ENGINEERING AND PROGRAMMING

MANUAL

TWO-DIMENSIONAL KINETIC

REFERENCE COMPUTER PROGRAM

(NASA-CL-178628) ENGINEERING AND FROGRAMMING MANUAL: TWO-DIMENSIONAL KINETIC REFERENCE COMFUTER PROGRAM (TLR) Final Report (Software and Engineering Associates, Unclas Inc.) 480 p HC A21/MF A01 CSCL 09B G3/61 03664

TDK

Final Report Contract No. NAS8-35931

April 1985

By: G. R. Nickerson

L. D. Dang

D. E. Coats

Prepared For

George C. Marshall Space Flight Center Marshall Space Flight Center, Al. 35812

Software And Engineering Associates, Inc. 1050 East William Street, Suite 402 Carson City, Nevada 89701

• • · · · • • •

ENGINEERING AND PROGRAMMING

MANUAL

TWO-DIMENSIONAL KINETIC REFERENCE COMPUTER PROGRAM

TDK

Final Report Contract No. NAS8-35931

April 1985 By: G. R. Nickerson L. D. Dang D. E. Coats

Prepared For George C. Marshall Space Flight Center Marshall Space Flight Center, Al. 35812

Software And Engineering Associates, Inc. 1050 East William Street, Suite 402 Carson City, Nevada 89701

FOREWORD

This report contains an engineering and programming description for the revised April/85 version of the Two-Dimensional Kinetic Thrust Chamber Analysis Computer Program, TDK, developed by Software and Engineering Associates, Inc., Carson City, Nevada. Revision of the TDK Computer Program was performed under Contract Numbers NAS8-34974, NAS8-35046, and NAS8-35931. The work performed was monitored by Mr. Klaus Gross and Mr. A. Krebsbach of the NASA George C. Marshall Space Flight Center, Huntsville, Alabama.

The TDK Computer Program consists of the following computational modules:

MCM	Master Control Module
ODE	One-Dimensional Equilibrium Nozzle Analysis
	Module
ODK	One-Dimensional Kinetic Nozzle Analysis
	Module
TRANS	Transonic Analysis Module
MOC	Method of Characteristics Module for
	Equilibrium, Kinetic, or Frozen Nozzle Flow
BLM	Boundary Layer Module

The reference procedure which utilizes the above computer programs is given in the JANNAF Rocket Engine Performance Prediction and Calculation Manual, CPIA246, Reference 1.

<u>Page No.</u>

FOREWORD

NOMENCLATURE

ABBREVIATIONS

1.	INT	RODUCTION	1 - 1
2.	ANA	LYSIS	2.1
	2.1	ANALYSIS FOR THE ODK COMPUTER PROCESS	2-1
	2.2	CHEMISTRY	2-6
	2 2		2-12
	2.3	CONSERVATION EQUATIONS FOR TWO DIMENSIONAL KINETIC EXPANSIONS	2-15
	2.4	INITIAL LINE CONSTRUCTION	2-17
	2.5	METHOD OF CHARACTERISTICS FOR KINETIC EXPANSIONS	2-32
	2.6	THE BOUNDARY LAYER MODULE, BLM	2-41
3.	NUME	RICAL METHODS	3-1
	3.1	ØDK NUMERICAL INTEGRATION METHOD	3-2
	3.2	TDK NUMERICAL INTEGRATION METHOD	3-10
	3.3	SUMMARY OF THE TDK COMPUTATIONAL PROCEDURE	3-17
4.	PROGI	RAM STRUCTURE	4 - 1
5.	PROG	RAM SUBROUTINES	5-1
	5.1	MCM SUBROUTINES	5-2
	5.2	ØDE MODULE SUBROUTINES	5-27
	5.3	ØDK MODULE SUBROUTINES	553
	5.4	TRANS MODULE SUBROUTINES	5-99
	5.5	MOC MODULE SUBROUTINES	5-119
	5.6	BLM SUBROUTINES	5-149

TABLE OF CONTENTS (Continued)

6

Ρ	а	g	е	N	I	0	•
	-	_			_	-	

•	PROG	RAM USE	R'S MANUA	L	6-1
	6.1	THERMO	DYNAMIC DA	ΑΤΑ	6 - 4
		6.1.1	THERMODY	NAMIC DATA BELOW 300 ⁰ K	6-13
	6.2	TITLE	CARDS		6-16
	6.3	DATA D	IRECTIVE	AND \$DATA NAMELIST INPUT	6-17
		6.3.1	SPECIFIC	ATION OF MODULES TO BE EXECUTED	6-18
		6.3.2	INPUTS F	OR CONTROL FOR THE PROGRAM	6-20
		6.3.3	SPECIFIC	ATION OF NOZZLE GEOMETRY	6-22
			6.3.3.1	EXHAUST NOZZLE GEOMETRY SPECIFICATION, FOR ØDK AND THE MØC MODULES	6-25
	6.4	ØDE IN	PUT DATA		6-27
		6.4.1	REACTANTS	S CARDS	6-27
		6.4.2	ØMIT AND	INSERT CARDS	6-31
			6.4.2.1	ØMIT CARDS	6-31
			6.4.2.2	INSERT CARDS	6-31
		6.4.3	\$ØDE NAM	ELIST INPUT	6-33
			6.4.3.1	VARIABLE MIXTURE RATIO OPTION	6-37
			6.4.3.2	OPTION TO PUNCH TABLES FOR BOUNDARY LAYER PROGRAM INPUT	6-39
	6.5	ØDK IN	PUT DATA		6-40
		6.5.1	SPECIES		6-40
			6.5.1.1	ODK OPTION FOR .NPUT OF INITIAL SPECIES CONCENTRATIONS	6 - 4 1

TABLE OF CONTENTS (Continued)

.

Page No.

.

6.5.2	THE INPU	JT OF CHEMICAL REACTIONS	6-43
	6.5.2.1	REACTIONS through LAST REAX	6-44
	6.5.2.2	INERT SPECIES OPTION	6-47
	6.5.2.3	THIRD BODY REACTION RATE RATIOS	6-47
	6.5.2.4	LAST CARD	6-49
	6.5.2.5	MASTER REACTION SET	6-49
6.5.3	\$ØDK NAM	IELIST INPUT	6-52
	6.5.3.1	SPECIFICATION OF NOZZLE GEOMETRY	6-52
	6.5.3.2	INTEGRATION CONTROL	6-53
	6.5.3.3	PRINT CONTROL	6-54
	6.5.3.4	SPECIES SELECTION AND MOLE/MASS FRACTION CHECK	6-56
	6.5.3.5	FROZEN EXPANSIONS WITH THE ODK MODULE	6-57
	6.5.3.6	ØDK PROBLEM INPUT	6-58
	6.5.3.7	MASS AVERAGED ØDK ISP	6-60
6.6	\$TRANS N	AMELIST INPUT	6-61
6.7	\$MOC NAM	ELIST INPUT	6-62
	6.7.1	CHARACTERISTICS MESH CONTROL	6-64
	6.7.2	MOC SHOCK OPTION	6-66
	6.7.3	PRINT CONTROL	6-69
	6.7.4	INPUTS FROM DER	6-70

TABLE OF CONTENTS (Continued)

Page No.

	6.7.5 E	EXIT PLANE OPTION	6-71
6.8	BOUNDARY L DATA, \$BLM	LAYER MODULE (BLM) INPUT 1	6-72
	6.8.1 E	BLM GAS PROPERTIES	6-73
	6.8.2 E	BOUNDARY LAYER EDGE CONDITIONS	6-76
	6.8.3 I	INTEGRATION STEP SIZE Control	6-78
	6.8.4 R T	REGENERATIVE COOLING HEAT TRANSFER	6-79
	6.8.5 B	BLM PLOTTED OUTPUT	6-82
6.9	SPECIAL OP	TIONS	6-87
	6.9.1 C	CONSTANT PROPERTIES GAS	6-87
6.10	INITIAL VA AND \$TDK I	LUES FOR THE ØDK, \$TRANS, NPUTS	6-89
7. INPUT AND OU	JTPUT FOR S	AMPLE CASES	7 - 1
7.1	THE STRATI	FIED FLOW ENGINE, CASE 1	7-3
7.2	PRATT AND OTV PROPUL	WHITNEY TEST ENGINE, RL-10 SION	7-53
7.3	ROCKETDYNE ENGINE FOR	PROTOTYPE ADVANCED SPACE OTV PROPULSION	7-59
7.4	DISCUSSION	OF SUMMARY OUTPUT	7-69
8. ERROR DIAGNO	STICS		8 – 1
REFERENCES			R – 1
APPENDIX A			A – 1

iv

LIST OF FIGURES

<u>Page No.</u>

2-1a	Schematic for TDK Analysis	2-3
2-1b	Master Flow Chart for TDK	2-3
2-2	Nozzle Throat Geometry	2-22
2-3	Nomenclature for the Numbering of Zones	2-25
2-4a	Right-Running Shock Point	2-39
2-4b	Shock Reflection Point at the Axis	2-39
2-4c	Left-Running Shock Point at the Axis	2-39
2-4d	Left-Running Shock Point	2-39
2-4e	Shock Reflection Point at the Wall	2-39
2-4f	Right-Running Shock Point at the Wall	2-39
2-5	Gas Properties Tables	2-48
3-1	Flow Field Calculation	3-11
4-1	Basic Modules of TDK	4-2
4-2	Suggested Overlay Structure	4 - 3
5-1	Nozzle Geometry for ODK	5-90
5-2	Nomenclature for Numbering Zones	5-101
5-3	Flow Diagram for Subroutine BLSEG	5-159
6 – 1	Nozzle Geometry, all Coordinate Values are Normalized by RSI = r _t	6-23
6-2	Boundary Layer Momentum Thickness vs. Axial Position	. 6-83
6-3	Boundary Layer Displacement Thickness vs. Axial Fosition	6-84

.

v

6-4	Wall Temperature (Input) vs. Axial Position	6-85
6-5	Velocity and Temperature Profiles at a Given Area Ratio	6-86
7 - 1	Flow Schematic; P & W OTV Concept	7-55
7-2	Flow Schematic; Rocketdyne OTV Concept	7 - 6 1

.

LIST OF TABLES

Table No. Page No. 2-1 Maximum Dimensions for TDK 2-2 4 - 14-7 Files used by TDK 4-11 4-2 Subroutine Entry Point Cross-References 4-15 4-3 Common Block Cross-References 5-1 Species Names and ID's, Subroutine MUK 5-12 5-2 Iteration Equations for ODE Assigned P,H 5-32 or P.S 5-3 ODE Equations for Derivatives with Respect 5-34 to log P at constant P 5-4 ODE Equations for Derivatives with Respect 5-36 to log A at constant T Expressions for the Reaction Rate Constants 5-5 5-86 Equivalence Table for the MOC Variables 5-128 5-6 5-7 5-140 Definitions for FORTRAN, etc. 5-8 Arrays Used by the BLM 5-150 6 - 16-2 Input Data Set Description 6-2 Format for Thermodynamic Data Cards 6-6 6-3 Thermo Data Cards for an $0_2/H_2$ Propellant 6-7 6-4 Species with Thermodynamic Data Provided 6-8 6-5 Low Temperature Thermodynamic Data Input 6-15 Propellant 6-6 Usage of the Module Flags 6-19 6-7 Reactants Cards 6-28 6-8 Listing of Sample Reactants Cards 6-29

Table No.	<u>.</u>	<u>Page No.</u>
6-9	Variables in \$0DE Namelist	6-35
6-10	Reactions and Rate Data for C, CL, F, H, N, and O Systems	6-50
6-11	Listing of Reaction Cards for an $0_2/H_2$ Propellant	6-51
6-12	Input Data for a Hydrazine Monopropellant Engine	6-59
6-13	Sample Case for the Constant Properties Gas Option	6-88
7 - 1	TDK Sample Case Input and Output	7-5
7-2	TDK Input Data for RL10 OTV Test Engine	7-56
7-3	TDK Performance Summary, 1 Zone RL10	7-58
7 - 4	TDK Input Data for ASE Test Engine	7-62
7-5	TDK Performance Summary, 1 Zone ASE	7-64
7-6	TDE Input Data for ASE Test Engine	7-65
7-7	TDE Gas Tables Output	7-66
7-8	TDE Performance Summary, 1 Zone ASE	7-67
8-1	Error Diagnostics	8-4
8-2	Error Messages	8-8

NOMENCLATURE

a	Nozzle area ratio, also reaction rate parameter
a _{ki}	Gram atoms of the k th element in the i th species
A	Adiabatic heat addition term linking fluid dynamic and relaxation processes, also total mass reactant in ODE
Ь	Reaction rate parameter
B	Energy exchange term linking fluid dynamic and relaxation processes
C	Specles mass fraction
C _F	Thrust coefficient
Ċp	Frozen heat capacity
C _{pe}	Equilibrium heat capacity
C*	Characteristic exhaust velocity
$\mathcal{Z}_{\mathbf{i}}$	Heat capacity per mole of i th species/R
f	Derivative
F	Free energy, also function defined by Equation (2.5-5)
\mathcal{I}_{1}	Free energy per mole of i th species/R
G	Function defined by Equation (2.5-6)
h	Enthalpy, also integration increment
H	Total enthalpy, also function defined by Equation (2.5-7)
ΔH _F	Heat of formation
×i	Enthalpy per mole of i th species/RT
Isp	Specific impulse
k .	Variable increment, also reaction rate parameter
K	Equilibrium constant
m	Reaction rate ratio
Mw	Molecular weight
М	Mach number, also third body reaction term
n	Reaction rate parameter, also summation or iteration index
n _i	Moles of i th species
Ne	Average equilibrium pressure expansion coefficient
P	Pressure

NOMENCLATURE (continued)

-

Г	Radial distance coordinate, from axis
r*	Nozzle throat radius
R	Gas constant
R*	Nozzle wall radius of curvature at throat
R	Universal gas constant
S	Entropy, also summation term
\mathcal{A}_{i}	Entropy per mole of i th species/R
T	Temperature
u	Velocity in x-direction
v	Velocity in r-direction
v	Velocity
x	Axial distance coordinate, from throat
У	Dependent variable
Υ _i	Slipline height
-	
α	Mach angle, angle between stre a mline and Mach line characteristics
$\boldsymbol{\alpha_i}$	Partial derivative, df ₁ /dx
β _{1,1}	Partial derivative, $\partial f_i / \partial y_j$
γ	Frozen heat capacity ratio
γ _e	Equilibrium heat capacity ratio
δ _i	Incremental error
δ	Kronecker delta
€	Area ratio
ρ	Density
θ	Nozzle cone angle
ω ₁	Net species production rate
Subscripts:	•
С	Refers to chamber conditions
í	Refers to i th species or equation
t	Refers to j th reaction or variable
0	Refers to reference conditions
Superscript:	

Refers to throat conditions or sonic conditions

×

.

ABBREVIATIONS

- BLIMP Boundary Layer Integral Matrix Procedure, JANNAF computer program
- BLM Boundary Layer Module, computer program
- JANNAF Joint Army-Navy-NASA-Air Force
- MØC Method of Characteristics, module of SPP and TDK
- ØDE One-Dimensional Equilibrium, module of SPP and TDK
- ODK One-Dimensional Kinetics, module of SPP and TDK
- OTV Orbit Transfer Vehicle
- PSS Performance Standardization Subcommittee of JANNAF
- SEA Software and Engineering Associates, Inc.
- SPP Solid Performance Program, JANNAF computer program
- TDE Two-Dimensional Equilibrium, module of TDK
- TDK Two-Dimensional Kinetics, JANNAF computer program

THIS PAGE LEFT INTENTIONALLY BLANK

The Two-Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology.¹ This computer program and the performance prediction methodology were originally developed under the auspices of the Performance Standardization Subcommittee (PSS) of the JANNAF. The goal of the PSS is the development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference.

Recent interest in rocket engines that operate at high expansion ratio, such as most Orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program that is described in Reference 2. Although much material from the 1973 document is included in this manual, other material is entirely new. This new material reflects the new capabilities of the TDK computer program, the most important of which are described below.

Ref. 2: Nickerson, G. R., Coats, D. E., and Bartz, J. L., "The Two-Dimensional Kinetic (TDK) Reference Computer Program", Engineering and Programming Manual, Ultrasystems, Inc., December 1973, prepared for Contract No. NAS9-12652, NASA JSC.

850105

- a) A Boundary Layer Module (BLM) has been included within the TDK program. The BLM can be used to automatically calculate the wall boundary layer after execution of the Method of Characteristics (MOC). The resulting wall displacement and the heat transferred through the wall are computed. The ODE-ODK-TRANS-MOC series of calculations can then be automatically repeated with the appropriate parameters (wall contour and propellant enthalpy) updated. This feature allows the "rigorous analytical procedure" of the JANNAF rocket engine performance prediction methodology to be carried out with a single computer run for a regeneratively cooled engine.
- b) The ODE module of TDK has been modified so that it will compute transport properties for the nozzle exhaust composition. This information is required by the BLM.
- c) The ODE module of TDK has been modified so that it will provide tables of gas properties versus temperature for the stream tube mixture ratio adjacent to the nozzle wall. This information is required by the BLM.
- d) New nozzle wall geometry options have been added to the program.
- e) The ODK and MOC modules can contain condensed phases that are in thermal and velocity equilibrium with the gas.
- f) The transonic flow module (TRANS) has been modified to analyze flow with variable mixture ratio.

- g) The MOC module has been rewritten to allow for the presence of a shock wave in the flow. The shock can be either attached to the nozzle wall, or induced by the nozzle wall curvature. Regular reflections from the nozzle axis and the nozzle wall can be computed. The shock option can be used for flows with gas properties along streamlines that are either:
 - 1) constant,
 - chemically frozen (i.e., fixed composition, but properties varying with temperature), or
 - 3) governed by finite rate kinetics.
- h) The thermodynamic data and kinetic rate data (see Appendix A) for the program have been updated.

The TDK Computer Program is designed for engineering use and is specified and programmed in a straight forward manner to facilitate its application. The FORTRAN IV programming language has been used in an attempt to make the computer program as machine independent as possible. A complete engineering and programming description of the TDK Computer Program is contained in this report.

Section 2 of this report contains a description of the methods of analysis used in the computer program.

Section 3 contains a description of the numerical rethods used to integrate the fluid dynamic and chemical reluxation equations in the computer program.

Section 4 contains a description of the program structure.

Section 5 contains a detailed engineering and programming description of the program subroutines.

Section 6 contains a program user's manual describing the use of the computer program with an explanation of the program input and output.

Section 7 contains input and output for a sample case using the TDK option of the program.

Section 8 contains a discussion of program usage and error diagnostics.

2. ANALYSIS

The TDK Computer Program has been written for the purpose of evaluating two-dimensional effects on the performance of liquid propellant exhaust nozzles. An important feature of the TDK program is its ability to consider nonequilibrium chemical processes. The basic method of analysis used by TDK is the method of characteristics. The program constructs а finite-difference mesh by tracing gas streamlines and characteristic surfaces. The mesh points are located at the intersections of these surfaces. Systems of large size can Ъe considered by the program as is indicated by Table 2-1 which gives maximum dimensions for the program.

The method of characteristics calculation is capable of considering either continuous mixture ratio variation, or flow striations. Striated regions are separated by slipline conditions, i.e., adjacent streamlines with matched pressure and angle, but at different gas streamline mixture ratio, temperature, etc. Mixing between striated zones. is not considered. The initial data line required to start the method characteristics is calculated using a transonic analysis of provided for this purpose. The characteristic equations governing the fluid dynamic variables are integrated using a second order (modified Euler) explicit integration method while the chemical relaxation equations are integrated using a first order implicit integration method to insure numerical stability in near equilibrium flows.

In order to start the method of characteristics calculation, it is necessary to approximate an initial data line across the nozzle throat. This initial data line must be supersonic and

850105

	ł
Number of defined elements provided	102
Number of possible species per case	40
Number of species in the Master Thermodynamic Data File	1000
Number of possible reactions	150
Number of possible reactions with implied third body	50
Number of reactants per reaction	10
Number of products per reaction	10
Maximum stoichiometric coefficient total	600
Number of possible third body efficiencies to be considered	2000
Maximum number of streamlines (i.e. mesh points per left	275
running characteristic)	1
Maximum number of zones (i.e. striations)	50

must be compatible with the mesh construction methods used by TDK. The calculations performed by TDK to generate this initial data line are carried out in two stages. First chemical information is computed by use of the ODK module as described in Section 2.1. Chemical and fluid properties, obtained from this calculation are retained in the form of tables. The second stage of the calculation makes use of this information and employs a perturbation method to estimate two dimensional effects in the transonic region of the nozzle throat. Variable mixture ratio flows and striated flows are treated by means of a straight forward extension of the procedure described above.

The description given above is shown schematically in Figure 2-la. The TDK Computer Program is divided into modules as shown in the figure. The modules are illustrated in the master flow chart presented in Figure 2-1b. For a description of the analysis used by ODE, Reference 3 should be used.

Figure 2-1b. Master Flow Chart for TDK

In Section 2.1 of this report the analysis for the ODK computer program is given. In Section 2.2 a discussion of the finite rate chemistry used by both ODK and TDK is presented. In Section 2.3 the conservation equations governing two dimensional axisymmetric inviscid flow are presented. In Section 2.4 the transonic flow method used to construct an initial data line for the method of characteristics solution is presented. The method of characteristics relations are presented in Section 2.5. The boundary layer solution is presented in Section 2.6.

PERFORMANCE PREDICTION METHODOLOGY

The JANNAF thrust chamber performance prediction methodology is defined in Reference 1. In this methodology the predicted delivery specific impulse for the thrust chamber can be expressed as:

 $I_{sp} = n_{DER} I_{sp} - \Delta F_{BLM} / M_{TDK}$

The factor n_{DER} in the above expression represents the distributed energy release of the combustion process. The terms

I sp , $M_{\rm TDK}$, and $\Delta F_{\rm BLM}$ represent the values predicted by TDK' TDK for nozzle specific impulse and mass flow, and by the BLM for boundary layer thrust deficit. The prime denotes that these quantities have been corrected using the Prandtl procedure. Thus, a second TDK calculation has been made with the nozzle wall displaced inwards a distance equal to the boundary layer displacement thickness. Also, in this calculation the heat picked up by the regen cooling circuits has been returned to the thrust chamber as increased propellant enthalpy. Care is taken

850105

in the procedure to assure that a complete energy balance is maintained.

The boundary layer thrust deficit is evaluated by integrating across the boundary layer at the nozzle exit for momentum thickness, θ , and displacement thickness, δ^* , and applying the results as follows:

 $F_{BLM} = 2\pi r_e \cos \alpha_e \rho_e U_e^2 \theta_{BLM}$ $- 2\pi r_e \cos \alpha_e (P_e - P_{BLM}) \delta^*_{BLM}$

The first term in the above expression represents the momentum deficit in the boundary layer and includes the effects of wall skin friction and heat transfer. The second term represents the pressure force acting on the annular portion of the nozzle exit plane that is between the real wall and the invisid edge of the boundary layer. The quantities r_e , ρ_e , P_e , and U_e , are boundary layer edge properties obtained from the second TDK calculation.

850105

2.1 ANALYSIS FOR THE ØDK COMPUTER PROGRAM

The One Dimensional Kinetic nozzle analysis computer program (ØDK) described in this section has been developed for performing reference liquid propellant thrust chamber performance calculations. The ODK computer program calculates the inviscid one dimensional equilibrium, frozen and nonequilibrium nozzle expansion of gaseous propellant exhaust mixtures. The ØDK program is also used as a subprogram by TDK. The ØDE computer program, which is described in Reference 3, is used to perform the equilibrium composition computations. The ØDE program computations are based on the assumption that species compositions at any pressure and enthalpy point will be distributed such that the free energy of the system is minimized. Solid and liquid phases can be included in ØDE computations, and to a certain extent in the ØDK and TDK computations.

The ODK one dimensional nonequilibrium calculation is performed beginning at the converging section of the nozzle and ending at an axial station located beyond the throat plane. In this calculation pressure defined relations are used to integrate the differential equations for a one dimensional streamtube until the flow becomes supersonic. This pressure profile is obtained by computing an average value of expansion coefficient based on a chemical equilibrium gas composition at the nozzle chamber and throat. These parameters are supplied automatically by ODE. Pressure and its axial derivative are then obtained for the exact prescribed inlet geometry from the relations for isentropic expansion. Once the pressure profile has been determined the one dimensional nonequilibrium flow relations are integrated starting with an equilibrium calculation obtained at the thrust chamber contraction ratio. The advantage of using the pressure defined boundary condition is that the differential equations are not singular at Mach one so that no difficulties are encountered when integrating through the nozzle throat region. The throat (minimum area) occurs when the product of density and velocity maximizes and thus determines the mass flux corresponding to the choke flow condition. Using this mass flux, the nozzle area profile can then be determined. Experience has shown good agreement between this area profile and the original input geometry. Once supersonic conditions are reached the program automatically changes over to area defined differential equations.

2.1.1 Conservation Equations for One Dimensional Kinetic Expansions

The conservation equations governing the inviscid one dimensional flow of reacting gas mixtures have been given by Hirschfelder, Curtiss and Byrd,⁴ Penner 5 and others. The basic assumptions made in the derivation of these equations are:

- There are no mass or energy losses from the system
- o The gas is inviscid
- o Each component of the gas is a perfect gas
- The internal degrees of freedom (translational, rotational and vibrational) of each component of the gas are in equilibrium.

The conservation equations are presented here in the form used in the present analysis.

For each component of the gas the continuity equation is

$$\frac{d}{dx}$$
 (ρ_i Vā) = ω_i r*ā

where the axial coordinate (x) has been normalized with the throat radius. Summing over all components of the mixture, the overall continuity equation is obtained

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\rho \ \mathrm{V}\bar{\mathrm{a}} \right) = 0$$

Combining the above two equations gives

$$\frac{\mathrm{dc}_{\mathbf{i}}}{\mathrm{dx}} = \frac{\omega_{\mathbf{i}}^{\mathbf{r}}}{\rho \, \mathbf{V}}$$

The momentum equation is

$$\rho V \frac{dV}{dx} + \frac{dP}{dx} = 0$$

The energy equation is

$$h + \frac{1}{2} V^2 = H_c$$

where

$$h = \sum_{i=1}^{n} c_i h_i$$

and

$$h_{i} = \int_{0}^{T} C_{pi} dT + h_{i0}$$

For each component of the gas, the equation of state is

Summing over all components of the mixture, the overall equation of state is obtained

 $P_i = \rho_i R_i T$

where

 $R = \sum_{i=1}^{n} c_i R_i$

 $P = \rho RT$

Since the expansion through a nozzle can be specified either by the expansion process or by the nozzle geometry, two forms of the above equations are of interest.

If the expansion process is specified and the pressure is known as a function of distance through the nozzle, the above equations become

$$\frac{\mathrm{dc}_{\mathbf{i}}}{\mathrm{dx}} = \frac{\omega_{\mathbf{i}}r^{\star}}{\rho V}$$

$$\frac{\mathrm{d}V}{\mathrm{d}x} = -\frac{1}{\rho V} \frac{\mathrm{d}P}{\mathrm{d}x}$$

$$\frac{d\rho}{dx} = \left[\frac{1}{\gamma P} \frac{dP}{dx} - A\right] \rho$$

$$\frac{dT}{dx} = \left[\frac{\gamma - 1}{\gamma} \frac{1}{P} \frac{dP}{dx} - B\right] T$$

while if the nozzle geometry is specified, the above equations become

$$\frac{dc_i}{dx} = \frac{\omega_i r^*}{\rho V}$$

$$\frac{\mathrm{d}V}{\mathrm{d}x} = \left[\frac{1}{\bar{a}} \frac{\mathrm{d}\bar{a}}{\mathrm{d}x} - A\right] \frac{V}{M^2 - 1}$$

$$\frac{d\rho}{dx} = -\left\{ \left[\frac{1}{a} \frac{d\bar{a}}{dx} - A \right] \frac{M^2}{M^2 - 1} + A \right\} \rho$$

$$\frac{\mathrm{d}T}{\mathrm{d}x} = -\left\{ \left[\frac{1}{\overline{a}} \frac{\mathrm{d}\overline{a}}{\mathrm{d}x} - A \right] \frac{(\gamma - 1)M^2}{M^2 - 1} + B \right\} T$$

where

$$A = \frac{r^{*}}{PV} \left[\sum_{i=1}^{r} \omega_{i}R_{i}T - \frac{Y-1}{Y} \sum_{i=1}^{r} \omega_{i}h_{i} \right]$$
$$B = \frac{Y-1}{Y} \frac{r^{*}}{PV} \sum_{i=1}^{r} \omega_{i}h_{i}$$

$$M = \frac{V}{\sqrt{YRT}}$$

$$\gamma = \frac{C_p}{C_p - R}$$

and

$$C_p = \sum_{i=1}^{c} c_i C_{pi}$$

The first set of equations is completely specified at the sonic point while the second set of equations is singular. Thus, if the expansion through the nozzle is specified by the pressure distribution, the equations governing the expansion can be directly integrated through the sonic point without mathematical difficulty. The expansion from the chamber through the sonic point is specified by the pressure distribution in the present program in order to eliminate numerical difficulties at the sonic point. In the expansion section downstream of the sonic point, however, the area variation is specified and the second set of equations is integrated through the supersonic expansion section.

In specifying the nozzle pressure distribution from the chamber through the sonic point, rather than the known area distribution, a question naturally arises regarding how accurately the calculation represents the flow through a specified nozzle geometry. It has been shown by Bray 6 and others that the pressure distribution through a nozzle is essentially identical with the equilibrium pressure distribution up to the freeze point which generally occurs downstream of the throat (or sonic point). Thus, the difference in the expansion and predicted performance caused by utilizing the equilibrium pressure distribution rather than the nozzle geometry to specify the expansion from the chamber to the sonic point is negligible. If a case does arise in which the equilibrium pressure distribution is not an adequate representation of the expansion, the pressure distribution can be iterated to obtain the correct pressure distribution. Experience has shown that this is rarely if ever required.

In the above analysis the chemistry is brought into the conservation equations through the net species production rates, ω_i . The analysis pertaining to the chemistry is given in the following section.

2.2 CHEMISTRY

The method by which the net species production rate, $\dot{\omega}_i$, required by the preceeding analysis is determined is described below.

A chemical reaction can be written in terms of its stoichiometric coefficients (ν_{ij} and ν'_{ij}) as

$$\sum_{i=1}^{\Sigma} \nu_{ij} \overline{M}_i \neq \sum_{i=1}^{\Sigma} \nu'_{ij} \overline{M}_i$$

where \overline{M}_{i} represents the ith chemical species name and j represents the jth reaction.

Given a system of chemical reactions, the net species production rate ω_i for each species (component) is calculated from

$$\omega_{i} = m_{w_{i}j=1} \sum_{j=1}^{\sum} \rho^{\sum_{\ell=1}^{j} \nu_{\ell}j} (\nu_{ij} - \nu_{ij}) X_{j}$$

where

$$X_{j} = [K_{j} \frac{\pi}{i=1} c_{i}^{2} - \rho \frac{\lambda_{j}}{i=1} c_{i}^{2}] k_{j} M_{j}$$
(2.2-1)

The reaction rate, k_j , is from right to left (reverse) in the above equation and is represented by the Arrhenius form

$$k_{j} = a_{j}T e^{-n_{j}} e^{(-b_{j}/\Re T)}$$

where

^a j ⁿ j	is the pre-exponential coefficient
	is the temperature dependence of the pre-exponential factor
b,	is the activation energy

The term M_j is provided so that the reaction rate can be modified for reactions involving a third body, i.e.

$$M_{j} = \sum_{i=1}^{j} m_{j,i} \overline{c}_{i}$$
 for reactions requiring a third body
$$M_{j} = 1$$
 for all other reactions

where the constants $m_{j,i}$ are specified and

$$\bar{c}_i = c_i / Mw_i$$

The integer, λ_j , is determined for a given reaction from the stoichometric coefficients

$$\lambda_{j} = \sum_{i=1}^{n} (\nu_{ij} - \nu_{ij})$$

The equilibrium constant, K_i , is*

$$K_{j} = e^{-\Delta F / \Re T} \quad (\Re T)^{-\lambda_{j}}$$

where

$$\Delta \mathbf{F} = \sum_{i=1}^{n} \mathbf{f}_{i} \mathbf{\nu}_{ij} - \sum_{i=1}^{n} \mathbf{f}_{i} \mathbf{\nu}'_{ij}$$

Reactions involving a third body have a distinct reaction rate for each particular third body, so that the net production rate should be calculated from

$$\mathbf{X}_{j} = \sum_{k=1} \begin{bmatrix} K_{j} & \pi & \overline{c}_{i} & \lambda_{j} & \nu_{ij} \\ K_{j} & \pi & \overline{c}_{i} & -\rho & \pi & \overline{c}_{i} \end{bmatrix} \overline{c}_{k} k_{kj} \qquad (2.2-2)$$

rather than Equation (2.2-1). Benson and Fueno 7 have shown theoretically that the temperature dependence of recombination rates is approximately independent of the third body. Available experimental recombination rate data also indicates that the temperature dependence of recombination rates is independent of the third body within the experimental accuracy of the measurements. Assuming that the temperature dependence of recombination rates is independent of the third body, the recombination rate associated with the kth species (third body) can be represented as

$$k_{kj} = a_{kj} T e^{-n_j (-b_j/RT)}$$
(2.2-3)

where only the constant a_{kj} is different for different species (third bodies). From Equation (2.2-2) it can be shown that

$$\mathbf{X}_{j} = \begin{bmatrix} K_{j} & \pi & \overline{c_{i}}^{\mu} & \rho^{j} & \pi & \overline{c_{i}}^{\mu} \end{bmatrix} \sum_{k=1}^{\nu} a_{1:j} \overline{c_{k}} & T^{-n_{j}} e^{-b_{j}/RT} \\ = \begin{bmatrix} K_{j} & \pi & \overline{c_{i}}^{\mu} & \rho^{j} & \pi & \overline{c_{i}}^{\mu} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{\nu} a_{ij} \\ \overline{c_{i}} \end{bmatrix} a_{kj} T^{-n_{j}} e^{-b_{j}/RT} \end{bmatrix}$$

 K_{i} is also the ratio of the forward to reverse reaction rates.

Thus the recombination rates associated with each third body can be considered as in Equation (2.2-1) by calculating the general third body term (M_i) as

$$M_{j} = \sum_{i=1}^{j} m_{j,i} \overline{c}_{i}$$

where $m_{j,i}$ is the ratio $\begin{pmatrix} a_{ij} \\ a_{kj} \end{pmatrix}$ of the recombination rate associated with the ith species (third body) to the recombination rate associated with the kth species (third body) which is the reference species (third body) whose rate in the form of Equation (2.2-3) is specified in the program input.

Chemical kinetic rate data is discussed in Appendix A.
2.3 CONSERVATION EQUATIONS FOR TWO DIMENSIONAL KINETIC EXPANSIONS

The conservation equations governing the axisymmetric inviscid flow of reacting gas mixtures have been given by Hirschfelder, Curtiss and Bird⁴ Penner⁵ and others. The basic assumptions made in the derivation of these equations are:

- o There are no mass or energy losses from the system
- o The gas is inviscid
- o Each component of the gas is a perfect gas
- The internal degrees of freedom (translational, rotational, and vibrational) of each component of the gas are in equilibrium.

The conservation equations are presented here in the form used in the present analysis.

For each component of the gas, the continuity equation is

$$\left(\rho_{i}u\right)_{x} + \frac{1}{r}\left(r\rho_{i}v\right)_{r} = \omega_{i}r^{2}$$
(2.3-1)

where the coordinates (r, x) have been normalized with the throat radius. Summing over all components of the mixture, the overall continuity equation is obtained

$$(\rho u)_{x} + \frac{1}{r}(r\rho v)_{r} = 0$$
 (2.3-2)

Combining the above two equations gives

$$u(c_i)_x + v(c_i)_r = \frac{\omega_i r^*}{\rho}$$
 (2.3-3)

The momentum equations are

$$\rho(\mathbf{u}\mathbf{u}_{\mathbf{x}} + \mathbf{v}\mathbf{u}_{\mathbf{r}}) + \mathbf{P}_{\mathbf{x}} = \mathbf{0}$$
(2.3-4)

 $p(uv_x + vv_r) + P_r = 0$ (2.3-5)

The energy equation is

 $h + \frac{1}{2}(u^2 + v^2) = H_c$ (2.3-6)

where

 $h = \sum_{i=1}^{n} c_i h_i$ (2.3-7)

and

$$h_i = \int_0^T C_{pi} dT + h_{i0}$$
 (2.3-8)

For each component of the gas, the equation of state is

$$\mathbf{P}_{\mathbf{i}} = \boldsymbol{\rho}_{\mathbf{i}}^{\mathsf{T}} \mathbf{R}_{\mathbf{i}}^{\mathsf{T}}$$
(2.3-9)

Summing over all components of the mixture, the overall equation of state is obtained

$$\mathbf{P} = \rho \mathbf{R} \mathbf{T} \tag{2.3-10}$$

where

$$R = \sum_{i=1}^{n} c_i R_i$$
 (2.3-11)

2.4 INITIAL LINE CONSTRUCTION

The solution to equations 2.3-1 through 2.3-11 becomes highly complex in the subsonic-transonic domain. Because of the elliptic character of the partial differential equations for the case of steady-state, choked flow in a rocket nozzle, the known boundary conditions are improperly set. Thus, it is necessary to construct by approximate means an initial data line suitable for the calculation by method of characteristics of the flow field in the supersonic domain. The method used by the TDK Computer Program in constructing this initial line is summarized below.

2.4.1 Uniform Expansions

For the purpose of calculating a transonic solution in the region of the nozzle throat, an average expansion coefficient is determined. To accomplish this, a one-dimensional calculation is performed from the chamber to throat for the propellant system and nozzle geometry specified using the ODK subprogram.

Tables of flow properties (ρ, V, T, c_i) are constructed as a function of pressure. These tables span the nozzle throat region. An average expansion coefficient is computed using these tables as*

$$\gamma = \frac{\ln \left(\frac{P_{\ell}}{P_{1}} \right)}{\ln \left(\frac{O_{\ell}}{P_{1}} \right)}$$

where the subscripts 1 and *1* refer to the first and last table entries, respectively.

Using the above expansion coefficient and the throat wall geometry, the transonic flow field is constructed using the method of Sauer in a somewhat modified form as described in section 2.4.3. The initial line calculated by this method is an approximation to the constant pressure surface emanating from the throat minimum point. Along a constant property line it is a reasonable assumption that a constant value for expansion coefficient can be used.

$$\gamma \equiv \frac{d \ell nP}{d \ell n\rho} \doteq \frac{\ell n P_{\ell} - \ell n P_{1}}{\ell n \rho_{\ell} - \ell n \rho_{1}} = \frac{\ell n (P_{\ell} / P_{1})}{\ell n (\rho_{\ell} / P_{1})}$$

The TDK transonic analysis computes the pressure value at the throat minimum point, the location of the corresponding isobar, and the variation of streamline flow angle along this isobar. This particular surface has been chosen because it is advantageous from the standpoint of the assumptions made in the transonic analysis. It satisfies boundary conditions exactly at the wall, as well as at the axis and will yield a constant Mach number which is usually slightly greater than unity. If supersonic, this surface will be upstream of its characteristics, both left and right running. Should this surface be subsonic due to nonequilibrium effects, a provision exists for displacing the initial line downstream. Once the pressure surface described above has been calculated, all of the other gas dynamic properties are obtained by interpolation from the tables constructed by ODK.

2.4.2 Zoned Expansions

Many rocket thrust chambers are designed to operate with a cool (fuel rich) barrier zone near the wall to help shield the wall from excessive heat transfer. In addition thrust chamber and injector design usually result in a mal-distribution of the fuel/oxidizer ratio so that the resultant flow is striated into numerous zones of varying mixture ratio. In order to obtain an estimate of the effect of these phenomena on engine performance, a zoned expansion capability is included in the TDK computer program. Each zone is assumed to have a distinct mixture ratio and to contain a specified fraction of the total nozzle mass flow rate. The zones are assumed to be axially symmetric and are distributed radially from the nozzle axis to the nozzle wall.

The procedure used in constructing an initial line for zoned expansions is analogous to that described above for uniform expansions. For the purpose of calculating a transonic solution in the region of the nozzle throat, an average expansion coefficient is determined for each zone. To accomplish this, a one dimensional calculation is performed from the chamber to throat for the propellant system and nozzle geometry specified using the ODK Computer Program. One such calculation is performed for each zone (i.e. for each mixture ratio).

Tables of flow properties (ρ , V, T, c₁) are constructed as a function of pressure for each zone. These tables span the nozzle throat region. An average expansion coefficient, $\overline{\gamma}_n$, is computed for each of N zones using these tables as

$$\overline{\gamma}_{n} = \frac{\ln\left(\frac{P_{\ell}}{P_{1}}\right)_{n}}{\ln\left(\frac{\rho_{\ell}}{\rho_{1}}\right)_{n}} \qquad n = 1, \dots, N$$

where the subscripts 1 and ℓ refer to the first and last table entries, respectively.

Using the above expansion coefficient vector and the throat wall geometry, the transonic flow field is constructed using the method described in section 2.4.3. The initial line calculated by this method is an approximation to the constant pressure surface emanating from the throat minimum point. Along this line each zone is separated by a double point defining the properties on either side of the contact discontinuity.

These points, which have equal pressure and gas streamline angle, become dividing streamline points in the method of characteristics calculation (see subroutine DSPT, Section 5). Properties other than pressure and flow angle are discontinuous across a dividing streamline and these discontinuities may be large. Within a given zone only the gas streamline angle will vary with location (r, x) along the start line. Properties other than pressure and flow angle angle are obtained by interpolation on pressure from the tables constructed as described above by use of the ODK subprogram.

2.4.3 Transonic Analysis

The basic assumptions made in carrying out the transonic analysis are summarized below (see Reference 9 for a more complete discussion):

- o The flow is inviscid and compressible
- The flow is near the sonic speed and directed nearly along the nozzle axis
- o The flow is axially symmetric
- The flow is divided into annular zones, each of which is characterized by a single adiabatic expansion coefficient, y.
- In the nozzle throat region the flow is dependent only on the local wall geometry

With the above assumptions equations 2.3-1 through 2.3-11 reduce to the equations governing the irrotational flow of a perfect gas, i.e.:

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial r} = 0$$

and

$$(a^2 - u^2) \frac{\partial u}{\partial x} - 2uv \frac{\partial u}{\partial r} + (a^2 - v^2) \frac{\partial v}{\partial r} + \frac{a^2 v}{r} = 0$$

The method of analysis used to approximate a transonic solution to these equations is a small perturbation technique. For a one zone expansion the method reduces to that given by Sauer.⁸ The method consists of normalizing the velocity to the critical speed of sound

$$\widetilde{u} = \frac{u}{a^*}$$
$$\widetilde{v} = \frac{v}{a^*}$$

Perturbation variables u' and v' (both of which are assumed of small magnitude with respect to unity) are then introduced.

$$\widetilde{\mathbf{u}} = \mathbf{1} + \mathbf{u}^{\prime}$$

 $\widetilde{\mathbf{v}} = \mathbf{v}^{\prime}$

It can be shown that substituting these relations into the governing equations and retaining only terms through first order gives*

$$(\lambda + 1) \mathbf{n}_{i} \frac{9\mathbf{x}_{i}}{9\mathbf{n}_{i}} - \frac{9\mathbf{x}_{i}}{9\mathbf{n}_{i}} - \mathbf{n}_{i} \setminus \mathbf{u} = 0$$

An exact solution for the above equations can be constructed and is found to be

$$\mathbf{u}' = \frac{1}{4} (\gamma + 1) B_1^2 r^2 + C_1 \ln r + B_0 + B_1 x$$

$$\mathbf{v}' = \frac{1}{16} (\gamma + 1)^2 B_1^3 r^3 + \frac{1}{2} (\gamma + 1) B_1 C_1 r (\ln r - \frac{1}{2})$$

$$+ \frac{1}{2} (\gamma + 1) B_1 B_0 r + C_2 / r$$

$$+ \left[\frac{1}{2} (\gamma + 1) B_1^2 r + C_1 / r \right] x$$

where B_0 , B_1 , C_1 , and C_2 are constant coefficients which must be determined from boundary conditions. For the case of a nozzle throat with constant radius of curvature, **R**, (i.e. a circular arc, see Figure 2-2) these coefficients are found to be

$$B_{0}^{'} = - \frac{1}{4R}$$

$$B_{1}^{'} = + \left(\frac{2}{(\gamma + 1)R}\right)^{\frac{1}{2}}$$

$$C_{1}^{'} = C_{2}^{'} = 0$$

which is the classical solution given by Sauer.⁸

^{*}A complete derivation of the material presented here is given in Reference 9.

Figure 2-2 Nozzle Throat Geometry

Nearly all exhaust nozzles for engines using liquid propellants are constructed with a radius of curvature smaller than appropriate to the small perturbation methods of analysis. Fortunately a simple modification to the method yields results which compare favorably both with experimental measurement and with the results of other analysis when applied to throat geometries such as occur in rocket exhaust nozzles of practical interest. The basis for this modification is to bound the method such that the computed pressure proceeds to a physically reasonable limit for a zero radius of curvature throat. The bound is applied at the wall boundary condition and is chosen such that the ratio of pressure to sonic pressure be zero at this limit. This assumption leads to the result that

$$P/P* = 1 - (\gamma/4) / (R + \gamma/4)$$

rather than the usual result

$$P/P* | throat = 1 - (\gamma/4) / R$$

which is divergent for R = 0. Results obtained from the transonic analysis (see Reference 8) have been found to compare favorably to both available experimental data and to the results of other, more complex, analytical methods.

To apply the small perturbation analysis to striated flow the analysis assumes that the nozzle flow is divided into N axially symmetric zones, each of which is characterized by a constant (i.e. average) specific heat ratio. These N zones are bounded by N-1 sliplines, i.e. dividing streamlines, such that pressure and streamline angle are matched but other properties such as velocity, temperature, and Mach number are discontinuous. A first order method is used to determine the radial coordinate location, Y_n , of each slipline. Once these locations are known, boundary conditions are applied at the wall, axis, and each slipline to complete the solution.

