k=1}^{m} a_{2, k} \psi_{k} n_{k}
\] \\
\hline \(\mathrm{r}_{31}\) & \(\mathrm{r}_{32}\) & \(r_{33}\) & & -•• & \(a_{3, n-1}\) & \({ }^{3} 3, \mathrm{n}\) & \[
\sum_{k=1}^{n} a_{3, k^{n_{k}}}
\] & \[
-\sum_{k=1}^{1 i n} a_{3}, k^{3 d_{k} n_{k}}
\] \\
\hline - • & -• & -• & -•• & -•• & - •• & -•• & -•• & - • \\
\hline - & - • & -•• & -•• & -•• & - • - & -•• & -•• & \(\cdots \cdots\) \\
\hline \(\cdots, n-1\) & \({ }^{2} 2, n-1\) & \(a_{3, n-1}\) & -•• & -•• & 0 & 0 & 0 & \[
-A_{n-1}
\] \\
\hline \({ }^{a_{1, n}}\) & \(\mathrm{a}_{2, \mathrm{n}}\) & \(a_{3, n}\) & -•• & -•• & 0 & 0 & 0 & \(-\mathrm{H}_{n}\) \\
\hline \[
\sum_{k=1}^{n i m} a_{1}, k^{n_{k}}
\] & \[
\sum_{i=1}^{m} a_{2, k^{n_{k}}}
\] & \[
\sum_{k=1}^{m} a_{3,} k^{n_{k}}
\] & . . & -•• & 0 & 0 & 0 & \[
-\sum_{k=1}^{m} H_{k} n_{k}
\] \\
\hline
\end{tabular}

The solution of the equations in Table 5-3 also gives one of the molecular weight derivatives by means of the relation
\[
\left|\frac{\partial \ln M w}{\partial \ln T}\right|_{P}=\left|\frac{\partial \ln A}{\partial \ln T}\right|_{P}
\]

The derivative \((\partial \ln M / \partial \ln P)_{T}\) can be calculated from

where the required partial derivatives are obtained by a.solution of the equations of Table 5-4 of this report. It should be noted that the matrix elements of Tables 5-3 and 5-4 are identical with the corresponding elements of Table 5-2 except for the sign of the last column in Table 5-3. The isentropic exponent, \(y\), used in the calculations of the velocity of sound is
\[
\gamma \equiv\left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{s}=\frac{1}{\left[1+\left(\frac{\partial \ln M w}{\partial \ln P}\right)_{T}\right]-\frac{R}{C_{p} M w}\left[1-\left(\frac{\partial \ln M w}{\partial \ln T}\right)_{P}\right]^{2}}
\]

Convergence in an iterative calculation involves two numerical problems: (1) how to assure numerical convergence, and (2) to determine at what stage the iteration should be terminated. Both of these are discussed in the following sections.

\section*{Evaluation of Convergence Parameter \(\lambda\)}

When poor estimates are used in a Newton-Raphson iteration, the iteration equations will invariably give corrections that are too large. If these corrections were to be used dirtctly, they could produce a nonconvergent iteration. This type of situation normally occurs in the early stages of a calculation.
\[
5-35
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 䔍
黄
完 & & & & & & \(\bigcirc\) & \(\bigcirc\) \\
\hline & ¢ & ¢ & \[
\underset{\infty}{5}
\] & ． & \(\stackrel{\square}{-}\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & & \[
\stackrel{ت}{\mathbf{E}}
\] & － & & \(\cdots\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline － & － & \(\stackrel{\square}{\square}\) & － & － & \(\stackrel{\square}{-}\) & － & \(\therefore\) \\
\hline \(\stackrel{\square}{\square}\) & \(\stackrel{\square}{\text { ：}}\) & － & \(\stackrel{\square}{\square}\) & \(\stackrel{\square}{\square}\) & & \(\stackrel{\square}{\text {－}}\) & － \\
\hline & \(\stackrel{\sim}{4}\) & \(\stackrel{\sim}{4}\) & \({ }_{c}^{m}\) & ： & － & － & \(\stackrel{5}{8}\) \\
\hline & \(\stackrel{\sim}{\sim}\) & N & \％ & － & ． & － & ¢ \\
\hline & \(\stackrel{7}{4}\) & \(\stackrel{-1}{4}\) & \(\stackrel{-1}{m}\) & － & － & － & 号 \\
\hline
\end{tabular}

At later stages of the iteration when the problem seems to be converging satisfactorily, the iteration sometimes attempts to make large increases in the partial pressures of species that are present in trace amounts. In both of these cases it is essential to place some restriction on the size of the correction. This is accomplished by introducing a convergence parameter \(\lambda\).

The numerical value of the convergence parameter \(\lambda\) is determined on the basis of two empirical rules, which experience has shown to be satisfactory. For the variables \(T, A\), and \(n_{j}\) for those gaseous species for which \(\ln \left(n_{j} / P_{0}\right)>-18.5\) and for which \(\Delta \ln n_{j}>0\), a number \(\lambda\) is defined as
\[
\lambda_{1} \equiv \frac{2}{\max \left(|\Delta \ln T| \cdot|\Delta \ln A|, \Delta \ln n_{j}\right)} \quad(j=1,2, \ldots m)
\]

This limits the change in \(T\) and \(A\) and the increase in \(n_{j}\), for those gaseous species whose gas phase mole fraction exceeds \(10^{-8}\), to a factor \(\mathrm{e}^{2}=7.3891\). For those gaseous species for which \(\ln \left(n_{j} / P_{0}\right) \leq-18.5\) and \(\Delta \ln n_{j}>0\), a number \(\lambda_{2}\) is defined as
\[
\lambda_{2} \equiv \min \left(\frac{\ln P_{0}-9.212-\ln n_{j}}{\Delta \ln n_{j}}\right) \quad(j=1,2, \ldots \ldots m)
\]

This prevents a gaseous species with a mole fraction less than \(10^{-8}\) from Increasing its partial pressure so that its gas phase mole fraction would exceed \(10^{-4}\). The parameter \(\lambda\) to be used is defined in terms of \(\lambda_{1}\) and \(\lambda_{2}\)
\[
\lambda \equiv \min \left(1, \lambda_{1}, \lambda_{2}\right)
\]
\[
5-37
\]

\section*{Criteria for Convergence}

Equilibrium compositions. - It is assumed that the iteration has converged to the correct composition when
\[
\frac{n_{j}}{\sum_{k=1}^{n} n_{k}}\left|\Delta \ln n_{j}\right|<0.5 \times 10^{-5} \quad(j=1,2, \ldots m)
\]
and
\[
\frac{\left|\Delta n_{j}\right|}{\sum_{k=1}^{n} n_{k}}<0.5 \times 10^{-5} \quad(j=m+1, m+2, \ldots n)
\]

This has the effect of insuring accuracy to five places in composition when it is expressed as mole fractions.

\subsection*{5.2.6 SUBROUTINE FR \(\varnothing\) ZEN}

Subroutine \(F R \varnothing Z E N\) is called from subroutine \(R \varnothing C K E T\) to calculate the temperature and thermodynamic propertles for the following assigned conditions:
1. Composition frozen at combustion conditions.
2. An assigned exit pressure.
3. An assigned entropy equal to the entropy at combustion conditions. The iteration procedure used for obtaining the exit temperature is discussed in the section Procedure for Obtaining Frozen Rocket Performance (p. 40, Reference 3.)

For a mixture of fixed composition, entropy, and pressure, the temperature is calculated by a Newton-Raphson iteration. The correction to the current estimate for temperature is obtained from
\[
\Delta \ln T=\frac{\mathscr{S}_{f}^{-} \mathscr{A}_{f}^{\circ}}{\sum_{i=1}^{n} G_{i} x_{i}}
\]

The improved estimate for temperature is then obtained by means of
\[
\ln T^{(j+1)}=\ln T^{(j)}-\Delta \ln T
\]

For frozen composition, the three independent first partial derivatives
are:
and
\[
c_{p}=R \frac{\sum_{i=1}^{n} \zeta_{i} x_{i}}{M w_{c} \sum_{i=1}^{m} x_{i}}
\]
\[
\left(\frac{\partial \ln M w}{\partial \ln T}\right)_{P}=0
\]
and
\[
\left(\frac{\partial \ln M w}{\partial \ln P}\right)_{T}=0
\]

The isentropic exponent \(\gamma\) is
\[
\gamma=\frac{c_{p} M w_{c}}{c_{p} M w_{c}-R}
\]

The throat conditions are evaluated with the aid of a secondary Newton-Raphson iteration using the equation
\[
\left(\frac{P_{c}}{P}\right)_{k+1}=\frac{\left(\frac{P_{c}}{P}\right)_{k}}{1+\frac{2 M w\left(h_{c}-h_{k}^{\star}\right)}{(\gamma+1) R T}}
\]
where \(\left(P_{c} /{ }^{\prime}\right)_{k}\) is the \(k^{\text {th }}\) estimate for pressure ratio at the throat and \(h_{k}^{*}\) is the value of \(h^{*}\) for the pressure corresponding to this pressure ratio and an entropy equal to the combustion entropy. The initial estimate for \(\mathrm{P}_{\mathrm{c}} / \mathrm{P}\) and T at the throat is described below.

An excellent estimate of the throat pressure ratio for both equilibrium and frozen compositions is
\[
P_{C} / P=\left(\frac{\gamma_{c}+1}{2}\right)^{\frac{\gamma_{c}}{\gamma_{c}-1}}
\]

This relation usually gives a throat pressure ratio, which is correct to three places. The throat temperature is estimated from the equation
\[
T=\frac{2}{I+\gamma_{C}} T_{C}
\]

The throat conditions for a rocket nozzle are assumed to be satisfied if
\[
\left|\frac{h_{c}-h^{*}}{h_{c}-h}\right| \leq 0.4 \times 10^{-4}
\]

This condition in effect makes certain that the Mach number will satisfy the condition that
\[
M=1 \pm 0.2 \times 10^{-4}
\]

\subsection*{5.2.7 SUBROUTINE GAUSS}

Subroutine GAUSS is used to solve the set of simultaneous linear Iteration equations constructed by subroutine MATRIX. The solution is effected by performing a Gauss reduction using a modified pivot technique. In this modified pivot technique only rows are interchanged. The row to be used for the elimination of a variable is selected on the basis that the largest of its elements, after division by the leading element, must be smaller than the largest element of the other rows after division by their leading elements.

The solution vector is stored in \(X(k)\). In the event of a singularity, IMAT (which is equal to the number of rows) is set equal to IMAT - 1. IMAT is tested later in subroutine EQLBRM.

\subsection*{5.2.8 SUBROUTINE HCALC}

The purpose of HCALC is to calculate thermodynamic properties for reactants under certain circumstances. HCALC is called from entry NEW \(\varnothing\) F of SAVE and DET \(\varnothing N\).

HCALC is called from NEW \(\varnothing\) F when CALCH is set true. CALCH is set true in the main program when zeros have been punched in card columns 37 and 38 on one or more REACTANTS cards. The zeros are a code indicating that the enthalpy (or internal energy for UV problems) for the reactant should be calculated from the THERM \(\varnothing\) data at the temperature punched on the card. This temperature. has been stored in the RTEMP array. CPHS is called to calculate the enthalpy. The value is sorted in the ENTH array and printed in the final tables.

The properties calculated in subroutine FCALC, their FORTRAN symbols, and the conditions for which they are used are as follows:
\begin{tabular}{|c|c|c|c|}
\hline Property & FORTRAN symbol & Equation & \\
\hline \(H(k) T\) & HPP(k) & (192) & SH \(\varnothing\) CK problem. DETN problem with T scheduls HP, RKT, or DETN problem if 00 in cc 37 and 3: \\
\hline \(h_{0} / \mathrm{R}\) & HS UBO & (193) & SH \(\varnothing\) CK problem. DETN problem with \(T\) schedule HP, RKT, or DETN problem if 00 in Cc 37 and 3 \\
\hline \(u(k) T\) & HPP(k) & (194) & UV problem if 00 in cc 37 and 38 \\
\hline \(u_{0}^{\prime} / R\) & HSUBO & (195) & UV problem if 00 in Cc 37 and 38 \\
\hline \(\mathrm{M}_{0}\) & AM1 & (197) & SHØCK or DETN problem \\
\hline \(\mathrm{m}_{\mathrm{i}}\) & EN(J) & (205) & SHøCK problem \\
\hline \(\tau_{0}\) & CPRI & (206) & SHøCK problem \\
\hline \(\Delta_{0}\) & SO & (207) & SHøCK problem \\
\hline
\end{tabular}

The quantity \(m_{i}\) was deliberately subscripted differently from \(\operatorname{EN}(j)\) to allow for the fact that the same compound may have a different index as a reactant than as a reaction species. Thus, for example, \(\mathrm{O}_{2}(\mathrm{~g})\) might be the third reactant read in from REACTANTS cards and also the tenth spectes read in by SEARCH. In this case \(\mathrm{m}_{3}\) would be stored in EN(10).

\subsection*{5.2.9 SUBROUTINE MATRIX}

This subroutine sets up the matrices corresponding to tables I through IV of Reference 3. The assigned thermodynamic state being set up (tables I and II) is specified by the following codes:
\begin{tabular}{|c|c|}
\hline Assigned thermodynamic state & Codes \\
\hline TP & TP \(=\). TRUE \(. \mathrm{VOL}=\). FALSE. CONVG \(=\). FALSE. \\
\hline HP & HP \(=\). TRUE. VOL \(=\). FALSE. CONVG \(=\). FALSE. \\
\hline SP & \(\mathrm{SP}=. \mathrm{TRUE}, \mathrm{VOL}=. \mathrm{FALSE} . \mathrm{CONVG}=\). FALSE. \\
\hline TV & \\
\hline UV & HP \(=\). TRUE \(. \mathrm{VOL}=\). TRUE. CONVG \(=\). FALSE , \\
\hline SV & \(\mathrm{SP}=. \mathrm{TRUE} \cdot \mathrm{VOL}=. \mathrm{TRUE} . \mathrm{CONVG}=\). FALSE. \\
\hline
\end{tabular}

After convergence of any of the previous six probelms, setup of the derivative matrices (tables III and IV) is specified by the following codes:
\begin{tabular}{|c|c|}
\hline Derivative & Codes \\
\hline DLVTP & CONVG \(=\). TRUE. LOGV \(=\). FALSE. \\
DLVPT & CONVG \(=\). TRUE. LOGV \(=\). FALSE. \\
\hline
\end{tabular}

\section*{SUBROUTINE \(\varnothing\) UTI}

This subroutine, together with entries \(\varnothing U T 2\) and \(\varnothing U T 3\), writes statements common to all problems. \(\varnothing\) UTl writes statements giving the data on REACTANTS and on \(0 / f\), percent fuel, equivalence ratio, and density.

Entry ØUT2. - This entry writes the statements for printing values of pressure, temperature, dentity, enthalpy, entropy, molecular weight, (\(\partial \ln V / \partial\) \(\ln P)_{T}\left(\right.\) if equilibrium), \((\partial \ln V / \partial \ln T)_{P}\left(\right.\) if equilibrlum), heat capacity, \(\gamma_{S}\), and sonic relocity. These variables and corresponding labels are printed with a variable format described in BLKDTA.

Entry \(\varnothing\) UT3. - Entry \(\varnothing\) UT3 writes statements giving the equilibrium mole fractions of reaction species.

\subsection*{5.2.11 SUBROUTINE REACT}

The purpose of subroutine REACT is to read and process the data on the REACTANTS cards. The subroutine is called from the main program after a REACTANTS code card has been read. The data on these cards are described in the REACTANTS Cards section (p. 62) of Reference 3. References to page numbers and equations given below also pertain to Reference 3.

The reactants may be divided into two groups according to card column 72 on the REACTANTS cards. The two groups are oxidants (\(O\) in Cc 72) and fuels (cc \(72 \neq 0\)). We generally keypunch \(F\) in card column 72 for fuels even though this is not necessary. The contents of card column 72 are read into \(F \varnothing X\). Depending on the contents of \(F \not \subset X\), program variables relating to oxidants or fuels are subscripted 1 for oxidants and 2 for fuels.

The FORTRAN symbols for the properties read from the REACTANTS cards and their associated properties (discussed in INPUT CALCULATIONS, p. 55 of Reference 3 are as follows:
\begin{tabular}{|c|c|}
\hline Property & FORTRAN symbol \\
\hline \[
\begin{aligned}
& a_{i j}^{(k)} \\
& W_{j}^{(k)} \\
& N_{j}^{(k)} \\
& \left(\mathrm{H}_{\mathrm{T}}^{\mathrm{O}}\right)^{(\mathrm{k})} \\
& \left(\mathrm{U}_{\mathrm{T}}^{\mathrm{O}}{ }^{(\mathrm{K})}\right. \\
& \rho_{\mathrm{j}}^{(\mathrm{k})}
\end{aligned}
\] & \begin{tabular}{l}
\(\operatorname{ANLM}(j, m)^{a}\) \\
PECWT(j) (if no \(M\) in Cc 53) \\
PECWT(j) (if M in cc 53) \\
ENTH(j) (if not UV problem and 00 not in cc 37 and 38) \\
ENTH(j) (if UV problem and 00 not in Cc 37 and 38) \\
DENS(j)
\end{tabular} \\
\hline
\end{tabular}
\({ }^{a}\) Each of the j REACTANTS cards contains from 1 to 5 stoichiometric coefficients read (indicated by subscript \(m\)) into \(\operatorname{ANUM}(\mathrm{j}, \mathrm{m})\) and their corresponding chemical symbols read into \(\operatorname{NAME}(j, m)\). In relating an \(\operatorname{ANUM}(j, m)\) with \(a_{i j}^{(k)}\), the index \(i\) associated with a particular chemical element is determined from the chemical symbol in \(\operatorname{NAME}(j, m)\).

If there are several oxidants their properties are combined by subroutine REACT into properties of a total oxidant using the relative proportion of each oxidant given on the REACTANTS cards. Similarly, if there are several fuels, their properties are combined into properties of a total fuel. The total oxidant and total fuel properties discussed in INPUT CALCULATIONS \({ }^{3}\) and their associated FORTRAN symbols are as follows:

If any of the \(\rho_{j}^{(k)}\) are zero then \(R H(1)=R H(2)=0\).
These total oxidant and total fuel properties are subsequently combined into total reactant properties by using the values of oxidant-fuel mixture ratios obtained from the main program. This is done in NEW \(\mathrm{N}, \mathrm{F}\), an entry in SAVE.

Other common variables set by REACT are LLMT, NAME, ANUM, ENTH, FAZ, RTEMP, FOX, DENS, RMW, MøLES, NLM, NEWR, and NREAC.

A provision is made for eliminating a second tape search when two consecutive sets of REACTANTS cards contain the same elements. This is done by saving the element symobls (LLMT(l)) in LLMTS (\(\ell\)), the kilogram-atoms per kilogram (\(\operatorname{BOP}(\ell, k)\)) in \(\operatorname{SBOP}(\ell, k)\), and the number of elements (NLM) in NLS.

Atomic weights \(M_{i}\) used in equation (190) \({ }^{3}\) are stored in \(\operatorname{AT} \not \partial \mathrm{M}(2, i)\). The corresponding chemical symbols are stored in \(\operatorname{AT} \varnothing \mathrm{M}(1, i)\). The oxidation states of the chemical elements \(V_{i}^{+}\)or \(V_{i}^{-}\)used in equations (200) and (201) \({ }^{3}\) are stored in \(A T \varnothing M(3,1)\). The \(A T \varnothing M\) array is stored by BLKDTA.

\subsection*{5.2.12 SUBROUTINE RKT \(\varnothing\) UT}

This subroutine calculates various rocket performance parameters from previously calculated thermodynamic properties.

It is also the control program for writing rocket performance output. It contains the WRITE statements that apply specifically to rocket parameters and it calls subroutine \(\varnothing \mathrm{UTl}\) and entries \(\varnothing \mathrm{UT} 2\) and \(\varnothing \mathrm{UT} 3\) for the WRITE statements common to all problems. The rocket parameters are printed with the varlable format, FMT, described in BLKDTA.

The following formulas used in computing the various performance parameters were derived from the one-dimensional forms of continuity, energy, and momentum equations and the following assumptions: zero velocity in the combustion chamber, perfect gas law, complete combustion, homogeneous mixing, adiabatic combustion, and isentropic expansion. (The units used were \(\mathrm{h}=\mathrm{cal} / \mathrm{gm}, \mathrm{T}={ }^{\circ} \mathrm{K}, \mathrm{P}=\mathrm{lb}\) force \(/ \mathrm{sq} \mathrm{in} ., \mathrm{A}=\mathrm{sq} \mathrm{in} ., \mathrm{w}=\mathrm{lb} \mathrm{mass} / \mathrm{sec}\), and \(g_{c}=32.174\) (\(\mathrm{lbmass} / \mathrm{lb}\) force) \(\left(\mathrm{ft} / \mathrm{sec}^{2}\right.\)) \()\)
Specific impulse with ambient and exit pressures equal, (lb force) (sec)/lb mass:
\[
I=294.98 \sqrt{\frac{h_{c}-h}{1000}}
\]

Specific impulse in vacuum (ambient pressure zero), (lb force) (sec)/lb mass:
\[
I_{\text {vac }}=I+P \frac{A}{W}
\]

Characteristic velocity, \(\mathrm{ft} / \mathrm{sec}\) :
\[
c^{*}=g_{c} P_{c}\left|\frac{A}{W}\right|_{t}=32.174 P_{c}\left|\frac{A}{W}\right|_{t}
\]

Coefficient of thrust:
\[
C_{F}=\frac{g_{C} I}{C^{*}}=32.174 \frac{I}{C^{*}}
\]

Mach number:
\[
. M=\frac{U}{U_{S}}=\frac{I}{\sqrt{\frac{86.4579 \because T}{M W}}}
\]

\subsection*{5.2.13 SUBROUTINE R \(\varnothing\) CKET}

This subroutine is the control program for the RKT problem (rocket performance calculations discussed in section R \(\varnothing\) CKET PERFORMANCE). \({ }^{3}\) A flow dlagram for this subroutine is given in Flgure 5 of Reference \({ }^{3}\) Subroutine R \(\varnothing\) CKET obtains the required thermodynamic properties for equilibrium performance by calling subroutine EQLBRM. For frozen performance, subroutine R \(\varnothing\) CKET calls subroutine FRØZEN to obtain the required thermodynamic properties. Rocket performance parameters are then obtained by calling subroutine RKTØUT. In addition to calling RKTØUT and FRØZEN, and in addition to using controls common to all problems (discussed in section MODULAR FORM OF THE PROGRAM, p. 75, Reference 3) subroutine RØCKET also does the following:
1. It reads and processes the input data in RKTINP namelist.
2. It calculates estimates for throat pressure ratios.
3. It calculates estimates for pressure ratios corresponding to assigned
area ratios (if any).

\subsection*{5.2. 14 SUBROUTINE SAVE}

This subroutine has several functions, all of which are concerned with saving some information from a completed calculation for subsequent use in later calculations. The primary purpose is to save computer time by having good initial estimates for compositions.

These estimates for the next point, NPT, come from either the point just completed, ISV, or some other previous point. The flow of the routine is directed by ISV as follows:
1. ISV positive. Transfer compositions for point just completed for use as initial estimates for next point (transfer \(\operatorname{EN}(j, I S V)\) to \(\operatorname{EN}(j, N P T)\)).
2. ISV negative. Save values of \(\operatorname{ENLN}(\mathrm{j})\) for gases and \(\operatorname{EN}(\mathrm{j})\) for condensed in SLN(j), ENN in ENSAVE, ENNL in ENLSAV, IQ1 in IQSAVE, JSØL in JS \(\varnothing\) LS, JLIQ in JIIQS, and NLM in LLI. (These values are saved because they are to be used as initial estimates for some future point and they may be overwritten in the meantime.) Make ISV positive and transfer EN(j,ISV) to EN (j, NPT).
3. ISV zero. Use the data previously saved (as discussed in 2.) as initial estimates for current point. Restore IUSE codes and inclusion or exclusion of " \(E\) " as an element for \(I \varnothing N S\) option.

Entry NEW \(\varnothing \mathrm{F}\). - NEW \(\varnothing \mathrm{F}\) combines the properties of total oxidant and total fuel calculated in subroutine REACT with an \(0 / f\) value to give properties for the total reactant. NEWOF is called for each mixture assigned in the MIX array in \(\$ \varnothing D E\) namelist. It is called from either THERMP, R \(\varnothing C K E T, S H C K\), or DETON. The calculated properties and corresponding FORTRAN symbols are as follows:
\begin{tabular}{|l|l|c|}
\hline Property & \multicolumn{1}{|c|}{ FORTRAN symbol } & Equation \\
\hline\(b_{i}^{O}\) & BO(i) & \((191)\) \\
\(h_{0} / R\) & HSUBO (if not UV problem) & \((193)\) \\
\(u_{0}^{\prime} / R\) & HSUBO (if UV problem) & \((195)\) \\
\(\rho_{0}\) & RHดP & \((139)\) \\
\(r\) & EQRAT & \((264)\) \\
\hline
\end{tabular}

Subroutine HCALC is called by Entry NEW \(\varnothing\) F to calculate the enthalpies for each reactant that has zeros keypunched in card columns 37 and 38 in its REACTANTS card.

Values of \(H P P(2), \operatorname{HPP}(1), H S U B O, B O P(i, 2), B O P(i, 1)\), and \(B O(i)\) are printed out.

\section*{5.2 .15 \\ SUBROUTINE SEARCH}

This subroutine selects the Thermodynamic Data to be used in the problem. A scan is made of the master Thermodynamic Data tape and those species that are consistent with the chemical system under consideration are selected. As the thermodymamic data are being selected, the subroutine also complies a set of formula numbers, \(a_{i j}\), from the formulas of the reaction products. A short Thermodynamic Data flle is also generated for use in subsequent calculations (multizone).

A check is made near the beginning of the routine to prevent THERM \(\varnothing\) data from exceeding their storage allotments. These variables are all in labeled common SPECIES and are currently dimensioned for 150 species. However, this dimension may be reduced to save storage.

SEARCH is called from the main program when the logical variable NEWR is true. NEWR is set true in REACT to indicate a new chemical system. REACT also stores chemical element symbols for the current chemical system in the LLMT array. SEARCH stores THERM \(\varnothing\) data in core for each species whose elements are included in the LLMT array (unless the species name was listed on an \(\varnothing\) MIT card).

The THERM \(\varnothing\) data are stored in common varlables IL \(\varnothing \mathrm{W}\), TMID, THIGH, SUB, A, C \(\varnothing E F\), and TEMP. SEARCH writes out the names and dates of species whose data are stored in core.

SEARCH initializes the IUSE array. IUSE(j) for gaseous species are set equal to zero. IUSE(\(f\)) for condensed species are set equal to negative integers. For the chemical system under consideration, the first possible condensed species is set equal to -1 , the second to -2 , and so on, with one exception. In the event there are two or more condensed phases of the same species, each phase is given the same negative integer. Thus, if \(\operatorname{IUSE}(j)\) for \(\mathrm{B}_{2} \mathrm{O}_{3}(l)\) is set equal to -4 , for example, \(\operatorname{IUSE}(j)\) for \(\mathrm{B}_{2} \mathrm{O}_{3}(s)\) will also be set equal to -4 . A description of the IUSE array is given below.

The various condensed phases of a species are expected to be adjacent in the THERM \(\varnothing\) data as they are read Irom tape. These phases must be either in increasing or decreasing order accorduig to their temperature intervals.

NS contains the total number of species stored in core. NC contains the total number of condensed species (counting each condensed phase of a species as a separate species).

EQLBRM. For condensed species, the sign is adjusted as species are included or excluded in the current iteration.

For the IØNS option, IUSE() values for lonic species are set to -10000 when the mole fractions of all ionic species are less than \(10^{-8}\).

IUSE array. - Each value in the IUSE array is associated with a species. These values of IUSE serve two purposes:
1. They indicate which species are to be included in the current iteration (IUSE \((j)<0\) for excluded species and \(\operatorname{IUSE}(j) \geq 0\) for included species).
2. They indicate multiple phases of the same species if absolute values of \(\operatorname{IUSE}(j)\) are equal.

The IUSE (j) are initialized in subroutine SEARCH and the main program as follows:
1. \(\operatorname{IUSE}(\mathrm{j})=0\) for all gaseous species.
2. \(\operatorname{IUSE}(j)=n\) for all condensed spectes whose names have been listed on INSERT cards. The number \(n\) indicates the species was the \(n^{\text {th }}\) condensed species whose THERM \(\varnothing\) data were read from tape.
3. \(\operatorname{IUSE}(\mathrm{j})=-\mathrm{n}\) for all condensed species not listed on INSERT cards where n is defined in 2 .

These initial values of \(\operatorname{IUSE}(j)\) may be adjusted later in subroutine

Subroutine \(S H C K\) is the application module for the \(S H \varnothing C K\) problems. It calculates the shock parameters discussed in the section "INCIDENT AND REFLECTED SHOCKS". It reads and processes the input data in SHKINP namelist. Depending on which options are specified, it calculates incident shock conditions based on compositions frozen at initial conditions and/or based on equilibrium compositions after shock. It also calculates, based on specified options, frozen and/or equillbrium reflected shock conditions relative to equilibrium and/or frozen incident shock conditions.

\subsection*{5.2.17 SUBROUTINE THERMP}

This subroutine is the application module for TP, HP, SP, TV, UV. and SV problems. Common variables which must be set according to the assigned thermodynamic states are given in the section Application Modules (p.76) of Reference 3.

For these problems, the variables TP, HP, SP, SO, and V \(\varnothing\), are set or read in subroutine \(\varnothing D E S\). HSUBO is set either in SAVE (entry NEW \(\varnothing F\)) or HCALC. The general flow of the routine is given in figure 3 of Reference 3.

Indices run from 1 to NP both for assigned pressures \(P\) and assigned volumes (\(V\) in \(\emptyset D E\) and \(V L\) in THERMP). Indices run from lto \(N T\) for assigned temperature T. NP and NT are set in the subroutine \(\varnothing\) DES.

This subroutine is used to obtain equilibrium values of \(C_{p}\). \(\gamma\), \(R\), and \(h\) from given values of \(T\) and \(P\). Subroutine EQLBRM is called to obtain the solutions.

\subsection*{5.2.19 SUBROUTINE TSCALC}

This subroutine finds equilibrium solutions from given values of \(T\) and \(S\). The method used is to call subroutine TPCALC to find equilibrium solutions from given values of \(T\) and \(P\), then the \(P\) value is adjusted until the input value of \(S\) is matched. Iteration on \(P\) is done using subroutine ITER (secant method). Subroutine TSCALC is used to construct the gas properties tables used by the BLM which are discussed in Section 2.6.3.

\subsection*{5.2.20 SUBROUTINE VARFMT}

Subroutine VARFMT (variable format) adjusts the number of decimal places printed in \(F\)-format in the variable format. \(F M T\), according to the size of the number. It is used for \(P_{c} / P_{e}, P\), and \(A_{e} / A_{t}\). Variable format is described in BLKDTA.
5.3 ODK MODULE SUBROUTINES

The One-Dimensional Kinetics (ODK) module is used to calculate the loss in nozzle performance caused by finite-rate chemistry of the expansion products. The method of analysis used is described in Section 2.1 and 2.2. Since the ordinary differential equations that are solved can be extremely stiff, a stable integration method is required. The integration method is described in Section 3.1 .

The \(O D K\) module consists of the following subroutines:
\begin{tabular}{ll}
ODK & ODKINP \\
CHTYPE & ODWALL \\
CONVRT & OUTPUT \\
DERIV & PACK \\
ECNV1 & PACKCD \\
EF & PRATES \\
FLU & PREAX \\
FNDLM & PRES \\
GTF & PRNTCK \\
IAUX & REAXIN \\
INT & SELECT \\
LESK & STF \\
MAIN1D & STØICC \\
MGET & STORNU \\
NUMBR & SUBNE \\
ODKBLM & TABGEN
\end{tabular}

This subroutine acts as the driver for the one dimensional kinetic expansion calculation (\(O D K\)). It calls subroutine ODKINP to read the \(\$ 0 D K\) input. Subroutine PACK is then called to prepare master tables for the chemical species and reactions to be used. Then subroutine MAINID is called which is the main program for the ODK module.
5.3.2 SUBROUTINE CHTYPE (KRD, ITY, NC)

Given the array KRD containing in each entry one character, left justified, this subroutine stores an interger code into the corresponding entry of array ITY. NC is the number of characters (consecutive entries) in KRD which are to be processed. The character-code table is as follows.
\begin{tabular}{cc}
Character & Code \\
= & -4 \\
\(*\) & -3 \\
+ & -2 \\
0 & 0 \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7 \\
8 & 8 \\
9 & 9 \\
all others & -1
\end{tabular}

This subroutine converts input data from the externally input units to internally used computation units. In order to conserve computation time during the kinetic expansion, parameters such as molecular weights, are included in these conversions. Barred values are input quantities.
a) Reaction rate ratio input for reactions requiring third body terms units: unitless
internal units: (lbs-mass/lb-mole) \({ }^{-1}\)
formula: \(X M M_{j, i}=\widehat{X M M}_{j, i} / M w_{i}\)
b) Pre-exponential reaction rate parameter input units: \(\mathrm{cm},{ }^{\circ} \mathrm{K}, \mathrm{g}\)-mole, sec internal units: \(\mathrm{ft}^{3}\), \(^{\circ} \mathrm{R}\), lb-mole, sec
\[
a_{j}=\frac{\bar{a}_{j} \cdot(.0160183)_{j}^{\lambda_{j}} 1.8{\overline{n_{j}}}_{i=1}^{n} M w_{i} \nu_{i j}^{\prime}}{\prod_{i j}}
\]

Where \(\lambda\) depends on the order of the reaction, i.e. where \(\lambda=(\Sigma v)-1\) for binary exchange and \(\Sigma v\) for third body recombination. Alse:
\[
.0160185=\frac{3.53147 \cdot 10^{-5} \mathrm{ft}^{3}}{1 \mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~g}-\mathrm{mass}}{2.20462 \cdot 10^{-3} \mathrm{lbs}-\mathrm{mass}}
\]
c) Exponential Term:
input units: kcal/mole
internal units: \({ }^{\circ} \mathrm{R}\)
formula: \(b_{j}=\bar{b}_{j} \cdot 905.770\)
where \(905.770=\frac{1000 \mathrm{cal}}{1 \mathrm{kcal}} \cdot \frac{1}{1.98726 \mathrm{cal} / \mathrm{mole}-\mathrm{K}^{-} \mathrm{K}} \cdot \frac{1.8^{\circ} \mathrm{R}}{1.0^{\circ} \mathrm{K}}\)
\[
5 \div 55
\]
d) Equilibrium Constant Multiplicative Factor:

Input units: not input
internal units: (lbs-mass) \(-{ }^{\circ} \mathrm{R} / \mathrm{ft}{ }^{3}\)
formula:

where
\[
\text { i.e. } \begin{aligned}
.73034 & =49,721.011 \cdot \frac{f t-\text { poundals }}{(\mathrm{lbs}-\text { mole })^{\circ} \mathrm{R}} \cdot \frac{1 \text { atmos }}{68,059.59 \text { poundals } / \mathrm{ft}^{2}} \\
.73034 & =(\mathrm{RJg}) /(144 \mathrm{~g} 14.69)
\end{aligned}
\]
e) Pressure:
input units: PSIA
internal units: poundals \(/ \mathrm{ft}^{2}\)
formula: \(P=\bar{P} \cdot 4633.056\)
where
\[
4633.056=\frac{144 \mathrm{in}^{2}}{1 \mathrm{ft}^{2}} \cdot 32.174 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}
\]
f) The initial reference enthalpy is computed using
\[
H_{R e f}=\sum_{i=1}^{N} c_{i} h_{i}+\frac{v^{2}}{2}
\]

Subroutine C \(\varnothing\) NVRT has been modified to calculate the total amount of condensed phase present at the kinetic expansion initial conditions.

This subroutine computes the total derivatives \(f_{i}\) and the partial derivatives \(\beta_{i j}\) described in the analysis presented in Section 3

The implicit integration method used to integrate the differential equations governing the chemical system, i.e.
\[
y_{i}^{\prime}=f_{1}\left(x, Y_{1}, \ldots: Y_{N S P+3}\right) \quad i=1, \ldots, \ldots N S P+3
\]
where the variables
\begin{tabular}{ll}
& \(y_{1}\) \\
are & \(\mathbf{V}, \rho, T, C_{1}\)
\end{tabular}\(\quad 1=1, \ldots N S P+3\)
respectively, requires evaluation of the Jacobian of the system, i. e.
\[
\beta_{i j}=\frac{\partial f_{i}}{\partial Y_{j}} \quad \begin{aligned}
& 1=1, \ldots, \ldots N S P+3 \\
& j=1, \ldots, N S P+3
\end{aligned}
\]

Subroutine DERIV computes only certain of the \(\beta_{i j}\) (those taken with respect to \(C_{i}\)) and the others are computed in subroutine FLU.

Also calculated by DERIV are the reaction rates, \(k_{j}\), and the net production rates, \(X_{j}\).

The generalized chemical reaction which is handled by this subroutine is defined by:
\[
\sum_{i=1}^{\text {NSP }} \nu_{i j} \bar{M}_{1} \neq \sum_{i=1}^{\text {NSP }} \nu_{i j}^{\prime} \bar{M}_{i}
\]
where \(\bar{M}_{i}\) represents the \(i^{\text {th }}\) chemical species.
The reverse reaction rate constant is defined by the equation:
\[
\mathbf{k}_{j} \quad S K(J) \quad=a_{j} \cdot T^{-n_{j}} \cdot \exp \left(-b_{j} / T\right)
\]

The net production rate for a reaction is given by:
\[
x_{j} \quad X(J) \quad=\left[K_{j} \cdot \prod_{i=1}^{N S P} C_{i} \nu_{i j}-\rho_{j} \cdot \prod_{i=1}^{N S P} C_{i} \nu_{i j}^{\prime}\right] \cdot k_{j} \cdot M_{j} \rho\left(\Sigma v_{i j}\right)-1
\]
where: \(\lambda_{j}\) depends on the order of the reaction*
with \(M_{j}=\sum_{i=1}^{N S P} X M M_{j, i} \cdot C_{i}\) for reactions requiring a third body
\[
\text { and } M_{j}=1 \quad \text { for all other reactions }
\]
\[
\text { where } X M M_{j i} \equiv m_{j i} / M w_{i} \quad, m_{j i}=a_{i j} / a_{k j}
\]

The net individual species production rate is given by the equation:
\[
\frac{d C_{i}}{d x} F N(I)=\bar{K}_{i} \cdot \sum_{j=1}^{\ell} \psi_{i j} \cdot X_{j}
\]
where:
\[
\begin{aligned}
& \bar{X}_{1}=\left(M w_{i} \cdot \rho \cdot r^{\star}\right) / N \\
& \psi_{i j}=\dot{v}_{i j}^{\prime}-v_{i j}
\end{aligned}
\]

The partial derivatives of the net species production rate with respect to: the chemical species; the gas velocity; the gas density; and the gas temperature are:
* \(\lambda_{j}=\sum_{i=1}^{\operatorname{NSP}}\left(\nu_{i j}^{\prime}-v_{i j}\right)\) so that \(\lambda_{j}=0\) for binary exchange, \(\lambda_{j}=1\) for most dissociation recombination reactions.
\[
\begin{aligned}
& \beta\left(C_{k}, C_{i}\right) \operatorname{BT}(I, K)=\bar{K}_{i} \cdot \sum_{j=1}^{\ell} \ell_{i j} \frac{\partial X_{i}}{\partial C_{i}} \\
& 1=1, \ldots \text { iSP } \\
& k=1 \text {, . . . NiP } \\
& \text { peC. } V \operatorname{PHI}(I, 1)=-\frac{1}{V} \frac{d C_{1}}{d x} \quad 1=1, \ldots \text { iSP } \\
& \begin{array}{l}
\beta\left(C_{i}, V\right) \quad \operatorname{PHI}(I, 1)=-\frac{1}{V} \frac{1}{d x} \\
\beta\left(C_{i}, \rho\right) \operatorname{PHI}(I, 2)=\frac{1}{\rho} \cdot \frac{d C_{i}}{d x}+\bar{X}_{i} \sum_{j=1}^{m} \psi_{i j} \frac{\partial X_{i}}{\partial \rho} i=1, \ldots \text { iSP }
\end{array} \\
& \beta\left(C_{i}, T\right) \quad \operatorname{PHI}(I, 3)=\bar{K}_{i}, \sum_{j=1}^{\ell} \mu_{i j} \frac{\partial X_{i}}{\partial T} \\
& 1=1, \ldots, N S P
\end{aligned}
\]

\section*{The subscript notation used above is:}
\(1=\) Species subscript
\(1=\) Reaction subscript
\(\boldsymbol{l}=\) Total number of chemical reactions
\(m=\) Number of reactions requiring third body terms
NSP \(=\) Total number of gaseous species

Subroutine DERIV calls subroutine FLU to calculate the derivatives and partial derivatives of \(V, P\), and \(T\). In the event of solidification, this routine also recalculates the condensed phase species derivatives and their partial derivatives and recalls subroutine FLU to recalculate the flow derivatives.

\subsection*{5.3.5 SUBROUTINE ECNV 1}

This subroutine translates a \(B C D\) string of characters into one floating point numeric value. \(E, I\), and formats are permitted with the result always a floating point number. It is called by subroutine REAXIN to decode numeric fields in the species and reactions cards. The subroutine is coded entirely in FORTRAN. \(A\) BCD string of blanks will result in a ploating point zero returned value.

\subsection*{5.3.6 SUBROUTINE EF}

This subroutine computes equilibrium constants, \(K_{j}\),
\[
K_{j} \operatorname{EK}(\eta)=\frac{\operatorname{DATEF}(\eta)}{T_{j} \lambda_{j}} \cdot \exp \left[-\sum_{i=1}^{n} F t_{i} \cdot \nu_{i j}+\sum_{i=1}^{n} \mathrm{Ft}_{i} \cdot \nu_{i j}^{\prime}\right]
\]
also computed are
\[
\frac{\mathrm{dK}_{j}}{\mathrm{dT}} \operatorname{DKT}(J)=\left[\frac{-\sum_{i=1}^{n} \frac{\mathrm{Ht}_{i}}{\mathrm{R}_{i}} \cdot v_{i j}+\sum_{i=1}^{n} \frac{\mathrm{Ht}_{1}}{R_{i}} \cdot \nu_{i j}^{\prime}}{\mathrm{T}}-\lambda_{j}\right] \cdot \frac{K_{j}}{T}
\]
where: \(\mathrm{Ft}_{\mathrm{i}}=\) species free energy at the current temperature
\(\mathrm{Ht}_{1}=\) species enthalpy at the current temperature
DATE \((J)=\) is defined in subroutine C \(\varnothing\) NVRT

\subsection*{5.3.7 SUBROUTINE FLU}

This subroutine computes the total derivatives \(f_{i}\) and the partial derivatives \(\alpha_{i}\) and \(\varepsilon_{i j}\) for the fluid dynamic equations. While the flow is subsonic, pressure defined fluld dynamic equations are used. When the flow becomes supersonic, area defined fluid dynamic equations are used. The summation terms, energy exchange term \(B\), the diabatic heat addition term \(A\), the Mach number, and all the partial derivatives of these terms are computed. For a subsonic integration the pressure and its derivatives are obtained from the subsonic pressure table. For a supersonic integration the area ratio and its derivatives are computed from the input geometric constraints.

The calculations logically fall into three types: a) Those done for all integrations; b) Those done only for subsonic integration; c) Those done only for supersonic integration. The following will adhere as closely as possible to a sequential description of the computations.

The operators \(\Phi(1,1), 1=1,2,3\) are defined as
\[
\begin{aligned}
& \Phi(i, 1)=\beta\left(C_{i}, V\right) \\
& \Phi(i, 2)=\beta\left(C_{i}, \alpha\right) \\
& \Phi(i, 3)=\beta\left(C_{i}, T\right)
\end{aligned}
\]

The total derivatives, \(\mathrm{f}_{\mathrm{i}}=\frac{\mathrm{dC}_{\mathrm{i}}}{\mathrm{dx}}\), for \(\mathrm{i}=1, \ldots, \mathrm{n}\) are computed as
\[
f_{i}=\frac{\omega_{i} r^{\star}}{\rho V}
\]
where n is the total number of species, NSP.
For an ODTDK problem, tables of \(C p, R, A A, B B\), as functions of temperature are written on logicsl unit JANAF.

Computation of the Summation Terms and thelr derlvatives:
First Summation
\begin{tabular}{|c|c|c|}
\hline Sl & S1 & \[
=\frac{1}{R} \cdot \sum_{i=1}^{n} \frac{d C_{i}}{d x} \cdot R_{1}
\] \\
\hline \[
\frac{\partial S 1}{\partial V}
\] & DSIV & \[
=\frac{1}{R} \cdot \sum_{i=1}^{n}{ }_{(1,1)} \cdot R_{1}
\] \\
\hline \[
\frac{\partial S l}{\partial \rho}
\] & DSIR \(\varnothing\) & \[
=\frac{1}{R} \cdot \sum_{i=1}^{n} \Phi_{(1,2)} \cdot R_{1}
\] \\
\hline \[
\frac{\partial S 1}{\partial T}
\] & DS1 T & \[
=\frac{1}{R} \cdot \sum_{i=1}^{n}(1,3) \cdot R_{1}
\] \\
\hline \[
\frac{\partial S_{1}}{\partial C_{1}}
\] & DS1 C(I) & \[
=\frac{1}{R} \cdot\left[\sum_{j=1}^{n} \beta\left(C_{j}, C_{i}\right)^{\cdot R_{j}-S 1 \cdot R_{i}}\right]
\] \\
\hline
\end{tabular}

Second Summation
\(S 2 \quad \mathrm{~S} 2 \quad=\frac{1}{R \cdot T} \cdot \sum_{i=1}^{n} \frac{d C_{1}}{d x} \cdot h_{i}\)
\(\frac{\partial S 2}{\partial V} \quad D S 2 V \quad=\frac{1}{R \cdot T} \cdot \sum_{i=1}^{n} \Phi_{(1,1)} \cdot h_{1}\)
\(\frac{\partial S 2}{\partial \rho} \quad D S 2 R \varnothing=\frac{1}{R \cdot T} \cdot \sum_{i=1}^{n}(1,2) \cdot h_{1}\)
\(\frac{\partial S 2}{\partial T} \quad D S 2 T \quad=\frac{1}{R \cdot T} \cdot \sum_{i=1}^{n}\left[(1,3) \cdot h_{1}+\frac{d C_{1}}{d x} \cdot \mathrm{Cp}_{1}\right]-\frac{S 2}{T}\)
\(\frac{\partial S 2}{\partial C_{1}} \quad \operatorname{DS2C}(I)=\frac{1}{R} \cdot\left[\sum_{j=1}^{n} \frac{\beta\left(C_{j}, C_{1}\right)^{\cdot h_{1}}}{T}-S 2 \cdot R_{1}\right] 1=1, \ldots, n\)

\footnotetext{
* \(R_{i}\) is the gas constant/molecular wt. of species \(i\)
}

Computation of the Energy Exchange Term B and its DerIvatives:
\[
\begin{array}{ll}
\text { B } & =\frac{\gamma-1}{\gamma} \cdot S 2 \\
\frac{\partial B}{\partial V} & \text { DBBV } \\
\frac{\partial B}{\partial \rho} & =\frac{\gamma-1}{\gamma} \cdot \frac{\partial S 2}{\partial V} \\
\frac{\partial B B R \varnothing}{\partial T} & =\frac{\gamma-1}{\gamma} \cdot \frac{\partial S 2}{\partial \rho} \\
\frac{\partial B}{\partial C_{1}} & D B B C(I) \\
& =\frac{\gamma-1}{\gamma} \cdot \frac{\partial S 2}{\partial T}+\frac{S 2}{\gamma} \cdot \frac{\partial S 2}{\partial C_{i}}+\frac{\partial \gamma}{\partial T}
\end{array}
\]

Computation of the Diabatic Heat Addition Term A and Its Derivatives:
\[
\begin{array}{lll}
A & A A & S I-B \\
\frac{\partial A}{\partial V} & D A A V & =\frac{\partial S 1}{\partial V}-\frac{\partial B}{\partial V} \\
\frac{\partial A}{\partial \rho} & D A A R \varnothing & =\frac{\partial S 1}{\partial \rho}-\frac{\partial B}{\partial \rho} \\
\frac{\partial A}{\partial T} & D A A T & =\frac{\partial S 1}{\partial T}-\frac{\partial B}{\partial T} \\
\frac{\partial A}{\partial C_{1}} & \text { DAAC(I) } & =\frac{\partial S 1}{\partial C_{1}}-\frac{\partial B}{\partial C_{1}}
\end{array}
\]

Computation of the Mach number and its derlvatives:
\[
\begin{array}{ll}
M^{2} & =\frac{V^{2}}{\gamma \cdot R \cdot T} \\
\frac{\partial M^{2}}{\partial V} & \text { DM2V } \\
\frac{\partial M^{2}}{\partial T} & \text { DM2T } \\
\frac{2 \cdot M^{2}}{V} \\
\frac{\partial M^{2}}{\partial C_{1}} & =-\frac{M^{2}}{T}-\frac{M^{2}}{\gamma} \cdot \frac{\partial \gamma}{\partial T} \\
\text { DM2C(I) } & =-M^{2} \cdot\left[\frac{\partial \gamma}{\partial C_{1}} \cdot \frac{1}{\gamma}+\frac{R_{1}}{R}\right] \quad 1=1, \ldots, n
\end{array}
\]

For the subsonic portion of the nozzle, pressure defined fluid dynamic equations are used. The pressure, and its first and second derivatives are computed via Interpolation in the pressure table generated by subroutine PRES. The Subsonic Gas Velocity derivatives are computed:
\[
\begin{aligned}
& \frac{d V}{d x} \quad \operatorname{FNX}(1)=-\frac{1}{\rho \cdot V} \cdot \frac{d P}{d x} \\
& \frac{\partial[F N X(1)]}{\partial x} \operatorname{AL}(1) \quad=-\frac{1}{\rho \cdot V} \cdot \frac{d^{2} P}{d x^{2}} \\
& \beta(V, V) \quad \operatorname{BETA}(1,1)=-\frac{1}{V} \cdot \frac{d V}{d x} \\
& \beta(V, \rho) \quad \operatorname{BETA}(1,2)=-\frac{1}{\rho} \cdot \frac{d V}{d x}
\end{aligned}
\]

The Subsonic Gas Density derivatives are computed:
\[
\begin{aligned}
& \frac{d \rho}{d x} \quad F N X(2)=\rho \cdot\left[\frac{d P}{d x} \cdot \frac{1}{\gamma \cdot P}-A\right] \\
& \frac{\partial[F N X(2)]}{\partial x} A L(2)
\end{aligned}=\frac{\rho}{\gamma \cdot P} \cdot\left[\frac{d^{2} p}{d x^{2}}-\left(\frac{d P}{d x}\right)^{2} \cdot \frac{1}{P}\right], ~ l
\]
\[
\begin{aligned}
& \beta(\rho, V) \quad \operatorname{BETA}(2,1)=-\rho \cdot \frac{\partial A}{\partial V} \\
& \beta(\rho, \rho) \quad \operatorname{BETA}(2,2)=-\frac{1}{\rho} \cdot \frac{d \rho}{d x}-\rho \cdot \frac{\partial A}{\partial \rho} \\
& \beta(\rho, T) \quad \operatorname{BETA}(2,3)=-\rho \cdot \frac{\partial A}{\partial T}-\frac{\rho}{p \cdot \gamma^{2}} \cdot \frac{\partial y}{\partial T} \cdot \frac{d P}{d x} \\
& \beta\left(\rho, C_{i}\right) \quad \operatorname{BETA}(2,1+3)=-\frac{\rho}{\gamma^{2} p} \cdot \frac{\partial y}{\partial C_{1}} \cdot \frac{d P}{d x}-\rho \cdot \frac{\partial A}{\partial C_{1}} \quad 1=1, \ldots, n
\end{aligned}
\]

The Subsonic Gas Temperature derivatives are computed:
\[
\begin{aligned}
& \frac{d T}{d x} \quad \operatorname{FNX}(3)=T \cdot\left[\frac{\gamma-1}{\gamma} \cdot \frac{1}{P} \cdot \frac{d P}{d x}-B\right] \\
& \frac{\partial[F N X(3)]}{\partial x} \operatorname{AL}(3) \quad \operatorname{BETA}(3,1)=-T \cdot \frac{\gamma-1}{\gamma} \cdot \frac{T}{P} \cdot\left[\frac{d^{2} P}{d x^{2}}-\left(\frac{d P}{d x}\right)^{2} \cdot \frac{1}{P}\right] \\
& \beta(T, V) \quad \operatorname{BETA}(3,2)=-T \cdot \frac{\partial B}{\partial \rho} \\
& \beta(T, \rho) \quad \operatorname{BETA}(3,3)=\frac{1}{T} \cdot \frac{d T}{d x}+T \frac{1}{\gamma^{2} \cdot P} \frac{d P}{d x} \frac{\partial \gamma}{\partial T}-T \frac{\partial B}{\partial T} \\
& \beta(T, T) \quad \operatorname{BETA}(3,1+3)=T \cdot\left[\frac{1}{\gamma^{2} \cdot P} \cdot \frac{d P}{d x} \cdot \frac{\partial \gamma}{\partial C_{i}}-\frac{\partial B}{\partial C_{i}}\right] 1=1, \ldots n
\end{aligned}
\]

For the supersonic portion of the nozzle, area defined fluld dynamic equations are used. The area ratlo, and its derivatives are computed according to the input geometric constraints.

Area ratlo and Its derivatives:
1) On the circular arc of radius \(R_{d}\) (input item RWTD) defining the downstream throat region, \(\mathrm{X} \leq \mathrm{X}_{\text {tangent }}\)
\[
\begin{aligned}
& a=\left[1+R_{d}-\left(R_{d}^{2}-x^{2}\right)^{1 / 2}\right]^{2} \\
& \frac{d a}{d x}=\frac{2 x}{\left(R_{d}^{2}-x^{2}\right)^{1 / 2}} \cdot\left[1+R_{d}-\left(R_{d}^{2}-x^{2}\right)^{1 / 2}\right] \\
& \frac{d^{2} a}{d x^{2}}=\left[\frac{2}{\left(R_{d}^{2}-x^{2}\right)^{1 / 2}}+\frac{2 x^{2}}{\left(R_{d}-x^{2}\right)^{3 / 2}}\right] \cdot\left[1+R_{d}-\left(R_{d}-x^{2}\right)^{1 / 2}\right] \\
& \quad+\frac{R_{d}{ }^{2}-x^{2}}{2}
\end{aligned}
\]
2) For a conical nozzle and \(X>X_{\text {tangent }}\)
\[
\begin{aligned}
& a=\left[r_{t}+\left(x-x_{t}\right) \tan \theta_{t}\right]^{2} \\
& \frac{d a}{d x}=2\left[r_{t}+\left(x-x_{t}\right) \tan \theta_{t}\right] \cdot \tan \theta_{t} \\
& \frac{d^{2} a}{d x^{2}}=2 \tan ^{2} \theta_{t}
\end{aligned}
\]
3) For a contoured nozzle and \(X>X_{\text {tangent }}\)
\[
\begin{array}{ll}
a & =Y^{2} \\
\frac{d a}{d x} & =2 \cdot Y \cdot \frac{d Y}{d x} \\
\frac{d^{2} a}{d x^{2}} & =2 \cdot\left[Y \frac{d^{2} Y}{d x^{2}}+\left(\frac{d Y}{d x}\right)^{2}\right]
\end{array}
\]
where \(Y, d Y / d x, d^{2} Y / d x^{2}\) are computed via Interpolation in the table of derivatives of the input wall table generated In Subroutine SLP.

The Supersonic Gas Velocity derivatives are computed:
\[
\begin{aligned}
& \left.\begin{array}{l}
\frac{d V}{d x} \quad \operatorname{FNX}(1)= \\
\frac{\partial[F N X(1)]}{\partial x} \operatorname{AL}(1) \\
M^{2}-1
\end{array} \frac{V}{M^{2}-1} \cdot \frac{1}{a} \frac{d a}{d x}-A\right] \\
& \beta(V, V) \quad \operatorname{BETA}(1,1)= \\
& \beta\left(\frac{1}{V} \cdot \frac{d V}{d x}-\frac{1}{d x^{2}}-\frac{1}{a} \cdot\left(\frac{d a}{d x}\right)^{2}\right] \frac{d V}{d x} \cdot \frac{\partial M^{2}}{\partial V} \\
& \beta(V, \rho) \quad \operatorname{BETA}(1,2)= \\
& \beta(V, T) \quad \operatorname{BETA}(1,3)= \\
& \beta\left(V, C_{1}^{2}\right) \quad \operatorname{BETA}(1,1+3)=
\end{aligned}
\]

The Supersonic Gas Density derIvatives are computed:
\[
\begin{aligned}
& \frac{d \rho}{d x} \cdot \operatorname{FNX}(2)=-\rho \cdot\left[\frac{M^{2}}{M^{2}-1} \cdot\left(\frac{1}{a} \cdot \frac{d a}{d x}-A\right)+A\right] \\
& \frac{\partial[F N X(2)]}{\partial x} A L(2) \quad=-\rho \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{1}{a} \cdot\left[\frac{d^{2} a}{d x^{2}}-\frac{1}{a}\left(\frac{d a}{d x}\right)^{2}\right] \\
& \beta(\rho, V) \quad \operatorname{BETA}(2,1)=\rho \cdot\left[\frac{1}{\left(M^{2}-1\right)^{2}} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \cdot \frac{\partial M^{2}}{\partial V}+\frac{1}{M^{2}-1} \cdot \frac{\partial A}{\partial V}\right] \\
& \beta(\rho, \rho) \quad \operatorname{BETA}(2,2)=\frac{1}{\rho} \cdot \frac{d \rho}{d x}+\frac{\rho}{M^{2}-1} \cdot \frac{\partial A}{\partial \rho} \\
& \beta(\rho, T) \quad \operatorname{BETA}(2,3)=\rho \cdot\left[\frac{1}{\left(M^{2}-1\right)^{2}} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \cdot \frac{\partial M^{2}}{\partial T}+\frac{1}{M^{2}-1} \cdot \frac{\partial A}{\partial T}\right] \\
& \beta\left(\rho, C_{1}\right) \quad \operatorname{BETA}(2, i+3)=\rho \cdot\left[\frac{1}{\left(M^{2}-1\right)^{2}} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \frac{\partial M^{2}}{\partial C_{1}}+\frac{1}{M^{2}-1} \cdot \frac{\partial A}{\partial C_{1}}\right] \\
& 1=1, \ldots, n
\end{aligned}
\]

The Supersonic Gas Temperature derivatives are computed:
\[
\begin{aligned}
& \frac{d T}{d x} \quad \operatorname{FNX}(3)=-T \cdot\left[(\gamma-1) \cdot \frac{M^{2}}{M^{2}-1} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right)+B\right] \\
& \frac{\partial[F N X(3)]}{\partial X} \operatorname{AL}(3)=-T \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{\gamma-1}{a} \cdot\left[\frac{d^{2} a}{d x^{2}}-\frac{1}{a} \cdot\left(\frac{d a}{d x}\right)^{2}\right] \\
& \beta(T, V) \quad \operatorname{BETA}(3,1)=T \cdot\left[\frac{\gamma-1}{\left.M^{2}-1\right)^{2}}\left(\frac{1}{a} \frac{d a}{d x}-A\right) \cdot \frac{\partial M^{2}}{\partial V}+\gamma-1 \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{\partial A}{\partial V}-\frac{\partial B}{\partial V}\right] \\
& \beta(T, \rho) \quad \operatorname{BETA}(3,2)=T \cdot\left[\gamma-1 \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{\partial A}{\partial \rho}-\frac{\partial B}{\partial \rho}\right]
\end{aligned}
\]
\[
\begin{aligned}
\beta(T, T) \quad \operatorname{BETA}(3,3)= & \frac{1}{T} \cdot \frac{d T}{d x}+T \cdot\left[\frac{\gamma-1}{\left(M^{2}-1\right)} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \frac{\partial M^{2}}{\partial T}\right. \\
& +\gamma-1 \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{\partial A}{\partial T}-\frac{\partial B}{\partial T} \\
& \left.-\frac{M^{2}}{\left(M^{2}-1\right)} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \frac{\partial \gamma}{\partial T}\right] \\
\beta\left(T, C_{1}\right) \quad \operatorname{BETA}(3,1+3)= & T \cdot\left[\frac{\gamma-1}{\left(M^{2}-1\right)^{2}} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \cdot \frac{\partial M^{2}}{\partial C_{1}}+\gamma-1 \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{\partial A}{\partial C_{1}}\right. \\
& \left.-\frac{\partial B}{\partial C_{1}}-\frac{M^{2}}{M^{2}-1} \cdot\left(\frac{1}{a} \frac{d a}{d x}-A\right) \frac{\partial \gamma}{\partial C_{1}}\right]
\end{aligned}
\]

\subsection*{5.3.8 SUBROUTINE FNDLM (IC, NS, IP, IDLM)}

Given a card image stored 80 A 1 in the IC array, this subroutine searches left to right, starting with character number NS, until a match is found to the input character IDLM. The character number is returned in IP. If no match is found, a - 1 is returned in IP. This subroutine is used by subroutines MGET, PRATES, and REAXIN to locate field delimiters.

\subsection*{5.3.9 SUBROUTINE GTF}

This subroutine computes the effective gas constant, gaseous heat capaclty, \(\gamma, \partial \gamma / \partial T, \partial \gamma / \partial C_{1}\) from the following formulae:
\[
\begin{aligned}
& R=\sum_{i=1}^{N S P} C_{i} \cdot R_{1} \\
& C p=\sum_{i=1}^{N S P} C_{1} \cdot C p_{1} \\
& \gamma=\frac{C p}{C p-R} \\
& \frac{\partial y}{\partial I}=-\frac{\gamma \cdot(\gamma-1)}{C p} \cdot \sum_{i=1}^{N S P} C_{1} \cdot \frac{\partial C_{1}}{\partial T} \\
& \frac{\partial y}{\partial C_{1}}=\gamma \cdot(\gamma-1) \cdot\left[\frac{R_{1}}{R}-\frac{C p_{1}}{C p}\right] \quad 1=1, \ldots, n
\end{aligned}
\]

For condensed phases, \(R_{i}=0\), to account for the assumption that the particles exert no pressure on the gas.

\subsection*{5.3.10 SUBROUTINE IAUX (HL, \(\mathrm{H}, \mathrm{QK}, \mathrm{RK}, ~(\mathrm{X})\)}

This subroutine performs implicit integration according to the method discussed in Section 3. The increments for the chemical species concentrations and the fluid dynamic variables at the forward point are calculated by solving the appropriate implicit finite difference formulas. Subroutine IAUX also performs explicit integration, using a modified Euler method, when the gas temperature falls below an input value.

The calling sequence parameters are:
HL - last integration step size
H - current integration step size
QK - last increments for variables
RK - computed increments for variables
JK - 1 initial 3 steps
2 general step
3 special step
4 restart step
The total derivatives, \(f_{i, n}\), and partial derivatives, \(\beta_{i, j, n}\) at the back point are calculated in subroutines DERIV and FLU.

The special step calculation is used at print stations, in halving the step size if required, or for integrating to specific calculation stations. If the special step calculation is used to determine the properties at a print station, the calculation is resumed using the general step calculation and the previous step size.

After each integration step, subroutine IAUX obtains the derivatives at the then current axial position.

\section*{For Implicit integration the equations used are:}

\section*{Initlal Step and Restart}
\[
k_{i, 1}=\left[f_{i, 0}+\alpha_{i, 0} h+\sum_{j=1}^{N} \beta_{i, j, 0} k_{j, 1}\right] \cdot h
\]

General Step
\[
k_{i, n+1}=\frac{1}{3}\left[k_{i, n}+2 \cdot\left|f_{i, n}+z_{i, n} h+\sum_{j=1}^{N} 6_{i, j, n^{k}}, n+1\right| \cdot h\right]
\]

\section*{Special Step}
\[
\begin{aligned}
k_{i, n+1} & =\frac{h_{n+1}^{2}}{\left(2 h_{n+1}+h_{n}\right) \cdot h_{n}}\left[k _ { i , n ^ { + } } \left[f_{i, n}+\alpha_{i, n} h_{n+1}\right.\right. \\
& \left.\left.+\sum_{j=1}^{N} \beta_{i, j, n} k_{j, n+1}\right] \cdot \frac{h_{n}}{h_{n+1}}\left(h_{n+1}+h_{n}\right)\right]
\end{aligned}
\]

For explicit integration the above equations are used deleting the partial derlvatlve terms \(\alpha\) and \(\beta\).

If the TDK problem directive was selected, gas tables for the Transonic Analysis Subprogram are written on logical unit ITSTAB.

If the option to generate input tables for the Turbulent Boundary Layer Nozzle Analysis Computer Program was selected, tables of \(M, P / P_{C}, T / T_{C}, C_{p}, V, p\) are tabulated using subroutine TABGEN.

\subsection*{5.3.11 SUBROUTINE INT}

Provides control for the implicit integration procedure, determines the proper set of nonhomogeneous equations to solve, and, after each integration step, computes the next integration step size according to the following relations:
\[
\begin{aligned}
& h_{n+2}=2 h_{n+1}, \quad\left|\frac{k_{1, n+1}-2 k_{1, n}+k_{i, n-1}}{3 y_{\text {max }}}\right|<\text { MAX }^{20} \\
& n_{n+2}=\frac{1}{2} h_{n+1} \text {, } \\
& \left|\frac{k_{1, n+1}-2 k_{i, n}+k_{i}, n-1}{3 y_{\text {max }}}\right|>{ }_{\text {mAX }} \quad \delta \\
& n_{n+2}=n_{n+1}, \quad \frac{\delta}{20} \leq\left|\frac{k_{1, n+1}-2 k_{1, n}+k_{i, n-1}}{3 y_{\text {max }}}\right|_{\text {MAX }} \delta
\end{aligned}
\]
where
\[
y_{\max }=\max \left[\left|y_{1, n}\right|, 10^{-5}\right] \quad ; i=1,2, \ldots N S P+3
\]

On option, (JF=1) only the fluid dynamic variables are used in determining the next integration step size.

If the step size is halved for the fourth step, the integration is restarted using one-half the original step size.

The correspondence between equation number and physical property is:

Property
Velocity of Gas
Density of Gas Temperature of Gas
Gaseous species mass fraction
(1...NSP) correspondence to (4...NSP + 3)

When the flow is supersonic, continuity is used to control the integration step size to insure that:
\[
\left|-\frac{(\rho V A)}{\left(\rho \frac{N}{V}+\frac{1}{A}\right)}-(\rho V A) N\right|<C \emptyset N D E L
\]
where CONDEL is an input relative criterion with a default value \(10^{-5}\).
\[
5-75
\]

\subsection*{5.3.12 SURROUTINE LESK (Y)}

This subroutine is a single precision linear equation solver which is used to perform the matrix Inversions required by subioutine IAUX. Gaussian elmination is used with row interchange taking place to position maximum plvot elements after the rows are initially scaled.

Thls subroutine provides the overall logic control for the one-dimensional kinetic expansion. The following functions are controlled:
1) Varlable inltiallzation
2) Option to start the kinetic expansion from equilibrium throat conditions
3) Controls of the Integration to hit specific area retios, the nozzle throat point, the nozzle tangent point, and the requested end point
4) Controls of the switch from the subsonic pressure defined equations to the supersonic area defined equations when (\(\mathrm{M}^{2} \geq 1.02\))
5) Controls the switch from implicit to explicit integration.

For the normal mode of operation of the program, this subroutine locates the throat in the following manner:

The gaseous mass flow per unit area (\(\rho v\)) is calculated and stored as a function of nozzle axial location for the present and past integration step. When
\[
(\rho v)_{n+1}<(\rho v)_{n}
\]
where n refers to the \(\mathrm{n}^{\text {th }}\) Integration step, the throat location is calculated from:
\[
x^{*}=x_{n}+\frac{\left(x_{n}-x_{n-1}\right)^{2} \cdot\left[(\rho v)_{n+1}-(\rho v)_{n}\right]+\left(x_{n+1}-x_{n}\right)^{2} \cdot\left[(\rho v)_{n}-(\rho v)_{n-1}\right]}{2 \cdot\left[\left(x_{n+1}-x_{n}\right) \cdot\left[(\rho v)_{n}-(\rho v)_{n-1}\right]-\left(x_{n}-x_{n-1}\right) \cdot\left[(\rho v)_{n+1}-(\rho v)_{n}\right)\right]}
\]
and the \(n^{1}{ }^{\text {th }}\) integration step \(1 s\) repeated using a step size of \(X^{*}-X_{n}\) to determine the throat conditions.

To prevent the locatlon of a false throat due to roughness of an input pressure table, ten integration steps are required before the throat will be sought.

Through the downstream throat radius of curvature the step size is controlled so as to be less than or equal to RWTD* \(\operatorname{SIN}(\) THETA \() / 25.0\),

Subroutine MAINID also contains the logic to control the integration through solidification of multiple condensed liquid phases if they are present. This logic allows the integration procedure to hit the beginning and ending of solidification exactly and to turn on the solidification equations in subroutine DERIV via the flag IFMELT in COMMON/LKMELT/.

This subroutine is used to decode the \(M\) 's in the \(3 r d\) body reactions. It uses subroutine FNDLM to locate the field delimiter, and subroutine ECNV to translate the \(M\) value from a character to a floating point number.
```

5.3.15 SUBROUTINE NUMBR

```

This FORTRAN subroutine converts a one character \(B C D\) number to a integer number.

\subsection*{5.3.16 SUBROUTINE ODKBLM}

If \(B L M\) is to be run folowing the execution of a Two-Dimensional Frozen (TDF=1.) calculation, then subroutine odK calls ODKBLM to obtain the required gas properties. These consist of gas viscosity, Prandtl number, and total enthalpy; followed by tables of \(C_{p g}, r, h\), and \(R\) vs temperature. All of the above properties are written on unit LUBLM. The properties correspond to a) the chamber equilibrium species compositions expanded in a frozen state, or \(b\)) the input species compositions expanded in a frozen state.

This subroutine provides the input processing for the kinetic expansion calculation. It performs the following functions:
1) Variable initialization to nominal values
2) Calls subroutine REAXIN to input the reactions cards and species cards if necessary
3) For an \(\varnothing D E-\varnothing D K\) problem, calls subroutine SELECT to select those species to be considered for the kinetic expansion calculation
4) Reads \(\$ \emptyset D K\) namelist input data
5) Converts nozzle geometric parameters from input units: inches, degrees; to internal computational units: feet, radians
6) Computes nozzle tangent coordinates using:
\[
\begin{aligned}
& r_{t}=1+R_{d}(1-\cos \theta) \\
& x_{t}=R_{d} \sin \theta
\end{aligned}
\]
7) For conical nozzles, computes the axial coordinate for the exit station from the following relation:
\[
\begin{array}{ll}
x_{\text {exit }}=\frac{\sqrt{\epsilon}-r_{t}+x_{t} \cdot \tan \theta}{\tan \theta} & x_{\text {exit }} 2 x_{t} \\
x_{\text {exit }}=\left\{R_{d}^{2}-\left(1+R_{d}-\sqrt{E P}\right)^{2}\right\}^{\frac{1}{2}} & x_{\text {exit }}<x_{t}
\end{array}
\]
8) For conical nozzles, the internal axial print stations are computed using:
\[
\begin{aligned}
& x_{j}=\frac{\sqrt{\operatorname{ARPRNT}(J)}-r_{t}+x_{t} \cdot \tan \theta}{\tan \theta} x_{j} \geq x_{t} \\
& x_{j}=\left\{R_{d}^{2}-\left[1+R_{d}-(\operatorname{ARPRNT}(J))^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}} x_{j}<x_{t}
\end{aligned}
\]
9) The sum of input or selected species concentrations is checked for unity (\(\pm\) XMFTST, where XMFTST is an input number), and then normalized.
10) If the input parameter RZN \(\varnothing R M\) is input, the input contoured nozzle table is normalized by RZNØRM.

In addition to the above, the following are done
in the \(\not \subset D K I N P\) routine.
a) If the nozzle geometry has been input via the \$DATA namelist, \(\varnothing\) DKINP stores the variables from this input into the correct locations and performs the appropriate unit conversions.
b) Accepts the parabolic and circular arc options (IWALL=2 and 3) from the pDATAnamelist. This is done by computing the nozzle wall points and derivatives at 20 equally spaced points and substituting them into the tables used in the contoured wall input option.
c) Accepts as input the quantities needed to calculate the zero particle lag flow equations.

\subsection*{5.3.18 SUBROUTINE ODWALL}

This subroutine is called by subroutine oDKINP for the purpose of calculating the nozzle wall contour and setting print stations for \(O D K\) when the following wall options are used:
```

IWALL = 2
IWALL = 3
IWALL = 6
parabola,
circular arc,
skewed parabola

```

\subsection*{5.3.19 SURROIJTINF DUTPUT}

This subroutine provides conversion from internal computational units to output engineering units and the calculation of performance parameters. The following output parameters are computed by this subroutine:

The pressure (in PSIA) is computed from:
\[
P_{(\text {PSIA })}=P / 4633.056
\]

The gaseous species mole fractions are computed from:
\[
C_{i, m}=\frac{R_{1}}{R} \cdot C_{i}
\]

The gas molecular weight is computed from:
\[
\mathrm{Mw}=49721.011 / R
\]

The percentage mass fraction change is computed from:
\[
\% \Delta(\text { Mass Fraction })=100.0 \cdot\left(1.0-\sum_{i=1}^{n} C_{i}\right)
\]

The gas heat capacity is computed from:
\[
\mathrm{Cp}_{\mathrm{g}}\left(\mathrm{BTU} / \mathrm{LB}-{ }^{\circ} \mathrm{R}\right)=3.9969 \cdot 10^{-5} \cdot \mathrm{C}_{\mathrm{p}_{\mathrm{g}}}
\]

The gas enthalpy is computed from:
\[
H_{g}(B T U / L B)=3.9969 \cdot 10^{-5} \cdot \sum_{i=1}^{n} C_{i} \cdot h_{i}
\]

At the throat, the characteristic exhaust velocity (\(\mathrm{ft} / \mathrm{sec}\)) is computed from:
\[
C *=\frac{P_{C}}{\rho^{*} \cdot V^{*}}
\]

The vacuum specific impulse is computed from:
\[
\text { ISP }_{V A C}=\frac{V+P / P_{C} \in C^{*}}{g}, g=32.174
\]

The vacuum thrust coefflcient is computed from:
\[
\boldsymbol{C}_{\mathbf{F}_{\text {VAC }}}=\frac{\mathrm{I}_{\text {sp }_{\text {vac }}}{ }^{\mathrm{B}}}{\mathrm{C}^{\star}}
\]

The percentage enthalpy change is computed from:
\[
\% \Delta H_{T}=\frac{100 \cdot\left(\text { HREF }_{c}-\text { HREF }\right)}{\mathrm{V}^{2} / 2}
\]
where
\[
\text { HREF }=\sum_{i=1}^{N S P} C_{i} \cdot h_{l}+v^{2} / 2
\]

HREF \(_{c}\) is HREF evaluated at the initial condition for the \(\varnothing \mathrm{DK}\) integration (i.e. at the initial contraction ratio, ECRAT).

In addition the actual molecular weight of the mLxture of gases and condensed phases is also printed out.

On the basis of those species currently being considered, this subroutine packs species and reaction information from the master tables into those control sections utilized by the one-dimensional kinetic expansion subprogram.

The following is a sequential description of the packing procedures:
1) Thermodynamic data for the species being considered is read into core storage.
2) The chemical species'molecular weights are computed
3) The symbolic reactions are checked for mass balance.
4) For a contoured nozzle the slope at each input wall point is computed using subroutine SLP. The wall coordinates, and each computed slope are printed for each input wall point and the print stations are set to the input axial coordinates.

In addition to the above, the PACK routine processes condensed phases by setting \(R_{1}=0\) for those species and storing pointers for up to 10 condensed phase species (5 pairs). This routine also calculates the print positions for specified area ratios when the contoured (spline) wall option is selected.
5.3 .21 SUBROUTINE PACKED (KRP, IRK, KNT)

This subroutine packs down a card image stored 80 A 1 in the KRD array by removing blanks. The packed card image is returned in the IPK array. The number of non blank characters found is returned in KNT.
5.3.22 SUBROUTINE PRATES

This subroutine processes the input reaction rate constant data to determine the form of the reaction rate. Three types of reactions are allowed, as shown in Table 5-5.

Table 5-5: EXPRESSIONS FOR THE REACTION RATE CONSTANTS, \(k\)

* \(P_{1}, P_{2}\), and \(P_{3}\) are numbers written with \(E\) or \(F\) format

\subsection*{5.3.23 SUBROUTINE PREAX}

This subroutine processes the chemical reaction as determined by subroutine PRATES. It returns the stoichiometric coefficients and the corresponding species names.

\subsection*{5.3.24 SUBROUTINE PRES}

This subroutine is used (when JPFLAG \(=1\)) to compute the derivatives of an input pressure table.

This subroutine is also used (when JPFIAG \(=0\)) to generate a pressure table through use of an average expansion coefficient, Ne. The generated table extends from the initial contraction ratio through the nozzle attachment point plus one normalized throat radius.

\section*{Input Pressure Table Derivative Computation (JPFLAG \(=1\))}

If a pressure table of NTB entries is input, the table of first derivatives is computed using:
\[
\begin{aligned}
& \left.\frac{d P}{d x}\right|_{x_{1}}=0 \\
& \left.\frac{d P}{d x}\right|_{x_{n}}=\frac{P_{\left(x_{n+1}\right)}-P_{\left(x_{n-1}\right)}}{x_{(n+1)^{-x}(n-1)}} \quad, 1<n<N T B \\
& \left.\frac{d P}{d x}\right|_{x_{\text {NTB }}}=\frac{P_{\left(x_{n}\right)}-P_{\left(x_{n-1}\right)}}{x_{(n)}-x_{(n-1)}} \quad, n=N T B
\end{aligned}
\]

The pressure at the initial axial position is obtained by interpolation using subroutine SPLN.

An average equilibrium pressure expansion coefficient from the chamber to the throat, \(N_{e}\), is computed by iteration using subroutine SUBNE. The initial value for \(\mathrm{N}_{\mathrm{e}}{ }^{(1)}\) is 1.2 .

The approximate equilibrium contraction ratio at the initial axial position is computed from:
\[
\left.\left.a_{c}=\left[\frac{N_{e}-1}{2} \cdot \frac{\left[\frac{2}{N_{e}+1}\right]^{\frac{N_{e}+1}{N_{e}-1}}}{\left(\frac{P_{i}}{P_{c}}\right)^{\frac{2}{N_{e}}} \cdot\left[1-\left(\frac{P_{i}}{P_{c}}\right)^{\frac{N_{e}}{N_{e}}}\right.}\right]\right]^{\frac{1}{2}}\right]^{\frac{N^{2}}{}}
\]
\[
\text { where } \quad \begin{aligned}
& P_{i}=\text { pressure at the initial axial position } \\
& P_{C}=\text { equilibrium chamber pressure }
\end{aligned}
\]

A check is then made to determine the compatibility between the nozzle geometry and the requested contraction ratio.

If
\[
\sqrt{a_{c}}<1+\left[R_{u}+R_{i}\right] \cdot\left[1-\cos q_{1}\right]
\]
the circular arcs \(R_{u}\) and \(R_{1}\) overlap and the following error message is printed:
INLET GEOMETRY INCOMPATIBLE WITH INITIAL CONDITIONS The program will proceed to the next case.

Tables for pressure and its derivatives are constructed as functions of area ratio, a, and expansion coefficient, Ne. Formula used for the \(j+1\) iteration for pressure is:
\[
\begin{aligned}
& \frac{P^{(j+1)}}{P_{c}}=\frac{p^{(j)}}{P_{c}}+2\left\{\frac{N_{e^{-1}}^{N_{e}}}{N_{e}} \cdot\left[1-\left(\frac{p^{(j)}}{P_{c}}\right)^{\frac{N_{e}-1}{N_{e}}}\right]^{-1} .\right. \\
& \left.\left(\frac{P^{(j)}}{P_{c}}\right)^{-\frac{1}{N_{e}}}-\frac{2}{N_{e}} \cdot\left(\frac{p^{(j)}}{P_{c}}\right)^{-1}\right\}^{-1} \\
& \left.\cdot\left\{\left[\frac{N_{e^{-1}}^{2}}{\cdot} \cdot \frac{\left[2 /\left(N_{e}+1\right)\right]^{\left(N_{e}+1\right) /\left(N_{e}-1\right)}}{\left(\frac{p^{(j)}}{P_{c}}\right)^{2 / N_{e}} \cdot\left[1-\left(\frac{p^{(j)}}{P_{c}}\right)^{\left(N_{e}-1\right) / N_{e}}\right]}\right]^{-1 / 2}\right]^{-1}\right\} \\
& \left.\frac{P^{(1)}}{P_{c}}\right|_{x_{n+1}}=\left.\frac{P}{P_{c}}\right|_{x_{n}}+\left.\frac{d\left(P / P_{c}\right)}{d x}\right|_{x_{n}}\left(x_{n+1}-x_{n}\right)
\end{aligned}
\]
where \(n\) refers to the \(n^{\text {th }}\) table entry.

The pressure derivative formula used is:
\[
\frac{d\left(P / P_{c}\right)}{d x}=\left[\frac{N_{e^{-1}}}{N_{e}}\left(\frac{P}{P_{c}}\right)^{-\frac{1}{N_{e}}}\left[1-\left(\frac{P}{P_{c}}\right)^{\frac{N_{e}}{N_{e}}}\right]^{-1}-\frac{2}{N_{e}}\left(\frac{P}{P_{c}}\right)^{-1}\right]^{-1} \cdot \frac{2}{a} \frac{d a}{d x}
\]

Next, tables for pressure and its derivatives are constructed by the program. Table entries are at increments of
\[
\begin{array}{lll}
-x_{i} / 75 & \text { for } & x_{1}<x<0 \\
\left(R_{d} \sin \theta\right) / 25 & \text { for } & 0<x<R_{d} \sin \theta
\end{array}
\]
and
\[
1 / 25
\]
for
\[
R_{d} \sin \theta<x<R_{d} \sin \theta+1
\]
where the initial nozzle axial position, \(x_{i}\), is computed from:
\[
x_{i}=-\left[\left(R_{u}+R_{i}\right) \cdot \sin \theta_{i}+\frac{\sqrt{a_{c}}-1-\left(R_{u}+R_{i}\right) \cdot\left(1-\cos \theta_{i}\right)}{\tan \theta_{i}}\right]
\]

See Figure 5-1 below:

Figure 5-1 NOZZLE GEOMETRY

Area ratio and its derivative and (\(a\) and \(-\frac{d a}{d x}\)) are found by the five formulae
below:
1) \(x<x_{i}+R_{i} \sin \theta_{i}\)
\[
\begin{aligned}
& a=\left[\sqrt{a_{c}}-R_{i}\left(1-\sqrt{1-\frac{\left(x-x_{1}\right)^{2}}{R_{i}^{2}}}\right)\right]^{2} \\
& \frac{d a}{d x}=\frac{-2\left(x-x_{i}\right)}{\left[R_{i}^{2}-\left(x-x_{i}\right)^{2}\right] 1 / 2} \cdot \sqrt{a}
\end{aligned}
\]
2) \(\quad x_{i}+R_{i} \sin \theta_{i}<x<-R_{u} \sin \theta_{i}\)
\[
\begin{aligned}
& a=\left[\sqrt{a_{c}}-R_{i}\left(1-\cos \theta_{i}\right)-\left(x-x_{i}-R_{i} \sin \theta_{i}\right) \tan \theta_{i}\right]^{2} \\
& \frac{d a}{d x}=-2 \cdot \sqrt{a} \cdot \tan \theta_{i}
\end{aligned}
\]
3) \(-R_{u} \cdot \sin \theta_{i}<x<0\)
\[
a=\left[1+R_{u}\left(1-\sqrt{1-\frac{x^{3}}{R_{u}^{2}}}\right)\right]^{2}
\]
\[
\frac{d a}{d x}=\frac{2 x}{\left[R_{u}^{2}-x^{2}\right] 1 / 2} \cdot \sqrt{a}
\]
4) \(\cdot 0<x<R_{d} \cdot \sin \theta\)
\[
\begin{aligned}
& a=\left[1+R_{d}\left(1-\sqrt{1-\frac{x^{2}}{R_{d}^{2}}}\right)\right]^{2} \\
& \frac{d a}{d x}=\frac{2 x}{\left[R_{d}^{2}-x^{2}\right]^{1 / 2}} \cdot \sqrt{a}
\end{aligned}
\]
5) \(R_{d} \cdot \sin \theta<x \leq R_{d} \cdot \sin \theta+1\)
for cone
\[
\begin{aligned}
& a=\left[r_{t}+\left(x-x_{t}\right) \cdot \tan \theta\right]^{2} \\
& \frac{d a}{d x}=2 \cdot a \cdot \tan \theta
\end{aligned}
\]
for contour
\[
\begin{aligned}
& a=Y^{2} \\
& \frac{d a}{d x}=2 \cdot Y \cdot \frac{d Y}{d x}
\end{aligned}
\]

Three special points are included in the pressure table. These are a point at \(x=x_{i}\) such that
\[
\begin{aligned}
& \frac{P}{P_{c}}=\frac{P_{i}}{P_{c}} \\
& \frac{d\left(P / P_{c}\right)}{d x}=0
\end{aligned}
\]
and two points at \(x=0\) such that
\[
\begin{aligned}
& \frac{P}{P_{c}}=\left(\frac{P^{*}}{P_{c}}\right)_{\text {equilibrium }} \quad \frac{3 N_{e}-1}{2\left(N_{e}-1\right)} \\
& \frac{d\left(P / P_{c}\right)}{d x}=-\frac{N_{e}}{\sqrt{R^{*}}} \cdot\left[\frac{2}{N_{e}+1}\right]
\end{aligned}
\]
with \(R^{*}=R_{u}\) and \(R^{*}=-R_{d^{\prime}}\), respectively.

The following items are input directly to the computer program as described in Section 6 and shown in Figure 6-1, left to right.
\begin{tabular}{l|l}
\(R_{i}\) & \(R I\) \\
\(R_{u}\) & \\
\(\theta_{i}\) & RWTU \\
\(\theta\) & THETAI \\
\(R_{d}\) & THETA \\
&
\end{tabular}

\subsection*{5.3.25 SUBROUTINE PRNTCK}

For the \(O D K\) option to print starting at step NDI, printing every ND \(3^{\text {rd }}\) step up to step ND2, this suboutine checks whether or not the current step should be printed. If it is to be printed this subroutine calls subroutine gUTPUT.

\subsection*{5.3.26 SUBROUTINE REAXIN}

This subroutine processes SPECIES, REACTIØNS, and THIRD BøDY REAX RATE RATIOS input cards. Reference may be made to section 6.5 for a complete description of input requirements. A table of all species appearing in the input reaction set is generated for further processing by subroutine SELECT if required.

\subsection*{5.3.27 SUBROUTINE SELECT}

This subroutine provides the interface logic required to select the minimum species list required for the kinetic expansion calculations. The subroutine is only used for the \(\emptyset D E-\emptyset D K\) interface. The list of all species appearing in the input reaction set is matched against the list of species considered for the equilibrium calculation. All species which appear in both a reaction and the equilibrium calculation list are selected for the kinetic expansion calculation. If a species appears in the reaction set but has not been considered for the equilibrium calculation, the program prints an error message and terminates the current case.

If the INERTS directive was specified those species specified under that directive will be added to the list for the kinetic expansion calculation along with the other species selected.

If the INERTS directive was not specified, all those species, considered for the equilibrium calculation, whose mole fractions are greater than or equal to an input selection criterion will also be selected for the kinetic expansion calculation. Species selected in this way will be listed as inert species on the program ouput since they do not enter into chemical reaction.

This subroutine also selects pairs of condensed phases if either of the phases passes one of the above selection criteria.

\subsection*{5.3.28 SUBROUTINE STF}

This subroutine evaluates the thermodynamic functions \(C_{p_{T}}^{0} / R\), \(H_{T}^{0} / R T, S_{T}^{\circ} / R\), from curve fit coefficients. The subroutine uses the same procedure as subroutine CPHS. The additional functions \(d\left(\mathrm{C}_{\mathrm{P}}^{\mathrm{T}} \mathrm{f}\right) / \mathrm{dt}\) and free energy, \(\mathrm{G}_{\mathrm{T}}^{\circ} / \mathrm{RT}\), are also computed. The calculated functions are then converted to the internal computational units for use by the kinetic expansion calculations. Also, low temperature thermodynamic data from tables are used when required if the LTCPHS directive was specified in the program input.

For each reaction this subroutine constructs two vectors of stoichiometric coefficients, one for reactants and one for products. Up to 10 reactants and 10 products may be considered for each reaction. The total number of entries in the resultant linear reaction table is 600 , i.e., the sum of all stoichiometric coefficients can not exceed 600 .
5.3.30 SUBROUTINE STORNU

The purpose of this subroutine is to store the
chiometric cofficients into the ITABLE arrays in stoichiometric coefficients into the ITABLE arrays in
COMMON/CSP RXC/. The coefficients will be positive for reactant species and negative for product species.

Calculates the average equilibrium pressure expansion coefficlent from the chamber to the throat by iteration from the following formula (Newton's methodi):
\[
N_{e}^{(n+1)}=\dot{N}_{e}^{(n)}+\frac{\left(\frac{2}{N_{e}^{(n)}+1}\right) N_{e^{(n)}-1}^{\frac{N_{e}^{(n)}}{N_{e}^{(n)}}} \frac{P_{e}^{*}}{P_{e}}}{\left(\frac{2}{N_{e}^{(n)}+1}\right)^{\frac{N_{e}^{(n)}}{N_{e}^{(n)}-1}}\left(\frac{1}{N_{e}^{(n)}-1}\right)\left[\frac{1}{N_{e}^{(n)}-1} \ln \left(\frac{2}{N_{e}^{(n)}+1}\right)+\frac{N_{e}^{(n)}}{N_{e}^{(n)}+1}\right]}
\]
where \(N_{e}^{(1)}=1.2\).
\(\mathrm{P}_{\mathrm{e}}^{*}\) is the equilibrlum throat pressure
\(P_{C}\) is the equllibrlum chamber pressure

This subroutine is used by subroutine PRE \(S\).

This subroutine records a tabular function (\(\mathrm{X}, \mathrm{Y}(\mathrm{NY})\)) in tables of fixed length. The first and last event will always be tabulated and the table will elther contain all of the values specified or will be at least half full. Once the number of events exceed the table length, the table will be repacked by the deletion of every other table entry and tabulation will proceed choosing every \(2^{\mathrm{N}}\) th event \((\mathrm{N}=0,1,2\). . . etc. , where N is the number of times the table must be repacked). The table spacing will be a power of two except for the last event which will always be tabulated.

The calling sequence parameters are:
IfLAG - denotes type of entry to subroutine
\(=-1\) first entry
\(=0\) normal entry
\(=+1\) last entry
LTABLE - length of tables avallable for tabulation
XIAB - table for tabulation of the variable \(X\)
YTAB - table for tabulation of the variable
LUSED - number of table entries currently used (output)
\(X \quad\) - the variable \(X\)
\(Y \quad\) - the varlable \(Y\)
IERR \(\varnothing\) R - error flag
NY - number of \(Y\) variables to be tabulated
Note: One Dimensional Mach Number Tabulation Procedure
At the inltial axial position, \(X\) and Mach number are recorded.
TABGEN is then used with LTABLE=50 (assuring 25 saved values). The last recorded values are the end values for the transonic tables.