The indices n = 0, 1, ... N identifying each zone and slipline boundary are taken numbered from nozzle axis to wall as shown in Figure 2-3. The sliplines are located at

$$Y_n$$
; n = 0, 1, . . . , N

The total mass flow rate for the nozzle is

м

and for each zone the partial mass flow rate is

$$\dot{m}_n = \frac{\text{mass flow rate, zone } n}{\dot{M}}$$
, $n = 1, 2, ... N$

so that

$$\sum_{n=1}^{N} \dot{m}_n = 1 = \dot{m}_1 + \dot{m}_2 + \dots + \dot{m}_n$$

zone index	boundary index		slipline lo	cations
	- N		$Y_N = 1$	wall
N	- N-1		Y _{N-1}	
<u>N-1</u>	-			
•				
•	- n+1		Y _{n+1}	
	n n		Yn	
n	n-1		Y _{n-1}	
<u> </u>				
•				
•	3	C	Y ₃	
3	2		Y ₂	
2	1		Y,	
<u> </u>	0		$Y_0 = 0$	axis
	-			

Figure 2-3

Nomenclature for the Numbering of Zones

Applying the continuity relation it can be shown that to first order the Y_n^2 are solutions to the tridiagonal system shown below.

where

 $K_{n} = \frac{\frac{m_{n+1}}{m_{n}}}{n} \qquad n = 1, 2, ... N-1.$ $A_{n} = \frac{\frac{\rho^{*} a^{*}}{n}}{\frac{\rho^{*} a^{*}}{n+1} n+1} \qquad n = 1, 2, ... N-1$

Once the slipline locations Y_n , are known it is necessary to apply boundary conditions sufficient to determine the constant coefficients B_{0n} , B_{1n} , C_{1n} , C_{2n} . The conditions applied are:

at the axis;

the radial velocity component is zero.

at the sliplines;

the gas pressure and streamline angle match through first order.

at the wall;

the gas streamline follows the wall streamline through first order. These conditions require that the following relations be satisfied by the constant coefficients:

at the axis (for n-1);

$$C_{1_1} = C_{2_1} = 0$$

at the sliplines (for n=2, . . . , N=1);

$$\frac{1}{16} (\gamma_{n}+1)^{2} B_{1_{n}}^{3} Y_{n}^{3} + \frac{1}{2} (\gamma_{n}+1) B_{1_{n}} C_{1_{n}} Y_{n} (\ln Y_{n} - \frac{1}{2}) + \frac{1}{2} (\gamma_{n}+1) B_{1_{n}} B_{0_{n}} Y_{n} + C_{2_{n}} Y_{n}^{-1} = \frac{1}{16} (\gamma_{n+1}+1)^{2} B_{1_{n+1}}^{3} Y_{n}^{3} + \frac{1}{2} (\gamma_{n+1}+1) B_{1_{n+1}} C_{1_{n+1}} Y_{n} (\ln Y_{n} - \frac{1}{2}) + \frac{1}{2} (\gamma_{n+1}+1) B_{1_{n+1}} B_{0_{n+1}} Y_{n} + C_{2_{n+1}} Y_{n}^{-1}$$

and

$$\frac{1}{2}(\gamma_{n}+1) B_{1_{n}}^{2} Y_{n} + C_{1_{n}} Y_{n}^{-1} = \frac{1}{2}(\gamma_{n+1}+1) B_{1_{n+1}}^{2} Y_{n} + C_{1_{n+1}} Y_{n}^{-1}$$

and

$$P_{n}^{\star} \left\{ 1 - \gamma_{n} \left[\frac{1}{4} (\gamma_{n} + 1) B_{1_{n}}^{2} Y_{n}^{2} + C_{1_{n}} \ln Y_{n} + B_{0_{n}} \right] \right\} = P_{n+1}^{\star} \left\{ 1 - \gamma_{n+1} \left[\frac{1}{4} (\gamma_{n+1} + 1) B_{1_{n+1}}^{2} Y_{n}^{2} + C_{1_{n+1}} \ln Y_{n} + B_{0_{n+1}} \right] \right\}$$

and

$$P_{n}^{\star} \gamma_{n}^{\star} B_{1}^{\star} = P_{n+1}^{\star} \gamma_{n+1}^{\star} B_{1}^{\star} + 1$$

at the wall (n = N);

$$\frac{1}{16} (\gamma_{N} + 1)^{2} B_{1_{N}}^{3} - \frac{1}{4} (\gamma_{N} + 1) B_{1_{N}} C_{1_{N}}$$
$$+ \frac{1}{2} (\gamma_{N} + 1) B_{1_{N}} B_{0_{N}} + C_{2_{N}} = 0$$

and

$$\frac{1}{2} (\gamma_{\rm N} + 1) B_{1_{\rm N}}^2 + C_{1_{\rm N}} = 1/R$$

The above equations form a system of 4N non-linear equations in 4N unknowns $(B_{0_n}, B_{1_n}, C_{1_n}, C_{2_n})$. For given values of R and of the vectors \dot{m}_n , A_n , γ_n , and Y_n the above system of equations can be used to determine the 4N unknown coefficients by employing standard numerical technique.

To apply a numerical method (such as the Newton method) to obtain a solution to the above system of equations requires an estimate for the solution vector $(B_{0_n}, B_{1_n}, C_{1_n}, C_{2_n})$. The TDK program uses the one zone solution to provide a first estimate. A good estimate is obtained since if

$$\gamma_n = \gamma_{n+1} \qquad n = 1, 2, \ldots, N-1$$

the one zone solution satisfies the above system identically. The program also takes advantage of the banded property of the Jacobian, J, for the above system

in using Newton's Method, $x^{(k+1)} = x^{(k)} - J^{(k)} f^{(k)}$, to obtain solutions.

The method described above has also been bounded so as to give reasonable answers for nozzle geometries where R is small.

2.4.4 Transonic Model with Mixture Ratio Variation

The transonic model used by TDK which is described in the preceding section divides the flow into regions of constant mixture ratio that are separated by sliplines. Each region contains a specified fraction of the total mass flow. This method, which is called the striated flow option, has been modified so that flows with continuous mixture ratio variation can be analyzed. This variable mixture ratio option is described below.

When the variable mixture ratio option is used, there are no sliplines in the flow. Instead, the flow mixture ratio ,r, will vary from the axis (Ψ =0) to the wall (Ψ =1) as specified by an input table of r versus Ψ . The streamline function , Ψ , represents the mass flow between the streamline and the axis, divided by the total nozzle mass flow. An ODK calculation is done for each entry in the above table. Values along the initial data line for the MOC are obtained by interpolation in the ODK results using pressure and radial coordinate position ,Y, as independent variables. The transonic analysis is used to provide a table of Ψ versus Y. The method used is described below.

The ODK program constructs tables of flow properties $(\rho, V, T, and c_i)$ as a function of pressure. These tables span the nozzle throat region. An average expansion coefficient is computed using these tables as

$$\Upsilon = \ln (P_{\ell}/P_{j})/\ln (\rho_{\ell}/\rho_{j})$$

where the subscripts 1 and 2 refer to the first and last table entries, respectively. Values of Y are found from \bar{Y} and from input to the transonic analysis

$$Y_n = (\bar{Y}_n + \bar{Y}_{n-1})/2$$
 $n = 1, 2, ... N$

and also

$$P_{c_n} = (\bar{P}_{c_n} + \bar{P}_{c_{n-1}})/2$$

 $\xi_n = \Psi_n - \Psi_{n-1}$

Using these values, the transonic analysis calculates

$$Y_{0} = 0, Y_{1}, Y_{2}, \dots Y_{N} = Y_{Wall}$$

The above Y_n values represent the radial location at which the input mixture ratios

$$r$$
, r , r , r , r , N

are located. In this way the input table of r versus Ψ is converted to a table of r versus Y.

Next, the transonic analysis is used to compute the coefficients $(B_{0n}, B_{1n}, C_{1n}, C_{2n})$. These are used to compute P(X,Y) and $\theta(X,Y)$ in the transonic region (see Reference 9, pp.2-20) at points n=0,1...N. Using each of these N + 1 values of P as an independent variable, the corresponding values for ρ, V, T , and c_i are obtained by linear interpolation from the corresponding table that was computed by ODK. These tables are then used to linearly interpolate for P, ρ, V, Θ, T , and c_i at each MOC initial line point using ψ as the independent variable.

The program will not function properly if the spacing in the mixture ratio table, r_n , is too large. The required spacing depends on the chemcial system. As a rule each entry must differ no more than 4 or 5% from its adjacent values, depending on the stoichiometry of the system.

The average engine mixture ratio, rave, is also calculated:

$$r = \int \left(\frac{r}{r+1}\right) d\mathring{m} / \int \left(\frac{1}{r+1}\right) d\mathring{m}$$
ave
$$v = \int r + 1 \qquad v = v$$

where

r is the mixture ratio at position Y, and

$$d\hat{m} = \rho V \frac{\sin(\phi-\theta)}{\sin\phi} Y dY.$$

2.5 METHOD OF CHARACTERISTICS FOR KINETIC EXPANSIONS

By standard methods the characteristic relationships for the conservation equations 2.3-1 through 2.3-11 can be shown to be (see Volume 2, Section 18-3, Zucrow and Hoffman¹⁰).

$$\frac{dr}{dx} = \tan \theta$$
$$d \frac{V^2}{2} + \frac{dP}{\rho} = 0$$
$$\frac{dP}{\gamma P} - \frac{d\rho}{\rho} = \frac{A}{\cos \theta} dx$$
$$\frac{Y - 1}{\gamma} \frac{dP}{P} - \frac{dT}{T} = \frac{B}{\cos \theta} dx$$
$$dc_i = \frac{\omega_i r^{\pm}}{\rho V \cos \theta} dx$$

along streamlines,

$$\frac{dx}{dr} = \cot (\theta + a)$$
 (2.5-1)

$$\frac{dP}{P} = G\left[\left(A - \frac{\sin \theta}{r}\right)F dr - d\theta\right]$$
(2.5-2)

along left running characteristics, and

$$\frac{dr}{dx} = \tan \left(\theta - \alpha \right) \tag{2.5-3}$$

$$\frac{dP}{P} = -G\left[\left(A - \frac{\sin\theta}{r}\right)H \,dx - d\theta\right]$$
(2.5-4)

along right running characteristics, where

$$A = \frac{r^{*}}{PV} \left(\sum_{i=1}^{r} \omega_{i}R_{i}T - \frac{\gamma - 1}{\gamma} \sum_{i=1}^{r} \omega_{i}h_{i} \right)$$
$$B = \frac{r^{*}}{PV} \frac{\gamma - 1}{\gamma} \sum_{i=1}^{r} \omega_{i}h_{i}$$
$$V = \left(u^{2} + v^{2}\right)^{1/2}$$
$$\theta = \tan^{-1}\left(\frac{v}{u}\right)$$
$$\alpha = \sin^{-1}\left(\frac{1}{M}\right)$$
$$M = \frac{V}{(\gamma RT)^{1/2}}$$
$$\gamma = \frac{C_{p}}{C_{p} - R}$$
$$C_{p} = \sum_{i=1}^{r} c_{i}C_{pi}$$

٠

.

٠

(2.5-5) $\mathbf{F} = \cos \theta - \sin \theta \cot (\theta + a)$

$$G = \frac{\gamma}{\sin a \cos a}$$
 (2.5-6)

$$H = \cos \theta \tan (\theta - a) - \sin \theta \qquad (2.5-7)$$

.

The above form of the characteristic relationships remains determinant when the streamline is horizontal, when the left running characteristic is vertical, or when the right running characteristic is horizontal. Rarely (if ever) will the inverse of the three situations occur in nozzle flow field calculations.

In the analysis above the chemistry is brought into the conservation equations through the net species production rates, ω_i . The analysis pertaining to the chemistry is identical to that used by the ODK program as presented in Section 2.2.

The methods developed in the preceding section for kinetic expansions apply with the exception that

$$\dot{\omega}_i = 0$$

so that

$$\mathbf{A} = \mathbf{B} = \mathbf{0}$$

and

$$de_i/dx = 0$$

Ordinarily the TDF expansion assumes the chemical composition to be frozen at the equilibrium values at the chamber contraction ratio (ECRAT). However, initial species compositions and flow conditions can be input. This is the procedure that must be followed when analyzing hydrazine monopropellant thrusters.

2.5.2 <u>Method of Characteristics for Equilibrium Expansions</u> (TDE)

The supersonic expansion can be analyzed using the method of characteristics assuming that the process is in a state of shifting chemical equilibrium. This option is called a TDE analysis. It can be used both for striated flow, and flow with streamline to streamline mixture ratio variation. Like the TDFanalysis, it is very much faster than a TDK analysis. The methods used by TDE are described below.

The conservation equations to be solved are:

- continuity: $(\rho u)_{\chi} + \frac{1}{r} (r\rho v)_{r} = 0$
- momentum: $\rho (uu_x + vu_r) + P_x = 0$
 - $\rho (uv_x + vv_r) + P_r = 0$
- energy: The energy equation is not used explicitly. Instead, property distributions are provided in the form of tables by a separate equilibrium computation. The energy equation is then satisfied in an implicit manner as*

$$V = (2h_0 - 2h)^{1/2}$$

where

h = h(P)

is supplied by the chemical equilibrium module, ODE, in the form of a table.

*Entropy is a constant for the expansion so that a function of only one variable, P, is required.

state: The state equation is also satisfied in an implicit manner as $\rho = \frac{PM_{W}}{RT}$ where and $M_{W} = M_{W}(P)$

are supplied by the chemical equilibrium module, ODE, in the form of tables.

The above conservation equations have been transformed to the characteristic form and are solved numerically in the same manner as by TDK. For convenience tables of specific heat ratio and Mach number are also tabulated. The complete set of tables used are:

h	vs	log (P)	enthalpy
Μ	vз	log (P)	Mach number
Mw	vs	log (P)	molecular weight
Т	vs	log (P)	temperature
Ŷ	vs	log (P)	ratio of specific heats

where each of the above tables has been constructed for each zone (i.e., region of constant mixture ratio) of the expansion. The above choice of curve fit form (i.e., vs P or log P) was made after investigating the graphical form of the above functions for typical equilibrium expansions. A spline fit method is used to interpolate in the above tables.

850106

2.5.3 <u>METHOD OF CHARACTERISTICS FOR APPROXIMATE KINETIC</u> EXPANSION (TTDK)

The supersonic expansion can be analyzed using the method of characteristics assuming that the gas properties are defined by a set of tables prepared by the ODK module. The procedures and tables are the same as presented in the preceding subsection describing TDE expansions, except that ODK is used to prepare the tables, not ODE.

An expression for the kinetic variable, A, is also required. It is found as (see the third equation in Section 2.5):

 $A = \left(\frac{1}{\gamma P} \frac{dP}{dX} - \frac{1}{\rho} \frac{d\rho}{dX} \right) \cos \theta$

where dP/dX and $d\rho/dX$ are found by numerical differencing.

The kinetic variable, B, is not required, since the gas temperature is found as a tabular function of the logarithm of the pressure.

A significant advantage of this option is that it gives an order of magnitude reduction in computer time for a given case. Although exact results can be obtained in the frozen and equilibrium limits, error can be introduced when the expansion is in chemical nonequilibrium.

2.5.4 SUPERSONIC FLOW WITH SHOCK WAVES

For the case of continuous variation (or no variation) in mixture ratio, the TDK computer program can calculate the effects of a single shock wave that is caused by the nozzle wall. The shock can either be attached to the wall, or induced by the wall. The latter case is the more difficult to treat. The program logic utilizes a series six of point calculation procedures to locate and compute the shock. These procedures are illustrated in Figures 2-4a through f. The flow direction

850106

Fig. 2-4b: Shock Reflection Point at the Axis

is left to right with streamlines shown as double lines. As shown in Fig. 2-4a the shock is initiated by a crossing of right-running characteristics. A shock point, labeled 3a (front) and 3b (back) is computed by iteration of the streamline, characteristic, and shock relations. When completed, the point location and the front and back side properties satisfy all of these relations. This right running shock is traced to the flow axis and reflected as a left running shock. The procedure for calculating the reflection is shown in Fig. 2-4b. If at any point in the shock tracing it is found that regular reflection is not possible, then a right regular cylinder of radius, r, is inserted centered along the flow axis. The shock is reflected from this cylinder, which is located so that regular reflection is still possible. In this way Mach shocks are removed from the flow. The first point off the axis (or cylinder) behind the shock reflection is calculated by the special procedure shown in Fig. 2-4c. Next, the shock is traced as a left running shock using the point calculation procedure shown in Fig. 2-4d. This procedure is the inverse of the right running shock point procedure shown in Fig. 2-4a. When the shock reaches the wall, it is reflected using the procedure shown in Fig. 2-4e. A special point calculation procedure is then required for the first point behind this reflection as shown in Fig. 2-4f. The resultant right running shock is then traced as before, etc. Thus, multiple reflections are allowed from the axis and the wall. In general the shock strengthens as it travels towards the axis (right running), and weakens as it travels away from the axis and towards the wall (left running).

The shock option is not applicable to the TDE and TTDK options.

850106

2.6 THE BOUNDARY LAYER MODULE (BLM)

The purpose of the Boundary Layer Module (BLM) is to provide a method for computing compressible laminar and turbulent wall boundary layers in axisymmetric nozzles. The BLM can also be used to calculate two-dimensional and axisymmetric external flows. The method utilizes an efficient two-point finite difference method developed by Keller and Cebeci¹¹. Turbulence modeling is achieved through the use of Cebeci-Smith eddy-viscosity formulation¹² which has been tested for a large class of flows with various boundary conditions.

In this section the method is described and the relavant equations, turbulence model, fluid properties and solution procedure are presented. Description of the numerical procedure is not presented, since it has already been described in several sources, for example Reference 13.

The computer program on which the BLM is based was developed for SEA, Inc. by CBC Enterprises, Inc.

Ref.	11	Keller, H. B., and Cebeci, T.: Accurate Numerical
		Methods for Boundary Layer Flows, Pt. 2,
		Two-Dimensional Turbulent Flows. AIAA J., 10, 1972,
		pg. 1193.
Ref.	12	Cebeci, T., and Smith, A. M. O.: Analysis of
		Turbulent Boundary Layers, Academic Press, N.Y., 1974.
Ref.	13	Bradshaw, P., Cebeci, T., and Whitelaw, J. H.:
	-	Engineering Calculation Methods for Turbulent Flows.
		Academic Press, London, 1981.

2.6.1 Boundary-Layer Equations

For a compressible boundary-layer flow in a symmetric nozzle, the governing equations are well known and can be written as

Continuity

$$\frac{\partial}{\partial x} (\rho u r^{k}) + \frac{\partial}{\partial y} (\overline{\rho v} r^{k}) = 0 \qquad (2.6-1)$$

Momentum

$$\rho \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \overline{\rho \mathbf{v}} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \rho_{\mathbf{e}} \mathbf{u}_{\mathbf{e}} \frac{\partial \mathbf{u}_{\mathbf{e}}}{\partial \mathbf{x}} + \frac{1}{r^{k}} \frac{\partial}{\partial \mathbf{y}} \left[r^{k} \left(\mu \frac{\partial \mathbf{u}}{\partial \mathbf{y}} - \rho \overline{\mathbf{u}^{\dagger} \mathbf{v}^{\dagger}} \right) \right] \qquad (2.6-2)$$

Energy

$$\rho \mathbf{u} \frac{\partial H}{\partial \mathbf{x}} + \overline{\rho \mathbf{v}} \frac{\partial H}{\partial \mathbf{y}} = \frac{1}{r^k} \frac{\partial}{\partial \mathbf{y}} \left\{ r^k \left[\frac{\mu}{Pr} \frac{\partial H}{\partial \mathbf{y}} + \mu \left(1 - \frac{1}{Pr} \right) \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} - \rho \mathbf{H}^* \mathbf{v}^* \right] \right\}$$
(2.6-3)

where k denotes the flow index which is zero for a two-dimensional flow and is unity for an axisymmetric flow, and

$$\overline{\rho \mathbf{v}} = \rho \mathbf{v} + \overline{\rho' \mathbf{v}'}$$
$$\mathbf{r} = \mathbf{r}_{\mathbf{o}} - \mathbf{y} \cos \phi$$

The boundary conditions for Eqs. (7-1) to (7-3) are

at y = 0, u = 0, $v = v_w(x)$, $T = T_w(x)$ or $q_w(x)$ (heat transfer specified) (2.6-4a) at $y = \delta$, $u = u_e$, $H = H_e$ (2.6-4b)

The above equations require initial conditions and a turbulence model for Reynolds shear stress and heat flux terms, $-\rho \overline{u'v'}$ and $-\rho \overline{H'v'}$, respectively. Here we use the concepts of eddy viscosity and turbulent Prandtl number and define

$$-\rho \overline{\mathbf{u}^{\prime} \mathbf{v}^{\prime}} = \rho \varepsilon_{\mathbf{m}} \frac{\partial \mathbf{u}}{\partial \mathbf{y}}, \qquad -\rho \overline{\mathbf{H}^{\prime} \mathbf{v}^{\prime}} = \rho \frac{\varepsilon_{\mathbf{m}}}{\mathbf{P} \mathbf{r}_{\mathbf{t}}} \frac{\partial \mathbf{H}}{\partial \mathbf{y}} \qquad (2.6-5)$$

We also use transformed variables to provide the initial conditions for a stagnation point flow and to reduce the sensitivity of the solutions to the Δx -spacing. They are defined by

$$d\xi = (\frac{r_0}{L})^{2k} dx$$
 (2.6-6a)

$$d_{\eta} = \left(\frac{u_e}{\rho_e^{\mu}e^{\xi}}\right)^{1/2} \rho\left(\frac{r^k}{L}\right) dy$$
 (2.6-6b)

We also use a dimensionless stream function $f(\xi,\eta)$ defined by

$$\psi = (u_{e^{0}e^{\mu}e^{\xi}})^{\frac{1}{2}} L^{k}f(\xi,\eta) \qquad (2.6-7)$$

where

$$\rho ur^{k} = \frac{\partial \psi}{\partial y}, \qquad \overline{\rho v}r^{k} = (\rho v)_{w}r^{k}_{0} - \frac{\partial \psi}{\partial x} \qquad (2.6-8)$$

With these transformations and with the definition of the relations given by Eqs (2.6-6 to 8) . it can be shown that the momentum and energy equations can be written as

$$(bf'')' + m_1 ff'' + m_2 [c - (f')^2] - m_3 f'' = \xi (f' \frac{\partial f'}{\partial \xi} - f'' \frac{\partial f}{\partial \xi})$$
 (2.6-9)

$$(eg')' + (df'f'')' + m_1 fg' - m_3 g' = \xi (f' \frac{\partial g}{\partial \xi} - g' \frac{\partial f}{\partial \xi}) \qquad (2.6-10)$$

Here primes denote differentiation with respect to $_{\Pi}$ and

$$f' = u/u_e, g = H/H_e$$
 (2.6-11)

The parameters b,e,d denote parameters defined by

$$b = (1 + \epsilon_{m}^{+})C(1 - t)^{2k}, \qquad e = \frac{C}{Pr} (1 + \epsilon_{m}^{+} \frac{Pr}{Pr_{t}})(1 - t)^{2k} \qquad (2.6-12)$$
$$d = \frac{Cu_{e}^{2}}{H_{e}} (1 - \frac{1}{Pr})(1 - t)^{2k}$$

where

$$C = \frac{\rho \mu}{\rho e^{\mu} e}$$
, $C = \frac{\rho e}{\rho}$

The parameters below denote dimensionless pressure gradients

$$m_1 = \frac{1 + m_2 + m_4}{2}, m_2 = \frac{\xi}{u_e} \frac{du_e}{d\xi}, m_4 = \frac{\xi}{\rho_e \mu_e} \frac{d}{d\xi} (\rho_e \mu_e)$$
 (2.6-13)

and m3 denotes dimensionless mass transfer parameter

$$m_{3} = \frac{(\rho v)_{w}}{\rho_{e} u_{e}} R_{\xi}^{1/2} \left(\frac{L}{r_{o}}\right)^{k}$$
(2.6-14)

The boundary conditions given by (2.6-4) can be written in the following form

at $\eta = \eta_{e}$, f' = 1, g = 1 (2.6-15b)

Note that the wall mass transfer quantity $(\rho v)_{W}$ does not appear in the above boundary conditions, instead it appears in the differential equations through m₃. This is a useful convenient form when dealing with mass transfer (suction or blowing) problems.

2.6.2 Turbulence Model

Here we use the eddy-viscosity formulation due to Cebeci and Smith to model the Reynolds shear stress term. We assume a constant turbulent Prandtl number and take it equal to 0.9.

According to the Cebeci and Smith eddy-viscosity formulation, the dimensionless eddy-viscosity ϵ_m^+ is defined by two separate formulas: in the inner region of the boundary layer, ϵ_m^+ is defined by a modified mixing-length expression and in the outer region by an expression based on the velocity defect. This formulation is defined by the following expressions:

$$\epsilon_{m}^{+} = \begin{cases} \frac{L^{2}}{v} \frac{\partial u}{\partial y} & \gamma \gamma_{tr} & y \leq y_{c}, \text{inner} \\ \frac{0.0168}{v} \int_{0}^{\infty} |(u_{e} - u)| dy \gamma \gamma_{tr} & y > y_{c}, \text{outer} \end{cases}$$

Here y_c is obtained from the continuity of eddy-viscosity expression. The definition of L is:

$$L = 0.4y[1 - exp(-y/A)]$$
(2.6-17)

where

$$A = 26 \left(\frac{\rho}{\rho_{W}}\right)^{1/2} \frac{v}{N} u_{\tau}^{-1} \qquad u_{\tau} = \left(\frac{\tau_{W}}{\rho_{W}}\right)^{1/2}$$

$$N^{2} = \frac{\mu}{\mu_{e}} \left(\frac{\rho_{e}}{\rho_{W}}\right)^{2} \frac{p^{+}}{v_{W}^{+}} \left[1 - \exp(11.8 \frac{\mu_{W}}{\mu} v_{W}^{+})\right] + \exp(11.8 \frac{\mu_{W}}{\mu} v_{W}^{+}) \qquad (2.6-18)$$

$$p^{+} = \frac{v_{e}u_{e}}{u_{\tau}^{3}} \frac{du_{e}}{dx} , \quad v_{W}^{+} = \frac{v_{W}}{u_{\tau}} , \quad R_{\xi} = \frac{u_{e}\xi}{v_{e}} , \quad \frac{\mu}{\mu_{e}} \left(\frac{\rho_{e}}{\rho_{W}}\right)^{2} = Ccc_{W}^{2}$$

When there is no mass transfer,

$$N^2 = 1 - 11.8 \frac{\mu_W}{\mu_e} \left(\frac{\rho_e}{\rho_W}\right)^2 p^+ = 1 - 11.8 C_W c_W^3 p^+$$

The parameter γ is an intermittency term defined by

$$\gamma = \frac{1}{1 + 5.5(y/\delta)^6}$$
(2.6-19a)

and γ_{tr} is a parameter which accounts for the transitional region which exists between a laminar and turbulent flow. At high Reynolds number flows, though the transition region is small and γ_{tr} has negligible effect on the results, this expression is still useful because it avoids a jump from laminar to turbulent flow calculations by allowing ε_m^+ to change gradually. It is given by:

$$Y_{tr} = 1 - exp[-Gr_0^k(x_{tr})(\int_{x_{tr}}^{x} \frac{dx}{e})(\int_{u_e}^{x} \frac{dx}{u_e})] \qquad (2.6-19b)$$

where G is a spot-formation-rate parameter

$$G = (3/C_1^2)(u_e^3/v_e^2)R_{\xi}^{-1.34}$$

$$C_1 = 60 + 4.86M_e^{1.92}$$

In terms of transformed variables, the eddy-viscosity formulas become:

$$\varepsilon_{m}^{+} = \begin{cases} \varphi_{1}f^{*} & 0 < \eta < \eta_{c} \\ \varphi_{2} |_{0}^{\eta} e \frac{c}{(1-t)} k (1-f') d\eta | \eta_{c} \leq \eta < \eta_{e} \end{cases}$$
(2.6-20)

Here

$$\varphi_{1} = \frac{0.16}{c^{2}} \left(\frac{L}{r_{0}}\right)^{k} (1 - t)^{k} \frac{\mu_{e}}{u} R_{\xi}^{1/2} I_{1}^{2} [1 - exp(-y/A)]_{YY_{tr}}^{2}$$

$$\varphi_{2} = \frac{0.0168}{c} \frac{\mu_{e}}{\mu} \left(\frac{L}{r_{0}}\right)^{k} R_{\xi}^{1/2} \gamma_{Y_{tr}}$$

$$(2.6-21)$$

$$\frac{y}{A} = \frac{N}{26} c^{-3/2} \left(\frac{L}{r_{0}}\right)^{k/2} \frac{c_{w}^{1/2}}{C} R_{\xi}^{1/4} I_{1} (f_{w}^{*})^{1/2},$$

$$I_{1} = \int_{0}^{n} \frac{c}{(1 - t)^{k}} dn$$

$$P^{+} = \left(\frac{u_{e}}{u_{\tau}}\right)^{3} \frac{m_{2}}{R_{\xi}} \left(\frac{r_{0}}{L}\right)^{2k},$$

$$u_{\tau} = \frac{u_{e}}{R_{\xi}^{1/4}} \sqrt{c_{w} f_{w}^{*} c_{w}^{*} (r_{0}/L)^{k}}$$

2.6.3 Fluid Properties

Values of specific heat at constant pressure, C_p , and ratio of specific heats, Y, static enthalpy, h, and the gas constant R, are required by BLM. These properties are evaluated along the wall streamline as a function of temperature using the ODE module. The tables are prepared using a series of (T,S) equilibrium calculations, where T varies from 600° R to 7000° R at 200° R increments. The chamber entropy value is used for S. Values at 100° R are then extrapolated and added to the table. The table is printed with the BLM output. An example of this output is presented in Figure 2-5.

Since the ODE module did not contain a (T,S) option, it was added using the following procedure. Using known values of P_a , T_a , and Y_a , and the given value of temperature, T, a first estimate for pressure $P^{(1)}$ was found as

$$P^{(1)} = P_a (T/T_a). \gamma_a^{\gamma_a - 1}$$

The (T,P) option of ODE is used to obtain $S^{(i)}$ as a function of $P^{(i)}$. The procedure is iterated using the secant method (subroutine ITER plus a driver) to find $P^{(i)}$ such that

$$|(s^{(1)}-s_{c})/s_{c}| < 5 E-5$$

where S_c is the chamber entropy. The procedure is repeated for each temperature in these tables. The procedure is internal to the program and not callable through the ODE input.

If the chemical system contains a condensed phase, then equilibrium solutions made during phase change can yield values for γ that are unacceptable to BLM, e.g., values of $\gamma < 1$.

Figure 2-5: Tables of h, µ, k, C_p , Y, and R versus T^OR for use by the BLM

GAS PROPERTIES TABLES

	DITIEST DESCRIPTION					
	H8 613/8673	MU LBM/FT-SEC	K L.BM=F1/93=DEGR	CP FT2/SEC2=DEGR	GAMMA	RUAS LBF-FT/LBM-DEGR
DEG X	F 16/ 4545			12125 404	1 33916400	1.0396E+02
	. NECOETOR	2.1240E-06	4_5618E-02			1.0396E+02
1.0000E+02		0 TATE OF	2.0110E-01	1.52105704		1_0194E+02
6.0000E+02			2.61085-01	1 35146+04		1 12045402
8_0000E+02	-1.3722E+08		2 22705-01	1_3887E+04	1.51756+00	
	<u> 1 3448E+08</u>	cn-35624.1		1 1107F+04	1.3052E+00	
	-1.71675+08	1.66225-05	5 8004E 01		1,2931E+00	1_0396E+02
		1 8885E-05	4 5315E-01			1_0396E+02
1 4000E+05			5_2228E=01	1.52.506+04		1 0196F+02
1_6000E+03	-1-20/52.1-		5 91995-01	1_5711E+04		
1 8000E+03	<pre>=1.2267E+08</pre>			1.6219E+04	1,25485400	
	=1.1947E+08	2°23725°2			1.2506E+00	1.05406496
		2 . 7456E-05			1 24256+00	1 03946+02
		2_95066-05	8,2215E=01		1 23546+00	1.0396E+02
2°4000E+02		3_1528E-05	8,9997E-01			1_0397E+02
2.6000E+U2		1 15736_05	9.7868E-01	1.79505+04		0107E103
2.8000E+03	00+30/50.1-		· DEGEEADO	1 8361E+04	1.2231E+00	
1 0000F+03	-1.02156+08	3.54945-05		1 A7A1E+04	1.2174E+00	1.0397E+UC
	-9.8436E+07	3 . 7442E-05			1.21186+00	1.03995+02
		3.93706-05	1.2327E+00		1 205AF +00	1_0401E+02
3.40005463		4.1277E+05	1 . 3304E+00			1_0405E+02
3,6000E+U5	こうとばまれ こう テリ	A 21476 05	1_4409E+00	2,0550E+U4		1 04115+02
3_8000E+03			1.56926+00	2,14295+04	1,17605400	
4_0000E+03	-8,2623E+0/		1 72155+00	2_2578E+04	1.18556+00	
4 2000E+03	-7.8330E+07			2 40235+04	1.1777E+00	
	-7_3842E+07	4.87385-05		2 5709F + 04	1.1703E+00	1,0452E+02
	-4.9128E+07	5.05656=05	2,12106+00		1 16325+00	1.0476E+02
	4 41575407	5.23796-05	2,3775E+00		15695+00	1_0507E+02
		5.41806-05	2.6735E+00			1.0544E+02
5,0000E+0.5		59685-05	3_0056E+00	3,3030E+04	1 1 2 1 0 C 1 0 C	1_0589E+02
5°2000E+02		C 7744F 05	3 <u>3664E+00</u>	3 . 5857E+04		04395402
5.4000E+03			3_74566+00	3.8712E+04		
5_6000E+03	-4.1505E+0/		4 1 1 2 4 5 4 0 0	4_1487E+04	1.14255400	
5.8000E+03	-3,5216E+07			4_4068E+04	1.1414E+00	
6 0000F+03	-2.8754£+07	6.3008E-05		0 4427F+04	1 1410E+00	1 • 001/1-00
	-2.2138E+07	6.4742E-05			1_1411E+00	1 0883E+UZ
	-1.54116+07	6.6466E-05	00+3/242 6		1 14175+00	1.0950E+02
		6.8181E-05	5,5780E+00		14275+00	1_1019E+02
CA1300000		6_9888E=05	5 ,8911E+00			1_1087E+02
6.8000E+U2	>>>U>nt>=====	7.15856-05	6.1813E+00	5.310%£+04		
7.0000E+03	0743CC+1+C		- P			

Since condensation is an isothermal process, using (T,S) solutions avoid this problem. It also avoids the "temperature out of range" problem that can occur had other, existing options been used.

The fluid properties shown in Fig. 2-5 are $h, \mu, \kappa, C_p, \gamma$, and R versus T^OR. The values of μ and κ are prepared as described in Section 2.6.4. The values for h, C_p, γ , and R are prepared as described above, i.e., they are equilibrium properties including condensed phases (no gas particle lag). The gas constant, R, is the universal gas constant divided by the molecular weight of the equilibrium mixture.

If the invisid core flow is frozen, it is more appropriate to use gas properties prepared using a frozen expansion of the chemical species. The program will prepare frozen tables that are analogous to the equilibrium tables described above when the TDF option is used, or if requested. 2.6.4 Near Wall Gas Transport Properties.

Values of gas viscosity, μ , gas conductivity, κ , Prandtl number, Pr, are required by BLM. These transport properties are evaluated along the wall streamline as a function of temperature using the ODE module. It is assumed that the expansion is in equilibrium, including condensed species. In the model these properties are then computed as "frozen" properties using the local gas composition with condensed phases included.

The viscosity and thermal conductivity of the individual gaseous species are calculated from formulas given in Reference 14 as follows:

$$\mu_{i} = \frac{4.15822 \times 10^{-8} \sqrt{M_{w_{i}}^{T}}}{\sigma_{i}^{2} Q_{i}}$$

$$\kappa_{i} = \frac{\mu_{i}^{R}}{M_{w_{i}}} (.45 + 1.32 \frac{C_{p_{i}}}{(3c/M_{w_{i}})})$$

The required Lennard Jones parameters, (σ_i, Ω_i) are internally stored in the computer program for 206 gas phase species. (See Subroutine MUK in Section 5 of this report, for a list of the species.) The viscosity of the mixture is calculated from Wilke's semi-empirical formula¹⁵.

$$\mu = \sum_{i=1}^{N} \left[\mu_{i} \left(1 + \sum_{\substack{j=1\\j\neq 1}}^{N} \phi_{ij} \frac{x_{j}}{x_{i}}\right)^{-1} \right]$$

where N is the number of species, x_i the mole fraction of species i, and ϕ_{ij} is defined by:

- Ref. 14: Svehla, R. A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures," NASA TR-132, 1962.
- Ref. 15. Bird, R. B., Stewart, U. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, 1960.
$$\boldsymbol{\Phi}_{ij} = \frac{1}{2^{3/2}} \left[1 + \frac{M_i}{M_j} \right]^{-1/2} \left[1 + \left(\frac{u_i}{\mu_j} \right)^{-1/2} \left(\frac{M_i}{M_i} \right)^{-1/4} \right]^2$$

The thermal conductivity, κ , is based on the equation given by Mason and Saxena 16 which is a slight modification of Eucken's relation,

$$\kappa = \sum_{i=1}^{N} \kappa_{i} \left[1 + 1.065 \sum_{\substack{j=1 \\ j \neq 1}}^{N} \phi_{ij} \frac{x_{j}}{x} \right]^{-1}$$

The results calculated as described above are used to provide the BLM with properties using the following procedure.

The viscosity at the nozzle throat, μ^* , and the corresponding temperature, T*, are calculated. Using these values, an exponent, ω , is computed such that the expression

$$\mu = \mu^* (T/T^*)^{\omega}$$

provides a best fit in a least square manner to the chamber and exit values for viscosity. Next, a constant value for Prandtl number is computed as

$$\Pr^* = \left(\frac{\operatorname{u}^{\mathsf{C}} \operatorname{p}}{\kappa}\right)^*$$

where μ , κ , and C_p are evaluated at the nozzle throat. The "frozen" C_p value is used. The values transmitted to BLM are then μ^* , T^{*}, ω , and Pr^{*}. Actually, BLM only uses the ratio Pr/ μ , and does not require κ or the frozen C_p versus T.

Ref. 16. Mason, E. A., and Saxena, S. C., Physics of Fluids, Vol. 1, No. 5, pp. 361-369, 1958. 2.6.5 Use of Boundary Conditions and Gas Properties by BLM

In general, the flow properties at the boundary layer edge as computed by TDK are not isentropic. The TDK expansion is isentropic only if the flow is in a state of equilibrium, or if the flow is frozen in composition. When the TDK expansion is not isentropic, there are inconsistencies between TDK and BLM with respect to edge values and gas properties. Thus it is important to describe the methods by which these parameters are treated.

TDK supplies BLM with tables of V, and P vs X. Corresponding values of static enthalpy, h, are computed from the relation:

$$h = H_t - V^2/2$$

i.e., the BLM is given the condition that total enthalpy at the boundary layer edge is constant. In BLM enthalpy profiles and velocity profiles at constant pressure are used as state variables. Temperature and the gas constant, R, are obtained as a function of h by interpolation in the gas properties tables that were computed by the ODE module (see Section 2.6.3). Temperature is not a state variable, but together with the gas constant, it is used to obtain the gas density from the equation of state, i.e.,

 $\rho = P/RT$.

Thus, in general the gas density used by BLM at the boundary layer edge does not match the TDK value, although the values of P, V, and h do match.

850127

The only other gas properties required by BLM are the Prandtl number, P_r , and the viscosity, μ . A constant value is input for P_r and the viscosity, μ , is computed (see Section 2.6.4) as

 $\mu = \mu^{*} (T/T^{*})^{\omega}$

where the reference values $\boldsymbol{\mu}^{\boldsymbol{x}}$ and $\boldsymbol{T}^{\boldsymbol{x}}$ are taken at the nozzle throat.

Values for $C_p(T)$, Y(T), and k(T) are made available to BLM for auxillary calculations, but are not used in the boundary layer solution procedure.

2.6.6 Solution Procedure

The solution procedure uses the numerical method described in Bradshaw et.al., Reference 13, to solve the governing equations presented in Section 2.6.1. This is an efficient two-point finite-difference method developed by Keller and Cebeci and extensively used by Cebeci for two-dimensional and three-dimensional flows. A detailed description is presented in Reference 13, and is not repeated here.

One of the advantages of this numerical method is that nonuniform net spacings can be used in the x-direction as well as across the boundary layer. In the latter case, the nonuniform grid is a geometric progression with the property that the ratio of lengths of any two adjacent intervals is a constant; that is, $\Delta n_j = K\Delta n_{j-1}$. The distance to the j-th line is given by the following formula:

$$n_j = \Delta n_1 (K^j - 1) / (K - 1)$$
 $K > 1$

There are two parameters in the above equation: 1) Δn_1 , the length of the first step, and: 2) K, the ratio of two successive steps. The total number of points, J, can be calculated from the following formula:

$$J = \frac{\ln[1 + (K - 1)(\eta_e / \Delta \eta_1)]}{\ln K} + 1$$

Default values used by the computer program for Δn_1 and K are 0.01 and 1.14, respectively.

NOMENCLATURE FOR SECTION 2.6, BLM

Alphabetic	Definition
<u>Symbol</u>	
A	damping length
с	density ratio. o /o
-	e, p
С	dimensionless density-viscosity ratio
C _r	local skin-friction coefficient, $\tau_1/(1/2)\rho_1u^2$
▲	w ee
c	specific heat at constant pressure
fP	dimensionless stream function
g	total emthalpy ratio, H/H
h	static enthalpy
Н	total enthalpy
k	flow index, O for two dimensional flow, 1 for
	axisymmetric flow
L	reference length
M	Mach number
M	molecular weight
Р "	static pressure
Pr	molecular Prandtl number
Pr _t	turbulent Prandtl number
qĭ	heat-transfer rate
r	radial distance from axis of revolution
r	local radius of body of revolution
RŬ	gas constant
R _F	local Reynolds number, u_ξ/ν_
SĨ	entropy
t	transverse curvature term, y cos¢/r_
Т	static temperature
u,v	x and y components of velocity, respectively
^u e	velocity at the edge of the boundary layer
u	friction velocity $(\tau \rho)^{1/2}$
x ^τ	surface distance
Х	axial distance
У	distance normal to the surface of the body

NOMENCLATURE (Continued)

Definition Greek Symbol ratio of specific heats, C_p/C_V γ boundary-layer thickness δ displacement thickness δ* eddy viscosity ε_m+ similarity variable η momentum thickness θ gas conductivity κ dynamic viscosity μ kinematic viscosity ν density ρ shear stress τ angle of body slope, $\tan^{-1}(dr_0/dX)$ φ stream function ψ

Subscripts

Definition

с	chamber (stagnation) conditions
e	edge of the boundary layer
r	reference conditions
tr	transition
W	evaluated at the wall
x	x-direction

Superscripts

Definition

* nozzle throat conditions

Primes designate differentiation with respect to n

3. NUMERICAL METHODS

In this Section numerical methods used by the ODK and TDK programs are discussed. The ODK subprogram integrates the system of differential equations presented in Section 2.1.1. Standard integration methods, such as Runge-Kutta, are impractical when applied to these differential equations because of the very small step sizes often required for stability. Consequently a fully stable integration method has been developed and applied as described in Section 3.1.

Solution of the characteristic differential equations presented in Section 2.5 also requires a numerically stable integration method. A highly stable implicit finite difference method is presented in Section 3.2 for integration of these characteristic relationships.

3.1 ODK NUMERICAL INTEGRATION METHOD

It has been shown by Tyson 17 that in the numerical integration of relaxation equations in near equilibrium flow regions (such as the chamber and nozzle inlet in rocket engines), explicit integration methods are unstable unless the integration step size is of the order of the characteristic relaxation distance of the relaxation equations. Since the characteristic relaxation distance is orders of magnitude smaller than the characteristic physical dimensions of the system of interest (such as the nozzle throat diameter and length) in near equilibrium flow regions, the use of explicit methods to integrate relaxation equations in these regions results in excessively long computation times. Implicit integration methods were shown to be inherently stable in integrating relaxation equations in all flow situations (whether near equilibrium or frozen) and can thus be used to integrate with step sizes of the order of the physical dimensions of the system of interest throughout the integration reducing the computation time per case several orders of magnitude. Since it has been demonstrated that there are significant advantages in using implicit rather than explicit integration of the relaxation equations, a second order implicit integration method has been chosen for use in the ODK computer program.

3.1.1 Stability Considerations

The numerical considerations leading to the above conclusions can be illustrated by considering the simple relaxation equation.

$$\frac{dy}{dx} = -\frac{y - y_e}{\tau}$$
(3.1-1)

which represents the relaxation toward equilibrium of chemical reactions, gas particle lags, etc. In this equation y_e is the equilibrium condition and τ is the characteristic relaxation distance of the equation. In the equilibrium limit, τ is very small compared to the physical dimensions of the system of interest while in the frozen limit, τ , is very large compared to the physical dimensions of the system of interest. The mathematical behavior of solutions to the above equation can be found by considering the simple case where τ is constant and

$$y_e = y_{eo} + a(x - x_o)$$

which is equivalent to terminating the Taylor series for y_e after the first term. The exact solution for this case can be shown to be

$$y(x_{0} + h) = y(x_{0}) + [y_{e0} - y(x_{0}) - a_{T}] [1 - e^{-h/T}] + a_{0}$$

where $y(x_0)$ is the initial value of y and h is the integration step.

It is seen that the solution consists of two parts, a term which varies slowly with x and a term which exponentially decays with a relaxation length of τ , the characteristic relaxation length of Equation (3.1-1). Thus after a few relaxation lengths

$$y(x) \simeq y_{e0} + ah, h > > \tau$$

which is independent of $y(x_0)$ the initial condition. Since explicit integration methods construct the solution of Equation (3.1-1) as a Taylor series about the initial condition $y(x_0)$, the above example indicated that explicit integration methods should be limited to step sizes of the order of a few relaxation lengths.

That this is indeed the case can be shown by explicitly integrating Equation (3.1-1) using Euler's method. The explicit finite difference form is

$$\frac{y(x_0 + h) - y(x_0)}{h} = -\frac{y(x_0) - y_{e0}}{\tau}$$

which yields the truncated Taylor series

$$y(x_0 + h) = y(x_0) (1 - \frac{h}{\tau}) + y_{eo} \frac{h}{\tau}$$

when solved for $y(x_0 + h)$. After n integration steps, it is found that

$$y(x_{o} + nh) = y(x_{o}) \left[1 - \frac{h}{\tau}\right]^{n} + \sum_{i=1}^{n} \left[y_{oo} + (i - 1) ah\right] \left[1 - \frac{h}{\tau}\right]^{n-i} \frac{h}{\tau}$$

Examination of this equation shows that the independence on the initial condition $y(x_0)$ will decay only if $|1 - h/\tau| < 1$, otherwise $y(x_0 + nh)$ will oscillate with rapidly increasing amplitude. Hence the calculation will be stable only if $h/\tau < 2$. Similar results are obtained for other explicit integration methods. (The stable step size for Runge-Kutta integrations is $h/\tau < 5.6$.) Thus the stable step size for explicit integration of relaxation equations is of the order of the relaxation distance which explains the large computation times associated with explicit integration of relaxation methods allows the integration of relaxation equations of relaxation equations of relaxation equations are of relaxation equations and step size which is independent of the relaxation length.

Implicitly integrating Equation (3.1-1) using Euler's method, the finite difference form of Equation (3.1-1) is

$$\frac{y(x_0 + h) - y(x_0)}{h} = -\frac{y(x_0 + h) - y_{e0} - ah}{\tau}$$

which yields

$$y(x_{o} + h) = \frac{y(x_{o}) + (y_{eo} + ah)\frac{h}{\tau}}{1 + \frac{h}{\tau}}$$

when solved for $y(x_0 + h)$. After n integration steps it is found that

$$y(x_{o} + nh) = \frac{y(x_{o})}{\left[1 + \frac{h}{\tau}\right]^{n}} + \sum_{i=1}^{n} \frac{y_{eo} + iah}{\left[1 + \frac{h}{\tau}\right]^{n+1-i}} \frac{h}{\tau}$$
(3.1-2)

Examination of this equation shows that the dependence on the initial condition $y(x_0)$ always decays, regardless of the step size. Hence the implicit calculation will always be stable. As an extreme example, consider one integration step, $h = x - x_0$. From Equation (3.1-2), it is seen that

$$y(x) \simeq y_{eo} + ah$$
, $h > > \tau$

when the step size is large compared to the relaxation length and

$$y(x) = y(x_0) (1 - \frac{h}{\tau}) + y_{eo} \frac{h}{\tau} + ..., h >> \tau$$

when the step size is small compared to the relaxation length.

It is seen that in the equilibrium limit (τ small, h/τ large) the exact solution and the implicit integration of the relaxation equation go to the same limit which is independent of the relaxation distance and depends only on the rate of change of the equilibrium condition. In the frozen case (τ large and h/τ small) the implicit and explicit methods are essentially the same (terminated Taylor series). Thus, implicit numerical integration methods can be used to integrate relaxation equations using step sizes of the order of the physical dimensions of the system of interest in all flow situations whether near equilibrium or near frozen. For a complete discussion of the numerical integration of relaxation equations, see Reference 17.

In choosing a numerical integration method, the primary items of concern are the stability, accuracy and simplicity of the method. As shown by Tyson²¹ and discussed above, implicit methods are to be preferred for numerically integrating relaxation equations due to their inherent stability. Having chosen the basic integration method for stability reasons, the order of the integration method is determined by accuracy and simplicity considerations. In general, the higher the order of the integration method, the more complex the method becomes requiring more information in the form of past value or past derivatives of the function being integrated.

Second order methods (accurate to h^2 with error of order h^3) have the advantage of simplicity and flexibility since they require only one past value of the function while retaining sufficient accuracy to allow the use of reasonably economical step sizes. For these reasons, a second order implicit numerical integration method was chosen for use in the present program. A complete derivation of this numerical integration method is given in the following section.