The transonic flow module (TRANS) calculates the two-dimensional flow conditions in the throat region of the nozzle. It is used to obtain an initial data line for the MOC module. The analysis is based on a modification to the method of Sauer \({ }^{8}\). A detailed derivation and description of the method used is given in Reference 9. An abreviated description of the method is presented in Section 2.4. Setion 2.4 described how the method has been adapted to treat flows with variable mixture ratio.

The TRANS module consists of the following subroutines:

TRAN
BANDI
FCALC
FINDT
GETIL

GETILV
NEWT
PTAB
SAUER
TRIM

\subsection*{5.4.1 SUBROUTINE TRAN}

This subroutine is the controlling program for the transonic calculations, and is used to construct an initial data line for the method of characteristics calculations. Subroutine TRAN reads the Namelist \$TRANS input as described in section 6. The calculations given below are performed by this subroutine. The method of analysis used is described in detail in reference

\section*{Transonic Calculations}

From data supplied by the ODK subprogram expansion coefficients, \(\gamma_{n}\), are computed for each of \(N\) zones as
\[
\bar{\gamma}_{n}=\frac{\ln \left(P_{\ell} / P_{1}\right)_{n}}{\ln \left(\rho_{\ell} / \rho_{1}\right)_{n}} \quad n=1, \ldots N
\]

The nomenclature for numbering zones and the slipline locations dividing the zones is given in Figure 5.2.

Slipline locations, \(Y_{n^{\prime}}\) are calculated (using subroutine TRIM) as

Figure 5-2: Nomenclature for the Numbering of Zones
where
\[
\begin{aligned}
& A_{n}=\frac{\rho_{n}^{*} a_{n}^{*}}{\rho_{n+1}^{*} a_{n+1}^{*}} \\
& K_{n}=\frac{\dot{m}_{n+1}}{\dot{m}_{n}}
\end{aligned}
\]
\[
n=1,2, \ldots N-1
\]

The sonic conditions \(\rho_{n}^{*}\) and \(a_{n}^{*}\) are provided by the ODK sub program and the partial mass flow rates, \(\mathrm{m}_{\mathrm{n}}\), are input.

Newton's method (subroutines NEWT and BANDI) is used to calculate the transonic coefficients \(\mathrm{B}_{0_{n}}, \mathrm{~B}_{1_{n}}, \mathrm{C}_{1_{n}}\), and \(\mathrm{C}_{2_{\mathrm{n}}}\). Subroutine FCALC evaluates the boundary conditions which must be satisfied.

\section*{Distribution of Initial Line Points}

Subroutine TRAN next calculates the location of points on the initial data line used to start the method of characteristics calculations. First the radial position coordinates, \(r_{1}\), are computed. A sinusoidal distribution of the following form is used:
\[
r_{i}=\left\{r_{w} \sin \left(\frac{1}{N} \frac{\pi}{2}\right)\right\}^{\varepsilon_{1}} \quad 1=0,1,2 \ldots N
\]
where
\(N\) is the number of points on the initial line before editing.
\(\varepsilon_{1}\) is an exponent used for modifying the distribution function. Ordinarily a value of 1.2 is used.
\(r_{w}\) is the radial coordinate at which the initial data line intersects the wall.

The values computed for \(r_{i}\) are then edited to prevent locating points too close to sliplines, or too close to the wall. Some of the editing procedures can be controlled by input, as described in Section 6.6.

The axial coordinate positions, \(z_{i}\), are then computed. First, a value of \(z a x i s\) is found such that the Mach number at \(r=0, z=z_{\text {axis }}\) is the same as at the point \(r_{w}, z_{w}\). The values of \(z_{i}\) are located on a parabola as follows:
\[
z_{i}=z_{W}+\left(\left(r_{w}-r_{i}\right) / r_{w}\right)^{2} *\left(z_{a \times i s}-z_{w}\right)
\]
where \(z_{\text {axis }}\) is located on the axis half way between the sonlc point and the point with a pressure equal to the pressure at the wall at \(r=0\).

With \(r_{i}\) and \(z_{i}\) determined the transonic analysis is used to obtain corresponding values of pressure and flow angle. Using pressure as an independent variable, the flow tables computed by ODK (ODE if the TDE option used) are searched and values of \(\rho\), \(V\), \(T\), and chemical species concentrations are obtained by interpolation. Subroutine GETIL is called for this purpose when one or more zones of constant mixture ratio are used, and subroutine GETILV is called when a variable mixture ratio is used.

Once constructed, the initial data line is integrated to obtain the nozzle flow coefficient \(C_{D}\), where
\[
C_{D}=\dot{m}_{2 D} / \dot{m}_{1 D}
\]
and the result is printed.

Subroutine PTAB is called to write a table of boundary layer edge conditions for the results obtained up to the initial data line. This file is written on unit LUBLM and is continued later by subroutine PRINT as further values are computed using the MOC. If edge conditions for BLIMP-J are to be prepared, they are written on unit 50 .

\section*{Purpose}

BANDI solves a set of linear equations \(A x=b\) where \(A\) is a nonsymmetric band matrix.

\section*{Restrictions}

The matrix \(A\) is destroyed.

\section*{Usage}

Caling sequence:
CALL BANDI (A, NBW, NEQ, NMAX, B, X, INEW, KERR)
where
A
is a matrix of at least NEQ rows and NBW columns (see below) which initially contains the elements of the band matrix, stored as follows:

To solve a system of the form
\[
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2} & \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} & b_{1} \\
a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4} & =b_{2} \\
a_{43} x_{3}+a_{44} x_{4}+a_{45} x_{5} & \\
& =b_{3} \\
a_{54} x_{4}+a_{55} x_{5} & \\
& =b_{5}
\end{aligned}
\]

To transform an original (\(N\) by \(M\)) MATRIX A(I, J) into a packed (N by NBW) BANDED MATRDX AB (\(I, J\)), the following transformation applies.
\begin{tabular}{rl}
\(\mathrm{AB}(I, J B)\) & \(=A(I, J)\) \\
where \(J B\) & \(=\left(\frac{N B W}{2}+1\right)-(I-j)\)
\end{tabular}
and NBW \(=\) BAND WIDTH
\begin{tabular}{llll}
& \(A_{1,1}\) & \(A_{1,2}\) & \(A_{1,3}\) \\
\(A_{1, j}\) & 0.0 & \(a_{11}\) & \(a_{12}\) \\
\(A_{2, j}\) & \(a_{21}\) & \(a_{22}\) & \(a_{23}\) \\
\(A_{3, j}\) & \(a_{32}\) & \(a_{33}\) & \(a_{34}\) \\
\(A_{4, j}\) & \(a_{43}\) & \(a_{44}\) & \(a_{45}\) \\
\(A_{5, j}\) & \(a_{54}\) & \(a_{55}\) & 0.0
\end{tabular}

NBW

NEQ

NMAX

B

X

INEW

KERR
is the width of the band (odd).
is the number of equations in the system.
is the maximum number of rows for which \(A\) has been dimensioned.
is the right-hand vector for the system.
is the solution vector returned by BANDI.
is a flag, set \(=0\) unless the coefficient matrix \(A\) is unchanged from a previous call to BANDI, in which case set INEW = 1 .
is an error flag returned by BANDI:
\(=0\) if no error;
\(=1\) if any diagonal element becomes zero during triangularization of \(A\).

\section*{Method}

BANDI finds the solution vector X by single-pass Gaussian elimination. If INEW \(=0\), the coefficient matrix \(A\) is upper-triangularized by forward substitution. Backward substitution then yields the solution \(X\). If INEW \(=1\), BANDI assumes that the coefficient matrix \(A\) has already been reduced on a previous entry and that only the right-hand vector \(B\) has changed. Therefore, the forward substitution is bypassed.

\section*{Programming Information}

Note that the matrix A is upper-triangularized by BANDI, destroying the original band matrix coefficients. For very large or 111 -conditioned systems, one may increase the accuracy of the solution as follows:
1) Save the original band matrix coefficients from \(A\) in a similar matrix AP.
2) Call BANDI with INEW \(=0\) to obtain a solution \(x_{0}\) of \(A x=b\).
3) Calculate \(b_{n}=A x_{n}\) using the coefficients saved in AP. (A subroutine BMMULT exists to do this.)
4) Calculate a new right-hand vector \(e_{n}=b-b_{n}\).
5) Call BANDI with INEW \(=1\) to solve the system \(A \delta x_{n}=e_{n}\).
6) Set \(x_{n+1}=x_{n}+\delta_{n}\).
7) Repeat steps 3-6 until the desired convergence is attained.

\section*{Error Return}

If, during triangularization of the matrix, any diagonal element becomes zero, an appropriate message is printed and KERR is set to unity before returning to the calling program.

The purpose of this subroutinc is the evaluation of boundary condition functions required to be zero by the transonic analysis. Subroutine FCALC is called by subroutine NEWT in which Newton's Method is used to find the zeros.

Input:
\[
\begin{aligned}
& Y_{n} \\
& \gamma_{n} \\
& B_{0_{n}}, B_{1_{n}}, C_{1_{n}}, C_{2_{n}}
\end{aligned}
\]

N
slipline heights \(n=1, \ldots, N-1\)
specific heat ratio for each zone \(n=1\), . . N
estimates for the constant coefficients sought by NEWT to satisfy the boundary conditions \(n=1, . . N\) total number of zones

\section*{Output:}

The values of the following functions are computed and output. If the boundary conditions are correctly satisfied, each of these (\(\mathrm{F}_{1_{n}}, \mathrm{~F}_{2_{n}}, \mathrm{~F}_{3} \mathrm{n}_{\mathrm{n}}, \mathrm{F}_{4_{\mathrm{n}}}\)) are zero.

At the sliplines, \(\mathrm{n}=1\), . . . \(\mathrm{N}-\mathrm{l}\) linear term \(v_{n}=v_{n+1}\) (i.e. match on streamline angle, lst order); \(F_{1_{n}}=\left[\frac{1}{2}\left(\gamma_{n}+1\right) B_{1_{n}}^{2} Y_{n}+C_{1_{n}} Y_{n}^{-1}\right]-\left[\frac{1}{2}\left(\gamma_{n+1}+1\right) B_{1_{n+1}}^{2} Y_{n}+C_{1_{n+1}} Y_{n}^{-1}\right]\)
\[
\text { constant term } v_{n}=v_{n+1}
\]
\[
\begin{aligned}
F_{2_{n}}= & {\left[\frac{1}{16}\left(\gamma_{n}+1\right)^{2} B_{1_{n}}^{3} Y_{n}^{3}+\frac{1}{2}\left(\gamma_{n}+1\right) B_{1_{n}} C_{1_{n}} Y_{n}\left(\ln Y_{n}-\frac{1}{2}\right)\right.} \\
& \left.+\frac{1}{2}\left(\gamma_{n}+1\right) B_{1_{n}} B_{0_{n}} Y_{n}+C_{2_{n}} Y_{n}^{-1}\right] \\
- & {\left[\frac{1}{16}\left(\gamma_{n+}+1\right)^{2} B_{1_{n+1}}^{3} Y_{n}^{3}+\frac{1}{2}\left(\gamma_{n+1}+1\right) B_{l_{n+1}} C_{1_{n+1}} Y_{n} \quad\left(l_{n} Y_{n}-\frac{1}{2}\right)\right.} \\
& \left.+\frac{1}{2}\left(\gamma_{n+1}+1\right) B_{l_{n+1}} B_{0_{n+1}} Y_{n}+C_{2}{ }_{n+1} Y_{n}^{-1}\right]
\end{aligned}
\]
linear term \(P_{n}=P_{n+1}\);
\[
F_{3_{n}}=\gamma_{n} B_{1} P_{n}^{*}-\gamma_{n+1} B_{1}{ }_{n+1} P_{n+1}^{*}
\]
constant term \(\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{n}+1}\);
\[
\begin{aligned}
F_{4} & =\left\{\gamma_{n}\left[\frac{1}{4}\left(\gamma_{n}+1\right) B_{1_{n}}^{2} Y_{n}^{2}+C_{1_{n}} \ln Y_{n}+B_{0_{n}}\right]-1\right\} P_{n}^{*} \\
& -\left\{\gamma_{n+1}\left[\frac{1}{4}\left(\gamma_{n+1}+1\right) B_{1_{n+1}}^{2} Y_{n}^{2}+C_{1_{n+1}} \ln Y_{n}+B_{0_{n+1}}\right]-1\right\} P_{n+1}^{*}
\end{aligned}
\]

At the wall, \(n=N\)
linear term \(v_{N}(1, z)=z\); .
\(F_{1_{N}}=\frac{1}{R^{1}}-\left[\frac{1}{2}\left(\gamma_{N}+1\right) B_{1_{N}}^{2}+C_{1_{N}}\right]\)
constant term \(\mathrm{v}_{\mathrm{N}}(1, z)=z\);
\[
\begin{aligned}
F_{2_{N}}= & {\left[\frac{1}{16}\left(\gamma_{N}+1\right)^{2} B_{1_{1}}^{3}-\frac{1}{4}\left(\gamma_{N}+1\right) B_{1_{N}} C_{1_{N}}\right.} \\
& \left.+\frac{1}{2}\left(\gamma_{N}+1\right) B_{1_{N}} B_{0_{N}}+C_{2_{N}}\right]
\end{aligned}
\]

Since at the axis \(v_{1}(0, z)=0\) it is required that \(C_{1_{1}}=C_{2_{1}}=0\).

\subsection*{5.4.4 SUBROUTINE FINDT}

This subroutine is called by subroutine GETILV to read unit 16, which is a direct access file containing plow properties computed by ODK. Values are found from the file as a function of the input pressure, and values at the pressure are obtained from these by linear interpolation.
5.4.5 SUBROUTINE_GETIL (IZ. IP, PPSI)

If one or more zones of constant mixture ratio are to be used, then this subroutine generates the initial data entries for the MOC module. The values are obtained using subroutine SPLIN for interpolation in the gas tables generated by the one Dimensional Kinetic module. The values obtained are \(\rho, V, T\), and the chemical species concentrations. The values used for interpolation are read from unit KSTF1.
5.4.6 SUBROUTINE GETILV

If variable mixture ratio is to be used, then this subroutine generates initial data line entries for the MOC module. Values are obtained as a function of pressure using subroutine FINDT. The method described in Section 2.4.4 is used to obtain values at each initial data line point.

\subsection*{5.4.7 SUBROUTINE}

\section*{NEWT(M, \(F, M F, N\), VAR, NVAR, FCALC, WF, PERTV, EPSI, MAXIT, NUMIT, BIN, AB, NBW, KERR}

Given a set of \(n\) functions in \(n\) unknown variables where each function is coupled as below:
\[
\begin{aligned}
& f_{i}\left(X_{j}\right) \\
& i=1, \ldots, n \\
& j=1-k, \ldots, 1+k \\
& \text { and } 1 \leq j \leq n
\end{aligned}
\]
this routine will attempt by Newton's method to find values
\[
x_{1}, x_{2}, \ldots x_{n}
\]
such that
\[
\sum_{i=1}^{n} f_{i}^{2}\left(x_{j}\right)=0 .
\]

\section*{Method}

Newton's method is used to iterate for a solution vector. The matrix of partial derivatives, J, required by the method is generated automatically by the subroutine. This matrix will be banded of width \(2 k+1\). The matrix inversion is performed by subroutine BANDI. In the event Newton's method yields a vector which is farther from a solution in a least squares sense than the previous estimate, the increment vector is halved. Newton's algorithm for the \((k+1)^{\text {th }}\) iterant is:
\[
x^{(k+1)}=x^{(k)}-J^{(k)^{-1}} f^{(k)}
\]

\section*{Restrictions}

The user must supply initial values for the solution vector and also a subroutine to evaluate the functions. The subroutine must communicate with NEWT through C \(\varnothing\) MM \(\varnothing \mathrm{N}\) statements. Subroutine BANDI is required.

\section*{Usage}

Call NEWT(M, F, MF, N, VAR, NVAR, FCALC, WF , PERTV, EPSI, MAXIT, NUMIT, NUMIT, BIN, AB, NBW, KERR)

\section*{Index to Calling Sequence:}

In put: \(\quad\) M, MF, \(N\), VAR, NVAR, WF, PERTV, EPS 1, MAXIT, NBW
Output: VAR, F, NUMIT, KERR
Working: BIN, AB

\section*{Explanation of Calling Sequence:}
1) \(M\) is the length of the array containing the \(n\) functions.
2) \(F\) is the array containing the \(n\) function values evaluated by FCALC.
3) MF is an array of \(M\) control words:

If \(\operatorname{MF}(\eta)=0\), include \(F(\eta)\)
if \(\mathrm{MF}(\mathrm{D})=1\), exclude \(F(\mathrm{I})\)
4) \(N\) is the length of the array containing the \(n\) variables.
5) VAR is the array containing the \(n\) variables, \(x_{i} \quad i=1, \ldots n\)
6) NVAR is an array of N control words:
if \(\operatorname{NVAR}(\lambda)=0\), include \(\operatorname{VAR}(J)\)
if \(\operatorname{NVAR}(J)=1\), exclude \(\operatorname{VAR}(J)\)
7) FCALC is a name for the subroutine which calculates the functions, \(F(I)\). A program which calls NEWT must have an EXTERNAL statement containing this name.
8) WF is an array of \(n\) weighting factors. These are used in conjunction with EPSI to determine whether a solution has been reached.
\[
\omega_{1}=W F(D)
\]
9) PERTV is a perturbation factor used in calculating the partial derivatives required by Newton's method. If PERTV \(=\epsilon\), then:
\[
\frac{\partial F}{\partial x}=\frac{F(x+\delta)-F(x)}{\delta}, \text { where } \delta=\max \left(|\epsilon x|, \epsilon * 10^{-3}\right)
\]
10) EPSI is an error bound used to determine whether a solution has been reached. If \(\epsilon_{1}=\) EPSI, then a solution is claimed when
\[
\sum_{i=1}^{n}\left(\omega_{i} F_{i}\right)^{2} \leqslant \epsilon_{1}
\]
11) MAXIT is the maximum number of iterations allowed.
12) NUMIT is the number of iterations required for solution.
13) BIN is an array required by LESK and must be at least of
dimension \(N+1\).
14) \(A B\) is a two-dimensional array containing the augmented matrix of subroutine LESK and must be at least of dimension \(A B(M, N+1)\).
15) NBW band width \(=2 k+1\), see subroutine BANDI.
16) KERR error indicator, see subroutine BANDI.

This subroutine is used to write a table of boundary layer edge conditions for the results obtained up to the initial data line for the MOC. Unit LUBLM is used for passing this data to BLM. If edge conditions for BLIMP-J are to be prepared, they are written on unit 50 (i.e., IPTAB \(=1\) in \$ODE, see section 6.4.3.2.).

The following procedure is followed to make the one-dimensional throat coincident with the axisymmetric throat.
1) The pressure, \(P{ }_{10}\), at the axisymmetric throat (\(r=1, x=0\)) must be given (\(P \emptyset N E D\) in the calling sequence above).
2) The axial position, \(x^{*}\), in the one-dimensional gas tables corresponding to the above pressure is obtained by interpolation. The points downstream of this axial position are deleted.
3) The table of axial positions (saved in the one-dimensional calculations - TABGEN) is recoordinated to fit smoothly with the axisymmetric geometry using:
\[
x^{\prime}=x_{i}+\left(x-x_{i}\right)\left(\frac{-x_{i}}{x^{*}-\overline{x_{i}}}\right)
\]
where
\[
\begin{aligned}
& x^{\prime}=\text { recoordinated axial position } \\
& x=\text { tabulated axial position } \\
& x_{1}=\text { initial axial position } \\
& x^{*}=\text { axial position from } 2 \text {) above }
\end{aligned}
\]
4) The radial coordinate, corresponding to each recoordinated axial coordinate, is computed using the input geometric constraints. Reference may be made to Figure 6-1 for a description of the inlet and throat geometry.
5) The axial and radial coordinates and the fluid properties are punched. The punched cards may be input directly to the boundary layer computer program.

The purpose of this subroutine is to compute fluid dynamic properties in the transonic region of a rocket nozzle. The method used is based on the analysis of Sauer and is applicable to the situation where the flow is assumed divided into \(N\) zones (i.e. striated), each of which is characterized by a constant expansion coefficient, \(\gamma_{n}\). The analysis has been further modified so as to extend its range of applicability to nozzles with small (\(R / r^{\star} \geq .5\)) radius of curvature in the throat section.

Given position coordinates (\(r, x\)), this subroutine returns the fluid dynamic properties (\(\mathrm{P} / \mathrm{P} *, \theta\)).

\section*{Calling Sequence}

\section*{Input;}
\begin{tabular}{ll}
\(\mathbf{R}\) & radial position coordinate, \(r\) \\
\(\mathbf{X}\) & axial position coordinate, \(x\) \\
\(\mathbf{Y}\) & \begin{tabular}{l}
vector \(Y_{n} ; n=1 \ldots\) containing the zone boundary \\
coordinates
\end{tabular} \\
\(\mathbf{G}\) & \begin{tabular}{l}
vector \(\nu_{n} ; n=1, \ldots\) containing the zone expansion \\
coefficients
\end{tabular} \\
\(N\) & total number of zones
\end{tabular}

\section*{Output}

I

PPS
zone number, \(n\), corresponding to \(r\)
\(P / P *\) at \((r, x)\)
THETA \(\quad \theta\) at \((r, x)\), the gas streamline angle in radian

\section*{Method}
\[
\begin{aligned}
& R^{\prime}=R+\frac{\gamma}{4} \\
& X=\left(\frac{R}{R^{\prime}}\right)^{1 / 2} x
\end{aligned}
\]

If only one zone is specified (\(N=1\)), then
\[
\begin{aligned}
& u^{\prime}=\frac{1}{4}(\gamma+1) B_{1}^{2} r^{2}+B_{0}+B_{1} X \\
& v^{\prime}=\frac{1}{16}(\gamma+1)^{2} B_{1}^{3} r^{3}+\frac{1}{2}(\gamma+1) B_{1} B_{0} r+\frac{1}{2}(\gamma+1) B_{1}^{2} r x
\end{aligned}
\]
where
\[
\begin{aligned}
& \mathrm{B}_{1}^{2}=\frac{2}{(\gamma+1)} \quad \frac{1}{\mathrm{R}^{\prime}} \\
& \mathrm{B}_{0}=-\frac{1}{4} \quad \frac{1}{\mathrm{R}^{\prime}}
\end{aligned}
\]

If more than one zone is specified (\(\mathrm{N} \geq 2\)), then
\[
\begin{aligned}
u^{\prime}= & \frac{1}{4}(\gamma+1) \mathrm{B}_{1}^{2} \mathrm{r}^{2}+\mathrm{C}_{1} \ln r+\mathrm{B}_{0}+\mathrm{B}_{1} X \\
\mathbf{v}^{\prime}= & \frac{1}{16}(\gamma+1)^{2} \mathrm{~B}_{1}^{3} r^{3}+\frac{1}{2}(\gamma+1) \mathrm{B}_{1} C_{1} r\left(\ln r-\frac{1}{2}\right) \\
& +\frac{1}{2}(\gamma+1) \mathrm{B}_{1} \mathrm{~B}_{0} r+\mathrm{C}_{2} r+\left[\frac{1}{2}(\gamma+1) \mathrm{B}_{1}^{2} r+C_{1} / r\right] x
\end{aligned}
\]
where the coefficients \(B_{0}, B_{1}, C_{1}, C_{2}\) are input through COMMON/NAMBC/ and the \(n^{\text {th }}\) value is selected, corresponding to the \(n^{\text {th }}\) zone. The zone, \(n\), is determined such that
\[
Y_{n+1} \geq r \geq Y_{n}
\]

For all N
\[
\begin{aligned}
& u=1+u^{\prime} \\
& v=v^{\prime} \\
& P / P^{*}=1-\gamma_{n} u^{\prime} \\
& \theta=\arctan (v / u)
\end{aligned}
\]

\subsection*{5.4.10 SUBROUTINE TRIM (\(A, X, B, N, N N\))}

This subroutine solves the system
\[
\overline{\overline{\mathrm{A}}} \overline{\mathrm{X}}=\overline{\mathrm{b}}
\]
for \(\overline{\mathrm{X}}\) where \(\overline{\overline{\mathrm{A}}}\) is tridiagonal, i. e.;
\[
\text { all } a_{i j}=0 \text { if } i>j+1 \text { or } i<j-1
\]

The method used is Gaussian elimination.

\section*{Calling Sequence}

A Is the input coefficient matrix and must be dimensioned at least \(A(N, 3)\). The elements \(a_{i j}\) must be input as \({ }^{\text {. }}\)
\[
\left[\begin{array}{ccc}
- & A(1,2) & A(1,3) \\
A(2,1) & A(2,2) & A(2,3) \\
A(3,1) & A(3,2) & A(3,3) \\
\cdot & \\
\cdots & \\
A(N, 1) & A(N, 2) & -
\end{array}\right]=\left[\begin{array}{lll}
- & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} \\
a_{32} & a_{33} & a_{34} \\
& \cdot & \\
a_{n, n-1} & a_{n n} & -
\end{array}\right]
\]

The contents of \(A\) will be destroyed by TRIM.
X Is the output solution vector \(\overline{\mathrm{X}}\) and must be dimensioned at least \(X(N)\).
\(B \quad\) Is the input vector \(\bar{b}\) and must be dimensioned at least \(B(N)\). The contents of \(B\) will be destroyed by TRIM.
\(N \quad\) Is the order of the system. \(N \geq 2\) is required.
\(N N\) Is the dimension of \(A(N N, 3), X(N N)\), and \(B(N N)\) in the calling programi.

\subsection*{5.5 MOC MODULE SUBROUTINES}

\begin{abstract}
The Method of Characteristics (MOC) module is used to calculate the loss in nozzle performance caused by flow divergence, including the effects of chemistry andmixture ratio variation. The effect of shock waves can also be calculated. Obtaining an accurate nozzle performance prediction usually requires a closely spaced characteristics mesh. In order to allow both shock waves and a fine mesh, random access files are used for storing and retrieving mesh point information.
\end{abstract}

The \(T D K\) module consists of the following subroutines:
\begin{tabular}{|c|c|}
\hline TDK & INSRT \\
\hline ATSHCK & INTEXT \\
\hline AXISPT & ITER1 \\
\hline CHAR & ITER2 \\
\hline CHECK & ITER3 \\
\hline CKEXIT & MLCK \\
\hline CKSHCK & MRCK \\
\hline CNTRL & MRCK 1 \\
\hline CNTRL1 & NESK \\
\hline CNTRL2 & PRINT \\
\hline CNTR12 & PRINTS \\
\hline CNTR13 & SAVPT \\
\hline CNTR14 & SCK \\
\hline CNTR16 & SDERIV \\
\hline CNTR21 & SETID \\
\hline CNTR31 & SHCKA \\
\hline CNTR91 & SHCKA 1 \\
\hline CRIT & SHCKL \\
\hline CUBIC & SHCKR \\
\hline DSPT & SHCKW \\
\hline EF2D & SHCKW1 \\
\hline ENCALC & SHøCK \\
\hline ERRøRZ & SINT \\
\hline FTHRST & SUBIL \\
\hline GETPT & SUBILR \\
\hline GPF & TCALC \\
\hline GPFKIN & THERM \\
\hline GPFPG & TSTDK \\
\hline INPT & TWØD \\
\hline INPTR & WALL \\
\hline INPTRS & WLCALC \\
\hline INPTR1 & WLPT \\
\hline INPTS & \\
\hline
\end{tabular}

This subroutine is called by subroutine MAIN and is the driver for the MOC module. It performs the functions described below.

First, the MOC mesh point arrays \(P\), \(P P, Q, Q 3 A\), and Q4A, are initialized to zero. If the TDE option is to be executed, then the equilibrium gas properties tables described in Section 2.5.2 are converted to the system of units used internally by the MOC module and are stored for its use. Subroutine CHAR is then called to read the \(\$ \mathrm{MOC}\) Namelist input, and perform all calculations that are preliminary to the MOC construction.

If the MOC construction is to ignore shocks (SHøCK=0 IN \$MøC), then subroutine CNTRL is called, otherwise subroutine CNTRL91 is called.

This subroutine calculates an attached shock point at axial position \(X A\) on the nozzle wall. Properties on the upstream side of the shock are calculated at point \(3 a\). Values used in the calculation of point 3 a are from the known points 4 and 1. Properties on the downstream side of the shock are then calculated at point 3 b . Point 3 b is found by solving the shock relations given the upstream conditions at point \(3 a\) and a streamine deflection angle equal to the change in wall angle at position XA.

The procedure consists of 4 steps, as follows:
1) Locate point 2 on the RRC \(4-1\) such that the LRC from point 2 reaches the wall at XA.
2) Using point 2 and point 4, calculate values at point 3 a.
3) Iterate step 1 and 2 until the point 3 a properties converge.
4) Find the shock angle, \(B_{3}\), corresponding to the upstream conditions at point 3 a and a streamline deflection angle equal to the change in wall angle at position XA.

851014

This subroutine calculates an axis point (or point on a center body of radius, \(r_{c}\)) using the known points 4 and 1.

Points 1 and 4 are known points and point 3 is the unknown point to be computed. At point 3:
\[
r_{3}=r_{c}
\]
and
\[
\theta_{3}=0 .
\]

Initial estimates for values at point 3 are:
\[
A_{3}=A_{4}, \quad \beta_{3}=\beta_{4}, \quad \alpha_{3}=\alpha_{4}, \quad \gamma_{3}=\gamma_{4}
\]
and
\[
\begin{aligned}
G_{3} & =G_{1} \\
A_{3} G_{3} H_{3} & =A_{1} G_{1} H_{1} \\
G_{3} H_{3} & =G_{1} H_{1}
\end{aligned}
\]

The axial location of point 3 is calculated from
\(x_{3}=x_{1}+\frac{r^{-r}}{\tan } \frac{-c_{1}}{1}\left(\frac{1}{\theta_{1}}-\alpha_{1}-\alpha_{3}\right)\)
The flow properties at point 3 are calculated from
\(P_{3}=P_{1}+\frac{P_{3}+P_{1}^{2}}{2}\left(\frac{1}{2}\left[-A_{1} G_{1} H_{1}-A_{3} G_{3} H_{3}+\left(G_{1} H_{1}+G_{3} H_{3}\right)-\frac{\sin }{r} \frac{n}{1}\right]\left(x_{3}-x_{1}\right)\right.\)
\(\left.-\frac{1}{2}\left(G_{1}+G_{3}\right) \theta_{1}\right\}\)
\(\rho_{3}=\rho_{4}\left[\frac{P_{3}}{P_{4}}\right]^{\frac{1}{2}\left[\frac{1}{\gamma_{4}}+\frac{1}{\gamma_{3}}-\right]} \exp \left\{-\frac{1}{2}\left[A_{4}+A_{3}\right]\left[x_{3}-x_{4}\right]\right\}\)
\(T_{3}=T_{4}\left[\frac{P_{3}}{P_{4}}\right]{ }^{\frac{1}{2}\left[\frac{1}{\gamma_{4}}-+\frac{1}{\gamma_{3}}-\right]} \exp \left\{-\frac{1}{2}\left(B_{4}+B_{3}\right)\left(x_{3}-x_{4}\right)\right\}\)
Forathe 1 st iteration (all iterations if constant \(\gamma\) option):
\(v_{3}=\left\{v_{4}^{2}-4\left(P_{3}-P_{4}\right) /\left(\rho_{3}+\rho_{4}\right)\right\}^{\frac{1}{2}}\), Bernoulli Equation
For subsequent iterations (calculated in GPFKIN or GPFPG):
\(v_{3}=\left\{\left.2\left(H_{t}-\sum c_{i} n_{i}\right)\right|^{\frac{1}{2}} \quad\right.\), Energy Equation
The above equations are iterated (\(1=1, \ldots\)) until \(x_{3}, P_{3}, \rho_{3}\), \(T_{3}\), and \(V_{3}\) converge to the required accuracy.

Throughout the method of characteristics computations the variables used are equivalenced to entries in dimensioned arrays. This equivalency of variables is always in the same order as prescribed in Table 5-6. This equivalencing occurs for the \(I\) subscript in the following arrays: \(P(I, J), P P(I, J), P S(I)\), PSS(I), \(Q(I, J), Q 3 A(I)\), and \(Q 4 A(I)\).
\[
\begin{aligned}
& \text { LIVG PSAE BLANK NOT FHMED } \\
& 5=125,5-126
\end{aligned}
\]

TABLE 5-6 EQUIVALENCE TABLE FOR MOC VARIABLES

\subsection*{5.5.5 SUBROUTINE CHECK (ND)}

This subroutine compares current and previous values of the flow variables \(P_{3}, \rho_{3}, \theta_{3}, V_{3}, r_{3}, x_{3}\), and \(T_{3}\) for relative convergence by calling subroutine CRIT. As soon as a variable is encountered failing the test, the variables are updated one iteration and the program returns with the convergence flag set as failed \((N \varnothing=1)\). If convergence is achieved the variables are updated one iteration and the subroutine returns with the convergence flag set as passed (\(N \varnothing=0\)).

\subsection*{5.5.6 Subroutine CKEXIT (P, EFLAG)}

This subroutine checks if a point, \(P\), is outside the nozzle by comparing the axial location, \(Z\), against the nozzle length, ZEXIT.

If \(Z \geqq 2 E X I T * 1.03\), then set EFLAG=2.

If \(\mathrm{ZEXIT} * 1.03>\mathrm{Z} \leq \mathrm{ZEXIT}\), then set EFLAG=1.
5.6.7 Subroutine CKSHCK (SFLAG)

This subroutine checks for a crossing of right-running characteristics, which determines the start point of a right-running shock wave. The shock flag, SFLAG, is set to 1 when a crossing has occured, or will occur at the next point.

The purpose of this subroutine is to control the construction of the finite difference mesh for the method of characteristics solution of the supersonic nozzle flow when the LRC method is used (SHøCK=0 in \(\$ M \varnothing C\)). Left running characteristics and fluid streamlines are constructed starting at the nozzle throat point (\(r=1, x=0\)). These left running characteristics extend from the initial data line or nozzle axis to the wall. The mesh points are calculated by subroutines INPT, AXISPT, WLPT and DSPT under control of this subroutine.

Additional points are inserted in the mesh by subroutine CNTRL by property averaging using subroutine INSRT. The circumstances which cause point insertion are listed below. In each case a point is inserted along the initial line or the previous streamine and the calculation of point 3 is repeated:
1) If subroutine INPT or DSPT find point 1 to fall beyond the nozzle wall.
2) If subroutine INPT finds point 1 to fall above a dividing streamline point.
3) If subroutine INPT or DSPT find
\[
\left|\theta-\theta_{4}\right|>\Delta \theta_{t \omega} \text {, input item DTWI }
\]
4) If a wall point on the circular arc immediately downstream of the throat is calculated such that
\[
\left|\theta_{3}-\theta_{4}\right|>\Delta \theta_{\omega c} \text {, input item DWWCI }
\]
or if a wall point between the circular arc and the nozzle exit point is calculated such that
\[
\left|\theta,-\theta_{4}\right|>\Delta \theta_{\omega} \text {, input item DWWI }
\]
5) When iterating to locate the end of the nozzle wall. (Input tolerance of EPW).
6) If subroutine AXISPT, INPST, DSPT, or WLPT locate point 3 such that its distance from point 4 is greater than input item DS times the square root of the Mach number.

At the end of each completed characteristic surface the mesh points are examined and points discarded as described below. Only interior points \((I D=2)\) are to be discarded.

For \(n=2\) to \(n=I P P W-1\), (ie.., from the initial line or axis to the wall) discard point \(n\) if
\[
\left|\theta_{n-1}-\theta_{n}\right|+\left|\theta_{n+1}-\theta_{n}\right|<\varepsilon_{\theta}^{2}
\]
and
\[
\left(r_{n-1}-r_{n}\right)^{2}+\left(z_{n-1}-z_{n}\right)^{2}<\varepsilon_{s}^{2}
\]

Where \(\varepsilon_{\theta}\) and \(\varepsilon_{s}\) are the input quantities ETHI and ES.
Whenever a mesh point calculation or insertion is completed successfully, the output subroutine, PRINT, is called so that the point may be printed.

Subroutine CNTRL also integrates the wall pressure by trapezoidal rule to determine the axial component of force existing between adjacent wall points,
\[
\Delta F=2 \pi r^{*} \int_{r_{4}^{2}}^{r^{3} p r d r}=\frac{\pi}{2}(P, P)\left(r_{3}^{2}-r_{4}^{2}\right) r^{*}
\]

Total thrust is item found by
\[
F_{t}=F+2 \pi r^{*} \int_{1}^{r} 2 P r d r
\]
where \(F\) is the thrust across the initial line as calculated by subroutine CHAR.

Detailed documentation for subroutine CNTRL of the TDK computer program is presented on the following pages. It is intended that this documentation be read in conjunction with the FORTRAN listing of subroutine CNTRL.

The CNTRL subroutine calculates flow field points using point calculation subroutines and constructs the method of characteristics point mesh. The points are calculated in the \(Q\) array. The left running characteristic (LRC) under construction is stored in the \(P\) array, and the previous characteristic is stored in the PP array. In these two dimensional arrays (i.e., Q, \(P\), and \(P P\)) the column number is the point number and the row number is the flow field property number. The flow field properties storage is defined in Table 5-6, subroutine CHAR, and is the same for all three arrays. For dividing streamife points, two arrays are required for Points 3 and 4 . Storage for these extra points are provided in \(Q\).

Besides the point calculation subroutines (AXISPT, DSPT, INPT, and WLPT), subroutines ERRORZ, INSRT, PRINT, SPLN, SUBIL, and TIMERX, are the only other subroutines called directly from CNTRL.

The CNTRL subroutine is divided into areas 1 through 9. A description of the programming of each of these areas is presented below. Presented in Table 5-7 are definitions for the variables used by subroutine CNTRL. FORTRAN variables which are input to the program have not been includedin Table 5-7. These variables are described in Section 6.7.1.

In this area of CNTRL constants are initialized and the Point 3 arrays are zeroed. Other variables needed by CNTRL are Initialized in subroutine CHAR. Subroutine SUBIL is called and the first initial line point is brought in and stored in PP(1, 1). The point is also placed in the Point 1 working storage and printed. The same procedure is followed for the second initial line point; this time storing the point in P(1, 1). A check is made to see if an error was detected by subroutine PRINT. The point counters IP for the P array and IPP for the \(P P\) array are set to one.

Area 2:

This area defines the general procedure for initial line point set up. The initial line point counter, MS, is Incremented and IP and IPP are initialized to one. Initial line point number MS is brought in and stored in \(P(1,1)\). It is also placed in Point 1 and printed. If a dividing streamilne point calculation is indicated (i.e., PS [JFLAG] not zero), the point is also stored into the next point in PP.

Area 3:

The counters IPP and IP are incremented and the print subroutine is called with ID as set by the point subroutine just completed (see subroutine PRINT for the definitions of ID). If too many points have been calculated along the LRC (i.e., IP < IPMX) the error flag is set to 7 and CNTRL is exited. Otherwise, the values just calculated in \(Q(1,3)\) are stored in the LRC array and \(Q(1,3)\) is cleared. If the Point 3 is a single point (interior point), this part of the logic is
complete. Otherwise, Q3A(i) is placed in Point 3 and Area 3 is repeated.

\section*{Area 3.5}

If the exit plane option has been requested (EXITPL=true). no check is made on the end of wall flag (EOW2) that otherwise is used to stop the calculation. The EOW2 flag is set when the end of the wall has been reached within a tolerance of \(E P W\)

If the exit plane calculation has been requested, as soon as the nozzle calculation is complete (ie., EOW2 set to one) the wall is artificially extended a distance DELWX in the axial direction. The slope used for this extension is that of the last two points in the wall table. The flag EXITCK is used to assure that this is only done once. The point just calculated is written on unit ITSTAB to be used later as the first exit plane point. The statement "BEGIN EXIT PLANE CALCULATION" is printed.

If the exit plane option has been requested and the programming described in the above paragraph has been executed, the last entry in the insert table, IT(LAST), is checked. If the insertion process is complete and the last two points calculated fall on either side of the exit plane, values at the exit plane are found by interpolation and written on unit ITSTAB for later use. If the point just written out is an axis point, or if the first point on the LRC is beyond the exit plane, the program goes to statement 1700 to write out the the summary and to terminate the calculation. otherwise the propane proceeds to Area 4 .

If the exit plane calculation \(1 s\) in progress and the LRC has already crossed the exit plane successfully, checks are made to
see if NCHEPE, NPTEPE, and \(P(6, I P)\) are within their minimum values. If so, Area 4 is entered at the beginning, otherwise it is entered at 1610 and a special check is made.

Area 4:
If Area 4 is entered at the beginning, a check is made to see if the point just used on the previous LRC was the last point (IPPW) on the LRC. If not, the program goes to Area 7. otherwise, starting at 1610 NCHEPE is checked as follows; if EXITCK is true, and the point just calculated is not beyond the exit plane, and NCHEPE exceeds its maximum value, transfer is made to Area 9 and the error message "EXIT PLANE OPTION REQUIRES LARGER NCHMXE, NPTMXE" is printed. If no error was found, the program sets IPPW = IP and checks to see if the insertion table is empty. If so, the program transfers to Area 7 .

If the insert table is not empty, it is necessary to restart the LRC calculation at the last point entered in the table. The reason for this is as follows. Whenever it is necessary to insert a point along a streamline, the inserted point will start a new LRC. It is then necessary to complete this new LRC and then come back to the point of insertion and complete the LRC that was being computed when the insertion occured. This procedure is carried out in Area 4 by mapping point numbers IT(LAST) through IP of the \(P\) array into the \(P P\) array. IP is then set to IT(LAST)-1 and IPP is set to IT(LAST) 11 so that the LRC calculation can start from the point of last insertion. This point is then removed from the IT table by setting LAST LAST-1. The program then goes to Area 7.

Area 5:
Area 5 is entered when a LRC has been completed. This means that the insertion table has been emptied. Next, the PP
array is updated by transferring into it the values in the \(P\) array. If the LRC just completed is in the nozzle, the LRC surface is integrated from the axis (or initial line) to the wall using the trapezoidal rule method to obtain the mass flow rate. The integral to each point is stored in the array XMASSF. Tests are made on the input variable MASSFL and print out of the mass flow is done accordingly. Next, an adjustment is made to the pressure so that mass flow is conserved. The density is recalculated from the perfect gas law. At the end of Area 5 the edit logic using \(\varepsilon_{0}\) and \(\varepsilon_{s}\) is carried out as discussed earlier. The characteristic number, LRC, is then updated and the program transfers to Area 2 if the next LRC starts from the initial line, and to Area 6 if the next LRC starts from the axis.

Area 6:

Area 6 is entered when it has been determined that an axis point is to be calculated. The point counters (IP and IPP) and the insert counters (CS) are initialized and Points 1 and 4 are set up. The axis point subroutine is called and return is made with either the axis point calculated or the INSERT flag set. If an insert is requested or if Point 3 is found to be farther than \(a\) distance DS downstream from Point 4 , a new Point 1 is inserted half way between the old Point 1 and Point 4. Inserts are counted and an error is detected if more than the maximum are required.

If the axis point has been successfully calculated and an insert was required, then subroutine PRINT is called to print the inserted point. Transfer is then made to Area 3.

Area 7:

Area 7 is entered for the purpose of performing a wall point calculation. If the point to be calculated is not a wall point the program goes to Area 8. If a wall point is to be calculated
checks are made concerning the exit plane option. If the exit plane option is in effect, the point to be calculated is either on an LRC which: (1) ends upstream of the nozzle exit plane (EXITCK false), or (2) is one of the NCHMXE LRC's ending on the nozzle wall extension, or (3) is a LRC farther downstream which is ended as soon as a point is calculated with an axial coordinate greater than XEXTEN. In the first two cases the wall point calculation proceeds normally as described in the next paragraph. In the third case the program goes to Area 9 and constructs an end point for the LRC so that it can be finished without a wall point, and then goes to Area 4. However, if the point just calculated is beyond XEXTEN then it is not necessary to go to Area 9 and the program goes directly to Area 4.

The wall point calculation logic is as described in Area 6 for an axis point with the exceptions noted below. The point 2 is set up rather than Point 1. After a wall point is calculated, the streamline angle is checked to be sure it has not turned more than \(\Delta \theta_{w}\). The axial pressure component is integrated to determine the thrust increment for the wall differential just completed (see the equations discussed earlier). If a point was inserted on the previous streamline, it is entered into the insert table. When the wall point procedure is completed the program goes to Area 3 .

\footnotetext{
-
}

Area 8:

Area 8 is entered for the purpose of performing an interior point or a dividing streamiine double point calculation. The point calculation logic is as follows. A check is made to determine if the point to be calculated is a interior point or a dividing streamiine point. Points 2 and 4 are set up accordingly and the appropriate point calculation subroutine is called (INPT or DSPT). If it is necessary to insert a point, the insert procedure is the same in both cases and is also the
same as used for a wall point calculation as previously described. These three point calculations are set up differently, but use the same code for the insert procedures.

Area 9:

This area of the subroutine contains the error termination procedure, the nozzle exit plane summary print procedure, two error messages, and the end point procedure for the exit plane option.

The error termination procedure begins by calling the error subroutine, ERRORZ, giving it the number of the er ror statement to be printed. Subroutine PRINT is then called so as to print the last point calculated. If exit plane points have been saved, these also are printed. Subroutine CNTRL is then exited.

The nozzle exit plane summary print procedure is as follows. A title is printed, then each exit plane point is read from unit ITSTAB and printed uing subroutine PRINT. Subroutine CNTRL is then exited.

The two error messages printed in Area 9 relate to the exit plane option. When this option was added to the program, these messages were placed here rather than in subroutine ERRQRZ.

The end point procedure for the exit plane option found at the end of Area 9 is that described in Area 7 .