3.1.2 Derivation of the ODK Numerical Integration Method

Consider the coupled set of first order simultaneous differential equations.

$$\frac{dy_{i}}{dx} = f_{i}(x, y_{1}, \dots, y_{N}) , i = 1, 2, \dots, N$$

It will be assumed that the equations are not singluar and that a solution exists which may be developed as a Taylor series about the forward point

$$k_{i, n+1} = \frac{dy_i}{dx} \bigg|_{x_n + h} h - \frac{d^2y_i}{dx^2} \bigg|_{x_n + h} \frac{h^2}{2} + \frac{d^3y_i}{dx^3} \bigg|_{x_n + h} \frac{h^3}{6} - \frac{d^4y_i}{dx^4} \bigg|_{x_n + h} \frac{h^4}{24} + \cdots$$

where $k_{i,n+1}$ is the increment in y_i and h is sufficiently small. For equal integration steps

$$k_{i, n+1} + k_{i, n} = 2 \frac{dy_i}{dx} \bigg|_{x_n + h} h - 4 \frac{d^2 y_i}{dx^2} \bigg|_{x_n + h} \frac{h^2}{2} + 8 \frac{d^3 y_i}{dx^3} \bigg|_{x_n + h} \frac{h^3}{6}$$

$$- 16 \frac{d^4 y_i}{dx^4} \bigg|_{x_n + h} \frac{h^4}{24} + \cdots$$

Solving these equations for the derivative at the forward point, it is found that

$$\frac{\mathrm{d}\mathbf{y}_{i}}{\mathrm{d}\mathbf{x}}\Big|_{\mathbf{x}_{n}+\mathbf{h}} = \frac{3\mathbf{k}_{i,n+1} - \mathbf{k}_{i,n}}{2\mathbf{h}} + \frac{\mathrm{d}^{3}\mathbf{y}_{i}}{\mathrm{d}\mathbf{x}^{3}}\Big|_{\mathbf{x}_{n}+\mathbf{h}} + \frac{\mathrm{d}^{2}\mathbf{y}_{i}}{\mathbf{d}\mathbf{x}^{3}}\Big|_{\mathbf{x}_{n}+\mathbf{h}}$$

Expanding the function $f_i(x, y, \ldots, y_N)$ as a Taylor's series about the back point (x_n) , it is found that

$$\frac{\mathrm{d}\mathbf{y}_{\mathbf{i}}}{\mathrm{d}\mathbf{x}}\Big|_{\mathbf{x}_{\mathbf{n}}+\mathbf{h}} = f_{\mathbf{i},\mathbf{n}} + \alpha_{\mathbf{i},\mathbf{n}}\mathbf{h} + \sum_{j=1}^{N} \beta_{\mathbf{i},j,\mathbf{n}}\mathbf{k}_{j,\mathbf{n}+1} + \frac{\mathrm{d}^{3}\mathbf{y}_{\mathbf{i}}}{\mathrm{d}\mathbf{x}^{3}}\Big|_{\mathbf{x}_{\mathbf{n}}} \frac{\mathbf{h}^{2}}{2} + \cdots$$

where

$$f_{i} = f_{i}(x, y_{1}, \dots, y_{N}),$$
$$\alpha_{i} = \frac{\partial f_{i}}{\partial x},$$
$$\beta_{i, j} = \frac{\partial f_{i}}{\partial y_{j}},$$

and the subscript n refers to the functions $f_i, \, \alpha_i$ and $\beta_{i,j}$ evaluated at the point x_n . Since

$$\frac{d^{3}y}{dx^{3}}\Big|_{x_{n}} = \frac{d^{3}y}{dx^{3}}\Big|_{x_{n}+h} - \frac{d^{4}y}{dx^{4}}\Big|_{x_{n}+h} + \cdots$$

and

$$\frac{d^4 y}{dx^4} \bigg|_{x_n} = \frac{d^4 y}{dx^4} \bigg|_{x_n+h} - \cdots,$$

Thus the formula for Taylor Series expansion about the back point can be written as

$$\frac{\mathrm{d}\gamma_{i}}{\mathrm{d}x}\Big|_{x_{n}+h} = f_{i,n} + \alpha_{i,n}h + \sum_{j=1}^{N} \beta_{i,j,n}k_{j,n+1} + \frac{\mathrm{d}^{3}\gamma_{i}}{\mathrm{d}x^{3}}\Big|_{x_{n}+h} + \frac{\mathrm{h}^{2}}{2} - \cdots$$

Equating the expressions for the derivative at the forward point and back point, it is found that

$$\frac{3k_{i,n+1} - k_{i,n}}{2h} = f_{i,n} + \alpha_{i,n}h + \sum_{j=1}^{N} \beta_{i,j,n} k_{j,n+1} + \frac{d^{3}y_{i}}{dx^{3}} \bigg|_{x_{n}+h} \frac{h^{2}}{h^{2}} + \cdots$$

or

$$k_{i, n+1} = \frac{1}{3} \left[k_{i, n} + 2 \left(f_{i, n} + \alpha_{i, n}^{N} h + \sum_{j=1}^{N} \beta_{i, j, n}^{N} k_{j, n+1} \right) h \right] + \frac{d^{3} y_{i}}{dx^{3}} \bigg|_{x_{n} + h} \frac{h^{3}}{9} + \cdots$$

Neglecting the third order derivative term and solving the set of N linear nonhomogeneous algebraic equations

$$\left(1 - \frac{2}{3}\beta_{i,i,n}h\right)k_{i,n+1} - \sum_{j=1}^{N}(1 - \delta_{i,j})\beta_{i,j,n}k_{j,n+1} = \frac{1}{3}\left[k_{i,n} + 2(f_{i,n} + \alpha_{i,n}h)h\right]$$

where $\delta_{i,j}$ is the Kronecker delta thus yields a second order implicit solution of the above coupled first order simultaneous differential equations.

For unequal step sizes, it can be similarly shown that solving the set of N linear nonhomogeneous algebraic equations

$$\left(1 - \frac{h_{n+1} + h_n}{2h_{n+1} + h_n} \beta_{i, i, n} h_{n+1}\right) k_{i, n+1} - \frac{h_{n+1}^2}{(2h_{n+1} + h_n)h_n} \sum_{j=1}^N (1 - \delta_{i, j}) \beta_{i, j, n} k_{j, n+1}$$

$$= \frac{h_{n+1}^2}{(2h_{n+1} + h_n)h_n} \left[k_{i, n} + (f_{i, n} + \alpha_{i, n}h_{n+1}) \frac{h_n}{h_{n+1}} (h_{n+1} + h_n)\right]$$

yields a second order implicit solution of the above set of coupled first order simultaneous differential equations.

3.2 TDK NUMERICAL INTEGRATION METHOD

The reacting gas characteristic relationships given in Section 2.5 are usually integrated using second order explicit methods. It has been shown, however, that implicit integration methods are superior to explicit methods for integrating chemical relaxation equations 17 . Thus, in the present program the fluid dynamic equations are integrated using an explicit Euler method while the chemical relaxation equations are integrated using a first order implicit integration method.

In numerically calculating flow fields using the method of characteristics, only two (previously calculated) known points are directly usable in calculating a forward point. In equilibrium flows, only two known points are required to calculate a forward point and the calculation is straightforward and unambigous. In nonequilibrium flows, however, more than two known points are required to calculate a forward point so that a choice must be made as to which points in the flow field will be used directly and which will be interpolated. Since even small interpolation errors in species concentrations are known to cause serious stability and accuracy problems in the numerical integration of the chemical relaxation equations, the back streamline point and one characteristic point were chosen as the known points. This choice avoids interpolation for the species concentrations in that only fluid dynamic properties (velocity, pressure, etc.) and the kinetic coupling terms (A and B) need be interpolated at one of the back characteristic points. Since these quantities are all slowly varying across the characteristics mesh, they can be accurately interpolated. Experience has shown that this choice of numerical integration methods and known data points is satisfactory for reacting gas characteristics calculations. A derivation of the numerical integration methods used in the program are given in Sections 3.2.1 and 3.2.2 below.

850917

3.2.1 Integration of the Fluid Dynamic Equations

Consider the flow field shown in Figure 3-1, below:

Figure 3-1. Flow Field Interior Point Calculation

Between points 3 and 4 the streamline characteristic relationships are integrated as:

$$r_3 = r_4 + (x_3 - x_4) \tan \theta_{34}$$
 (3.2-1)

$$V_{3} = \{V_{4}^{2} - 4(P_{3} - P_{4})/(\rho_{3} + \rho_{4})\}^{1/2}$$
(3.2.2a)

or

$$V_3 = \{2(H_T - \sum c_i h_i)\}^{1/2}$$
 (3.2.2b)

$$\rho_{3} = \rho_{4} \left(\frac{P_{3}}{P_{4}}\right) \exp \left\{-\left(\frac{A}{\cos \theta_{43}}\right)\left(x_{3} - x_{4}\right)\right\}$$
(3.2-3)
$$\gamma - 1$$

$$T_{3} = T_{4} \left(\frac{\frac{P_{3}}{P_{4}}}{\frac{P_{3}}{P_{4}}}\right) \exp \left\{-\left(\frac{B}{\cos - \theta_{43}}\right)\left(x_{3} - x_{4}\right)\right\}$$
(3.2-4)

850917

where the double subscripts imply averaged values, e.g.:

$$\theta_{34} = (\theta_{3} + \theta_{4})/2 ,$$

$$(\frac{1}{\gamma})_{43} = (1/\gamma_{4} + 1/\gamma_{3})/2 , \text{ etc.}$$

The integration formula (3.2-1) relating the coordinates of points 3 and 4 is exact if the streamline is a circular arc between points 3 and 4. Equation (3.2-2a) is the Bernoulli Equation and is used to obtain a first estimate for V_3 . Successive estimates are made using the energy equation directly, i.e., equation 3.2-2b, so that energy is conserved exactly along streamlines. In integrating the energy equation and the perfect gas relationship to obtain Equations (3.2-3) and (3.2-4), the coefficients γ^{-1} , A/cos θ , $(\gamma-1)/\gamma$, and B/cos θ appearing in these equations were assumed to be equal to their average value between points 3 and 4.

Between points 1 and 3 the right running characteristics relationships are integrated as:

$$r_2 = r_1 + (x_3 - x_1) \tan (\theta - \alpha)_{31}$$
 (3.2-5)

$$P_{3} = P_{1} + P_{13} \{ [-(AGH)_{13} + (GH)_{13} \frac{\sin \theta_{13}}{r_{13}}]$$

$$(3.2-6)$$

$$(x_{3} - x_{1}) + G_{13}(\theta_{3} - \theta_{1}) \}$$

The above equations are a finite difference form of equations (2.5-3) and (2.5-4), respectively.

850917

If point 3 is an axis point then r_3 and θ_3 are zero and the indeterminate quantity $(\sin \theta_3)/r_3$ appearing in Equation (3.2-9) can be approximated by using the value obtained at point 1.

Between points 2 and 3 the left running characteristics relationships are integrated as:

$$x_{3} = x_{2} + (r_{3} - r_{2})/\tan(\theta + \alpha)_{32}$$
 (3.2-7)

$$P_3 = P_2 + P_{23} \left[(AGF)_{23} - (GF)_{23} - \frac{\sin \theta_{23}}{r_{23}} \right]$$
 (3.2-8)

$$(r_3 - r_2) - G_{23} (\theta_3 - \theta_2)$$

The above equations (3.2-7) and (3.2-8) are a finite difference form of equations (2.5-1) and (2.5-2), respectively.

If point 2 is an axis point, then r_2 and θ_2 are zero and the indeterminate quantity $(\sin \theta_2)/r_2$ appearing in Equation (3.2-8) can be approximated using the values estimated for point 3.

Equations (3.2-6) and (3.2-8) can be combined to yield:

$$\theta_{3} = \{P_{2}-P_{1}+P_{23}[+(AGF)_{23}-(GF)_{23} - \frac{\sin \theta_{23}}{r_{23}}](r_{3}-r_{2}) \\ -P_{13}[-(AGH)_{13}+(GH)_{13} - \frac{\sin \theta_{13}}{r_{13}}](x_{3}-x_{1}) \\ +P_{23}G_{23}\theta_{2}+P_{13}G_{13}\theta_{1}\}/\{P_{23}G_{23}+P_{13}G_{13}\}$$
(3.2-9)

The modified Euler iteration method is used by TDK to solve the above equations in the various point calculations. The implicit method used by TDK to integrate the chemical relaxation equations is presented next in Section 3.2.2.

3.2.2 Derivation of the TDK Numerical Integration Method

The chemical relaxation equations are a coupled set of first order simultaneous differential equations of the form

$$\frac{dc_i}{dx} = f_i(c_1, c_2, \cdots, c_N, y_1, y_2, y_3, y_4) \quad i = 1, 2, \cdots, N$$

along the streamline where y_1 , y_2 , y_3 , and y_4 refer to the fluid dynamic variables V, ρ , T, and θ , respectively. Assuming that the equations are not singular and that a solution exists which may be developed as a Taylor series about the forward point, one obtains

$$k_{i} = \frac{dc_{i}}{dx} \bigg|_{x_{n+h}} h$$

where k_i is the increment in c_i and h is sufficiently small. The first coefficient of the Taylor series may be calculated as

$$\frac{dc_i}{dx} = f_i(c_1, c_2, \cdots, c_N, y_1, y_2, y_3, y_4)$$

Expanding as a Taylor series about the point x_n , it is found that

$$\frac{dc_i}{dx}\bigg|_{\substack{\mathbf{x}_{n+h}}} = f_{i,n} + \sum_{j=1}^{N} \beta_{i,j,n}k_j + \sum_{j=1}^{4} \phi_{i,j,n}\Delta y_j + 0 \left(\frac{h^2}{h^2} \right)$$

where

$$\beta_{i,j} = \frac{\partial f_i}{\partial c_j}$$

$$\phi_{i,j} = \frac{\partial f_i}{\partial y_j}$$

and the subscript n refers to the functions f_i , $\beta_{i,j}$, and $\Phi_{i,j}$ evaluated at the point x_n .

Thus neglecting the second order error and derivative terms yields the integration formula for the increment k_i

$$\mathbf{k}_{i} = \begin{bmatrix} f_{i,n} + \sum_{j=1}^{N} & \beta_{i,j,n} & k_{j} + \sum_{j=1}^{4} & \phi_{i,j,n} & \Delta y_{j} \end{bmatrix} \mathbf{h}$$

The steps below summarize the computational procedure used by the TDK Computer Program (ODE-ODK-TDK input option):

Step 1. (Zone 1, inner zone O/F ratio)

- 1.1 ODE is used to compute: '
- 1.1.1 P,H solution at stagnation (chamber V=0) condition
- 1.1.2 P,S solution at throat (pV maximum) condition. Entropy, S, is computed in step 1.1.1 above.
- 1.1.3 ϵ_{c} , S solution at input contraction ratio.
- 1.2 An average expansion coefficient, N_e, is computed by Subroutine SUBNE . This expansion coefficient is the perfect gas expansion coefficient which would yield the throat pressure ratio computed in step 1.1.2.
- 1.3 A pressure table P(x) and its derivative dP(x)/dx are computed using the perfect gas relations, N_e , and the input thrust chamber geometry.
- 1.4 The ODK Computer Program is used to integrate the finite rate equations for one dimensional flow. The integration begins at ϵ_c . So that the flow will not be singular at the throat, P(x) and dP(x)/dx are used until the flow is supersonic (M \leq 1.02). For supersonic flow the area defined relations are used.

Step 2.

The sequence described in Step 1, above, is repeated for zones 2 through N \leq 50, the outer zone.

The following throat property tables are constructed during each of the above calculations:

 ρ , V, T, c, vs. P.

These tables begin at the ODK determined throat (ρV maximum) and end when the flow attains a Mach number of 1.5.

Step 3.

An average expansion coefficient, γ_n , is computed for each zone using the tables constructed in Step 2.

$$\gamma_{n} = \frac{\ell n (P_{\ell}/P_{1})}{\ell n (\rho_{\ell}/\rho_{1})} \qquad n = 1, \dots N \le 50$$

The subscripts 1 and ℓ refer to the first and last table entries (at the ODK throat and at M=1.5). Thus if the flow through the throat is in equilibrium γ will attain the equilibrium value and if the flow is frozen γ will attain the frozen value.

Step 4.

- 4.1 Using the above values of γ_n and the upstream radius of curvature at the nozzle throat, R_u , a two dimensional (axially symmetric) initial data line is constructed using a small perturbation method. The location of the initial data line across the nozzle throat region is determined. The location of the slipline positions is also determined by the small perturbation method (from the continuity relation). Pressure and flow angle are matched (through a first order of approximation) at the sliplines.
- 4.2 Flow properties of ρ , V, T, and c_i are interpolated from the tables constructed in Step 2 using the pressure determined in Step 4.1.

Step 5.

A method of characteristics solution is computed for the nozzle. Boundary conditions are the initial data line and nozzle wall with a symmetry condition used along the nozzle axis and slip conditions (matched pressure and flow angle) used along the streamlines dividing zones of different O/F. The finite difference mesh is constructed at gas streamline and left running characteristic intersections.

4. PROGRAM STRUCTURE

This section contains an over-all description of the structure of the TDK computer program. TDK consists of a master control module (MCM) and five major computational modules, as follows: ODE, ODK, TRAN, MOC, and BLM. Each module is described briefly in Figure 4-1. The computational modules have been combined with the MCM so that they can be run together automatically. The extensive use of internal communication between the modules has eliminated the need for redundant inputs by the user.

A schematic of an overlay structure for TDK is presented in Figure 4-2. This figure should prove useful to programmers who wish to convert TDK to a computer, such as CDC or Univac, on which an overlay structure is mandatory. TDK has been developed for the DEC 11/780 Virtual Address Extension (VAX) computer for which no overlay structure is required.

Figure 4-1: BASIC MODULES OF TDK

MODULE DESCRIPTION

- MCM The Master Control Module is used to control the execution of TDK by selecting the computation modules to be exercised. The MCM is also used to process output files for the purpose of creating printed and plotted output.
- ODE The One-Dimensional Equilibrium module is used to calculate ideal engine performance. Engine performance can also be calculated assumming that the chemical composition is frozen at chamber (stagnation) conditions.
- ODK The One-Dimensional Kinetics module is used to calculate the loss in nozzle performance caused by finite-rate chemistry of the expansion products.
- TRANS The Transonic Flow module is used to calculate two-dimensional flow conditions in the throat region of the nozzle. It is used to obtain an initial data line for the MOC module.
- MOC The Method of Characteristics module is used to calculate the loss in nozzle performance caused by flow divergence, including the effects of chemistry and mixture ratio variation.
- BLM The Boundary Layer Module is used to calculate the loss in nozzle performance due to a viscous boundary layer and its interaction with the nozzle wall. The effects of both drag and heat transfer are included.

850107

850107

)	T			······		~
1 F	TWØD				1 G	BLMAIN
	<u>TSTDK</u>	1				BLEDGE
						всн
21		2 J				BLØCKD
TRAN			<u>TDK</u>			BLPLTS
			ERRORZ			BLSEG
BANDI	3 C		3 D			BLTABL
FCALC		CHAR		AXISPT		BLW
FINDT		CUBIC		CHECK		CØEF
GETIL	i	WALL				CØEF1
GETILV			1			CUBICB
NEWTL				CRIT		DIFF
PTAB				EF2D		EDDY
SAUER				GPF		INPUTB
TRIM				GPFKIN		IVPL
				GPFPG		LINI
				INPT		OUTPBL
				INSRT		RBL
				NESK		READBL
				SDERIV		SØLV5L
				SINT		WRPROF
				THERM		
A	4B			WLPT		
CNTRL		ATSHCK	1	ENCALO	1	
DSPT		CKEVIT	1	ENCALC		PRINTS
PRINT		CKGHCK				SAVPT
SUBTL		CNTPL 1				SCK
		CNTRLO		INPIK		SETID
				INPTRS		SHCKA
						SHCKA1
•		CNTR13				SHCKL
		CNTR14		INTEXT		SHCKR
		CNTRID		ITERI		SHCKW
		CNIR21		ITER2		SHCKW1
	ł			LTER3		SHØCK
		CHIKAT		MLCK		STRACE
				MRCK	1	SUBILR
			I	MRCK1		TCALC
			h с			WLCALC

 \frown

4.1 PROGRAM FILES

The files used by TDK are listed in Table 4-1. For those files referred to by a Fortran variable name, the name is listed. The description of the file includes the name of the labeled common block in which the file name is communicated. Subroutines using the file are also listed.

The type of file is indicated by the following codes:

В	binary
F	formated
MS	mass storage (saved)
DA	direct access
TMS	temporary mass storage

For Univac machines, write statements to unit 50 must be replaced by PUNCH statements.

(-')

Table 4-1: Files Used by TDK

Logical Unit	Fortran Variable <u>Name</u>	Туре	Description
5	MUN	F	Data input stream COMMON/NUCM30/
6	-	F	Printed output stream
8	IPUNIT	F,TMS	Initial Data Line file, \$LINE, COMMON/PCHILF, Subroutine CHAR
10	LU	F,TMS	Temporary input, COMMON/NUCM 30/, Subroutines MAIN, SAVDAT,CHAR, LTCPHS, ODES, OKDINP, REACT, REAXIN, TDK, TTAPE
11*	LUBLM	F,TMS,MS	TDK-BLM interface data, COMMON/BLM2/,Subroutines BLKDTA, ODES, PRINT, PRINTS, PTAB, READAT, READBL
12	LUØUT	F,TMS,MS	BLM-TDK interface data, Subroutines BLMAIN, BLW, RBL
13	NUPLT	B,TMS	BLM plots Subroutine BLMAIN
14	NUPRØF	B,TMS	BLM plots Subroutine WRPRØF

15*	-	B,TMS,MS	TDK restart
			Subroutines READAT, SAVDAI,
			MAIN
16	÷	DA	Direct access file for variable
			mixture ratio option (1st pass)
			Subroutines FINDT, GETILV, GETIL
		D 4	Direct access file for shock
17	<u> </u>	DA	ontion (1st pass)
			Subroutines GETPT, SAVPT
18	÷	DA	Direct access file for shock
10			option (2nd pass)
			Subroutine CNTR91
19	-	DA	Same as 16, (2nd pass)
		D TMC	Scratch data, Common/NTAPE/,
20	IRRED	D , 110	Subroutines BLKDTA, ØDKINP
		B TMS	Initial line data,
21	KKEX	D , 140	COMMON/NTAPE/,
			Subroutines BLKDTA, CHAR,
			GETIL. GETILV, ØDKINP, PACK,
			SUBIL, TRAN, TSTDK
			TDE Unit. COMMON/NTAPE1/,
23	JTABLE	B,1M3	Subroutines BLKDTA, ØDES,

25

JANAF

4-8

F,TMS,MS Thermodynamic

OUTPUT, TDK, TRAN

COMMON/CUTIL/, Subroutines

MAIN, TTAPE, ØDK, PACK, SEARCH

data,

.

26	KREAX	B,TMS	Scratch	data,	COMMON	/CUT:	IL/,
			Subroutin	es	MAIN,	ODK	INP,
			REAXIN				
27	KSTF	F,TMS	Scratch	data,	COMMON	/CUT:	IL/,
			Subroutin	es MAIN	, РАСК,	SEAI	RCH
28	IRREAD	B,TMS	Scratch	data,	COMMON	/CUT	IL/,
			Subroutin	es M	AIN,	ØDK	INP,
			REAXIN				
29*	ITSTAB	B,TMS,MS	Transonic	data,	COMMON	/CUT	IL/,
			Subroutin	es	MAIN,	GE	TIL,
			GETILV, M	AIN1D,T	WØD		
50	-	F,TMS,MS	Boundary	layer	edg	е	data
			computed	by TDK	, TDE,	or	TDF.
			Subroutin	es PRIN	IT, PRIN	ΤS,	ΡΤΑΒ

Files 11, 15, and 29 must be saved if the restart option, IRSTRT = 1, is to be used on later runs.

850108

1 4 5

4.2 SUBROUTINE AND COMMON BLOCK CROSS-REFERENCES

This section provides tables that contain cross-references for subroutines and common blocks. Referal to these tables, or their equivalent, is usually necessary if the program is to be modified.

Table 4-2 lists in alphanumeric order each TDK subroutine. All modules are included. Opposite each subroutine name are the names of all subroutines that call the subroutine.

Table 4-3 lists in alphanumeric order each TDK common block. Again, all modules are included. Opposite each common block name are the names of all subroutines that contain the common block.

Tables 4-2 and 4-3 do not contain the names of system supplied subroutines, such as SIN, COS, or the I/Ø subroutines.

TABLE 4-2 SUBROUTINE ENTRY POINT CROSS-REFERENCES

SUBROUTINE	REFERRED B	Υ		
		CNUD21	CNTR31	CNTR41
ATSHCK		CNIKZI		•••••
AXIS	BLPLIS	ONTOT	CNUDII	SHCKAI
AXISPT	CNTR14	CNTRL	CHINDI	Dirordia
BANDI	NEWT			
BLEDGE	BLMAIN			
BLH	MAIN			
BLKDTA				
BLMAIN	MAIN			
BLOCKD				
BLPLTS	BLMAIN			
BLSEG	BLMAIN			
BLTABL	BLEDGE	INPUTB		
BLW	MAIN			
CHAR	TDK			TND
CHECK	ATSHCK	AXISPT	DSPT	TNDDC
	INPTR	INPTRI	INPTRS	INPIS
	WLPT			
CHTYPE	PREAX			
CKEXIT	CNTR21	CNTR31	CNTR41	CNTREE
	CNTRL2			
CKSHCK	CNTRL1			
CNTR12	CNTR91			
CNTR13	CNTR91			
CNTR14	CNTR91			
CNTR16	CNTR91			
CNTR21	CNTR91			
CNTR31	CNTR91			
CNTR41	CNTR91	(SUBROUTINE	E NOT USED)	
CNTR91	TDK			
CNTRL	TDK			
CNTRL1	CNTR13	CNTR21	CNTR31	CNTR41
CNTRL2	CNTR12	CNTR14	CNTR16	CNTR41
COEF	BLSEG	IVPL		
COEF1	BLSEG			
CONVRT	PACK			
CPHS	EQLBRM	FROZEN	HCALC	OUTI
	ROCKET	SHCK		011 011 7
CRIT	CHECK	DSPT	SHCKA1	SHCKL
	SHCKR	SHCKW1		
CUBIC	WALL			
CUBICB	BLTABL			
DERIV	IAUX	INT	MAINID	
DETON	ODES			
DIFF	BLEDGE			
DSPT	CNTRL			
ECNV1	MGET	PRATES	REAXIN	
EDDY	BLSEG			
EF	DERIV			
EF2D	SDERIV			
EFMT	OUT1			
ENCALC	SHOCK	TCALC		m117771/7
EQLBRM	DETON	ROCKET	SHCK	THERMP
	TPCALC			
ERRORZ	CHAR	CNTRL	TDK	
FCALC	TRAN			

.....

SUBROUTINE	REFERRED BY					
	و هم ان ها ان به به نا ان مر م					
TIND	CHAR	CPHS	ENCALC	GPFPG		
FIND	TAUX	MAINID	MUK	PACK		
	PRES	PTAB	STF	THERM		
	GETTI.	GETILV				
	DERTV					
L TO L TO	MGET	PRATES	REAXIN			
FNDLM	POCKET					
FRUZEN	CNTP12	CNTR13	CNTR14	CNTR16		
FIRKST	CNTR21	CNTR31	CNTR41	CNTRL2		
CALIFY W	SKDBI					
GAUELM	FOLBRM					
GAUSS	TRADICA					
GETTL	TOAN					
GETILV	CNTRI 2	CNTR13	CNTR14	CNTR16		
GEIPI	CNTRA 1	INPTRS	INPTS	SUBILR		
458	AMEHCK	AXTSPT	DSPT	INPT		
GPF	TNDTD	TNPTRI	INPTRS	INPTS		
	TNEPT	SHCKA	SHCKAL	SHCKL		
	SHCKD	SHCKW	SHCKW1	SUBIL		
	GURTLD	WT.PT				
CDEVIN	GDF	SUBTL				
GPFKIN	CDF	DODIE				
GPIPG	DEDIV	MATNID				
GTF	DERIV	SAVE	SHCK			
HCALC	TNU	MATNID				
IAUX		CNTRL2				
INPT						
INPTR	CNIRD1 6					
INPTRI	CNTRI6					
INPTRS	CNTR14					
INPTS	CNTRIS DIMATN					
INPUTB	DIMAIN	CNTOT.1	CNTRL2	WLCALC		
INSRT	CNTRL MATNED	CUINDI	01/11/20			
INT	MAINID ONEDI 2	CNTD 1 4	CNTR 16	CNTR21		
INTEXT	CNTR12	CNTRA	01121120			
		DDINTS	TCALC	TRAN		
ITER	PRINT	FRINIO	10.120			
	TSCALC					
ITER1	ENCALC					
ITER2	SHOCK					
ITER3	ATSHCK					
IVPL	BLMAIN					
LESK						
LINE	BLPLITS		TNPUTB	OUTPBL		
LINI	BLEDGE	DTINDT	INTOID	•••====		
	WRPROF					
LTCPHS	MAIN					
MAIN	- 54					
MAINID	ODK	DOOVED				
MATCH	ODKBLM	RUCKET				
MATRIX	EQLBRM					
MGET	REAXIN		CNODIA	CNTR41		
MLCK	CNTR12	CNTK14	CNUDSI	CNTR41		
MRCK	CNTR13	CNTR21	τ CAT ΝΟ			
MRCK1	CNTRL1	DAAVOT				
MUK	ODKBLM	ROCKET				
	SUBROUTINE	REFERRED B	Υ			
---------------	------------	------------	--------	--------	--------	
•						
	NECK	C T NM				
	NESK	DEMON	DOCKER	CUCK	THEDMO	
$\overline{}$	NEWOF	DETON	RUCKET	SHCK	Ingwir	
	NEWT	TRAN				
	NUMBER	BLPLIS				
	ODES	MAIN				
	ODK	MAIN				
	ODKBLM	ODK				
	ODKINP	ODK				
	ODWALL	ODKINP				
	OMEGA	ODKBLM	ROCKET			
	OUT1	DETON	RKTOUT	SHCK	THERMP	
	OUT2	DETON	RKTOUT	SHCK	THERMP	
	OUT3	DETON	RKTOUT	SHCK	THERMP	
	OUTPBL	BLMAIN	BLSEG			
	OUTPUT	INT	MAINID	PRNTCK		
	PACK	ODK				
	PACKCD	REAXIN				
	PLOT	BLPLTS				
	PLOTS	BLPLTS				
	PRATES	REAXIN				
	PREAX	REAXIN				
	PRES	PACK				
	PRINT	CNTRL				
	PRINTS	CNTR12	CNTR13	CNTR14	CNTR16	
		CNTR21	CNTR31	CNTR41	CNTRL1	
		CNTRL2				
\sim	PRNTCK	INT	MAINID			
	PROBLM	MAIN				
	PTAB	TRAN				
	RBL	BLH	BLW			
	REACT	ODES				
	READAT	MAIN				
	READBL	INPUTB				
	REAXIN	ODKINP				
	RKTOUT	ROCKET				
	ROCKET	ODES				
	SAUER	TRAN				
	SAVDAT	MAIN				
	SAVE	DETON	ROCKET	SHCK	THERMP	
	SAVPT	CNTR12	CNTR13	CNTR14	CNTR16	
		CNTR31	CNTR41	CNTRL1	CNTRL2	
		SUBILR	WLCALC			
	SCALE	BLPLTS				
	SCK	CNTR12	CNTR14			
	SDERIV	GPFKIN	SINT			
	SEARCH	ODES				
	SELECT	ODKINP			·	
	SETID	CNTR12	CNTR13	CNTR14	CNTR16	
		CNTR21	CNTR31	CNTR41	CNTRL1	
		CNTRL2	SUBILR	WLCALC		
	SHCK	ODES				
	SHCKA	CNTR12	CNTR14			
$\overline{}$	SHCKAl	CNTR13				
	SHCKL	CNTR13	SHCKW			
	SHCKR	CNTR12	CNTR14	CNTR16		

SUBROUTINE	REFERRED B	Υ		
SHCKW	CNTR13			
SHCKW1	CNTR14	CNTR16		
SHOCK	ATSHCK	SHCKA	SHCKAl	SHCKL
	SHCKR	SHCKW	SHCKW1	
SINT	ATSHCK	AXISPT	DSPT	INPT
	INPTR	INPTR1	INPTRS	INPTS
	SHCKA	SHCKA1	SHCKL	SHCKR
	SHCKW1	SUBIL	SUBILR	WLPT
SKPB1	ODWALL	SKPB2	WALL	
SKPB2	ODWALL	WALL		
SLP	PACK	TDK	WALL	
SOLV5	BLSEG	IVPL		
SPLN	CHAR	CNTRL	CPHS	ENCALC
	FLU	GPFPG	IAUX	MAINID
	MUK	PACK	PRES	PTAB
	STF	THERM		
STF	CONVRT	DERIV	MAINID	ODKBLM
STOICC	CONVRT	PACK		
STORNU	REAXIN			
SUBIL	CNTRL			
SUBILR	CNTR21	CNTR31	CNTR41	
SUBNE	PRES			
SUMPRT	MAIN			
SUMPRT1	SUMPRT			
SYMBOL	BLPLTS			
TABGEN	IAUX	MAINID		
TCALC	SHOCK			
TDK	TWOD			
THERM	ENCALC	SDERIV		
THERMP	ODES	ANIMD T	MA TH	MATNID
TIMERX	CHAR	CNTRL	TIALN TO X N	MAINID
MDONI C	MLCK	MRCK	IRAN	
TPCALC	TSCALC			
TRAN	TWOD			
TRIM	TRAN			
TSCALC	UDES MATN			
TIAPE	MAIN			
	MAIN MAIN			
UNIT	DAMOUL			
VAREMI WATT	CUND			
WALL		CNTD 2 1	CNTR4 1	
	CNIR21	CNTRJI	CNTRL2	SHCKWI
4TLT	WICALC	CHIKD	014 T T/TIE	
MDDDAF	HICALC BICEC			
MALKOL	PTOTO			

TABLE 4-3 COMMON BLOCK CROSS-REFERENCES

- ---

L		8	E	L	E	D		С	C	M	M	0	N
•	•	•	•	•	٠	٠	•	•	•	•	•	•	•

 \smile

	REFERRED BY SUBROUTINE	LABELED COMMON	
			REFERRED BY SUBROLITINE
A			
	DE AMAN	PL 00	
	REAXIN	BLU	
	STURNU		RI EDCE
ARMADO	PRAIES		BLSEC
OPPARS	FREAK		COFF
	MATH		COFF 1
	TOK		EDDY
ABOUND	FLU	BLC1	WRPROF
	120		
	CHAR		IVPL
AL	GPFKIN		OUTPBL
			SOL VS
	BLMATN		BLSEG
	INPUTB		COEF
	OUTPBL		COEF1
ARODE	BLEDGE		EDDY
		BLC2	WRPROF
	MAIN		
	BLKDTA		OUTPBL
	ODES		COEF 1
	PACK	BLC3	EDDY
	REACT		
	SEARCH		IVPL
	DETON		SOL V5
	ODKINP	BLC6	BLSEG
1000-	OUT1		Sou yr
ARPRNT	OUTPUT	D 1 11/0-1	SOLVS
		BLINTP	CUEF
	ODES		RI OCKO
4400	PROBLM		
AAR2	UDKINP	D1 144	BLEDGE
	DEACT	BLMI	BLEUGE
	KEACI Slimpar		MATH
	SUMPRT		
RCON	TWUU MATNIN		PEADAT
DCON	MAINID		SAVDAT
	BLOCKD		PRINT
	INDUTE		PTAB
	READE	BLM2	PRINTS
BLCO	BLEDGE	Jene .	
			BLKDTA
	BLOCKD		ODES
	BLMAIN		READAT
	INPUTB		READBL
	IVPL		ODKBLM
	OUTPBL		TDK
	READBL		PRINT
	SOLV5		PTAB
		BLM3	PRINTS
			ODES

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
	••••		
		CINT	MAINID
BLM3	ROCKET		IAUX
DI M6			INT
BLNA	ODES		LESK
_	0011	CKSHCK	CHAR
BLMF	ODK	CHAVIT	
	PROBLM	CHAAT	TDK
	SUMPRT		DRINT
BLMPLT			PRINTS
	RIMAIN		
	INPUTB	CODIDK	MAIN
	BLEDGE		ODK
	BLSEG		MAINID
	WRPROF		ODKINP
RI MSPR			
	BLK		FLU
	SLW CLIMPRT	COEFFX	SEARCH
	BLSEG		CPHS
PL 01 07	020	con/	
BLAFOI	BLMAIN	LUM4	MAIN
	BLSEG		SUMPRI
BLTK			I KAN CHAR
	BLMAIN		UNAK
	OUTPBL	COM6	TRAN
BLTKPR	DPOR! M		GETIL
	P RODEN		GETILV
CCINI	SINT		SAUER
	NESK	CONCAS	
		COHCHS	MALN
ODEC.	MAIN		BLW CDES
	ODES		PACK
	SAVE		READAT
	MAINID		SAVDAT
			SUMPRT
CDELHY	BLH		CONVRT
	ODES		MAINID
	SAVE		ODKBLM
	TWOD		OUKINP
	MAIN1D		DOFFOI
CDINTG	CI INOD T		REAXIN
	SUMPRI		SELECT
	TRAN		STF
CTN I I I			STORNU
LINICN	CHAR		

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
COMCAS		COMY	
	SUMPRT 1		ODKINP
	TRAN		OUTPUT
	CHAR		PRES
	CNTRL		REAXIN
	DERIV		STF
	DSPT		TRAN
	E E		CHAR
	ECALC		DEPIV
	FUALU El H		SE SE
	FLU		C ()
	GETTL		FLU
	GETTLV		uir Taiw
	GTF		IAUX
	IAUX		111
	INPT		SDERIV
	INT		EF2D
	ODWALL	CONSTS	
	PRATES		MAIN
	PRINT		LTOPHS
	PTAB		ODES
	SINT		SAVE
	SUBTI		SUMPRY
			LINIT
	AVICOT		CONVET
	COEVIN		EDLEDM
	UPPKIN		EQUDRM EDOZEN
	INPIK		
	INPIRI		MAINIU
	INPIRS		UUKINP
	INPTS		0011
	NESK		OUTPUT
	PRINTS		RKTOUT
	SDERIV		SUMPRT1
	SUBILR		TDK
	TCALC		TPCALC
	THERM		TRAN
	ATSHCK		CHAR
	EF2D		IAUX
	ENCALC		ODWALL
COMXP			PRINT
	MATN		PTAB
	ODES		
	CIMPPT		GPEPG
	TDAN		PPINTS
COMY	I KAN		ENCALC
5011	MATN	C001 C	LACKED
	DACK	COOLU	D1 H
	PALK		BLA
	READAT		BLW
	SAVDAT		INPUTB
	CONVRT	CPEES	
	MAIN1D		ROCKET
	ODKBLM		CPHS

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
CPEES		CUTIL	
600.1T	OUT1		STF
CPRNT			TDK
	MAIN		TRAN
	PACK		CHAR
	MAINID		CNIKL
	UUKINP		FLU
			GETTLY
COLINCH	OUWALL		GETTLY
CFUNCA			
	PRINI		CUDI
CSDBAC	PRINIS		2001
CUPANC	MATH		OPINTS
	DACK		CIRTIP
	STOLCC		THEDM
	CONVET	CVAL 1	T DE KR
	PEAYIN	GWALL	MATN
	SELECT		ODES
	STORNU		PACK
CTRBDY			READAT
	AXISPT		SAVDAT
	CNTR14		MAIN1D
	CNTRL1		ODKINP
	SHCKA		PRES
	SHCKA1		CHAR
CUTIL			FLU
	MAIN		ODWALL
	ODES		PTAB
	ODK		WALL
	PACK	CWALL1	
	REACT		PROBLM
	READAT		WALL
	ROCKET	DASTOI	
	SAVDAT		PACK
	SEARCH		READAT
	SPLN		SAVDAT
	TTAPE		DERIV
	TWOD		EF
	CONVRT		SDERIV
	CPHS	051 111	EF2D
	MAIN1D	DELHN	
	MUK		BLH
	ODKBLM		ODES
	ODKINP	DESAV	C (700)
	UUTI		OUTPEL
			SUMPRI
	PKES		
	REALIN	DIRACC	SUMPKII
	KKIUU:	DIRACC	TOK
	SELEUI		I U K

DIRACC CNTR91 ERR DIRACC CNTR91 ERR GETPT DOLOOP SAVPT MAIN READAT SAVDAT SAVDAT MAIN1D OOKINP PPNTCK DERIV EF IAUX INT SDERIV DERIV DERIV EF 20 DOUBLE EF 20 DOUBLE EF 20 DOUBLE EG EDGE MATRIX GAUSS MATRIX ODES EDGE FLO ENDFLG ENTR91 FLAGS BLSEG COEF1 EDDY ENDFLG CNTR91 FLOW2D FLOW2D FLOW2D FLOW2D	
DIRACC CWTR91 GETPT DOLOOP SAVPT DOLOOP MAIN READAT SAVPT ERR CMTR1 DSPT ENDE CCTR FLAGS FLAGS FLAGS FLOW CHAR CHAR CHAR CHAR CHAR CHAR CHAR CHAR	ERRED BY SUBROUTINE
DOLOOP DOLOOP DOLOOP AAIN GETPT GETPT GETPT GETPT GETPT GETPT GETPT GOUTHP DOLINP DOLOOP AAIN READAT MAIN READAT MAIN READAT MAIN READAT MAINT SDERIV EF TAUX SDERIV GEU GOUS SHCK GAUSS SH	
DOLOOP SAVPT DOLOOP SAVPT MAIN ANN IN SAVDAT SAVDAT SAVDAT SAVDAT SAVDAT DOUBLE RIV EF DOUBLE ODES SOERIV EF2D DOUBLE SOERIV EF2D DOUBLE SOERIV EF2D DOUBLE SOERIV EF2D DOUBLE SOERIV EF2D DOUBLE F2D EDGE PRIMAIN BLOKIN BLOKIN BLOKIN BLOKIN ENTRO COTR91 PRINTS FLOW2D FLOW	
DOLOOP GAYPT DOLOOP MAIN READAT SAVAT MAIN D DOUBLE FEAD DOUBLE FEAD EDGE 00ES SHCK GAUSS MATRIX OUTS EDGE FLO ENDFLG FLO ERN FLO ERN FLO ENDFLG CNTRP1 PRINTS CNTRP1 PRINTS FLOW2D FLOW2	
DOLOOP SAVPI DOLOOP SAVPI MAIN READAT SAVDAT MAINT SAVDAT SAVDAT MAINT SAVDAT	WLPT
HAIN READAT SAVAT MAINID OOKINP PRNTCK DERIV	AXISPT
AAIN READAT SAVDAT MAIND SAVDAT MAIND OOKINP PRNTCK EF IAUX INT SDERIV EF CODES SHCK ODES SHCK ODES SHCK OUTS EDGE EDGE EDGE ENDFLG ENDFLG ENDFLG ERR MAIN INT SDERIV EXTRAP OUTS BLOCKD BLMAIN BLOCKD BLMAIN BLESG COEF1 ENDFLG ENDFLG ENDFLG ENDFLG ERR MAINS MATRIX OUTS BLESG COEF1 FLAGS BLEDOY WRPROF FLOW2D TOK TAPE TOK TAPE TOK CHTRL C	CNTR12
READAT SAVDAT MAINID DOUBLE DOUBLE DOUBLE EDGE ENDFLG ERR MAININ ERR MAININ ERR MAININ INT SDCRIV EF2D OUES SNCK EQLBRM MATRIX OUTIN BLMAIN INPUTB UTPAL BLEDGE BLEDGE BLEDGE BLEDGE BLEGG COEFI ENDFLG MAININ INPUTB CONTROL COTROL COEFI FLOW2D	CNTR13
SAVDAT MAINID DOUBLE DOUBLE EF EDGE DOUBLE EDGE EDGE ENDFLG ERR ERR MAININ BLCKD BLC	CNTP14
MAIND OOKINP PRNTCK DERIV EF IAUX INT SDERIV EF2D OOES SNCK EOLBRM GAUSS BLOCKD BLMAIN MATRIX OUT1 EDGE ENDFLG ENDFLG ERR MAIN EXTRAP COTFSL EDGE ENDFLG ERR MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN	CNTD14
OOKINP PRNTCK DERIV EF DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE EDGE EDGE ENDFLG ERR MATRIX OUT 3 ENDFLG MATRIX OUT 3 MATRIX OUT 3 MAT	CNTR 10
PRIVICK DERIV EF IAUX INT SDERIV EF2D DOUBLE EDGE EDGE EDGE EDGE EDGE EDGE ENOFLG ERR ER ER ER EDGE ENOFLG ERR ER EDGE ENOFLG ER ER ENOFLG ER ER EDGE ENOFLG ER ER ENOFLG ER ER ENOFLG ER ENOFLG ER ER ENOFLG ER ER ENOFLG ER ER ENOFLG ER ER ENOFLG ER ER ENOFLG ER ER ER ENOFLG ER ER ER ENOFLG ER ENOFLG ER ENOFLG ER ENOFLG ENOFLG ER ENOFLG ENOFLG ENOFLG ENOFLG ENOFLG ER ENOFLG ENOFL	
DERIN EF IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX IAUX SDERIV EF2D ODES SACK EGLBRM GAUSS GAU	CNIRLZ
EVER CONTROL ERR ER EF 1 AUX INT SDERIV EF2D OOES SHCK EQLBRM GAUSS SHCK EQLBRM GAUSS SHCK EQLBRM GAUSS SHCK EQLBRM GAUSS SHCK OUT1 SHCKD BLAN BLOCKD BLMAIN INPUTB OUT9L GOUT9L EDDFLG ENDFLG ER MAIN TAPE TDK CHTR91 PRIWTS FLOW2D FLOW2D FLOW2D	GPFPG
DOUBLE CODER IV EF2D DOUBLE CODES SHCX EQLBRM GAUSS HATRIX OUT1 EDGE DOUT1 EDGE BLANN BLANIN INPUTB BLANIN INPUTB BLEDGE FLAGS BLEDGE FLAGS BLSEG BLSEG COEF1 EDDY ENDFLG COTR91 PRINTS ERR PRINTS FLOW2D FLOW2D	INPTR
DOUBLE INT SDERIV EF2D EDGE BRM GAUSS MATRIX OUT1 BLOCKD BLMAIN INPUTB BLOCKD BLMAIN BLEDGE BLSEG COEF1 EDDY ENDFLG ERR CNTR91 PRINTS ERR MAIN BLSEG COEF1 EDDY FLOW2D FLOW2D	INPTR1
DOUBLE SDERIV EF2D ODES SHCK EDGE OUT EDGE OUT1 EDGE OUT1 ENDFLG BLACKD ENDFLG CNTR91 PRINTS ERR CNTR1 CHAR CHAR CHAR CHAR	INPTRS
DOUBLE EF2D EF2D EDGE COES SHCK EQLBRM GAUSS MATRIX OUT1 BLOCKD BLMAIN INPUTBL BLEDGE F1 EDDY ENDFLG ERR CNTR91 PRINTS TAPE TAP FLOW2D FLOW2D	INPTS
DOUBLE DO	PRINTS
EDGE SHCK EQLBRM GAUSS MATRIX OUT1 EDGE BLOCKD BLMAIN INPUTB BLEOGE BLEOGE ENDFLG FLAGS ERR CNTR91 PRINTS ERR MAIN TAPE TAPE TAPE TAPE FLOW2D	SDERIV
EDGE OUTS HOK GAUSS MATRIX OUT1 BLOCKD BLOCKD BLOCKD BLAAIN INPUTB OUTPBL GUTPBL BLEDGE BLSSG COEF1 EDDY WRPROF ERR MAIN TAPE TAGS FLAGS FLAGS FLOW2D FLOW2D FLOW2D FLOW2D	SHCKA
EDGE SHCK EQLBRM GAUSS MATRIX OUT1 BLOCKD BLMAIN BLAD BLOCKD BLMAIN BLAD BLEDGE COEF1 EDDY ENDFLG ERR CATR91 PRINTS CATR91 PRINTS FLOW2D FLOW2D	SHCKA1
EDGE EDGE BLOCKD BLOCKD BLMAIN EXTRAP OUT 1 BLOCKD BLMAIN EXTRAP OUTPBL FLAGS BLSEG COEF1 ENDFLG WRPROF ERR CNTR91 PRINTS ERR MAIN TAPE TDK TRAN CHAR ALL CHAR FLOW2D	SHCKA
EDGE GAUSS MATRIX OUT1 BLOCKD BLMAIN INPUTB EXTRAP OUTPBL BLEDGE FLAGS BLSEG COEF1 EDDY WRPROF ERR CNTR91 PRINTS MAIN TAPE TDK TAPE TDK TAPE TDK TRAP CHAR CHAR CHAR CHAR	SHOKE
EDGE OUT1 BLOCKD BLMAIN EXTRAP INPUTB UNPUTB BLEDGE FLAGS ENDFLG COEF1 EDDY ERR CNTR91 PRINTS MAIN TTAPE TDK TRAN CHAR CNTRL DSPT	SHLKK
EDGE OUT1 BLOCKD BLMAIN EXTRAP INPUTB FLAGS BLEDGE BLSEG COEF1 EDDY WPROF ERR CNTR91 PRINTS FLOW2D TAPE TDK TRAN CHAR CHAR CONTRL DSPT	SHUKW
ENDFLG BLOCKD BLMAIN EXTRAP INPUTB FLAGS BLEDGE BLSEG COEF1 EDDY ERR CNTR91 PRINTS ERR MAIN TTAPE TDK TRAN CHAR CNTRL DSPT	SHCKW1
BLOCKD BLMAIN INPUTB OUTPBL BLOGE BLOGE EDDYEXTRAPFLAGSBLOGE BLOGE COEF1 EDDY EDDYENDFLGCNTR91 PRINTSCNTR91 PRINTSMAIN TTAPE TDK TRAN CHAR CHAR CHAR CHARFLOW2D	SUBILR
END FLG EXTRAP INPUTB EXTRAP OUTPBL FLAGS BLSEG COE F1 EDD Y WRPROF ERR CNTR91 PRINTS MAIN TTAPE TDK TRAN CHAR CHAR CHAR CHAR	WLCALC
ENDFLG CNTR91 PRINTS ERR CNTR91 PRINTS CNTR91 PRINTS CNTR91 PRINTS FLOW2D FLOW2D	ATSHCK
ENDFLG COEF1 EDDY ERR CNTR91 PRINTS ERR FLOW2D COFF1 EDDY PRINTS FLOW2D FLOW2D FLOW2D	ENCALC
ENDFLG COUTPBL FLAGS BLEDGE FLAGS COEF1 EDDY EDDY ERR COTR91 PRINTS MAIN TTAPE FLOW2D TDK TRAN CHAR CHAR CHAR CHAR	
ENDFLG COFFI ENDFLG COFFI ERR COTR91 PRINTS FLOW2D TDK TRAN CHAR COTRL DSPT	PACK
ENDFLG BLSEG COEF1 EDDY WRPROF ERR CNTR91 PRINTS MAIN TTAPE TDK TTAPE TDK TRAN CHAR CNTRL DSPT	
ENDFLG COEF1 EDDY ERR CNTR91 PRINTS MAIN TTAPE FLOW2D TDK FLOW2D TDK TRAN CHAR CHAR CHAR CHAR	CNTPO1
ENDFLG EDDY WRPROF ERR CNTR91 PRINTS MAIN TTAPE FLOW2D TDK TRAN CHAR CHAR CHAR DSPT	CNTD10
ENDFLG WRPROF ERR CNTR91 PRINTS MAIN TTAPE FLOW2D TDK FLOW2D TDK CHAR CHAR CHAR DSPT	CNTR12
ERR CNTR91 PRINTS MAIN TTAPE FLOW2D TDK FLOW2D TRAN CHAR CNTRL DSPT	CNTR13
ERR PRINTS MAIN TTAPE FLOW2D TDK FLOW2D TRAN CHAR CHAR CHAR DSPT	CNTR14
ERR PRINTS MAIN TTAPE FLOW2D TDK FLOW2D TRAN CHAR CNTRL DSPT	CNTR16
AAIN TTAPE TDK TRAN CHAR CNTRL DSPT	CNTR21
MAIN TTAPE FLOW2D TDK FLOW2D TRAN CHAR CNTRL DSPT	CNTR31
TTAPE TDK FLOW2D TRAN CHAR CNTRL DSPT	CNTR41
TTAPE FLOW2D TDK FLOW2D TRAN CHAR CNTRL DSPT	CNTRL1
IDK TRAN CHAR CNTRL DSPT	CNTRL2
TRAN CHAR CNTRL DSPT	
CHAR CNTRL DSPT	PROBLIM
CNTRL DSPT	TRAN
DSPT	CHAD
	ANAR CNTR:
GETIL	STUDOT
GETILV FNALBT	THRST
INPT	
	IAIN1D
	ERIV
	LU
WALL	AUX

>

. _

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
		HTL	SAVDAT
GBLK	RI OCKD		SAVUA I
	RIMATN		UUKBLM
			CHAK
	INFUIB		GPFKIN
	OUTPBL .		GPFPG
	BLEDGE	HTOTAL	
	BLSEG	HIUIAL	INPUTB
	COEF1		READBL
	EDDY		RIEDGE
	WRPROF		BEEDGE
		HTPR	D 111
GEOM	DI U		BLW
	0055		PROBL
		LCONT	
	PRUBLM		MAIN
	READBL	1011	
	SUMPRT	IDIL	SUBILR
	ODKINP		
	RKTOUT	IDNO	PPORI M
	TRAN		CNTP01
	CHAR		CNIR71
	PRINTS		26110
	TRINIO	IHIT	au re 24
GEOMN	RI U		CNIRZI
	DDORI M		CNTRS1
	FRODLA		CNTR41
GRD			CNTRL1
	BLOCKU	INDSEG	
	BLMAIN	INUSED	BLSEG
	INPUTB		COEF1
	IVPL		
	OUTPBL	INDX	MATH
	SOLV5		ODES
	BLEDGE		ODES
	BISEG		REALI
	COFF		ROCKET
			SAVE
			SEARCH
	EDUT		SHCK
HHTCOM			THERMP
	ODES		CPHS
	EQLBRM		DETON
HTARI F			FOLBRM
MADEL	INPUTB		EPOZEN
	BLEDGE		CAUCE
			GAUSS
HIFLX	RIMAIN		HUALU
	OLITORI		MATRIX
			OUT1
	RESER		RKTOUT
HTL			TPCALC
•	ODES		
	PROBLM	INUXA	ODES
	READAT		REACT

4–20

٠.