DEFINITIONS FOR FORTRAN VARIABLES USED BY SUBROUTINE CNTRL†

Variables beginning with \(I\) through \(N\) are typed as integer. All others are typed as real unless noted as logical. No other types are used. Assumed values are listed in parentheses.

Variable Definition
\begin{tabular}{|c|c|}
\hline ARATID & Area ratio of wall point \\
\hline CS & Insertion counter \\
\hline csmax & Maximum allowed number of insertions (20.) \\
\hline DELWX & Length of nozzle extension for exit plane option (10.) \\
\hline DS2 & DS * DS; where DS is input \\
\hline EØW1 & Flag set in WLPT when the end of nozzle wall is detected \\
\hline E0W2 & Flag set in WLPT when iterations to reach end of wall point are complete \\
\hline ES 2 & ES * ES; where ES is input \\
\hline EXITCK & Logical variable set true for the exit plane option as soon as the end of the nozzle is reached \\
\hline EXITPL & Logical input variable. Input true if the exit plane option is desired (.FALSE.) \\
\hline ID & Point type input to subroutine PRINT \\
\hline IERR & Error flag, set to error number \\
\hline
\end{tabular}

\footnotetext{
† The following input variables are used by subroutine CNTRL: DS, DTWI, DWWI, EPW, ES, ETHI, IMAX, and IMAXF. These variables are discussed in Section 6.7.1
}

TABLE 5-7

\section*{DEFINITIONS FOR FORTRAN VARIABLES USED BY SUBROUTINE CNTRL \\ (Continued)}

Variable Definition
IMX
INSERT

IP
IPMX
IP P
IPPS
IPPW
IT (20)

ITSTAB

JFLAG

LAST
LASTMX

LRC
MASSFL

MS
MW
N

NCHEPE

Number of variables for a point
Insert flag. A non-zero value asks CNTRL to
Point counter for the LRC under construction Maximum number of points allowed on a LRC (151) Point counter for the last LRC finished Value of IPP for Point 4
The largest IPP value, that of the wall point Insertion table where the point numbers are
stored for insertions requiring stored for insertions requiring LRC completion Unit on which exit plane points are stored until
printed \((29)\) Index for flag in the point arrays identifying dividing streamline double points
Number of last entry ints IT array Maximum number of LRC generating insertions for
the original LRC (20)
Number of LRC
Input variable controlling the mass flow print
out (1) Initial line point counter Wall point counter
Statement number for ASSIGNED G \(\quad\) Tø controlling
the point calculations For exit plane option, LRC counter in the wall
extension region

TABLE 5-7
DEFINITIONS FOR FORTRAN VARIABLES USED BY SUBROUTINE CNTRL
(Continued)
Definition
Variable

NCHMXE

NEXITP

NPTEPE

NPTMXE

P(70,275)
PP (70,275)
PS (70)
PW (1208)
\(Q(70,5)\)

Q3A(70)

Q4A(70)

EXIT
EXIT
XEXTEN

XMASSF(275)

For exit plane option, number of LRC's to be calculated on the wall extension (6)

Exit plane point counter
For exit plane option, LRC counter in the region beyond the wall extension
For exit plane option, maximum number of LRC's allowed in the region beyond the wall extension (10)

Array in which LRC is constructed
Array containing LRC just completed Working storage for initial line point Array containing wall point coordinates Working storage for point calculations, column number is the point number
Working storage for point 3 A of dividing streamline double point
Working storage for point 4 A of dividing streamline double point
Radial coordinate at end of nozzle wall
Axial coordinate at end of nozzle wall
For exit plane option, length of nozzle extension reached after LRC number NCHMXE
Array containing integrated mass flow rate of each LRC point

Given a right-running characteristic (RRC) stored in the \(P P(-,-)\) array, and the starting point of the next RRC stored in \(P(-, I P)\), this subroutine computes a RRC emanating from \(P(-, I P)\). The RRC is traced until it reaches the axis, or goes outside the nozzle.

\subsection*{5.5.10 Subroutine CNTRL?}

This subroutine performs the same function as subroutine CNTRLI, but applies to a left-running characteristic (LRC). Here, the calculation is carried out until the LRC reaches the wall.

\subsection*{5.5.11 Subroutine CNTR12}

This is a control subroutine for the shock calculation. It is called after an induced right-running shock has been detected. Its function is to compute a right-running shock point, followed by the construction of a LRC to the wall. The procedure is repeated until the end of nozzle is reached, or the shock wave reflects off the center line. At this point control is returned to CNTR91 and CNTR13 is called.

\subsection*{5.5.12 Subroutine CNTR13}

This is a control subroutine for the shock calculation. Its function is to compute a left-running shock point, followed by the construction of a RRC from the shock point to the axis. The procedure is repeated until the end of the nozzle is reached, or the shock wave reflects off the wall. At this point control is returned to CNTR91 and CNTR14 is called.

\subsection*{5.5.13 Subroutine_CNTR14}

This is a control subroutine for the shcok calculation. Its function is to compute a right-running shock point, followed by the construction of a LRC from the shock point to the wall. The procedure is repeated until the end of the nozzle is reached, or the shock wave reflects off the axis. CNTR14 is similar in function to CNTR12, but it is designed for multiple reflections, while CNTR12 is designed to start the induced shock calculation.

\subsection*{5.5.14 Subroutine_CNTR16}

This is a control subroutine for the shock calculation. Its function is to compute a second attached shock wave. The construction is as follows. First, the flow field is computed assuming the second shock wave is negligible. When the end of the nozzle is reached, then subroutine CNTR16 is called. By using existing information an attached shock is calculated at the wall location having axial coordinate \(X B\). Next, a right-running shock wave is constructed from \(X B\). A LRC is traced from each shock point to the nozzle wall using subroutine CNTR12. The calculations stop when the wall end point is reached.

This is a control subroutine for the shock calculation. Its function is to compute right-runing characteristics beginning at the bottom of the initial data line. Successive RRC's are constructed starting at the initial data line and ending at the axis or exit plane. Once the wall is reached, successive RRC's are constructed starting at the wall and ending at the axis or exit plane. The procedure is repeated until the nozzle end point is reached. However, if an induced right-running shock is detected, then control is returned to CNTR91 and subroutine CNTR12 is called.

\subsection*{5.5.16 Subroutine CNTR31}

This is the control subroutine for the attached shock wave calculation. First, it computes right-running characteristics beginning at the bottom of the initial data line. Successive RRC's are constructed starting at the initial data line and ending at the axis or exit plane. Once the wall is reached, successive RRC's are constructed starting at the wall and ending at the axis or exit plane. The procedure is repeated until position \(X A\) is reached on the wall. Control is then returned to CNTR91 and subroutine CNTR14 is called.

\subsection*{5.5.17 Subroutine CNTR91}

This is the master control subroutine for the shock calculations. It calls subroutine CNTR12, CNTR13, CNTR14, CNTR16, CNTR21, and CNTR31 as required to compute the flow field from the initial line to the end of the nozzle.

\subsection*{5.5.18 SUBROUTINE CRIT (XN, XM, N \(\varnothing\))}

The purpose of this subroutine is to compare two valves for absolute or relative convergence and return an indicator stating if convergence has been achieved.

\section*{Calling Sequence:}
\(\mathrm{XN} \quad \mathrm{x}_{\mathrm{n}}\), input
XM

NØ
\(x_{m}\). input
indicator, output
\(\mathrm{N} \varnothing=0 \quad\) implies convergence
\(\mathrm{N} \varnothing=1\) implies no convergence
where:
if \(\left|x_{m}-x_{n}\right|<\epsilon_{1} \quad\) then \(N \varnothing=0\), return
if \(\quad\left|x_{n}\right|=0\)
if \(\left|x_{m}-x_{n}\right| /\left|x_{n}\right|<\epsilon_{2}\)
otherwise
\[
\begin{aligned}
\text { then } N \varnothing & =1, \text { return } \\
\text { then } N \varnothing & =0, \text { return } \\
N \varnothing & =1, \text { return }
\end{aligned}
\]
\[
\epsilon_{1}=\epsilon_{2}=5 \cdot 10^{-5}
\]

\section*{SUBROUTINE CUBIC (\(X, Y, Y P, N, A R G, Y A R G\))}

The purpose of this subroutine is to perform cubic interpolation for a tabulated function whose derivatives are known.

\section*{Calling Sequence:}
\(X \quad \begin{aligned} & \text { is a table of the independent variable, } x_{i}, \text { such that } \\ & \mathbf{x}_{i+1} \geq \mathrm{x}_{\mathrm{i}}\end{aligned}\)
\(Y \quad\) is a table of the dependent variable, \(y_{i}=Y\left(x_{i}\right)\)
is a table of the derivatives of the dependent variable \(y_{i}^{\prime}=y^{\prime}\left(x_{i}\right)\)
N is the number of entries in each of the above tables;
ARG
YARG
is the argument, \(x\), for which interpolation is requested is the result, \(y=y(x)\)

\section*{Restrictions:}

The calling program must define arrays for the dummy variables \(X, Y\), and YP. These arrays must be at least of lengths \(N+1, N\), and \(N\) respectively. The subroutine will save its last used table position number in \(X(N+1)\).

> If \(x<x_{1}\) the program returns \(y=y_{1}\)
> If \(x>x_{N}\) the program returns \(y=y_{N}\)

\section*{Method:}

Given : \(x_{0} \leq x<x_{1}\)
so that \(y_{0}, y_{0}^{\prime} y_{1}\), and \(y_{1}{ }^{\prime}\) are known. The cubic interpolation formula given below is used to determine \(y\)
\[
y=A\left(x-x_{0}\right)^{3}+B\left(x-x_{0}\right)^{2}+C\left(x-x_{0}\right)+D
\]
where
\[
\begin{aligned}
& A=\frac{1}{h^{3}}\left[\left(y_{1}^{\prime}+y_{0}^{\prime}\right) h-2 k\right] \\
& B=\frac{-1}{h^{2}}\left[\left(y_{1}^{\prime}+2 y_{0}^{\prime}\right) h-3 k\right] \\
& C=y_{0}^{\prime} \\
& D=y_{0}
\end{aligned}
\]
and
\[
\begin{aligned}
& \mathrm{h}=\mathrm{x}_{1}-\mathrm{x}_{0} \\
& \mathrm{k}=\mathrm{y}_{1}-\mathrm{y}_{0}
\end{aligned}
\]

THIS PAGE LEET INTENTIONALLY BLANK

The Boundary Layer Module (BLM) is used to calculate the loss in nozzle performance due to a viscous boundary layer and its interaction with the nozzle wall. The effects of both drag and heat transfer are included. The method used is described in Section 2.6.

The BLM consists of the following subroutines:
\begin{tabular}{ll}
BLMAIN & DIFF \\
BLEDGE & EDDY \\
BLH & INPUTB \\
BLØCKD & IVPL \\
BLPLTS & LINI \\
BLSEG & ØUTPBL \\
BLTABL & RBL \\
BLW & READBL \\
CØEF & SØLV5 \\
CØEF1 & WRPROF \\
CUBICB &
\end{tabular}

The BLM is entered through subroutine BLMAIN. The boundary layer is divided into segments consisting of equally spaced grid lines. The control subroutine for analyzing a segment is subroutine BLSEG. There can be as many as 101 grid lines per segment, and as many as 10 segments. Many of the variables used in the BLM analysis are stored in arrays. The most important array variables are listed in Table 5-8.

TABLE 5-8: ARRAYS USED BY THE BLM
Variable Common Contents
(with_dimension) /Name/
\begin{tabular}{|c|c|c|c|}
\hline ALFA & (101)
\((101)\) & /GRD/
/AL/ & \[
\begin{aligned}
& \left(n_{j}-n_{j-1}\right) / 2, \text { grid spacing } \\
& \alpha_{e}, \text { angle of b.l. to nozzle } \\
& \text { center line }
\end{aligned}
\] \\
\hline ALMDA & (101) & /EDGE/ & \(\lambda_{e}\), mean free path at edge \\
\hline B & \((101,2)\) & /BLC1/ & \(b\), see equation 2.6 \\
\hline BC & (101) & /BLC1/ & \[
\left(\rho \mu / \rho_{e} e_{e}\right) \text {, see equation }
\]
\[
2.6-12
\] \\
\hline C & \((101,2)\) & /BLC1/ & \(\left(\rho e^{\prime} \rho\right.\)), see equation \(2 \cdot 6-12\) \\
\hline CII & (101) & /MISCT/ & \[
I_{1}, \text { integral, see }
\]
\[
2.6-21
\] \\
\hline CK & (101) & /BLC2/ & \(\gamma\) versus T, gas property table \\
\hline CKE & (101) & /EDGE/ & \(\gamma_{e}\) versus \(\mathrm{T}_{\mathrm{e}}\) \\
\hline CNUE & (101) & /EDGE/ & (\(\mu e^{\prime \prime} \rho_{e}\)) \\
\hline CP & (101) & /BLC2/ & \(C_{p}\) versus \(T\), gas property \\
\hline CPE & (101) & /EDGE/ & \[
\mathrm{C}_{\mathrm{p}_{\mathrm{e}}} \text { versus } \mathrm{T}_{\mathrm{e}}
\] \\
\hline CQ & (101) & /WALL/ & \((\rho v)_{w}\) versus \(\mathrm{T}_{W}\) \\
\hline D & \((101,2)\) & /BLC1/ & d, see equation 2.6-12 \\
\hline E & \((101,2)\) & /BLC1/ & e, see equatio \\
\hline HHE & (101) & /EDGE/ & \(\mathrm{H}_{\mathrm{e}}\), total enthalpy at edge \\
\hline HSE & (101) & /EDGE/ & \(h^{*}\), static enthalpy at edge \\
\hline HSW & (101) & /WALL/ & \(\mathrm{h}_{\mathrm{w}}^{*}\), static enthalpy at wall \\
\hline PE & (101) & /EDGE/ & \(\mathrm{P}_{\mathrm{e}}\), pressure at edge \\
\hline P1 & (101) & /PRES/ & \(m_{1}\), see equation 2. \\
\hline P2 & (101) & /PRES/ & \(m_{2}\), see equation 2.6-13 \\
\hline P3 & (101) & /PRES/ & \(m_{3}\), see equation 2.6-14 \\
\hline RIND & (201) & /BCON/ & \(r_{0}\), radial coordinate of input \\
\hline RKK & (101) & /BLC2/ & \(k\) versus \(\mathrm{T}, \mathrm{gas}\) property table \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline RHDE & (101) & /EDGE/ & \({ }^{\text {P }}\) e density at edge \\
\hline RMU & (101) & /BLC1/ & \(\mu\) versus \(\mathrm{T}, \mathrm{gas}\) property table \\
\hline RMUE & (101) & /EDGE/ & viscosity at ed \\
\hline RR & (101) & /BLC2/ & \(R_{\text {g }}\) versus \(T\), gas property table \\
\hline RX & (101) & /EDGE/ & \[
R_{\xi} \text {, local Reynold No., } U_{e} \xi / v_{e}
\] \\
\hline RO & (101) & /GRD/ & \(\left(r_{o} / L\right)^{k}\), local radius of body revolution (\(L=1\)) \\
\hline S & (201) & /GBLK/ & \(x\), surface distance, equally spaced \\
\hline Sø & (201) & /GBLK/ & \(x\), surface distance, input \\
\hline T & (101) & /BLC2/ & T, temperature for gas property tables \\
\hline TE & (101) & /EDGE/ & Te, temperature at edge \\
\hline TVCT & (101) & /MISCT/ & \((1-t)^{2 k}\) where \(t=y \cos \phi / r_{0}\), transverse curvature \\
\hline TW & (101) & /WALL/ & \(\mathrm{T}_{\mathrm{w}}\), temperature at wall \\
\hline U & (101,2) & /BLC1/ & \(f^{\prime}=U / U e\) \\
\hline UE & (101) & /EDGE/ & U, velocity at edge \\
\hline \(V\) & \((101,2)\) & /BLC1/ & \(f^{\prime \prime}\), shear parameter \\
\hline WW & (101) & /WALL/ & \(\mathrm{g}_{\mathrm{w}}^{\prime}\), dimensionless total enthalpy gradient at wall \\
\hline X & (101) & /GRD/ & \(\xi\), see Xø \\
\hline XINø & (201) & /BCON/ & \(\mathrm{X}, \mathrm{axial}\) coordinate, in \\
\hline X & (101) & /GBLK/ & \(\xi\), transformed surface \\
\hline \(\mathbf{Y}\) & (101) & /MISCT/ & distance, see equation 2.6-6a \(\eta=y / y\) \\
\hline
\end{tabular}

This is the main program for the BLM. The functions performed by this routine are described below.

Input data is read by calling subroutine INPUTB. INPUTB also prepares tables and initializes variables and indexes required for subsequent calculations. Next, subroutine IVPL is called, and initial velocity and temperature profiles are computed on a finite difference grid.

The boundary layer is divided into segments with as many as 101 grid lines per segment. For each segment, 1 through NSEG, the following events occur. First, subroutine BLEDGE is called to prepare tables of variables that describe conditions at the wall and at the inviscid edge of the boundary layer. Next, subroutine BLSEG controls the computation of the boundary layer. It computes the growth of the boundary layer from the beginning to the end of each segment, i.e., up to 101 grid lines.

Subroutine BLMAIN prints out text heading the numerical output of the program.

At the end of the print out for each segment, BLMAIN prints the following quantities which are evaluated at the last point on the segment:

Mean Free Path
\[
\begin{equation*}
1 / 2 \tag{ft}
\end{equation*}
\]

Total Integrated Wall Heat Flux
\[
Q_{W}=\int \dot{q}_{W} d A
\]
(BTU/sec)

At the end of the print out for the last segment, the following additional quantities (evaluated at the last point) are printed: Knudsen No. based on \(\delta^{*}\)
\[
K n_{\delta}^{*}=\lambda / \delta^{*}
\]
\(\dot{m}_{2 D}\)

Boundary Layer Specific Impulse Loss
\(\Delta I_{s p, B L}=\Delta F_{B L} / \dot{m}_{2 D} \quad(\sec)\)
(\(1 \mathrm{bm} / \mathrm{sec}\))

This subroutine constructs the boundary conditions for segment number ISEG of the boundary layer. Tables containing the boundary layer coordinates XIN \(\varnothing\), RIN \(\varnothing\), \(S \emptyset\), AND X \(\quad\) (see Table 5-8, are input. The begining and ending axial coordinates for the segment, XSEG(ISEG) and XSEG(ISEG+1), and the number of subdivisions to be used, NISPS(ISEG), are also input (see Section 6.8-3). Using this information, tables that are equally spaced in boundary layer length are prepared. These tables are (see Table 5-8):
\(X, S, R O, X I, T E, U E, P E, T W, C Q, C P E, C K E, H S E, H S W, A L F A\).
The above tables are then printed under the heading "BOUNDARY CONDITIONS (IHFLAG = II)".

\subsection*{5.6.3 SUBROUTINE BLH}

This subroutine is used to calculate the propellant enthalpy picked up by the regenative cooling circuits. The method used is described in Section 6.8.4, Regenerative Cooling Heat Transfer. It consists of integrating the wall heat flux over the surface area covered by the regen cooling circuits and dividing the results by the engine mass flow rate. The wall heat flux is calculated by subroutine OUTPBL. The integrated heat flux is read from the BLM linkage file (unit 12) using subroutine RBL. As many as three circuits are allowed. The subroutine prints out the results of the calculations under the label "PROPELLANT ENTHALPY FROM THE COOLING CIRCUITS".

This subprogram initializes the variables listed below:
\begin{tabular}{|c|c|c|}
\hline NXT & & total number of \(x\)-stations, set for 101 \\
\hline NTR & - & location of transition, set for 3 \\
\hline etae & - & transformed boundary-layer thickness for first station, set for 8 . The boundary-layer thickness for other stations is computed internally. \\
\hline VGP & - & variable grid parameter set for 1.14. \\
\hline RUMI & - & reference viscosity set for 0.250 \(\times 10^{-4} \quad 1 b_{m} / f t-s e c *\) \\
\hline TI & - & reference temperature for viscosity, set for \(1500^{\circ} \mathrm{R}\). \\
\hline ØMEGA & - & exponent in the
relationship set for 0.76 density-viscosity \\
\hline PR & - & molecular Prandtl number, Pr , set for
0.72 \\
\hline
\end{tabular}

ITYPE - through this flag the flow type is specified as follows: a nozzle (ITYPE=1), and external axisymmetric body (ITYPE=2), or a two-dimensional external flow in which flow starts as a stagnation point flow (ITYPE=3). Set for 1.

CQ - mass transfer parameter, set for 0 . It is equal to \((\rho v)_{w}\) and has units of \(1 b_{m} / f^{2}-s e c\)

IHFLAG - this flag indicates whether the wall temperature is input (IHFLAG=0) or wall heat flux (IHFLAG=1). Set for 1 .

NTAB - in the computer program \(C_{p}, \gamma, k, R\) are specified as functions of \(T(=T O)\) and form a "fluid-property table". NTAB refers to the number of TO values in this table. It is set here as 3 , maximum being 101.
* The assumed values of RMUI, TI, ØMEGA, PR, CPO and CKO are for alr.

TO - values of temperature for the table.

CPO - specific heat at constant pressure, Set

CKO - ratio of specific heat at constant pressure to specific heat at constant volume, dimensionless. Set for 101 * 1.4.

IPRNT - the flag that controls the print output. Set for 0 .

IPRNT=0 corresponds to short print and
IPRNT=1 corresponds to long print
Short print consists of the boundary-layer parameters such as \(\delta^{*}, \theta, H, C_{f}, R_{\delta}, R_{\theta}\), \(\mathrm{R}_{\mathrm{s}}, \mathrm{c}_{\mathrm{H}}, \Delta \mathrm{F}\), and \(\Delta \mathrm{I}_{\mathrm{sp}}\).
Long print includes short print plus the velocity and temperature profiles. These are defined in Subroutine gUTPBL.

QP
This is the factor that converts input values from the input units of \(B T U / i^{2} s e c\). to the internal program units of \(1 \mathrm{bm} / \mathrm{sec}^{3}\). \(\mathrm{QF}=3.605259^{*} 10^{6}\), ie.;
\(\dot{q}_{W}\left(1 \mathrm{bm} / \mathrm{sec}^{3}\right)=144 \mathrm{Jg}\left(B T U / \mathrm{in}^{2}-\mathrm{sec}\right)\).

This subroutine performs all the plotting for the BLM module. Data written by the BLM on data files is read and plots are made for requested items. Plot capabilities include displacement thickness, momentum thickness and wall temperature versus axial station. Also avallable are temperature and velocity profiles through the boundary layer at selected area ratios. Inputs for using the BLM plotting are described in Section 6.8.5.
```

5.6.6 S_SUBROUTINE BLSEG

```

The over-all logic of the boundary layer computations is controlled by this subroutine. A flow chart of the logic is presented in Figure 5-3. The nozzle is dividedinto segments, and subroutine BLSEG computes the growth of the boundary layer from the beginning to the end of the segment when called by subroutine BLMAIN. There are 100 grid lines in a segment, and these are counted using the FORTRAN variable NX. Each grid line is iterated until the solution converges. Iterations are counted using FORTRAN variable IT.

Subroutine BLSEG checks the convergence of the iterations by using the wall shear parameter \(f_{w}^{\prime \prime}\) as a convergence criterion. For laminar flows, calculations are considered converged when
\[
f_{w}^{\prime \prime}<10^{-4}
\]

If \(\quad f_{w}^{\prime \prime}\) becomes negative during the iterations, calculations are stopped. For turbulent flows a relative convergence criterion is used, as follows:

5.6.7_ SUBROUTINE_BLTABL_(INTERP, NTAB, XTAB, YTAB, XOUT,

\section*{YロUT)}

The purpose of this subroutine is to generate a table
\[
y_{i} \text { vs. } x_{i}
\]
from a given table of
\[
\bar{y}_{j} \text { vs. } \bar{x}_{j}
\]

Method:
Given
\(\bar{y}_{j}, \bar{x}_{j}\)
\(j=1,2 \ldots N J\)
and
\(x_{1}\)
\(1=1,2, \ldots N I\)
This subroutine interpolates to find
\[
y_{i}
\]
\[
1=1,2, \ldots N I
\]

One of these following interpolation methods can be selected: linear, linear log, or cubic.

Calling Sequence:
INTERP Interpolation method; input
- 1 for linear, using subroutine LINI
\(=2\) for linear log, using subroutine LINI
= 3 for cubic, using subroutine CUBICB
NTAB NJ, number of entries input for XTAB and YTAB
XTAB \(\quad \bar{x}_{j} \quad\) input
YTAB \(\quad \bar{y}_{j}\), input versus \(\bar{x}_{j}\)
NøUT \(N I\), number of entries input for XøUT
XOUT \(\quad x_{i}\), input
YøUT \(\quad y_{i}\), outupt versus \(x_{i}\)

This subroutine uses results obtained from the BLM analysis for the boundary layer displacement thickness, \(\delta^{*}\), to obtain a displaced wall contour. The wall is either displaced inwards (when given the real wall), or outwards (when designing the real wall), a distance \(\delta^{*}\) normal to the original contour. The nozzle throat radius is also corrected by \(-\delta^{*}\) or + \(\delta^{*}\), respectively. The results of these calculations are printed.

The values of \(\delta^{*}\) vs \(X\) that are required for the above calculations are obtained from unlit 12 using subroutine RBL.

\subsection*{5.6.9 SUBROUTINE_CDEF}

This subroutine contains the coefficients of the linearized momentum and energy equations written in a form described in Chapter 8 of Reference 13.

This subroutine calculates the fluid properties and the pressure-gradient parameters used in the momentum and energy equations.

For most applications boundary-layer calculations are carried out based on the assumption that the external flow is isentropic and that the total enthalpy \(H_{e}\) is constant. This assumption is not used here. \(H_{e}\) is allowed to vary along the nozzle length. The following procedure is used for this purpose:

The static enthalpy, \(h^{*}\), is computed from
\[
h^{*}=\int_{T}^{T} c_{p}(T) d T+h^{*}\left(T_{0}\right)
\]
and stored together with \(C_{p}(C P O), \quad Y(C K O), k(R K K O), R(R R O)\) all expressed as functions of \(T(T O)\) thus forming a "fluid property table." This table is used to interpolate fluid properties across the layer.

The boundary-layer equations require that at two adjacent
 provide for variation in \(H\), local similarity ideas are used.

For two adjacent \(x\)-stations, 1 and 2 , an average \(H\) is defined as:
\[
\begin{equation*}
H_{e}=1 / 2\left[H_{\mathrm{e}}^{*}(1)+\mathrm{H}_{\mathrm{e}}^{*}(2)\right] \tag{1}
\end{equation*}
\]

Then with an initial dimensionless total enthalpy ratio g known from the boundary-layer solutions, static enthalpy, \(h_{j}\), is computed from.
\[
\begin{equation*}
h_{j}=g_{j} H_{e}-\frac{u_{e}^{2}\left(f_{j}^{\prime}\right)^{2}}{2} \tag{2}
\end{equation*}
\]

Once \(h_{j}\) is known, then using the "fluid property table", values for \(C_{p j}, T_{j}, r_{j}, R_{j}\) and \(k_{j}\) are found by interpolation, and \(\mu_{j}\) is round from
\[
\mu_{j}=\mu_{r}\left(\frac{T_{j}^{j}}{T_{r}}\right)^{\omega}
\]

The edge values of density \(\rho_{e}, \mu_{e}, \nu_{e}\left(=\mu_{e} / \rho_{e}\right)\) and \(R_{x}\left(u_{e} x / v_{e}\right)\) are then computed. Edge values corresponding to \(j=J\) and \(\rho e\) are computed from
\[
\rho_{e}=\frac{p_{e}}{T_{J}}
\]

Next, the coefficients \(c, b, e, d\) and the pressure gradient parameters \(m_{1}, m_{2}, m_{3}\) appearing in the momentum and energy equations are computed.

Finally, wall conditions are computed depending on whether the wall temperature or heat flux are specified. When the wall temperature is given the dimensionless total enthalpy ratio at the wall, which serves as a boundary condition, is computed as:
\[
g_{w}=\frac{h_{w}^{*}}{H_{e}^{*}}
\]

In the case of specified heat flux \(q_{w}\), the dimensionless total enthalpy gradient, \(g_{w}^{\prime}\), is computed as
\[
q_{w}^{\prime}=-\frac{\xi_{-}}{\sqrt{ } R_{\xi}} \frac{\left(L_{-}\right)}{r_{0}} \frac{\rho_{\underline{e}}}{\rho_{w}} \frac{c_{p_{w}}}{k_{w} H_{e}} \dot{q}(\xi)
\]

Here the units of each term are as follows:
\[
\begin{array}{ll}
\rho=\frac{l b_{m}}{\rho t^{3}} & H_{e}=\left(\frac{f t^{2}}{s e c}\right)^{2} \\
C_{p}=\frac{f t^{2}}{\sec ^{2} R} & \xi=f t
\end{array}
\]

At the convergence of the solutions for a given \(x-s t a t i o n\), this subroutine is also used to account for the nonconstant nature of the total edge enthalpy. To explain this point, let us assume that we have done all that is described in COEF1, and that we can solve the equations at the specified \(x-s t a t i o n\). Since the equations are nonlinear, solutions are iterated until a convergence criterion is met and then subroutine OUTPBL is called to print the desired quantites from that station. Before we increment the value of \(x\) and shift the profiles to perform calculations at the next \(x\)-station, we call COEFi to compute a new value of \(H\) from Equation (1) and recompute static enthalpy variation from Equation (2) and redefine all the fluid properties and pressure gradient parameters at that x-station for the calculations to be done at the next x-station.
5.6.11 SUBROUTINE CUBICB

Subroutine CUBICB is used for interpolation in a table with unequally spaced points. It uses a third-order polynomial to interpolate the data between four points.
5.6.12 SUBROUTINE DIFF

Subroutine DIFF is used to determine the derivative at each point in an input table.
5.6.13 SUBROUTINE EDDY

This subroutine contains the formulas used in the Cebeci-Smith eddy-viscosity model. The eddy-viscosity model is in the described in Section 2.6.2.

\subsection*{5.6.14 SUBROUTINE INPUTB}

This subroutine reads input data defining the problem to be solved by the Boundary Layer Module. Data calculated by the MOC module is read by calling subroutine READBL.

Next, user input data is read from unit 5 for the \(\$ B L M\) Namelist data set. These input-items are described in section 6.8 of this report.

This subroutine also calculates the surface distance from the input \(\left(r_{o} / c\right)\) and \((x / c)\) values for NXIN-stations. The printed surface distance is dimensional and is expressed in feet.

The input NXIN-stations are then redistributed in order to have 101 x-stations uniformly distributed, except for the first five stations which are generated non-uniformly. The input values of \(u_{e}(x), p_{e}(x), T_{e}(x),(p v)_{w},(x / c),(y / c)\) are then interpolated for the new \(x\)-stations to be used in the boundary-layer calculations. In this subroutine, a total enthalpy, \(H_{e}^{*}(x)\), is computed for each \(x\)-station by using the interpolated values of \(T\), and \(u\) and the equation
\[
H_{e}^{*}(x)=n_{e}+\frac{u_{e}^{2}}{2}
\]

This subroutine prints out part of the input geometry which consists of
\[
x, r_{o}, s, u_{e}, P_{e}
\]
5.6.15 SUBROUTINE IVPL

Since the boundary-layer equations are nonlinear, before they are solved at the stagnation point, they needinitial velocity and temperature profiles. This subroutine provides the necessary data to start the calculations.
5.6.16 Subroutine LINI \((X, Y, N, A R G\), YARG, NSAVE)

The purpose of this subroutine is to linearly interpolate from tables of values and to save its place in the table.

Calling Sequence:
\(X \quad\) is a table of the independent variables, \(X_{i}\)
\(Y \quad\) is a table of the dependent variables, \(y_{i}\)
\(N\) is the number of entries in each table
ARG is the argument for the \(X\) table
YARG is the result of the interpolation
NSAVE is a cell in which the table index is saved.

Restrictions:
If the argument exceeds the table of independent variables, the result is set equal to the appropriate table limit of the dependent variable.
5.6.17 SUBROUTINE DUTPBL

Through the flag IPRNT discussed in Subroutine BLOCKD, this subroutine prints out the velocity and temperature profiles and the boundary-layer parameters \(\delta^{*}, \theta, H, c_{f}, R_{\delta *}, R_{s}, C_{H}\) as well as the thrust decrement \(\Delta F\) due to the boundary layer.

They are defined by the following formulas:

Displacement thickness, \(\delta^{*}(\operatorname{DELS}), \quad\) in ft.
\[
\delta^{*}=\int_{0}^{\infty}\left(1-\frac{\rho u^{u_{e}^{u}}}{e_{e}}\right) d y
\]

Momentum thickness \(\theta\) (THETA), in ft.
\[
\theta=\int_{0}^{\infty} \frac{\rho u_{e}}{u_{e}}\left(1-\frac{u}{u_{e}}\right) d y
\]

Shape Factor, \(h\), dimensionless
\[
h=\delta^{*} / \theta
\]

Local skin-friction coefficient, \(c_{f}(C F)\), dimensionless
\[
c_{f}=-\frac{\tau_{w}}{1 / 2 \rho_{e^{u}} e^{2}}
\]

Reynolds number based on displacement thickness, \(R_{\delta}^{*}\)
\[
R_{\delta}^{*}=\frac{u e_{e}^{\delta^{*}}}{v_{e}} \quad, v_{e}=\mu_{e} / \rho_{e}
\]

Reynolds number based on surface distance, \(R_{s}\)
\[
R_{s}=\frac{u_{e}}{v_{e}}
\]

Stanton number, \(C_{H}(C H)\), dimensionless
\[
\left.C_{H}=\frac{\rho_{e}}{\rho_{e}} \bar{u}_{e}^{\left(\frac{q_{w}}{(H}\right.}=\frac{H_{e}}{e}\right)
\]

Thrust decrement \(\Delta F\), in \(1 b_{f}\)
\[
\Delta F=2 \pi r_{0} \theta \rho e^{u^{2}} e^{\cos \phi-2 \pi r_{0} \delta^{*} \cos \phi\left(P_{e}\right.} e^{\left.-p_{a}\right)}
\]

Here \(x\) and \(r_{0}\) correspond to the nozzle coordinates, \(s\) to the surface distance; all expressed in feet. The units of velocity \(u\) and pressure \(p_{e}\) are \(f t / s e c\) and \(l b_{f} / f^{2}\), respectively.

In addition, this subroutine prints out the interpolated values of input geometry referred to as "edge conditions". It consists of \(x, r_{o}, s, u_{e}\) and \(p_{e}\).
5.6 .18 SUBROUTINE REL (X, EX, IX)

This subroutine reads the BLM linkage file (unit 12) and locates \(X_{i}\) and \(X_{i+1}\) such that
\[
x_{i} \geq x \geq x_{i+1}
\]

The value \(F X\) is then found by linear interpolation
\[
F X=F X_{i}+\left(X-X_{i}\right)\left(F X_{i+1}-F X_{i}\right) /\left(X_{i+1}-X_{i}\right)
\]
where \(F X\) is the variable number IDX stored on the file.

The purpose of this subroutine is to transfer data from the ODE and MOC modules to the BLM module.

If \(O D E\) has been run, values defining viscosity, Prandt number, and edge total enthalpy are mapped for use by the BLM. The ODE linkage data is then read from unit LUBLM for use by BLM. The data file is checked for possible errors, and if detected, one of the following warning or error messages will be printed:
"NO LINKAGE FOUND, EXPECT MANUAL INPUT"

OR
"DATA FROM \(x \times x x X\) MODULE OUT OF ORDER IN MODULE BLM. CARD \(x \times x \times x\) HAS SEQUENCE NO. \(x x x x x^{\prime \prime}\)

OR
"INCORRECT CARD TYPE IN DATA FROM TDK FOUND BY READBL. EDG OR GPT EXPECTED \(x x x x\) FOUND AT SEQUENCE NO. \(x x x x x "\)

OR
```

"INCORRECT CARD TYPE IN DATA FROM TDK FOUND BY READBL. END EXPECTED, $x x x x$, FOUND AT SEQ. NO. $x \times x \times x$ "

```

The last three errors above terminate program execution immediately after printing.

If no errors are encountered, the items read by subroutire READBL will include the nozzle mass flow rate, nozzle wall coordinates and associated edge temperature, pressure, and velocity data, and also the gas property tables.

If \(O D E\) was not run, the following message is printed:
"BLM MODULE COULD NOT FIND DATA FROM TD2P MODULE -- WILL ASSUME DATA TO BE READ IN \$BLM"

This subroutine solves the matrix equation for which coeficients were computed by subroutine coff. one call to SøLV5 yields one pass through the elimination procedure. This procedure consists of a forward sweep, followed by a backward sweep of the system. The elimination scheme is specialized to treat this particular matrix equation.
5.6.21 SUBROUTINE WRPR \(\emptyset F\)

This subroutine interpolates between two wall stations and writes temperature and velocity profile data at selected area ratios onto a data file for post plotting. Area ratios are selected by input into the APROF array in the \(\$ B L M\) namelist, see Section 6.8.5.
\[
c-Y
\]
this page left intentionallay blank

\subsection*{6.0 PROGRAM USER'S MANUAL.}

\section*{Description of the Computer Program Input.}

The TDK computer program consists of five modules, ODE, ODK, TRANS, MOC, and BLM. All of these modules are required to perform a complete two dimensional non-equilibrium nozzle performance calculation with a boundary layer. Various options exist in the program, however, which exercise the above modules alone, in part, or in combination.

Data is read by the program sequentially in the order required for the execution of the modules. This order is as follows:
Thermodynamic data,
Deta common to the modules,
ODE module inputs,
ODK module inputs,
TRANS module inputs,
MOC module inputs, and
BLM module inputs.

A more detailed description of these input data sets is presented in Table 6-1. The documentation in which each of the data sets is completely described is also indicated in Table 6-1.

Of the data sets listed in Pable 6-1, only the \$DATA data set is required for every computer run. Input of the other data sets is required only if the options they contain are to be used. For example, input of the thermodynamic data is not required if an existing thermodynamic data file is to be used.

Table 6-1. Input Data Set Description

Card Input
Section No.,
Description

THERMO
6.1,
thermodynamic data cards, see Tables 6-2 and 6-3

END
LOW T CPHS
6.1.1, extension of thermodynamic data to terperatures below \(300^{\circ} \mathrm{K}\), see Table \(6-5\)

END LOW T CPHS

\section*{TITLE}

DATA
SDATA
\$END
REACTANTS
-
.
OMIT
INSERT
NAMELISTS
\$ODE
SPECIES

REACTIONS
-
-
LAST REAX
INERTS
6.5.2.6, inerts cards for \(\varnothing \mathrm{DK}\). (to inert those species that are not named in reestions)

Table 6-1 can be used as a guide when preparing input for given problem. It lists the data sets in the order in which they must appear in the data deck, and also shows the special cards which must appear in each set (first card, last card, etc.) if the program is to function property. The table is basically self-explanatory when used together with the detailed input descriptions which follow.

Certain special options to the computer program are described separately in

An input data card listing for a sample case is presented in Section 7, foliowed by the corresponding computer output. In preparing input to the computer program it is useful to review this input card listing.

Successive cases can be run using the computer program but complete data should be input for each case.

\subsection*{6.1 Thermodynamic Data.}

Ordinarily, a thermodynamic data file is available for use with the program, and is assigned to logicial unit 25 . The input described here can be used to generate a thermodynamic data file if one is not available.

This data set is identical to the THERMO DATA described in Appendix \(D\) of NASA SP-273 (ie. Reference 3).

Using this data set, thermodynamic data curve fit coefficients may be read from cards. The curve fit coefficients are generated by the PAC computer program descrimed in NASA TN D-4097 (i.e. Reference 20).

The thermodynamic data (i.e. \(\mathrm{C}_{\mathrm{D}_{\mathrm{T}}}^{0}\), etc.) are expressed as functions of temperatore using 5 least squares curve fit coefficient \(\left(a_{1-5}\right)\) and two integration constants \(\left(a_{6-7}\right)\) as follows:
\[
\begin{aligned}
& \frac{P_{T}}{R}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3}+a_{5} T^{4} \\
& \frac{H^{0} T}{R T}=a_{1}+\frac{a_{2} T}{2}+\frac{a_{3} T^{2}}{3}+\frac{a_{4} T^{3}}{4}+\frac{a_{5} T^{4}}{5}+\frac{a_{6}}{T} \\
& \frac{S_{T}^{O}}{R}=a_{1} \ln T+a_{2} T+\frac{a_{3} T^{2}}{2}+\frac{a_{4} T^{3}}{3}+\frac{a_{5} T^{4}}{4}+a_{7}
\end{aligned}
\]

For each species, two sets of coefficients \(\left(a_{1-7}\right.\) and \(\left.a_{1-7}^{\prime}\right)\) are specified for two adjacent temperature intervals, lower and upper respectively. For the data available in Reference 3 the lower temperature interval is \(300^{\circ}\) to \(1000^{\circ} \mathrm{K}\) and the upper temperature interval is \(1000^{\circ} \mathrm{K}\) to \(5000^{\circ} \mathrm{K}\).

Ref. 20. McBride, B.J., and Gordon, S., "Fortran IV Program for Calculation of Thermodynamic Data", NASA IN-D-4097, Aug. 1967.

The input format required for this thermodynamic data is defined in Table 6-2. Data cards for the species \(\mathrm{AR}, \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}, \mathrm{O}, \mathrm{OH}\), and \(\mathrm{O}_{2}\) are listed in Table 6-3 as examples. Thermodynamic data coefficients for many chemical species are supplied with the computer program. A list of these species is presented in Table 6-4. (For temperature range below \(300^{\circ} \mathrm{K}\) see Section 6.1.1)

Data Tape Generation and Usage:

A computer run using thermodynamic data card input will generate a data tape on logical unit JANAF. This tape may then be saved and used at a later time. The program writes the THERMO data card images on unit JANAF as read but with two minor exceptions. The THERMO code card and the card numbers in card columm 80 are
omitted.

If thermodynamic data cards are not input, the program assumes the thermodynamic data is on logical unit JANAF. Logical unit JANAF is currently assigned a
value of 25 .

TABLE 6-2 FORMAT FOR THERMODYNAMIC DATA CARDS

\({ }^{\text {a Gaseous species and condensed species with only one condensed phase can be }}\) in any order. However, the sets for two or more condensed phases of the same species must be adjacent. If there are more than two condensed phases of a species their sets must be either in increasing or decreasing order according to their temperature intervals.

\title{
TABLE 6-3. THERMO DATA CARDS FOR AN \(\mathrm{O}_{2} / \mathrm{H}_{2}\) PROPELLANT
}

\section*{(SPECIES AR, \(\mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{O}, \mathrm{OH}\), AND \(\mathrm{O}_{2}\))}

\section*{THERMO}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(300.0001000 .000 \quad 5000.000\)} \\
\hline AR & L 5/66AR 1.00 & 00.00 0.00 0.G & 300.0005000 .000 \\
\hline . 25000000E 01 & 0. & 0. & 0.0 . \\
\hline -.74537502E 03 & .43660006E 01 & . 25000000 E 01 & 0.0 \\
\hline 0. & 0. & -.74537498E 03 & .43660006E 01 \\
\hline H & J 6/74H 1. & O. O. O.G & \(300.000 \quad 5000.000\) \\
\hline . \(24999996 \mathrm{E}+01\) & . \(70881143 \mathrm{E}-09\) & -. \(38728927 \mathrm{E}-12\) & . \(85096613 \mathrm{E}-16-.65768080 \mathrm{E}-20\) \\
\hline . \(25474390 \mathrm{E}+05\) & -. \(45989618 \mathrm{E}+00\) & . \(25000002 \mathrm{E}+01\) & -. \(19925608 \mathrm{E}-08\). \(54929899 \mathrm{E}-11\) \\
\hline -.64292197E-14 & . \(26794037 \mathrm{E}-17\) & . \(25474390 \mathrm{E}+05\) & -. \(45989941 \mathrm{E}+00\) \\
\hline H2 & J 3/61H 2.0 & 0.0 0.0 0.G & 300.0005000 .000 \\
\hline . \(31001901 \mathrm{E}+01\) & . \(51119464 \mathrm{E}-03\) & . \(52644210 \mathrm{E}-07\) & -. \(34909973 \mathrm{E}-10\). \(36945345 \mathrm{E}-14\) \\
\hline -. \(87738042 \mathrm{E}+03\) & -. \(19629421 \mathrm{E}+01\) & . \(30574451 \mathrm{E}+01\) & . \(26765200 \mathrm{E}-02-.58099162 \mathrm{E}-05\) \\
\hline . \(55210391 \mathrm{E}-08\) & 18122739E-11 & -. \(98890474 \mathrm{E}+03\) & -. \(22997056 \mathrm{E}+01\) \\
\hline H2O & J 3/61H 2.0 & 1.000 .00 0.G & \(300.000 \quad 5000.000\) \\
\hline . \(27167633 \mathrm{E}+01\) & . \(29451374 \mathrm{E}-02\) & -. 80224374E-06 & .10226682E-09 -.48472145E-14 \\
\hline -. \(29905826 \mathrm{E}+05\) & . \(66305671 \mathrm{E}+01\) & . \(40701275 \mathrm{E}+01\) & -. \(11084499 \mathrm{E}-02\). \(41521180 \mathrm{E}-05\) \\
\hline -. \(29637404 \mathrm{E}-08\) & . \(80702103 \mathrm{E}-12\) & -. \(302 \overline{2} 9722 \mathrm{E}+05\) & -. \(32270046 \mathrm{E}+00\) \\
\hline N2 & J 9/65N 2.0 & \(0.0{ }^{-1} 0.0 \quad 0 . \mathrm{G}\) & 300.0005000. \\
\hline . \(28963194 \mathrm{E}+01\) & . \(15154866 \mathrm{E}-02\) & -. \(57235277 \mathrm{E}-06\) & .99807393E-10 -. 6522 \\
\hline -. \(90586184 \mathrm{E}+03\) & . \(61615148 \mathrm{E}+01\) & . \(36748261 \mathrm{E}+01\) & -. \(12081500 \mathrm{E}-02\). \(23240102 \mathrm{E}-05\) \\
\hline -. 63217559E-09 & -. \(22577253 \mathrm{E}-12\) & -. \(10611588 \mathrm{E}+04\) & . \(23580424 \mathrm{E}+01\) \\
\hline \(\bigcirc\) & J 6/740 1 & 0. 0. O.G & 5000. \\
\hline . \(25352638 \mathrm{E}+01\) & -. \(14371898 \mathrm{E}-04\) & -. 11360139E-07 & \[
.66005131 \mathrm{E}-11-.61181626 \mathrm{E}-15
\] \\
\hline . \(29230265 \mathrm{E}+05\) & . \(49575621 \mathrm{E}+01\) & . \(29558662 \mathrm{E}+01\) & -. \(17061536 \mathrm{E}-02\). \(25925154 \mathrm{E}-05\) \\
\hline -.17837980E-08 & . \(45709012 \mathrm{E}-12\) & . \(29143654 \mathrm{E}+05\) & . \(29243614 \mathrm{E}+01\) \\
\hline OH & J12/700 1. H & \(1.0 \quad 0.0 \quad 0 . \mathrm{G}\) & \(300.000 \quad 5000.000\) \\
\hline \(.29131230 \mathrm{E}+01\) & . \(95418248 \mathrm{E}-03\) & -. \(19084325 \mathrm{E}-06\) & \(12730795 \mathrm{E}-10.2\) \\
\hline . \(39647060 \mathrm{E}+04\) & . \(54288735 E+01\) & . \(38365518 \mathrm{E}+01\) & -. \(10702014 \mathrm{E}-02\) \\
\hline . \(20843575 \mathrm{E}-09\) & -. \(23384265 \mathrm{E}-12\) & . \(36715807 \mathrm{E}+04\) & . \(49805456 \mathrm{E}+00\) \\
\hline 02 & J 9/650 2.0 & 0.0 0.0 0.G & \(300.000 \quad 5000.000\) \\
\hline . \(36219535 \mathrm{E}+01\) & . \(73618264 \mathrm{E}-03\) & -. \(19652228 \mathrm{E}-06\) & . \(36201558 \mathrm{E}-10-.28945627 \mathrm{E}-14\) \\
\hline -. \(12019825 \mathrm{E}+04\) & . \(36150960 \mathrm{E}+01\) & . \(36255985 \mathrm{E}+01\) & -. \(18782184 \mathrm{E}-02 \quad .70554544 \mathrm{E}-05\) \\
\hline -. \(67635137 \mathrm{E}-08\) & . \(21555993 \mathrm{E}-11\) & -. \(10475226 \mathrm{E}+04\) & \(43052778 \mathrm{E}+01\) \\
\hline
\end{tabular}

Table 6-4. SPECIES WITH THERMODYNAMIC DATA PROVIDED.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & AL2O2 & BE & \[
\mathrm{CH} 2 \mathrm{O} 2
\] & \[
\begin{aligned}
& \mathrm{C} 4 \\
& \mathrm{C} 4 \mathrm{H} 8 \mathrm{O} 4
\end{aligned}
\] & \\
\hline E & AL2O2+ & \(\mathrm{BE}+\) & CH3 \({ }^{\text {CHI }}\) & \(\mathrm{N}-\mathrm{C} 4 \mathrm{H} 10\) & \\
\hline AL & AR & BEBO2 & CH 2 OH & \(\mathrm{I}-\mathrm{C} 4 \mathrm{HIO}\) & \\
\hline AL+ & AR+ & BEBR & CH 30 & C4N2 & \\
\hline ALBO2 & B & BEBR2 & CH4 & C5 & \\
\hline ALBR & B+ & BECL & CH 3 OH & C6H5 & \\
\hline ALBR3 & B- & BECL & CN & C6H6 & \\
\hline ALC & BCL & BECL2 & \(\mathrm{CN}+\) & CA & \\
\hline ALCL & BCL+ & BEF & \(\mathrm{CN}-\) & CA+ & \\
\hline ALCL+ & BCLF & BEF & CN2 & CABR & \\
\hline ALCLF & BCL2 & BEH & CNN & CABR2 & \\
\hline ALCLF+ & BCL2+ & BEH & CO & CACL & \\
\hline ALCLF2 & BCL2- & BE & COCL & CACL2 & \\
\hline ALCL2 & BCL3 & B & COCLF & CAF & \\
\hline ALCL2+ & BF & BEN & COCL2 & CAF2 & \\
\hline ALCL2 - & BF2 & BEO & COF & CAI & \\
\hline ALCL2F & BF2+ & BEOH & COF2 & CAI2 & \\
\hline ALCL3 & BF2 & BEOH+ & COS & CAO & \\
\hline ALF & BF3 & BEO2H2 & CO 2 & CAOH & \\
\hline ALF+ & BH & BES & CO2- & \(\mathrm{CAOH}^{+}\) & \\
\hline ALF2 & BHF2 & BE2O & CP & CAO2H2 & \\
\hline ALF2+ & BH2 & BE2OF2 & CS & CAS & \\
\hline ALF2- & BH3 & BE2O2 & CS2 & CA2 & \\
\hline ALF20 & BN & BE303- & C2 & CL & \(\cdots\) \\
\hline ALF20- & BOCL & BE404 & C2- & CL+ & \\
\hline ALF3 & BOCL & BI \({ }^{\text {BI }}\) & C2CL2 & CL- & \\
\hline ALF4- & BOF & BIS & C2F2 & CLCN & \\
\hline ALH & BOF2 & BR & C2F4 & CLF & \\
\hline ALI & BO2 \({ }^{-}\) & BR2 & C2H & CLF & \\
\hline ALI3 & BS \({ }^{\text {B }}\) & C & C2HF & CLO2 & \\
\hline ALN & B2 & C+ & C 2 H 2 & CLO2 & \\
\hline ALO & B2 & C & C2H4 & CL2 & \\
\hline ALO+ & B2O & CCL & C2H4O2 & CL2O & \\
\hline ALO- & B202 & CCL2 & C2H4O4 & CR & \\
\hline ALOCL & B203 & CCL2F2 & C2H5 & CRN & \\
\hline ALOF & B303CL3 & CCL3 & C2H6 & CRO & \\
\hline ALOH & B303F3 & CCL3 F & CH 3 N 2 CH 3 & CRO2 & \\
\hline ALOH+ & B3O3H3 & CCL4 & C 2 H 5 OH & CRO3 & \\
\hline ALOH- & BA & CF & CH 3 OCH 3 & CS & \\
\hline ALO2 & BABR & \(\mathrm{CF}+\) & C2N & CS+ & \\
\hline ALO2- & BABR2 & CF2 & C2N2 & CSCL & \\
\hline ALO2H & BACL & CF2+ & C2O & CSF & \\
\hline ALS & BACL2 & CF3 & C3 & CSO & \\
\hline AL2 & BAF
BAF+ & CF3 \({ }^{+}\) & C3H6O & \({ }^{\mathrm{CSOH}}+\) & \\
\hline AL2 BR6 & BAF+
BAF2 & CF4 & \(\mathrm{N}-\mathrm{C} 3 \mathrm{H} 7\) & \(\mathrm{CSOH}^{+}\) & \\
\hline AL2CL6 & BAF2 & CH & \(\mathrm{I}-\mathrm{C} 3 \mathrm{H} 7\) & CS2 2 CL2 & \\
\hline AL2F6 & BAOH
\(\mathrm{BAOH}+\) & \(\mathrm{CH}+\) & \(\mathrm{C} 3 \mathrm{H8}\) & CS2F2 & \\
\hline AL2I6 & BAO2H2 & CH 2 & \(1-\mathrm{C} 3 \mathrm{H7OH}\) & CS2F & \\
\hline AL2O & BAS & CH2O & C3O2 & CS20 & \\
\hline
\end{tabular}

Table 6-4. (cont.)

Table 6-4. (cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & SI2 & ALCL3 (L) & BI(L) & \\
\hline PS & SOF2 & SI2C & ALF3 (A) & BI2S3(S) & \\
\hline P2 & SO2 & SI2N & ALF3 (B) & BR2 (L) & \\
\hline P4 & SO2CLF & SI2N & ALF3 (L) & C(GR) & \\
\hline P406 & SO2CL2 & SR & ALI3 (S) & CA (A) & \\
\hline P4010 & SO2F2 & SR & ALI3 (L) & CA (B) & \\
\hline PB & SO3 & SRBR & ALN (S) & CA (L) & \\
\hline PBBR & S2 & SRCL & AL2O3 (A) & CABR2 (S) & \\
\hline PBBR2 & S2CL & SRCL & AL203 (L) & CABR2 (L) & \\
\hline PBBR4 & S2CL2 & SRF \({ }_{\text {SRF }}\) & AL2SIO5 (AN) & CACO3 (CAL) & \\
\hline PBCL & S2F2 & SRF+ & AL6SI2O13 (S) & CACL2 (S) & \\
\hline PBCL+ & S20 & SRF2 & B (S) & CACL2 (L) & \\
\hline PBCL2 & S8 & SRI2 & B (L) & CAF2 (A) & \\
\hline PBCL2+ & SI & SROH & BN(S) & CAF2 (B) & \\
\hline PBCL4 & SI+ & SROH + & B2O3 (L) & CAF2 (L) & \\
\hline PBF & SIBR & \({ }_{\text {SRO2 }}\) & B303H3 (C) & CAO (S) & \\
\hline PBF2 & SIBR2 & SRS & BA (A) & CAO (L) & \\
\hline PBF4 & SIBR3 & TA & BA (B) & CAO2H2 (S) & \\
\hline PBI & SIBR4 & TAO & BA (C) & CAS (S) & \\
\hline PBI2 & SIC & TAO2 & BA (L) & CASO4 (S) & \\
\hline PBI4 & SIC2 & TI & BABR2 (S) & CR (S) & \\
\hline PBO & SIC4H12 & TI+ & BABR2 (L) & CR (L) & \\
\hline PBS & SICL & TI- & BACL2 (A) & CRN(S) & \\
\hline PB2 & SICL2 & TICL & BACL2 (B) & CR2N(S) & \\
\hline S & SICL3 & TICL2 & BACL2 (L) & CR2O3 (S) & \\
\hline S+ & SICL4 & TICL3- & BAF2 (AB) & CR203 (L) & \(\cdots\) \\
\hline S- & SIF & TICL4 \({ }^{-}\) & BAF2 (C) & CS (S) & \\
\hline SCL & SIF2 & TIO & BAF2 (L) & CS (L) & \\
\hline SCL2 & SIF3 & TIOCL & BAO (S) & \(\operatorname{CSCL}(\mathrm{A})\) & \\
\hline SCL2+ & SIF4 & TIOCL2 & BAO (L) & CSCL (\({ }^{\text {(}}\)) & \\
\hline SD & SIH & TIO2 & BAO2H2 (S) & CSCL (L) & \\
\hline SF & SIH+ & v & BAO2H2 (L) & \(\operatorname{CSF}\) (S) & \\
\hline SF+ & SIHBR3 & VCL4 & BAS (S) & \(\operatorname{csF}\) (L) & \\
\hline SF- & SIHCL3 & VN & BE (S) & \(\mathrm{CSOH}(\mathrm{A})\) & \\
\hline SF2 & SIHF3 & Vo & BE (L) & \(\mathrm{CSOH}(\mathrm{C})\) & \\
\hline SF2+ & SIHI3 & VO2 & BEAL204 (S) & \(\mathrm{CSOH}(\mathrm{L})\) & \\
\hline SF2- & SIH2BR2 & VE 2 & BEAL204 (L) & CS2SO4 (II) & \\
\hline SF3 & SIH2CL2 & XE \({ }^{\text {X }}+\) & BEBR2 (S) & CS2SO4 (I) & \\
\hline SF3+ & SIH2F2 & XE+ & BECL2 (S) & CS2SO4 (L) & \\
\hline SF3- & SIH2I2 & 2N+ & BECL2 (L) & CU (S) & \\
\hline SF4 & SIH3BR & 2N+ & BEF2 (LQZ) & CU (L) & \\
\hline SF4+ & SIH3CL & ZR- & BEF2 (HQZ) & CUF (S) & \\
\hline SF4- & SIH3F & 2R & BEF2 (L) & CUF2 (S) & \\
\hline SF5 & SIH3I & ZRO & BEI2 (S) & CUF2 (L) & \\
\hline SF5+ & SIH4 & 2RO2 & BEI2 (L) & CUO (S) & \\
\hline SF5- & SII \({ }^{\text {SII }}\) & AL (S) & BEO (A) & CUO2H2 (S) & \\
\hline SF6 & SIN & AL (L) & BEO (L) & CUSO4(S) & \\
\hline SH & SIO & ALBR3 (S) & BEO2H2 (B) & CU20(L) & \\
\hline SN & SIO2 & ALBR3 (L) & BIS (S) & CU205S (S) & \\
\hline So & SIS & ALCL3 (S) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FE (A) & K2S (1) & & & \\
\hline \(\mathrm{FE}(\mathrm{C})\) & K2S (2) & MGTI205 (S)
MGTI205 (L) & NB2O5 (L) & SRCL2 (L) \\
\hline FE(D) & K2S (3) & MG2SIO4 (S) & NI (A)
NI (B) & SRF2 (S)
SRF2 (L) \\
\hline FE (L) \({ }_{\text {FEC505 (L) }}\) & & MG2SIO4 (L) & NI (L) & SRF2 (L)
SRO(S) \\
\hline FECL2 (S) & K2SO4 (B) & MG2TIO4 (S) & NIS (B) & SRO(L) \\
\hline FECL2 (L) & K2SO4 (L) & MG2TIO4 (L) & NIS (A) & SRO2H2 (S) \\
\hline FECL3 (S) & LI (S) & VN (S)
NA (S) & NIS (L) & SRO2H2 (L) \\
\hline FECL3 (L) & LI (L) & NA (S) & NIS2 (S) & SRS (S) \\
\hline FEO (S) & LIALO2 (S) & NAALO2 (A) & NIS2(L) & TA (S) \\
\hline FEO(L) & LIALO2 (L) & NAALO2 (A) & NI3S2 (1) & TA (L) \\
\hline FEO2H2 (S) & LICL(S) & NAALO2 (B) & NI3S2(2) & TAC (S) \\
\hline FEO3H3 (S) & LICL (L) & NABR(S) & NI3S2(L) & TAC (L) \\
\hline FES (A) & LIF (S) & NABR (L)
NACN (S) & NI3S4(S) & TA205 (S) \\
\hline FES (B) & LIF (L) & NACN (S) & \(\mathrm{P}(\mathrm{V})\)
P 4010 & TA205 (L) \\
\hline FES (C) & LIH (S) & NACN (L) & P4010(S) & TI (A) \\
\hline FES (L) & LIH (L) & NACL (S) & PB (S) & TI (B) \\
\hline FESO4 (S) & LIOH (S) & NAF (S) & PB(L) & TI(L) \\
\hline FES2 (S) & LIOH (L) & NAF (S) & PBBR2 (S) & TIC(S) \\
\hline FE2O3(S) & LI20(S) & NAF (L) & PBBR2 (L) & TIC(L) \\
\hline FE2S3012 (S & LI20(L) & NAI (S) & PBCL2 (S) & 'rICL2 (S) \\
\hline FE304 (S) & LI2SO4 (A) & NAI (L) & PBCL2 (L) & TICL3 (S) \\
\hline \(\mathrm{H} 2 \mathrm{O}(\mathrm{S})\) & LI2SO4 (B) & NAOH (A)
NAOH (L) & PBF2 (A) & TICL4 (L) \\
\hline H2O(L) & LI2SO4(L) & NAOH (L)
NAO2 (S) & PBF2 (B) & TIN(S) \\
\hline H2SO4 (L) & LI3N(S) & NAO2 (S)
NA2CO3 (1) & PBF2 (L) & TIN(L) \\
\hline HG (L) & MG (S) & NA2CO3 (1) & PBI2 (S) & TIO(A) \\
\hline HGBR2 (S) & MG (L) & NA2COS \((2)\)
NA2COS (L) & PBI2 (L) & TIO(B) \\
\hline HGBR2 (L) & MGAL204 (S) & NA2CO3 (L) & PBO (RD) & TIO(L) \\
\hline HGO (S) & MGAL204 (L) & NA20 (C) & PBO (YW) & TIO2 (RU) \\
\hline I2 (S) & MGBR2 (S) & NA20 (A)
NA20 (L) & PBO(L) & TIO2 (L) \\
\hline I2 (L) & MGBR2 (L) & NA2O(L) & PBO2 (S) & TI203(1) \\
\hline K (S) & MGCO3 (S) & NA2O2 (A) & PBS (S) & TI203(2) \\
\hline K(L) & MGCL2 (S) & NA2O2 (B) & PBS (L) & TI203 (L) \\
\hline KCN (S) & MGCL2 (L) & NA2S (1) & PB304 (S) & TI305 (A) \\
\hline KCN (L) & MGF2 (S) & NA2S (L) & S (S) & TI305 (B) \\
\hline KCL (S) & MGF2 (L) & NA2SO4 (IV) & S(L) & TI305 (L) \\
\hline KCL (L) & MGI2 (S) & NA2SO4 (IV) & SCL2 (L) & TI407 (S) \\
\hline KF (S) & MGI2 (L) & NA2SO4 (I) & S2CL2 (L) & TI407 (L) \\
\hline KF (L) & MGO (S) & NA2SO4 (L) & SI(S) & \(\mathrm{V}(\mathrm{S})\) \\
\hline CHF2 (A) & MGO (L) & NA3ALF6 (A) & SI (L) & \(V\) (L) \\
\hline KHF2 (B) & MGO2H2 (S) & NA3ALF6 (B) & SIC (B) & VCL2 (S) \\
\hline KHF2 (L) & MGS (S) & NA3ALF6(L) & SIO2 (LQZ) & VCL3 (S) \\
\hline \(\mathrm{KOH}(\mathrm{A})\) & MGSO4 (S) & NA5AL3F14 (S) & SIO2 (HQZ) & VCL4 (L) \\
\hline \(\mathrm{OH}(\mathrm{B})\) & MGSO4 (L) & NA5AL3Fl4(L)
NB(S) & SIO2 (HCR) & Vo(S) \\
\hline OH (L) & MGSIO3 (CL) & NB(S)
NB (L) & SIO2 (L) & Vo(L) \\
\hline O2 (S) & MGSIO3 (RE) & NBO(S) & SI2N2O(S) & V203 (S) \\
\hline 2 CO 3 (S) & MGSIO3 (PR) & NBO (L) & SI3N4 (A) & V203 (L) \\
\hline 2 CO 3 (L) & MGSIO3 (L) & NBO2 (S) & SR (S) & V204 (1) \\
\hline 20(S) & MGTIO3 (S) & NBO2 (S) & SR(L) & V204(2) \\
\hline 202 (S) & MGTIO3 (L) & NBO2 (L \({ }^{\text {N }}\) (S) & SRCL2 (1) & V204 (L) \\
\hline & & NB2O5 (S) & SRCL2 (2) & V205 (S) \\
\hline
\end{tabular}

Table 6-4. (cont.)
```

V2O5 (L)
ZN(S)
ZN(L)
ZNSO4 (A)
ZNSO4 (AP)
ZNSO4 (B)
ZR(A)
ZR(B)
ZR(L)
ZRN(S)
ZRN (L)
ZRO2 (A)
ZRO2 (B)
ZRO2(L)

```

\subsection*{6.1.1 THERMODYNAMIC DATA BELOW \(300^{\circ} \mathrm{K}\).}

If the temperature at any point computed by ODE, ODK, or TDK is found to be below the Thermodynamic Data lower temperature limit, \(T_{\ell}\), the polynomial curve fit data (see Section 6.1) will be extrapolated to obtain values for the thermodynamic data. The extrapolated data can be inaccurate. The LØW T CPHS data set can be used to input low temperature data for those species for which extrapolation of the JANNAF data is not accurate. Only Cp vs. T is input. Enthalpy and entropy are obtained by integrating \(C p\) vs. \(T\) within the computer program.

The lower temperature limit, T, in the Thermodynamic Data supplied with the program is \(300^{\circ} \mathrm{K}\). Thermodynamic Data below the temperature, \(T_{\ell}\), may be input by data cards as described under "Input Specifications for Low Temperature Thermodynamic Data".

An example of this input is given in Table \(6-5\) which shows a card listing extending the Thermodynamic Data for the 18 chemical species given in fppendix A. Data in Table 6-5 is taken directly from the JANAF tables. The source references for these data are as follows:

Ref. 21: \(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CL}_{2}, \mathrm{~F}, \mathrm{HCL}, \mathrm{H}_{2} \mathrm{O}\), and NO .
Ref. 22: CL.
Ref. 23: CLF, \(\mathrm{F}_{2}, \mathrm{~F}, \mathrm{HF}, \mathrm{H}_{2}, \mathrm{~N}, \mathrm{~N}_{2}, \mathrm{O}, \mathrm{OH}\), and \(\mathrm{O}_{2}\).
\(\bar{R} \bar{e} \bar{f} \cdot-\overline{2}:\) Stull, \(D . R\). Prophet, H., et al., JANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37, National Standard Reference Data Series, National Bureau of Standards, June 1971.

Ref. 22: JANAF Thermochemical Tables, 1974 Supplement, J. Phys. Chem. Ref. Data 3,311 (1974).

Ref. 23: JANAF Thermochemical Tables, 1982 Supplement, J. Phys. Chem. Ref. Data 11,695'1982).

The first card is a directive card that identifies the start of the low temperature thermodynamic data input. It reads as follows, columns 1 through 10:

LOW T CPHS
The next card contains a species name consisting of 12 characters, or less, left justified to column 1. An integer is placed in column 21 indicating the number of \(T, C p\) values that follow. A value of 1,2 , or 3 can be used. For example:

Next, the thermodynamic data for the species named above is input. There must be one pair of \(T, C p\) values per card. These cards are numbered consequently in column 45. They are read as 2F10.0,20X,I5. For example, for \(\mathrm{H}_{2} \mathrm{O}\) :

Species name cards and thermodynamic data cards for other species, if any, follow.

A final directive card is used to identify the end of the low temperature thermodyamic data. It reads as follows, columns 1 through 14:

END LOW T CPHS

```

6.2 - Title_Cards

```

This input permits labeling of runs with alphanumeric information. As many title cards as desired may be input in sequence. Card format is as follows:
col 1-5 col 6-77
TITLE any alphanumeric information

The last card that is input will be used as a printed title for the output summary table, and a title for the linkage file to BLIMP (see Section 6.4.3.2, IPTAB).

It is not necessary to input title cards.
\[
\begin{aligned}
&-= \\
&=
\end{aligned}
\]

\subsection*{6.3 DATA Directive and \$DATA Namelist Input.}

The DATA directive and the \$DATA Namelist input set described below must always be input. It is required for all problems since it contains the input that controls which calculation modules are to be executed.

The first input item must be a single card, called the DATA directive card. The format of this card is as follows: the letters DATA must be punched in columns 1 through 4. The DATA card is used to inform the program that the \$DATA namelist input is to follow.

The card following the DATA card must contain the name \$DATA, and all cards in the namelist input set must start in column 2 or greater. Since Namelist input is card interpretive, items can be input in any order. The last card in the set must contain \$END.

Users unfamiliar with Namelist input are referred to their FORTRAN reference manual.
\begin{tabular}{|c|c|c|c|}
\hline Item & Description \({ }^{\text {- }}\) & Units & \begin{tabular}{l}
Assumed \\
Value(s)
\end{tabular} \\
\hline DATA & DATA directive card & & - \\
\hline \$DATA & Namelist name, read in Subroutine PRøBLM & & - \\
\hline
\end{tabular}

\subsection*{6.3.1 Specification of Modules to be Executed.}

If a module is to be executed, it is necessary to indicate the fact by input of a module flag as described below. For example, if a problem requires that the \(\varnothing D E\) module be run, it is necessary to input \(\varnothing \mathrm{DE}=1\). Only certain combinations of modules are allowed. These are described in Table 6-6. The module flags are:
\begin{tabular}{|c|c|c|c|c|}
\hline Item & & Description & Units & Assumed Valueis) \\
\hline \(\emptyset \mathrm{DE}\) & = & Set \(\varnothing D E=1\) if the ODE module is to be executed. & none & 0. \\
\hline ¢DK & = & Set \(\emptyset D K=1\) if the ODK module is to be executed. & none & 0. \\
\hline TDE & = & Set TDE = 1 if the TDE option of the MAC module is to be executed & none & 0. \\
\hline TDK & = & Set TDK \(=1\) if the TDK option of the MDC module is to be executed & none & 0. \\
\hline TDF & = & Set TDF = 1 if the TDF option of the \(M O C\) is to be executed & none & 0. \\
\hline TIDK & \(=\) & Set TTDK=1 to run the TTH option with tables supplied by ODK replacing the TDK kinetic calculations. See Section 2.5.3. & none & 0. \\
\hline BLM & = & Set BLM = 1 if the BLM option of the MOC module is to be executed & none & 0. \\
\hline PFGXPT & = & Set PFGXPT = 1 if the constant properties option of the MOC module is to be executed. See Section 6.9.1 for input instructions. & none & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Input & Mode of Execution \\
\hline \(\emptyset D E=1\), & \(\emptyset D E\) is rum alone. Options other than the rocket (\(\mathrm{RKT}=\mathrm{T}\)) option are allowed. See Section 6.4.3 and Reference 3. \\
\hline \(\emptyset D E=1, \emptyset D K=1\), & \(\emptyset D E\) is run. \(\varnothing D K\) is run with \(\varnothing D E\) providing start conditions. See Section 6.5.1. \\
\hline \(\not \subset \mathrm{DK}=1\), & фDK is run alone with initial conditions supplied by the user. See Sections 6.5 .1 and 6.5.1.1, and 6.5.3.6. \\
\hline \(\emptyset \mathrm{DE}=1, \emptyset \mathrm{CK}=1, \mathrm{TDK}=1\), & \(\emptyset D E\) is run. \(\varnothing \mathrm{DK}\) is run with \(\emptyset D E\) providing start conditions. TDK is run with \(\emptyset \mathrm{DK}\) and TRANS providing MoC initial data line conditions. The number of \(\emptyset D E\) and \(\emptyset D K\) runs will be equal to NZøNES. \\
\hline \(\emptyset D E=1, ~ \emptyset D K=1, T D K=1, ~ B L M=1\), & As above with a BLM run added. \\
\hline \(\emptyset D E=1, ~ \emptyset D K=1, T D K=1, \quad B L M=1\), IRPEAT=1, & As above with \(\varnothing D E, \varnothing D K\), and \(T D K\) repeated using the BLM results. See Section 6.8.4. This option is for including the BLM results with regen cooling. \\
\hline \(\emptyset D E=1, ~ \emptyset D K=1, T D K=1, B L M=1\), IRPEAT=2, & As \(a \overline{\bar{W}}\) ve except that the \(\emptyset D E\) and \(\emptyset D K\) runs are not \(\overline{\bar{r}}\) epeated because there is no heat input correction due to regen cooling. \\
\hline \[
\begin{aligned}
& \angle L=1, \quad r=1, \quad M D K=1, \quad B L M=1 \\
& m 2
\end{aligned}
\] & As ahove except that The wili use tath: computar by ink and ant complito its nom reactine chemisitry. \\
\hline \(T D E=1\), & ØDE will be run for NZøNES. TDE is run with \(\not \subset D E\) chemical equilibrium gas properties, and with TRANS providing MळC initial data line conditions. \\
\hline TDE \(=1\), \(\mathrm{BLM}=1\), & As above with BLM. \\
\hline TDE \(=1, \mathrm{BLM}=1, \mathrm{IRPEAT}=1\) or 2, & As above with TDE repeated. \\
\hline
\end{tabular}

Table 5-6: Usage of the Module Flags (continued)

\section*{Input}
\(\emptyset D E=1, ~ \triangle D K=1, T D F=1\),
\(\emptyset D E=1, ~ \square D K=1, T D F=1, B L M=1\),
\(\emptyset D E=1, ~ Ø D K=1, T D F=1\), BLM=1, IRPEAT \(=1\) or 2 ,

BLM \(=1\),
\(\operatorname{PFGOPT}=1\),

\section*{Mode of Execution}

ØDE is run. \(\emptyset D K\) is run with \(\emptyset D E\) providing start conditions. However, the ØDK run will have a frozen chemical composition. TDK will also be run with a frozen composition.

As above with BLM.
As above with TDF repeated.

BLM is run alone. This option requires a large amount of input that is provided automatically when BLM is run after TDE, TDK or TDF.

The TRANS and MOC modules are run with constant gas properties. See Section 6.9.1.
6.3.2 Inputs for Control for the Program.

\subsection*{6.3.3 Specification of nozzle geometry.}

To eliminate redundancy, all geometry inputs that are common throughout the modules are input here. Note that the center of the nozzle geometry coordinate system is at the centerline at the throat plane, and that all coordinates are normalized by the nozzle throat radius, \(r_{t}\). Hence, axial positions upstream of the throat are always negative numbers. In the figures describing the geometry, positive angles are shown as counter-clockwise, and negative angles are shown as clockwise.

Geometric area ratios at which \(\varnothing D E\) and \(\varnothing D K\) print out is to be made are specified using the input arrays ASUB(1) and ASUP(1).

The nozzle geonetry is defined in Figure 6-1. The \(\emptyset \mathrm{DK}\) calculations start at the downstream end of the combustion chamber with a subsonic area ratio of ECRAT, as shown. The circular arcs RI and RWIU cannot overlap. Thus, it is necessary that ECRAT, RI, RWIU, and THETAI be input such that
\[
\sqrt{E C R A T}>1+(R I+R W H)(1-\cos T H E T A I)
\]

If this condition is not met, subroutine PRES of \(\varnothing \mathrm{DK}\) will print the terminal error message:

INLET GEONEIRY INCOMPATIBLE WITH INITIAL CONDITIONS.

In addition, the transonic analysis requires that a value of \(R W I U \geq .5\) be input.

The wall geometry downstream of the nozzle throat can be specified using any one of several options. All of these geometries begin with a circular arc of radius RWID which extends from the throat point through an angle of THETA. Geometries that can be input to both the \(\varnothing D K\) and \(M \varnothing C\) modules are described in section 6.3.3.1.

\begin{tabular}{|c|c|c|c|c|}
\hline Item & & Description & Units & Value(\\
\hline RSI & = & Nozzle throat radius, \(r_{t}\) & \[
\stackrel{\text { in, }}{\text { (meters) }}
\] & 0. \\
\hline ASUB(1) & \(=\) & Subsonic area ratios at which information will be printed. & none & 0. \\
\hline NASUB & = & Number of entries in the ASUB array < 50. Entries must be monotonic decreasing In value. & none & 0. \\
\hline ASUP(1) & = & Supersonic area ratios at which information will be printed. Entries must. be monotonic increasing in value. & none & 0. \\
\hline NASUP & = & Number of entries in the ASUP array \(\leq 50\). & none & 0. \\
\hline ECRAT & \(=\) & Nozzle inlet contraction ratio for use in \(\varnothing D E\) and \(\varnothing D K\) calculations. & none & 0. \\
\hline RI & \(=\) & Normalized inlet wall radius. & none* & 0. \\
\hline thetai & \(=\) & Nozzle inlet angle. & degrees & 0. \\
\hline RWTU & \(=\) & Upstream normalized wall throat radius RWIU_> .5 is required. & none* & 0. \\
\hline ITYPE & \(=\) & \begin{tabular}{l}
Type of nozzle wall to be input. \\
ITYPE \(=0\), if the real wall contour is input. \\
IIYPE \(=1\), if the potential flow wall contour is input. \\
If IRPEAT \(=1\) or 2 , then the nozzle wall will be displaced by \(+\delta^{*}\) as calculated by BLM when the TDK (or TDE) calculations are repeated. This displacement is \(-\delta^{*}\) for the real wall (ITYPE \(=0\)), or \(+\delta^{*}\) for the potential flow wall (ITYPE = 1).
\end{tabular} & none & 0. \\
\hline
\end{tabular}

\footnotetext{
* Normalized by the throat radius, \(r_{t}\)
}

\subsection*{6.3.3.1 Exhaust Nozzle Geometry Specification, for \(\varnothing \mathrm{DK}\) and the MC Modules.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Item & & & Description & Units & Assumed
Value(s) \\
\hline \multirow[t]{7}{*}{IWALL} & = & & option flag for specifying the downstream wall. & none & 0 \\
\hline & \(=\) & 1 & cone option (input RWTD, THETA, and EPS) & & \\
\hline & \(=\) & 2 & parabolic nozzle contour option (input RWID, THETA, RMAX, ZMAX) & & \\
\hline & \(=\) & 3 & circular arc nozzle contour option (imput as for IWALL \(=2\)) & & \\
\hline & = & 4 & nozzle contour (spline) option (input RWID, THETA, THE, RS, ZS, NWS) & & \\
\hline & \(=\) & 5 & cone with specified end point. (input RWTD, RMAX, and ZMAX) & & \\
\hline & \(=\) & 6 & skewed parabola option. (input RWID, THETA, RMAX, ZMAX, THE) & & \\
\hline
\end{tabular}

The items required for the various IWALL options are:
\begin{tabular}{llll}
RWID & \(=\)\begin{tabular}{l}
downstream wall throat radius of cur- \\
vature ratio**
\end{tabular} & none*
\end{tabular}\(\quad 0\).
* Normalized by the throat radius \(r_{t}\)
** If a comer expansion (i.e. Prandtl-Meyer fan) is desired, a value of RWTD \(=\) .05 is recommended. Experience has shown that values smaller than this give the same result but are computationally less efficient.

\footnotetext{
+ \(\bar{S} \bar{e} \bar{e}\) the input variable RZNØRM.
}

851007

The \(\varnothing D E\) Input data described here is exactly as defined in NASA SP-273, Reference 3, except namelists input SINPT2 and \$RKINP have been combined into a single list named \(\$ \varnothing D E\). Any type of equilibrium calculation available with the computer program described in Reference 3 can thus be computed using the \(\$ \varnothing D E\) input data*. In this document, however, only the RKT option of namelist is described. The RKT option differs from that of Reference 3 for problem types other then single zone \(\varnothing D E\).

The \(\varnothing \mathrm{DE}\) Input data consists of the following input groups:

\section*{1. REACTANTS}
2. \(\varnothing M I T\) and INSERT
3. NAMELISTS

\subsection*{6.4.1 REACTANTS CARDS}

This set of cards is required for all bivt problems. The first card in the set contains the word REACTANTS punched in card columns 1 to 9 . The last card in the set is blank. In between the first and last cards may be any number of cards up to a maximum of 15 , one for each reactant species being considered. The cards for each reactant must give the chemical formula and the relative amount of the reactant. For some problems, enthalpy values are required. The formot and contents of the cards are summarized in Table 6-7. A list of some REACTANTS cards is given in Table 6-8

Relative amounts of reactants. - The relative amounts of reactants may be specifled in several ways. They may be specified in terms of moles, mole fraction, or mole percent (by keypunching \(M\) in card column 53) or in terms of weight, weight fraction, or weight percent (blank in column 53).

Relative amounts of total fuel to total oxidants can also be Input. For this situation, each reactant must be specifled as a fuel \(u\) an oxidizer by keypunchIng an \(F\) or \(O\), respectively, in column 72 of the REACTANTS card. The amounts

\footnotetext{
*These options include TP, HP, SP, TV, UV, or SV problems, Chapnan-Jouguet detonation problems, and incident or reflected shock problems.
}

\section*{TABLE 6-7 REACTANTS CARDS}
\begin{tabular}{|c|c|c|c|}
\hline Order & Contents & Format & Card columns \\
\hline First & REACTANTS & 3 A 4 & 1 to 9 \\
\hline \multirow[t]{8}{*}{Any} & One card for each reactant species (maximum 1). Each card contains: & & \\
\hline & (1) Atomic srmbols and formula numbers (maximum 5 sels) \({ }^{2}\) & 5(A2. F7. 5) & 11045 \\
\hline & (2) Relative weirht \({ }^{\text {b }}\) or number of moles & F7. 5 & 461052 \\
\hline & (3) Elank if (2) is relative weight or \(M\) if (2) is nunsber of moles & A1 & 53 \\
\hline & (4) Enthalpy or internal enerpia. cal male & F9. 5 & 541062 \\
\hline & (5) State: S. L. or G for solid. liquid or gas. respectively & Al & 63 \\
\hline & (6) Temperature ass-ciated with enthalps in (4) , \({ }^{\circ} \mathrm{K}\) & F8. 5 & 64 to 71 \\
\hline & \begin{tabular}{l}
(7) \(F\) if fuel or \(O\) if oxidant \\
(8) Density in \(\mathrm{s} \mathrm{cm}^{3}\) (optional)
\end{tabular} & \[
\begin{array}{r}
\text { Al } \\
\text { F8. }
\end{array}
\] & \[
\begin{gathered}
72 \\
73 \text { to 3.3 }
\end{gathered}
\] \\
\hline Last & Blank & & \\
\hline
\end{tabular}
\({ }^{3}\) Prouram will calculate the enthalpy or internal energy (4) for spacies in the THERMO data at the temperature (6) if zeros are punched in card columns 37 and 38. (See section Reactant enthalpy for additional infurnation.)
belative weight of fuel in total fuels or cridant in total oxidants. All reactints must be giren either a!l in relative weirhts or all in number of moles.

\section*{geactants}
\({ }^{H} 2\).

```

REACTANTS

$N 1$.	H	4.0	4.
$C 10$	H	1.869550.031256s	. 008425
ALS.			. 000425
MG1.	0	1.	
H2.	0	1.	

```
\begin{tabular}{llll}
72.06 & -70730, & 5298,15 & \(F\) \\
18,50 & -2999.0821298 .15 & \(F\) \\
9.00 & 0.0 & 5298.19 & \(F\) \\
120 & -143700. & 5298.15 & \(F\) \\
116 & -68317.4 & 6298.15 & \(F\)
\end{tabular}
\begin{tabular}{llllll}
REACTANTS & & & & \\
H2: & 00 & 100. & 0. & 6298.15 & 0 \\
0 2. & 00 & 100.0 & 0.0 & 6298.15 & 0
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Reactants} \\
\hline N 2. & Ho. & C 2 \\
\hline N2. & +4. & \\
\hline
\end{tabular}

\section*{REACTANTS \\ L11.}
\begin{tabular}{lll}
100, & 0. & 5298.15 \\
100. & \(F\) & \(F\) \\
\end{tabular}

\begin{tabular}{llll}
50.0 & 12734.8 & \(L 298.15\) & \(F\) \\
50.0 & 12050.786 \\
100. & -30.30 .892685 .15 & 5 & 1.201
\end{tabular}

\section*{ANTS}
\(\begin{array}{llllll}02 . & 00 & 100 . & 0.0 & 6298.15 & \mathrm{~F} \\ & 00 & 100.0 & 0.0 & 6298.15 & 0\end{array}\)

glven on the REACTANTS cards are relative to total fuel or tot al oxidant rather than total reactant.

There are four options in the \(\$ \varnothing D E\) namellst for indicating relative amounts of total fuel to total oxidant as follows:
1. Oxidant to fuel weight ratio (\(\varnothing \mathrm{F}\) is true)
2. Equivalence ratio (ERATI \(\varnothing\) is true)
3. Fuel percent by weight (FPCT is true)
4. Fuel to air or fuel to oxidant weight ratio (FA is true)

For each option, except \(\varnothing D E\) with \(N Z \varnothing N E S=1\), the values are given in the \(\varnothing F S K E D\) array of \(\$ \varnothing D E\) (described in Section 6.4.3). For \(\varnothing D E\) with NZ \(\varnothing N E S=1\), the MDX array is used as described in Reference 3.

Reactant enthalpy. Assigned values for the total reactant are calculated automatically by the program from the enthalples of the individual reactants. Values for the indlvidual reactants are either keypunched on the REACTANTS cards or calculated from the THERM \(\varnothing\) data as follows:

Enthalples are taken from the REACTANTS cards unless zeros are punched In card columns 37 and 38. For each REACTANTS card with the "00" code, an enthalpy will be calculated for the species from the THERM \(\varnothing\) data for the temperature given in card columns 64 to 71.

When the program is calculating the individual reactant enthalpy for values from the THERM \(\varnothing\) data, the following two conditions are required:
1. The reactant must also be one of the species in the set of THERM \(\varnothing\) data. For example, \(\mathrm{NH}_{3}(\mathrm{~g})\) is in the set of THERM \(\varnothing\) data but \(\mathrm{NH}_{3}(\ell)\) is not. Therefore, If \(\mathrm{NH}_{3}(g)\) is used as a reactant its enthalpy could be calculated automatically, but that of \(\mathrm{NH}_{3}(\ell)\) could not be.
2. The temperature \(T\) must be in the range \(T_{\text {low }} 1.2 \leq T \leq T_{\text {high }} \times 1.2\) where \(T_{\text {low }}\) to \(\mathrm{T}_{\mathrm{high}}\) is the temperature range of the THERM \(\varnothing\) data.

For cases with NZ \(\varnothing\) NES \(>1\) (see Problem card. Section 6.3) It may be desirable to modify the enthalpy of each zone. This can be done by using the DELH input array. For the \(1^{\text {th }}\) zone the \(1^{\text {th }}\) DELH entry will be added to the system
enthalpy as computed by \(\varnothing D E\) from the reactants cards (see above). For example, overall system enthalpy of the propellants in the tank can be input through the reactants cards and the work added or extracted per zone can be input by the DELH entries. An alternate method would be to input zero enthalpy on the Reactants cards and Input enthalpy per zone by the DEHH entries.

\subsection*{6.4.2 ØMIT and INSERT Cards}

ØMIT ard INSERT cards are optional. They contain the names of particular species in the library of Thermodynamic Data for the specific purposes discussed below. Each card contains the word \(\varnothing\) MIT (in card columns 1-4) or INSERT (in card columns \(1-6\)) and the names of trom 1 to 4 species starting in columns 16 . 31, 46, and 61. The names must be exactly the same as they appear in the THERM \(\varnothing\) data.

\subsection*{6.4.2.1 бMIT Cards}

These cards list species to be omitted from the THERMX तata. If बMIT cards are not used, the program will consider as possible species all those species in the THERM \(\varnothing\) data which are consistent with the chemical system being considered. Occasionally it may be desired to specifically omit one or more species from considerations as possible species. This may be accomplished by means of \(\varnothing\) MIT cards.

\section*{6.4.i.2 INSERT Cards}

These cards contain the names of condensed species only. They have been included as options for two reasons.

The first and more important reason for including the INSERT card option is that, in rare instances, it is impossible to obtain convergence for assigned enthalpy problems (HP or RKT) without the use of an INSERT card. This occurs when, by considering gases unly, the temperature becomes extremely low. In these cases, the use of an INSERT card containing the name of the required condensed species can eliminate this kind of convergence difficulty. When this difficulty occurs, the following message is printed by the program: "LOW TEMPERATURE IMPIIES CONDENSED SPECIES SHOURD HAVE BEEN INCLUDED ON AN INSERT CARD".

The second and less important reason is that if one knows that one or several particular condensed species will be present among the final equilibrium compositions for the flrst assigned point, then a small amount of computer time can be saved by using an INSERT card. Those condensed species whose chemical formulas are included on an INSERT card will be considered by the program during the initial iterations for the first assigned point. If the INSERT card were not used, only gaseous species would be considered during the initial iterations. However, after convergence, the program would automatically insert the appropriate condensed species and reconverge. Therefore, it usually is immaterial whether or not INSERT cards are used. For all other assigned points the inclusion of condensed species is handled automatically by the program.

\subsection*{6.4.3 \$ØDE NAMELIST INPUT}

The \(\varnothing D E\) subprogram contains namelist input sections \(\$ \varnothing D E\) and \$SHKINP. The Namelist \$øDE must be preceded by a card with NAMEIISTS punched in card columns 1-9.

> The \(\$ \emptyset D E\) Namelist is required if \(\emptyset D E=1\). or \(T D K=1\), in SDATA as
> described in section 6.3 .

For the \(\varnothing D E\) problem type any of nine (9) different equilibrium problems can be solved. These are TP, HP, SP, TV, UV,SV,RKT, DETN, and SH \(\varnothing C K\). For the \(\varnothing D E-\) \(\varnothing D K, \varnothing D E-\varnothing D K-T D K\), or TDE problem type, only the RKT problem can be solved. In this section only the RKT Lnput option is discussed. Reference 9 is to be used to prepare input for the other equilibrium problems.

The variables input by the \(\$ \varnothing D E\) namelist are listed In Table 6-9. Additional information about some of these varlables follows: Pressure units. - The nrogram assumes the pressure in the \(P\) schedule to be in units of atmospheres unless either PSLA \(=\) true, or \(S I=\) true. Relative amounts of fue! (\(s\)) and oxidizer(s). - These quantities may be specifled by assigning 1 to 15 values for either \(0 / f, \% F, f / a\), or \(r\). If no value is assigned for any of these, the program assumes the relative amounts of iuel(s) and oxidizer(s) to be those specifled on the REACTANTS cards. (See discussion in REACTANTS Cerds, Section 6.4.1 and Section 5.2.1)

RKT problem. - Only one value for chamber pressure, \(P\), is to be input for cases with NZ \(\varnothing\) NES \(>1\) (see SDATA input, Section 6.3). The stagnation pressure used for the \(1^{\text {th }}\) zone will be the value input for \(P\) multiplied by the \(i^{\text {th }}\) value input in the schedule XP. If not input, all XP entries are assumed equal to one. For TDK typé
problems, zone one is taken about the nozzle axis of symmetry and the last zone is bounded by the nozzle wall. Similarly, the \(t^{\text {th }}\) zone will have a mixture ratio equal to the \(1^{\text {th }}\) entry in the OFSKED schedule.

Print out will be given for the chamber pressure condition (i.e. stagnation) and the throat condition. Print out may be requested at other conditions by use of the PCP schedule and the SUBAR and SUPAR schedules.