LED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROU
INDXX	DOCKET	KINFO	MATH
	RUCKET		
	SAVE		8L11
	SHCK		UUES DACK
	THERMP		PALK
	CPHS		REACT
	DETON		READAT
	EQLBRM		ROCKET
	FROZEN		SAVDAT
	GAUSS		SUMPRI
	HCALC		TWOD
	MATRIX		FROZEN
	OUT1		MAIN1D
	RKTOUT		ODKINP
	TPCALC		OUT1
INERTS			OUTPUT
	REAXIN		PRES
	SELECT		REAXIN
IOFF			RKTOUT
	PROBLM		SELECT
	READBL		TDK
IRRC			TRAN
	CHAR		CHAR
	INPTR		GETIL
IRSTRT			GETILV
	MAIN		PRINT
	PROBI M		PTAB
	READAT		PRINTS
	SUMPRT	(ASTM	
	SUMPRT 1	Endin	CNTR16
ISPIN			CNTRL2
101 21	PROBIN	I KEOKN	
	SDI N	LALWAN	ROCKET
LISE	JF LA	I KMELT	NOORE
IUSE	MATN		MAINID
	MES		DERIV
	POCKET	LOUTH	DERTY
	CAVE	LOWIN	MATN
	SEADCH		T TOPHS
			PEADAT
	THEDHO		SAVDAT
	CDUC		CONS
			etc
			THERM
		141	INCKM
		E 1	DEADAT
			KEAVAI
	MAIKIX		SAVUAL
	UUT I		2141
	DISTORIE		00547**

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
			•••••
MACHOP			
THUTHK	DEDIN	MESHCX	
	DEKIV		CHAR
MADVET	FLU		CNTRL
			PRINT
	MAIN		WALL
	ODES		WLPT
	ODK		PRINTS
	PACK		ATSHCK
	PROBLM	MISC	
	READAT		MAIN
	ROCKET		BLKDTA
	TWOD		ODES
	CONVRT		PACK
	MAIN1D		REACT
	ODKINP		ROCKET
	OUTPUT		SAVE
	REAXIN		SEARCH
	SELECT		SHCK
	TDK		THERMP
	TRAN		CPHS
	CHAR		DETON
	FLU		EQLBRM
	PRINT		FROZEN
	GPFPG		HCALC
	PRINTS		MATRIX
MASELW			OUT1
	MLCK		RKTOUT
	MRCK		TPCALC
	MRCK1	MISCT	
	SUBILR		BLOCKD
MESHC			RIH
	TDK		BIMAIN
	CHAR		INPIITR
	CNTRL		OUTPRI
	PRINT		READBI
	SUBIL		BLEDGE
	MLCK		BLSEG
	MRCK		COFF1
	MRCK1		FDDY
	PRINTS		URPROF
	SUBILR	MISCX	
MESHCN			ODES
	CHAR		REACT
	INPT		ROCKET
	INPTR		SAVE
	SHCKL		SHCK
	SHCKR		THERMO
MESHCW			CDHS
	CHAR		DETON
	WLPT		
			LWLOWN

	REFERRED BY SUBROUTINE	LABELED COMMON	
			REFERRED BY SUBROUTIN
MISCX			
	FP07EN	NAMEP	
	HCALC		70.4
	MATDIY		IDK
MOLLITE	PKTOUT		CHAR
HOLWIS	Rei OUT		CNTRL
	ROCKET		DSPT
	SEAPCH		INPT
MICT	OUT1		UNIR12
H031	3011		CNIRTS
	DEPTV		CNTR14
NAMOC	FLU		UNIR16
NAMOC	125		CNTR21
	TPAN		CNTRST
	FCALC		CNTR41
NAME	SALLED		CNTRL1
NAME	SAULA		CNTRLZ
	SUMPOT		GPFPG
	SUMODIT		INPTR
	IDK		INPTRI
	CHAP		INPTRS
	CNTPO1		INPTS
	CNTDI		MLCK
	DSPT		MRCK
	INDT		MRCK1
	DPINT		SHCKA
	SUBTI		SHCKA1
	CNTP12		SHCKL
	CNTR12		SHCKR
	CNTP14		SHCKW1
	CNTR16		WLCALC
	CNTP21		CKSHCK
	CNTP31	NAMEQ	ENCALC
	CNTP61		2-
	CNTRI 1		1DK
	CNTRE 2		CHAR
	FTHRST		CNTR91
	INPTR		UNIRL
	INPTP1		USPI
,	INPTRS		INPI
	INPTS		INSRT
	MLCK		PRINI
	MRCK		SINI
	MRCK1		SUBIL
	PRINTS		WLPI
	SHCKA1		AXISPI CHECK
	SHCKI		CHECK
	SHCKR		
	SHCKV1		UNIRTS
	SUBTIP		
	WLCALC		LNIR16
			UNIR21

•

			REFERRED BY SUBROUTINE		
	DECERDED BY SUBROUTINE	LABELED COMMON			
LABELED COMMON	KEPERRED DT COULOUT				
		NAMEV	TRAN		
			FCALC		
NAMEQ	CNTR31		GETIL		
	CNTR41		GETILV		
	CNTRL1		021101		
	CNTRL2	NAMEV	MATH		
	GPFKIN		ODKINP		
	GPFPG		TPAN		
	INPTR		CHAR		
	INPTR1		CNTRL		
	INPTRS		PRINT		
	INPTS		UAL I		
	MLCK				
	MRCK		CNTR12		
	PRINTS		CNTR14		
	SHCKA		CNTR16		
	SHCKA1		CNTR21		
	SHCKL		CNTRS1		
	SHCKR		CNTR41		
	SHCKW		CNTRL1		
	SHCKW1		CNTRL2		
	SHOCK		INTEXT		
	SUBILR		PRINTS		
	WLCALC		SHCKW		
	ATSHCK		WLCALC		
	CKSHCK		ATSHCK		
NAMEOD			CKEXIT		
NANCAD	CNTR12				
	CNTR13	NAMIN	MAIN		
	CNTR14		BLH		
	CNTR16		PROBLM		
	CNTR21		TWOD		
	CNTRS1		MAIN1D		
	CNTR41		ODKINP		
	CNTRL1		TDK		
	PRINTS		TRAN		
	SHCKA		CHAR		
	SHCKAI		FCALC		
	SHCKL		PRINT		
	SHCKK		GPFPG		
	SHUKW		PRINTS		
	SHUKWI				
	SHULK	NCO1	CNTRL		
	AISHUK		ODWALL		
NAMES	MA T N		PRINT		
			WALL		
			CNTR21		
	CET11		CNTR31		
	GETTE		CNTRL1		
	CUPIL				
	300 I LN				

4-24

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE

NCO1		NUCOM2	
	MLCK	NUCUHZ	
	MRCK		ODES
	PRINTS		UUK
NDEBUG			PALK
	TRAN		PROBLM
	FCALC		KUCKET
NEWPRT			TWOD
	BLW		UUKINP
	ODKINP		OUTPUT
NODK			IUK
	OD K		I KAN
	ODKINP		CHAR
NOINST			DSPT
	CNTRI 1		GPF
	INPTR		INPT
NRXDIR			ODWALL
	PACK		PRINT
	CONVET		PTAB
	REAVIN		SUBIL
	PRATES		WLPT
NTAPE	- ANTES		AXISPT
	RIKATA		GPFPG
	PACK		INPTR
	ODKIND		INPTR1
	TPAN		INPTRS
	CHAP		INPTS
	CETTI		PRINTS
	GETTLY		SHCKA
	SUBTI		SHCKA1
	CUBIL D		SHCKL
NTAPE1	SOBILK		SHCKR
	BLKDTA		SHCKW1
	ODES		ATSHCK
	OUTPUT	MICON 7	ENCALC
	TDK	NULUMS	
	TRAN		MAIN
NUCM30	(IAA)		ODES
	MATN		PROBLM
	INPLITE		READAT
	I TCPHS		SAVDAT
	ODES		PRINT
	PROBLIM		PIAB
	REACT	NITCOM/	PRINTS
	SHCK		
	TTAPE		BLKDTA
	ODKINP		PROBLM
	REAXIN		OUTI
	TRAN		OUTPUT
	CHAR		RKTOUT
			CHAR

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
	•••••••••••••••		
NUCOM4		ODKCOM	
	PRINT		MAIN
	PRINTS		ODES
NUCOM5			ODK
	MAIN		PACK
	ODES		READAT
	TOR		ROCKET
	TRAN		SAVDAT
			CONVRT
MICONE	UNAK		MAINID
NULUMO			ODKBLM
	MAIN		ODKIND
	TRAN		
	PRINT		
	CNTR21		OUTPUT
	CNTR31		PRES
	CNTR41		PRNTCK
	PRINTS		REAXIN
NUCOM7			RKTOUT
	MATM		SELECT
	ODES		CHAR
	OPES		DERIV
			EF
	0011		FILL
	IKAN		TAHY
	CHAR		INT
NUCOHS			
	ODES		PKINI
	CHAR		PIAB
NUCOMN			SINI
	ODES		PRINTS
	ROCKET		SDERIV
	OUT1		EF2D
MUT		ODKRX	
	TOK		MAIN
	CETTI		PACK
OAE	GCIIC		READAT
UNE	0050		SAVDAT
	WES DOOD H		CONVET
	PRUBLIN		DEPIV
	ODKINP		EE
	TRAN		
ODEOUT			SUERIV
	ROCKET		EF2U
	OUT1	ODKSP	
ODERG			MAIN
	ODES		PACK
	ROCKET		READAT
	nit1		SAVDAT
ODESAV	0011		TWOD
UUL SAT	TUOD		CONVRT
	I WUU MATNAR		MAINID
	MAINIU		ODKBLM
	UUI I		OURDEN.
	RKTOUT		

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED CONNON	REFERRED BY SUBROUTINE
ODKSP		PCTBL	DTAR
	ODKINP		F TAO
	OUTPUT	PERF	MATH
	REAXIN		MES
	STF		POCKET
	CHAR		SHCK
	DERIV		DETON
	EF		FOLBRM
	FLU		FROZEN
	GTF		CHIT1
	IAUX		PKTOUT
	PRINT		TPCALC
	SUBIL		IT GREG
	GPFKIN	PERFX	ODES
	GPFPG		ROCKET
	PRINTS		SHCK
	SDERIV		DETON
	SUBILR		FOLBRM
	THERM		FROZEN
	EF2D		OUT1
	ENCALC		RETOUT
OPTION			KKT001
	INPUTB	PEXII	SUMPRT
	PROBLM		SUMPRT1
	SUMPRT		CNTR91
OUPT			CNTRL
	BLKDTA		CHTILE
	SHCK	PLUMEL	SLIMPRT
	THERMP		TMOD
	DETON		CHAR
	FROZEN		CNTRL
	OUT1		PRINT
	RKTOUT		CNTR21
	VARFMT		CNTR31
	EFNT		CNTR41
PATHL			PRINTS
	READAT	DOINTS	
	SAVDAT	PUINIS	MAIN
	CNTRL		ODES
	SINT		ROCKET
	SUBIL		SHCK
	SDERIV		THERMP
	SUBILR		DETON
PCHILF			EQLBRM
	CHAR		FROZEN
PCTBL	*****		HCALC
	READAT		MATRIX
	SAVDAT		OUT1
	SUMPRT		RKTOUT
	OUT1		TPCALC
	TRAN		

•

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE	
POINTS		PRNTRX		
BOINTY	CHAR	ATADI 6	BLPLTS	
PUINIX	00EC	PIADLE	MAINID	
	DOCKET		ODKIND	
	KULKE I SHCY		PRES	
	THEDHO		F111	
	DETON		TAUX	
	FOLBRM	PTSAVE		
	FROZEN		MAIN	
	HCALC		ODES	
	MATRIX	PUNCHC		
	RETOUT		PROBLM	
PPPXX	KK1001		PRINT	
	CHAR		PTAB	
	CNTRL		PRINTS	
	SUBILR	RATES		
PRES			ODKINP	
	BLMAIN		REAXIN	
	INPUTB		PRATES	
	BLEDGE	RDCARD		
	COEF		MAIN	
	COEF1	RDIREX		
	EDDY		MAIN	
PRFGAS			ODES	
	MAIN		PACK	
	PROBLM		SEARCH	
	SUMPRT		STOICC	
	TWOD		CONVRT	
	TDK		REAXIN	
	CHAR		SELECT	
	DSPT		PRATES	
	GPF	RELPOT		
	INPT		BLW	
	PRINT		PROBLM	
	SINT		SUMPRI	
	WLPT	25054T	SUMPRIT	
	AXISPT	KEPEAT	MATN	
	INPTR		MAIN	
	INPIRI		OUES DOODLM	
	INPIRS		PRUDLM	
	INPIS			
	PRINTS			
	SHUKA			
	SHUKAT		CNTPO1	
	SHILL		CETI	
	SALKK		CETIN	
	SALKWI Atchck		DPINT	
	RI SALK		DTAD	
	ENLALL		FIRD	

LABELED COMMON	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE	

REPEAT		SHOCKO		
	PRINTS	SHUCKL		
I C C PIRK			PROBLM	
	BLMAIN		SUMPRT	
RVACOM	COEF1		TDK	
			TRAN	
	MAIN1D	SKIP	CHAR	
	ODKINP		CNZD: 4	
	OUTPUT			
SAVODE	1 N I	SPECES	INPIK	
	MATH		ODES	
• • • • • •	ODES		ROCKET	
SAVPRI	6625		SAVE	
	SUMPRT		SEARCH	
001 570	PRINTS		SHCK	
SCLFTR			THERMP	
	INPUTB		CPHS	
	READBL		DETON	
SCP IT1	BLEDGE		EQLBRM	
SCROTT			FROZEN	
SHCK1	ODES		HCALC	
-nex i			MATRIX	
	PROBLM		OUT1	
	SUMPRT	SPECEX	RKTOUT	
	CHAR		0050	
	CNTR91		ODES	
			RUCKEI	
			SHCK	
	DPINTO		THEPMD	
SHCK2	FRIMIS		CPHS	
	SUMPRT		DETON	
	CHAR		EQLBRM	
	VLPT		FROZEN	
	CNTR16		HCALC	
	CNTR21		MATRIX	
	CNTR31	SPINEO	RKTOUT	
	CNTR41	SFINEQ		
SHGAMA	PRINTS		MAIN	
C. C			BLMAIN	
	MAIN		ODES	
	ODK		PACK	
	PROBLM		KULKET	
	SUMPRT			
	UDKINP		SHUK	
	IUK CHAD			
			FOI ROM	
	SINT		ODKIND	
	SDEDIV		OUT1	
	JUERIY			

LABELED LUNION SPINFO SPINFO SILERT SILERT SUBPTI SSUMS RCCEET OUTI STREAM OCES SUMPTI TABL SUMPTI TABL OCES SUMPTI TABL OCES SUMPTI TABL OCES SUMPTI TABL OCES SUMPTI TABL SUMPTI TABL OCES SUMPTI TABL OCES SUMPTI TABL SUMT SUMPTI TABL SUMTI SUMPTI TABL SUMT SUMTI SUMTIN SUMPTI TABL SUMMTIN SUMTIN SUMTIN SUMTIN SUMTIN SUMPTI TABL SUMAT SUMATI SUMPTI SUMATIO SUMATI SUMPTI SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMPTI SUMMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMATIO SUMMATIO SUMATIO SUMATIO SUMMATIO SUMMATIO SUMATIO SUMMATIO SUMATIO SUMMATIO SUMATIO SUMAT		REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
SPINFO RTCUT SELECT SELECT SELECT SUMMERTI PTAB RCCUT PTAB DITI PTAB DITI PTAB SSUMS RCCET OUTI SUMPTIA TBRSAV OKINP REAXIN STREAM OUTS TBRSAV OKINP SELECT STREAM OUTS TDKMAX TOK ANNO TOKMAX TOK TOK ANNO TOK TOK TOK TABL BLOCKD TOK CHTRI TABL BLOCKD CHTRI CHTRI TABS BLOCKD CHTRI CHTRI TABL BLOCKD CHTRI CHTRI TABL BLOCKD CHTRI CHTRI GETILV GETILV<	LARELED COMMON			
SPINFO NCTOUT SUMM MAIN 10 CUT1 SUMMS RCCET MAIN 10 SUMM STREAM RCCET PRINTS STREAM ODES SUMPS SELECT SUMMS RCCET REAXIN STREAM ODES SUMPS SELECT TABL SUMPS CHAR GETIL CHAR CHAR GETIL CHAR CHAR GETIL SUMPT PRINT GETIL CHAR CHAR			181 017	
TABL RETOUT SUMPERT SELECT INT PTAB PTAB SSUMS ROCKET PTAB STREAM ODES STREAM ODES STREAM ODES STREAM ODES STREAM ODES STREAM ODES SUMPRT TOK NAX TOK NAINID TOKNAX TOK CHAR CONT TOKNAX TOK CHAR ODES SUMPRT TOKNAX TOK TABL SELECT SUMPRT TOKNAX TOK NAINID CHAR CHAR ODES SUMPRT TOKNAX TOK NAINID CHAR CHAR ODES SUMPRT TOKNAX TOK TABL SELECT SUMPRT TOKNAX TOK NAINID CHAR CHAR ODES SUMPRT TOKNAX TOK NAINID CHAR CHAR ODES SUMPRT TOKNAX TOK NAINID CHAR CHAR ODES SUMPRT TOKNAX TOK NAINID CHAR CHAR ODES SUMPRT TOKNAX TABL SELECT SUMPRT TOKNAX TOK NAINIT CHAR CHAR ODES SUMPRT TOKNAX TOK NAINIT CHAR CHAR ODES SUMPRT TOKNAX SUMPRT TOKNAX TOK NAINIT CHAR ODES SUMPRT TOKNAX TOK NAINIT CHAR SUMPT TOKNAX SUMPT SUMPT TOKNAX SUMPT SUMPT TOKNAX SUMPT SUMPT SU	SPINFO		186016	MAIN1D
SLECT IAUX SUPPRIT PTAB PTAB PTAB STREAM OCES SUPPRIT TBRSAV ODF SELECT NATIO TBRSAV ODF SUPPRIT SUPPRIT TODOMAX NATIO TODA NATIO TOMA NATIO CHAR CHAR CHAR GETTLV INPT GETTLV GETT GETTLV GETT GETT GETT OUTPSL <td></td> <td>RKTOUT</td> <td></td> <td>OUT1</td>		RKTOUT		OUT1
SQUAPS PTAB		SELECT		IAUX
SQUINS PTAB PTAB SCURS RCCKET TBRSAV ODE INP STREAM DDE S SELECT SUMPAT TDK DDE INP SUMPAT TDK DDE INP STREAM DDE S SELECT SUMPAT TDK DDF INF STREAM GETIL DDF INF GETIL CHAR DDF INF GETIL GETIL INF GETIL GETIL BUDY INF CHAR DUPPI GETIL GETIL GETIL INF GETIL GETIL INF GETIL GETIL CHAR OUTPBL CHAR CHAR GUTPSE CHAR CHAR OUTPSE CHAR CHAR GUTPSE CHAR CHAR OUTPSE CHAR CHAR OUTPSE CHAR CHAR OUTPSE CHAR CHAR OUTPSE CHAR CHAR </td <td></td> <td>SUMPRT1</td> <td></td> <td>PRINT</td>		SUMPRT1		PRINT
SSUMS OUTION STREAM OUTION STREAM OUTION STREAM OUTION SUMPRI SUMPRI SUMPRI SUMPRI SUMPRI SUMPRI SUMPRI SUMPRI SUMPRI CHAR GETILV GETILV GETILV GETILV GETILV CHAR GETIL CHAR GE		PTAB		PTAB
TABL CVC FT CVC	200122			PRINTS
STREAMOUT1IMENAVODC (IMP REAXIN)STREAMODESSELECTSUMPRTTUXONTUXONTVOOTUXONTUXONTABLCARARDSPTGETILGETILINPTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGETILGETILINSTGERGECONTRISCONTRISGUTPBLCONTRISCONTRISGUTPBLCONTRISCONTRISGUTPBLCONTRISCONTRISGUTSGETINCONTRISGUTSGETINCONTRISGUTSGETINGETINGUTSGETINGETINGUTSGETININPTGUTSGETININPTGUTSGETININPTGUTSGETINSUCKIGUTSGETINSUCKIGUTNGETINSUCKIGUTNGETINSUCKIGUTNGETINSUCKIGUTNGETINSUCKIGUTNGETINSUCKIGUTNGETINSUCKIGUTNGETINSUCKIGUTNGETIN <td>33013</td> <td>ROCKET</td> <td></td> <td></td>	33013	ROCKET		
STREAM		OUT1	IRKZAA	ODKINP
SIREN OOES SELECT SELEC	OTOFAM			PEAKIN
SUMPRT TOO TOCOAX TOCAAX TOX AND TOX AND	SIKEAM	ODES		CEI ECT
TUDD TOKAX TOK AKA AKA AKA AKA AKA AKA AKA AKA AKA A		SUMPRT		SELECT
MAINID UA TRAN CAR CAR GETIL GETIL GETIL GETIL GETIL GETIL TABL TAT TABL		TUND	TDKMAX	104
TABL TABL TABL TABL TABL TABL TABL TABL		MATNID		IUK
TABL CATR CATR GETIL INPT GETILV INSRT GFRIN PRINT TABL SUBIL BLOCKD VLPT UTPSL CUTR12 READBL CUTR13 BLEDGE CNTR14 OUTPSL CUTR15 BLEDGE CNTR16 WRPROF CNTR21 TABS BLWAIN BLSEG CNTR16 OUTPSL CNTR21 TABS BLWAIN MAIN CHTR21 TBLDT1 MAIN MAIN GFPT ODES GPKIN READAT INPTR1 MAIND CPTR31 ODES GPFKIN GETIL SAVDAT MAIND CPTR31 GETIL SAVDAT MAIND INPTR1 GETIL SAVDAT MAIND SAVDAT GETIL SAVDAT MAIND SAVDAT GETIL SAVDAT GETIL SAVDAT GETIL SAVDAT MAIND SAVDAT GETIL SAVDAT FINDTS SHCKAI PTAB SHCKAI				CHAR
LANK DSPT GETIL IV GETILV GETILV TABL TABL TABL TABL TABL TABL TABL TABL				CNTRL
TABL GETIL INPT GPFKIN PRINT TABL BLOCKD NUPT INPUTB BLOCKD UUPT INPUTB COTFAL CHTR12 READBL CHTR12 READBL CHTR12 COEFT COEFT CHTR14 COEFT CHTR14 COEFT CHTR14 DUTPBL CHTR15 TABS BLMAIN CHTR1 DUTPBL CH		CHAK		DSPT
TABL GETILV GETILV GETILV GETILV GETILV GETILV TABL GETILV SAVDAT MAIN GETIL SUBSC FILDT2 MAIN GETILV SAVDAT MAIN GETIL SUBSC FILDT2 MAIN GETILV SUBSC FILDT2 MAIN SUBSC FILDT2 FILDT		GETTL		INPT
GPFKINPRINTTABLBLOCKDULPTINPUTBAX1SPTOUTPBLCNTR12READBLCNTR13BLEDGECNTR14COEF1CNTR16COEF1CNTR17TABSCNTR21BLMAINCNTR31OUTPBLCNTR21OUTPBLCNTR21TBLDT1MAINNAINGETPTODESGPFKINPROBATINPTRSAVDATINPTSOKLNPINPTSOKLNPINPTSOKLNPINPTSGETILVSAVCATTBLDT2MAINMAINSHCKLPROBLSHCKLSAVDATSHCKL		GETILV		INSRT
TABL SUGIL INPUTB AXISPT OUTPBL CNTR13 BLBOCE CNTR13 BLBOCE CNTR14 COEF1 CNTR21 MRROF CNTR21 TABS BUMIPBL CNTR21 BLBOCE CNTR21 TBLDT1 MAIN CNTR21 TBLDT1 MAIN CNTR21 NAIN GEFF CNTR21 ODES GPFKIN GFFKIN NAIND OPFKIN INPTR ODES GPFKIN INPTR ODES COKINP INPTR TRAN PFKIN INPTR ODES COKINP INPTR TANN SAVPT SKCKA TBLDT2 MAIN SKCKA TBLDT2 MAIN SKCKA TBLDT2 MAIN SKCKA TBLDT2 MAIN SKCKA NAIN SKCKA SKCKA SAVOAT SKCKA SKCKA		GPFKIN		PRINT
HAC BLOCKD ULPT INPUTB AXISPT OUTPBL CNTR12 READBL CNTR13 BLEDGE CNTR14 COEF1 CNTR31 WRPROFF CNTR31 OUTPBL CNTR41 OUTPBL CNTR41 OUTPBL CNTR41 OUTPBL CNTR41 OUTPBL CNTR41 BLSEG CNTR41 OUTPBL CNTR41 BLSEG CNTR41 BLADAT CNTR41 PROBLM GETPT OKBLM GPFKIN PROBLM GPFKIN PROBLM GPFKIN PROBLM INPTR1 NAIN10 INPTR1 MAIN10 INPTR1 MAIN10 INPTR1 GETIL GRETIL GETIL GRETIL GETIL SAVDAT TBLDT2 MAIN MAIN SHCKN ODES SKCKN SAVDAT SHCKN	TARI			SUBIL
IMPUTB XISPT OUTPRL CNTR12 READBL CNTR13 BLEDGE CNTR14 COEF1 CNTR16 WRPROF CNTR21 TABS BLMAIN OUTPBL CNTR21 BLSEG CNTR21 TBLDT1 MAIN MAIN GETPT ODES GPFK1N PROBLM GPFK1N PROBLM GPFK1N PROBLM INPTR SAVDAT INPTR MAIND INPTRS ODCKINP INPTRS COKINP INPTRS GETILV SAVPT IAUX SHCKA1 PRINT SHCKA1 PRINT SHCKA1 PRINT SHCKA1 PRINTS SHCKA1 PRINTS SHCKA1 PRINTS SHCKA1 PRINTS SHCKA1 PRINTS SHCKA1 PRINTS SHCKN1 ODES SUBILR ODES SUBILR <td>TABL</td> <td>BLOCKD</td> <td></td> <td>WLPT</td>	TABL	BLOCKD		WLPT
OUTPBL GNTR12 READB1 CNTR14 DUEDGE CNTR14 CDEF1 CNTR11 DUTPBL CNTR21 DUTPBL CNTR11 DUTPBL CNTR11 BLSEG CNTR1 TBLDT1 MAIN MAIN GETPT ODES PROBLM PROBLM GPFPG READAT INPTR1 MAIN1D INPTR1 ODES ODES PROBLM GPFPG READAT INPTR1 MAIN1D INPTR1 ODES GETIL GETIL SAVDAT MAIN1D INPTR3 ODKINP INTEXT TRAN PRINTS GETILL SAVPT GETILL SAVENT GETILV SHCKA PRINT SHCKA PRINT SHCKA PRINT SHCKA PRINTS SHCKN PRINTS SHCKN DES SUBILR QUES SUBILR QUES SUBILR QUES SUBILR QUES SUBILR QUES SUBILR DOKINP SHCKA		INPUTB		AXISPT
READBL CNTR13 BLEDGE CNTR14 COEF1 CNTR21 WRPROF CNTR21 TABS BLMAIN OUTPBL CNTR21 OUTPBL CNTR21 TBLDT1 BLSEG MAIN GETPT ODES GEPFI PROBLM GEPFI ODES GPFVI NAIN GETPT ODES GPFVI NAIND INPTR SAVDAT INPTR GUTINE GETIL GETIL GETIL GETIL SAVPT GETIL SAVCAT TBLDT2 MAIN MAIN SHCKA MAIND INPTS SAVDAT SHCKA MAIND SHCKA MAIN		OUTPBL		CNTR12
BLEDGE CNTR14 COEF1 CNTR16 WRPOFF CNTR21 CNTR31 OUTPBL CNTR31 OUTPBL CNTR16 BLSEG CNTR12 TBLDT1 NAIN CTTR35 ODES CPFKIN PROBLM CEFPT ODES CFFKIN PROBLM CEFPT ODES CFFKIN PROBLM CEFPT INPTR SAVDAT INPTR SAVDAT INPTR SAVDAT INPTR SAVDAT SAVDAT SAVDATS SHCKA1 FTABN SHCKA1 SHCCKA1 SHCK		READBL		CNTR13
COEF1 CONTR16 WRPROF CNT821		BLEDGE		CNTR15
TBLDT2 VWPROF VWPROF VWPROF CNTR21 CNTR21 CNTR21 CNTR21 CNTR21 CNTR21 CNTR2 CN		COFF1		CNTD16
TABS CNTR31 CNTR31 CNTR31 CNTR41 CNTR41 CNTR41 CNTR41 CNTR42 FTHRST GETPT TBLDT1 MAIN GETPT ODES GPFPG READAT GPFPG READAT INPTR1 NATIND INPTR5 OCKINP INPTR5 OCKINP INPTR5 COKINP INTEXT TRAN PRINTS GETILV SAVPT GETILV SAVPT GETILV SAVPT TRAN SNCKA INPTR5 SAVPT SAV		URPROF		CNIR ID
TABS BLMAIN CHIRAL OUTPBL CHIRAL BLSEG CHIRAL TBLDT1 MAIN GETPT ODES GPFKIN PROBLM GETPT ODES GPFKIN PROBLM GPFPG READAT INPTR NATURAL ODKBLM INPTR OKBLM INPTR NATURAL TRAN GETIL TRAN GETIL TRAN SAVPAT TBLDT2 MAIN TBLDT2 MAIN ODES SHCKA TBLDT2 MAIN ODES SHCKA TABS SAVPAT				
TBLDT1 CNTRL OUTPBL BLSEG CNTRL2 CNTRL2 TBLDT1 AIN GETPT ODES GPFKIN PROBLM GPFKG READAT INPTR SAVDAT INPTR OOKBLM INPTRS OOKBLM INPTRS OOKBLM INPTRS OOKBLM INPTRS OOKBLM SAVDAT TRAN PRINTS GETILL SAVDAT TRAN SHCKA1 PRINTS SHCKA1 PAB SHCKA1 SH	TABS	DI MATN		
TBLDT1 CM INCL BLSEG CM INCL TBLDT1 MAIN GETPT ODES GPFKIN PROBLM GFFPG READAT INPTR SAVDAT NUD ODKBLM INPTRS ODKBLM INPTRS ODKBLM INPTRS ODKBLM INPTRS ODKBLM INPTRS ODKBLM SAVDAT TBLDT2 MAIN SUBLR VICALC READAT SAVDAT		OUTDOI		UNIR4 I
TBLDT1 TBLDT1 MAIN GETPT ODES GPFKIN GPFPG READAT SAVDAT ODKINP GETIL GETIL GETILV SHCKA SAVDAT				CNTRLI
TBLDT1 FTHS1 GETPT ODES GPFKIN PROBLM GPFKIN PROBLM GPFFG READAT GPFKI NATATATATATATATATATATATATATATATATATATAT		BLJEU		CNTRLZ
MAIN GETPT ODES GPFKIN PROBLM GPFPG READAT INPTR SAVDAT INPTR SAVDAT INPTR ODKBLM INPTRS ODKBLM INPTS ODKINP INTEXT TRAN PRINTS GETILV SAVPT GETILV SHCKA IAUX SHCKA IAUX SHCKA IAUX SHCKA IAUX SHCKA PRINTS SHCKU PRINTS SHCKU PRINTS SHCKU ODES SHCKU MAIN SUBILR ODES VALUE ATSHCK	TBLDT1			FTHRST
DDES GPFKIN PROBLM GPFPG READAT INPTR SAVDAT INPTR SAVDAT INPTR INPTS OOKBLM INPTS OOKINP INTS GETIL TRAN PRINTS GETILV SHCKA1 SHCKA1 SHCKA1 SHCKU SHCKU SHCKU SHCKU SHCKU SUBILR ODES READAT SAVDAT		MAIN		GETPT
TBLDT2 PROBLM PROBLM PROBLM READAT READAT SAVDAT SAVDAT SAVDAT SAVDAT SEADAT SAVDAT S		ODES		GPFKIN
READATINPTRSAVDATINPTR1MAIN1DINPTRSODKBLMINPTSODKBLMINTEXTCOKINPINTEXTGETILSAVPTGETILVSHCKAIAUXSHCKAPRINTSSHCKAPRINTSSHCKRPRINTSSHCKRPRINTSSHCKRBELDT2MAINMAINSUBILRODESWLCALCSAVDATSAVDAT		PROBLM		GPFPG
SAVDAT INPTR1 INPTR1 INPTR3 ODKBLM INPTS ODKINP INTEXT TRAN PRINTS GETIL SAVPT GETILV SHCKA IAUX SHCKA1 PRINT PTAB SHCKA PRINT SHCKL PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU MAIN SUBILR ODES WAIN SUBILR ODES WAIN SUBILR		READAT		INPTR
MAIN1D INPTS ODKBLM INPTS ODKINP INTS GETIL GETIL GETILV SHCKA IAUX SHCKA IAUX SHCKA IAUX SHCKA PRINT SHCKU TBLDT2 MAIN SUBJLR ODES READAT SAVDAT		SAVDAT		INPTR1
ODKBLM INPTS ODKINP INTEXT TRAN PRINTS GETIL RAV SAVPT GETILV SHCKA IAUX SHCKA IAUX SHCKA PRINT SHCKR PRINTS SHCKR TBLDT2 MAIN SUBJLR ODES SUBJLR ODES SAVDAT		MAIN1D		INPTRS
ODKINP INTEXT TRAN PRINTS GETIL SAVPT GETILV SAVPT GETILV SHCKA IAUX SHCKA1 PRINT SHCKL PTAB SHCKL PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU PTAB SHCKU ATSHCK		ODKBLM		INPTS
TRAN PRINTS GETIL SAVPT GETILV SHCKA IAUX SHCKA1 PRINT SHCKA1 PRINT SHCKL PTAB SHCKR PRINTS SHCKR PRINTS SHCKW1 SH		ODKINP		INTEXT
GETIL SAVPT GETILV SAVPT GETILV SHCKA IAUX SHCKA IAUX SHCKA PRINT SHCKA PRINTS SHCKR PRINTS SHCKW TBLDT2 MAIN SUBJLR ODES READAT SUBJLR ODES WLCALC READAT ATSHCK		TRAN		DRINTS
TBLDT2 GETILV GETILV GETILV GETILV GETILV GETILV SHCKA IAUX PRINT PTAB PTAB SHCKU PRINTS TBLDT2 MAIN ODES READAT SAVDAT SAVDAT SHCKU SHCKU S		GETIL		CAVDT
IAUX SHCKA PRINT SHCKA1 PRINT SHCKL PTAB SHCKR PRINTS SHCKW TBLDT2 MAIN SHCKW1 ODES SUBJLR ODES WLCALC READAT ATSHCK		GETTLV		SHERA
TBLDT2 SAUCAT PRINT SSUCKA PTAB SHCKA PRINTS SHCKW TBLDT2 MAIN SHCKW1 ODES SUBJLR READAT ATSHCK		TAUX		SUCKA1
TBLDT2 MAIN SHCKL PRINTS SHCKR TBLDT2 MAIN SHCKW1 ODES WLCALC READAT ATSHCK		DO INT		SILKAI
TBLDT2 MAIN SHCKW ODES WLCALC READAT ATSHCK		DTAD		SHUKL
TBLDT2 SHCKW1 SHCKW1 ODES SUBJLR READAT ATSHCK		71AD 974100		SHUKK
TBLDT2 MAIN SHCKW1 ODES WLCALC READAT ATSHCK		PKINIS		SHCKW
MAIN SUBILR ODES WLCALC READAT ATSHCK	TBLDT2			SHCKW1
ODES WLCALC READAT ATSHCK SAVDAT		MAIN		SUBILR
READAT ATSHCK SAVDAT		ODES		WLCALC
SAVDAT		READAT		ATSHCK
		SAVDAT		

LABELED COMMON			
•••••	REFERRED BY SUBROUTINE	LABELED COMMON	REFERRED BY SUBROUTINE
TEMO			•••••
1 Critt		LAF I	
	BLSEG	WALL	
TEGEC	EDDY		BLOCKD
			BLMAIN
THISPT	ODES		INPUTB
	BOCKET		OUTPBL
THMO	ROCKET		SULVS
	Ri OCKD		BLEDGE
	RIMAIN		COEF
	INPIITR		COEF1
	IVPL	118.1 1	FDDY
	OUTPBL	WALLIM	2001
	READBL		BLOCKD
	BLEDGE		INPUTB
	BLSEG		BLEDGE
	COEF1	WITE	_
THRST	EDDY		BLW
			PROBLM
TOTSC	FTHRST		SUMPRT
		XTNDED	SUMPRT1
	MAIN		B 1 A A A A
	KEAUA Savdat		BLDCKD
	MATHIN		BLMAIN INCUTO
	TPAN		INPUIS
	FCALC		READEL
	GETI	YSAVE	BLEUGE
	GETTLV		RI SEC
TETADI	IAUX	30.50110	WRPROF
ISTABL		ZDEBUG	
	MAIN		READAT
	READAT		SAVDAT
	SAVDAT		STF
	TWOD		DERIV
	MAIN1D	ZLAST	THERM
	GETIL		
	GETILV		SUMPRT
TTDK	TAUX		IDK
	004		CNTRL
			PKINI CNTRL1
TW1	OSTF01		
TLICOLUM	INPLITE		DPINTC
IWOPHZ		ZTRAN	FRINIS
	PACK		MAIN
	CONVRT		READAT
	MAINID		SAVDAT
	ODKINP		TWOD
	OUTPUT		MAINID
			TRAN
			GETIL
			GETILV
			IAUX
			INT

THIS PAGE LEFT INTENTIONALLY BLANK

•

This section contains descriptions of the TDK subroutines. TDK is organized into 6 modules, as follows: MCM, ØDE, ØDK, TRANS, MØC, and BLM. The subroutines descriptions are presented by modules, i.e., the MCM subroutines are given in Section 5-1, the ØDE subroutines are given in Section 5-2, etc. At the present time, complete descriptions are not available for all of the MØC subroutines.

5.1 MCM SUBROUTINES

The Master Control Module is used to control the execution of TDK by selecting the computation modules to be exercised. The MCM is also used to process output files for the purpose of creating printed and plotted output. The MCM consists of the following subroutines:

SAVDAT
SKPB1
SKPB2
SLP
SPLN
SUMPRT
TTAPE
UNIT

MAIN provides the entry point to TDK and is the master subroutine for the entire program.

5.1.1 PROGRAM MAIN

the main program for TDK and as such provides This is communication between modules, defines the upper level labeled logical control and initializes certain blocks, common tape generation thermodynamic MAIN calls the variables. subroutine, TTAPE, as required. Subroutine PRØBLM is called to read the \$DATA namlist and determine the sequence of modules to Subroutines ØDE and ØDK are called to perform be executed. equilibrium/frozen and one dimensional kinetic calculations. TWØD is called to perform transonic and two Subroutine dimensional method of characteristics calculations. Subroutine is called to perform the boundary layer calculations. BLMAIN Subroutine BLW is called to calculate the displaced nozzle wall. to calculate the increase in Subroutine BLH is called propellant enthalpy contributed by the regenerative cooling The ØDE, ØDK, TRANS, and MOC calculations are then circuits. repeated if the repeat option has been specified.

5.1.2 SUBROUTINE BLKDTA

BLKDTA contains atomic data stored in ATØM(i, j) and many of the variables used with the variable format, FMT. The ATØM variables are defined in appendix B, Reference 3. The format variables are stored in the common labeled ØUPT and are described here.

A variable format was used so that one format, FMT, could be used in the final output with changes in the number of decimal places according to the sizes of the numbers. The format is used to print a label and from 1 to 13 associated numbers. The labels contain 14 alphanumeric characters stored in four words and printed with 3A4,A2. The numbers are all printed in a field of 9. FMT is initially set in BLKDTA as follows:

FMT	(1) (1H	(2) , 3A4	(3) , A2 ,	(4) F9.	(5) 0,	(6) F9.	(7) 0,	(8) F9	(9) 0	(10) F9	(11)
FMT	(12) F9.	(13) 0,	(14) F9.	(1 0,	5)	(16) F9.	(17) 0,	(18) F9.	(19) 0,	(20) F9	(21) 0.
FMT	(22) F9.	(23) 0,	(24) F9.	(2: 0,	5)	(26) F9.	(27) 0,	(28) F9.	(29) 0	(30))	• •

where the spaces are stored as blanks.

	Some	varia	bles	set in	BL	KDTA	to	modify F	MT are as	follows
Variable:	FO	F1	F2	F3	F4	F5	FB	FMT13	FMT9X	FMT19
Storage:	0,	1,	2,	3,	4,	5,		13,	9X,	19,

The following is a list of variables used as labels and printed with 3A4, A2 in FMT:

Variable	Stored label
FP	P, ATM
FT	T, DEG K
FH	H, CAL G
FS	S, CAL/(G) (K)
FM	M, MOL WT
FV	(DLV/DLP) T
FD	(DLV/DLT) P
FC	CP, CAL/(G) (K)
FG	GAMMA (S)
FL	SON VEL, M/SEC
FRI	PC/P
FC1	CF
FN	MACH NUMBER
FR	CSTAR, FT/SEC
F1	ISP, LB-SEC/LB
FA	IVAC, LB-SEC/LB
FA1, FA2	AE/AT

5.1.3 <u>SUBROUTINE FIND</u>

This subroutine locates the index, I, in a table such that $X(I) \le X \le X(I+1)$.

.

5.1.4 <u>Subroutine GAUELM(A, B, X, N, M, NDIM, MDIM, LDIM, EPS, KERR)</u>

This subroutine solve a linear system of equations using Gaussian elimination with row interchange. The equation is put in matrix form as:

A X = B

where A, B and X are matrices of proper dimensions.

Calling Sequence

A, B, X	Matrices coefficients
N, M	Dimensions used: A(N,N), X(N,M), B(N,M)
NDIM	Maximum row dimension of A
MDIM	Maximum row dimension of B
LDIM	Maximum row dimension of X
EPS	Lower bound for the absolute value of the pivot
KERR	Error indicator,nonzero means error

The purpose of this subroutine is to find the root or zero of the algebraic equation

$$f(X) = 0$$

using the method of secant or false position. In particular this subroutine is designed to take advantage of the fact that the secant method will always find the root of the above equation if the root has been spanned.

Calling Sequence:

F1	is the value of the dependent variable, f, corresponding to the value of X1.
X 1	is the value of the independent variable, X, which corresponds to F1.
XNEW NØØ	is the predicted or new value of the independent variable is a flag such that
	$N \emptyset \emptyset = -1$ the first time ITER is called. $N \emptyset \emptyset = +1$ upon subsequence calls.

Restrictions:

The user is expected to check for convergence as there are no internal checks made in ITER.

Method:

Subroutine ITER utilizes the secant method predictor formula

 $X_{i+1} = X_i - f_i \cdot (X_i - X_{i-1}) / (f_i - f_{i-1})$ where the subseries i.e.

where the subscript i refers to the current value of X and f except for the first iteration in which the value of X is perturbed only slightly. When the root has been spanned the subroutine saves 2 back value of f and X in order that the root may always be straddled and thus found. The linkage to the subroutine is set up so that if bounds on the root are known, then the value of XNEW may be disregarded and bounded values may be used for the first two guesses. This type of linkage necessitates that the value of XI must be set equal to XNEW or the bounded value of X. In order to speed up convergence, if the error within the bound d domain of the dependent variable exceeds a ratio of 10, then the new value oi X is set equal to one half of the range.

5.1.6 SUBROUTINE LTCPHS

This subroutine processes the low temperature C_p , H, S Thermodynamic Data extension input as described in detail in Section 6.1.

5.1.7 SUBROUTINE MATCH

This subroutine is called by RØCKET to supply subroutine MUK with a vector of internal sequence numbers which point to the appropriate Lennard-Jones parameters used by MUK to calculate transport properties. The input to MATCH is the species name (from the SUB array) and the output corresponds to the index numbers in the table in the MUK write up.

5.1.8 Subroutine MUK (CP, XW, T. C. IT, N. XM, XMT, TK, PR)

This routine calculates the viscosity, thermal conductivity and Prandtl number for a gas composed of a mixture of species.

CALLING SEQUENCE:

CP	is an array of N specific heats of the species (ft²/sec² °R)	(INPUT)
wx	is an array of N molecular weights of the species (slug/slug mole)	(INPUT)
Т	is the temperature of the gas (°R)	(INPUT)
С	is an array of N mass fractions of the species	(INPUT)
IT	is an array of N indices of the species into a table of collision diameter (σ) and energy of attraction (ϵ/k)	(INPUT)
N	is the number of species in the gas	(INPUT)
XIM	is an array of N viscosities of the species, (lbf•sec/ft²)	(ØUTPUT)
XMT	is the total viscosity of the gas, (lbf•sec/ft²)	(ØUTPUT)
TK	is the thermal conductivity of the gas, (ft•lbf/ft² sec (°R/ft))	(ØUTPUT)
PR	is the Prandtl number of the gas,	(ØUTPUT)

Method:

$$C_{p} = \sum_{i=1}^{N} C_{i} C_{p_{i}}$$

$$M_{w} = \frac{1}{\sum_{i=1}^{N} \frac{C_{i}}{M_{w_{i}}}}$$

3.7

Specific Heat

Molecular Weight

$$X_{1} = C_{1} \cdot \frac{M_{w}}{M_{w_{1}}}$$

$$T_{1}^{*} = \frac{T/1.8}{(\epsilon/k)_{1}}$$

$$C_{1} = \text{table } (T_{1}^{*}) \qquad \text{table of } \Omega \text{ vs } T^{*}$$

$$\sigma_{1} = \text{table } (1) \qquad \text{table of } \sigma \text{ and } \epsilon/k \\ \text{vs. individual species}$$

$$\mu_{1} = \frac{4.15822 \times 10^{-8} \sqrt{M_{w_{1}} T}}{\sigma_{1}^{*} \Omega_{1}}$$

$$s_{1} = \frac{1}{2^{3}/2} \left(1 + \frac{M_{w_{1}}}{M_{w_{j}}}\right)^{-1/2} \left[1 + \left(\frac{\mu_{1}}{\mu_{j}}\right)^{-1/2} \left(\frac{M_{w_{j}}}{M_{w_{1}}}\right)^{1/4}\right]^{2}$$

$$\mu = \sum_{i=1}^{N} \left[\mu_{i} \left(1 + \sum_{j=1}^{N} s_{i,j} - \frac{X_{j}}{X_{1}}\right)^{-1}\right] \qquad \text{viscosity of the gas}$$

$$K_{1} = -\frac{\mu_{1}}{M_{w_{1}}} (.45 + 1.32 \frac{C_{p_{1}}}{(\epsilon/M_{w_{1}})})$$

$$K = \left[\sum_{i=1}^{N} K_{1} \left(1 + 1.065 \sum_{\substack{j=1\\j\neq i}}^{N} s_{i,j} \frac{X_{j}}{X_{1}}\right)^{-1}\right] \qquad \text{thermal conductivity}$$

$$P_{r} = -\frac{C_{p}\mu}{K} \qquad Prandtl number$$

Equations for K_i and μ_i are from Reference 1^{ij} . The values of the collision integral are from Table 2 of Appendix B in Reference 15. The relations used to calculate μ and K of the mixture are from References 15 and 16, respectively.

Also from Reference 14 are the values of the collision diameters, σ , and energy of attraction, ϵ/k .

Table 5-1 correlates the chemical name of the species to the internal number assigned to it by the subroutine. Also included is the key-punch name assigned to the species, since lower-case letters and subscripts are non-standard features in most computer configurations.

Ref.14. Svehla, R. H., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperagures", NASA TR R-132, 1962.

Ref 15. Bird, R. B., Stewart, W.E., Lightfoot, E.N., <u>Transport Phenom-</u> ena, John Wiley & Sons. Inc. New York, 1960.

Ref.16. Mason, E. A., and Saxena, S. C., Physics of Fluids, Volume 1, No. 5, pp. 361-369, 1958.

•

.

Species Number	Chemical Name	Key Punch Name
1	Al	AL
2	ALC1	ALCL
3	ALC13	ALCL3
4	ALF	ALF
5	AlF ₃	ALF3
6	AIN	ALN
7	AlO	ALO
8	AIS	ALS
9	Ala	AL2
10	Air	AIR
11	Ar	AR
12	AsH3	ASH3
13	В	В
14	BBr ₃	BBR3
15	BC1	BCL
16	BC12	BCL2
17	BCl ₃	BCL3
18	BF	BF
19	BF2	BF2
20	BF3	BF3
21	BI3	BI3
22	BO	BO
23	B(OCH ₃) ₃	B(OCH3)3
24	B ₂	B2
25	B ₂ H ₆	B2H6
26	B ₂ O ₃	B2O3
27	Be	BE
28	BeBr ₂	BEBR2
29	BeCi	BECL
30	BeCl ₂	BECL2
31	BeF	BEF
32	BeFa	BEF2
33	Bela	BEI2
34	Bea	BE2

Species Number	Chemical Name	Key Punch Name
35	Br	BR
36	BrF	BRF
37	BrFa	BRF3
38	BrO	BRO
39	Bra	BR2
40	c	C
41	CBr F ₃	CBRF3
42	CBr_4	CBR4
43	CCI	CCL
44	CC1F3	CCLF3
45	CCl2	CCL2
46	CCl ₂ F ₂	CCL2F2
47	CCl3	CCL3
48	CCl ₃ F	CCL3F
49	CCL	CCLA
40	CF	CF
51	CF2	CF2
52	CF3	CF3
53	CF_4	CF4
54	CH	CH
55	CHBrClF	CHBRCLF
56	$CHBrCl_{2}$	CHBRCL2
57	CHBr ₃	CHBR3
58	CHC1F2	CHCLF2
59	CHC13	CHCL3
60	CHF_3	CHF3
61	CH ₂ BrCl	CH2BRCI.
62	CH _a ClF	CH2CLF
63	CH ² CL ³	CH2CL2
64	CH ₂ F ₂	CH2F2
65	CHala	CH212
66	CH ₃ Br	CH3BR
67	CH ₃ C1	CH3CL

•

Species	Chemical	Key Punch Name
Number	CH_F	CH3F
68	CH-I	CH3I
69	CH-OH	СНЗОН
70	CH CH	CH4
71	CN	CN
72	CO	CO
73	COS	COS
74	CO2	CO2
75	CO2	CP
76	CF	CS
77	CS CS	CS2
78	0.52	C2
79		C2H2
80	C ₂ H ₂	C2H4
81		C2H6
82	C ₂ H ₆	C2H5CL
83		C2H5OH
84	C ₂ H ₅ OH	C2N2
85	C_2N_2	CH3OCH3
86	CH3UCH3	CH2CHCH3
87	CH ₂ CHCH ₃	CHICCH
88	CH ₃ CCH	CVCLO_C3H6
89	cyclo-C3Hg	C10F0-03110
90	C ₃ H ₈	
91	n-C ₃ H ₇ OH	N-C3H/OH
92	CH ₃ COCH ₃	CH3COCH3
93	CH ₃ COOCH ₃	
94	$n-C_4H_{10}$	N-C4HIU
95	$iso-C_4H_{10}$	ISO-C4HIU
96	$C_2H_5OC_2H_5$	C2H5OC2H5
97	CH3COOC2H5	CH3COOC2H5
98	n-C ₅ H ₁₂	N-C5H12
99	C(CH ₃) ₄	C(CH3)4
100	C ₆ H ₆	C6H6

Species Number	Chemical Name	Key Punch Name
101	C_8H_{12}	C6H12
102	$n-C_{g}H_{14}$	N-C6H14
103	Cđ	CD
104	Cl	CL
105	CICN	CLCN
106	ClF	CLF
107	ClF ₃	CLF3
108	C10	CLO
109	Cla	CL2
110	F	F
111	FCN	FCN
112	Fa	F2
113	H	H
114	HBr	HBR
115	HCN	HCN
116	HCl	HCL
117	HF	HF
118	HI	HI
119	HS	HS
120	Ha	H2
121	HaO	H2O
122	HaOa	H2O2
123	HaS	H2S
124	He	HE
125	Hg	HG
126	HgBra	HGBR2
127	HgCla	HGCL2
128	HgL	HGI2
129	I	I
130	ICl	ICL ·
131	La	I2
132	Kr	KR
133	Li	LI
134	LiBr	LIBR

.

.

- ____

Species	Chemical	Key Punch
Number	Name	LICN
135	LICN	
136		LICE
137	LiF	
138	LiI	LII
139	LiO	LIO
140	Lia	
141	Li ₂ O	LIZO
142	Mg	MG
143	MgCl	MGCL
144	MgCla	MGCL2
145	MgF	MGF
146	Mg Fa	MGF2
147	Mg ₂	MG2
148	N	N
149	NF3	NF3
150	NH	NH
151	$\rm NH_3$	NH3
152	NO	NO
153	NOCl	NOCL
154	N	N2
155	N ₂ O	N2O
156	Na	NA
157	NaBr	NABR
158	NaCN	NACN
159	NaCl	NACL
160	NaF	NAF
161	NaI	NAI
162	NaO	NAO
163	NaOH	NAOH
164	Naa	NA2
165	Na ₂ O	NA2O
166	Ne	NE
167	0	0
168	OF	OF

-

 $\mathbf{ }$
Species Numb er	Chemical Name	Key Punch Na me
169	OF2	OF2
170	OH	OH
171	02	O2
172	Р	P
173	PĊ1	PCL
174	PCl ₃	PCL3
175	PF	PF
176	PF3	PF3
177	PH_3	PH3
178	PN	PN
179	PO	PO
180	PS	PS
181	P ₂	P2
182	P4.	P4
183	S	S
184	SF6	SF6
185	SO	SO
186	SO2	SO2
187	Sa	S2
188	S_2F_2	S2F2
189	Si	SI
190	SICL	SICL
191	SICL	SICL4
192	SIF	SIF
193	SIFCla	SIFCL3
194	SIF2Cl3	SIF2CL2
195	SiF ₃ Cl	SIF3CL
196	SiF4	SIF4
197	SiH4.	SIH4
198 -	SiO	SIO
199	SiOa	SIO2
200	SIS	SIS
201	Siz	SI2
202	Sn Bra	SNBR2
203	SnCL ₄	SNCL4
204	UF ₆	UF6
205	Xe	XE
206	Zn	ZN

,

.

5 - 1 7

5.1.9 Subroutine OMEGA

This subroutine calculates the exponent, ω , used in the viscosity-temperature relationship

$$\mu = \mu_{ref} \left(\frac{T}{T_{ref}} \right)^{\omega}$$

using the method of least squares. That is, it calculates the value of $_{\omega}$ which gives the smallest sum of the errors squared. This form of the viscosity-temperature relationship was selected since the BLM module requires viscosity data in this manner.

In order to supply the maximum amount of accuracy and also to minimize the variation in data due to the selection of an exit area ratio, it was decided to match the throat value of viscosity exactly and select an ω which would provide the best fit for viscosity at the chamber and exit of the motor.

The form of the error, E, was taken to be

$$E = \ln \mu/\mu^* - \omega \ln T/T^*$$

Squaring the errors, differentiating with respect to ω , and setting the results equal to zero, yields the following value for $\boldsymbol{\omega}$

$$\omega = (\ln T_c/T^* \ln \mu_c/\mu^* + \ln T_e/T^* \ln \mu_e/\mu^*)/(\ln T_c/T^*)^2 + (\ln T_e/T^*)^2)$$

2

where

T = temperature

 μ = viscosity

e = refers to the exit plane

c = refers to the chamber

* = refers to the throat plane

5.1.10 SUBROUTINE PRØBLEM

Subroutine PRØBLEM sets those default values that are concerned with the computational options of the program, such as the module execution flags (ØDE, ØDK, TDK, BLM, TDE, IRPEAT, and IRSTRT). The \$DATA namlist is read (see Section 6.). Flags controlling the sequence of module execution are set as determined by the options requested through the \$DATA input. Nozzle geometry parameters are placed into the GEOM array for communication to the various modules.

5.1.11 SUBROUTINE READAT(NTAPE)

Subroutine READAT is called by Program MAIN to read data written by subroutine SAVDAT on unit NTAPE (=15) for the purpose of restarting the ODE and ODK modules.

5.1.12 SUBROUTINE SAVDAT (NTAPE)

Subroutine SAVDAT is called by Program MAIN to write data on unit NTAPE (=15) to be used later for restarting the ODE and ODK modules. This data is read later by subroutine READAT.

5.1.13 Subroutine SKPB1(XA, YA, XE, YE, THA, THR, C1, D1, E1)

This subroutine computes the coefficients for the skewed parabola defined by two points and the tangent at one of these points and the axis angle. The equation of a skewed-parabola is

$$(Y-tan(Tr) X)^{2} + C X + D Y + E = 0$$

where Tr is the axis angle.

The subroutine solves for the coefficient C,D and E by using the condition on the two points and their tangents. The resulting equations form a linear system of 3 equations in 3 unknowns which is solved by Gaussian elimination with improvement correction using subroutin GAUELM.

Calling sequence:

XA,YA	coordinates of attachment point
XE,YE	coordinates of nozzle exit lip
THA	attachment angle
THR	axis angle, ^{Tr}
C1,D1,E1	coefficient C,D,E in above equation XE,YE THE
	XA,YA XA,YA THA

5-20

5.1.14 Subroutine SKPB2(XA, YA, XE, YE, THA, THE, B1, C1, D1, E1)

This subroutine computes the equation for a skewed parabola defined by two points and their tangents. The equation for a skewed parabola is

$$(B X+Y)^{2} + C X + D Y + E = 0$$

Subroutine SKPB1 and the secant method are used to solve for the axis angle that gives rise to the given exit lip angle.

Calling sequence:

XA,YA	coordinate of attachment point
XE,YE	coordinate of exit lip point
THA	attachment angle
THE	exit lip angle
81,C1, D1,E1	coefficients B, C, D and E in above equation

5.1.15 SUBROUTINE SLP (X, Y, N, MFLAG, YP, W1, W2, W3, IFLAG)

The purpose of this subroutine is to supply derivatives for a tabulated function. The end point derivatives may be specified or are calculated internally by parabolic interpolation. Interior point derivatives may be found by a cubic spline fit procedure.

Calling Sequence:

- X is a table of independent variables, x_i
- Y is a table of the dependent variables, y_{t}
- N is the number of entries in each of the tables X, Y, and YP. i = 1, ...N
- MFLAG this entry is a flag, m, such that
 - m > 0 implies x is equally spaced
 - m < 0 implies x is not equally spaced
 - $|\mathbf{m}| = 1$ y' will be continuous
 - |m| = 2 y' and y'' will be continuous
 - **YP** is a table of the derivative, y_i^t
 - W1 working storage of length N
 - W2 working storage of length N
 - W3 working storage of length N

- i = o implies value for YP(1) and YP(N) will be calculated internally by parabolic differencing
- i = 1 implies values for YP(1) and YP(N) will be input

Method

The cubic spline fit procedure utilizes the interpolation formula given below:

$$y = A(x - x_{o})^{3} + B(x - x_{o})^{2} + C(x - x_{o}) + D$$

$$y' = 3A(x - x_{o})^{2} + 2B(x - x_{o}) + C$$

$$y'' = 6A(x - x_{o}) + 2B$$

The piecewise cubic fit to a tabular function by the above relations will yield a discontinuity in the second derivative y'', between adjacent fits of:

$$y_{1_{01}}^{\prime\prime} - y_{1_{12}}^{\prime\prime} = \frac{1}{h_{01}} \left(2y_{0}^{\prime} + 4y_{1}^{\prime} - 6 \frac{k_{01}}{h_{01}} \right) - \frac{1}{h_{12}} \left(6 \frac{k_{12}}{h_{12}} - 4y_{1}^{\prime} - 2y_{2}^{\prime} \right)$$

where

 $h_{01} = x_1 - x_0$ $h_{12} = x_2 - x_1$ $k_{01} = y_1 - y_0$ $k_{12} = y_2 - y_1$

The method consists of setting the left-hand side of the above relation equal to zero so that the second derivative is continuous across juncture points. As applied to a tabular function, the above procedure results in a set of linear simultaneous equations (tri-diagonal) to be solved for the y'_i , provided that values for y' at the end points are known.

5.1.16 SUBROUTINE SPLN

Performs either cubic or linear interpolation between two given points. Cubic interpolation for a function and its first two derivatives is per-

formed as described below: Given function values y_n and y_{n+1} and first derivative values y'_n and y'_{n+1} at x_n and x_{n+1} , this subroutine evaluates y(x), y'(x), and y''(x)for $x_n \le x < x_{n+1}$ using:

$$y = A(x - x_n)^3 + B(x - x_n)^2 + C(x - x_n) + D$$

$$y' = y'_n + \frac{x - x_n}{x_{n+1} - x_n} \cdot [y'_{n+1} - y'_n]$$

$$y^{i} = (y_{n+1}^{i} - y_{n}^{i}) /h$$

where:

$$A = \frac{1}{h^{3}} \cdot [(y'_{n+1} + y'_{n})h - 2k]$$

$$B = -\frac{1}{h^{2}} \cdot [(y'_{n+1} + 2y'_{n})h - 3k]$$

$$C = y'_{n}$$

$$D = y_{n}$$

$$h = x_{n+1} - x_{n}$$

$$k = y_{n+1} - y_{n}$$

Linear interpolation for a function and its first two derivatives is performed as described below:

$$y = y_{n} + \frac{x - x_{n}}{x_{n+1} - x_{n}} \cdot [y_{n+1} - y_{n}]$$
$$y' = \frac{y_{n+1} - y_{n}}{x_{n+1} - x_{n}}$$
$$y''= 0.0$$

5.1.17 <u>SUBROUTINE SUMPRT</u>

This subroutine is called by Program MAIN to write the "TDK PERFORMANCE SUMMARY" output that is printed after the execution of the MOC and/or BLM modules. An example of this output together with a detailed description is given in Section 7 of this report, Input and Output for Example Cases.

5.1.18 SUBROUTINE TTAPE

When a THERMØ directive card is read by the main program this subroutine is called to generate a master Thermodynamic Data tape (Logical Unit 25). The input Thermodynamic Data is in curve fit form and is identical to that required for the ØDE computer program described in NASA SP-273, Reference 3. The format for this curve fit data is described in the User's Manual, Section 6.1.

5.1.19 SUBROUTINE UNIT

This subroutine is called by Program MAIN and is used to establish a consistent set of physical constants and conversion factors for the engineering units that are used throughout the program. The values are stored in CØMMØN/CØNSTS/C000(25). The values used have been taken from the back cover of Zucrow and Hoffman, Reference 10.

THIS PAGE LEFT INTENTIONALLY BLANK

5.2 ØDE MODULE SUBROUTINES

4

The one-Dimensional Equilibrium module is used to calculate ideal engine performance. Engine performance can also be calculated assumming that the chemical composition is frozen at the chamber (stagnation) conditions. Gas mixture properties, including transport properties, are also calculated by the ØDE module to be used by the TDE, BLM and other options of the program. The ØDE module is a modified version of the chemical Equilibrium Compositions (CEC) program that is described in Reference 3. Reference 3 should be referred to for a more complete description of this program. The ØDE module consists of the following subroutines:

ØDES	— —
	REACT
CPHS	RKTØUT
DETON	RØCKET
EFMT	SAVE
EOLBRM	OAVE
	. SEARCH
FRØZEN	SHCK
GAUSS	TURDUR
HCALC	INERMP
NCALC	TPCALC
MATRIX	TSCALC
ØUT1	Joon Ho
	VARFMT

PRECEDING PAGE BLANK NOT FILMED

SUBROUTINE ØDES 5.2.1

This is the main program for ØDE and corresponds to the Main Program described in Reference 3. Generally, the routine performs the following functions: 1. Reads code cards THERMØ, REACTANTS, ØMIT, INSERT, and NAMELISTS

- and directs flow of program accordingly.
- 2. Stores THERMØ data on tape.
- 3. Calls subroutine REACT to read and process REACTANTS cards.
- 4. Reads ØMIT and INSERT cards and stores species names.
- 5. Initializes variables in namelist \$ØDE.
- 6. Reads and writes namelist \$ØDE.
- 7. Converts assigned densities, if any, (RHO(i) in ODE) to specific volumes: VLM(i) = 1/RHO(i). 8. Stores the number of pressures or volumes in NP.
- 9. Stores values of o/f in ØXF array. If o/f values have not been input
- directly, they are calculated as follows:

	Cado	o/f calculation in main program
Values	QF = .TRUE.	QXF(i) = o/f
Oxidant to fuel weight ratio, o/f	FA = .TRUE.	QXF(i) = 1/(f/a)
Fuel to air weight ratio, f/a	FPCT = .TRUE.	QXF(i) = (100 - %r)/(%r)
Percent fuel, %F		$QXF(i) = \frac{-rV^{-(2)} - V^{+(2)}}{-(1) + (1)}$
Equivalence ratio, r	ERATIQ = .IROL.	
nder	dofault to	
If above values not specified	ueraure co	

10. Makes necessary adjustments to consider charge balance if IONS =.TRUE.. This is done by adding 1 to NLM and E to LLMT array.

- 11. Calls SEARCH to pull required THERMØ data from tape and to store
- the data in core. Sets initial estimates for compositions. These estimates are set with each \$ØDE read. They are used only for the first point in the 12. lists of variables in namelist (e.g., the first o/f and the first T and P in a TP problem). All succeeding points use results from a previous point for estimates.

For the first point the program assigns an estimate of 0.1 for n, the total number of kilogram-moles per kilogram. The initial estimate of number of moles of each gaseous species per kilogram of mixture n_j is set equal to 0.1/m where m is the total number of gaseous species. Condensed species are assigned zero moles.

- Sets IUSE(j) positive for condensed species listed on INSERT cards (see IUSE array).
- 14. Calls THERMP if TP, HP, SP, TV, UV, or SV is true.
- 15. Calls DETØN if DETN is true.
- 16. Calls SHCK if SHØCK is true.
- 17. Calls RØCKET is RKT is true.

5.2.2 SUBROUTINE CPHS

S^o_T This subroutine evaluates the thermodynamic functions $\frac{Cp^{\circ}}{R}$, $\frac{H^{\circ}_{T}}{RT}$, from the curve fit coefficients. Two sets of coefficients are used for two adjacent temperature intervals. The functions evaluated are presented below:

$$\frac{Cp_{T}^{\circ}}{R} = a_{1} + a_{2}T + a_{3}T^{2} + a_{4}T^{3} + a_{5}T^{4}$$

$$\frac{H_{T}^{\circ}}{RT} = a_{1} + \frac{a_{2}T}{2} + \frac{a_{3}T^{2}}{3} + \frac{a_{4}T^{3}}{4} + \frac{a_{5}T^{4}}{5} + \frac{a_{6}}{T}$$

$$\frac{S_{T}^{\circ}}{R} = a_{1}\ln T + a_{2}T + \frac{a_{3}T^{2}}{2} + \frac{a_{4}T^{3}}{3} + \frac{a_{5}T^{4}}{4} + a_{7}$$

$$\frac{G_{T}^{\circ}}{RT} = \frac{H_{T}^{\circ}}{RT} - \frac{S_{T}^{\circ}}{R}$$

When the temperature falls below the lower limit of the curve fit coefficients, the above thermodynamic functions are obtained via linear interpolation from the input for subroutine LTCPHS.

5.2.3 <u>SUBROUTINE DETØN</u>

This subroutine does the calculations required to obtain Chapman-Jouget detonation properties as described in the section CHAPMAN-JOUGET DETONATIONS of Reference 3. The calculation involves a Newton-Raphson iteration to determine detonation conditions in addition to the iteration for determining equilibrium compositions.

5.2.4 <u>SUBROUTINE EFMT</u>

Subroutine EFMT (E-format) writes statements in a special exponent form. This form is similar to the standard FORTRAN E-format, but the letter E and some of the spaces have been removed for compactness. It is used to write density ind mole fractions with the TRACE option.

5.2.5 SUBROUTINE EQLBRM

EQLBRM is the control routine for the equilibrium module which calculates equilibrium compositions and thermodynamic properties for a particular point. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T, P), (H, P), (S, P), (T, V), (U, V), or (S, V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species. A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given in Reference 3. Figures 4(a) through 4(c) of Reference 3 gives a complete flow diagram for this subroutine.

The equilibrium compositions are obtained by a Newton-Raphson iteration. The iteration equations are those of the modified Huff method ¹⁶⁸. These equations are presented as Table 5-2. The corrections to the estimates that are obtained from this set of iteration equations are unaffected by the choice of components and are only affected by the current estimates. These equations make no distinction between components and constituents, and thus any species can be dropped from the calculation. The iteration equations give corrections to the moles of each condensed species and the variables A and T directly. The corrections to the moles of gaseous species are obtained from the following equation:

$$\Delta \ln n_i = -\Im_i + \sum_{k=1}^{L} a_{ki} \Delta \ln u_k + \mathscr{U}_i \Delta \ln T \quad (i = 1, 2, ..., m)$$

It is sometimes disadvantageous to apply the entire correction called for by the iteration equations. Consequently an empirical convergence parameter λ ($0 < \lambda \le 1$) is used to control the size of the corrections. A numerical value for λ is determined at each iteration. Methods for evaluating λ are discussed later under Evaluation of Convergence Parameter λ . New estimates are obtained from the following equations:

$$\ln n_{i}^{(j+1)} = \ln n_{i}^{(j)} + \lambda \Delta \ln n_{i} \quad (i = 1, 2, ..., m)$$
$$n_{i}^{(j+1)} = n_{i}^{(j)} + \lambda \Delta n_{i} \quad (i = m+1, m+2, ..., n)$$

ORIGINAL PAGE IS OF POOR QUALITY

Iteration for assigned pressure and entropy

TABLE 5-2. - ITERATION EQUATIONS TO DETERMINE EQUILIBRIUM COMPOSITIONS PRESSURE AND ENTHALPY, OR ASSIGNED PRESSURE AND ENTROPY FOR EITHER ASSIGNED PRESSURE AND TEMPERATURE, ASSIGNED

This column but used for assigned pressure and temperature

 $\ln A^{(j+1)} = \ln A^{(j)} + \lambda \Delta \ln A$ $\ln T^{(j+1)} = \ln T^{(j)} + \lambda \Delta \ln T$

The indices j and j+1 signify the estimates for the jth and (j+1)st iterations. When the iteration has converged, the moles of gaseous species n_i will be numerically equal to the partial pressures p_i (i = 1, 2, ..., m).

After the equilibrium compositions have been determined, the three independent first derivatives c_p , $(\partial \ln Mw/\partial \ln T)_p$, and $(\partial \ln Mw/\partial \ln P)_T$ can be evaluated by a procedure analogous to that described in reference 19 The calculation of c_p and $(\partial \ln Mw/\partial \ln T)_p$ requires the derivatives $(\partial \ln n_i/\partial \ln T)_p$ (i = 1, 2, ..., m), $(\partial n_i/\partial \ln T)_p$ (i = m + 1, m + 2, ..., n), and $(\partial \ln A/\partial \ln T)_p$. Following the procedure of reference 19 for the elimination of linear combination terms, the set of equations in Table 5-2 is obtained for the derivatives $(\partial \ln u_i/\partial \ln T)_p$ (i = 1, 2, ..., l), $(\partial n_i/\partial \ln T)_p$ (i = m + 1, m + 2, ..., n), and $(\partial \ln A/\partial \ln T)_p$. The $(\partial \ln n_i/\partial \ln T)_p$ are related to these by

$$\left(\frac{\partial \ln n_{i}}{\partial \ln T}\right)_{p} = \sum_{k=1}^{L} a_{ki} \left(\frac{\partial \ln u_{k}}{\partial \ln T}\right)_{p} + \chi_{i} \quad (i = 1, 2, ..., m)$$

Writing the equation for evaluating the specific heat and substituting the above equation gives

$$\mathbf{c}_{\mathbf{p}} = \frac{R}{A} \left[\sum_{k=1}^{\ell} \sum_{i=1}^{m} \mathbf{a}_{ki} \mathcal{X}_{i} \mathbf{n}_{i} \left(\frac{\partial \ln u_{k}}{\partial \ln T} \right)_{\mathbf{p}} + \sum_{i=m+1}^{n} \mathcal{X}_{i} \left(\frac{\partial n_{i}}{\partial \ln T_{\mathbf{p}}} \right) + \sum_{i=1}^{m} \mathcal{X}_{i} \mathbf{n}_{i} \left(\frac{-\partial \ln A}{\partial \ln T} \right)_{\mathbf{p}} \right]$$
$$+ \sum_{i=1}^{m} \mathcal{R}_{i} \mathbf{n}_{i} + \sum_{i=1}^{m} \mathcal{X}_{i} \mathcal{X}_{i} \mathbf{n}_{i} \right]^{i=1}$$

TABLE 5-3 - EQUATIONS FOR EVALUATING DERIVATIVES WITH RESPECT TO TO LOGARITHM OF TEMPERATURE AT CONSTANT PRESSURE

C

• •

Constant	$-\sum_{k=1}^{m} a_{1,k} \mathcal{H}_{k} n_{k}$	$-\sum_{k=1}^{m}a_{2,k}\mathcal{Y}_{k}n_{k}$	$-\sum_{k=1}^{m}a_{3,k}h_{k}n_{k}$	•	•	- H_n-1	^и д-	$-\sum_{k=1}^{m}\mathcal{H}_{k}n_{k}$
$- \left(\frac{\partial \ln A}{\partial \ln T}\right)_{P}$	$\sum_{k=1}^{n} a_1, k^{n_k}$	$\sum_{k=1}^{n} \mathbf{s}_{2,k} \mathbf{n}_{k}$	$\sum_{k=1}^{n}a_{3},k^{n}k$	•	•	0	0	0
$ \begin{pmatrix} \partial & n_n \\ \delta & \ln T \end{pmatrix}_P $	a, n	82,n	a3,n	•	•	0	0	0
$\left(\frac{\partial n_{n-1}}{\partial \ln T} \right)_{\mathbf{P}}$	⁸ 1,n-1	82, n-1	83,n-1	• •	•	0	0	o
			•	•	•	•	•	•
	· · ·	•	•		•	•	•	•
$\left(\begin{array}{c} 3 \text{ In } u_3 \\ 3 \text{ In } T \end{array}\right)_p$	^r 13	r23	r33	•	•	^a 3,n-1	a3,n	$\sum_{k=1}^{m}a_{3,k}n_{k}$
a In uz	r12	r22	r32 .	•	•	^e 2,n-l	^a 2,n	$\sum_{k=1}^{m}a_{2},k^{n}k$
$\left(\frac{1}{\operatorname{Tn} \operatorname{ul} \mathcal{P}}\right)$		r21	r31	•	•	⁶ 1, n-1	^a 1,n	$\sum_{k=1}^{n}a_{1},k^{n}k$

•

•

The solution of the equations in Table 5-3 also gives one of the molecular weight derivatives by means of the relation

$$\left(\frac{\partial \ln Mw}{\partial \ln T}\right)_{P} = \left(\frac{\partial \ln A}{\partial \ln T}\right)_{P}$$

The derivative ($\partial \ln M/\partial \ln P$)_T can be calculated from

$$\left(\frac{\partial \ln Mw}{\partial \ln P} \right)_{T} = \frac{P}{\sum_{k=1}^{l} \sum_{i=1}^{m} \left(a_{ki}n_{i} \frac{\partial \ln u_{k}}{\partial \ln A} \right)_{T}} -1$$

where the required partial derivatives are obtained by a solution of the equations of Table 5-4 of this report. It should be noted that the matrix elements of Tables 5-3 and 5-4 are identical with the corresponding elements of Table 5-2 except for the sign of the last column in Table 5-3. The isentropic exponent, γ , used in the calculations of the velocity of sound is

$$\gamma = \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{S} = \frac{1}{\left[1 + \left(\frac{\partial \ln Mw}{\partial \ln P}\right)_{T}\right] - \frac{R}{c_{p}Mw}\left[1 - \left(\frac{\partial \ln Mw}{\partial \ln T}\right)_{P}\right]^{2}}$$

Convergence in an iterative calculation involves two numerical problems: (1) how to assure numerical convergence, and (2) to determine at what stage the iteration should be terminated. Both of these are discussed in the following sections.

Evaluation of Convergence Parameter λ

When poor estimates are used in a Newton-Raphson iteration, the iteration equations will invariably give corrections that are too large. If these corrections were to be used directly, they could produce a nonconvergent iteration. This type of situation normally occurs in the early stages of a calculation.

TABLE 5-4. - EQUATIONS FOR EVALUATING DERIVATIVES WITH RESPECT TO LOGARITHM OF A AT CONSTANT TEMPERATURE

	Constant	$\sum_{k=1}^{n} a_1, k^{n_k}$	$\sum_{k=1}^{n} a_{2, k} n_{k}$	$\sum_{k=1}^{n} a_{3}, k^{n_{k}}$	•	•	0	0
•••	$\left(\frac{\partial n_n}{\partial \ln A} \right)_T$	u, L ^a	u'z _a	^a 3,n	•	•	0	0
	$ \left(\frac{\partial n_{n-1}}{\partial \ln A} \right)_{T} $	1-u,1 ⁸	82,n-1	^a 3,n-1	•	•	0	0
	•	•	· ·	•	•	•	•	•
	•	•	•	•	•	•	•	•
	$\left(\frac{\partial \ln u_3}{\partial \ln A}\right)_{T}$	r13	r23	r ₃₃	• •	•	⁸ 3,n-1	a3,n
	$\left(\frac{\partial \ln u_{\overline{2}}}{\partial \ln A}\right)_{T}$	r12	F22	r32	•	•	⁸ 2,n-1 [.]	82,n
	$\begin{pmatrix} \frac{\partial \ln u_1}{\sqrt{\delta \ln A}} \\ \end{pmatrix}_{T}$	r11	r21	r31	•	•	al,n-l	al,n

At later stages of the iteration when the problem seems to be converging satisfactorily, the iteration sometimes attempts to make large increases in the partial pressures of species that are present in trace amounts. In both of these cases it is essential to place some restriction on the size of the correction. This is accomplished by introducing a convergence parameter λ .

The numerical value of the convergence parameter λ is determined on the basis of two empirical rules, which experience has shown to be satisfactory. For the variables T, A, and n_j for those gaseous species for which $\ln(n_j/P_0) > -18.5$ and for which $\Delta \ln n_j > 0$, a number λ is defined as

$$\lambda_{1} = \frac{2}{\max(\left|\Delta \ln T\right|, \left|\Delta \ln A\right|, \Delta \ln n_{j})} \quad (j = 1, 2, \ldots, m)$$

This limits the change in T and A and the increase in n_j , for those gaseous species whose gas phase mole fraction exceeds 10^{-8} , to a factor $e^2 = 7.3891$. For those gaseous species for which $\ln(n_j/P_0) \le -18.5$ and $\Delta \ln n_j > 0$, a number λ_2 is defined as

$$\lambda_2 \equiv \min\left(\frac{\ln P_0 - 9.212 - \ln n_j}{\Delta \ln n_j}\right) \quad (j = 1, 2, ..., m)$$

This prevents a gaseous species with a mole fraction less than 10^{-8} from increasing its partial pressure so that its gas phase mole fraction would exceed 10^{-4} . The parameter λ to be used is defined in terms of λ_1 and λ_2 as

$$\lambda \equiv \min(1, \lambda_1, \lambda_2)$$

Criteria for Convergence

Equilibrium compositions. - It is assumed that the iteration has converged to the correct composition when

$$\frac{n_{j}}{\sum_{k=1}^{n} n_{k}} |\Delta \ln n_{j}| < 0.5 \times 10^{-5} \quad (j = 1, 2, ..., m)$$

and

$$\frac{\left|\Delta n_{j}\right|}{\sum_{k=1}^{n} n_{k}} < 0.5 \times 10^{-5} \quad (j = m + 1, m + 2, ..., n)$$

This has the effect of insuring accuracy to five places in composition when it is expressed as mole fractions.

5.2.6 <u>SUBROUTINE FRØZEN</u>

Subroutine FRØZEN is called from subroutine RØCKET to calculate the temperature and thermodynamic properties for the following assigned conditions:

- 1. Composition frozen at combustion conditions.
- 2. An assigned exit pressure.

3. An assigned entropy equal to the entropy at combustion conditions. The iteration procedure used for obtaining the exit temperature is discussed in the section Procedure for Obtaining Frozen Rocket Performance (p.40, Reference 3.)

For a mixture of fixed composition, entropy, and pressure, the temperature is calculated by a Newton-Raphson iteration. The correction to the current estimate for temperature is obtained from

$$\Delta \ln T = \frac{\mathscr{L}_{f}^{-} \mathscr{L}_{f}^{\circ}}{\sum_{i=1}^{n} \mathscr{E}_{i} x_{i}}$$

The improved estimate for temperature is then obtained by means of

$$\ln T^{(j+1)} = \ln T^{(j)} - \Delta \ln T$$

n

For frozen composition, the three independent first partial derivatives

are:

$$c_{p} = R \frac{\sum_{i=1}^{m} \mathcal{E}_{i} x_{i}}{Mw_{c} \sum_{i=1}^{m} x_{i}}$$
$$\left(\frac{\partial \ln Mw}{\partial \ln T}\right)_{p} = 0$$

and

and

 $\left(\frac{\partial \ln Mw}{\partial \ln P}\right)_{T} = 0$

The isentropic exponent γ is

$$\gamma = \frac{c_p M w_c}{c_p M w_c - R}$$

The throat conditions are evaluated with the aid of a secondary Newton-Raphson iteration using the equation

$$\left(\frac{\frac{P_{c}}{P}}{\frac{P_{c}}{P}}\right)_{k+1} = \frac{\left(\frac{\frac{P_{c}}{P}}{\frac{P_{c}}{P}}\right)_{k}}{1 + \frac{2Mw(h_{c} - h_{k}^{\star})}{(\gamma + 1) RT}}$$

where $(P_c/P)_k$ is the kth estimate for pressure ratio at the throat and h_k^* is the value of h* for the pressure corresponding to this pressure ratio and an entropy equal to the combustion entropy. The initial estimate for P_c/P and T at the throat is described below.

An excellent estimate of the throat pressure ratio for both equilibrium and frozen compositions is $\frac{\gamma_c}{-1}$

$$P_{c}/P = \left(\frac{\gamma_{c}+1}{2}\right)^{\frac{c}{\gamma_{c}-1}}$$

This relation usually gives a throat pressure ratio, which is correct to three places. The throat temperature is estimated from the equation

$$T = \frac{2}{1 + \gamma_c} T_c$$

The throat conditions for a rocket nozzle are assumed to be satisfied if

$$\frac{h_c - h^*}{h_c - h} \le 0.4 \times 10^{-4}$$

This condition in effect makes certain that the Mach number will satisfy the condition that

$$M = 1 \pm 0.2 \times 10^{-4}$$

5.2.7 <u>SUBROUTINE GAUSS</u>

Subroutine GAUSS is used to solve the set of simultaneous linear iteration equations constructed by subroutine MATRIX. The solution is effected by performing a Gauss reduction using a modified pivot technique. In this modified pivot technique only rows are interchanged. The row to be used for the elimination of a variable is selected on the basis that the largest of its elements, after division by the leading element, must be smaller than the largest element of the other rows after division by their leading elements.

The solution vector is stored in X(k). In the event of a singularity, IMAT (which is equal to the number of rows) is set equal to IMAT - 1. IMAT is tested later in subroutine EQLBRM.

5.2.8 <u>SUBROUTINE HCALC</u>

The purpose of HCALC is to calculate thermodynamic properties for reactants under certain circumstances. HCALC is called from entry NEWØF of SAVE and DETØN.

HCALC is called from NEWØF when CALCH is set true. CALCH is set true in the main program when zeros have been punched in card columns 37 and 38 on one or more REACTANTS cards. The zeros are a code indicating that the enthalpy (or internal energy for UV problems) for the reactant should be calculated from the THERMØ data at the temperature punched on the card. This temperature has been stored in the RTEMP array. CPHS is called to calculate the enthalpy. The value is sorted in the ENTH array and printed in the final tables.

The properties calculated in subroutine HCALC, their FORTRAN symbols, and the conditions for which they are used are as follows:

Property	FORTRAN symbol	Equation	
₩ (k)T	HPP(k)	(192)	SHØCK problem. DETN problem with T schedule HP, RKT, or DETN problem if 00 in cc 37 and 32
h _o /R	HSUB0	(193)	SHØCK problem. DETN problem with T schedule HP, RKT, or DETN problem if 00 in cc 37 and 35
9/ (k)T	HPP(k)	(194)	UV problem if 00 in cc 37 and 38
u'/R	HSUB0	(195)	UV problem if 00 in cc 37 and 38
M	AM 1	(197)	SHØCK or DETN problem
m,	EN (j)	(205)	SHØCK problem
	CPRI	(206)	SHØCK problem
4	SO	(207)	SHØCK problem

The quantity m_i was deliberately subscripted differently from EN(j) to allow for the fact that the same compound may have a different index as a reactant than as a reaction species. Thus, for example, O_2 (g) might be the third reactant read in from REACTANTS cards and also the tenth species read in by SEARCH. In this case m_3 would be stored in EN(10).

5.2.9 SUBROUTINE MATRIX

This subroutine sets up the matrices corresponding to tables I through IV of Reference 3. The assigned thermodynamic state being set up (tables I and II) is specified by the following codes:

Assigned thermodynamic state	Codes
TP	TP = .TRUE. VOL = .FALSE. CONVG = .FALSE.
HP	HP = .TRUE. VOL = .FALSE. CONVG = .FALSE.
SP	SP = .TRUE. VOL = .FALSE. CONVG = .FALSE.
TV	TP = .TRUE. VOL = .TRUE. CONVG = .FALSE.
UV	HP = .TRUE. VOL = .TRUE. CONVG = .FALSE.
SV	SP = .TRUE. VOL = .TRUE. CONVG = .FALSE.

After convergence of any of the previous six probelms, setup of the derivative matrices (tables III and IV) is specified by the following codes:

Derivative	Codes
DLVTP	CONVG = .TRUE.LOGV = .FALSE.
DLVPT	CONVG = .TRUE.LOGV = .FALSE.

5.2.10 <u>SUBROUTINE ØUTI</u>

This subroutine, together with entries \emptyset UT2 and \emptyset UT3, writes statements common to all problems. \emptyset UT1 writes statements giving the data on REACTANTS and on o/f, percent fuel, equivalence ratio, and density.

Entry \mathcal{O} UT2. - This entry writes the statements for printing values of pressure, temperature, dentity, enthalpy, entropy, molecular weight, ($\partial \ln V/\partial \ln P$)_T (if equilibrium), ($\partial \ln V/\partial \ln T$)_P (if equilibrium), heat capacity, γ_S , and sonic velocity. These variables and corresponding labels are printed with a variable format described in BLKDTA.

Entry \emptyset UT3. - Entry \emptyset UT3 writes statements giving the equilibrium mole fractions of reaction species.

5.2.11 SUBROUTINE REACT

The purpose of subroutine REACT is to read and process the data on the REACTANTS cards. The subroutine is called from the main program after a REACTANTS code card has been read. The data on these cards are described in the REACTANTS Cards section (p. 62) of Reference 3. References to page numbers and equations given below also pertain to Reference 3.

The reactants may be divided into two groups according to card column 72 on the REACTANTS cards. The two groups are oxidants (O in cc 72) and fuels (cc $72 \neq 0$). We generally keypunch F in card column 72 for fuels even though this is not necessary. The contents of card column 72 are read into FØX. Depending on the contents of FØX, program variables relating to oxidants or fuels are subscripted 1 for oxidants and 2 for fuels.

The FORTRAN symbols for the properties read from the REACTANTS cards and their associated properties (discussed in INPUT CALCULATIONS, p. 55 of Reference 3 are as follows:

Property	FORTRAN symbol
(k)	ANLM(j,m) ^a
$w_{i}^{(k)}$	PECWT(j) (if no M in cc 53)
$N_{t}^{(k)}$	PECWT(j) (if M in cc 53)
	ENTH(j) (if not UV problem and 00 not in cc 37 and 38)
	ENTH(j) (if UV problem and 00 not in cc 37 and 38)
$\rho_{i}^{(k)}$	DENS(j)

^aEach of the j REACTANTS cards contains from 1 to 5 stoichiometric coefficients read (indicated by subscript m) into ANUM(j,m) and their corresponding chemical symbols read into NAME(j,m). In relating an ANUM(j,m) with $a_{ij}^{(k)}$, the index i associated with a particular chemical element is determined from the chemical symbol in NAME(j,m).

If there are several oxidants their properties are combined by subroutine REACT into properties of a total oxidant using the relative proportion of each oxidant given on the REACTANTS cards. Similarly, if there are several fuels, their properties are combined into properties of a total fuel. The total oxidant and total fuel properties discussed in INPUT CALCULATIONS and their associated FORTRAN symbols are as follows:

10	FORTRAN symbol	Equation
Property	FORTIGHT Symbol	(187)
b; ^(k)	BOP(i,k)	(107)
(k)	RMW(j)	(190)
$\mathcal{H}^{(k)}_{T}$	HPP(k) (if not UV problem and 00 not in cc 37 and 38)	(192)
2 ^(k) T	HPP(k) (if UV problem and 00 not in cc 37 and 38)	(194)
M(k)	AM (k)	(196)
(k)	RH(k)	(198)
$\frac{\mu}{v^+(k)}$	VPLS(k)	(200)
v ^{-(k)}	VMIN(k)	(201)
$w_{j}^{(k)} / \sum_{j=1}^{NREAC} w_{j}^{(k)}$	^{k)} PECWT(j)	

If any of the $\rho_j^{(k)}$ are zero then RH(1) = RH(2) = 0.

These total oxidant and total fuel properties are subsequently combined into total reactant properties by using the values of oxidant-fuel mixture ratios obtained from the main program. This is done in NEWØF, an entry in SAVE.

Other common variables set by REACT are LLMT, NAME, ANUM, ENTH, FAZ, RTEMP, FOX, DENS, RMW, MØLES, NLM, NEWR, and NREAC.

A provision is made for eliminating a second tape search when two consecutive sets of REACTANTS cards contain the same elements. This is done by saving the element symobls $(LLMT(\ell))$ in $LLMTS(\ell)$, the kilogram-atoms per kilogram $(BOP(\ell, k))$ in $SBOP(\ell, k)$, and the number of elements (NLM) in NLS.