The program will calculate both equllibrium and frozen performance unless \(F R \emptyset Z=F\) or \(E Q L=F\) are input. If \(F R \varnothing Z=F\), only equilibrium performance will be calculated. If \(E Q L=F\), only frozen performance will be calculated.
ordinarily, rocket, pobleme are rim by specifyint, chanber valix. \(\because, t\) Pand \(H\). It is possible, however, to run 1 zone cases (il 7 info) \(=1 \mathrm{in}\) stama) by opecifying \(P\) ind \(T\). For example:
```

\$ODE
RKT = 1
P = chamber pressure,
T = chamber temperature,

```
can be used to set the chamber temperature and run the rocket problem. The resulting chamber enthalpy will be calculated and included in the output.

TABLE 6-9
VARIABLES IN \(\$ \varnothing\) DE NAMELIST

Table 6-9 (cont'd)
\begin{tabular}{|c|c|c|c|c|}
\hline Varlable & No. of entries & Type & Value before read & Definition and comments \\
\hline IONS & 1 & L & False & Consider ionic specles \({ }^{\text {a }}\) \\
\hline WFLDW & 1 & R & 0 & Input nozzle mass flow option for \(\varnothing \mathrm{DE}-\) \(\not \subset D K-T D K\) or TDE problems. If a value for WFI \(\varnothing W\) is input an expansion with this mass flow will be computed. The values input for \(P\) and \(X P\) are used as estimates for computing stagnation pressure for each zone. The program will adjust these stagnation pressures to obtain the desired nozzle mass flow within a tolerance of RELERR. Units are lbs \(/ \mathrm{sec}\) if PSI=.T. otherwise kilograms/sec. \\
\hline REIERR & 1 & R & . 0005 & Relative difference between requested and computed mass flow rate. The program stops if this error is exceeded. \\
\hline PCP & 50 & R & 0 & Compute and print solutions at these values of chamber pressure to pressure ratio (entries must be >1.) \\
\hline SUBAR & 50 & R & 0 & Compute and print solutions at these values of subsonic area ratios (entries must \(\neq 1\).) \\
\hline SUPAR & 50 & R & 0 & Compute and print solutions at these values of supersonic area ratio (entries must \(\neq 1\)) \\
\hline ECRAT & 1 & R & 0 & Subsonic area ratio to start \(\varnothing \mathrm{DK}\) calculations with computed equilibrium conditions. The SUBAR input table must include an entry equal to ECRAT. \\
\hline EQTHST & 1 & I & False & To start \(\varnothing D K\) calculations with computed equilibrium conditions at the nozzle throat. \({ }^{\text {a }}\) \\
\hline EQL & 1 & L & True & Calculate rocket performance assuming equilibrium composition during expansionb. \\
\hline FR \(\varnothing\) Z & 1 & L & True & Calculate rocket performance assumIng frozen composition during exparsionb. \\
\hline LISTSP & 1 & I & False & List names and dates of all species residing on thermodynamic data used \({ }^{\text {a }}\). \\
\hline KASE & 1 & I & 0 & Optional assigned number associated with case. \\
\hline
\end{tabular}
\(a_{\text {If }}\) variable is set to be true.
\(\mathrm{b}_{\text {Set }}\) variable false if these calculations are not desired.

\subsection*{6.4.3.1 Variable Mixture Ratio Option}

The \(M O C\) can be run with a variable mixture ratio option \(b y\) setting VARMIX=.TRUE., and inputting values into the STREAM (1) table as described below.

When the variable mixture ratio option is used, there are no sliplines in the flow. Instead, the flow mixture ratio will vary from the axis \((\psi=0)\) to the wall \((\psi=1)\) as specified in the tables of ØFSKED vs. STREAM. Sliplines can not be used when the shock option is invoked (\(S H \emptyset C K=1\) in \(\$ M \varnothing C\)), because shock-slipline interaction is not provided in the program. Thus, if the shock option is requested and there is variation in mixture ratio from streamline to streamline, then the variable mixture ratio option must be used.

The program will not function properly if the spacing in the mixture ratio table, \(\varnothing \operatorname{FSKED}(1)\), is too large. The required spacing depends on the chemical system. As a rule each entry in ØFSKED (1) must differ no more than 4 or \(5 \%\) from its adjacent values depending on the stoichiometry of the system. There are no spacing requirements for the STREAM (1) table. However, the first entry must be 0 and successive entries must increase monotonically with the last entry equal to 1 .

The tables XP (1), DELH(1), and DELH1(1) of \(\$ \varnothing D E\) can be used, in which case each entry corresponds to entries in \(\emptyset F S K E D(1)\) and
STREAM (1).
will be computed by the program \(\begin{aligned} & \text { If } \\ & \text { wind }\end{aligned}\) will be computed by the program and need not be input.

VARMIX \(=\)
\(\operatorname{STREAM}(1)=\)

If VARMIX=.FALSE., do not use variable mixture ratio option.

If VARMIX=.TRUE., the variable mixture ratio option is to be used. The following must be input:
NZØNES in \$DATA, \(\emptyset F S K E D(1)\) in \(\$ \emptyset D E\) and STREAM (1) in \(\$ \oslash D E\), below.

If VARMIX=.TRUE., values must be input here corresponding to the \(0 / F\) values input in QFSKED (1).

The values input represent
\[
(0 / F)_{i} \text { vs } \psi_{i} \quad i=1, \ldots, \text { NZØNES }
\]
where \(\psi_{i}\) represents the mass flow between streamline \(i\) and the axis, divided by the total mass flow.

Thus
\[
\begin{aligned}
& \psi=0 \text { at the axis, and } \\
& \psi=1 \text { at the wall. }
\end{aligned}
\]

The ith entry of gFSKED is (\(O / E)_{i}\).
The ith entry of STREAM is \(\psi_{i}\)
\[
0 \leq \psi_{i} \leq 1 \quad i=, \ldots, N Z \emptyset N E S^{1}=50
\]
\[
\text { and } \psi_{i}<\psi_{i+1}
\]

\subsection*{6.4.3.2 OPTION TO PUNCH TABLES FOR BOUNDARY LAYER PROGRAM INPUT \\ (DOES NOT APPLY TO BLM)}

Conditions computed along the nozzle wall can be output as punched cards for input to the BLIMP, or MABL boundary layer analysis computer programs. These conditions are taken by the boundary layer computer program as being the Inviscid flow condition at the edge of the boundary layer. Tables to be punched are: \(x, y\), and \(P / P_{c}\) (i.e. the nozzle wall coordinates and the ratio of pressure to chamber pressure along the wall). The tables are punched in NAMELIST format readable by BLIMP.

A maximum of 50 entrles upstream of the throat are saved and punched. The wall point at the end of every characteristic is punched up to a maximum of 500 total table entries. The user may specify a number by which the punched table will be offset. Thus, the first point may be output with identification 5 by input of \(I \emptyset F F=4\). The use of \(I \varnothing F F\) enables the user to extend the table by adding points upstream.

If punched cards for input to a boundary layer program are required, the folloving items must be lnput as part of the \(\$ \varnothing \mathrm{DE}\) Namelist input:
Item Name

These items define the nozzle geometry from the combustion chamber through the throat as shown in FIgure 6-1. For a TDE option it is necessary that IPTEL~0.

\section*{ORIGINAL PAGE IG}

OF POOR QUALITY

\subsection*{6.5 ODK INPUT DATA}

QOK input data is required if \(\emptyset D K=1\) or \(T D K=1\) in SDATA as described in Section 6.3. The ODK input data consists of three data groups as follows:
\begin{tabular}{ll}
SPECIES & data group \\
REACTIONS & data group \\
\(\$\) DOK & data group
\end{tabular}

These data groups are described below in sections 6.5.1, 6.5.2, and 6.5.3, respectivly.

\subsection*{6.5.1 SPECIES}

Species used by the computer program are determined in several possible ways, depending upon the problem type. Methods used to determine chemical species for each probelm type are discussed below.

\section*{GDK}

If \(\varnothing D F=0\) and \(\varnothing \cap K=1\) in tDAMA, then species nomes ard enmentrotiche an re input, see Bection 6.5.7.1.

\section*{\(\varnothing D E-\varnothing D K\)}

If \(\varnothing D=1\) and \(\varnothing[K=1\) in BMTA, then the intitia? arant omtionk an tris kinetic expansion are obtainet fron an one equilitrium exlmation: generated by

\section*{ORBGMiL PAGE IS}

\section*{OF POOR QUALITY}
the equilibrium calculation generally contains many more species than the 40 species for whlch the \(\varnothing D K\) subprogram is dimensloned. Therefore a selection processes is required to interface the \(\varnothing D E\) calculated equllibrium start conditions with the \(\varnothing D K\) kinetic expansion calculations. This selection is performed using the following rules:

Rule 1 If a species appears in a reaction, it is selected for the kinetic
calculation.
Rule 2 If a species is specified using INERTS directive it is selected for the \(k\) inetic calculations.
Rule 3 If any species has a mole fraction greater than an input criterion, It is selected for the kinetic calculation.
Species which are selected but which do not oppear in a reaction are treated as Inert and listed as such on the output llst of selected species. ØDE- \(\varnothing D K-T D K\)

above rules. However, for multizone TDK cases it is necessary that each zone have the same specles list. Thus the INERTS input (see Section 6.5.2...) must be used to assure the same species are selected for each zone.

\section*{ \\ (APPLIES MTY IF , DE=O AT) ORK=? TH PDATA)}

This input begins with a single card with SPECIES in columns ithrough 7 and with either MASS FRACII \(\varnothing\) NS or M \(\varnothing\) LE FRACTI \(\varnothing\) NS in columns 9 through 22. If the identifier for mass or mole fractions is omitted, mass fractions are assumed. Up to 40 species cards may be input. Only those species specifled by input species cards will be considered for an \(\not\) ODK problem. The order of the input
species cards is Independent of the order in which the species appear on the master Thermodynamic Data flle.

A chemical species is Identified symbolically by 12 alphanumeric characters and must correspond identically with the species name as it eppears on the Thermodynamic Data flle. A complete list of the current species names are llsted in Table 6-4 (condensed specles, however, may not be specified in the species list.) The species symbol may not contaln the characters * or =.

\section*{Col}

1-10
11-22
23-30
31-60

61-80

\section*{Function}

Not used
Species symbol (left justified)
Not used
Value of initial species concentration (If zero must be input as 0.0) free field \(F\) or \(E\) format User Identification if desired

This type of input also requires input of other items that otherwise would be provided by ODE. These other items (\(P_{c}, T_{c}\), \(V_{c}\), etc.) are input with the \(\$ 0 D K\) data set and are described in Section 6.5.3.6. Example input is given in Table 6-12.

Chemical reactions must be input if \(\varnothing D K=1\) in \$DATA.

Up to 50 reactions with an implied third body and a tota 150 reactions may be input to the program. only one card per reaction, and only one reaction per card is permitted. Cards all other must precede cards specifying reaction Species names appearing in the symbolic with the species names as they appear in the master Thermodynamic Data (see Table 6-4).

The symbolic reaction set contains directive cards and reaction/data cards in groups as outlined below:

REACTIONS
Directive for start of
symbolic reaction input
Reactions with implied third
body species

END TBR REAX
-
-
-
LAST REAX

INERTS

THIRD BøDY REAX RATE RATI日S
body species
Directive for end of third body reactions

All other reactions
Directive for end of
reactions

Specified Inert Species
Directive for start of third body reaction rate ratios

LAST CARD
Directive for end of
REACTIONS input

The content anc format of each type of card are defined
\[
6-43
\]

\subsection*{6.5.2.1 REACTIQNS Through LAST REAX}

The symbolic reaction input begins with a card containing the word REACTIDNS in columns 1 through 9.

Columns 11 to 23 can be used to specify the nominal direction of the reaction rate data. For example the card

REACTIONS
FORWARD RATES
will cause all reaction rate data to be in the forward (left to right) direction unless otherwise specified. The word REVERSE instead of \(F \varnothing R W A R D\) means the rate data is input in the reverse direction. If left out, the nominal rate direction will be the forward direction.

Up to 50 dissociation reactions and a total of 150 reactions may be input following the REACTIONS card. Only one card per reaction and only one reaction per card is permitted. Cards specifying reactions with third bodies must precede cards specifying reactions without third bodies. The content and format of the reaction cards is defined below.

The general form of a reaction is:
\[
\Sigma v_{i} *_{\alpha_{i}}=\Sigma v_{i}^{\prime} *_{\alpha_{i}}
\]

Where the \(\alpha_{i}{ }^{\prime} s\) are species names and the \(v_{i}\) 's are the stoichiometric coefficients. The left hand side of the above equation represents the reactants and the right hand side the products.

Each speiss name must correspond identically with the species name as it appears in the Thermodynamic Data File, e.g., see Table 6-4.

850149

The stoichiometric coefficients must be intergers and an * must separate the stoichiometric coefficient from the species name. If no stoichiometric coefficient is given, the value is assumed. It is also required that
\[
\Sigma v_{i} \leq 10
\]
\[
\Sigma v_{i}^{\prime} \leq 10
\]
examples:

\section*{Reaction}
\begin{tabular}{rl}
Reaction \\
\(\mathrm{H}+\mathrm{H}\) & \(=\mathrm{H} 2\) \\
\(\mathrm{NA}+\mathrm{CL}-\) & \(=\mathrm{NACL}\) \\
\(\mathrm{B}+2+\mathrm{M}-2\) & \(=\mathrm{BM}\) \\
\(\mathrm{BE}+2+2 * \emptyset \mathrm{H}-\) & \(=\mathrm{BE} \emptyset \mathrm{H} \emptyset \mathrm{H}\)
\end{tabular}

\section*{Interpretation}
\[
\begin{array}{ll}
\mathrm{H}+\mathrm{H} & =\mathrm{H}_{2} \\
\mathrm{Na}^{+}+\mathrm{Cl}^{-} & =\mathrm{NaC} \\
\mathrm{~B}^{++}+\mathrm{M}^{--} & =\mathrm{BM} \\
\mathrm{Be}^{++}+2 \emptyset \mathrm{H}^{-} & =\mathrm{Be}(\oslash \mathrm{H})_{2}
\end{array}
\]

The reaction rates are defined by three numerical values \(P 1\), P2, P3 input as \(E\) or \(F\) format. Three types of reactions can be input, as discussed below.

\section*{Arrhenius form}
\[
\Sigma v_{i} \alpha_{i}=\Sigma v_{i}^{\prime} \alpha_{i}, M n, A=P 1, N=P 2, B=P 3
\]
or
\[
\Sigma v_{i} \alpha_{i}=\Sigma v_{i}^{\prime} \alpha_{i}, M n, K F=P 1, P 2, P 3
\]

Input of the above type defines a reaction rate of the form
\[
k=P 1 * T T^{-P 2} * e^{-P 3 * 1000 / R T} \quad, R=1.987
\]

850149
\[
6-45
\]

Landau-Teller form
\(\sum v_{i} \alpha_{i}=\sum v_{i}^{\prime} \alpha_{i}, M n, * K F=P 1, P 2, P 3\)
Input of the above type defines a reaction of the form
\(k=\exp \left(P 1+P 2^{-1 / 3}+P 3^{-2 / 3}\right)\).
Log_10_form
\(\sum v_{i} \alpha_{i}=\Sigma v_{i}^{\prime} \alpha_{i}, M n, \% K F=P 1, P 2\)
Input of the above type defines a reaction of the form
\(\log _{10} \mathrm{~K}=\mathrm{P} 1+\mathrm{P} 2^{*} \mathrm{~T}\).

In the above reactions if \(K F\) is replaced by \(K R\), then the rate will be for the reverse (right to left) direction.

The Mn's in the above reactions are the third body descriptors for the reaction. These descriptors are optional for dissociation-recombination reactions, out must be left out for exchange reactions. They are used to multiply the reaction rate by a factor that is defined by the descriptor.

The dissociation-recombination reactions with third body terms must precede other types of rections, and must be followed by the directive starting in column \(\quad\) :
\(\cos 1+\)
END TBR REAX

All reactions prior to the above directive will have a third body term added to each side of the reaction; e.g.,
\(\mathrm{H}_{2}=\mathrm{H}+\mathrm{H}, \mathrm{M} 4, \ldots\)
END TBR REAX
is the same as
\[
H_{2}+M 4=H+H+M 4, \ldots
\]
where \(M 4\) is a generalized third body as specified in bection 6.5.2.3. If no Mn is specified, the generalized third body is assumed to be defined by Mo.

The reaction set is terminated by a card containing LAST REAX in columns 1 to 9.

\subsection*{6.5.2.2 Inert Species option}

Inert species (i.e. species not appearing in reactions) can be included in the input by input of a card with INERTS in columns 1 through 6 followed by a list of inert species names. The species names must each be followed by a comma and each name must be written exactly as in the master Thermodynamic Data. The last comma must be followed by the word END. The species list can continue onto the next card, but a species name cannot overlap onto the next card.

\subsection*{6.5.2.3 Third Body Reaction Rate Ratios}

If reaction rate ratios, \(m_{i j}\), are to be input for the dissociation-recombination reactions, a card with THIRD BQDY REAX RATE RATIDS in columns 1 through 27 must be input next. If this_card is deleted from the input, the_program_assumes all \(\mathrm{m}_{\mathrm{ij}}=1\). If this card is included in the input, it must be followed either by a card with ALL EQUAL 1.0 in columns 1 through 13 (which sets all \(\mathrm{m}_{1 j}=1\)) or by cards defining the Mn's as described below.

The Mn's on the reaction cards are used to identify a group of third body efficiencies which pertain to all of the reactions which declare that grouping. The format of the Mn statement is
\[
M n=m_{j}{ }^{*} \alpha_{j}, m_{k}{ }^{*} \alpha_{k}, \ldots, \text { etc }
\]
where
\begin{tabular}{ll}
\(n\) & \(=\) integer between 0 and 100 inclusive \\
\(m_{j}\) & \(=\) multiplier for the species named \(\alpha_{j}\) \\
\(\alpha_{j}\) & \(=\) species name \\
\(\cdot\) \\
etc.
\end{tabular}

850149
```

If no muitiplier is given for an \alpha, a value of 1.0 is

``` assumed. The user may declare that all of the third body reaction rate ratios for a particular grouping are 1.0 by using the statement
\(M n=*\)

If no \(M n\) is declared on the reaction card, then \(M O\) is assumed.

Example: (fictitious rates)

REACTIØNS FØRWARD RATES
```

H+\emptysetH=H2\emptyset,A=7.5E23,N=2.6, B=0.0,
\emptyset+H=\emptysetH,M2,KF=4.0 + 18, 1, 0,
\emptyset+\emptyset=\emptyset2,M2,KF=1.2E17, 1, 0,
H2}=H+H,M3,KR=6.4E17,1,0
END TBR REAX
LAST REAX
THIRD B\emptysetDY REAX RATE RATIOS
MO = . 5* H2, 20.* H20,
M2 =. 5*H2, 5*H2\emptyset ,
M3 =*
LAST CARD

```

In the above example the first reaction does not declare an Mn, so MO is used. The second and third reactions share the same third body reaction rate ratios by declaring the same group identifier, M2. The fourth reaction uses the identifier M3 which has all of its third body efficiencies set equal to 1.0 .
6.5.2.4 LAST CARD

The reaction input data is terminated by a card containing LAST CARD in columns 1 through 9 .

\subsection*{6.5.2.5 Master Reaction Set}

A master reaction contains chemical set is presented in Table 6-10. It C. C\&, F, H,N found necessary for present and 0 systems according to the study presented in Appendix \(A\) in which the rate data was updated with a literature survey through June 1984. Third body efficiencies are included. For any given chemical system that is to be analyzed, great care must be taken in selecting the appropriate reaction set. Table 6-10 may or may not be sufficient.

Table 6-11 presents
Oxygen/Hydrogen systems minimal reaction set for included in table the third body efficiencies are included in Table 6-11 and illustrate their usage.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
 \\
LAST REAX \\
THIRD bOOY REAX RATE RATIOS \\
 \\
 \\
 \\
M4 \(=.8^{* A R}, 1^{*} \mathrm{CO}, 3^{*} \mathrm{CO} 2,10^{*} \mathrm{H}, 2^{*} \mathrm{H} 2,7^{*} \mathrm{HZO}, 10^{*} \mathrm{~N}, 1^{*} \mathrm{NO}, 1^{* N} 2,10^{*} \mathrm{O}, 10^{*} \mathrm{OH}, 1 * \mathrm{O} 2\), 11*02, \\
 \\
 \(5 * 02\). \\
M8 \(=1 * H 2,2,4^{* F 2}, 1^{* H F}, 1^{* N 2}, 1^{* N}, 24^{* F}, 1^{* H}\),
\(M 9=8^{* H 2} 1 * F 22^{*} H F, 2,8^{* N 2}, 1^{* N}, 4^{* *}, 20^{*} H\), \\
M10 \(=1 * A R, 1 * H C L, 5 * C L 2,1 * C L\), \\
LAST CARD
\end{tabular} \\
\hline
\end{tabular}

TABIE 6-11. REACTTONS AND RATE DATA FOR H,O SYSTEM:.

```

H+OH=H2O ,M1, A=6.4E17,N=N=1.0, B=0.0, (AR) BAULCH 72 (A) 30U
O+O=02 ,M3,A=1.9E13,N=2.0, B=0.0, (AR) BAULCH 72 (A) IOU
O+H=OH ,M7,A=3.62E18,N=1.0, B=-1.79,(AR) BAULCH 76 (A) 1OU
END TBR REAX (B)}30
O2+H=O + OH
H2+O=H+OH , A=2.2E14, N=0.0, B=16.8, BAULCH 72 (A) 1.5U

```

```

OH+OH=H2O+O,A = N = .2E13,N N = 0.0, B=5.15,
LAST REAX
THIRD BODY REAX RATE RATIOS
M1=25*H,4*H2,10*H2O,25*O,25*OH,1.5*O2,
M2=12.5*H,5*H2,17*H2O,12.5*O,12.5*OH,6*O2,
M3=12.5*H,5*H2,5*H2O,12.5*O,12.5*OH,11*O2,
M7=12.5*H,5*H2,5*H2O,12.5*O,12.5*OH,5*OO2,

```

\subsection*{6.5.3 \$ФDK NAMELIST INPUT.}
\$0DK Namelist input specifies the conditions for the kinetic expansion calculation. The input is read in subroutine DDKINP and consists of the following groups of data as outlined below:
6.5.3.1 Specification of Nozzle Geometry
6.5.3.2 Integration Control
6.5.3.3 Print Control
6.5.3.4 Species Selection and Mass/Mole Fraction Check
6.5.3.5 \(\emptyset D K\) Problem Input

\subsection*{6.5.3.1 Specification of Nozzle Geometry.}

All of the nozzle geometry is to be input using the \$DATA Namelist input, see Section 6.3.3 and Figure 6-1.

An \(9 D K\) calculation will be carried out for each mixture ratio input in GFSKED of \(\$ \varnothing D E\) whenever \(\varnothing D K=1\) ir. DTATA.

For a TDK problem, it is necessary that the \(\varnothing \mathrm{DK}\) calculations be run past the nozzle throat. Usually it is not desirable to run the \(\emptyset \mathrm{DK}\) calculations all the way to the nozzle exit because of the extra computer time and orint out that results. However, if this is desired on a TDK problem, it can be requested by input of itern EP as described below.
\begin{tabular}{lll}
Item \\
\(\$ \emptyset D K\) & Description & Units
\end{tabular} \begin{tabular}{l}
Assumed \\
Value (s)
\end{tabular}

\subsection*{6.5.3.2 INTEGRATION CONTROL}

The integration routine controls the step size such that the relative error in the dependent variable increments are less than a prescribed fraction, DEL. Only doubling or halving of the step size is permitted, and on option, either all the variables may be considered (\(\mathrm{JF}=0\)), or only the fluid dynamic variables (\(\mathrm{JF}=1\)) may be considered.

When the flow becomes supersonic and the area defined fluid dynamic equations are used, an additional check on continuity is applied in the form
\[
\left|\frac{(\rho \mathrm{VA})_{N+1}-(\rho \mathrm{VA}) N}{(\rho V \mathrm{~A})_{N+1}}\right|<C \not \subset N D E L
\]
where C \(\varnothing\) NDEL is an input relative criterion.
The step size is held between the two input bounds HMIN and HMǐK. Fixed step cases may be run by setting input values for HI, IMMAX, HMIN all equal. I tem

Description
Units
Assumed
\begin{tabular}{|c|c|c|c|c|}
\hline HI & \(=\) & initial step siz & & \\
\hline HMAX & \(=\) & & none & . 01 \\
\hline & = & upper bound on step size & none & 0.10001 \\
\hline HMIN & \(=\) & lower bound on step size & none & 005 \\
\hline DEL & \(=\) & fractional incremental & & . \\
\hline & & error & none & 60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Item & & Description & Units & Assumed Value(s) & - \\
\hline TEXPLI & = & temperature below which explicit integration will start. Not recommended. & \({ }^{\circ} \mathrm{R}\) & 9 & \\
\hline CØNDEL & \(=\) & relative error criterion for continuity check for supersonic flow & none & \(1 \times 10^{-6}\) & \\
\hline JF & \(=0\) & all variables considered for step size control & none & 0 & \\
\hline & \(=1\) & only fluid dynamic variables considered for step size control, i.e., p,u, and T & none & & \\
\hline
\end{tabular}

\subsection*{6.5.3.3 PRINT CONTROL}

Output from the Kinetic Expansion Calculation consists of complete output for each print station selected. The end point of the nozzle is always printed. Print stations are selected from one of the following options:

Assumed
\begin{tabular}{|c|c|c|}
\hline Item & & \begin{tabular}{ll}
Description \\
Disume \\
Value \\
\hline
\end{tabular} \\
\hline \multirow[t]{6}{*}{JPRNT} & \(=-2\) & print throat and input area ratios (see ARPRNT) -2 \\
\hline & \(=-1\) & print at internally set area ratios for conical nozzle.* Print at salecter wall contour vant, for contoured nozzles. \\
\hline & & option (INALL=4), print out will occidr at each entry in \(2 S\) of SDATA. For other contours (INALE=2 or 3), print out will occur at 20 equaly \(y\) spaced axial locations along the nozzle. \\
\hline & \(=0\) & print at every integration step \\
\hline & \(=+1\) & print every ND3rd step up to the throat and then nomina! area ratios \\
\hline & \(=+2\) & print every ND3rd step over entire nozzle \\
\hline
\end{tabular}
```

* For TPRNT $=-1$ and a conica! nozz'e (i.e. IWALE $=1$, the :ntemally set arm
ratics as:
$\operatorname{ARPRNT}(1)=2,3,4, \ldots, 30,40, \therefore 2, \ldots, 58,60,64, \ldots .16, i 20,128, \ldots, 200,210$,
220,...402 5-54

```

If JPRNT is +1 or +2 , the following must be input:
Item Description
\begin{tabular}{|c|c|c|}
\hline ND1 & \(=\) & first integration step to be selected for print \\
\hline ND2 & \(=\) & last integration step to be selected for print \\
\hline ND3 & = & print every ND3rd step between NDI and ND2. \\
\hline
\end{tabular}

If IPRNT is -2 , the following must be input:
\begin{tabular}{|c|c|c|}
\hline Item & & Description \\
\hline ARPRNT (1) & \(=\) & requested area ratios for print, must be monotonic increasing and greater than 1.0 If no values are input, will use values from Astup of \$DATA. \\
\hline NJPRNT & = & number of area ratios requested for print \(\leq 100\). \\
\hline
\end{tabular}

An extended print option may be selected as follows:
\begin{tabular}{lll}
Item & \(\underline{\text { Value }}\) & \\
IDYSCI Description \\
& \(=0\) & \\
& \(=1\) & \\
& & no extended print requested
\end{tabular}

\subsection*{6.5.3.4 SPECIES SELECTION AND MOLE/MASS FRACTION CHECK}

In order to interface \(\varnothing \mathrm{DE}\) equilibrium calculated start conditions with the kinetic expansion calculations, special consideration must be made for inert species (those not appearing in the reaction set). Inerts may be selected explicitly by use of the INERTS directive or by use of a relative selection criterion.

If A MULTIZONE TDK PROBIEM IS SPECIFIED INERTS MUST BE SPECIFIED VIA THE INERTS DIRECTIVE. This is required so that the chemistry selected for multizone cases will be compatible.

The INERTS directive is described in Section (6.5.2.2).
The relative selection criterion (\(\varnothing \mathrm{DK}\) or 1 Zone TDK problems,)
is described below:

Item Name
EPSEL =

\section*{Function}
all species which do not a ppear explicitiy in the reaction set but whose mole fractions are greater then the infur vaiuc for EPSEL, will be retained for the kinetic expansion. Species selected under this criterion are treated as inert. The program assumes EPSEI \(=1.0 \mathrm{E}-5\), unless input.

In some instances it may be desirable to use input species concentrations which do not sum to unity. Species concentrations, either irput or from equilibrium start conditions, are summed and the sum checked as descibed beloiv.
\begin{tabular}{ll}
Item Name \\
XMFTST \(=\quad\) & Function \\
Input species concentrations are summed and checked \\
versus unity using this input crite:ion. If \\
& \(\mid 1-\sum\) species concentrations \(\mid<\) XMFIST \\
then the test is passed. The species concentrations \\
& will then be normaized such that \\
& \(\sum\) species concentrations \(=1\).
\end{tabular}

The program assumes XMFTST \(=1.0 E-3\), unless input.
If the test is not passed, an error message will be given and the run terminated.
```

    6.5.3.5
                Frozen Expansions_with the ODK
                Module
            The ODK module can be run using a frozen expansion by input
    ```
SHGAMF \(=1\),

An example of this option is presented in Table 6-12. Note that the REACTIONS, END TBR REAX, and LAST CARD directives are included in the input, but no chemical reactions are given. This option can be run with ODE, or as in Table 6-12, without ODE. Whenever \(T D F=1\) is input, \(S H G A M F=1\) in Table 6-12, without ODE.

\subsection*{6.5.3.6 ODK PROBLEM INPUT}

This input is required when \(\not \subset E=0, \not D K=1\) art inpht in trith.
A kinetic expansion from input arbitrary start conditions is
to be computed. In addition to the input items described in section 6.5.3, an ØDK problem requires input of those items described in Sections 6.5.1.1 and 6.5.2.
Input for a hydrazine monopropellant engine is given in Table 6-12 as an example of the ODK problem input.
\begin{tabular}{lllll}
Item Name & & Input Quantity & Units & SI Units \\
PC & \(=\) & chamber pressire & PSIA & \(\mathrm{N} / \mathrm{M}^{2}\) \\
T & \(=\) & initial temperature & \({ }^{\circ} \mathrm{R}\) & \({ }^{\circ} \mathrm{K}\) \\
V & \(=\) & initial gas velocity & \(\mathrm{ft} / \mathrm{sec}\) & \(\mathrm{m} / \mathrm{sec}\) \\
JPFLAG & \(=0\) & \begin{tabular}{l}
pressure table \\
calculated internally
\end{tabular} & none & none \\
& & \(=1\) & pressure table Input & \\
& & & \\
ECRAT & \(=\) & initial contraction ratio & none & none
\end{tabular}.

For JPFLAG \(=0\) option the following must be input:
\begin{tabular}{llllll}
Item Name & & Input Quantity & Units & & SI Unlts \\
PI & \(=\) & initial pressure & PSIA & \(\mathrm{N} / \mathrm{M}^{2}\) \\
PESTAR & \(=\) & throat pressure & PSIA & \(\mathrm{N} / \mathrm{M}^{2}\)
\end{tabular}

For JPFLAG \(=1\) option the following must be input:
\begin{tabular}{llll}
Item Name & & \begin{tabular}{l}
Input Quantity \\
PTB(1)
\end{tabular} & \begin{tabular}{l}
Units \\
normalized pressure \\
table entries*
\end{tabular} \\
ZTB(1) & \(=\) & \begin{tabular}{l}
normalized pressure \\
table coordinates**
\end{tabular} & none \\
NTB & \(=\) & \begin{tabular}{l}
number of pressure \\
table entries, \(s 127\)
\end{tabular} & none \\
\(Z\) & \(=\) & initial axial position & none
\end{tabular}
* normalized to input chamber pressure, PC
** nomalized to input throat radirs, RSTAR. ZTB represents the streamline path length.

THERMO
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{H2} \\
\hline H2 & J 3/61H 2.0 & \(0.0 \quad 0.0 \quad 0 . G\) & 300.00050 & & \\
\hline \[
\begin{array}{r}
.31001901 E+01 \\
-.87738042 F+02
\end{array}
\] & . 51119464E-03 & \[
.52644210 \mathrm{E}-07
\] & -.34909973E-10 & . 000 & \\
\hline \[
\begin{array}{r}
-.87738042 E+03 \\
.55210391 E-08
\end{array}
\] & -. 19629421E+01 & . \(30574451 \mathrm{E}+01\) & \(-.34909973 E-10\)
\(.26765200 E-02\) & . \(36945345 \mathrm{E}-14\) & 2 \\
\hline N2 \({ }^{.55210391 E-08 ~}\) & -. 18122739E-11 & . \(98890474 \mathrm{E}+03\) & -. \(22997056 \mathrm{E}+\) & 5 & 3 \\
\hline .28963194E+01 & 9/65N 2.0 & 0.00 .0 O.G & 300.000500 & . 000 & \\
\hline -.90586184E+03 & . \(61615148 \mathrm{E}+01\) & -.57235277E-06 & . 99807393E-10 & -. 65223555E-14 & 2 \\
\hline -.63217559E-09 & -. \(22577253 \mathrm{E}-12\) & & 2081500E-02 & . 23240102E-05 & 3 \\
\hline NH3 & J 9/65N 1H & & . \(23580424 \mathrm{E}+01\) & & 4 \\
\hline 0.24165177 E 010 & \(0.61871211 \mathrm{E}-02\) & \(0.21785136 \mathrm{E}-05\) & 300.0005000 & . 000 & 1 \\
\hline -0.64747177E 04 & 0.77043482 E 01 & \[
0.35912768 \mathrm{E}
\] & 0.37599090E-09 & 0.24448856E-13 & 2 \\
\hline -0.83833385E-08 & 0.27299092E-11 & \[
0.66717143 \mathrm{E} \quad 04
\] & 0.49388668E-03 & 0.83449322E-05 & 3 \\
\hline
\end{tabular}

TITIE 5 LB THRUSTER, N2H4 MONOPROPELTANT
DATA
\$DATA
ODK \(=1\),
RSI \(=.0937\),
ECRAT \(=29.2\),
\(R I=.01\),
THETAT \(=70\),
RWIU \(=1.846\),
RWID \(=1.846\),
IWAL工 \(=5\),
\(\operatorname{RMAX}=9.872, \mathrm{ZMAX}=33.404\),
\$END
SPECIES MOLE FRACIIONS
\begin{tabular}{ll}
NH 3 & .17310 \\
N 2 & .30448 \\
H 2 & .52242
\end{tabular}

REACIIONS
.52242
END TBR REAX
IAST CARD
\$ODK
JPRNT \(=-2\),
\(\mathrm{EPP}=97.456\),
ARPRNT \(=2,5,10,15,20,25,30,40,50,60,70,80,90,97.456\),
NJPRNT \(=14\),
SHGAMF \(=1\),
PSIA \(=T\),
PC \(=106\),
\(T=2030\),
\(\mathrm{V}=64.76\),
PI \(=\) 105.97,
PESTAR \(=57.812\),
\$END

\subsection*{6.5.3.7 MASS AVERAGED \(\varnothing D K\) ISP}

A mass averaged \(\varnothing\) DK ISP summary page may be obtained at the end of the \(\varnothing \mathrm{DK}\) calculations as described below:
\begin{tabular}{ll}
Item Name & \\
MAVISP & \(=1\) \\
XM(1) & \(=\)
\end{tabular}

Description
Specifies mass averaged ISP option
Ratio of mass flow rate of each zone (zone 1 z inner zone) to the total mass flow rate.

When a MDC problem has been specified, the input data set \$TRANS is required for the transonic calculation.
Item \begin{tabular}{ll}
Description & \begin{tabular}{l}
Assumed \\
Value(s)
\end{tabular} \\
\hline
\end{tabular}
\$TRANS \(\quad=\quad\) Namelist, read in subroutine TRAN
\(X M(1) \quad=\quad \begin{aligned} & \text { Ratio of mass flow rate of each zone (zone } 1 \\ & \\ & \text { (need inner zone) to the total mass flow rate. }\end{aligned} \quad 50 * 0\)
 (need not be input if MAVISP \(=1\) option spe-
 cipied and XM input in \$øDK).
ALI \(\quad=\quad\) Number of degrees initial line will be disp-
 laced downstream. The program assumes ALI
 is zero. If ALI is not zero, a symmetric
 throat is required (RWTD \(=\) RWTU).
IBUG \(\quad=\quad \begin{aligned} & \text { If input is nonzero, intermediate transonic } \\ & \text { output will be printed. }\end{aligned}\)
IBUG \(\quad=\quad \begin{aligned} & \text { If input is nonzero, intermediate transonic } \\ & \text { output will be printed. }\end{aligned}\)

Number of points to be placed on the initial
A sinusiodal distribution of the following form is used:
\(r_{i}=\left[r_{w} \sin \left(\frac{i}{N} \frac{\varepsilon_{1}}{2}\right)\right]_{i}=0,1,2 \ldots N\)
where \(N=M P\) and \(\varepsilon_{1}\) is EXP1 described below.
Editing is done to control the spacing, see TRUTN and DRITMI.
\begin{tabular}{|c|c|c|c|}
\hline EXP1 & \(=\) & \(\varepsilon_{1}\) for sinusoidal distribution. & 1.2 \\
\hline \multirow[t]{3}{*}{DRMIN} & \(=\) & Editing criteria for sinusoidal distribution. The first initial such that below the wall, \(r_{1}\), will be spaced such that & . 01 \\
\hline & & \(r_{w}-r_{1}>\min [\) dRMIN * RWTD, .025] & \\
\hline & \multirow{3}{*}{\(=\)} & If a value of SHØCK=1 is to be input in \(\$ \mathrm{MCO}\), then set DRMIN \(=.001\) & \\
\hline \multirow[t]{2}{*}{DRMIN1} & & Editing criteria for sinusoidal distribution. Points on the initial line will be spaced such that & \(5 * 10^{-4}\) \\
\hline & & \[
r_{n}-r_{n-1}>\operatorname{DRMINT}
\] & \\
\hline
\end{tabular}
\$END

This data set contains the input items for the supersonic Method of Characteristics (MOC) module. The items are divided into four types, which are described in the following subsections.
```

5.7.7 Thumanteristias mesh Contmol

```


```

6.7.4 Inputs from DER
U.7.5 iExit flant Option

```

Often no \(\$ M O C\) input is necessary since the default values are usually suf-
ent. ficient.
\begin{tabular}{|c|c|c|c|}
\hline Item_Name & Input Quantity & Units & Assumed Values \\
\hline \$MOC = & Namelist name, read by subroutine CHAR. & & \\
\hline DS & insertions will be made such that successive points along streamlines will not be separated by more than \(D S * M^{1 / 2}\) as described in Subroutine CNTRL. & none & . 15 \\
\hline DTWI & \begin{tabular}{l}
\(\Delta \theta_{t \omega}\) criterion for insertion in \\
subroutines INPT and DSPT as described in Subroutine CNTRL.
\end{tabular} & degrees & 2. \\
\hline DWWCI & throat wall point insertion control parameter \(\Delta \theta\) wc described in Subroutine CNTRL. & degrees & . 5 \\
\hline DWWI & wall point insertion control parameter \(\Delta \theta{ }_{\omega}\) described in Subroutine CNTRL. & degrees & 3. \\
\hline EPW & the program will insert such that the wall end point is located within a tolerance EPW. & none & . 01 \\
\hline ES & \(\varepsilon_{s}\) for point editing as described in Subroutine CNTRL. & none & . 0001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Item Name & Input Quantity & Units & As sume Values \\
\hline ETHI & \begin{tabular}{l}
\(\varepsilon_{\theta}\) for point editing as described \\
in Subroutine CNTRL.
\end{tabular} & degrees & . 25 \\
\hline IMAX & \begin{tabular}{l}
the maximum number of iterations to be allowed while attempting to achieve a relative convergence \\
for the flow variables of \(5 * 10^{-5}\).
\end{tabular} & none & 10 \\
\hline \(I M A X F=1\) & the program will terminate the case if a printed point requires maximum iterations for convergence. & none & 0 \\
\hline or & & & \\
\hline \(I M A X F=0\) & the program will continue the case after IMAX iterations per point have occurred. & & \\
\hline \(\operatorname{STOPIL}=\) & if a value other than zero is input, then the program will construct the initial data line for the MOC and call EXIT at the end of subroutine CHAR. No MOC calculations will be done. & none & 0. \\
\hline TEXPLI = & input temperature below which explicit integration for the species concentrations will be used (not recommended). & \[
\begin{aligned}
& { }^{{ }^{\circ} R} \\
& { }^{o_{K}} \text { if SI }
\end{aligned}
\] & \begin{tabular}{l}
0. \\
Units
\end{tabular} \\
\hline
\end{tabular}

The shock option can be run for the following problem types:

TDK,
TDF,
PFGOPT.

The shock option cannot be run for the following problem types:

TDE,
TTDK.

There are three methods by which the shocks can be located, as discussed below.
a) Induced Shock option

If the MOC induced shock option is requested (SHøCK=1, ISHCK=2), then the mesh construction begins at the intersection of the initial data line and the flow axis. RRC's are constructed. After the nozzle wall is reached, succesive RRC's may cross. If so, a shock is inserted into the flow field at the cross-over point. Next, LRC's are constructed starting at the wall, and the region up to the cross-over point is filled in. The LRC construction then continues with the - 1 st point on each LRC being a right running shock point. When the axis is reached, the shock is reflected as a left running shock. The program then reverts to a RRC construction scheme and the shock is traced until it reaches the wall. It is then reflected from the will, and is calculated as a right running shock propagating towards the flow axis. Only one shock will be traced, but multiple reflections are allowed.

In the case of an attached shock (ISHCK=3), the mesh construction is the same as for the induced shock up to the requested \(x\)-location (XA) of the attached shock. Then, instead of looking for a crossing of RRC's, a shock point is attached to the wall at the \(x A\) location. The shock strength is determined by the deflection angle of the wall at the xA location. The shock is then traced just like in the case of an induced shook.

\section*{c) Multiple Shock option}

Two shocks can be traced with the multiple shock optioris (ISHCK=6 or 7). The first shock can be either an induced shock (ISHCK=6) or an attached shock (ISHCK=7), but the second shock must be an attached shock. The \(x\)-location of the second attached shock is specified by the variable XB.

The mesh construction for this option is now described. The first shock is calculated as above until the end of the nozzle is reached. Next, the calculation of the second shock and part of the flow field affected by it is repeated. In this construction, the first shock may not go to the center line and the two shocks must not cross over inside the nozzle.
\begin{tabular}{ll}
ITEM_NAME \(\quad\) & INPUT_QUANTITY \\
SHOCK= & \\
& If SHOCK=O, shocks will be ignored \\
& construction. \\
& If SHOCK=1, a shock will be inserted \\
& traced as described above.
\end{tabular}

ASSUMED
VALUE
ISHCK=
\(X A=\)
\(X B=\)

\subsection*{6.7.3 Print Control}

6.7.4 Inputs from DER, Reference 24.
\begin{tabular}{|c|c|c|c|}
\hline & & Input Quentity & Units \\
\hline ¢FBAR & \(=\) & Overall mixture ratio including condensed phases. For print out only. & none \\
\hline ETABAR & = & Overall evaporation efficlency, 1.e. the ratio of gas flow to total propellant flow at the \(\operatorname{throat.~}^{\text {teTABAR }} I_{\text {sp }}\), total \(=I_{\text {sp, gas }}\) & none \\
\hline DRPISP & = & Ratio of total condensed phase momentum to the mass flow at the throat. Not used, reserved for future use. & lbf sec/ \(/ \mathrm{bm}\) (if SI Units then N sec/kg) \\
\hline
\end{tabular}

\subsection*{6.7.5 Exit Plane Option}

On option, the TDK method of characteristics calculation will continue the mesh construction through the exit plane of the nozzle and print a sumuary of the exit plane properties.(not operational for the shock option.)
\begin{tabular}{|c|c|c|c|}
\hline Item & & Description & \begin{tabular}{l}
Assumed \\
Value(s)
\end{tabular} \\
\hline \multirow[t]{4}{*}{EXITPL} & \(=\) & Exit plane calculation requested if set .TRUE. (not operational for shock option.) & .FALSE. \\
\hline & & For the case when two TDK runs are to be made, i.e., when & \\
\hline & & IRPEAT \(=1\), or 2 in \$DATA & \\
\hline & & then the exit plane will be computed for the second TDK run, but not for the first TDK run. & \\
\hline \$END & & & \\
\hline
\end{tabular}
```

6.8 Boundary Layer Module_(BLM)_Input_Data, \$BLM

```

This input data set is requiredif the BLM is to be executed, i.e., if BLM \(=1.0\) was input in the \$DATA namelist. Most of the data required by the BLM is communicated automatically by the \(\quad D E\) and/or MøC modules, or is preset as assumed values. Hence, these data items do not necessarily need to be input to the BLM module. However, any value that is read in will override the assumed or communfated value.

The input data items to the BLM module are as follows.
\begin{tabular}{|c|c|c|c|c|}
\hline Item & & Description & Units & Assumed
Value(s) \\
\hline \$ BLM & \(=\) & Namelist name, read in Subroutine INPUTB & & \\
\hline WD®T2D & = & \(\dot{w}_{2 D}\), nozzle mass flow. & 1b/sec & 1. \\
\hline & & If the MOC module was not executed, a value can be input here so that a boundary layer ISP decrement can be computed. & & \\
\hline IPRNT & = & If IPRNT \(=1\), then print the boundary layer profiles at every 5 th station. & - & 0 \\
\hline
\end{tabular}

Gas properties that are required by the BLM are \(\quad \gamma_{\mathrm{C}}, \mathrm{C}_{\mathrm{p}}, \quad \mathrm{R}\), and \(\mu\) versus \(T\), and a value for the Prandtl number, \(P_{r}\), and the total enthalpy, \(h_{T}\). Ordinarily these values are supplied automatically by the ODE module. The tables are prepared by ODE using a series of (\(T, S\)) equilibrium (or frozen) calculations, where \(T\) varies from \(600^{\circ} \mathrm{R}\) to \(7000^{\circ} \mathrm{R}\) at \(200^{\circ} \mathrm{R}\) increments. The chamber entropy value is used for \(S\). Values at \(100^{\circ} \mathrm{R}\) are then extrapolated and added to the table. The tables are printed with the BLM output. Constants defining the gas viscosity, \(\mu\), and the Prandtl number, \(P_{r}\), are also prepared by the ODE module.

Values for any or all of the above items can be input and used in place of the values prepared by ODE. If the ODE module has not been run, then all of the items listed below must be input. The assumed values are for air with constant \(C_{p}\).

ITEM
DESCRIPTION
UNITS
ASSUMED
VALUE (S)

2*1.4 \(\gamma\), versus \(T\).

CPO (1) = Table of specific heat at constant pressure, \(C_{p}\), versus \(T\) \(\mathrm{ft} / \mathrm{sec}-\mathrm{R}\) \(2 * 6006\)

HS (1) = Table of static enthalpy, \(h\), versus \(T\)
\(f^{2}{ }^{2}\)
\(\mathrm{ft}^{2} / \mathrm{sec}^{2}\)
```

HTOTAL= Total enthalpy, hT, such that ft % /sec
n}\mp@subsup{T}{}{=h(T
RRO(1) = Table of gas constant,
10-ft/1bmor 2*53.3
R=1546.33/Mw vs T.
TO(1) = Temperatures corresponding to
the entries in CKO, CPO, RRO,
and HS arrays, above.
NTAB = number of values entered in the -
3 CKO, CPO, and TO arrays. 2 s NTAB s 101 .
RMUI $=$ Reference viscosity, $\mu_{0}$, where lbm/ft-sec. . $605934 * 10^{-4}$ viscosity is expressed as

$$
\mu=\mu_{0}\left(T / T_{0}\right)^{\omega}
$$

TI $=$ reference temperature, $T_{0}$, for $\quad{ }^{\circ} \mathrm{R} \quad 6032$ viscosity. See RMUI, above.
QMEGA = Viscosity exponant, w. See - . 76 RMUI, above.
PR = Molecular Prandtl number, Pr.