Atomic weights M_i used in equation $(190)^3$ are stored in ATØM(2,i). The corresponding chemical symbols are stored in ATØM(1,i). The oxidation states of the chemical elements V_i^+ or V_i^- used in equations (200) and (201)^3 are stored in ATØM(3,i). The ATØM array is stored by BLKDTA.

5.2.12 SUBROUTINE RKTØUT

This subroutine calculates various rocket performance parameters from previously calculated thermodynamic properties.

It is also the control program for writing rocket performance output. It contains the WRITE statements that apply specifically to rocket parameters and it calls subroutine ØUT1 and entries ØUT2 and ØUT3 for the WRITE statements common to all problems. The rocket parameters are printed with the variable format, FMT, described in BLKDTA.

The following formulas used in computing the various performance parameters were derived from the one-dimensional forms of continuity, energy, and momentum equations and the following assumptions: zero velocity in the combustion chamber, perfect gas law, complete combustion, homogeneous mixing, adiabatic combustion, and isentropic expansion. (The units used were $h = cal/gm, T = {}^{\circ}K$, P = lb force/sq in., A = sq in., w = lb mass/sec, and $g_{c} = 32.174$ (lb mass/lb force) (ft/sec²).)

Specific impulse with ambient and exit pressures equal, (lb force) (sec)/lb mass:

$$I = 294.98 \quad \sqrt{\frac{h_c - h}{1000}}$$

Specific impulse in vacuum (ambient pressure zero), (lb force) (sec)/lb mass:

$$I_{vac} = I + P \frac{A}{w}$$

Characteristic velocity, ft/sec:

$$c^* = g_c P_c \left(\frac{A}{w}\right)_t = 32.174 P_c \left(\frac{A}{w}\right)_t$$

Coefficient of thrust:

$$C_{\rm F} = \frac{g_{\rm C}I}{c^{\star}} = 32.174 \frac{I}{c^{\star}}$$

Mach number:

$$M = \frac{U}{U_s} = \frac{I}{\sqrt{\frac{86.4579 \,\gamma T}{Mw}}}$$

5.2.13 SUBROUTINE RØCKET

This subroutine is the control program for the RKT problem (rocket performance calculations discussed in section RØCKET PERFORMANCE).³ A flow diagram for this subroutine is given in Figure 5 of Reference ³ Subroutine RØCKET obtains the required thermodynamic properties for equilibrium performance by calling subroutine EQLBRM. For frozen performance, subroutine RØCKET calls subroutine FRØZEN to obtain the required thermodynamic properties. Rocket performance parameters are then obtained by calling subroutine RKTØUT. In addition to calling RKTØUT and FRØZEN, and in addition to using controls common to all problems (discussed in section MODULAR FORM OF THE PROGRAM, p. 75, Reference 3) subroutine RØCKET also does the following:

- 1. It reads and processes the input data in RKTINP namelist.
- 2. It calculates estimates for throat pressure ratios.
- 3. It calculates estimates for pressure ratios corresponding to assigned

5.2. 14 SUBROUTINE SAVE

This subroutine has several functions, all of which are concerned with saving some information from a completed calculation for subsequent use in later calculations. The primary purpose is to save computer time by having good initial estimates for compositions.

These estimates for the next point, NPT, come from either the point just completed, ISV, or some other previous point. The flow of the routine is directed by ISV as follows:

1. ISV positive. Transfer compositions for point just completed for use as initial estimates for next point (transfer EN(j, ISV) to EN(j, NPT)).

2. ISV negative. Save values of ENLN(j) for gases and EN(j) for condensed in SLN(j), ENN in ENSAVE, ENNL in ENLSAV, IQ1 in IQSAVE, JSØL in JSØLS, JLIQ in JLIQS, and NLM in LL1. (These values are saved because they are to be used as initial estimates for some future point and they may be overwritten in the meantime.) Make ISV positive and transfer EN(j, ISV) to EN(j, NPT).

3. ISV zero. Use the data previously saved (as discussed in 2.) as initial estimates for current point. Restore IUSE codes and inclusion or exclusion of "E" as an element for IØNS option.

Entry NEWØF. - NEWØF combines the properties of total oxidant and total fuel calculated in subroutine REACT with an o/f value to give properties for the total reactant. NEWOF is called for each mixture assigned in the MIX array in \$ØDE namelist. It is called from either THERMP, RØCKET, SHCK, or DETON. The calculated properties and corresponding FORTRAN symbols are as follows:

Property	FORTRAN symbol	Equation
b, b,	B0(i)	(191)
h_/R	HSUB0 (if not UV problem)	(193)
o u'/R	HSUBO (if UV problem)	(195)
P ₂	RHØP	(139)
r	EQRAT	(264)

Subroutine HCALC is called by Entry NEWØF to calculate the enthalpies for each reactant that has zeros keypunched in card columns 37 and 38 in its REACTANTS card.

Values of HPP(2), HPP(1), HSUBO, BOP(i,2), BOP(i,1), and BO(i) are printed out.

5.2.15 <u>SUBROUTINE SEARCH</u>

This subroutine selects the Thermodynamic Data to be used in the problem. A scan is made of the master Thermodynamic Data tape and those species that are consistent with the chemical system under consideration are selected. As the thermodynamic data are being selected, the subroutine also complies a set of formula numbers, a_{ij} , from the formulas of the reaction products. A short Thermodynamic Data file is also generated for use in subsequent calculations (multizone).

A check is made near the beginning of the routine to prevent THERM \emptyset data from exceeding their storage allotments. These variables are all in labeled common SPECIES and are currently dimensioned for 150 species. However, this dimension may be reduced to save storage.

SEARCH is called from the main program when the logical variable NEWR is true. NEWR is set true in REACT to indicate a new chemical system. REACT also stores chemical element symbols for the current chemical system in the LLMT array. SEARCH stores THERMØ data in core for each species whose elements are included in the LLMT array (unless the species name was listed on an ØMIT card).

The THERMØ data are stored in common variables TLØW, TMID, THIGH, SUB, A, CØEF, and TEMP. SEARCH writes out the names and dates of species whose data are stored in core.

SEARCH initializes the IUSE array. IUSE(j) for gaseous species are set equal to zero. IUSE(j) for condensed species are set equal to negative integers. For the chemical system under consideration, the first possible condensed species is set equal to -1, the second to -2, and so on, with one exception. In the event there are two or more condensed phases of the same species, each phase is given the same negative integer. Thus, if IUSE(j) for $B_2O_3(\ell)$ is set equal to -4, for example, IUSE(j) for $B_2O_3(s)$ will also be set equal to -4. A description of the IUSE array is given below.

The various condensed phases of a species are expected to be adjacent in the THERMØ data as they are read from tape. These phases must be either in increasing or decreasing order according to their temperature intervals.

NS contains the total number of species stored in core. NC contains the total number of condensed species (counting each condensed phase of a species as a separate species).

EQLBRM. For condensed species, the sign is adjusted as species are included or excluded in the current iteration.

For the IØNS option, IUSE(j) values for ionic species are set to -10000 when the mole fractions of all ionic species are less than 10^{-8} .

IUSE array. - Each value in the IUSE array is associated with a species. These values of IUSE serve two purposes:

1. They indicate which species are to be included in the current iteration (IUSE(j) < 0 for excluded species and $IUSE(j) \ge 0$ for included species).

2. They indicate multiple phases of the same species if absolute values of IUSE(j) are equal.

The IUSE(j) are initialized in subroutine SEARCH and the main program as follows:

IUSE(j) = 0 for all gaseous species.

2. IUSE(j) = n for all condensed species whose name's have been listed on INSERT cards. The number n indicates the species was the nth condensed species whose THERMØ data were read from tape.

3. IUSE(j) = -n for all condensed species not listed on INSERT cards where n is defined in 2.

These initial values of IUSE(j) may be adjusted later in subroutine

5.2.16 SUBROUTINE SHCK

Subroutine SHCK is the application module for the SHØCK problems. It calculates the shock parameters discussed in the section "INCIDENT AND REFLECTED SHOCKS". It reads and processes the input data in SHKINP namelist. Depending on which options are specified, it calculates incident shock conditions based on compositions frozen at initial conditions and/or based on equilibrium compositions after shock. It also calculates, based on specified options, frozen and/or equilibrium reflected shock conditions relative to equilibrium and/or frozen incident shock conditions.

5.2.17 SUBROUTINE THERMP

This subroutine is the application module for TP, HP, SP, TV, UV, and SV problems. Common variables which must be set according to the assigned thermodynamic states are given in the section Application Modules (p. 76) of Reference 3.

For these problems, the variables TP, HP, SP, SO, and VØL are set or read in subroutine ØDES. HSUBO is set either in SAVE (entry NEWØF) or HCALC. The general flow of the routine is given in figure 3 of Reference 3.

Indices run from 1 to NP both for assigned pressures P and assigned volumes (V in \emptyset DE and VL in THERMP). Indices run from 1 to NT for assigned temperature T. NP and NT are set in the subroutine \emptyset DES.

5.2.18 SUBROUTINE TPCALC

This subroutine is used to obtain equilibrium values of C $_{\rm p}$, Y, R, and h from given values of T and P. Subroutine EQLBRM is called to obtain the solutions.

5.2.19 SUBROUTINE TSCALC

This subroutine finds equilibrium solutions from given values of T and S. The method used is to call subroutine TPCALC to find equilibrium solutions from given values of T and P, then the P value is adjusted until the input value of S is matched. Iteration on P is done using subroutine ITER (secant method). Subroutine TSCALC is used to construct the gas properties tables used by the BLM which are discussed in Section 2.6.3.

5.2.20 SUBROUTINE VARFMT

Subroutine VARFMT (variable format) adjusts the number of decimal places printed in F-format in the variable format. FMT, according to the size of the number. It is used for P_c / P_e , P, and A_e / A_t . Variable format is described in BLKDTA.
5.3 ODK MODULE SUBROUTINES

The One-Dimensional Kinetics (ODK) module is used to calculate the loss in nozzle performance caused by finite-rate chemistry of the expansion products. The method of analysis used is described in Section 2.1 and 2.2. Since the ordinary differential equations that are solved can be extremely stiff, a stable integration method is required. The integration method is described in Section 3.1.

The ODK module consists of the following subroutines:

ODK	ODKINP
СНТҮРЕ	ODWALL
CONVRT	OUTPUT
DERIV	PACK
ECNV1	PACKCD
EF	PRATES
FLU	PREAX
FNDLM	PRES
GTF	PRNTCK
IAUX	REAXIN
INT	SELECT
LESK	STF
MAIN1D	STØICC
MGET	STORNU
NUMBR	SUBNE
ODKBLM	TABGEN
	· · · · · · · · · · · · · · · · · · ·

5.3.1 SUBROUTINE ODK

This subroutine acts as the driver for the one dimensional kinetic expansion calculation (ØDK). It calls subroutine ODKINP to read the \$ODK input. Subroutine PACK is then called to prepare master tables for the chemical species and reactions to be used. Then subroutine MAIN1D is called which is the main program for the ODK module.

5.3.2 SUBROUTINE CHTYPE (KRD, ITY, NC)

Given the array KRD containing in each entry one character, left justified, this subroutine stores an interger code into the corresponding entry of array ITY. NC is the number of characters (consecutive entries) in KRD which are to be processed. The character-code table is as follows.

Character	Code
_	- 4
- +	- 3
,	-2
÷	0
1	1
2	2
2	3
3	4
4	5
5	6
0	7
7	8
ð	9
9	-1
all others	•

5-54

5.3.3 SUBROUTINE CONVRT

This subroutine converts input data from the externally input units to internally used computation units. In order to conserve computation time during the kinetic expansion, parameters such as molecular weights, are included in these conversions. Barred values are input quantities.

- a) Reaction rate ratio input for reactions requiring third body terms units: unitless internal units: (lbs-mass/lb-mole)⁻¹ formula: XMM_{j,i} = XMM_{j,i}/Mw_i
- b) Pre-exponential reaction rate parameter input units: cm, °K, g-mole, sec internal units: ft³, °R, lb-mole, sec

$$\mathbf{a}_{j} = \frac{\overline{\mathbf{a}_{j}} \cdot (.0160183)^{\lambda} \mathbf{j} \mathbf{1.8}^{\overline{n}_{j}}}{\prod_{i=1}^{n} \mathbf{Mw}_{i}^{\nu_{ij}^{\prime}}}$$

Where λ depends on the order of the reaction, i.e. where $\lambda = (\Sigma v) - 1$ for binary exchange and Σv for third body recombination. Also:

$$.0160185 = \frac{3.53147 \cdot 10^{-5} ft^3}{1 cm^3} \cdot \frac{1 g-mass}{2.20462 \cdot 10^{-3} lbs-mass}$$

Exponential Term:

പ

input units: kcal/mole internal units: °R formula: $b_i = \bar{b}_i \cdot 905.770$

where
$$905.770 = \frac{1000 \text{ cal}}{1 \text{ kcal}} \cdot \frac{1}{1.98726 \text{ cal/mole} - K} \cdot \frac{1.8^{\circ}\text{R}}{1.05^{\circ}\text{K}}$$

d)

Equilibrium Constant Multiplicative Factor:

Input units: not input internal units: (lbs-mass) - °R/ft³ formula:

$$DATEF(J) = \frac{\underset{i=1}{\overset{II}{\underset{i=1}{\overset{Mw_{i}}{\underset{i=1}{\overset{(v-v)}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\underset{i=1}{\overset{(v-v}{\underset{i=1}{\underset{i=$$

where

i.e.
$$.73034 = 49,721.011 \cdot \frac{ft - poundals}{(lbs-mole) \circ R} \cdot \frac{1 \text{ atmos}}{68,059.59 \text{ poundals/ft}^2}$$

. 73034 = (RJS)/(144 g 14.69)

e) Pressure:

.

input units: PSIA

internal units: poundals/ft² formula: $P = \tilde{P} \cdot 4633.056$ where

$$4633.056 = \frac{144 \text{ in}^2}{1 \text{ ft}^2} \cdot 32.174 \frac{\text{ft}}{\text{sec}^2}$$

Ð

The initial reference enthalpy is computed using

$$H_{\text{Ref}} = \sum_{i=1}^{N} c_i h_i + \frac{v^2}{2}$$

Subroutine CØNVRT has been modified to calculate the total amount of condensed phase present at the kinetic expansion initial conditions. This subroutine computes the total derivatives f_i and the partial derivatives β_{ii} described in the analysis presented in Section 3

The implicit integration method used to integrate the differential equations governing the chemical system, i.e.

$$y'_{i} = f_{i}(x, y_{1}, ..., y_{NSP+3})$$

 $i=1, ..., NSP+3$

where the variables

y, i=1, ..., NSP+3

i=1..., NSP

are

respectively, requires evaluation of the Jacobian of the system, i. e.

$$\beta_{ij} = \frac{\partial f_i}{\partial y_j} \qquad i=1, \dots, NSP+3$$

$$j=1, \dots, NSP+3$$

Subroutine DERIV computes only certain of the β_{ij} (those taken with respect to C_i) and the others are computed in subroutine FLU.

Also calculated by DERIV are the reaction rates, k_j , and the net production rates, X_j .

The generalized chemical reaction which is handled by this subroutine is defined by:

$$\sum_{i=1}^{NSP} \nu_{ij} \overline{M}_{1} \neq \sum_{i=1}^{NSP} \nu_{ij} \overline{M}_{i}$$

where \overline{M}_{i} represents the i^{th} chemical species.

V, p, T, C,

The reverse reaction rate constant is defined by the equation:

$$\mathbf{k}_{j}$$
 SK(j) = $\mathbf{a}_{j} \cdot \mathbf{T}^{-n} \mathbf{j} \cdot \exp(-\mathbf{b}_{j}/\mathbf{T})$

The net production rate for a reaction is given by:

$$\mathbf{X}_{j} \quad \mathbf{X}(j) = \begin{bmatrix} \mathbf{K}_{j} \cdot \prod_{i=1}^{NSP} \mathbf{C}_{i}^{\nu_{ij}} - \rho^{\lambda_{j}} \cdot \prod_{i=1}^{NSP} \mathbf{C}_{i}^{\nu'_{ij}} \end{bmatrix} \cdot \mathbf{k}_{j} \cdot \mathbf{M}_{j} \rho^{(\Sigma \cup_{i,j}) - 1}$$

5-57

where: λ_j depends on the order of the reaction*

NSF with $M_j = \sum_{i=1}^{j} XMM_{j,i} \cdot C_i$ for reactions requiring a third body

for all other reactions and $M_i = 1$ where $XMM_{ji} \equiv m_{ji}/Mw_{i}$, $m_{ji} = a_{ij}/a_{kj}$ The net individual species production rate is given by the equation:

$$\frac{\mathrm{dC}_{\mathbf{i}}}{\mathrm{dx}} \quad \mathrm{FN}(\mathbf{I}) = \overline{K}_{\mathbf{i}} \cdot \sum_{\mathbf{j}=1}^{L} \psi_{\mathbf{ij}} \cdot \mathbf{X}_{\mathbf{j}}$$

where:

 $\overline{K}_{i} = (M W_{i} \cdot \rho \cdot r^{*}) / V$ $\psi_{ij} \equiv \dot{v}'_{ij} = v_{ij}$

The partial derivatives of the net species production rate with respect to: the chemical species; the gas velocity; the gas density; and the gas temperature are:

 $\beta(C_k, C_i) BT(I, K) = \overline{K}_i \cdot \sum_{j=1}^{k} \frac{\partial X_j}{\partial C_i}$ i = 1, . . . , NSP $k = 1, \ldots, NSP$ $\beta(C_i, V) \quad PHI(I, 1) = -\frac{1}{V} \frac{dC_i}{dx} \qquad i = 1, \dots, NSP$ $\beta(C_i, \rho) \quad PHI(I, 2) = \frac{1}{\rho} \cdot \frac{dC_i}{dx} + \overline{K}_i \sum_{j=1}^{m} \lim_{j \to 1} \frac{\partial X_j}{\partial \rho} \quad i = 1, \dots, NSP$ $\beta(C_i, T)$ PHI(I, 3) = $\overline{K}_i \sum_{j=1}^{j} \frac{\partial X_j}{\partial T}$ i = 1, ..., NSP

* $\lambda_j = \sum_{ij}^{NSP} (v_{ij} - v_{ij})$ so that $\lambda_j = 0$ for binary exchange, $\lambda_j = 1$ for most

dissociation recombination reactions.

The subscript notation used above is:

- i = Species subscript
- j = Reaction subscript
- L = Total number of chemical reactions
- m = Number of reactions requiring third body terms
- NSP = Total number of gaseous species

Subroutine DERIV calls subroutine FLU to calculate the derivatives and partial derivatives of V, P, and T. In the event of solidification, this routine also recalculates the condensed phase species derivatives and their partial derivatives and recalls subroutine FLU to recalculate the flow derivatives.

5.3.5 SUBROUTINE ECNV1

This subroutine translates a BCD string of characters into one floating point numeric value. E, I, and F formats are permitted with the result always a floating point number. It is called by subroutine REAXIN to decode numeric fields in the species and reactions cards. The subroutine is coded entirely in FORTRAN. A BCD string of blanks will result in a floating point zero returned value.

5.3.6 SUBROUTINE EF

This subroutine computes equilibrium constants, K_j,

 $K_{j} \quad EK(j) = \frac{DATEF(j)}{T^{\lambda_{j}}} \cdot exp\left[-\sum_{i=1}^{n} Ft_{i} \cdot \nu_{ij} + \sum_{i=1}^{n} Ft_{i} \cdot \nu_{ij}\right]$

also computed are

$$\frac{dK_{j}}{dT} \quad DKT(j) = \begin{bmatrix} -\sum_{i=1}^{n} \frac{Ht_{i}}{R_{i}} \cdot \nu_{ij} + \sum_{i=1}^{n} \frac{Ht_{i}}{R_{i}} \cdot \nu_{ij}' \\ T & T & -\lambda_{j} \end{bmatrix} \cdot \frac{K_{j}}{T}$$

where: Ft_i = species free energy at the current temperature

 $Ht_i = species enthalpy at the current temperature$ DATEF(J) = is defined in subroutine CØNVRT

5.3.7 <u>SUBROUTINE</u> FLU

This subroutine computes the total derivatives f_i and the partial derivatives α_i and θ_{ij} for the fluid dynamic equations. While the flow is subsonic, pressure defined fluid dynamic equations are used. When the flow becomes supersonic, area defined fluid dynamic equations are used. The summation terms, energy exchange term B, the diabatic heat addition term A, the Mach number, and all the partial derivatives of these terms are computed. For a subsonic integration the pressure and its derivatives are obtained from the subsonic pressure table. For a supersonic integration the area ratio and its derivatives are computed from the input geometric constraints.

The calculations logically fall into three types: a) Those done for all integrations; b) Those done only for subsonic integration; c) Those done only for supersonic integration. The following will adhere as closely as possible to a sequential description of the computations.

The operators $\Phi(i, l)$, l = 1, 2, 3 are defined as

 $\Phi(i, 1) = \beta(C_i, V)$ $\Phi(i, 2) = \beta(C_i, \rho)$ $\Phi(i, 3) = \beta(C_i, T)$

The total derivatives, $f_i = \frac{dC_i}{dx}$, for i = 1, ..., n are computed as

$$f_i = \frac{\omega_i r^*}{\rho V}$$

where n is the total number of species, NSP.

For an ODTDK problem, tables of Cp, R, AA, BB, as functions of temperature are written on logical unit JANAF.

Computation of the Summation Terms and their derivatives:

First Summation

S 1	S1	$= \frac{1}{R} \cdot \sum_{i=1}^{n} \frac{dC_{i}}{dx} \cdot R_{i}$
<u>981</u> 97	DSIV	$= \frac{1}{R} \cdot \sum_{i=1}^{n} \Phi_{(i,1)} \cdot R_{i}$
<u>ðsi</u> ðp	DS1RØ	$= \frac{1}{R} \cdot \sum_{i=1}^{n} \Phi_{(i,2)} \cdot R_{i}$
<u>ðsi</u> ðt	DS1 T	$= \frac{1}{R} \cdot \sum_{i=1}^{n} \Phi_{(i,3)} \cdot R_{i}$
921 921	DS1C(I)	$= \frac{1}{R} \cdot \left[\sum_{j=1}^{n} \beta_{(C_j, C_i)} \cdot R_j - S1 \cdot R_i \right] i = 1, \dots, n$
Second Su	ummation	
S2	82	$= \frac{1}{\mathbf{R} \cdot \mathbf{T}} \cdot \sum_{i=1}^{\mathbf{n}} \frac{\mathbf{dC}_{i}}{\mathbf{dx}} \cdot \mathbf{h}_{i}$
<u>985</u> 9 A	DS2V	$= \frac{1}{\mathbf{R} \cdot \mathbf{T}} \cdot \sum_{i=1}^{\mathbf{n}} \Phi_{(i,1)} \cdot \mathbf{h}_{i}$
9 <u>85</u> 90	DS2RØ	$= \frac{1}{\mathbf{R}\cdot\mathbf{T}}\cdot\sum_{i=1}^{\mathbf{n}} \Phi_{(i,2)}\cdot\mathbf{h}_{i}$
<u>925</u> 91	DS2 T	$= \frac{1}{\mathbf{R} \cdot \mathbf{T}} \cdot \sum_{i=1}^{\mathbf{n}} \left[\frac{\mathbf{a}}{\mathbf{b}} (i,3) \cdot \mathbf{h}_{i} + \frac{\mathbf{d}\mathbf{C}_{i}}{\mathbf{d}\mathbf{x}} \cdot \mathbf{C}\mathbf{p}_{i} \right] - \frac{\mathbf{S2}}{\mathbf{T}}$

$$\frac{\partial S2}{\partial C_i} \qquad DS2C(I) \qquad = \frac{1}{R} \cdot \left[\sum_{j=1}^{n} \frac{P(C_j, C_i) \cdot n_i}{T} - S2 \cdot R_i \right] i = 1, \dots, n$$

* R_i is the gas constant/molecular wt. of species i

Computation of the Energy Exchange Term B and its Derivatives:

•

В	BB	=	$\frac{\gamma-1}{\gamma}$.	S2				
<u>98</u> 91	DBBV	=	$\frac{\gamma-1}{\gamma}$.	<u>ds2</u> dv				
<u>98</u> 90	DBBRØ	5	$\frac{\gamma-1}{\gamma}$	<u>985</u> 90				
<u>98</u> 91	DBBT	=	$\frac{\gamma-1}{\gamma}$	<u>252</u> 76	+ $\frac{S2}{\gamma^2}$	•	91 91	
∂B ∂Ci	DBBC(I)	=	$\frac{\gamma-1}{\gamma}$	$\frac{\partial S2}{\partial C_i}$	+ $\frac{S2}{\gamma^2}$	•	90' 97	i = 1,, n

Computation of the Diabatic Heat Addition Term A and its Derivatives:

A	AA	#	S1-B
<u>A6</u> V 6	DAAV		$\frac{\partial S1}{\partial S} - \frac{\partial B}{\partial B}$
<u>46</u> q6	DAARØ	×	$\frac{\partial S1}{\partial \rho} - \frac{\partial B}{\partial \rho}$
<u>46</u> T6	DAAT	12	$\frac{\partial S1}{\partial T} - \frac{\partial B}{\partial T}$
<u>46</u> 36	DAAC(I)	=	$\frac{\partial SI}{\partial C_{i}} - \frac{\partial C_{i}}{\partial B}$

 $i = 1, \ldots, n$

Computation of the Mach number and its derivatives:

м ²	XM2	$= \frac{v^2}{\gamma \cdot \mathbf{R} \cdot \mathbf{T}}$	
<u>9 M</u> 5	DM2V	$= \frac{2 \cdot M^2}{V}$	
9 M 2	DM2T	$= -\frac{M^2}{T} - \frac{M^2}{\gamma} \cdot \frac{\partial \gamma}{\partial T}$	
[∂] Ω ²	DM2C(I)	$= - M^{2} \cdot \left[\frac{\partial \gamma}{\partial C_{i}} \cdot \frac{1}{\gamma} + \frac{R_{i}}{R} \right]$	i = 1,,n

~

For the subsonic portion of the nozzle, pressure defined fluid dynamic equations are used. The pressure, and its first and second derivatives are computed via interpolation in the pressure table generated by subroutine PRES. The Subsonic Gas Velocity derivatives are computed:

$$\frac{d\mathbf{V}}{d\mathbf{x}} \qquad \text{FNX}(1) \qquad = -\frac{1}{\rho \cdot \mathbf{V}} \cdot \frac{d\mathbf{P}}{d\mathbf{x}}$$

$$\frac{\partial [\text{FNX}(1)]}{\partial \mathbf{x}} \quad \text{AL}(1) \qquad = -\frac{1}{\rho \cdot \mathbf{V}} \cdot \frac{d^2 \mathbf{P}}{d\mathbf{x}^2}$$

$$\beta(\mathbf{V}, \mathbf{V}) \qquad \text{BETA}(1, 1) = -\frac{1}{\mathbf{V}} \cdot \frac{d\mathbf{V}}{d\mathbf{x}}$$

$$\beta(\mathbf{V}, \rho) \qquad \text{BETA}(1, 2) = -\frac{1}{\rho} \cdot \frac{d\mathbf{V}}{d\mathbf{x}}$$

The Subsonic Gas Density derivatives are computed:

.

$$\frac{d\rho}{dx} \quad FNX(2) = \rho \cdot \left[\frac{dP}{dx} \cdot \frac{1}{\gamma \cdot P} - A \right]$$

$$\frac{\partial [FNX(2)]}{\partial x} \quad AL(2) = \frac{\rho}{\gamma \cdot P} \cdot \left[\frac{d^2 P}{dx^2} - \left(\frac{dP}{dx} \right)^2 \cdot \frac{1}{P} \right]$$

- $\beta(\rho, V)$ BETA(2,1) = ρ · $\frac{\partial A}{\partial V}$
- $\beta(\rho,\rho)$ BETA(2,2) = $-\frac{1}{\rho}$ · $\frac{d\rho}{dx}$ ρ · $\frac{\partial A}{\partial \rho}$
- $\beta(\rho,T)$ BETA(2,3) = $-\rho$ · $\frac{\partial A}{\partial T} \frac{\rho}{P \cdot \gamma^2} \cdot \frac{\partial \gamma}{\partial T} \cdot \frac{dP}{dx}$

$$\beta(\rho, C_i)$$
 BETA(2, i+3) = $-\frac{\rho}{\gamma^2 P} \cdot \frac{\partial \gamma}{\partial C_i} \cdot \frac{dP}{dx} - \rho \cdot \frac{\partial A}{\partial C_i}$ i = 1,..., n

The Subsonic Gas Temperature derivatives are computed:

$$\frac{d\mathbf{T}}{d\mathbf{x}} \quad FNX(3) = \mathbf{T} \cdot \begin{bmatrix} \frac{\gamma-1}{\gamma} \cdot \frac{1}{p} \cdot \frac{d\mathbf{P}}{d\mathbf{x}} - \mathbf{B} \end{bmatrix}$$

$$\frac{\partial [FNX(3)]}{\partial \mathbf{x}} \quad AL(3) = \frac{\gamma-1}{\gamma} \cdot \frac{\mathbf{T}}{p} \cdot \begin{bmatrix} \frac{d^2\mathbf{P}}{d\mathbf{x}^2} - \left(\frac{d\mathbf{P}}{d\mathbf{x}}\right)^2 \cdot \frac{1}{p} \end{bmatrix}$$

$$\beta(\mathbf{T}, \mathbf{V}) \quad BETA(3, 1) = -\mathbf{T} \cdot \frac{\partial \mathbf{B}}{\partial \mathbf{V}}$$

$$\beta(\mathbf{T}, \rho) \quad BETA(3, 2) = -\mathbf{T} \cdot \frac{\partial \mathbf{B}}{\partial \rho}$$

$$\beta(\mathbf{T}, \mathbf{T}) \quad BETA(3, 3) = \frac{1}{\mathbf{T}} \cdot \frac{d\mathbf{T}}{d\mathbf{x}} + \mathbf{T} \frac{1}{\gamma^2 \cdot \mathbf{p}} \frac{d\mathbf{P}}{d\mathbf{x}} \frac{\partial \gamma}{\partial \mathbf{T}} - \mathbf{T} \frac{\partial \mathbf{B}}{\partial \mathbf{T}}$$

$$\beta(\mathbf{T}, \mathbf{C}_i) \quad BETA(3, i+3) = \mathbf{T} \cdot \begin{bmatrix} \frac{1}{\gamma^2 \cdot \mathbf{p}} \cdot \frac{d\mathbf{P}}{d\mathbf{x}} \cdot \frac{\partial \gamma}{\partial \mathbf{C}_i} - \frac{\partial \mathbf{B}}{\partial \mathbf{C}_i} \end{bmatrix} i = 1, \dots n$$

For the supersonic portion of the nozzle, area defined fluid dynamic equations are used. The area ratio, and its derivatives are computed according to the input geometric constraints.

Area ratio and its derivatives:

1) On the circular arc of radius R_d (input item RWTD) defining the downstream throat region, $X \le X_{tangent}$

$$a = \left[1 + R_{d} - \left(\frac{R_{d}^{2} - x^{2}}{R_{d}^{2} - x^{2}} \right)^{1/2} \right]^{2}$$

$$\frac{da}{dx} = \frac{2x}{\left(\frac{R_{d}^{2} - x^{2}}{R_{d}^{2} - x^{2}} \right)^{1/2}} \cdot \left[1 + R_{d} - \left(\frac{R_{d}^{2} - x^{2}}{R_{d}^{2} - x^{2}} \right)^{1/2} \right]$$

$$\frac{d^{2}a}{dx^{2}} = \left[\frac{2}{\left(\frac{2}{R_{d}^{2} - x^{2}} \right)^{1/2}} + \frac{2x^{2}}{\left(\frac{R_{d} - x^{2}}{R_{d}^{2} - x^{2}} \right)^{3/2}} \right] \cdot \left[1 + R_{d} - \left(\frac{R_{d} - x^{2}}{R_{d}^{2} - x^{2}} \right)^{1/2} \right]$$

$$+ \frac{2x^{2}}{R_{d}^{2} - x^{2}}$$

2) For a conical nozzle and $X > X_{tangent}$

$$a = \begin{bmatrix} r_t + (x - x_t) \tan \theta_t \end{bmatrix}^2$$
$$\frac{da}{dx} = 2 \begin{bmatrix} r_t + (x - x_t) \tan \theta_t \end{bmatrix} \cdot \tan \theta_t$$
$$\frac{d^2a}{dx^2} = 2 \tan^2 \theta_t$$

5-67

3) For a contoured nozzle and $X > X_{tangent}$

a =
$$Y^2$$

 $\frac{da}{dx}$ = $2 \cdot Y \cdot \frac{dY}{dx}$
 $\frac{d^2a}{dx^2}$ = $2 \cdot \left[Y \frac{d^2Y}{dx^2} + \left(\frac{dY}{dx}\right)^2\right]$

where Y, dY/dx, d^2Y/dx^2 are computed via interpolation in the table of derivatives of the input wall table generated in Subroutine SLP.

The Supersonic Gas Velocity derivatives are computed:

$$\frac{d\mathbf{V}}{d\mathbf{x}} \quad \mathbf{FNX}(1) = \frac{\mathbf{V}}{\mathbf{M}^{2}-1} \cdot \left[\frac{1}{a} \frac{d\mathbf{a}}{d\mathbf{x}} - \mathbf{A}\right]$$

$$\frac{\partial \left[\mathbf{FNX}(1)\right]}{\partial \mathbf{x}} \quad \mathbf{AL}(1) = \frac{\mathbf{V}}{\mathbf{M}^{2}-1} \cdot \frac{1}{a} \cdot \left[\frac{d^{2}a}{d\mathbf{x}^{2}} - \frac{1}{a} \cdot \left(\frac{d\mathbf{a}}{d\mathbf{x}}\right)^{2}\right]$$

$$\beta(\mathbf{V}, \mathbf{V}) \quad \mathbf{BETA}(1, 1) = \frac{1}{\mathbf{V}} \cdot \frac{d\mathbf{V}}{d\mathbf{x}} - \frac{1}{\mathbf{M}^{2}-1} \cdot \frac{d\mathbf{V}}{d\mathbf{x}} \cdot \frac{\partial \mathbf{M}^{2}}{\partial \mathbf{V}}$$

$$- \frac{\mathbf{V}}{\mathbf{M}^{2}-1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{V}}$$

$$\beta(\mathbf{V}, \mathbf{p}) \quad \mathbf{BETA}(1, 2) = -\frac{\mathbf{V}}{\mathbf{M}^{2}-1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{p}}$$

$$\beta(\mathbf{V}, \mathbf{T}) \quad \mathbf{BETA}(1, 3) = -\frac{1}{\mathbf{M}^{2}-1} \cdot \frac{d\mathbf{V}}{d\mathbf{x}} \cdot \frac{\partial \mathbf{M}^{2}}{\partial \mathbf{T}^{2}} - \frac{\mathbf{V}}{\mathbf{M}^{2}-1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{T}}$$

$$\beta(\mathbf{V}, \mathbf{C}_{1}) \quad \mathbf{BETA}(1, 1+3) = -\frac{1}{\mathbf{M}^{2}-1} \cdot \frac{d\mathbf{V}}{d\mathbf{x}} \cdot \frac{\partial \mathbf{M}^{2}}{\partial \mathbf{C}_{1}} - \frac{\mathbf{V}}{\mathbf{M}^{2}-1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{C}_{1}} i=1, \dots$$

,n

The Supersonic Gas Density derivatives are computed:

$$\frac{d\rho}{dx} \qquad FNX(2) \qquad = -\rho \cdot \left[\frac{M^2}{M^2 - 1} \cdot \left(\frac{1}{a} \cdot \frac{da}{dx} - A \right) + A \right]$$

$$\frac{\partial [FNX(2)]}{\partial x} AL(2) = -\rho \cdot \frac{M^2}{M^2 - 1} \cdot \frac{1}{a} \cdot \left[\frac{d^2a}{dx^2} - \frac{1}{a}\left(\frac{da}{dx}\right)^2\right]$$

$$\beta(\rho, \mathbf{V}) \quad \text{BETA}(2, 1) = \rho \cdot \left[\frac{1}{(M^2 - 1)^2} \cdot \left(\frac{1}{a} \frac{da}{dx} - \mathbf{A} \right) \cdot \frac{\partial M^2}{\partial \mathbf{V}} + \frac{1}{M^2 - 1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{V}} \right]$$

$$\beta(\rho,\rho)$$
 BETA(2,2) = $\frac{1}{\rho} \cdot \frac{d\rho}{dx} + \frac{\rho}{M^2-1} \cdot \frac{\partial A}{\partial \rho}$

$$\beta(\rho, T) \quad \text{BETA}(2, 3) = \rho \cdot \left[\frac{1}{(M^2 - 1)^2} \cdot \left(\frac{1}{a} \frac{da}{dx} - A\right) \cdot \frac{\partial M^2}{\partial T} + \frac{1}{M^2 - 1} \cdot \frac{\partial A}{\partial T}\right]$$

$$\beta(\rho, C_i) \quad \text{BETA}(2, i+3) = \rho \cdot \left[\frac{1}{(M^2 - 1)^2} \cdot \left(\frac{1}{a} \frac{da}{dx} - A \right) \frac{\partial M^2}{\partial C_i} + \frac{1}{M^2 - 1} \cdot \frac{\partial A}{\partial C_i} \right]$$

$$i = 1, \dots, n$$

The Supersonic Gas Temperature derivatives are computed:

$$\frac{dT}{dx} \qquad FNX(3) \qquad = -T \cdot \left[(\gamma - 1) \cdot \frac{M^2}{M^2 - 1} \cdot \left(\frac{1}{a} \frac{da}{dx} - A \right) + B \right]$$

$$\frac{\partial [FNX(3)]}{\partial x} AL(3) = - T \cdot \frac{M^2}{M^2 - 1} \cdot \frac{\gamma - 1}{a} \cdot \left[\frac{d^2 a}{dx^2} - \frac{1}{a} \cdot \left(\frac{d a}{dx} \right)^2 \right]$$

$$\beta(\mathbf{T},\mathbf{V}) \qquad \text{BETA}(3,1) = \mathbf{T} \cdot \left[\frac{\gamma - 1}{(M^2 - 1)^2} \left(\frac{1}{a} \frac{da}{dx} - A \right) \cdot \frac{\partial \mathbf{M}^2}{\partial \mathbf{V}} + \gamma - 1 \cdot \frac{\mathbf{M}^2}{\mathbf{M}^2 - 1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{V}} - \frac{\partial \mathbf{B}}{\partial \mathbf{V}} \right]$$

$$\beta(\mathbf{T}, \rho)$$
 BETA(3,2) = $\mathbf{T} \cdot \left[\gamma - 1 \cdot \frac{\mathbf{M}^2}{\mathbf{M}^2 - 1} \cdot \frac{\partial \mathbf{A}}{\partial \rho} - \frac{\partial \mathbf{B}}{\partial \rho} \right]$

$$\beta(\mathbf{T},\mathbf{T}) \quad \text{BETA}(3,3) = \frac{1}{\mathbf{T}} \cdot \frac{\mathrm{d}\mathbf{T}}{\mathrm{d}\mathbf{x}} + \mathbf{T} \cdot \left[\frac{\gamma-1}{(\mathbf{M}^2-1)^2} \left(\frac{1}{\mathrm{a}}\frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{x}} - \mathbf{A}\right) \frac{\partial \mathbf{M}}{\partial \mathbf{T}}^2 + \gamma-1 \cdot \frac{\mathbf{M}^2}{\mathbf{M}^2-1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{T}} - \frac{\partial \mathbf{B}}{\partial \mathbf{T}} - \frac{\mathbf{M}^2}{\mathbf{M}^2-1} \cdot \left(\frac{1}{\mathrm{a}}\frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{x}} - \mathbf{A}\right) \frac{\partial \mathbf{y}}{\partial \mathbf{T}}\right]$$

$$\beta(\mathbf{T},\mathbf{C}_1) \quad \text{BETA} (3,1+3) = \mathbf{T} \cdot \left[\frac{\gamma-1}{(\mathbf{M}^2-1)^2} \cdot \left(\frac{1}{\mathrm{a}}\frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{x}} - \mathbf{A}\right) \cdot \frac{\partial \mathbf{M}^2}{\partial \mathbf{C}_1} + \gamma-1 \cdot \frac{\mathbf{M}^2}{\mathbf{M}^2-1} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{C}_1} - \frac{\partial \mathbf{B}}{\partial \mathbf{C}_1} - \frac{\partial \mathbf{B}}{\mathbf{M}^2-1} \cdot \left(\frac{1}{\mathrm{a}}\frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{x}} - \mathbf{A}\right) \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{C}_1}\right]$$

i = 1, ..., n

5.3.8 <u>SUBROUTINE FNDLM (IC, NS, IP, IDLM)</u>

Given a card image stored 80A1 in the IC array, this subroutine searches left to right, starting with character number NS, until a match is found to the input character IDLM. The character number is returned in IP. If no match is found, a -1 is returned in IP. This subroutine is used by subroutines MGET, PRATES, and REAXIN to locate field delimiters.

5.3.9 SUBROUTINE GTF

This subroutine computes the effective gas constant, gaseous heat capacity, γ , $\partial\gamma/\partial T$, $\partial\gamma/\partial C_i$ from the following formulae:

$$R = \sum_{i=1}^{NSP} C_i \cdot R_i$$

$$Cp = \sum_{i=1}^{NSP} C_i \cdot Cp_i$$

$$\gamma = \frac{Cp}{Cp-R}$$

$$\frac{\partial \gamma}{\partial T} = -\frac{\gamma \cdot (\gamma-1)}{Cp} \cdot \sum_{i=1}^{NSP} C_i \cdot \frac{\partial Cp_i}{\partial T}$$

$$\frac{\partial \gamma}{\partial C_i} = \gamma \cdot (\gamma-1) \cdot \left[\frac{R_i}{R} - \frac{Cp_i}{Cp}\right] \qquad i = 1, \dots, n$$

For condensed phases, $R_i=0$, to account for the assumption that the particles exert no pressure on the gas.

5.3.10 SUBROUTINE IAUX (HL, H, QK, RK, JX)

This subroutine performs implicit integration according to the method discussed in Section 3. The increments for the chemical species concentrations and the fluid dynamic variables at the forward point are calculated by solving the appropriate implicit finite difference formulas. Subroutine IAUX also performs explicit integration, using a modified Euler method, when the gas temperature falls below an input value.

The calling sequence parameters are:

HL - last integration step size

- H current integration step size
- QK last increments for variables
- RK computed increments for variables

JK - 1 initial 3 steps

- 2 general step
- 3 special step
- 4 restart step

The total derivatives, $f_{i,n}$, and partial derivatives, $\beta_{i,j,n}$ at the back point are calculated in subroutines DERIV and FLU.

The special step calculation is used at print stations, in halving the step size if required, or for integrating to specific calculation stations. If the special step calculation is used to determine the properties at a print station, the calculation is resumed using the general step calculation and the previous step size.

After each integration step, subroutine IAUX obtains the derivatives at the then current axial position.

C-3

5-73

For implicit integration the equations used are:

Initial Step and Restart

$$k_{i,1} = \begin{bmatrix} f_{i,0} + \alpha_{i,0}h + \sum_{j=1}^{N} \beta_{i,j,0}k_{j,1} \end{bmatrix} \cdot h$$

General Step

$$k_{i,n+1} = \frac{1}{3} \left[k_{i,n}^{+ 2} \cdot \left(f_{i,n}^{+ \alpha} \cdot h_{j=1}^{n} + \sum_{j=1}^{n} \beta_{i,j,n}^{k} \cdot j_{j,n+1} \right) \cdot h \right]$$

Special Step

$$k_{i,n+1} = \frac{h_{n+1}^{2}}{(2h_{n+1}+h_{n})\cdot h_{n}} \left[k_{i,n} + \left[f_{i,n} + \alpha_{i,n}h_{n+1} + \sum_{\substack{j=1 \ j=1}}^{N} \beta_{i,j,n}k_{j,n+1} \right] \cdot \frac{h_{n}}{h_{n+1}} (h_{n+1}+h_{n}) \right]$$

For explicit integration the above equations are used deleting the partial derivative terms α and β .

If the TDK problem directive was selected, gas tables for the Transonic Analysis Subprogram are written on logical unit ITSTAB.

If the option to generate input tables for the Turbulent Boundary Layer Nozzle Analysis Computer Program was selected, tables of M, P/P_c , T/T_c , C_p , V, ρ are tabulated using subroutine TABGEN.

5.3.11 <u>SUBROUTINE INT</u>

Provides control for the implicit integration procedure, determines the proper set of nonhomogeneous equations to solve, and, after each integration step, computes the next integration step size according to the following relations:

$$h_{n+2} = 2h_{n+1}, \qquad \left| \frac{k_{1,n+1} - 2k_{1,n} + k_{1,n-1}}{3y_{max}} \right| < \frac{\delta}{MAX^{-20}}$$

$$h_{n+2} = \frac{1}{2}h_{n+1}, \qquad \left| \frac{k_{1,n+1} - 2k_{1,n} + k_{1,n-1}}{3y_{max}} \right| > \delta$$

$$h_{n+2} = h_{n+1}, \qquad \frac{\delta}{20} \leq \left| \frac{k_{1,n+1} - 2k_{1,n} + k_{1,n-1}}{3y_{max}} \right| \leq \delta$$

$$MAX$$

where

 $y_{max} = max [|y_{i,n}|, 10^{-5}]; i = 1, 2, ... NSP+3$

On option, (JF=1) only the fluid dynamic variables are used in determining the next integration step size.

If the step size is halved for the fourth step, the integration is restarted using one-half the original step size.

The correspondence between equation number and physical property is:

Equation Number	Property
1 2 3 4 NSP+3	Velocity of Gas Density of Gas Temperature of Gas Gaseous species mass fraction (1NSP) correspondence to (4NSP + 3)

When the flow is supersonic, continuity is used to control the integration step size to insure that:

$$\frac{(\rho VA)}{(\rho VA)} \frac{N+1}{N+1} - (\rho VA)_{N} < CONDEL$$

where CØNDEL is an input relative criterion with a default value 10^{-5} .

5.3.12 SUBROUTINE LESK (Y)

This subroutine is a single precision linear equation solver which is used to perform the matrix inversions required by subroutine IAUX. Gaussian elimination is used with row interchange taking place to position maximum pivot elements after the rows are initially scaled.

5.3.13 <u>SUBROUTINE MAINID</u>

This subroutine provides the overall logic control for the one-dimensional kinetic expansion. The following functions are controlled:

- 1) Variable initialization
- 2) Option to start the kinetic expansion from equilibrium throat conditions
- 3) Controls of the integration to hit specific area ratios, the nozzle throat point, the nozzle tangent point, and the requested end point
- Controls of the switch from the subsonic pressure defined equations to the supersonic area defined equations when (M²≥1.02)
- 5) Controls the switch from implicit to explicit integration.

For the normal mode of operation of the program, this subroutine locates the throat in the following manner:

The gaseous mass flow per unit area (ρv) is calculated and stored as a function of nozzle axial location for the present and past integration step. When

$$(\rho v)_{n+1} < (\rho v)_n$$

where n refers to the n integration step, the throat location is calculated from:

$$\mathbf{X}^{\star} = \mathbf{X}_{n} + \frac{(\mathbf{X}_{n} - \mathbf{X}_{n-1})^{2} \cdot [(\rho \mathbf{v})_{n+1} - (\rho \mathbf{v})_{n}] + (\mathbf{X}_{n+1} - \mathbf{X}_{n})^{2} \cdot [(\rho \mathbf{v})_{n} - (\rho \mathbf{v})_{n-1}]}{2 \cdot [(\mathbf{X}_{n+1} - \mathbf{X}_{n}) \cdot [(\rho \mathbf{v})_{n} - (\rho \mathbf{v})_{n-1}] - (\mathbf{X}_{n} - \mathbf{X}_{n-1}) \cdot [(\rho \mathbf{v})_{n+1} - (\rho \mathbf{v})_{n}]}$$

and the n+1th integration step is repeated using a step size of $X^* - X_n$ to determine the throat conditions.