Note: The above defalt values for $\mu_{o}, \omega$, and $\operatorname{Pr}$ are or air.

850150


Note: The above default values for $\mu_{0}, \omega$, and $\operatorname{Pr}$ are for air.

### 6.8.2 Boundary Layer Edge Conditions

The coordinates for the boundary layer are specified in the RINØ versus XINØ table. Conditions at the inviscid edge are specifed in the UED, TED, and PED versus XINO tables. Conditions at the wall are specified in the TQW and CQW versus XTQW tables. The program will redistribute the input stations (up to 501 total) in order to have 101 x-stations uniformly distributed per segment, except for the first five stations which are generated non-uniformly. The input values of $y, U_{e}, T_{e}, P_{e}, T_{w}\left(o r q_{w}\right)$, and $(\rho V)_{w}$ are interpolated at the new $x$-stations and used in the boundary-layer calculations.

Values of RINO versus XINO and the conditions at the inviscid edge of the boundary layer will be automatically transmitted from the MOC module if it has been run. Otherwise, they must be input here. See the description of IøFF in \$DATA. Conditions at the wall must always be input here.

| Item |  | Description | Units | Assumed Value(s) |
| :---: | :---: | :---: | :---: | :---: |
| XIN®(1) | $=$ | $x_{e}$ axial coordinate | none | - |
| RINO(1) | = | $\mathrm{y}_{\mathrm{e}}$, radial coordinate | none | - |
| UED(1) | $=$ | $U_{e}$, gas velocity at the inviscid edge | $\mathrm{ft} / \mathrm{sec}$ | - |
| TED(1) | $=$ | $\mathrm{T}_{\mathrm{e}}$, gas static temperature at the inviscid edge | ${ }^{\circ} \mathrm{R}$ | - |
| PED(1) | = | $P_{\text {e, gas pressure }}$ at the inviscid edge | psi | - |
| NXIN0 | = | number of items in the XINØ, RIND, UED, TED, and PED tables. $2 \leq \text { NXINO } \leq 501$ <br> Do not input if IøFF was input in \$DATA. | none | - |



* Default values are set for an adiabatic wall, i.e., $I H F L A G=1$, and
$T Q W(1)=501 * 0$.
6.8.3 Integration Step Size Control.

Item $\quad$ Description | Assumed |
| :--- |
| Units |

$=\quad$ Number of Segments, $1<$ NSEGS $\leq 10$
none
The boundary layer wiTT be divided into segments of equal length unless values are input into XSEG, below.

| NISPS(1) $=$Number of Integration Steps per <br> Segment, $\leq 101$ per segment. | none |
| ---: | :--- |

where $z_{c}$ and $z_{m}$ are the end of the cylindrical combustion chamber, and the end of the nozzle, respectively, as shown in Figure 6-1 .

If the boundary layer is to be extended upstream of $z_{c}$, the usual procedure is to input

$$
\operatorname{XSEG}(1)=\operatorname{XINO}(1)
$$

and XIND(1) through XIND(IOFE), etc., of \$BLM are input by the user as described in \$DATA under input item IDFF.
NTR Station at which transition to none 3

Note: The default value of NSEGS=1 is often too small for reliable results. The user must specify enough segments and integration steps (NISPS) so that reliable results are computed. In general, nozzles with high area ratio and/or low Renolds number flow will require more integration steps. See example cases in Section 7.

When an engine is cooled using a regenerative device, propellant (usually fuel) is routed around the nozzle so that heat is transmitted from the boundary layer to the coolant. This heat is then returned to the combustion chamber in the form of increased propellant enthalpy. When the nozzle wall temperatures are assumed known (IHFLAG $=0$ option), the BLM will calculate the heat flux from the boundary layer to the wall, $h_{W}(B T U / f t-s e c)$. These values can also be imput directly (IHFLAG $=1$ option). If the coolant circuit extends from position $x_{e}$ to position $x_{0}$ and operates at an efficiency, $n$, then the propellant enthalpy entering the chamber will be increased by

$$
\begin{equation*}
\Delta H=\frac{1}{\dot{H}_{T}} \eta \int_{x_{0}}^{x_{w}} h_{w} d A \tag{BIU/lbm}
\end{equation*}
$$

where
$\boldsymbol{H}_{\mathrm{T}}$ is the total engine mass flow rate
$d A$ is the nozzle surface area differential, $2 \pi r d s$ Using the method outlined above, the BLM will compute increments of propellant enthalpy for up to 3 fuel or oxidizer circuits and print out the resultant enthalpy increments. These can be added to a later computer run by using the DELH1 (1) input array. If BLM is to be automatically rerm, then the enthalpy increments will automatically be stored into DELH1(1) for the second pass through ODE, ODK, and TLK. These enthalpy increments can be calculated in two ways. If the enthalpy increase is distributed equally throughout the chamber, then

$$
\Delta H_{i} \quad=\Delta H
$$

i.e.

$$
\operatorname{DELH} 1(1)=\Delta H, \Delta H, \ldots . \text { etc. }
$$

The second method is to assume that a fuel circuit adds enthalpy only to fuel, and an ox circuit adds enthalpy only to ox. It follows that
for a fuel circuit

$$
\Delta H_{1}=\left(\frac{r+1}{r_{1}+1}\right) \Delta H
$$

and for an ox circuit

$$
\Delta H_{i}=\left(\frac{r+1}{r_{i}+1}\right) \frac{r_{i}}{r} \Delta H .
$$

where $r_{1}$ is the mixture ratio of zone 1 and $r$ is the overall chamber mixture ratio.

For either method, the steady state engine cycle balance can be approximated as follows. First, calculate "adjusted tank enthalpies" for the fuel and for the oxidizer and input these on the reactant cards. These values must approximate the energy content of the propellant entering the main combustion chamber accounting for all energy gains and losses, except heat returned to the main combustion chamber by the regen cooling circuit(s). Estimates for these amounts are to be entered using the DedH1 (1) input array. An estimate of zero is usually satisfactory. Corrected estimates will be calculated by BLM and stored in DELH1(1) for a second pass through IDK (or TDE). A second pass using these values will be executed automatically if IRPEAT $=1$ was input in the \$DATA namelist.

$\mathrm{XCO}(1) \quad=\quad$| the Ith entry is the starting position for |
| :--- |
| the Ith cooling circuit*. |$\quad 3 * 0$


| $\mathrm{XCE}(1)$ | $=,$the Ith entry is the ending position for <br> the Ith cooling circuit*. |
| ---: | :--- |


$\operatorname{ETAC}(1) \quad=\quad$| the Ith entry is the efficiency for the Ith |
| :--- |
| cooling circuit. |$\quad 3^{* 1}$

$\operatorname{\sigma FC}(1) \quad=\quad$ Type of coolant for the cooling circuit: $\quad 3 * 0$

| $\emptyset F C(I)=0$. If there is no ith circuit <br> $\emptyset \operatorname{FC}(I)=1$. if the Ith circuit is oxidizer <br> $\emptyset F C(I)=2$. if the Ith circuit is fuel <br> I $\leq 3$ |
| :---: |
|  |  |
|  |  |

$\operatorname{DISTRB}(1)=\operatorname{Flag}_{\text {ments }}$ for method of distributing $\Delta H$ incre- $\quad 3^{*}$.
$\operatorname{DISTRB}(I)=0$. for equal distribution of heat to chamber
$\operatorname{DISTRB}(I)=1$. for distribution of ox heat to ox in chamber, and fuel heat to fuel in chamber.

The Ith entry is for the Ith circuit.

[^1]The input described below is used to control plotted output from the BLM. The plot options available from BLM are:

1) Momentum thickness, $\theta$, vs. axial position.
2) Displacement thickness, $\delta^{*}$, vs. axial position.
3) Wall Temperature, $T_{W}$, vs. axial position.
4) Velocity profiles at specified area ratios, or at specified axial locations.
5) Temperature profiles at specified area ratios, or at specified axial locations.
Example plots are presented in Figures 6-2 through 6-5 for types 1 through 5, above.

| Item |  | Description | Assumed Value(s) |
| :---: | :---: | :---: | :---: |
| IPRØF | = | If IPROF $=0$, then supersonic area ratios are input in APROF. | 0 |
|  |  | If IPRøF $=1$, then axial locations, $x / r_{t}$, are input in APR $\varnothing F$ |  |
| (APROF (1) | = | Area ratios (or axial locations, | 20*0 |
|  |  | see IPROF) at which velocity ratio |  |
|  |  | and temperature ratio profiles will |  |
|  |  | be plotted. Two frames per area |  |
|  |  | ratio will be plotted: $\mathrm{U} / \mathrm{U}$ edge ${ }^{\text {vs. }}$ |  |
|  |  | $\mathrm{y}_{\text {edge }} \text { and } \mathrm{T} / \mathrm{T}_{\text {edge }}^{\text {vs. } \mathrm{y} / \mathrm{y}} \text { edge }$ |  |
| NPR0F | = | Number of area ratios (or axial | 0 |
|  |  | locations) requested in APROF. NPROF $<20$. |  |
| KDTPLT | = | If $K D T P L T=1$, then displacement thickness, $\delta^{*}$, vs. axial location, $\mathbf{x}$, will be plotted. | 0 |
| KMTPLT | = | If $K M T P L T=1$, then momentum thickness, $\theta$, vs. axial location, $x$, will be plotted. | 0 |
| KTWPLT | = | If KTWPLT $=1$, then wall temperature, $T_{w}$, vs. axial location will be plotted. | 0 |

\$END


$$
6-83
$$


Figure 6-3: Boundary Layer Displacement Thickness vs Axial Position



6-86

### 6.9.1 Constant Properties Gas Option.

The TDK program contains a useful option by which the real gas chemistry can be replaced by constant properties chemistry. Multiple zones can be calculated. The output includes the nozzle divergence efficiency, $\eta_{\text {DIV }}$, (see Section 5 , subroutine PRINT).

The constant properties gas option is run by input of PFCDPT $=1$ in \$DATA. Sample input data for the constant properties gas option is listed in Table 6-13.

Only the \$DATA, SIRAN and \$M QC data sets are to be input. These data sets are input as described in Sections 6.3, 6.6 and 6.7 , respectively, with the following required additions to the \$TRANS Namelist.
$\begin{aligned} G(1)= & \quad \text { Value of specific heat ratio, } \gamma \text {, for each zone, inner to outer, the } \\ & \text { number of zones is specified in \$DATA. }\end{aligned}$
PSI $=$ Chamber pressure in $1 \mathrm{bs} / \mathrm{in}^{2} .\left(\mathrm{N} / \mathrm{m}^{2}\right.$ if SI units $)$
$\mathrm{XP}(1)=($ in $)$
$\mathrm{XP}(1)=$ (From Table 6-9) All assumed $=1$, if not input.
$T C(1)=\begin{gathered}\text { Chamber } \\ \text { units) }\end{gathered}$ temperature, ${ }^{O_{R}}$, for each zone, inner to outer. ( ${ }^{\circ} \mathrm{K}$ if $S I$
RGC(1) $=$ Real gas constant, $\mathrm{ft}^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{R}$, (i.e., 49721/M, $=\mathrm{g}^{*} \mathrm{~J}^{* 4} .986 / \mathrm{M}_{\mathrm{W}}$ ) for each zone, inner to outer. $\left(\mathrm{m}^{2} / \sec ^{2} \mathrm{o}_{\mathrm{K}}\right.$ if SI units). Not needed if XMW is input
$\operatorname{XMW}(1)=$ Gas Molecular Weight. If input then $\operatorname{RGC}(1)$ need not be input.

Table 6-13. Sample Case for the Constant Properties Gas Option.

```
TITLE SAMOLE CASE ONC
DATA
 SDAPA
 PFGOPTzl.
 NZONES=1。
 RSI=2.
 RWTU=2, RNTD=,5.
 THETA=35,6738.
 IWALLEA.
 NWS =11.
 RS(2) \(=1.10943 .1 .20475 .1 .47910 .1 .73375,2.04940 .2 .45430\).
 \(29(2)\) 3.68226,4.44772,5,79198,6.32441,
 2S(2)= 39575, 53008,.82905.1.19473,1.66923,2.32795,
 \(4.687 .17 .7 .68599 .1 \mathrm{C} .9601,13.3114\).
 THE=11.5813.
 SEVD
 STRATS
 \(6=1.23\).
 PSAE100,
 TC=5500.
 \(X M_{N}=20\).
 \(X M=1\) 。
 4LIEO.
 SEVD
 SMOC
 SEVO
```

OS?
OF POOR QUALITY

The following defines nominal values to which varlables will be set if not input. If a varlable is net Histed, no nominal value is set. Variables are set in the subroutine containing the Namelist read..
\$ØDE, set in subroutine $\varnothing D E S$

| DELH(I) | = 0. , DELH1 (I) |  |
| :---: | :---: | :---: |
| ECRAT | $=0$. |  |
| EQL | . TRUE. |  |
| EQTHST | = .FALSE. |  |
| ERATID | $=$. FALSE. |  |
| FA | . FALSE. |  |
| FPCT | . FALSE. |  |
| FRøZ | = .TRUE. |  |
| IøNS | = .FALSE. |  |
| KASE | $=0$ |  |
| LIS TSP | $=$.FALSE. |  |
| $\phi F$ | $=$. FALSE. |  |
| OFSKED (I) | $=0$. |  |
| $P(1)$ | $=0$. |  |
| PCP ( I ) | $=0$. |  |
| PSIA | $=$. FALSE. |  |
| RELERR | $=.0005$ |  |
| RKT | $=$. FALSE. |  |
| SI | $=$. FALSE |  |
| SUBAR(I) | $=0$. |  |
| SUPAR(I) | $=0$. |  |
| WFL $\varnothing$ W | $=0$. |  |
| XP(I) | $=1$. |  |

$\$ \varnothing D K$, set in subroutine $\varnothing$ DKINP

| C $\varnothing$ NDEL | $=1.0 \mathrm{E}-6$ |
| :--- | :--- |
| DEL | $=.001$ |
| EPS | $=0$. |
| EPSEL | $=1.0 E-5$ |
| HI | $=.01$ |
| HMAX | $=.10001$ |
| HMIN | $=.005$ |
| IDYSCI | $=0$ |
| IWALL | $=1$ |
| JF | $=0$ |
| JPFLAG | $=0$ |
| JPRNT | $=-1$ |


| TEXCLI | $=0$. |
| :--- | :--- |
| XM (I) | $=0$. |
| XMFTST | $=1.0 \mathrm{E}-3$ |

\$TRANS, set in subroutine TRAN

| ALI | $=0$. |
| :--- | :--- |
| IBUG | $=0$ |
| MP | $=50$ |
| PMCRIT | $=1$. |
| PMDEG | $=1$. |
| XM (I) | $=0$. |

\$TDK, set in subroutine CHAR

| DRPISP | $=0$. |
| :--- | :--- |
| DS | $=.15$ |
| DTWI | $=2$. |
| DWWI | $=3$. |
| EPW | $=.01$ |
| ES | $=.0001$ |

\$TDK (cont'd)

| ETABAR | $=1$. |
| :--- | :--- |
| ETHI | $=.25$ |
| IMAX | $=10$ |
| IMAXF | $=0$ |
| MASSFL | $=1$ |
| NC | $=0$ |
| NDS | $=1$ |
| N1 | $=1000$ |
| N2 | $=1000$ |

## this page left intentionally blank

## 7. INPUT AND OUTPUT FOR SAMPLE CASES

In this section of the report input and output are presented for three engines, as follows:

1) the stratified flow engine.
2) the Pratt and Whitney RL-10 engine (prototype for OTV propulsion).
3) the Rocketdyne Advanced Space Engine, ASE, (prototype for OTV propulsion).

Complete input and output are given for the first case. For the next two cases only the program input and the summary output are given. All of the calculations were performed using a DEC PDP $11 / 750$ VAX computer system.
this page left intentionally blank

### 7.1 THE STRATIEIED_FLOW ENGINE, CASE 1

This test case is the same one that has appeared in all earlier versions of the TDK program manual. It is similar to the Rocketdyne stratified flow engine that is presented in CPIA 246, Ref. 1.

On the following pages input and output for the problem are presented. The engine operates with liquid oxygen/gaseous hydrogen propellants. The injector is assumed to produce a stratified nozzle flow with a mixture ratio of 6.5 near the axis, 8.0 in the central zone, and 5.0 near the wall. Equal mass flow is assumed for each of these zones. Each zone is assumed to have a different stagnation pressure. The pressures are 300,285 , and 270 psia from axis to wall.

The modules used in performing the analysis are $O D E, \quad O D K$, TDK, and BLM. A brief description of the computer output is presented below, followed by Table $7-1$ which is a complete listing of the computer program print out.

The output sequence for case 1 is outlined below:

1. Program name.
2. All input data cards are listed.
3. $\quad D E$ subprogram output.
a. Fuel/0xidizer mixture description and list of
species considered.
b. Equilibrium calculation output; Frozen calculation
c. Summary of. Equilibrium Contraction Ratio
4. $\quad$. $D K$ subprogram output.
a. Listing of Reactions, etc., cards as they are read.
b. Species list from Reactions.
c. Reaction table.
d. Selected species list for kinetic expansion.
e. Dissociation/Recombination reaction rate ratios.
f. Initial and Throat conditions for one dimensional ØDK expansion.
5. 2 and 3 above are repeated for each zone with redundant print omitted.
6. ODK Isp summary.
7. Inputs to the transonic calculations and the calculated results are printed. These include $\gamma$, mass flow for each zone and, the slipline locations, $Y_{n}$.
8. Number of points on the initial line, characteristics mesh control parameters and table of $x$ vs. $r$ wall coordinates are printed. The wall table is used by TDK to define the nozzle wall downstream of the throat plane (see Subroutine WALL).
9. A table of $P, \rho, \theta, V, r, x$, and mass flow rate is printed corresponding to the initial data line for starting the method of characteristics calculations. The method used to calculate the mass flow rate, $\dot{m}$, and the characteristic velocity, $C^{*}$, (also printed) is described in Subroutine CHAR.
10. Results of the method of characteristics calculations are then printed. The calculations begin at the initial data line (until the axis is reached) and follow each left running characteristic to the wall.
11. TDK performance summary.
12. BLM title page.

BLM input geometry, and values of velocity, temperature, and pressure at the edge.
13. Gas properties table supplied by the ODE module.
14. BLM geometry and edge conditions that are equally spaced in $X$.
15. BLM output data corresponding to 14 , above.
16. Nozzle wall geometry displaced inwards a distance $\delta^{*}$ normal to the input wall contour.
17. TDK performance summary, including the effects of the boundary layer.

$$
\begin{array}{ll}
\text { TABLE 7-1. } & \text { INPUT AND OUTPIJT FOR THE STRATIFIED } \\
& \text { ENGINE TEST CASE }(3 \text { ZONES }) .
\end{array}
$$


7-5

SSET NOVERIFY

## ORIGNAL FGQE IS OF POOR QUALITY



|  |
| :---: |
|  |  |
|  |
|  |
|  |
|  |
| ¢imin |
|  |  |



## ORIGiNAL PAGE IS Of POOR QUALITY


calculate doe area ratio and pressure schedules for zone 1

.


mole fractions

note weight fraction of fuel in total fuels and of oxidant in total oxidants (SF) STANOS FOR (SHIFIING FROZEN)

쓰줄







- $\sim m$ -

ORIGINAL PAGE IS
Of POOR QUJEITY



$$
\text { expansion conditiows kinetic expansiow area ratio } 2.000
$$



Of POGir tuAlia


frozen transport properties calculated from equilibrium concentrations



## ： <br>  

## ถ్లెప్రైర్లైચコ

 Nペ゚ロミさきる 전ㅈ⼰NNNN
 ふへった

一No． 1100

$\qquad$

## ORIGINAL PAGE IS OF POOR QUALITY


> $30 \cdot 322820862^{\circ} 0$
$60 \cdot 358919941^{\circ} 0$
$10+358151 \angle 91^{\circ} 0$
$10 \cdot 3658821 \varepsilon \varepsilon^{\circ} 0$
> $\varepsilon 0+350818215.0$
$10+381980 \angle \geqslant 1.0$

performance parameters

VACUM THRUST COEFFICIEN (SEC)
VACUM SPECIFIC IMPULSE
integration parameters

STEP SIZE |  | CHEMICAL COMPOSITION |  |  |
| :---: | :---: | :---: | :--- |
| MASS FRACTION | MOLE FRACTION | NO. | SPECIES |
| $0.48832833 E-02$ | $0.20283044 E-02$ | 2 | H |
| $0.11080028 E-01$ | $0.91196798 E-01$ | 4 | H2O |
| $0.15724363 E-03$ | $0.93137278 E-04$ | 6 | 0 |
| $0.60542941 E-01$ | $0.59066691 E-01$ | 8 | 02 |

 (6.) ( a. -




$$
\begin{array}{cc}
\mathrm{J} 3 / 61 & \mathrm{HZ} \\
\mathrm{~J} / 774 & 0 \\
\\
\\
\text { EFFECTIVE OXIDANT } \\
\text { HPP (1) } \\
-0.48698235 \mathrm{E}+02 \\
\text { B0P(1, } \\
0.0000000 \mathrm{E}+00 \\
0.62126074 \mathrm{E}-01 \\
0.3783902 \mathrm{E}-04 \\
0.13742865 \mathrm{E}-03
\end{array}
$$

### 465.7024 0.0000 0.0000 .465 .7024

ENTHALPY IN BTU/LBM :
FROM REACANTS
FROM DELH()
FROM DELHI()
TOTAL.
$P C=270.0 \mathrm{PSIA}$
THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION


$00+30000^{\circ}$


WElGHI fRACIION Of FUEL IN TOTAL fUELS AND of OXIDANT IN TOTAL OXIDANTS
(SF) STANDS FOR (SHIFTING FROZEN)



MOLE FRACTIONS
7-21
frozen transport properties calculated from equilibrium concentrations

0.71397

$7-22$

ORIGINAL PAGE IS
OF POOR QUALITY





|  | DISSOCIATION RECOMBINATION REACTION RATE RATIOS |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | ZONE $=3$ |  |  |
|  |  |  |  |  |
| $0.10000 E+01$ | $0.25000 \mathrm{E}+02$ | $0.40000 \mathrm{E}+01$ | $0.10000 \mathrm{E}+02$ | $0.10000 \mathrm{E}+01$ |
| $0.25000 \mathrm{E}+02$ | $0.15000 \mathrm{E}+01$ |  |  |  |
| $0.10000 \mathrm{E}+01$ | $0.12500 \mathrm{E}+02$ | $0.50000 \mathrm{E}+01$ | $0.17000 \mathrm{E}+02$ | $0.10000 \mathrm{E}+01$ |
| $0.12500 \mathrm{E}+02$ | $0.60000 \mathrm{E}+01$ |  |  |  |
| $0.10000 \mathrm{E}+01$ | $0.12500 \mathrm{E}+02$ | $0.50000 \mathrm{E}+01$ | $0.50000 \mathrm{E}+01$ | $0.10000 \mathrm{E}+01$ |
| $0.12500 \mathrm{E}+02$ | $0.11000 \mathrm{E}+02$ |  |  |  |
| $0.10000 \mathrm{E}+01$ | $0.12500 \mathrm{E}+02$ | $0.50000 \mathrm{E}+01$ | $0.50000 \mathrm{E}+01$ | $0.10000 \mathrm{E}+01$ |

- $\sim m$ o







## ORIGINAL PAGE IS OF POOR QUALITY




$$
\begin{aligned}
& \text { Owhen } \\
& \text { OF porm }
\end{aligned}
$$



$\times$



## ORIGMAL PAGE is OF POOR QUALITY

| LRC | ID | $R^{2}$ |
| :---: | :--- | :--- |
| 1 | 1 | 0.98981 |
| 1 | 5 | 1.00001 |
| 1 | 5 | 1.00006 |
| MASS FLOW POINT |  |  |

$\begin{array}{ccl}\text { LRC ID } & \text { R } \\ 2 & 1 & 0.98535 \\ 2 & 5 & 1.00012 \\ \text { MASS FLOW POINT }\end{array}$
y OI J87

$\begin{array}{ccc}\text { LRC ID } & \text { R } \\ 3 & 1 & 0.98008 \\ 3 & 5 & 1.00023 \\ \text { MASS FLOW POINT }\end{array}$ |  |  |  |
| :---: | :---: | :---: |
| LRC ID |  | $R$ |
| 4 | 1 | 0.97402 |
| 4 | 5 | 1.00039 |
| MASS | FLOW POINT |  |

$$
\begin{aligned}
& \text { MASS FLOW POINT } \\
& \text { LRC in }
\end{aligned}
$$

$$
\operatorname{LRC}_{5} 10, \quad R
$$

$\begin{array}{ccc}\text { LRC } & & R \\ 5 & 1 & 0.96717 \\ 5 & 5 & 1.00062 \\ \text { MASS FLOW POINT }\end{array}$

$$
\begin{array}{ll}
\text { LRC ID } & \text { R } \\
6 & 1 \\
6 & 0.95953 \\
\text { MASS FLOW POINT }
\end{array}
$$



| $\alpha$ |
| :---: |
| 0 |
| 0 |
| $\vdots$ |

$\begin{array}{cll}\text { LRC } & \text { ID } & \text { R } \\ 8 & 1 & 0.94196 \\ 8 & 5 & 1.00168 \\ 8 & 5 & 1.00198 \\ \text { MASS } & \text { FLOW POINT }\end{array}$
LRC ID R
$\begin{array}{cll}\text { LRC } & \text { ID } & R \\ 9 & 1 & 0.93204 \\ 9 & 5 & 1.00234 \\ 9 & 5 & 1.00273 \\ \text { MASS } & \text { FLOW POINT }\end{array}$
LRC IT R
$R$
0.92138

| 0 |
| :--- |
| 0 |
| 0 |
| - |

$\begin{array}{lc}X & \text { MACH } \\ 0.03602 & 1.097 \\ 0.06835 & 1.226 \\ 0.07382 & 1.234 \\ =1.830737 E+00\end{array}$
$x$ MACH
$\begin{array}{ll}\mathrm{X} & \text { MACH } \\ 0.04144 & 1.093 \\ 0.07968 & 1.243\end{array}$
$\begin{array}{cc}0.07968 & 1.243 \\ 0.08557 & 1.252 \\ 10= & 2.107963 E+00\end{array}$
$P$ (PSI)
135.36
111.94
110.63
1.349475
I (DEG.R)
5287.64
5157.79
5149.86

I (DEG.R)
P (PSI)
135.99
109.26
1 (DEG.R)
5290.69
중
$\begin{array}{ll}\mathrm{X} & \text { MACH } \\ 0.04717 & 1.089 \\ 0.09184 & 1.269\end{array}$
$\begin{array}{cll} \\ \text { LRC } & 10 & R \\ 11 & 1 & 0.90999 \\ 11 & 5 & 1.00423\end{array}$
MASS FLOW POINT
$\begin{array}{ll}\text { LRC ID } & \text { R } \\ 12 & 1 \\ & 0.89788\end{array}$

$$
\begin{array}{cc}
\text { ISP } & \text { IT } \\
0.000 & 0
\end{array}
$$

$1.009677 \mathrm{E}+00$

PS1)
136.65
-

$$
\begin{array}{lrl}
\text { DENSITY } & \text { VELOCITY } & \text { CF } \\
0.28423 E-01 & 5636.60 & 0.0000
\end{array}
$$




VELOCITY


PERCENT
DELTA FLOWRATE $=9.534531 E+00$











ELTA $=5.543333 E+01$ AREA RATIO $=1.098859 \mathrm{E}+00$

$\begin{array}{ll}\text { ISP IT } & 1.111247 \mathrm{E}+00 \\ \text { ZONE }\end{array}$
$\begin{array}{ccc}\text { ISP } & \text { IT } & \text { ZONE } \\ 0.000 & 0 & 2 \\ 0.000 & 2 & 2\end{array}$


ISP IT $1010=1.123764 \mathrm{E}+00$

${ }_{8}^{2} N N M$
mass flow point

$$
\begin{aligned}
& \text { DELTA = } \\
& \text { VELOCITY }
\end{aligned}
$$




$$
\begin{aligned}
& \text { ENSITY } \\
& .34692 \mathrm{E}-01 \\
& .34850 \mathrm{E} \\
& .34125 \mathrm{E}-01 \\
& .37992 \mathrm{E} \\
& .27906 \mathrm{E} \\
& .22583 \mathrm{E}-01 \\
& .16372 \mathrm{E} \\
& .16303 \mathrm{E} \\
& \hline
\end{aligned}
$$

veI OCIIY

$$
\begin{array}{cl}
\text { VELOCITY } & \text { CF } \\
5375.42 & 0.0000 \\
5356.17 & 0.0000 \\
5442.46 & 0.0000 \\
4962.36 & 0.0000 \\
6027.42 & 0.0000 \\
6597.66 & 0.0000 \\
7670.23 & 1.3578 \\
7683.21 & 1.3601 \\
\text { DELTA }= & 3.062671 E+0
\end{array}
$$






$$
\begin{array}{cc}
\text { VELOCITY } & \text { CF } \\
5271.84 & 0.0000 \\
5771.31 & 0.0000
\end{array}
$$

1.286353a+00







人
$\begin{array}{ll}5755.91 & 154.18 \\ 5696.86 & 137.45 \\ 5798.00 & 137.45 \\ 5591.54 & 90.337 \\ 5016.12 & 90.337 \\ 4862.53 & 69.232 \\ 4859.04 & 68.859 \\ \text { LOWRATE } & =3.24690\end{array}$
品




$\begin{array}{lll}2 C & \text { ID } & R \\ 37 & 1 & 0.42042 \\ 37 & 4 & 0.56781\end{array}$






$$
\begin{aligned}
& \text { DENSITY } \\
& 0.35144 \mathrm{E}-01 \\
& 0.33068 \mathrm{E}-01 \\
& 0.36809 \mathrm{E}-01 \\
& 0.26186 \mathrm{E}-01 \\
& 0.21243 \mathrm{E}-01 \\
& 0.016099 \mathrm{E}-01 \\
& 0.16030 \mathrm{E}-01 \\
& 00
\end{aligned}
$$




## ORIGINAL PAGE IS OF POOR QUALITY



## －rnmmm





すすずすずずひ




搳
anMm＂MNM





## 䓂－NNMMM



$\qquad$


$$
01 \text { PERC }
$$



 MACH

$\begin{array}{lr}2 & 1 \\ 2 & 1 \\ 2 & 2 \\ 2 & 2 \\ 3 & 3 \\ \text { RATIO }=1.663090 E+00^{2}\end{array}$




000000 す。
 mompry＂





Mininininin
IT ZONE
$\begin{array}{ll}\text { ISP } \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 & 3 \\ 0.000 & 2 \\ 0.000 \\ 38.95 & 3 \\ 38.88 & 3 \\ \text { AREA }\end{array}$ $\begin{array}{rl}\text { VELOCITY } & \text { CF } \\ 5270.32 & 0.0000 \\ 7207.80 & 0.0000 \\ 6885.48 & 0.0000 \\ 7505.98 & 0.0000 \\ 8220.86 & 0.0000 \\ 8553.92 & 1.4633 \\ 8577.11 & 1.4555 \\ \text { OELTA }=-4.608625 \mathrm{E} & -0\end{array}$


ב山己

## 訁





## 







## 







an




P （ P 4 S
146.84
72.654

## 


＝NMM
808
no
$\qquad$
－̄̄̄

$$
\stackrel{\omega}{00} 0^{\circ \circ}
$$

$$
\hat{n}
$$




## ORIGINaL OF POOR QUALITY



| TDK PERFORMANCE SUMMARY : |  | 3 zones tok test case, LOX/GH2 - tdo manual test cas |
| :---: | :---: | :---: |
|  | 329.633 |  |
| ISP (SEC) <br> F (LBF) | 5143.17 |  |
| MASS FLOW (LB/SEC) | 15.6027 |  |
| CD | 0.99558. |  |
| $C^{*}$ ( $F T /$ SEC) | ${ }^{6991}$ |  |
| CF | 1.51585 |  |

$\begin{array}{lll}\text { CHAMBER PRESS } & \text { [PSIA] } \\ \text { CHAMBER IEMP } & {[R]}\end{array}$


## ORIGiNAL PREE :S OF POOR QUALITY

すty

.

権








 0 -







# QRiginal Prees is OE POOR QUALITY 

00005000505050
 にかo - -ninininininininin







 innininininininining $\stackrel{\text { HS }}{\text { FT2/SEC2 }}$


ƠOONOOOTONONO



" 1

| PR (CONSTANT) | $=5.89525 E-05 \quad$ II (DEGREE R) |
| ---: | :--- |
|  | $=5.72909 E-01$ OMEGA(CONSTANT) |

# ORIGINAL PAGE IS OF POOR QUALITY 





[^2]




 oon onn On on





# ORIGINAL PREE S <br> OF POOR QUALITY 

## 

 O O800000000000000000000000
号 O －
告 웅 88 웅 웅 8宮



宣草 $\begin{aligned} & 0.0000 \mathrm{E}+00 \\ & 0.0000 \mathrm{E}+00\end{aligned}$




守 80 $.6829 E+00$
$9150 E+00$
$1467 E+00$ $.14675+00$
$.375 \mathrm{E}+00$
$6101 \mathrm{E}+00$







$\begin{array}{ll}50+31200 \cdot 5 & 90+312 L \\ 90+35 L 1\end{array}$






 ○○óo Monk


## ORIGINAL PAGE IS OF POOR QUALITY

ok manual test case



THIS PAGE LEET INTENTIONA!.I.Y BLANK

### 7.2 PRATT AND WHITNEY TEST ENGINE FOR RL-10 OTV PROPULSION

This engine uses a hydrogen expander cycle with oxygen preheating and a nozzle that is regeneratively cooled with hydrogen. A flow schematic for the engine which was taken from Reference 25 is shown in Figure 7-1. The engine is sized to produce a nominal vacuum thrust of 15,500 pounds when operated at a chamber pressure of 394 psia and an expansion ratio of 205:1. Complete input for the case is presented in Table 7-2. This input has been prepared by SEA, Inc. from data provided by NASA MSFC. The complete output for the case is rather lengthy and is not given here. It is available from SEA, Inc. However, the output summary table is given in Table 7-3.

The calculations were carried out using the TDK shock option ( $\mathrm{SHOCK}=1$ ). An induced shock wave was found that originated from the wall inflection point just downstream of the throat. Tie shock was found to be weak, $\left(P_{2}-P_{1}\right) / P_{1}=.03$, within the domain of influence for the nozzle wall.

The sequence of calculations is as follows:

1) ODE calculation with the system enthalpy set at the propellant tank values, i.e., liquid oxygen and liquid hydrogen at their normal boiling points.
2) $O D K$ calculation starting from the above ODE results at a chamber contraction ratio of 3.98 , corresponding to the chamber diameter.
3) TDK calculation using the above ODE and ODK results.
4) BLM calculation using the above ODE, ODK, and TDK results. A new wall geometry is calculated by displacing the wall inward a distance of $\delta^{*}$ normal to the real wall. This new wall defines the boundary of the invisid core flow. BLM calculated that 5288 BTU/LBM were picked up through the wall by the regen cooling circuit. Since the nozzle mass flow was found by TDK to be $33.82 \mathrm{lb} / \mathrm{sec}$, the propellant enthalpy was increased by $156.3 \mathrm{BTU} / \mathrm{LB}$.
5) ODE calculation with the increased propellant enthalpy. The expansion ratio of the invisid core flow is automatically placed in the $O D E$ output schedule.
6) ODK calculation using the above ODE results, including the new expansion ratio.
7) TDK calculation using the above ODE and ODK results, including the new wall contour.
8) Output summary table.

The total number of flow field points computed by the MOC was more than 65,000 for each pass. Computer execution time for the case was 2 hours and 50 minutes using a DEC PDP 11/750 VAX computer system.

titte 1 ZONe rl- 10 (With shock simulation)
DATA
\$OATA
SHOCK $=1$,
PFGOPT $=0$,
ECRAT $=3.98$
ASUP $=40$.
ASUB $=4,3$
RSI $=2.57$, R
IWALL $=4$,
NWS $=29$,
RS $=.0$.

$5.5335,6.3720,7.0654,7.2630,12.8181$,
$9.8795,10.3681,10.6064,11.7979,12.0362$,
$12.1807,12.1990,12.2166,12.2337,12.2501$,


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| . $0, .2198 ; .5787,1.0747,2.1000,3.9424,5.9743,7.653$ |  |  |  |
| 27.0000,29.0000, 30.0000, 35.0000, 36.0000, |  |  |  |
|  |  |  |  |
| 36.6064, 36.6846, 36.7629,36.8413,36.9199, |  |  |  |
| 38.0000,39.0000, 46.0000,47.0350, |  |  |  |
|  |  |  |  |
|  |  |  |  |
| SEND |  |  |  |
| REACTANTS | 100. | -2154.1 | 20.56 F .0709 |
|  | 100. | -3102.L | 90.1101 .149 |





```
Table 7-3. TDK Performance Summary: RLID Engine.
```


## ORIGINAL PAGE IS OF POOR QUALITY

tok performance sumarr : 1 zone rl- 10 (hith shock simulation)


NMむ.

$0.9500000 \mathrm{E}-01$
$0.0000000 \mathrm{E}+00$
 nid

N


### 7.3 ROCKETDYNE PROTOTYPE ADVANCED SPACE ENGINE FOR OTV PROPULSION

This engine uses a hydrogen expander cycle with oxygen preheating and a nozzle that is regeneratively cooled with hydrogen. A flow schematic Reference 25 is shown in for the engine which was taken from Figure 7-2. The engine is sized to produce a nominal vacuum thrust of 22,500 pounds when operated at a chamber pressure of 2300 psia and an expansion ratio of 400:1.

Complete input for the case is given in Table 7-4. This input has been prepared by SEA, Inc., from data provided by NASA MSFC. The complete output for the case is lengthy and is not given here. It is available from SEA, Inc.. However, the output summary table is given in Table 7-5.

As with the RL-10 engine discussed in the previous subsection, 7.2, the calculations were carried out using the TDK shock option (SHOCK=1). The sequence of calculations is the same as given in subsection 7.1. An induced shock wave was found that originated from the wall inflection point just downstream of the throat. The shock strength at the last left running characteristic surface inside the nozzle (i.e., on the boundary of the domain of influence for the nozzle wall) was found to be $\left(P_{2}-P_{1}\right) / P_{1}=.12$.

The total number of flow field points computed by the MOC was more than 95,000 for each pass. Computer execution time for the case was 3 hours and 38 minutes using a DEC PDP 11/750 VAX computer system.

The ASE engine was also run using the TDE option (no shocks allowed); i.e., the two-dimensional expansion was assumed to be
in a state of chemical equilibrium. A complete input data listing for the case is presented in Table 7-6. The boundary layer plots given in Section 6.8 .5 were obtained for this case by input of APROF $=400$, NPROF $=1$, KDTPLT $=1$, KMTPLT $=1$, and KTWPLT = 1 in \$BLM. The sequence of calculations for TDE is as follows:

1) ODE calculation with the system enthalpy set at the propellant tank values, l.e., liquid oxygen and liquid hydrogen at their normal boiling points.
2) ODE calculation to generate the TDE gas tables (see Table 7-7 for this output), and the BLM gas tables.
3) TDE calculation using the TDE gas tables.
4) BLM calculations using the above ODE, TDE results. A new wall geometry is calculated by displacing the wall inwards a distance of $\delta^{*}$ normal to the real wall. This new wall defines the boundary of the invisid core flow. BLM calculated that a total of 10592.2 BTU/sec. were conducted through the nozzle wall. of this amount a total of 8333.8 BTU/sec. were picked up by the two regen cooling circuits, the remainder being lost from the system. Since the nozzle mass flow was found by TDE to be $47.7511 \mathrm{~m} / \mathrm{sec}$, the propellant enthalpy was increased by $174.5 \mathrm{BTU} / 1 \mathrm{bm}$.
5) ODE calculation with the increased propellant enthalpy. The expansion ratio of the invisid core flow is automatically placed in the ODE output schedule.
6) ODE calculation to generate the TDE gas tables.
7) TDE calculation using the above ODE results, including the new wall contour.
8) Output summary table, see Table 7-8.

With the $T D E$ option the flow field is constructed using a left running characteristics procedure, and shock waves from the wall are suppressed. Results obtained from the calculations are given in the output summary table, Table $7-8$. These results can be compared with those given in Table 7-5 for the same engine but with full kinetics and shock tracing. The difference in predicted specific impulse is

$$
\mathrm{I}_{\mathrm{sp}_{\mathrm{TRE}}}-\mathrm{I}_{\mathrm{sp}_{\mathrm{TRK}}}=475.6-474.1=1.5 \mathrm{sec} .
$$

Computer execution time for this case was 39 minutes using a DEC PDP $11 / 750$ VAX computer system.

## ORIGINAL PACE : OF POOR QUALITY



ORIGINAL PACE S OF POOR QUALITY


## original pace is OF. POOR QUALITY



Table 7-6. TDK Input for the ASE OTV Test Engine.
TITLE 1 zONE ASE - TDE OPTION

MACH NO


|  <br>  <br>  Mot - |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |





[^3]Table 7-8. TDK Performance Sumary: ASE Entine (TDE).

## ORIGINAL PAGE IS OF POOR QUALITY


this page left intentionalioy blank

### 7.4 DISCUSSION OF SUMMARY OUTPUT

At the end of each computer run, the TDK program prints a table of summary output. Examples of this output are given in Table 7-1, and Tables 7-3, 7-5, and 7-8. As can be seen from Table $7-8$, the first item printed is the title

TDK PERFORMANCE SUMMARY: (title)
where the title is taken from the input data last title card see Table 7-2, first card image).

Next, performance parameters summarizing the results of the calculations are printed in three columns. The left hand column identifies each item to be printed and its units. The first column of results is for the first MOC/BLM solution, and second column of results is for the second MOC/BLM solution.