To prevent the location of a false throat due to roughness of an input pressure table, ten integration steps are required before the throat will be sought.

Through the downstream throat radius of curvature the step size is controlled so as to be less than or equal to RWTD*SIN(THETA)/25.0,

Subroutine MAIN1D also contains the logic to control the integration through solidification of multiple condensed liquid phases if they are present. This logic allows the integration procedure to hit the beginning and ending of solidification exactly and to turn on the solidification equations in subroutine DERIV via the flag IFMELT in COMMON/LKMELT/.

5.3.14 SUBROUTINE MGET

This subroutine is used to decode the M's in the 3rd body reactions. It uses subroutine FNDLM to locate the field delimiter, and subroutine ECNV1 to translate the M value from a character to a floating point number.

5.3.15 SUBROUTINE NUMBR

This FORTRAN subroutine converts a one character BCD number to a integer number.

5.3.16 SUBROUTINE ODKBLM

If BLM is to be run folowing the execution of a Two-Dimensional Frozen (TDF=1.) calculation, then subroutine ODK calls ODKBLM to obtain the required gas properties. These consist of gas viscosity, Prandtl number, and total enthalpy; followed by tables of C_{pg} , Y, h, and R vs temperature. All of the above properties are written on unit LUBLM. The properties correspond to a) the chamber equilibrium species compositions expanded in a frozen state, or b) the input species compositions expanded in a frozen state.

5.3.17 SUBROUTINE ØDKINP

This subroutine provides the input processing for the kinetic expansion calculation. It performs the following functions:

- 1) Variable initialization to nominal values
- 2) Calls subroutine REAXIN to input the reactions cards and species cards if necessary
- 3) For an ØDE-ØDK problem, calls subroutine SELECT to select those species to be considered for the kinetic expansion calculation
- 4) Reads \$ØDK namelist input data
- 5) Converts nozzle geometric parameters from input units: inches, degrees; to internal computational units: feet, radians
- 6) Computes nozzle tangent coordinates using:

$$r_{t} = 1 + R_{d} (1 - \cos \theta)$$
$$x_{t} = R_{d} \sin \theta$$

7) For conical nozzles, computes the axial coordinate for the exit station from the following relation:

8) For conical nozzles, the internal axial print stations are computed using:

$$X_{j} = \frac{\sqrt{ARPRNT(J)} - r_{t} + x_{t} \cdot \tan \theta}{\tan \theta} \quad X_{j} \ge X_{t}$$
$$X_{j} = \left(\begin{array}{cc} R_{d}^{2} & -\left[1 + R_{d} & -(ARPRNT(J))^{\frac{1}{2}}\right] \\ & X_{j} < X_{t} \end{array} \right)$$

- 9) The sum of input or selected species concentrations is checked for unity (<u>+</u> XMFTST, where XMFTST is an input number), and then normalized.
- 10) If the input parameter RZNØRM is input, the input contoured nozzle table is normalized by RZNØRM.

In addition to the above, the following are done in the $\emptyset DKINP$ routine.

- a) If the nozzle geometry has been input via the \$DATA namelist, ØDKINP stores the variables from this input into the correct locations and performs the appropriate unit conversions.
- b) Accepts the parabolic and circular arc options (IWALL=2 and 3) from the \$DATA namelist. This is done by computing the nozzle wall points and derivatives at 20 equally spaced points and substituting them into the tables used in the contoured wall input option.
- c) Accepts as input the quantities needed to calculate the zero particle lag flow equations.

5_81

5.3.18 SUBROUTINE ODWALL

This subroutine is called by subroutine ODKINP for the purpose of calculating the nozzle wall contour and setting print stations for ODK when the following wall options are used:

IWALL =	2	parabola,
IWALL =	3	circular arc,
IWALL =	6	skewed parabola

5.3.19 SUBROUTINE ØUTPUT

This subroutine provides conversion from internal computational units to output engineering units and the calculation of performance parameters. The following output parameters are computed by this subroutine:

The pressure (in PSIA) is computed from:

$$P_{(PSIA)} = P/4633.056$$

The gaseous species mole fractions are computed from:

$$C_{i,m} = \frac{R_i}{R} \cdot C_i$$

The gas molecular weight is computed from:

The percentage mass fraction change is computed from:

% Δ (Mass Fraction) = 100.0 \cdot (1.0 - $\sum_{i=1}^{n} C_{i}$)

The gas heat capacity is computed from:

$$Cp_{g}(BTU/LB-^{O}R) = 3.9969 \cdot 10^{-5} \cdot Cp_{g}$$

The gas enthalpy is computed from:

$$H_{g}(BTU/LB) = 3.9969 \cdot 10^{-5} \cdot \sum_{i=1}^{n} C_{i} \cdot h_{i}$$

At the throat, the characteristic exhaust velocity (ft/sec) is computed from:

$$C^* = \frac{P_C}{\rho^* \cdot V^*}$$

The vacuum specific impulse is computed from:

ISP_{VAC} =
$$\frac{V + P/P_c \in c^*}{g}$$
, g = 32.174

The vacuum thrust coefficient is computed from:

$$C_{F_{VAC}} = \frac{I_{sp_{vac}}}{C^*}$$

The percentage enthalpy change is computed from:

$$\% \Delta H_{T} = \frac{100 \cdot (HREF_{c} - HREF)}{v^{2}/2}$$

where

HREF =
$$\sum_{i=1}^{NSP} C_i \cdot h_i + V^2/2$$

HREF_c is HREF evaluated at the initial condition for the ØDK integration (i.e. at the initial contraction ratio, ECRAT).

In addition the actual molecular weight of the mixture of gases and condensed phases is also printed out.

5.3.20 SUBROUTINE PACK

On the basis of those species currently being considered, this subroutine packs species and reaction information from the master tables into those control sections utilized by the one-dimensional kinetic expansion subprogram.

The following is a sequential description of the packing procedures:

- 1) Thermodynamic data for the species being considered is read into core storage.
- 2) The chemical species molecular weights are computed
- 3) The symbolic reactions are checked for mass balance.
- 4) For a contoured nozzle the slope at each input wall point is computed using subroutine SLP. The wall coordinates, and each computed slope are printed for each input wall point and the print stations are set to the input axial coordinates.

In addition to the above, the PACK routine processes condensed phases by setting R = 0 for those species and storing pointers for up to 10 condensed phase species (5 pairs). This routine also calculates the print positions for specified area ratios when the contoured (spline) wall option is selected. 5.3.21 SUBROUTINE PACKCD (KRD, IPK, KNT)

This subroutine packs down a card image stored 80A1 in the KRD array by removing blanks. The packed card image is returned in the IPK array. The number of non blank characters found is returned in KNT.

5.3.22 SUBROUTINE PRATES

This subroutine processes the input reaction rate constant data to determine the form of the reaction rate. Three types of reactions are allowed, as shown in Table 5-5.

Table 5-5: EXPRESSIONS FOR THE REACTION RATE CONSTANTS, k

Reaction	Input*	Comments
Expression		
$k = P_{1}T_{2}P_{2}e_{3}^{-P}$	A = P, N = P, B = P	Arrhenius form
as above	KF or KR = P, P, P	
$k = e \begin{pmatrix} P + P/T & P/T \\ 1 & 2 & 3 \end{pmatrix}$	$KF \text{ or } KR = *P, P, P_{1 2 3}$	Landau-Teller form
$\circ g_{10}^{k} = P_{1} + P_{2}^{T}$	KF or KR = % P, P	Log 10 form

* P, P, and P are numbers written with E or F format

5.3.23 SUBROUTINE PREAX

This subroutine processes the chemical reaction as determined by subroutine PRATES. It returns the stoichiometric coefficients and the corresponding species names.

5-36

5.3.24 SUBROUTINE PRES

This subroutine is used (when JPFLAG = 1) to compute the derivatives of an input pressure table.

This subroutine is also used (when JPFLAG = 0) to generate a pressure table through use of an average expansion coefficient, Ne. The generated table extends from the initial contraction ratio through the nozzle attachment point plus one normalized throat radius.

Input Pressure Table Derivative Computation (JPFLAG = 1)

If a pressure table of NTB entries is input, the table of first derivatives is computed using:

$$\frac{dP}{dx}\Big|_{x_{1}} = 0$$

$$\frac{dP}{dx}\Big|_{x_{n}} = \frac{P(x_{n+1}) - P(x_{n-1})}{x_{(n+1)} - x_{(n-1)}}, \quad 1 < n < NTB$$

$$\frac{dP}{dx}\Big|_{x_{NTB}} = \frac{P(x_{n}) - P(x_{n-1})}{x_{(n)} - x_{(n-1)}}, \quad n = NTB$$

The pressure at the initial axial position is obtained by interpolation using subroutine SPLN.

Internally Computed Pressure Table Computation (JPFIAG = 0)

An average equilibrium pressure expansion coefficient from the chamber to the throat, N_e , is computed by iteration using subroutine SUBNE. The initial value for $N_e^{(1)}$ is 1.2.

The approximate equilibrium contraction ratio at the initial axial position is computed from:

$$a_{c} = \left[\frac{N_{e} - 1}{2} \cdot \frac{\left[\frac{2}{N_{e} + 1}\right]^{\frac{1}{2}}}{\left(\frac{P_{i}}{P_{c}}\right)^{\frac{2}{N_{e}}} \cdot \left[1 - \left(\frac{P_{i}}{P_{c}}\right)^{\frac{N_{e} - 1}{N_{e}}}\right]^{\frac{1}{2}} \right]$$

where P_i = pressure at the initial axial position P_c = equilibrium chamber pressure

A check is then made to determine the compatibility between the nozzle geometry and the requested contraction ratio.

If

$$\sqrt{a_c} < 1 + \left[R_u + R_i\right] \cdot \left[1 - \cos \theta_i\right],$$

the circular arcs $R_{\rm u}$ and $R_{\rm i}$ overlap and the following error message is printed:

INLET GEOMETRY INCOMPATIBLE WITH INITIAL CONDITIONS The program will proceed to the next case.
Tables for pressure and its derivatives are constructed as functions of area ratio, a, and expansion coefficient, Ne. Formula used for the j + 1 iteration for pressure is:

$$\frac{\mathbf{p}(\mathbf{j}+1)}{\mathbf{P}_{c}} = \frac{\mathbf{p}(\mathbf{j})}{\mathbf{P}_{c}} + 2 \left\{ \frac{\frac{N_{e}-1}{N_{e}}}{N_{e}} \cdot \left[1 - \left(\frac{\mathbf{p}(\mathbf{j})}{\mathbf{P}_{c}}\right)^{N_{e}} \right] \right\}$$

$$\left(\frac{\underline{P}^{(j)}}{\underline{P}_{c}}\right)^{-\frac{1}{N_{e}}} - \frac{2}{N_{e}} \cdot \left(\frac{\underline{P}^{(j)}}{\underline{P}_{c}}\right)^{-1} \right)^{-1}$$

$$\cdot \left\{ \left[\frac{N_{e}-1}{2} \cdot \frac{[2/(N_{e}+1)]^{(N_{e}+1)/(N_{e}-1)}}{\left(\frac{p}{P_{c}}\right)^{2/N_{e}} \left[1 - \left(\frac{p}{P_{c}}\right)^{(N_{e}-1)/N_{e}} \right] \right\}^{-1/2} \cdot a_{-1} \right\}$$
for $j = 1$

$$\frac{P^{(1)}}{P_{c}}\bigg|_{x_{n+1}} = \frac{P}{P_{c}}\bigg|_{x_{n}} + \frac{d(P/P_{c})}{dx}\bigg|_{x_{n}}(x_{n+1} - x_{n})$$

where n refers to the nth table entry.

The pressure derivative formula used is:

$$\frac{d(P/P_c)}{dx} = \left[\frac{\frac{N_e-1}{N_e}}{\frac{N_e-1}{N_e}} \left(\frac{\frac{P}{P_c}}{\frac{P}{C}}\right)^{-1} e^{\left(\frac{P}{P_c}\right)^{-1}} e^{\left(\frac$$

Next, tables for pressure and its derivatives are constructed by the program. Table entries are at increments of

$$-\mathbf{x_i}/75 \qquad \text{for} \qquad \mathbf{x_i} < \mathbf{x} < 0$$

$$(\mathbf{R_d} \sin \theta) / 25 \qquad \text{for} \qquad 0 < \mathbf{x} < \mathbf{R_d} \sin \theta$$

$$\frac{1}{25} \qquad \text{for} \qquad \mathbf{R_d} \sin \theta < \mathbf{x} < \mathbf{R_d} \sin \theta + 1$$

and

where the initial nozzle axial position, \mathbf{x}_{i} , is computed from:

$$\mathbf{x}_{i} = -\left[(\mathbf{R}_{u} + \mathbf{R}_{i}) \cdot \sin \theta_{i} + \frac{\sqrt{\mathbf{a}_{c}} - 1 - (\mathbf{R}_{u} + \mathbf{R}_{i}) \cdot (1 - \cos \theta_{i})}{\tan \theta_{i}} \right]$$

2

See Figure 5-1 below:

Figure 5-1 NOZZLE GEOMETRY

Area ratio and its derivative and (a and $\frac{da}{dx}$) are found by the five formulae below:

1)
$$\mathbf{x} < \mathbf{x}_{i} + \mathbf{R}_{i} \sin \theta_{i}$$

 $\mathbf{a} = \left[\sqrt{\mathbf{a}_{c}} - \mathbf{R}_{i} \left(1 - \sqrt{1 - \frac{(\mathbf{x} - \mathbf{x}_{i})^{2}}{\mathbf{R}_{i}^{2}}} \right) \right]^{2}$
 $\frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{x}} = \frac{-2(\mathbf{x} - \mathbf{x}_{i})}{\left[\mathbf{R}_{i}^{2} - (\mathbf{x} - \mathbf{x}_{i})^{2}\right]^{1/2}} \cdot \sqrt{\mathbf{a}}$

2)
$$x_i + R_i \sin \theta_i < x < -R_u \sin \theta_i$$

 $a = \left[\sqrt{a_c} - R_i(1 - \cos \theta_i) - (x - x_i - R_i \sin \theta_i) \tan \theta_i\right]^2$
 $\frac{da}{dx} = -2 \cdot \sqrt{a} \cdot \tan \theta_i$

3)
$$-R_{u} \cdot \sin \theta_{i} < x < 0$$

$$a = \left[1 + R_{u} \left(1 - \sqrt{1 - \frac{x^{2}}{R_{u}^{2}}}\right)\right]^{2}$$

$$\frac{\mathrm{da}}{\mathrm{dx}} = \frac{2\mathrm{x}}{\left[\mathrm{R}_{\mathrm{u}}^{2} - \mathrm{x}^{2}\right] 1/2} \cdot \sqrt{\mathrm{a}}$$

4)
$$\cdot 0 < x < R_{d} \cdot \sin \theta$$

$$a = \left[1 + R_{d} \left(1 - \sqrt{1 - \frac{x^{2}}{R_{d}^{2}}}\right)\right]^{2}$$

$$\frac{da}{dx} = \frac{2x}{\left[R_{d}^{2} - x^{2}\right]^{1/2}} \cdot \sqrt{a}$$

5)
$$R_d \cdot \sin \theta < x \leq R_d \cdot \sin \theta + 1$$

for cone

$$a = \left[r_{t} + (x - x_{t}) \cdot \tan \theta \right]^{2}$$
$$\frac{da}{dx} = 2 \cdot a \cdot \tan \theta$$

for contour

$$a = Y^2$$

$$\frac{da}{dx} = 2 \cdot Y \cdot \frac{dY}{dx}$$

Three special points are included in the pressure table. These are a point at $x = x_i$ such that

$$\frac{P}{P_{c}} = \frac{P_{i}}{P_{c}}$$
$$\frac{d(P/P_{c})}{dx} = 0$$

and two points at x = 0 such that

.

$$\frac{P}{P_{c}} = \left(\frac{P^{*}}{P_{c}}\right)_{equilibrium} \qquad \frac{3N_{e} - 1}{2(N_{e} - 1)}$$
$$\frac{d(P/P_{c})}{dx} = -\frac{N_{e}}{\sqrt{R^{*}}} \cdot \left[\frac{2}{N_{e} + 1}\right]$$

with $R^* = R_u$ and $R^* = R_d$, respectively.

The following items are input directly to the computer program as described in Section 6 and shown in Figure 6-1, left to right.

5.3.25 SUBROUTINE PRNTCK

For the ODK option to print starting at step ND1, printing every ND3rd step up to step ND2, this suboutine checks whether or not the current step should be printed. If it is to be printed this subroutine calls subroutine ØUTPUT.

5.3.26 SUBROUTINE REAXIN

This subroutine processes SPECIES, REACTIONS, and THIRD BODY REAX RATE RATIOS input cards. Reference may be made to Section 6.5 for a complete description of input requirements. A table of all species appearing in the input reaction set is generated for further processing by subroutine SELECT if required.

5.3.27 SUBROUTINE SELECT

This subroutine provides the interface logic required to select the minimum species list required for the kinetic expansion calculations. The subroutine is only used for the ØDE-ØDK interface. The list of all species appearing in the input reaction set is matched against the list of species considered for the equilibrium calculation. All species which appear in both a reaction and the equilibrium calculation list are selected for the kinetic expansion calculation. If a species appears in the reaction set but has not been considered for the equilibrium calculation, the program prints an error message and terminates the current case.

If the INERTS directive was specified those species specified under that directive will be added to the list for the kinetic expansion calculation along with the other species selected.

If the INERTS directive was not specified, all those species, considered for the equilibrium calculation, whose mole fractions are greater than or equal to an input selection criterion will also be selected for the kinetic expansion calculation. Species selected in this way will be listed as inert species on the program ouput since they do not enter into chemical reaction.

This subroutine also selects pairs of condensed phases if either of the phases passes one of the above selection criteria.

5.3.28 SUBROUTINE STF

This subroutine evaluates the thermodynamic functions Cp_T/R , H_T°/RT , S_T°/R , from curve fit coefficients. The subroutine uses the same procedure as subroutine CPHS. The additional functions $d(Cp_T)/dt$ and free energy, G_T°/RT , are also computed. The calculated functions are then converted to the internal computational units for use by the kinetic expansion calculations. Also, low temperature thermodynamic data from tables are used when required if the LTCPHS directive was specified in the program input.

850128

5.3.29 SUBROUTINE STOICC

For each reaction this subroutine constructs two vectors of stoichiometric coefficients, one for reactants and one for products. Up to 10 reactants and 10 products may be considered for each reaction. The total number of entries in the resultant linear reaction table is 600, i.e., the sum of all stoichiometric coefficients can not exceed 600.

5.3.30 SUBROUTINE STORNU

The purpose of this subroutine is to store the stoichiometric coefficients into the ITABLE arrays in COMMON/CSP RXC/. The coefficients will be positive for reactant species and negative for product species.

5.3.31 SUBROUTINE SUBNE

Calculates the average equilibrium pressure expansion coefficient from the chamber to the throat by iteration from the following formula (Newton's method):

 $\mathbf{P}_{\mathbf{C}}$ is the equilibrium chamber pressure

This subroutine is used by subroutine PRES.

5.3.32 <u>SUBROUTINE TABGEN (IFLAG, LTABLE, XTAB, YTAB, LUSED, X, Y,</u> <u>IERRØR, NY)</u>

This subroutine records a tabular function (X, Y(NY)) in tables of fixed length. The first and last event will always be tabulated and the table will either contain all of the values specified or will be at least half full. Once the number of events exceed the table length, the table will be repacked by the deletion of every other table entry and tabulation will proceed choosing every 2^{Nth} event(N=0, 1, 2. . . etc., where N is the number of times the table must be repacked). The table spacing will be a power of two except for the last event which will always be tabulated.

The calling sequence parameters are:

IFLAG	-	denotes type of entry to subroutine
		= - 1 first entry
		= 0 normal entry
		= + 1 last entry
LTABLE	-	length of tables available for tabulation
XTAB	-	table for tabulation of the variable X
YTAB	-	table for tabulation of the variable
LUSED	-	number of table entries currently used (output)
х	-	the variable X
Y	-	the variable Y
IERRØR	-	error flag
NY	-	number of Y variables to be tabulated

Note: One Dimensional Mach Number Tabulation Procedure

At the initial axial position, X and Mach number are recorded. TABGEN is then used with LTABLE=50 (assuring 25 saved values). The last recorded values are the end values for the transonic tables.

5.4 TRANS MODULE SUBROUTINES

The transonic flow module (TRANS) calculates the two-dimensional flow conditions in the throat region of the nozzle. It is used to obtain an initial data line for the MOC module. The analysis is based on a modification to the method of Sauer⁸. A detailed derivation and description of the method used is given in Reference 9. An abreviated description of the method is presented in Section 2.4. Setion 2.4 described how the method has been adapted to treat flows with variable mixture ratio.

The TRANS module consists of the following subroutines:

TRAN	GETILV
BANDI	NEWT
FCALC	PTAB
FINDT	SAUER
GETIL	TRIM

5.4.1 SUBROUTINE TRAN

This subroutine is the controlling program for the transonic calculations, and is used to construct an initial data line for the method of characteristics calculations. Subroutine TRAN reads the Namelist \$TRANS input as described in section 6. The calculations given below are performed by this subroutine. The method of analysis used is described in detail in reference

Transonic Calculations

From data supplied by the ODK subprogram expansion coefficients, γ_n , are computed for each of N zones as

$$\overline{\gamma}_{n} = \frac{\ln \left(\frac{P_{\ell}}{P_{1}} \right)_{n}}{\ln \left(\frac{\rho_{\ell}}{\rho_{\ell}} \right)_{n}} \qquad n = 1, \dots, N$$

The nomenclature for numbering zones and the slipline locations dividing the zones is given in Figure 5.2.

Slipline locations, Υ_n , are calculated (using subroutine TRIM) as

zone index	boundary index		slipline l	ocations
	- N		$Y_N = 1$	wall
N	- N-1	<u></u>	Y _{N-1}	
<u> </u>	-			
•				
	- n+1		Y _{n+1}	
n+1	- n		Y _n	
n	- n-1		Y _{n-1}	
<u> </u>	-			
•				
	- 3		Y ₃	
3	- 2		Y_2	
2	• 1		Y ₁	
<u> </u>	• 0		$Y_0 = 0$	axis

Figure 5-2: Nomenclature for the Numbering of Zones

where

$$A_{n} = \frac{\rho_{n}^{*} a_{n}^{*}}{\rho_{n+1}^{*} a_{n+1}^{*}}$$

$$K_{n} = \frac{\dot{m}_{n+1}}{\dot{m}_{n}} \qquad n = 1, 2, \dots N-1$$

The sonic conditions ρ_n^* and a_n^* are provided by the ODK subprogram and the partial mass flow rates, m_n^* , are input.

Newton's method (subroutines NEWT and BANDI) is used to calculate the transonic coefficients B_{0_n} , B_{1_n} , C_{1_n} , and C_{2_n} . Subroutine FCALC evaluates the boundary conditions which must be satisfied.

Distribution of Initial Line Points

Subroutine TRAN next calculates the location of points on the initial data line used to start the method of characteristics calculations. First the radial position coordinates, r_i , are computed. A sinusoidal distribution of the following form is used:

$$r_{i} = \{r_{w} \sin((\frac{i}{N} \frac{\pi}{2}))\}$$
 $i = 0, 1, 2...N$

where

- N is the number of points on the initial line before editing.
- ε₁ is an exponent used for modifying the distribution function. Ordinarily a value of 1.2 is used.
- r_w is the radial coordinate at which the initial data line intersects the wall.

The values computed for r_i are then edited to prevent locating points too close to sliplines, or too close to the wall. Some of the editing procedures can be controlled by input, as described in Section 6.6.

The axial coordinate positions, z_i , are then computed. First, a value of z_{axis} is found such that the Mach number at $r = 0, z = z_{axis}$ is the same as at the point r_w , z_w . The values of z_i are located on a parabola as follows:

$$z_{i} = z_{w} + ((r_{w} - r_{i})/r_{w})^{2} * (z_{axis} - z_{w})$$

where z_{axis} is located on the axis half way between the sonic point and the point with a pressure equal to the pressure at the wall at r=0.

With r_i and z_i determined the transonic analysis is used to obtain corresponding values of pressure and flow angle. Using pressure as an independent variable, the flow tables computed by ODK (ODE if the TDE option used) are searched and values of ρ , V, T, and chemical species concentrations are obtained by interpolation. Subroutine GETIL is called for this purpose when one or more zones of constant mixture ratio are used, and subroutine GETILV is called when a variable mixture ratio is used.

Once constructed, the initial data line is integrated to obtain the nozzle flow coefficient ${\rm C}_{\rm n}$, where

and the result is printed.

Subroutine PTAB is called to write a table of boundary layer edge conditions for the results obtained up to the initial data line. This file is written on unit LUBLM and is continued later by subroutine PRINT as further values are computed using the MOC. If edge-conditions for BLIMP-J are to be prepared, they are written on unit 50.

5.4.2 SUBROUTINE BANDI (A, NBW, NEQ, NMAX, B, X, INEW, KERR)

Purpose

BANDI solves a set of linear equations Ax = b where A is a nonsymmetric band matrix.

Restrictions

The matrix A is destroyed.

<u>Usage</u>

Calling sequence:

CALL BANDI (A, NBW, NEQ, NMAX, B, X, INEW, KERR)

where

A

is a matrix of at least NEQ rows and NBW columns (see below) which initially contains the elements of the band matrix, stored as follows:

To solve a system of the form

$a_{11}x_1 + a_{12}x_2$	=	b
$a_{21x_1} + a_{22x_2} + a_{23x_3}$	=	b ₂
$a_{32}x_2 + a_{33}x_3 + a_{34}x_4$	=	b
$a_{43}x_3 + a_{44}x_4 + a_{45}x_5$	=	ъ₄
$a_{54x4} + a_{55x5}$	=	b ₅

To transform an original (N by M) MATRIX A(I, J) into a packed (N by NBW) BANDED MATRIX AB (I, J), the following transformation applies.

AB(I, JB) = A(I, J)where $JB = (\frac{NBW}{2} + 1) - (I - J)$ and NBW = BAND WIDTH

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
NBW	is the width of the band (odd).				
NEQ	is the number of equations in the system.				
NMAX	is the maximum number of rows for which A has been dimensioned.				
В	is the right-hand vector for the system.				
x	is the solution vector returned by BANDI.				
INEW	is a flag, set = 0 unless the coefficient matrix A is unchanged from a previous call to BANDI, in which case set INEW = 1.				
KERR	is an error flag returned by BANDI: = 0 if no error; = 1 if any diagonal element becomes zero during triangularization of A.				

<u>Method</u>

BANDI finds the solution vector X by single-pass Gaussian elimination. If INEW = 0, the coefficient matrix A is upper-triangularized by forward substitution. Backward substitution then yields the solution X. If INEW = 1, BANDI assumes that the coefficient matrix A has already been reduced on a previous entry and that only the right-hand vector B has changed. Therefore, the forward substitution is bypassed.

Programming Information

Note that the matrix A is upper-triangularized by BANDI, destroying the original band matrix coefficients. For very large or ill-conditioned systems, one may increase the accuracy of the solution as follows:

- Save the original band matrix coefficients from A in a similar matrix AP.
- 2) Call BANDI with INEW = 0 to obtain a solution x_0 of Ax = b.
- 3) Calculate $b_n = Ax_n$ using the coefficients saved in AP. (A subroutine BMMULT exists to do this.)
- 4) Calculate a new right-hand vector $e_n = b b_n$.
- 5) Call BANDI with INEW = 1 to solve the system $A\delta x_n = e_n$.
- 6) Set $x_{n+1} = x_n + \delta_n$.
- 7) Repeat steps 3-6 until the desired convergence is attained.

Error Return

If, during triangularization of the matrix, any diagonal element becomes zero, an appropriate message is printed and KERR is set to unity before returning to the calling program.

5.4.3 <u>SUBROUTINE FCALC</u>

The purpose of this subroutine is the evaluation of boundary condition functions required to be zero by the transonic analysis. Subroutine FCALC is called by subroutine NEWT in which Newton's Method is used to find the zeros.

Input:

$$Y_n$$
slipline heights $n = 1, \ldots N - 1$ γ_n specific heat ratio for each zone $n = 1, \ldots N$ $B_{0_n}, B_{1_n}, C_{1_n}, C_{2_n}$ estimates for the constant coefficients sought by
NEWT to satisfy the boundary conditions $n = 1, \ldots N$ Ntotal number of zones

Output:

The values of the following functions are computed and output. If the boundary conditions are correctly satisfied, each of these $(F_{1n}, F_{2n}, F_{3n}, F_{4n})$ are zero.

At the sliplines, $n = 1, \ldots N - 1$

linear term $v_n = v_{n+1}$ (i.e. match on streamline angle, 1st order);

$$\mathbf{F}_{1_{n}} = \left[\frac{1}{2} (\gamma_{n}+1) B_{1_{n}}^{2} Y_{n} + C_{1_{n}} Y_{n}^{-1}\right] - \left[\frac{1}{2} (\gamma_{n+1}+1) B_{1_{n}+1}^{2} Y_{n} + C_{1_{n+1}} Y_{n}^{-1}\right]$$

constant term $v_n = v_{n+1}$;

$$\begin{aligned} \mathbf{F}_{2_{n}} &= \left[\frac{1}{16} (\gamma_{n}+1)^{2} B_{1_{n}}^{3} \mathbf{Y}_{n}^{3} + \frac{1}{2} (\gamma_{n}+1) B_{1_{n}} C_{1_{n}} \mathbf{Y}_{n} (\ln \mathbf{Y}_{n} - \frac{1}{2}) \right. \\ &+ \frac{1}{2} (\gamma_{n}+1) B_{1_{n}} B_{0_{n}} \mathbf{Y}_{n} + C_{2_{n}} \mathbf{Y}_{n}^{-1} \right] \\ &- \left[\frac{1}{16} (\gamma_{n+}+1)^{2} B_{1_{n+1}}^{3} \mathbf{Y}_{n}^{3} + \frac{1}{2} (\gamma_{n+1}+1) B_{1_{n+1}} C_{1_{n+1}} \mathbf{Y}_{n} \quad (\ln \mathbf{Y}_{n} - \frac{1}{2}) \right. \\ &+ \frac{1}{2} (\gamma_{n+1}+1) B_{1_{n+1}} B_{0_{n+1}} \mathbf{Y}_{n} + C_{2_{n+1}} \mathbf{Y}_{n}^{-1} \right] \end{aligned}$$

linear term $P_n = P_{n+1}$;

$$F_{3_n} = \gamma_n B_1 P_n^* - \gamma_{n+1} B_{1_{n+1}} P_{n+1_{n+1}}^*$$

constant term $P_n = P_{n+1}$;

$$F_{4_{n}} = \left\{ \gamma_{n} \left[\frac{1}{4} (\gamma_{n} + 1) B_{1_{n}}^{2} Y_{n}^{2} + C_{1_{n}} \ln Y_{n} + B_{0_{n}} \right] - 1 \right\} P_{n}^{\star} \\ - \left\{ \gamma_{n+1} \left[\frac{1}{4} (\gamma_{n+1} + 1) B_{1_{n+1}}^{2} Y_{n}^{2} + C_{1_{n+1}} \ln Y_{n} + B_{0_{n+1}} \right] - 1 \right\} P_{n+1}^{\star}$$

At the wall , n = N

linear term $v_N (1,z) = z$;

$$F_{1_{N}} = \frac{1}{R} - \left[\frac{1}{2} (\gamma_{N} + 1) B_{1_{N}}^{2} + C_{1_{N}} \right]$$

constant term $v_N(1,z) = z$;

$$F_{2_{N}} = \left[\frac{1}{16} (\gamma_{N} + 1)^{2} B_{1_{N}}^{3} - \frac{1}{4} (\gamma_{N} + 1) B_{1_{N}} C_{1_{N}} + \frac{1}{2} (\gamma_{N} + 1) B_{1_{N}} B_{0_{N}} + C_{2_{N}}\right]$$

Since at the axis $v_1(0,z) = 0$ it is required that $C_{11} = C_{21} = 0$.

5.4.4 SUBROUTINE FINDT

This subroutine is called by subroutine GETILV to read unit 16, which is a direct access file containing flow properties computed by ODK. Values are found from the file as a function of the input pressure, and values at the pressure are obtained from these by linear interpolation.

5.4.5 SUBROUTINE GETIL (IZ, IP, PPSI)

If one or more zones of constant mixture ratio are to be used, then this subroutine generates the initial data entries for the MOC module. The values are obtained using subroutine SPLIN for interpolation in the gas tables generated by the One Dimensional Kinetic module. The values obtained are p, V, T, and the chemical species concentrations. The values used for interpolation are read from unit KSTF1.

5.4.6 SUBROUTINE GETILV

If variable mixture ratio is to be used, then this subroutine generates initial data line entries for the MOC module. Values are obtained as a function of pressure using subroutine FINDT. The method described in Section 2.4.4 is used to obtain values at each initial data line point.

5.4.7 <u>SUBROUTINE</u>

NEWT(M, F, MF, N, VAR, NVAR, FCALC, WF, PERTV, EPS1, MAXIT, NUMIT, BIN, AB, NBW, KERR)

Given a set of n functions in n unknown variables where each function is coupled as below:

$$f_{i}(X_{j})$$
 $i = 1, ..., n$
 $j = i-k, ..., i+k$
and $l \le j \le n$

this routine will attempt by Newton's method to find values

such that

$$\sum_{i=1}^{n} f_{i}^{2}(x_{j}) = 0.$$

 $x_1, x_2, \ldots x_n$

Method

Newton's method is used to iterate for a solution vector. The matrix of partial derivatives, J, required by the method is generated automatically by the subroutine. This matrix will be banded of width 2k+1. The matrix inversion is performed by subroutine BANDI. In the event Newton's method yields a vector which is farther from a solution in a least squares sense than the previous estimate, the increment vector is halved. Newton's algorithm for the (k+1)th iterant is:

$$X^{(k+1)} = X^{(k)} - J^{(k)} f^{(k)}$$

<u>Restrictions</u>

The user must supply initial values for the solution vector and also a subroutine to evaluate the functions. The subroutine must communicate with NEWT through CØMMØN statements. Subroutine BANDI is required. <u>Usage</u>

Call NEWT(M, F, MF, N, VAR, NVAR, FCALC, WF, PERTV, EPS1, MAXIT, NUMIT, NUMIT, BIN, AB, NBW, KERR)

Index to Calling Sequence:

Input: M, MF, N, VAR, NVAR, WF, PERTV, EPS1, MAXIT, NBW Output: VAR, F, NUMIT, KERR Working: BIN, AB

Explanation of Calling Sequence:

- 1) M is the length of the array containing the n functions.
- 2) F is the array containing the n function values evaluated by FCALC.

3) MF is an array of M control words:

if MF(I)=0, include F(I)if MF(I)=1, exclude F(I)

- 4) N is the length of the array containing the n variables.
- 5) VAR is the array containing the n variables, $x_i = 1, ..., n$
- 6) NVAR is an array of N control words:

if NVAR(J)=0, include VAR(J)
if NVAR(J)=1, exclude VAR(J)

- 7) FCALC is a name for the subroutine which calculates the functions, F(I). A program which calls NEWT must have an EXTERNAL statement containing this name.
- 8) WF is an array of n weighting factors. These are used in conjunction with EPS1 to determine whether a solution has been reached.

$$\omega_1 = WF(1)$$

9) PERTV is a perturbation factor used in calculating the partial derivatives required by Newton's method. If PERTV = ϵ , then:

$$\frac{\partial F}{\partial x} = \frac{F(x+\delta) - F(x)}{\delta}, \text{ where } \delta = \max(|\epsilon x|, \epsilon + 10^{-3})$$

10) EPS1 is an error bound used to determine whether a solution has been reached. If $\epsilon_1 = \text{EPS1}$, then a solution is claimed when

$$\sum_{i=1}^{n} (\omega_{i}F_{i})^{2} \leq \epsilon_{1}$$

- 11) MAXIT is the maximum number of iterations allowed.
- 12) NUMIT is the number of iterations required for solution.
- 13) BIN is an array required by LESK and must be at least of dimension N + 1.
- 14) AB is a two-dimensional array containing the augmented matrix of subroutine LESK and must be at least of dimension AB(M, N+1).
- 15) NBW band width = 2k+1, see subroutine BANDI.
- 16) KERR error indicator, see subroutine BANDI.

5.4.8 <u>SUBROUTINE PTAB (PØNED)</u>

This subroutine is used to write a table of boundary layer edge conditions for the results obtained up to the initial data line for the MOC. Unit LUBLM is used for passing this data to BLM. If edge conditions for BLIMP-J are to be prepared, they are written on unit 50 (i.e., IPTAB = 1 in \$ODE, see Section 6.4.3.2.).

The following procedure is followed to make the one-dimensional throat coincident with the axisymmetric throat.

- 1) The pressure, P_{1D} , at the axisymmetric throat (r=1, x=0) must be given (PØNED in the calling sequence above).
- 2) The axial position, x*, in the one-dimensional gas tables corresponding to the above pressure is obtained by interpolation. The points downstream of this axial position are deleted.
- 3) The table of axial positions (saved in the one-dimensional calculations - TABGEN) is recoordinated to fit smoothly with the axisymmetric geometry using:

$$x' = x_{i} + (x - x_{i}) \left(\frac{-x_{i}}{x^{*} - x_{i}} \right)$$

where

x'	=	recoordinated axial position
x	-	tabulated axial position
×i	=	initial axial position
x*	=	axial position from 2) above

- 4) The radial coordinate, corresponding to each recoordinated axial coordinate, is computed using the input geometric constraints. Reference may be made to Figure 6-1 for a description of the inlet and throat geometry.
- 5) The axial and radial coordinates and the fluid properties are punched. The punched cards may be input directly to the boundary layer computer program.

.

.

5.4.9 SUBROUTINE SAUER (R, X, Y, G, N, I, PPS, THETA)

The purpose of this subroutine is to compute fluid dynamic properties in the transonic region of a rocket nozzle. The method used is based on the analysis of Sauer and is applicable to the situation where the flow is assumed divided into N zones (i.e. striated), each of which is characterized by a constant expansion coefficient, γ_n . The analysis has been further modified so as to extend its range of applicability to nozzles with small (R/r* \geq .5) radius of curvature in the throat section.

Given position coordinates (r, x), this subroutine returns the fluid dynamic properties $(P/P^*, \theta)$.

Calling Sequence

Input;

R	radial position coordinate, r
X	axial position coordinate, x
Y	vector Y_n ; n = 1 N containing the zone boundary coordinates
G	vector γ_n ; n = 1, N containing the zone expansion coefficients
N	total number of zones

Output

I	zone number, n, corresponding to r
PPS	P/P* at (r,x)
THETA	θ at (r,x), the gas streamline angle in radian

Method

$$R' = R + \frac{\gamma}{4}$$

$$X = \left(\frac{R}{R'}\right)^{1/2} x$$
If only one zone is specified (N = 1), then
$$u' = \frac{1}{4} (\gamma + 1) B_1^2 r^2 + B_0 + B_1 X$$

$$v' = \frac{1}{16} (\gamma + 1)^2 B_1^3 r^3 + \frac{1}{2} (\gamma + 1) B_1 B_0 r + \frac{1}{2} (\gamma + 1) B_1^2 r x$$

where

$$B_{1}^{2} = \frac{2}{(\gamma + 1)} \quad \frac{1}{R'}$$
$$B_{0} = -\frac{1}{4} \quad \frac{1}{R'}$$

If more than one zone is specified (N \ge 2), then

$$u^{*} = \frac{1}{4} (\gamma + 1) B_{1}^{2} r^{2} + C_{1} \ln r + B_{0} + B_{1} X$$

$$v^{*} = \frac{1}{16} (\gamma + 1)^{2} B_{1}^{3} r^{3} + \frac{1}{2} (\gamma + 1) B_{1} C_{1} r (\ln r - \frac{1}{2})$$

$$+ \frac{1}{2} (\gamma + 1) B_{1} B_{0} r + C_{2} r + \left[\frac{1}{2} (\gamma + 1) B_{1}^{2} r + C_{1} / r \right] x$$

where the coefficients B_0 , B_1 , C_1 , C_2 are input through COMMON/NAMBC/ and the nth value is selected, corresponding to the nth zone. The zone, n, is determined such that

$$Y_{n+1} \ge r \ge Y_n$$

For all N

$$u = 1 + u'$$

$$v = v'$$

$$P/P^* = 1 - \gamma_n u'$$

$$\theta = \arctan(v/u)$$

5.4.10 SUBROUTINE TRIM (A, X, B, N, NN)

This subroutine solves the system

.

 $\overline{\overline{A}}\overline{X} = \overline{b}$

for \overline{X} where $\overline{\overline{A}}$ is tridiagonal, i. e.;

all $a_{ij} = 0$ if i > j+1 or i < j-1.

The method used is Gaussian elimination.

Calling Sequence

A Is the input coefficient matrix and must be dimensioned at least A(N, 3). The elements a_{ij} must be input as

				-		
	A(1,2)	A(1,3)			a ₁₁	^a 12
A(2,1)	A(2,2)	A(2,3)		a ₂₁	^a 22	^a 23
A(3,1)	A(3,2)	A(3,3)		a ₃₂	a ₃₃	^a 34
	•				•	
			=		•	
	•		l			
1	•			•	•	
	•				•	
A(N, 1)	A(N,2)			a _{n,n-1}	a _{nn}	
L		•	1	h. ,		

The contents of A will be destroyed by TRIM.

- X Is the output solution vector \overline{X} and must be dimensioned at least X(N).
- B Is the input vector b and must be dimensioned at least B(N).
 The contents of B will be destroyed by TRIM.
- N Is the order of the system. N ≥ 2 is required.
- NN Is the dimension of A (NN, 3), X(NN), and B(NN) in the calling program.

5.5 MOC MODULE SUBROUTINES

The Method of Characteristics (MOC) module is used to calculate the loss in nozzle performance caused by flow divergence, including the effects of chemistry and mixture ratio variation. The effect of shock waves can also be calculated. Obtaining an accurate nozzle performance prediction usually requires a closely spaced characteristics mesh. In order to allow both shock waves and a fine mesh, random access files are used for storing and retrieving mesh point information.

TDK	INSRT
ATSHCK	INTEXT
AXISPT	ITER1
CHAR	ITER2
CHECK	ITER3
CKEXIT	MLCK
CKSHCK	MRCK
CNTRL	MRCK1
CNTRL1	NESK
CNTRL2	PRINT
CNTR12	PRINTS
CNTR13	SAVPT
CNTR14	SCK
CNTR16	SDERIV
CNTR21	SETID
CNTR31	SHCKA
CNTR91	SHCKA1
CRIT	SHCKL
CUBIC	SHCKR
DSPT	SHCKW
EF2D	SHCKW1
ENCALC	SHØCK
ERRØRZ	SINT
FTHRST	SUBIL
GETPT	SUBILR
GPF	TCALC
GPFKIN	THERM
GPFPG	TSTDK
INPT	TWØD
INPTR	WALL
INPTRS	WLCALC
INPTR1	WLPT
INPTS	

~

5.5.1 SUBROUTINE TDK

This subroutine is called by subroutine MAIN and is the driver for the MOC module. It performs the functions described below.

First, the MOC mesh point arrays P, PP, Q, Q3A, and Q4A, are initialized to zero. If the TDE option is to be executed, then the equilibrium gas properties tables described in Section 2.5.2 are converted to the system of units used internally by the MOC module and are stored for its use. Subroutine CHAR is then called to read the \$MOC Namelist input, and perform all calculations that are preliminary to the MOC construction.

If the MOC construction is to ignore shocks (SHØCK=O IN \$MØC), then subroutine CNTRL is called, otherwise subroutine CNTRL91 is called.

5.5.2 SUBROUTINE ATSHCK

This subroutine calculates an attached shock point at axial position XA on the nozzle wall. Properties on the upstream side of the shock are calculated at point 3a. Values used in the calculation of point 3a are from the known points 4 and 1. Properties on the downstream side of the shock are then calculated at point 3b. Point 3b is found by solving the shock relations given the upstream conditions at point 3a and a streamline deflection angle equal to the change in wall angle at position XA.

The procedure consists of 4 steps, as follows:

- 1) Locate point 2 on the RRC 4-1 such that the LRC from point 2 reaches the wall at XA.
- 2) Using point 2 and point 4, calculate values at point 3a.
- 3) Iterate step 1 and 2 until the point 3a properties converge.
- 4) Find the shock angle, β_3 , corresponding to the upstream

conditions at point 3a and a streamline deflection angle equal to the change in wall angle at position XA.

5.5.3 <u>SUBROUTINE AXISPT</u>

This subroutine calculates an axis point (or point on a center body of radius, r_c) using the known points 4 and 1.

Points 1 and 4 are known points and point 3 is the unknown point to be computed. At point 3:

and

 $\theta_3 = 0.$

 $r_3 = r_c$

Initial estimates for values at point 3 are:

$$A_3 = A_4, B_3 = B_4, \alpha_3 = \alpha_4, Y_3 = Y_4$$

and

$$G_3 = G_1$$

 $A_3G_3H_3 = A_1G_1H_1$
 $G_3H_3 = G_1H_1$

The axial location of point 3 is calculated from

$$x_3 = x_1 + \frac{r_c - r_1}{\tan 1/2(\theta_1 - \alpha_1 - \alpha_3)}$$

The flow properties at point 3 are calculated from

$$P_{3} = P_{1} + \frac{P_{3} + P_{1}}{2} \left\{ \frac{1}{2} \left[-A_{1}G_{1}H_{1} - A_{3}G_{3}H_{3} + (G_{1}H_{1} + G_{3}H_{3}) \frac{sin\theta}{r_{1}} \right] (x_{3} - x_{1}) - \frac{1}{2} (G_{1} + G_{3}) \theta_{1} \right\}$$

$$\rho_{3} = \rho_{4} \begin{bmatrix} \frac{P}{2} & \left[\frac{1}{\gamma_{4}} + \frac{1}{\gamma_{3}}\right] \\ \rho_{3} = \rho_{4} \begin{bmatrix} \frac{P}{2} \\ \frac{P}{2} \end{bmatrix} = \exp \left\{-\frac{1}{2} \begin{bmatrix} A_{4} + A_{3} \end{bmatrix} \begin{bmatrix} x_{3} - x_{4} \end{bmatrix}\right\}$$

$$T_{3} = T_{4} \begin{bmatrix} \frac{P}{2} & [\frac{1}{\gamma_{4}} + \frac{1}{\gamma_{3}}] \\ \frac{P}{2} & [\frac{1}{\gamma_{4}} + \frac{1}{\gamma_{3}}] \\ exp \left\{ -\frac{1}{2} & (B_{4} + B_{3})(x_{3} - x_{4}) \right\}$$

Forsthe 1st iteration (all iterations if constant Y option):

$$v_3 = \{v_4^2 - 4(P_3^{-}P_4)/(\rho_3^{+}\rho_4)\}^{\frac{1}{2}}$$
, Bernoulli Equation

For subsequent iterations (calculated in GPFKIN or GPFPG):

$$V_3 = \left\{ 2(H_t - \sum c_i h_i) \right\}^{\frac{1}{2}}$$
, Energy Equation

The above equations are iterated (i=1,...) until x_3 , P_3 , ρ_3 , T_3 , and V_3 converge to the required accuracy.
Throughout the method of characteristics computations the variables used are equivalenced to entries in dimensioned arrays. This equivalency of variables is always in the same order as prescribed in Table 5-6. This equivalencing occurs for the I subscript in the following arrays: P(I,J), PP(I,J), PS(I), PSS(I), Q(I,J), Q3A(I), and Q4A(I).

S-125, 5-126

TABLE 5-6 EQUIVALENCE TABLE FOR MOC VARIABLES

I	Variable
الارد فك الحدد جله، فكة كم علم بوره وي	2 1b f/ft
.J) =	P, pressure
	o density nodians
	A streamline angle ft/sec
	V. velocity
	r, radial coordinate
	x, axial
	Ř
	T, temperature
	A, term computed in Sublocation
	B, " " " "
	C, " " " "
	D, " Stream function (0 at axis, 1 at wall)
	stream function (
	G, L II II II II II II
	Υ. 11 11 11 11 11 Υ. 11 11 11 11
1	dividing streamline flag
))	zone number
)	point ID no. in direct access filo
	β , shock angle intenion etc.)
2	point type (axis, interior, occur
3	Mach no.
4	ID no. of previous pt. on the char.
5	ID no. of previous provide the char.
6	ID no. of nt. on the other side of shock
7	not used currently
8-30	mass fraction of species 1
1	1
-	mass fraction of species bu

850707

•

• 3.5 •

5.5.5 SUBROUTINE CHECK (NØ)

This subroutine compares current and previous values of the flow variables P_3 , P_3 , θ_3 , V_3 , r_3 , x_3 , and T_3 for relative convergence by calling subroutine CRIT. As soon as a variable is encountered failing the test, the variables are updated one iteration and the program returns with the convergence flag set as failed (NØ = 1). If convergence is achieved the variables are updated one iteration and the subroutine returns with the convergence flag set as passed (NØ = 0).