The items labeled ISP(TDK), THRUST(TDK), WDOT(TDK), CD, CSTAR (TDK), and CF(TDK) are defined as:

```
 Name
 ISP(TDK)
 THRUST(TDK)
 WD\oslashT(TDK)
 CD
 CSTAR(TDK)
 ft/sec
 CF(TDK)
 Units Definition
```

sec $\operatorname{lbf}$
$1 \mathrm{bm} / \mathrm{sec}$
-
$\mathrm{ft} / \sec$

Definition
Specific Impulse, Isp,2D
Thrust, $F_{2 D}$
Mass Flow, $\dot{m}_{2 D}$
Flow coefficient, $C_{D, 2 D}$
Characteristic Velocity, C* 2 D
Thrust coefficient, $C_{F, 2 D}$

```
If a TDF or TDE calculation was made rather than TDK, then these items will be relabeled.
```

The values given for $I_{s p, 2 D}$ and $m_{2 D}$ are obtained by evaluating the integrals discussed in the documentation for MOC module subroutine CHAR. The mass flow integral is evaluated across the MOC initial data line. The $I_{s p}$ integral is evaluated across the initial data line, plus the integral of the axial component of wall pressure from the initial data line to the nozzle end point. The thrust is

$$
F_{2 D}=I_{s p, 2 D} \dot{m}_{2 D}
$$

The nozzle flow coefficient is calculated as

$$
C_{D, 2 D}=\dot{m}_{2 D} \dot{m}_{1 D}
$$

where

$$
\dot{m}_{1 D}=\rho_{1 D}^{*} V_{1 D}^{*} A^{*}
$$

is obtained from ODE. $A^{*}$ is the geometric throat area. The characteristic velocity, $C^{*}$, is calculated as

$$
C_{2 D}^{*}=I_{s p, 2 D} g / C_{F, 2 D}
$$

where the thrust coefficient, $C_{F}$, is defined by

$$
C_{F, 2 D}=F_{2 D} / P_{C} A^{*}
$$

Again, $A^{*}$, is the geometric throat area.
The items labeled DISP(BLME), DFOPT(BLME), DF(BLME), ISP(TC), THRUST(TC), and CF(TC) are defined as follows:

$$
\text { Name } \quad \text { Units } \quad \text { Definition }
$$

DISP(BLME)
sec
bf
1 bf
$\Delta I_{s p, B L M}$
$\Delta F_{B L M}$ for $P_{e}=P_{\text {ambo }}$ $\Delta F_{B L M}$

850138


$$
\begin{aligned}
\Delta F_{B L M} & =2 \pi r_{e} \cos \alpha_{e}{ }^{*} \rho_{e} U_{e}^{2} \theta_{B L M} \\
& -2 \pi r_{e} \cos \alpha_{e}{ }^{*}\left(P_{e}-p_{a m b}\right) \delta_{B L M}^{*}
\end{aligned}
$$

The additional items, printed are

$$
\begin{array}{ll}
\Delta I_{S P}, B L M & =\Delta F_{B L M} / \dot{m}_{2 D} \\
I_{S P, 2 D, B L M} & =\left(F_{2 D}-\Delta F_{B L M}\right) / \dot{m}_{2 D} \\
F_{2 D, B L M} & =F_{2 D}-\Delta F_{B L M} \\
C_{F, 2 D, B L M} & =F_{2 D, B L M} / P_{C} A^{*}
\end{array}
$$

Performance parameters summarizing the results of the second MOC/BLM calculation differ from the first set printed as follows:

1) The $T D K$ and $O D E$ results are for the second (invisid core) run have a modified wall contour, throat area, and expansion ratio. Note that the system enthalpy is different than used in the first run if the BLM wall calculation is not adiabatic.
2) The BLM results are re-calculated using edge conditions from the second TDK run. BLM itself is not re-run, and the values of $\delta^{*}$ and $\theta$ are not changed.
The equations used are the same as given above.

THIS PAGE LEFT INTENTIOM:..1Y BI,AHK

### 8.1 DISCUSSION OF PROGRAM USAGE

Error diagnostics* are printed by the program when it has either found an input card error or is unable to continue with its computations because it has obtained an impossible result. The analysis performed by the computer program is limited by the physical assumptions used in its development and by the numerical methods used. Consequently, an understanding of these assumptions and of the numerical methods that have been applied is necessary in order to correctly run cases using the computer program. Although the computer program contains many error diagnostics, it is not possible to diagnose allerrors.

Input values given for the sample cases (see section 7) can be used as a guide in preparing data for similar calculations. Special care must be taken, however, to avoid errors of the type given below:
8.1.1 The computer program will not give valid results if the input kinetic reaction rate parameters are unrealistic. A common mistake is to input an implied third body reaction rate backwards; which gives a very large error. Tables 6-10 and 6-11 can be used as guides in preparing reaction rate data. It should be remembered that the computer program automatically calculates equilibrium constants from the input JANAF thermochemical data.

[^4]8.1.2 Although the $O D K$ and $T D K$ calculations allow condensed phases to be present in the flow, no mass transfer between phases is allowed.
8.1.3 A common mistake in using the computer program is to input inlet and throat geometry parameters that are physically impossible when compared with Figure 6-1.
8.1.4 A value RWTU $>$. 5 should be used because of inaccuracies which can occur as a result of the transonic method of solution ${ }^{9}$.
8.1.5 For some chemical systems (e.g., H-F) it is possible that the two-dimensional throat Mach number will be subsonic as a result of the kinetic process. In this case the initial data line can be displaced downstream, increasing the Mach number, by use of the input parameter ALI (see section 6.6). If ALI is input greater than zero, a symmetric throat is required and it is necessary that RWTD be set, to the same value as RWTU.
$$
-=
$$
8.1.6 An important considération in preparing data for all but $\varnothing D E$ calculations concerns input of the nozzle wall. The derivative of the wall contour has an important effect on the nozzle flow field and it is required that wall derivatives vary slowly with respect to the local characteristic mesh spacing. In this respect the $T D K$ program is no different than any other method of characteristics calculation. Usually the most satisfactory method of specifying a nozzle wall contour is through the use of the spline fit contour option (IWALL=4). Too many points should not be input when using this option since a bad derivative could result. Never place points close together. Although the initial section of the contour is assumed to be a circular arc, a small value of theta can be used if necessary.

In case of difficulty with the method of characteristics calculations, a useful procedure is to plot the ( $r, x$ ) coordinates of mesh points in the region of difficulty. A plot of this type will frequently locate the cause of the problem. For this purpose it is necessary to print each calculated mesh point (i.e., N1=1 and N2=1).

### 8.2 LISTINGOF ERROR DIAGNOSTICS

Errors printed by the program are listed in Table 8-1 in alphabetical order. The subroutine printing the error message is listed in Table 8-1 in parenthesis at the right of each message. Table 8-2 and the write-up for the subroutine printing the error message should be referred to when the message is encountered.

Suggested corrective action for some of the errors listed in Table $8-1$ is given in Table $8-2$.

Error diagnostics consist of two types: fatal errors and nonfatal errors. A fatal error will terminate the case being executed and the program will proceed to the next case. The case may not be immediately terminated. For example, in processing input data cards the program will attempt to find as many input carderrors as possible before terminating the case. A nonfatal error serves only as a warning and the program will continue the case. If the error diagnostic is of the nonfatal type the symbol (NF) appears in the explanation.

# ORIGINAL PACE IS OF POOR QUALITY 



# ORIGINAL PACE 13 OF POOR QUALITY 



```
POOR CONVERGENCE - STOP - (SKPB1)
PRESSURE = 0.0000000E+00 IS OUT OF RANGE FOR STREAMLINE = 0 (FINDT)
PROG NOT DIMENSIONED FOR 0 POINTS AND 0 ZONES (XPIL)
PTB (0) = 0.0000000E+00, DID NOT CONVERGE (PRES)
REACTANT O IS NOT IN THERMO DATA (HCALC)
REACTANT TEMPERATURE OUT OF RANGE OF THERMO DATA (HCALC)
REACTION 0 HAS MASS IMBALANCE OF 0.00000000EE+00 (PACK)
REACTION CARDS (REAXIN)
REACTION EXTENDS BEYOND CARD COL 8O (REAXIN)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR12)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR14)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR22)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR24)
REGULAR REFLECTION NOT POSSIBLE (CNTR12)
REGULAR REFLECTION NOT POSSIBLE (CNTR22)
REGULAR REFLECTION NOT POSSIBLE (SHCKA)
REQ AREA RATIO 0 0.00000000E+00 DELETED (OOKINP)
RESTART (EOLBRM)
RIGHT RUNNING SHOCK DETECTED (CNTR31)
RIGHT RUNNING SHOCK DETECTED (CNTR41)
RRS PT IS OUTSIDE THE NOZZLE (CNTR12)
RRS PT IS OUTSIDE THE NOZZLE (CNTR14)
RRS PT IS OUTSIDE THE NOZZLE (CNTR22)
RRS PT IS OUTSIDE THE NOZ2LE (CNTR24)
SHOCK DETECTED ON RRC FROM INITIAL LINE (CNTR11)
SHOCK DETECTED ON RRC FROM INITIAL LINE (CNTR21)
SHOCK DETECTED ON RRC FROM INITIAL LINE (CNTR31)
SHOCK-SHOCK INTERSECTION DETECTED- RUN ABORTED (CNTR22)
SHOCK-SHOCK INTERSECTION DETECTED. RUN ABORTED (SHCKA)
SHOCKED GAS (2).-INCIDENT--EQUILIBRIUM (SHCK)
SHOCKED GAS (2).-INCIDENT..FROZEN (SHCK)
SHOCKED GAS (5)--REFLECTED--EOUILIBRIUM (SHCK)
SHOCKED GAS (5)--REFLECTED.-FROZEN (SHCK)
SINGULAR MATRIX (EQLBRM)
SINGULARITY, K,A(K,K) 0 0.00000000E+00 (LESK)
SINGULARITY,N,A(N,N) 0 0.00000000E+00 (LESK)
SPECIES REOUIRES ELEMENT THIS ELEMENT IS NOT IN ELEMENT TABLE (PACK)
SPECIES NO. O NOT CONTAINED IN MASTER EQUILIBRIUM SPECIES TABLE (SEARCH)
SPECIES NOT ON THERMO TAPE (PACK)
SUM OF INPUT MOLE OR MASS FRACTIONS NOT ONE. THE SUM IS = 0.00000000E+00 NO. SPECIES = 0 (OOKINP)
TEMPERATURE IS OUT OF RANGE OF THE THERMO DATA (SHCK)
THE FOLLOWING CARD WAS IGNORED (REAXIN)
THE REPEAT OPTION SHOULD NOT BE USED WITH A POTENTIAL WALL (PROBLM)
THE SUM OF THE STOICHIOMETRIC COEFFICIENTS FOR THE REACTANTS OR/AND PROOUTS EXCEEDS 10 (PREAX)
THE TEMPERATURE= IS OUT OF RANGE FOR POINT (EQLBRM)
THIRD BODY REAX RATE RATIOS ENCOUNTERED BEFORE LAST REAX CARD (REAXIN)
TRY REMOVING CONDENSED SPECIES (EOLBRM)
UNEXPECTED END DURING INERTS PROCESSING LAST CARD ENCOUNTERED BEFORE END SPECIFICATION (REAXIN)
WALL TABLE ERROR ON 2ND SPLINE ... (R,X)= 0.00000E+00 0.00000E+00 (HALL)
WALL TABLE ERROR... (R,X)= 0.00000E+00 0.00000E +00 (WALL)
WALL TABLE REQUIRES TOO MANY PTS ON 2ND SPLINE (WALL)
WALL TABLE REQUIRES TOO MANY PTS. (WALL)
WARNING CARD SEQUENCE ERRORS (LTCPHS)
WARNING IN INTEXT, Z1 ZEXIT 22=0.00000000E+00 0.0000000E+00 0.0000000E+00 (INTEXT)
WARNING IN RBL, XFIRST = 0.0000000E +00 XI = 0.0000000E+00 (RBL)
WARNING IN RBL, XLAST = 0.0000000E+00 XI = 0.0000000E+00 (RBL)
WARNING, TBL TABLES EXCEED THEIR OIMENSIONS IN OUT1 (OUT1)
WARNING, UNABLE TO POSITION BLM TAPE FOR RESTART (READAT)
WEIGHT FLOW DID NOT CONVERGE (CHAR)
XTEST=0.000000E+00 ERROR IN TCALC, RUN ABORTED (TCALC)
z OUTSIDE NOZZLE WALL TABLE, Z AND' JNOZ ARE 0.00000000E+00 0 (FLU)
z OUTSIDE PRESSURE TABLE (FLU)
```

TABLE 8－2：ERROR MESSAGES，POSSIBLE CORRECTIVE ACTION
DIAGNOSTIC
anLIOOYGAS
EXPLANATION OR POSSIBLE
CORRECTIVE ACTION
（NF）Informative，no action necessary．

Check input of nozzle throat geometry．
 tinued．No action required．
PACK
ERRORZ
RØCKET
$\mathrm{R} \varnothing \mathrm{CKET}$
$\varnothing D E S$
NめLIG
曻
岕
R $\varnothing$ CKET
总
出
$\omega$
$\sum_{0}$
$\underset{y}{m}$
$\underset{\sim}{3}$
$\underset{\sim}{3}$ LX

I

0＊IS甘 LOdNI SOILVY GLVY NOILDVGy TT甘
LHЮीOS SI LNIOd aNIT TVILINI צヨdOYdWI N甘
 －dWAL MOTAG $\cdot 5 \exists a$ OS N甘HL $3 \& O N$ SI INIOd RANGE OF A CONDENSED SPECIES

CONDENSED REACTANTS NOT PERMITTED IN SWataoyd YoOHS yo Nuga

CONSERVATION EQNS WERE NOT SATISFIED IN 8 ITERATIONS
Only gaseous reactants are permitted（see Ref．3，pg．70）．

On detcination option convergence is usually obtained in 3 or 4 iterations（see Ref．3，pg 70）．

Check nozzle throat geometry and the initial
line flow MACH number．
（NF）The area ratio is probably too close to 1.0
the usual number of iterations is less than 6 ．
Here it exceeded lo．（see Ref．3．pg． 71 ）．
Ul was probably less than the minimum value re－
quired for shock to occur（see Ref． $3, \mathrm{pg} .71$ ）．
Check input charge balance． AND POINT IN $\varnothing \mathrm{DK} \overline{\mathrm{GENER} A T E D ~ T R A N S O N I C}$
TABLES

[^5][^6]Too mary species are possible for the system
being irput. Use OMIT cards or recompile pro-
gram dimensions.

$\begin{aligned} & \text { Occurs while constructing initial line for the } \\ & \text { method of characteristics. Check throat }\end{aligned}$
geometry.
Refer to section 6.5.3.1 and discussion of EP
Check input for bad reaction card.
Low temperature out of range. Check $\mathrm{L} \varnothing \mathrm{W}$ T
CPHS input if used (see section 6.1.1).
A card is missing, extraneous, or in error (see
THERMCS data cards for this species are out of
order (see Ref. 3, pg. 71).
Chemicel symbol not left-justified, or not in-
cluded in BL $\varnothing$ CK DATA program (see Ref. 3, pg.
7l).
Check nozzle wall input, section 5.?.
EP NOT REACHED
GVGY Naga S甘y atia atavi Dinosnvil gyiln
ERR $\varnothing$ R DETECTED DURING INPUT PROCESSING
$\begin{aligned} & \text { ERR } \varnothing \text { R DURING LOW T THERMO EVAL, } T= \\ & \text { ERR } \varnothing \text { R IN ABOVE CARD. CONTENTS IGNORED } \\ & \text { ERR } \varnothing \text { R IN ORDER OF CARDS FOR }\end{aligned}$
ERR $\varnothing$ R IN REACTANT CARDS
EXIT PLANE OPTION REQUIRES GREATER WALL
EXTENSION

FRØZEN Interpolation was requested outside of the range
of the input tables．Check input tables for range of independent variable．
$\varnothing$ DE could not converge in frozen calculations． If desircd add more area and／or pressure ratios （seo R．f．3，pg．71）。
Chock STRANS input，section 6．6．
ERRORZ
SEIECT
SELECT
PRES
EQLBRM
$\begin{array}{ll}\sum & \text { E } \\ \text { N } & U \\ 0 & \text { M } \\ \text { O } & \text { H } \\ \text { H } & \text { U }\end{array}$
E
出
出
品
 EXPLANATION OR POSSIBLE CORPECTIVE ACTION
FATAL ERR $\varnothing$ R ENCOUNTERED WHILE PROCESSING Correct bad problem card．
INCOMPIETE TDK INITIAL LINE HAS BEEN GEN－
ERATED
INCOMPIETE TDK INITIAL LINE HAS BEEN GEN
ERATED


KIN EXPN CODE DIMENSIONED FOR MAX．OF 40
SPECIES，CURRENT CASE USES

$$
\begin{aligned}
& \text { Species not in thermo file, check species nome } \\
& \text { and corect. }
\end{aligned}
$$ ISVD LXAN OL GASSADO甘d－CYVD WETEOYd

＊FIND＊VAR OUTSIDE TABLE
SNOILVYALI 8 NI aŋyanNOD LON aIa NaZøya
INERT__ NOT IN MASTER SPECIES TABLE

$$
\begin{aligned}
& \text { see sextion } 6.5 \cdot 3.4 \text { for explanation of species } \\
& \text { selection. }
\end{aligned}
$$

Check output for cause of non－convergence．If not obvious，re－run with intermidiate output（sce Ref．3，pg。73）． Ref．3．pg．73）．
More than 40 species found．Check input

## Check input

（NF）LCW T CPHS input is being used，section
6．1．1． causinc unrealistically low combustion tempera－ ture（see Ref．3，pg．72）．

[^7] ，促
INERT＿NOT IN MASTER SPECIES TABLE
35 ITERATIONS DID NOT SATISFY CONVERGENCE
REQUTREMENTS FOR THE POINT
LOW T THERMO EXTENSTONAT T＝DEGK
See seation 6.5.3.4 for explanation of species An important condensed species has been omitted

(NF) Informative - mass or mole fractions not
specified on species card.
N $\varnothing$ \$ $\varnothing$ DE VALUE GIVEN FOR OF, EQRAT, FA, OR
FPCT
NON-NUMERIC ENCOUNTERED IN ECNV WHILE
DECODING. . .
Check inert species names (see section 6.5.2.2). REAXIN
$$
\text { Unable to find an expansion coefficient, } N_{e} \text {, when }
$$
$$
\text { generating } \varnothing \text { DK pressure table (see section }{ }^{\prime} 5.3 .2 .5 \text { ) }
$$
points.

NOZZLE PWZS COORDINATES NOT MONOTONIC INCREASING AT PT
NUMBER OF SPECIES TOO LARGE FOR TABLES,
MUST REDIMENSION
NUMBER OF SPECIES TOO LARGE FOR TABLES,
MUST REDIMENSION
$N \varnothing$ ECRAT SPECIFIED FOR $\varnothing D K$ START-RUN NØ MORE THAN 275 POINTS MAY BE INPUT ON
INITIAL LINE
NUMBER OF TEMP VAL UES OUTSIDE RANGE

Check inert species names (see section 6.5.2.2).
\[

$$
\begin{aligned}
& \text { REAXIN } \\
& \text { PRES } \\
& \not \subset D E S
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { Initial contraction ratio must be input (see section } \varnothing \text { DES } \\
& \text { (3.2.5). } \\
& \text { Check input initial line and modify for } 275 \text { or less ERR } \varnothing R Z \\
& \text { points. }
\end{aligned}
$$

## コפYanNob Lon aia an

 ABORTED$$
\begin{aligned}
& \text { Fatal } \in \text { rror, correct bad number in data field. }
\end{aligned}
$$



$$
\text { intital line (see section } 6.6)
$$

ERR $\varnothing$ RZ Reduce by mode cause is too few points on the initial
Probable
line upsitream of the region being computed. Try
more pcints or a redistirbution of points on the
intital line (see section 6.6 ).
Check input of intial line (see section 6.6) and
nozzle wall (see section 6.3 .3 .1 ). mane than 20 left The calculation has inserted more points on the
$E R R \varnothing R Z$
Zqø
 f no
-
EUPLLANATION OR POSSIBLE CORRECTIVE ACTION Check MOC output to sec if run either increase IMAX and/or set
(NF) Check this card for error.
 either increase IMAX and/or set IMAXF=0 (see

$$
\text { ERR } \varnothing \mathrm{RZ}
$$

ERR $\varnothing$ RZ
EQLBRM
REAXIN
EQLBRM


WygToz $-$
more pcints or a redistirbution

SVH
I LNIOd
 SNOIL甘ZGII W WIXVW GAGIGS

## THE FOLLOWING CARD WAS IGNORED ___

THE LRC INSERTION TABLE HAS OVERFLOWED
THE MAXIMUM NO. OF POINTS FOR A LRC HA
SOLIV-I
THE PROGRAM IS ATTEMPTING TO INSERT AN
THE PROGRAM NI LNLOD THE PROGRAM IS ATTEM OF THE IST POINT IN
WALL POINT UPSTREAM THE WALL TABLE
THE PROGRAM IS UNABLE TO LOCATE POINT I
IN SUBROUTINE INPT
THE TEMPERATURE=___ IS OUT OF RANGE FOR
POINT_-
THIRD BODY REAX RATE RATIOS BEFORE END OF
REAX
THREE PHASES OF A CONDENSED SPECIES ARE
OUT OF ORDER
TRY REMOVING CONDENSED SPECIES
DIAGNOSTIC
SUBROUTINE

## THIS PAGE LEFT INTENTIONALLY BLAAIK

1. 

"JANNAF Rocket Engine Performance Prediction and
Calculation Manual", CPIA Publication 246 , April 1975 .
2.
3.
4.
5.
6.
7.
8.
9.
10. Zucrow, M. J., and Hoffman, J. D., "Gas_Dynamics", Volume

12
Nickerson, G. R., Coats, D. E., and Bartz, J. L., "The Two-Dimensional Kinetic (TDK) Reference Computer Program" Engineering and Programming Manual, Ultrasystems, Inc., December 1973, prepared for Contract No. NAS9-12652, NASA JSC.

Gordon, Sanford and McBride, B. J., "Computer Program for Calculation_of Complex Chemical Equilibrium Compositions, Rocket performance, Incident and Refiected shocks, and

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, "Molecular Theory of Gases and Liguids", John wiley and




S. W. Benson, and T. Fueno, "Mechanism_of Atom
 J. Chem. Physics $\frac{1}{3},-\frac{1}{1} \frac{1}{9} \frac{1}{7}$, (19$\left.\frac{1}{6} \frac{1}{2}\right)$

Sauer, R., "General Characteristics of the Flow Through Nozzles at Near Critical Speeds", NACA Tech. Note No. 1147 (1947).

Nickerson, $\quad$ R., "Striated Flow in a Converging-Diverging Nozzle", Dynamic Science Report CS-2/71-1, prepared for NASA JSC, February 1971. 1 and 2, John Wiley \& Sons, Inc., New $\bar{Y}-\bar{r} \bar{k},-\frac{1}{9} \overline{7} \overline{6}$.

Keller, H. B., and Cebeci, T., : Accurate Numerical Methods for Boundary Layer Flows, Pt. 2, Two-Dimensional Turbulent Flows. AIAA J., 10, 1972, P. 1193. Cebeci, T., and Smith, A. M. O., : "Analysis oi Turbulent
Boundary_Layers", Academic Press, N.Y., $19 \frac{1}{4}$.
13. Bradshaw, P., Cebeci, T., and Whitelaw, J. H., : "Engineering_Calculation Methods_for Turbulent Flows".

14. Svenla, R. A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures", NASA TR-132, 1962.
15. Bird, R. B., Stewart, U. E., and Lightfoot, E. N., "Transport Phenomena", John Wiley \& Sons, 1960.
16. Mason, E. A., and Saxena, S. C., "Pnysics of Fluids", Vol. 1, No. 5, pp. 361-369, 1958.
17. Tyson, T. J., and Kliegel, J. R., "An Implicit Integration Procedure for Chemical Kinetics", AIAA $6 t h$ Aerospace Sciences Meeting, Paper No. 68-180, (January 1968).
18. Gordon, Sanford, Zeleznik, Frank J., and Huff, Vearl N., "A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants", NASA TD D-132, 1959.
19. Zeleznik, Frank J., and Gordon, Sanford: "A General 704 or 7090 Computer Program for Computation of Chemical Equiliorium Compositions, Rocket Performance, and Chapman-Jouguet Detonations", NASA TN D-1454, 1962.
20. McBride, B. J., and Gordon, S., "Fortran IV Program for Calculation of Thermodynamic Data", NASA TN-D-4097, Aug. 1967.
21. Stull, D. R., Prophet, H., et al., JANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37 , National Standard Reference Data Series, National Bureau of Standards, June 1971 .
22. JANAF Thermochemical Tables, 1974 Supplement, J. Phys. Ref. Data 3,311 (1982).
23. JANAF Thermochemical Tables, 1982 Supplement, J. Phys. Ref. Data 19,695 (1982).
24. Combs, L. P., "Liguid Rocket Combustion Computer Model with Distributed Energy Re elease", Rocketdyne final Report, Contract $\frac{1}{\mathrm{~A}} \frac{\mathrm{~S}}{\mathbf{7}}-7 \frac{8}{4} \frac{1}{6}$, December 1971 .
25. Cooper, L. P., "Advanced Propulsion Conctuts for orbital Transfer Vehicles", AIAA 19 Joint Propulsirn Conference, Seattle, WA. June 27-29, 1983.

## APPENDIX A

## REACTION RATE DATA

## REACTION RATE DATA

Reactions and reaction rates for determining loss in performance due to chemical kinetics are presented in Reference 1, which is CPIA 246 , the JANNAF Rocket Engine Performance and Evaluation Manual (see Section 6.2, titled Reaction Rate Data.) The reactions and reaction rates presented in CPI 246 were revised by Kushida in Reference 2 in 1976. Until the present time, no further revisions have been made.

A literature review through June 1984 has now been carried out by SEA, Inc. The review includes the systems discussed by Kushida, i.e. those containing the elements CHNO and FHN. The result of this study shows almost no change in the CHNO system and minor changes in the FHN system. A revised uncertainty factor, $U$, is given for each rate coefficient such that $k X$ and $k / U$ provide probable approximate upper and lower bounds respectively to $k$ for temperatures within the range 250 to 3000 ${ }^{\circ} \mathrm{K}$.

Tables 1 and 2 give reactions and rates for the CHNO system, and correspond to Tables I and II of Reference 2 except that the species $\mathrm{HO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$ have been deleted. These species are not considered important for engine performance prediction. Although there are no changes in the rate data, new information regarding some of the reactions have been obtained that suggest a change in the form of the rate expression.

For certain reactions involving the $O H$ radical, in particular the reactions,

$$
\begin{align*}
& \mathrm{OH}+\mathrm{H}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{H}  \tag{1}\\
& \mathrm{OH}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{O}  \tag{2}\\
& \mathrm{CO}+\mathrm{OH}=\mathrm{CO}_{2}+\mathrm{H} \tag{3}
\end{align*}
$$

The rate data do not conform to an Arrhenius plot ${ }^{3}$. For reaction (3), the experimental results are now numerous and precise enough to confirm the deviation from the Arrheniut form at low and high temperature. The form that fits the data adequately over the temperature range $250-2500{ }^{\circ} \mathrm{K}$ is,

$$
\log _{10} k=10.83+3.94 \times 10^{-4} \mathrm{~T} .
$$

$$
1.5 \times 10^{7} \mathrm{~T} \text { 1.3 } \exp (765 . / \mathrm{RT}) .
$$

is in close agreement with the above expression up to $2000{ }^{\circ} \mathrm{k}$. In addition, it is necessary for use in the existing computer programs.

Tables 3 and 4 give reactions and rates for the $F H N$ system, and correspond to Tables III and IV of Reference?.

For the two reactions,

$$
\begin{aligned}
& F+F+M=F_{2}+M \\
& H+F+M F+M
\end{aligned}
$$

the rate coefficient expressions are completely different than those listed in Table III of Reference 2. These new expressions give a much higher rate at low temperature, but about the same value in the high temperature range.

As, in Reference 2, the tables given here define the rates in the form accepted "by the TDK computer program, i.e, the constants $A, N$, and $B$ are given for the expression

$$
k=A T^{-N} e^{-(1000 B / R T)} \text {; in units of } c c,^{\circ} K, m o l e, s e c .
$$

The reference for each reaction is listed in the tables, e.g. BAULCH 72 is Reference 7. The uncertainty estimate is also given; e.g. 30 U is an uncertainty factor of 30 .

TABLE 1. Reaction Rate Data for the CHON System:
For Chemical Reactions between species, $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{N}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{O}, \mathrm{OH}$, and $\mathrm{O}_{2}$ in initial equilibrium expanding through an adiabatic nozzle.

$$
k=A T^{-N} \exp (-1000 B / R T) ; \text { in units of } c c,{ }^{\circ} K \text {, mole, sec. }
$$

REACTIONS


END TBR REAX
$\mathrm{O}_{2}+\mathrm{H}=\mathrm{O}+\mathrm{OH}, \mathrm{A}=2.2 \mathrm{E} 14, \mathrm{~N}=0.0, \mathrm{~B}=16.8, \quad$ BAULCH 72
(A) 1.5 U
$\mathrm{H}_{2}+\mathrm{O}=\mathrm{H}+\mathrm{OH}, \mathrm{A}=1.8 \mathrm{E} 10, \mathrm{~N}=-1, \quad \mathrm{~B}=8.9$, BAULCH 72
(A) 1.5 U
$\mathrm{H}_{2}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{H}, \mathrm{A}=2.2 \mathrm{E} 13, \mathrm{~N}=0.0, \mathrm{~B}=5.15$, BAULCH 72
(A) 2 U
$\mathrm{OH}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{O}, \mathrm{A}=6.3 \mathrm{E} 12, \mathrm{~N}=0.0, \quad \mathrm{~B}=1.0, \quad$ BAULCH 72
(A) 3 U
$\mathrm{CO}+\mathrm{OH}=\mathrm{CO}_{2}+\mathrm{H}, \mathrm{A}=1.5 \mathrm{E} 7, \mathrm{~N}=-1.3, \mathrm{~B}=-.765, \quad$ BAULCH 74
(A) 3 U
$N_{2}+O=N O+N, A=7.6 E 13, N=0.0, \quad B=75.5, \quad$ BAULCH 73
(C) 3 U
$O_{2}+N=N O+O, A=6.4 E 9, N=-1.0, B=6.25, \quad$ BAULCH 73
(C) 2 u
$\mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2} \quad, \mathrm{~A}=2.5 \mathrm{E} 6, \mathrm{~N}=0.0, \mathrm{~B}=3.18, \quad$ BAULCH 76
(B) 2 U
$\mathrm{CO}_{2}+\mathrm{O}=\mathrm{CO}+\mathrm{O}_{2}, \mathrm{~A}=1.7 \mathrm{E} 13, \mathrm{~N}=0.0, \quad \mathrm{~B}=52.7, \quad$ BAULCH 76
(B) 3 U

LAST REAX

TABLE 2. Third Body Recombination Efficiency Ratio for CHON System: (as recommended by Kushida, Reference 2)

| Species | $\mathrm{H}+\mathrm{H}$ | $\mathrm{H}+\mathrm{OH}$ | $0+0$ | $N+0$ | $N+N$ | $\mathrm{CO}+\mathrm{O}$ | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AR | 1. | 1. | 1. | . 8 | 1. | 1. |  |
| CO | 1.5 | 3. | 4. | 1. | 1. | 1. | 4. |
| $\mathrm{CO}_{2}$ | 6.4 | 4. | 8. | 3. | 2. | 5. | 5. |
| H | 25. | 12.5 | 12.5 | 10. | 10. | 1. | 12.5 |
| $\mathrm{H}_{2}$ | 4. | 5. | 5. | 2. | 2. | 1. | 5. |
| $\mathrm{H}_{2} \mathrm{O}$ | 10. | 17. | 5. | 7. | 3. | 1. | 5. |
| N | 1. | 1. | 10. | 10. | 10. | 1. | 1. |
| NO | 1.5 | 3. | 4. | 1. | 1. | 1. | 4. |
| $\mathrm{N}_{2}$ | 1.5 | 3. | 4. | 1. | 1. | 2. | 4. |
| 0 | 25. | 12.5 | 12.5 | 10. | 10. | 1. | 12.5 |
| OH | 25. | 12.5 | 12.5 | 10. | 10. | 1. | 12.5 |
| $\mathrm{O}_{2}$ | 1.5 | 6. | 11. | 1. | 1. | 25. | 5. |

TABLE 3. Recommended Reaction Data (HFN System): For chemcial reactions between species $\mathrm{F}, \mathrm{F}_{2}, \mathrm{H}, \mathrm{HF}, \mathrm{H}_{2}, \mathrm{~N}$, and $\mathrm{N}_{2}$ in initial equilibrium expand through an adiabatic nozzle.
$k=A T^{-N} e^{(-1000 B / R T)}$; in units of $c c,{ }^{\circ} K$, mole, sec.

REACTIONS:
$H+H=H_{2}, A=6.4 E 17, N=1.0, B=0, \quad B A U L C H 72, M=A R(A) \quad 30 \mathrm{U}$ $F+F=F_{2}, A=3.25 E 8, N=-1.0, \quad B=-6.38, \quad B A U L C H 81, M=A R$ (A) $10 U$ $H+F=H F, A=7.5 E 12, N=0.0, B=-35.13, B A U L C H 81, M=A R(A) 30 U$ $N+N=N_{2}, A=3.0 E 14, N=0.0, B=-.99, B A U L C H 73, M=N_{2}$ (A) 10 U

END TBR REAX
$F+H_{2}=H F+H, A=9.2 E 13, N=0.0 \quad B=1.08, \quad$ FOON $75, \quad$ (A) 30 U
$H+F_{2}=H F+F, A=8.8 E 13, N=0.0, B=2.40, \quad$ BAULCH 81, $\quad$ (A) 10 U

## LAST REAX

TABLE 4. Third Body Reaction Rate Ratios (H F N System)
(as recommended by Kushida, Reference 2)

| REACTION |  | $\mathrm{H}+\mathrm{H}$ | $\mathrm{F}+\mathrm{F}$ | $\mathrm{H}+\mathrm{F}$ | $\mathrm{N}+\mathrm{N}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| SPECIES | $\mathrm{H}_{2}$, | 4. | 1. | 8. | 2. |
| SPECIES | $\mathrm{F}_{2}$, | 1. | 2.4 | 1. | 1. |
| SPECIES | HF, | 2. | 1. | 2. | 1. |
| SPECIES | $\mathrm{N}_{2}$, | 1.5 | 1. | 2.8 | 1. |
| SPECIES | N, | 1. | 1. | 1. | 10. |
| SPECIES | F, | 4. | 2.4 | 4. | 1. |
| SPECIES | H, | 25. | 1. | 20. | 10. |

Consideration was given to expanding the reaction set of Reference 2 to other elemental systems. Tables 5 and 6 have been prepared to indicate liquid propellant rocket engine systems of possible interest. This approach leads to 11 combinations of the elements $C, C \ell, F, H, N$, and $O$, which are listed alphabetically in Table 6. Sets $3,4,7,8,10$, and ll are covered by the reactions presented in Tables 1 through 4 . There is presently a lack interest the oxidizer/fuel combinations that require sets $1,2,5,6$, and 9 . However, screening studies, such as References 4, 5, and 6, have indicated the species and reactions that control these systems. The additional species required are: $C \ell, C \ell{ }_{2}, C \ell F, \quad H C \ell$. The additional reactions required are presented in Table 7 .

Many of the rates given in Table 7 are estimates rather than measured values. The reaction set given in Table 7 must be considered preliminary.

The reaction numbers used in Reference 1 are indicated in Table 7. For example, the first three reactions in Table 7 are the reactions numbered 13,12 , and 11 in Reference 1 .

Good measured data are now available for the $C \ell+C \ell$ recombination reaction. The reaction rate for the reaction $H+$ $C \ell+M=H C \ell+M$ is obtained from the data for the reverse reaction and the equilibrium constant. The third body efficiencies for the reactions listed in table 7 are given in Table 8. For the reaction $C \ell+C \ell+M=C \ell_{2}+M W i t h M=C \ell_{2}$ an efficiency ratio of about 5 is reported from 4 sets of experiments. A value of unity is used for the other third body efficiencies because of a lack of data.

Measured data was found for reactions 29 and 31 of Reference 1. Reaction 30 of Reference 1 , ie.

$$
\mathrm{H}_{2}+\mathrm{C} \mathrm{\ell}_{2}=\mathrm{HCl}+\mathrm{HC} \mathrm{\ell}
$$

## original page is OF POOR QUALITY

Table 5. Oxidizers and fuels for quid Rower propellants
 Containtre: 'cements : , . . . . . . . .

Fuels
Containirrr Elements $C, H, N$ Formula, Name
$\mathrm{CH}_{4}$, Methane
$C_{2}, H_{2}$, Metylene
$\mathrm{C}_{2} \mathrm{H}_{4}$, ethylene
$\mathrm{C}_{2} \mathrm{H}_{6}$, Ethane
$\mathrm{C}_{3} \mathrm{H}_{8}$, Propane
$\mathrm{C}_{7} \mathrm{H}_{16}$. Heptane
$\left(\mathrm{CH}_{2}\right)_{n}, R P-1$ or JP-4
$\mathrm{CH}_{6} \mathrm{~N}_{2}$, Monomethyl- $\begin{gathered}\text { Hydrazine }\end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$, Unsymmetrical
Jimethyl -
Hydrazine (UDMH)
$\mathrm{H}_{2}$, Hydrogen
$\mathrm{NH}_{3}$, Ammonia
$\mathrm{N}_{2} \mathrm{H}_{4}$, Hydrazine

Table 6.



was deleted as unimportant. Reactions $11,32,33,34,35,36$, 37, $38,39,40,52$, and 53 with their estimated rates, were taken from Reference 1.

There are some scattered data reported for the reactions 32 , 33, and 34 , ie.


These data are within a factor of 10 of the estimated values. No other data was found for these reactions.

Two reactions were added to the system that did not appear in Reference 1 , but are believed to be important (for example see References 4,5 , and 6). Measured data is available for these reactions, which are:

$$
\mathrm{Cl}+\mathrm{OH}=\mathrm{HC} \mathrm{\ell}+\mathrm{O}
$$

and

$$
\mathrm{HCl}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl} .
$$

TABLE 7. Additional Chemical Reactions of Importance in

$$
\frac{C, C l, F, H, N, O \text { Systems }}{k=A T^{-N} e^{(-1000 B / R T)} ; \text { in units of } c c,{ }^{\circ} K, \text { mole, sec. } .}
$$

## REACTIONS

$\mathrm{Cl}+\mathrm{Cl}=\mathrm{Cl}_{2}, \mathrm{~A}=2.23 \mathrm{E} 14, \mathrm{~N}=0, \mathrm{~B}=-1.81, \mathrm{M}=\mathrm{AR}$ 13/BAULCH $81 \quad 10 \mathrm{U}$ $H+C l=H C l, A=2.6 E 13, N=0, B=-19.9, \quad M=A R \quad 12 / B A U L C H ~ 815 U$ $C 1+F=C l F, A=3 . E 16, N=.5, B=0, \quad M=\operatorname{AVE} 11 /$ CPIA246 250 END TBR REAX
$\mathrm{Cl}_{2}+\mathrm{H}=\mathrm{HCl}+\mathrm{Cl}, \quad \mathrm{A}=8.6 \mathrm{E} 13, \mathrm{~N}=0, \quad \mathrm{~B}=1.2,29 / \mathrm{BAULCH} 81 \quad 10 \mathrm{C}$ $\mathrm{Cl}+\mathrm{H}_{2}=\mathrm{HCl}+\mathrm{H}, \mathrm{A}=1.45 \mathrm{E} 13, \mathrm{~N}=0 \quad, \mathrm{~B}=4.4,31 / \mathrm{BAULCH} 81 \quad 10 \mathrm{U}$ $\mathrm{HCl}+\mathrm{F}=\mathrm{HF}+\mathrm{Cl}, \mathrm{A}=1.9 \mathrm{E} 12, \mathrm{~N}=-.68, \mathrm{~B}=.6,32 /$ CPIA246, 25 U $\mathrm{Cl}_{2}+\mathrm{F}=\mathrm{Cl}+\mathrm{ClF}, \mathrm{A}=6.2 \mathrm{E} 12, \mathrm{~N}=-.68, \mathrm{~B}=.5, \quad 33 / \mathrm{CPIA246}, \quad 25 \mathrm{U}$ $\mathrm{Cl}+\mathrm{F}_{2}=\mathrm{F}+\mathrm{ClF}, \mathrm{A}=7.6 \mathrm{E} 12, \quad \mathrm{~N}=-.68, \quad \mathrm{~B}=.3, \quad 34 / \mathrm{CPIA} 246,25 \mathrm{U}$ $\mathrm{ClF}+\mathrm{H}=\mathrm{HF}+\mathrm{Cl}, \mathrm{A}=1.8 \mathrm{E} 12, \mathrm{~N}=-.58, \mathrm{~B}=3.2, \quad 35 / \operatorname{CPIA} 246,25 \mathrm{U}$ $\mathrm{C} 1 \mathrm{~F}+\mathrm{H}=\mathrm{HCl}+\mathrm{F}, \quad \mathrm{A}=5.6 \mathrm{E} 12, \mathrm{~N}=-.68, \quad \mathrm{~B}=1.9, \quad 36 / \mathrm{CPIA} 246, \quad 25 \mathrm{U}$ $\mathrm{ClF}+\mathrm{H}_{2}=\mathrm{HCl}+\mathrm{HF}, \quad \mathrm{A}=1.8 \mathrm{E} 10, \quad \mathrm{~N}=-.5, \quad \mathrm{~B}=46.34, \quad 37 / \mathrm{CPIA} 2461000 \mathrm{U}$ $\mathrm{F}_{2}+\mathrm{HCl}=\mathrm{HF}+\mathrm{ClF}, \mathrm{A}=1.8 \mathrm{E} 10, \quad \mathrm{~N}=-.5, \mathrm{~B}=39.43, \quad 38 / \mathrm{CPIA} 246$ 1000U $\mathrm{ClF}+\mathrm{HCl}=\mathrm{HF}+\mathrm{Cl}_{2}, \quad \mathrm{~A}=1.8 \mathrm{E} 10, \quad \mathrm{~N}=-.5, \quad \mathrm{~B}=46.03, \quad 39 / \mathrm{CPIA} 2461000 \mathrm{U}$ $\mathrm{F}_{2}+\mathrm{Cl}_{2}=\mathrm{ClF}+\mathrm{ClF}, \quad \mathrm{A}=1.8 \mathrm{E} 10, \quad \mathrm{~N}=-.5, \quad \mathrm{~B}=26.76, \quad 40 / \mathrm{CPIA} 246$ 1000U $\mathrm{OH}+\mathrm{F}=\mathrm{HF}+\mathrm{O}, \mathrm{A}=2.9 \mathrm{E} 12, \mathrm{~N}=-.68, \mathrm{~B}=.2, \quad 52 /$ CPIA246 25 U $\mathrm{H}_{2} \mathrm{O}+\mathrm{F}=\mathrm{HF}+\mathrm{OH}, \mathrm{A}=1.4 \mathrm{E} 10, \mathrm{~N}=-.68, \mathrm{~B}=.6$, 53/CPIA246 25 U $\mathrm{Cl}+\mathrm{OH}=\mathrm{HCl}+0, \mathrm{~A}=5.9 \mathrm{E} 12, \mathrm{~N}=0, \mathrm{~B}=5.72, \quad$ BAULCH $81 \quad 10 \mathrm{C}$ $\mathrm{HCl}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}, \mathrm{A}=2.25 \mathrm{E} 12, \mathrm{~N}=0, \mathrm{~B}=1.02$, BAULCH 81 10L LAST REAX

TABLE 8. Third Body Reaction Rate Ratio

```
REACTION H}+\textrm{Cl}\quad\textrm{Cl}+\textrm{Cl
SPECIES Ar 1
SPECIES HCl 1 l
SPECIES Cl 12 5
SPECIES Cl l
```




Ref. 2. Kushida, R., "Revision of CPIA 246, Section 6.2, Reaction Rate Data," JPL 383CR-76-211, 29 March 1976.

Ref. 3. Baulch, D.L., Campbell, I.M. "Gas Phase Reactions of Hydroxyl Radicals," Gas Kinetic Energy Transfer, 4, p. 137-88 (1981).

Ref. 4. Gold, P.I., et. al., "Chemical Species and Chemioal Reactions of Importance in Nonequilibrium Performance Calculations," TRW02874-6001-R000, 6 December 1966 .

Ref. 5. Coats, D.E., et. al., "A Screening and Numerical Study for the One Dimensional Kinetics (ODK) Nozzle Program", Prepared for AFRPL, Contract F4611-77-C-0046, by Software \& Engineering Associates, Inc., Sept. 1979.

Ref. 6. Cherry, S.S., "Kinetic Rate Data Screening and Update Procedure", JANNAF Performance Standardization Subcommittee, Salt Lake City, UT, Jan. 25-26, 1979.

Ref. 7. Baulch, D.L., Drysale, D.D., Horne, D.G., Lloyd, A.C., "Evaluated Kinetic Data for High Temperature Reactions, Vol.I Homogeneous Gas Phase Reactions for the $\mathrm{H}_{2}-\mathrm{O}_{2}$ System," CRC Press, Cleveland, Onio (1972)

Ref. 8. Baulch, D.L., Drysdale, D.D., Horne, D.G., Lloyd, A.C., "Evaluated Kinetic Data for High Temperature Reactions, Vol. II Homogeneous Gas Phase Reactions for the $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{N}_{2}$ System," CRC Press, Cleveland, Ohio (1973)

Ref. 9. Baulch, D.L., Drysdale, D.D., Duxbury J., Grant, S., "Evaluated Kinetic Data for High Temperature Reactions, Vol. II Homogeneous Gas Phase Reactions of the $\mathrm{O}_{2}-\mathrm{O}_{3}$ System, The $\mathrm{CO}-\mathrm{O}_{2}-\mathrm{H}_{2}$ System, and of Sulfur - Contai ${ }^{2} \mathrm{in}$ ? Species, 4 Butterworth Inc: Mass. (1976)

Ref.10. Baulch, D.L., Duxbury, J., Grant, S.J., Montague, D.C., "Evaluated Kinetic Data for High Temperature Reactions, Vol. IV: Homogeneous Gas Phase Reactions of Halogen and Cyanide- Containing Species," Journal of Physical and Chemical Reference Data, Vol.lo, supplement No.l (1981)

Ref.ll. Jensen, D.E., Jones, G.A., "Reaction Rate Coeffecients for Flame Calculations," Combustich and Flame 32, p. 1-34 (1978).

- Ref.l2. Foon, R., Kaufman, M., "Kinetics of Gaseous fluorine Reactions," Prog. in Reaction Kinetics $8: 2,81-160$, (1975).


[^0]:    ${ }^{*} K_{j}$ is also the ratio of the forward toreverse reaction rates.

[^1]:    * Normalized by the throat radius, $r_{t}$.

[^2]:    
    
    
    
    

[^3]:    

[^4]:    * Error diagnostics can also be subroutines. These vary with the discussed here.

[^5]:    DID NOT CONVERGE FOR AREA RATIO＝

[^6]:    DID NOT CONVERGE FOR UI＝ANSWERS
    PROBABLY NOT RELIABLE SOLUTION MAY NOT EXIST

    DID NOT CONVERGE ON ELECTRON BALANCE

[^7]:    $\left|1-\sum_{C_{i}}\right|<.01$ the $\varnothing D K$ output subroutine has de－
    tected an error in mass conservation．