5.5.6 <u>Subroutine CKEXIT (P, EFLAG)</u>

This subroutine checks if a point, P, is outside the nozzle by comparing the axial location, Z, against the nozzle length, ZEXIT.

If Z \geq ZEXIT * 1.03, then set EFLAG = 2.

If ZEXIT * 1.03 > Z \leq ZEXIT, then set EFLAG = 1.

5.6.7 Subroutine CKSHCK (SFLAG)

This subroutine checks for a crossing of right-running characteristics, which determines the start point of a right-running shock wave. The shock flag, SFLAG, is set to 1 when a crossing has occured, or will occur at the next point.

5.5.8 SUBROUTINE CNTRL

The purpose of this subroutine is to control the construction of the finite difference mesh for the method of characteristics solution of the supersonic nozzle flow when the LRC method is used (SHØCK=0 in MOC). Left running characteristics and fluid streamlines are constructed starting at the nozzle throat point (r = 1, x = 0). These left running characteristics extend from the initial data line or nozzle axis to the wall. The mesh points are calculated by subroutines INPT, AXISPT, WLPT and DSPT under control of this subroutine.

Additional points are inserted in the mesh by subroutine CNTRL by property averaging using subroutine INSRT. The circumstances which cause point insertion are listed below. In each case a point is inserted along the initial line or the previous streamline and the calculation of point 3 is repeated:

- 1) If subroutine INPT or DSPT find point 1 to fall beyond the nozzle wall.
- 2) If subroutine INPT finds point 1 to fall above a dividing streamline point.
- 3) If subroutine INPT or DSPT find

 $|\theta - \theta| > \Delta \theta_{tw}$, input item DTWI

4) If a wall point on the circular arc immediately downstream of the throat is calculated such that

$$|\theta - \theta| > \Delta \theta_{wc}$$
, input item DWWCI

or if a wall point between the circular arc and the nozzle exit point is calculated such that

 $|\theta - \theta| > \Delta \theta_{\omega}$, input item DWWI

850714

- 5) When iterating to locate the end of the nozzle wall. (Input tolerance of EPW).
- 6) If subroutine AXISPT, INPST, DSPT, or WLPT locate point 3 such that its distance from point 4 is greater than input item DS times the square root of the Mach number.

At the end of each completed characteristic surface the mesh points are examined and points discarded as described below. Only interior points (ID=2) are to be discarded.

For n = 2 to n = IPPW-1, (i.e., from the initial line or axis to the wall) discard point n if

$$|\theta_{n-1} - \theta_n| + |\theta_{n+1} - \theta_n| < \varepsilon_{\theta}$$

and

$$(r_{n-1} - r_n)^2 + (z_{n-1} - z_n)^2 < \varepsilon_s^2$$

where ϵ_{θ} and ϵ_{s} are the input quantities ETHI and ES.

Whenever a mesh point calculation or insertion is completed successfully, the output subroutine, PRINT, is called so that the point may be printed.

Subroutine CNTRL also integrates the wall pressure by trapezoidal rule to determine the axial component of force existing between adjacent wall points,

$$\Delta F = 2\pi r^{*} \int_{x}^{2} P r dr = \frac{\pi}{2} \left(P_{3} - P_{4} \right) \left(r_{3}^{2} - r_{4}^{2} \right) r^{*}$$

Total thrust is item found by

$$F = F + 2\pi r^* \int_{1}^{2} P r dr$$

where F is the thrust across the initial line as calculated by subroutine CHAR.

DETAILED DISCUSSION OF CNTRL

Detailed documentation for subroutine CNTRL of the TDK computer program is presented on the following pages. It is intended that this documentation be read in conjunction with the FORTRAN listing of subroutine CNTRL.

The CNTRL subroutine calculates flow field points using point calculation subroutines and constructs the method of characteristics point mesh. The points are calculated in the Q array. The left running characteristic (LRC) under construction is stored in the P array, and the previous characteristic is stored in the PP array. In these two dimensional arrays (i.e., Q, P, and PP) the column number is the point number and the row number is the flow field property number. The flow field properties storage is defined in Table 5-6, subroutine CHAR, and is the same for all three arrays. For dividing streamline points, two arrays are required for Points 3 and 4. Storage for these extra points are provided in Q.

Besides the point calculation subroutines (AXISPT, DSPT, INPT, and WLPT), subroutines ERRORZ, INSRT, PRINT, SPLN, SUBIL, and TIMERX, are the only other subroutines called directly from CNTRL.

The CNTRL subroutine is divided into areas 1 through 9. A description of the programming of each of these areas is presented below. Presented in Table 5-7 are definitions for the variables used by subroutine CNTRL. FORTRAN variables which are input to the program have not been included in Table 5-7. These variables are described in Section 6.7.1.

850714

Area 1:

In this area of CNTRL constants are initialized and the Point 3 arrays are zeroed. Other variables needed by CNTRL are initialized in subroutine CHAR. Subroutine SUBIL is called and the first initial line point is brought in and stored in PP(i, 1). The point is also placed in the Point 1 working storage and printed. The same procedure is followed for the second initial line point; this time storing the point in P(i, 1). A check is made to see if an error was detected by subroutine PRINT. The point counters IP for the P array and IPP for the PP array are set to one.

Area 2:

This area defines the general procedure for initial line point set up. The initial line point counter, MS, is incremented and IP and IPP are initialized to one. Initial line point number MS is brought in and stored in P(i, 1). It is also placed in Point 1 and printed. If a dividing streamline point calculation is indicated (i.e., PS [JFLAG] not zero), the point is also stored into the next point in PP.

Area 3:

The counters IPP and IP are incremented and the print subroutine is called with ID as set by the point subroutine just completed (see subroutine PRINT for the definitions of ID). If too many points have been calculated along the LRC (i.e., IP <IPMX) the error flag is set to 7 and CNTRL is exited. Otherwise, the values just calculated in Q(i, 3) are stored in the LRC array and Q(i, 3) is cleared. If the Point 3 is a single point (interior point), this part of the logic is

complete. Otherwise, Q3A(i) is placed in Point 3 and Area 3 is repeated.

Area 3.5

If the exit plane option has been requested (EXITPL = true), no check is made on the end of wall flag (EØW2) that otherwise is used to stop the calculation. The EØW2 flag is set when the end of the wall has been reached within a tolerance of EPW (nominally .01).

If the exit plane calculation has been requested, as soon as the nozzle calculation is complete (i.e., EØW2 set to one) the wall is artifically extended a distance DELWX in the axial direction. The slope used for this extension is that of the last two points in the wall table. The flag EXITCK is used to assure that this is only done once. The point just calculated is written on unit ITSTAB to be used later as the first exit plane point. The statement "BEGIN EXIT PLANE CALCULATION" is printed.

If the exit plane option has been requested and the programming described in the above paragraph has been executed, the last entry in the insert table, IT(LAST), is checked. If the insertion process is complete and the last two points calculated fall on either side of the exit plane, values at the exit plane are found by interpolation and written on unit ITSTAB for later use. If the point just written out is an axis point, or if the first point on the LRC is beyond the exit plane, the program goes to statement 1700 to write out the exit plane summary and to terminate the calculation. Otherwise the program proceeds to Area 4.

If the exit plane calculation is in progress and the LRC has already crossed the exit plane successfully, checks are made to

850714

see if NCHEPE, NPTEPE, and P(6, IP) are within their minimum values. If so, Area 4 is entered at the beginning, otherwise it is entered at 1610 and a special check is made.

Area 4:

If Area 4 is entered at the beginning, a check is made to see if the point just used on the previous LRC was the last point (IPPW) on the LRC. If not, the program goes to Area 7. Otherwise, starting at 1610 NCHEPE is checked as follows; if EXITCK is true, and the point just calculated is not beyond the exit plane, and NCHEPE exceeds its maximum value, transfer is made to Area 9 and the error message "EXIT PLANE OPTION REQUIRES LARGER NCHMXE, NPTMXE" is printed. If no error was found, the program sets IPPW = IP and checks to see if the insertion table is empty. If so, the program transfers to Area 7.

If the insert table is not empty, it is necessary to restart the LRC calculation at the last point entered in the table. The reason for this is as follows. Whenever it is necessary to insert a point along a streamline, the inserted point will start a new LRC. It is then necessary to complete this new LRC and then come back to the point of insertion and complete the LRC that was being computed when the insertion occured. This procedure is carried out in Area 4 by mapping point numbers IT(LAST) through IP of the P array into the PP array. IP is then set to IT(LAST)-1 and IPP is set to IT(LAST)+1 so that the LRC calculation can start from the point of last insertion. This point is then removed from the IT table by setting LAST = LAST-1. The program then goes to Area 7.

Area 5:

Area 5 is entered when a LRC has been completed. This means that the insertion table has been emptied. Next, the PP

array is updated by transferring into it the values in the P array. If the LRC just completed is in the nozzle, the LRC surface is integrated from the axis (or initial line) to the wall using the trapezoidal rule method to obtain the mass flow rate. The integral to each point is stored in the array XMASSF. Tests are made on the input variable MASSFL and print out of the mass flow is done accordingly. Next, an adjustment is made to the pressure so that mass flow is conserved. The density is recalculated from the perfect gas law. At the end of Area 5 the edit logic using ϵ_{0} and ϵ_{s} is carried out as discussed earlier. The characteristic number, LRC, is then updated and the program transfers to Area 2 if the next LRC starts from the initial line, and to Area 6 if the next LRC starts from the axis.

Area 6:

Area 6 is entered when it has been determined that an axis point is to be calculated. The point counters (IP and IPP) and the insert counters (CS) are initialized and Points 1 and 4 are set up. The axis point subroutine is called and return is made with either the axis point calculated or the INSERT flag set. If an insert is requested or if Point 3 is found to be farther than a distance DS downstream from Point 4, a new Point 1 is inserted half way between the old Point 1 and Point 4. Inserts are counted and an error is detected if more than the maximum are required.

If the axis point has been successfully calculated and an insert was required, then subroutine PRINT is called to print the inserted point. Transfer is then made to Area 3.

Area 7:

Area 7 is entered for the purpose of performing a wall point calculation. If the point to be calculated is not a wall point the program goes to Area 8. If a wall point is to be calculated

checks are made concerning the exit plane option. If the exit plane option is in effect, the point to be calculated is either on an LRC which: (1) ends upstream of the nozzle exit plane (EXITCK false), or (2) is one of the NCHMXE LRC's ending on the nozzle wall extension, or (3) is a LRC farther downstream which is ended as soon as a point is calculated with an axial coordinate greater than XEXTEN. In the first two cases the wall point calculation proceeds normally as described in the next paragraph. In the third case the program goes to Area 9 and constructs an end point for the LRC so that it can be finished without a wall point, and then goes to Area 4. However, if the point just calculated is beyond XEXTEN then it is not necessary to go to Area 9 and the program goes directly to Area 4.

The wall point calculation logic is as described in Area 6 for an axis point with the exceptions noted below. The Point 2 is set up rather than Point 1. After a wall point is calculated, the streamline angle is checked to be sure it has not turned more than $\Delta \theta_{W}$. The axial pressure component is integrated to determine the thrust increment for the wall differential just completed (see the equations discussed earlier). If a point was inserted on the previous streamline, it is entered into the insert table. When the wall point procedure is completed the program goes to Area 3.

Area 8:

Area 8 is entered for the purpose of performing an interior point or a dividing streamline double point calculation. The point calculation logic is as follows. A check is made to determine if the point to be calculated is a interior point or a dividing streamline point. Points 2 and 4 are set up accordingly and the appropriate point calculation subroutine is called (INPT or DSPT). If it is necessary to insert a point, the insert procedure is the same in both cases and is also the

850714

same as used for a wall point calculation as previously described. These three point calculations are set up differently, but use the same code for the insert procedures.

Area 9:

This area of the subroutine contains the error termination procedure, the nozzle exit plane summary print procedure, two error messages, and the end point procedure for the exit plane option.

The error termination procedure begins by calling the error subroutine, ERRØRZ, giving it the number of the error statement to be printed. Subroutine PRINT is then called so as to print the last point calculated. If exit plane points have been saved, these also are printed. Subroutine CNTRL is then exited.

The nozzle exit plane summary print procedure is as follows. A title is printed, then each exit plane point is read from unit ITSTAB and printed uing subroutine PRINT. Subroutine CNTRL is then exited.

The two error messages printed in Area 9 relate to the exit plane option. When this option was added to the program, these messages were placed here rather than in subroutine ERRØRZ.

The end point procedure for the exit plane option found at the end of Area 9 is that described in Area 7.

TABLE 5-7

DEFINITIONS FOR FORTRAN VARIABLES USED BY SUBROUTINE CNTRL†

Variables beginning with I through N are typed as integer. All others are typed as real unless noted as logical. No other types are used. Assumed values are listed in parentheses.

Variable	Definition
ARATIØ	Area ratio of wall point
CS	Insertion counter
CSMAX	Maximum allowed number of insertions (20.)
DELWX	Length of nozzle extension for exit plane option (10.)
DS2	DS * DS; where DS is input
EØW1	Flag set in WLPT when the end of nozzle wall is detected
EØW2	Flag set in WLPT when iterations to reach end of wall point are complete
ES2	ES * ES; where ES is input
EXITCK	Logical variable set true for the exit plane option as soon as the end of the nozzle is reached
EXITPL	Logical input variable. Input true if the exit plane option is desired (.FALSE.)
ID	Point type input to subroutine PRINT
IERR	Error flag, set to error number

t The following input variables are used by subroutine CNTRL: DS, DTWI, DWWI, EPW, ES, ETHI, IMAX, and IMAXF. These variables are discussed in Section 6.7.1

TABLE 5-7

DEFINITIONS FOR FORTRAN VARIABLES USED BY SUBROUTINE CNTRL

(Continued)

Variable	
	Definition
IMX	Number of variables for a point
INSERT	Insert flag. A non-zero value asks CNTRL to
IP	Point counter for the LRC under sever
IPMX	Maximum number of point
IPP	Point counter for the last inc.
IPPS	Value of IPP for Point "
IPPW	The largest IPP value, that we want
IT (20)	Insertion table where the point numbers are stored for insertions requiring the
ITSTAB	Unit on which exit plane points are stored until printed (29)
JFLAG	Index for flag in the point arrays identifying dividing streamline double points
LAST	Number of last entry into IT appear
LASTMX	Maximum number of LRC generating insertions for the original LRC (20)
LRC	Number of LRC
MASSFL	Input variable controlling the mass flow print out (1)
MS	Initial line point counter
MW	Wall point counter
N	Statement number for ASSIGNED GØ TØ controlling the point calculations
NCHEPE	For exit plane option, LRC counter in the wall extension region

~

TABLE 5-7

DEFINITIONS FOR FORTRAN VARIABLES USED BY SUBROUTINE CNTRL

(Continued)

	Definition
Variable	
NCHMXE	For exit plane option, number of LRC's to be calculated on the wall extension (6)
NEXITP	Exit plane point counter
NPTEPE	For exit plane option, LRC counter in the region beyond the wall extension
NPTMXE	For exit plane option, maximum number of Energy allowed in the region beyond the wall extension (10)
P(70,275)	Array in which LRC is constructed
PP(70,275)	Array containing LRC just completed
PS(70)	Working storage for initial line point
PW(1208)	Array containing wall point coordinates
Q(70,5)	Working storage for point calculations, column number is the point number
Q3A(70)	Working storage for Point 3A of dividing streamline double point
Q4A(70)	Working storage for Point 4A of dividing streamline double point
REXIT	Radial coordinate at end of nozzle wall
XEXIT	Axial coordinate at end of nozzle wall
XEXTEN	For exit plane option, length of hober extension reached after LRC number NCHMXE
XMASSF(275)	Array containing integrated mass flow rate of each LRC point

_

5.5.9 Subroutine CNTRL1

Given a right-running characteristic (RRC) stored in the PP(-,-) array, and the starting point of the next RRC stored in P(-,IP), this subroutine computes a RRC emanating from P(-,IP). The RRC is traced until it reaches the axis, or goes outside the nozzle.

5.5.10 Subroutine CNTRL2

This subroutine performs the same function as subroutine CNTRL1, but applies to a left-running characteristic (LRC). Here, the calculation is carried out until the LRC reaches the wall.

5.5.11 Subroutine CNTR12

This is a control subroutine for the shock calculation. It is called after an induced right-running shock has been detected. Its function is to compute a right-running shock point, followed by the construction of a LRC to the wall. The procedure is repeated until the end of nozzle is reached, or the shock wave reflects off the center line. At this point control is returned to CNTR91 and CNTR13 is called.

5.5.12 Subroutine CNTR13

This is a control subroutine for the shock calculation. Its function is to compute a left-running shock point, followed by the construction of a RRC from the shock point to the axis. The procedure is repeated until the end of the nozzle is reached, or the shock wave reflects off the wall. At this point control is returned to CNTR91 and CNTR14 is called.

5.5.13 Subroutine CNTR14

This is a control subroutine for the shook calculation. Its function is to compute a right-running shock point, followed by the construction of a LRC from the shock point to the wall. The procedure is repeated until the end of the nozzle is reached, or the shock wave reflects off the axis. CNTR14 is similar in function to CNTR12, but it is designed for multiple reflections, while CNTR12 is designed to start the induced shock calculation.

5.5.14 Subroutine CNTR16

This is a control subroutine for the shock calculation. Its function is to compute a second attached shock wave. The construction is as follows. First, the flow field is computed assuming the second shock wave is negligible. When the end of the nozzle is reached, then subroutine CNTR16 is called. Вy using existing information an attached shock is calculated at wall location having axial coordinate XB. Next, а the right-running shock wave is constructed from XB. A LRC is traced from each shock point to the nozzle wall using subroutine The calculations stop when the wall end point is CNTR12. reached.

5.5.15 Subroutine CNTR21

This is a control subroutine for the shock calculation. Its function is to compute right-running characteristics beginning at the bottom of the initial data line. Successive RRC's are constructed starting at the initial data line and ending at the axis or exit plane. Once the wall is reached, successive RRC's are constructed starting at the wall and ending at the axis or exit plane. The procedure is repeated until the nozzle end point is reached. However, if an induced right-running shock is detected, then control is returned to CNTR91 and subroutine CNTR12 is called.

5.5.16 <u>Subroutine CNTR31</u>

This is the control subroutine for the attached shock wave calculation. First, it computes right-running characteristics beginning at the bottom of the initial data line. Successive RRC's are constructed starting at the initial data line and ending at the axis or exit plane. Once the wall is reached, successive RRC's are constructed starting at the wall and ending at the axis or exit plane. The procedure is repeated until position XA is reached on the wall. Control is then returned to CNTR91 and subroutine CNTR14 is called.

5.5.17 <u>Subroutine CNTR91</u>

This is the master control subroutine for the shock calculations. It calls subroutine CNTR12, CNTR13, CNTR14, CNTR16, CNTR21, and CNTR31 as required to compute the flow field from the initial line to the end of the nozzle.

SUBROUTINE CRIT (XN, XM, NØ) 5.5.18

The purpose of this subroutine is to compare two valves for absolute or relative convergence and return an indicator stating if convergence has been achieved.

Calling Sequence:

XN	x, input		
XM	x _m , input		
NØ	indicator, output		
	NO = 0 implies convergence		
	NO = 1 implies no convergence		
	where:		
	if $ \mathbf{x}_m - \mathbf{x}_n < \epsilon_1$		

if $ \mathbf{x}_m - \mathbf{x}_n $	<	٤ı	then $N\mathcal{O} = 0$, return
if x _n	=	0	then $N \not O = 1$, return
if $ \mathbf{x}_m - \mathbf{x}_n / \mathbf{x}_n $	<	€2	then $N\emptyset = 0$, return
otherwise			$N\emptyset = 1$, return

$$\epsilon_1 = \epsilon_2 = 5 \cdot 10^{-5}$$

5.5.19 SUBROUTINE CUBIC (X, Y, YP, N, ARG, YARG)

The purpose of this subroutine is to perform cubic interpolation for a tabulated function whose derivatives are known.

Calling Sec	luence:
х	is a table of the independent variable, x_i , such that $x_{i+1} \ge x_i$
Y	is a table of the dependent variable $y = y(y)$
YP	is a table of the derivatives of the dependent variable $y'_i = y'(x_i)$ $y'_i = y'(x_i)$
N	is the number of entries in each of the above tables; $i = 1, \dots N$
ARG	is the argument, \mathbf{x} , for which interpolation is requested
YARG	is the result, $y = y(x)$

<u>Restrictions:</u>

The calling program must define arrays for the dummy variables X, Y, and YP. These arrays must be at least of lengths N + 1, N, and N respectively. The subroutine will save its last used table position number in X(N + 1).

If $x < x_1$ the program returns $y = y_1$ If $x > x_N$ the program returns $y = y_N$

Method:

Given: $\mathbf{x}_0 \leq \mathbf{x} < \mathbf{x}_1$

so that y_0 , $y_0' y_1$, and y_1' are known. The cubic interpolation formula given below is used to determine y

$$y = A(x - x_0)^3 + B(x - x_0)^2 + C(x - x_0) + D$$

where

$$A = \frac{1}{h^{3}} \left[\left(y_{1}' + y_{0}' \right) h - 2k \right]$$

$$B = \frac{-1}{h^{2}} \left[\left(y_{1}' + 2y_{0}' \right) h - 3k \right]$$

$$C = y_{0}'$$

$$D = y_{0}$$

and

$$h = x_1 - x_0$$
$$k = y_1 - y_0$$

THIS PAGE LEFT INTENTIONALLY BLANK

- - -

5.6 BLM SUBROUTINES

The Boundary Layer Module (BLM) is used to calculate the loss in nozzle performance due to a viscous boundary layer and its interaction with the nozzle wall. The effects of both drag and heat transfer are included. The method used is described in Section 2.6.

The BLM consists of the following subroutines:

BLMAIN	DIFF
BLEDGE	EDDY
BLH	INPUTB
BLØCKD	IVPL
BLPLTS	LINI
BLSEG	ØUTPBL
BLTABL	RBL
BLW	READBL
CØEF	SØ1.V5
CØEF1	WRPROF
CUBICB	

The BLM is entered through subroutine BLMAIN. The boundary layer is divided into segments consisting of equally spaced grid lines. The control subroutine for analyzing a segment is subroutine BLSEG. There can be as many as 101 grid lines per segment, and as many as 10 segments. Many of the variables used in the BLM analysis are stored in arrays. The most important array variables are listed in Table 5-8.

PRECED AN PAGE BLANK NOT FILMED

TABLE 5-8: ARRAYS USED BY THE BLM

~

~

Variat	ole	Common	Contents
(with	dimension)	/Name/	
<u></u>	ومهما بتيتند براية متيته بيلين مستو قلاب فلبد كان بلندة جيها م		
A	(101)	/GRD/	$(n_j - n_{j-1})/2$, grid spacing
Δ1.FA	(101)	/AL/	α_{p} , angle of b.l. to nozzle
			center line
ALMDA	(101)	/EDGE/	λ_{e} , mean free path at edge
В	(101,2)	/BLC1/	b, see equation 2.6-12
BC	(101)	/BLC1/	$(\rho\mu/\rho_e^{\mu}e)$, see equation
2.	•		2.6-12
С	(101.2)	/BLC1/	(ρ_e/ρ) , see equation 2.6-12
CII	(101)	/MISCT/	I ₁ , integral, see equation
• • •			2.6-21
СК	(101)	/BLC2/	γ versus T, gas property table
CKE	(101)	/EDGE/	γ _e versus ^T e
CNUE	(101)	/EDGE/	(μ_e/ρ_e)
CP	(101)	/BLC2/	C versus T, gas property Tabl
CPE	(101)	/EDGE/	C versus T _e
CQ	(101)	/WALL/	(ρv) _w versus T _w
D	(101,2)	/BLC1/	d, see equation 2.6-12
Е	(101,2)	/BLC1/	e, see equation 2.6-12
HHE	(101)	/EDGE/	H _e , total enthalpy at edge
HSE	(101)	/EDGE/	h [*] , static enthalpy at edge
HSW	(101)	/WALL/	h [*] , static enthalpy at wall
ΡE	(101)	/EDGE/	P _e , pressure at edge
P 1	(101)	/PRES/	m_1 , see equation 2.6-13
P2	(101)	/PRES/	m ₂ , see equation 2.0-13
P 3	(101)	/PRES/	m_3 , see equation 2.0-14
RINØ	(201)	/BCØN/	r _o , radial coordinate of 0.1. input
RKK	(101)	/BLC2/	k versus T, gas property tabl

RHØE	E (101)	/EDGE/	ρ. density at edge
RMU	(101)	/BLC1/	U Versus T. gas property table
RMUE	(101)	/EDGE/	u. Viscosity at edge
RR	(101)	/BLC2/	R versus T gas proporty tabl
RX	(101)	/EDGE/	R_{F} , local Reynold No., U_{E}/v
RO	(101)	/GRD/	$(r_0/L)^k$, local radius of body
c	(201)		revolution $(L=1)$
5	(201)	/GBLK/	x, surface distance, equally
0.4			spaced
50	(201)	/GBLK/	x, surface distance, input
Т	(101)	/BLC2/	T, temperature for gas property
			tables
ΤE	(101)	/EDGE/	T _e , temperature at edge
TVCT	(101)	/MISCT/	$(1-t)^{2k}$ where $t = y \cos \varphi / r_{o}$,
			transverse curvature
ΤW	(101)	/WALL/	T _w , temperature at wall
U	(101,2)	/BLC1/	f = U/Ue
UΕ	(101)	/EDGE/	U, velocity at edge
V	(101,2)	/BLC1/	f, shear parameter
WW	(101)	/WALL/	g _w , dimensionless total
			enthalpy gradient at wall
X	(101)	/GRD/	ξ, see XØ
XINØ	(201)	/BCØN/	X, axial coordinate, input
XØ	(101)	/GBLK/	ξ , transformed surface
v			distance, see equation 2.6-6a
Y	(101)	/MISCT/	$\eta = v/v$

 $\overline{}$

5.6.1 SUBROUTINE BLMAIN

This is the main program for the BLM. The functions performed by this routine are described below.

Input data is read by calling subroutine INPUTB. INPUTB also prepares tables and initializes variables and indexes required for subsequent calculations. Next, subroutine IVPL is called, and initial velocity and temperature profiles are computed on a finite difference grid.

The boundary layer is divided into segments with as many as 101 grid lines per segment. For each segment, 1 through NSEG, the following events occur. First, subroutine BLEDGE is called to prepare tables of variables that describe conditions at the wall and at the inviscid edge of the boundary layer. Next, subroutine BLSEG controls the computation of the boundary layer. It computes the growth of the boundary layer from the beginning to the end of each segment, i.e., up to 101 grid lines.

Subroutine BLMAIN prints out text heading the numerical output of the program.

At the end of the print out for each segment, BLMAIN prints the following quantities which are evaluated at the last point on the segment:

Mean Free Path

$$\lambda = 1.26 v / (gRT)$$
 (ft)

Total Integrated Wall Heat Flux

(BTU/sec)

 $Q_w = \int \dot{q}_w dA$

At the end of the print out for the last segment, the following additional quantities (evaluated at the last point) are printed: Knudsen No. based on δ^*

$$Kn_{\delta}^{*} = \lambda/\delta^{*}$$

-

^m_{2D} (lbm/sec)

·····

Boundary Layer Specific Impulse Loss

,

$$\Delta I_{sp,BL} = \Delta F_{BL} / \dot{m}_{2D}$$
 (sec)

5.6.2 SUBROUTINE BLEDGE (ISEG)

This subroutine constructs the boundary conditions for segment number ISEG of the boundary layer. Tables containing the boundary layer coordinates XINØ, RINØ, SØ, AND XØ (see Table 5-8) are input. The begining and ending axial coordinates for the segment, XSEG(ISEG) and XSEG(ISEG+1), and the number of subdivisions to be used, NISPS(ISEG), are also input (see Section 6.8-3). Using this information, tables that are equally spaced in boundary layer length are prepared. These tables are (see Table 5-8):

X,S,RO,XI,TE,UE,PE,TW,CQ,CPE,CKE,HSE,HSW,ALFA.

The above tables are then printed under the heading "BOUNDARY CONDITIONS (IHFLAG = I1)".

5.6.3 SUBROUTINE BLH

This subroutine is used to calculate the propellant enthalpy picked up by the regenative cooling circuits. The method used is described in Section 6.8.4, Regenerative Cooling Heat Transfer. It consists of integrating the wall heat flux over the surface area covered by the regen cooling circuits and dividing the results by the engine mass flow rate. The wall heat flux is calculated by subroutine OUTPBL. The integrated heat flux is read from the BLM linkage file (unit 12) using subroutine RBL. As many as three circuits are allowed. The subroutine prints out the results of the calculations under the label "PROPELLANT ENTHALPY FROM THE COOLING CIRCUITS".

This subprogram initializes the variables listed below:

- NXT total number of x-stations, set for 101
- NTR location of transition, set for 3
- ETAE transformed boundary-layer thickness for first station, set for 8. The boundary-layer thickness for other stations is computed internally.
- VGP variable grid parameter set for 1.14.
- RUMI reference viscosity set for 0.250 $x10^{-4}$ lb_m/ft-sec^{*}
- TI reference temperature for viscosity, set for 1500° R.
- ØMEGA exponent in the density-viscosity relationship set for 0.76
- PR molecular Prandtl number, Pr, set for 0.72
- ITYPE through this flag the flow type is specified as follows: a nozzle (ITYPE=1), and external axisymmetric body (ITYPE=2), or a two-dimensional external flow in which flow starts as a stagnation point flow (ITYPE=3). Set for 1.
- CQ mass transfer parameter, set for 0. It is equal to $(pv)_w$ and has units of lb_m/ft^2 -sec
- IHFLAG this flag indicates whether the wall temperature is input (IHFLAG=0) or wall heat flux (IHFLAG=1). Set for 1.
- NTAB in the computer program C_p, Y, k, R are specified as functions of T(=TO) and form a "fluid-property table". NTAB refers to the number of TO values in this table. It is set here as 3, maximum being 101.
- * The assumed values of RMUI, TI, ØMEGA, PR, CPO and CKO are for air.

- TO values of temperature for the table.
- CPO specific heat at constant pressure, Set ft^2/sec^0R . for 101 * 6006.
- CKO ratio of specific heat at constant pressure to specific heat at constant volume, dimensionless. Set for 101 * 1.4.
- IPRNT the flag that controls the print output. Set for 0.

IPRNT=0 corresponds to short print and IPRNT=1 corresponds to long print Short print consists of the boundary-layer parameters such as δ^* , Θ , H, c_f , R_{δ^*} , R_{Θ} , R_s , c_H , ΔF , and ΔI_{SD} .

Long print includes short print plus the velocity and temperature profiles. These are defined in Subroutine ØUTPBL.

QF - This is the factor that converts input values of heat flux (TQW(1) entries when IHFLAG=1) from the input units of BTU/in²sec. to the internal program units of lbm/sec³. QF= 3.605259*10⁶, i.e.; d_u (lbm/sec³) = 144 Jg (BTU/in²-sec).

5.6.5 SUBROUTINE BLPLTS

This subroutine performs all the plotting for the BLM module. Data written by the BLM on data files is read and plots are made for requested items. Plot capabilities include displacement thickness, momentum thickness and wall temperature versus axial station. Also available are temperature and velocity profiles through the boundary layer at selected area ratios. Inputs for using the BLM plotting are described in Section 6.8.5. The over-all logic of the boundary layer computations is controlled by this subroutine. A flow chart of the logic is presented in Figure 5-3. The nozzle is divided into segments, and subroutine BLSEG computes the growth of the boundary layer from the beginning to the end of the segment when called by subroutine BLMAIN. There are 100 grid lines in a segment, and these are counted using the FORTRAN variable NX. Each grid line is iterated until the solution converges. Iterations are counted using FORTRAN variable IT.

Subroutine BLSEG checks the convergence of the iterations by using the wall shear parameter f''_w as a convergence criterion. For laminar flows, calculations are considered converged when

$$f_{W}'' < 10^{-4}$$

If f_w'' becomes negative during the iterations, calculations are stopped. For turbulent flows a relative convergence criterion is used, as follows:_____

$$\frac{f''_{W}}{f''_{W} + .5 f''_{W}} < .02$$

Figure 5-3: Flow Diagram for Subroutine BLSEG of BLM

5.6.7	SUBROU	TINE BLTABL (INTERP, NTAB, XTAB, YTAB, XOUT,
	YØUT)	
The	purpose	of this subroutine is to generate a table
	У _і	vs. x _i
from a	given tab	ole of
	ب ر	j vs. x _j
<u>Method</u> : Giv	ven y	j, \bar{x}_{j} $j=1, 2 NJ$
and	i x	i=1,2,NI
Th	is subrout	tine interpolates to find
	У	i 1=1,2,NI
On select	e of t ed: linea	hese following interpolation methods can be r, linear log, or cubic.
Ca	lling Seq	uence:
IN	TERP I = -	nterpolation method; input 1 for linear, using subroutine LINI 2 for linear log, using subroutine LINI 3 for cubic, using subroutine CUBICB
NT	AB N	J, number of entries input for XTAB and YTAB
ХT	AB x	j input
ΥT	AB y	, input versus x
NØ	UT N	I, number of entries input for XØUT
va	יווידי א	innut

XØUT x_i, input YØUT y_i, outupt versus x_i

.

5.6.8 <u>SUBROUTINE BLW</u>

This subroutine uses results obtained from the BLM analysis for the boundary layer displacement thickness, δ^* , to obtain a displaced wall contour. The wall is either displaced inwards (when given the real wall), or outwards (when designing the real wall), a distance δ^* normal to the original contour. The nozzle throat radius is also corrected by $-\delta^*$ or $+\delta^*$, respectively. The results of these calculations are printed.

The values of δ^* vs X that are required for the above calculations are obtained from unit 12 using subroutine RBL.

5.6.9 <u>SUBROUTINE CØEF</u>

This subroutine contains the coefficients of the linearized momentum and energy equations written in a form described in Chapter 8 of Reference 13.

Ref. 13. Bradshaw, P., Cebeci, T., and Whitelaw, J.H., Engineering Calculation Methods for Turbulent Flows. Academic Press, London, 1981.

5.6.10 SUBROUTINE CØEF1

This subroutine calculates the fluid properties and the pressure-gradient parameters used in the momentum and energy equations.

For most applications boundary-layer calculations are carried out based on the assumption that the external flow is isentropic and that the total enthalpy H_e is constant. This assumption is not used here. H_e is allowed to vary along the nozzle length. The following procedure is used for this purpose:

The static enthalpy, h^* , is computed from

$$h^* = \int_{T_o}^{T_e} C_p(T) dT + h^*(T_o)$$

and stored together with $C_p(CPO)$, Y(CKO), k(RKKO), R(RRO) all expressed as functions of T(TO) thus forming a "fluid property table." This table is used to interpolate fluid properties across the layer.

The boundary-layer equations require that at two adjacent x-stations the total edge enthalpy H_e must be constant. To provide for variation in H, local similarity ideas are used.
For two adjacent x-stations, 1 and 2, an average H_e is defined as:

$$H_{e} = 1/2[H_{e}^{*}(1) + H_{e}^{*}(2)]$$
(1)

Then with an initial dimensionless total enthalpy ratio g known from the boundary-layer solutions, static enthalpy, h_j , is computed from.

$$h_{j} = g_{j}H_{e} - \frac{u_{e}^{2}(f_{j}')^{2}}{2}$$
 (2)

Once h_j is known, then using the "fluid property table", values for $C_{pj},\ T_j,\ Y_j,\ R_j$ and k_j are found by interpolation, and μ_j is found from

$$\mu_{j} = \mu_{r} \left(-\frac{T_{j}}{T_{r}} \right)^{a}$$

The edge values of density ρ_e , μ_e , $\nu_e(=\mu_e/\rho_e)$ and $R_x(u_ex/\nu_e)$ are then computed. Edge values corresponding to j = J and ρ_e are computed from

$$\rho_{e} = \frac{P_{e}}{T_{J}R_{J}}$$

Next, the coefficients c, b, e, d and the pressure gradient parameters m_1, m_2, m_3 appearing in the momentum and energy equations are computed.

Finally, wall conditions are computed depending on whether the wall temperature or heat flux are specified. When the wall temperature is given the dimensionless total enthalpy ratio at the wall, which serves as a boundary condition, is computed as:

$$g_{W} = \frac{h_{W}^{*}}{H_{e}}$$

In the case of specified heat flux q_w , the dimensionless total enthalpy gradient, g'_w , is computed as

$$q' = -\frac{\xi}{\sqrt{R_E}} \left(\frac{L}{2}\right)^k \frac{\rho_e}{2} - \frac{\rho_w}{2} \dot{q} (\xi)$$

Here the units of each term are as follows:

$$\rho = \frac{1b_{m}}{ft^{3}} \qquad H_{e} = \left(\frac{ft}{sec}\right)^{2}$$
$$C_{p} = \frac{ft^{2}}{sec^{2}R} \qquad \xi = ft$$

At the convergence of the solutions for a given x-station, this subroutine is also used to account for the nonconstant nature of the total edge enthalpy. To explain this point, let us assume that we have done all that is described in COEF1, and that we can solve the equations at the specified x-station. Since the equations are nonlinear, solutions are iterated until a convergence criterion is met and then subroutine OUTPBL is called to print the desired quantites from that station. Before we increment the value of x and shift the profiles to perform calculations at the next x-station, we call COEF1 to compute a new value of H_e from Equation (1) and recompute static enthalpy variation from Equation (2) and redefine all the fluid properties and pressure gradient parameters at that x-station.

5.6.11 SUBROUTINE CUBICB

Subroutine CUBICB is used for interpolation in a table with unequally spaced points. It uses a third-order polynomial to interpolate the data between four points.

5.6.12 SUBROUTINE DIFF

Subroutine DIFF is used to determine the derivative at each point in an input table.

5.6.13 SUBROUTINE EDDY

This subroutine contains the formulas used in the Cebeci-Smith eddy-viscosity model. The eddy-viscosity model is described in Section 2.6.2.

5.6.14 SUBROUTINE INPUTE

This subroutine reads input data defining the problem to be solved by the Boundary Layer Module. Data calculated by the MOC module is read by calling subroutine READBL.

Next, user input data is read from unit 5 for the \$BLM Namelist data set. These input-items are described in Section 6.8 of this report.

This subroutine also calculates the surface distance from the input (r_0/c) and (x/c) values for NXIN-stations. The printed surface distance is dimensional and is expressed in feet.

The input NXIN-stations are then redistributed in order to have 101 x-stations uniformly distributed, except for the first five stations which are generated non-uniformly. The input values of $u_e(x)$, $p_e(x)$, $T_e(x)$, $(pv)_W$, (x/c), (y/c) are then interpolated for the new x-stations to be used in the boundary-layer calculations. In this subroutine, a total enthalpy, $H_e^*(x)$, is computed for each x-station by using the interpolated values of T, and u and the equation

$$* \frac{u_{e}^{2}}{H_{a}(x) = h_{e} + 2}$$

This subroutine prints out part of the input geometry which consists of

X, r_o, s, u_e, P_e

5.6.15 SUBROUTINE IVPL

Since the boundary-layer equations are nonlinear, before they are solved at the stagnation point, they need initial velocity and temperature profiles. This subroutine provides the necessary data to start the calculations.

5.6.16 Subroutine LINI (X, Y, N, ARG, YARG, NSAVE)

The purpose of this subroutine is to linearly interpolate from tables of values and to save its place in the table.

Calling Sequence:

X is a table of the independent variables, x_i
Y is a table of the dependent variables, y_i
N is the number of entries in each table
ARG is the argument for the X table
YARG is the result of the interpolation
NSAVE is a cell in which the table index is saved.

Restrictions:

If the argument exceeds the table of independent variables, the result is set equal to the appropriate table limit of the dependent variable.

5.6.17 SUBROUTINE ØUTPBL

Through the flag IPRNT discussed in Subroutine BLOCKD, this subroutine prints out the velocity and temperature profiles and the boundary-layer parameters δ^* , θ , H, c_f , R_{δ^*} , R_s , C_H as well as the thrust decrement ΔF due to the boundary layer.

They are defined by the following formulas:

Displacement thickness, $\delta^*(DELS)$, in ft.

$$\delta^* = \int_0^\infty (1 - \frac{\rho u}{\rho e u e}) dy$$

Momentum thickness 0 (THETA), in ft.

$$\theta = \int_{0}^{\infty} \frac{\rho u}{\rho e^{u} e} (1 - \frac{u}{u}) dy$$

Shape Factor, h, dimensionless

 $h = \delta^*/\theta$

Local skin-friction coefficient, $c_f(CF)$, dimensionless

$$c_{f} = \frac{\tau_{W}}{1/2\rho_{e}u_{e}^{2}}$$

Reynolds number based on displacement thickness, R_{δ}^{*}

$$R_{\delta}^{*} = \frac{u_{e}\delta^{*}}{v_{e}}, \quad v_{e}^{*} = \mu_{e} / \rho_{e}$$

Reynolds number based on surface distance, Rs

$$R_{s} = \frac{u_{e}s}{v_{e}}$$

Stanton number, $C_{H}(CH)$, dimensionless

$$C_{H} = \frac{\dot{q}_{w}}{\rho_{e}u_{e}(H_{w} - H_{e})}$$

Thrust decrement ΔF , in lb_{f}

$$\Delta F = 2\pi r_0^{\theta \rho} e^{u_e^2 \cos \phi - 2\pi r_0 \delta^* \cos \phi (P_e^{-P_a})}$$

Here X and r_0 correspond to the nozzle coordinates, s to the surface distance; all expressed in feet. The units of velocity u and pressure p_e are ft/sec and lb_f/ft^2 , respectively.

In addition, this subroutine prints out the interpolated values of input geometry referred to as "edge conditions". It consists of X, r_0 , s, u_e and p_e .

This subroutine reads the BLM linkage file (unit 12) and locates X_i and X_{i+1} such that

$$X_i \ge X \ge X_{i+1}$$

The value FX is then found by linear interpolation

$$FX = FX_{i} + (X-X_{i}) (FX_{i+1} - FX_{i})/(X_{i+1} - X_{i})$$

where FX is the variable number IDX stored on the file.

5.6.19 SUBROUTINE READBL

.

The purpose of this subroutine is to transfer data from the ODE and MOC modules to the BLM module.

If ODE has been run, values defining viscosity, Prandtl number, and edge total enthalpy are mapped for use by the BLM. The ODE linkage data is then read from unit LUBLM for use by BLM. The data file is checked for possible errors, and if detected, one of the following warning or error messages will be printed:

"NO LINKAGE FOUND, EXPECT MANUAL INPUT"

OR

OR

OR

The last three errors above terminate program execution immediately after printing.

If no errors are encountered, the items read by subroutine READBL will include the nozzle mass flow rate, nozzle wall coordinates and associated edge temperature, pressure, and velocity data, and also the gas property tables.

.

1

į.

If ODE was not run, the following message is printed:

5.6.20 SUBROUTINE SØLV5

This subroutine solves the matrix equation for which coeficients were computed by subroutine CØEF. One call to SØLV5 yields one pass through the elimination procedure. This procedure consists of a forward sweep, followed by a backward sweep of the system. The elimination scheme is specialized to treat this particular matrix equation.

5.6.21 SUBROUTINE WRPRØF

This subroutine interpolates between two wall stations and writes temperature and velocity profile data at selected area ratios onto a data file for post plotting. Area ratios are selected by input into the APROF array in the \$BLM namelist, see Section 6.8.5.

C - 4

THIS PAGE LEFT INTENTIONALLY BLANK

.

6.0 PROGRAM USER'S MANUAL.

Description of the Computer Program Input.

The TDK computer program consists of five modules, ODE, ODK, TRANS, MOC, and BLM. All of these modules are required to perform a complete two dimensional non-equilibrium nozzle performance calculation with a boundary layer. Various options exist in the program, however, which exercise the above modules alone, in part, or in combination.

Data is read by the program sequentially in the order required for the execution of the modules. This order is as follows:

Thermodynamic data, Data common to the modules, ODE module inputs, ODK module inputs, TRANS module inputs, MOC module inputs, and BLM module inputs.

A more detailed description of these input data sets is presented in Table 6-1. The documentation in which each of the data sets is completely described is also indicated in Table 6-1.

Of the data sets listed in Table 6-1, only the \$DATA data set is required for every computer run. Input of the other data sets is required only if the options they contain are to be used. For example, input of the thermodynamic data is not required if an existing thermodynamic data file is to be used.

Table 6-1. Input Data Set Description

.

Card Input	Section No.,	Description
THERMO	6.1,	thermodynamic data cards, see Tables 6-2 and $6-3$
END LOW T CPHS	6.1.1,	extension of thermodynamic data to temperatures below 300° K, see Table 6-5
END LOW T CPHS TITLE DATA \$DATA	6.2, 6.3, 6.3,	one or more title cards data directive card data <u>namelist for module selection</u> , and geometry
\$END REACTANTS •	6.4, 6.4.1, 6.4.1,	reactants directive card reactants cards, see Tables 2-6 and 2-7 blank card required to end reactants cards
OMIT INSERT NAMELISTS \$ODE	6.4.2, 6.4.2, 6.4.3, 6.4.3,	cards to omit species cards to insert species ØDE directive card ØDE namelist
SPECIES REACTIONS	6.5.2,	reaction cards for ØDK
LAST REAX INERTS	6.5.2.6,	inerts cards for ØDK. (to inert those species that are not named in restions)

Card Input	Section No.,	Description
THIRD BODY	6.5.2.7,	reaction rate ratios for third bodies
LAST CARD		
\$ODK \$END	5.5.3	ØDK module namelist
\$TRANS \$END	6.6	TRANS module namelist
\$MOC \$END	6.7	MØC module namelist
\$BLM \$END	6.8	BLM module namelist

Table 6-1 can be used as a guide when preparing input for given problem. It lists the data sets in the order in which they must appear in the data deck, and also shows the special cards which must appear in each set (first card, last card, etc.) if the program is to function property. The table is basically self-explanatory when used together with the detailed input descriptions which follow.

Certain special options to the computer program are described separately in Section 6.9.

An input data card listing for a sample case is presented in Section 7, followed by the corresponding computer output. In preparing input to the computer program it is useful to review this input card listing.

Successive cases can be run using the computer program but complete data should be input for each case.

6.1 <u>Thermodynamic Data</u>.

Ordinarily, a thermodynamic data file is available for use with the program, and is assigned to logicial unit 25. The input described here can be used to generate a thermodynamic data file if one is not available.

This data set is identical to the THERMO DATA described in Appendix D of NASA SP-273 (i.e. Reference 3).

Using this data set, thermodynamic data curve fit coefficients may be read from cards. The curve fit coefficients are generated by the PAC computer program described in NASA TN D-4097 (i.e. Reference 20).

The thermodynamic data (i.e. $C_{p_T}^0$, etc.) are expressed as functions of temperature using 5 least squares curve fit coefficient (a_{1-5}) and two integration constants (a_{6-7}) as follows:

$$\frac{C_{p_{T}}^{0}}{R} = a_{1} + a_{2}T + a_{3}T^{2} + a_{4}T^{3} + a_{5}T^{4}$$

$$\frac{H_{T}^{0}}{RT} = a_{1} + \frac{a_{2}T}{2} + \frac{a_{3}T^{2}}{3} + \frac{a_{4}T^{3}}{4} + \frac{a_{5}T^{4}}{5} + \frac{a_{6}}{T}$$

$$\frac{S_{T}^{0}}{R} = a_{1} \ln T + a_{2}T + \frac{a_{3}T^{2}}{2} + \frac{a_{4}T^{3}}{3} + \frac{a_{5}T^{4}}{3} + \frac{a_{5}T^{4}}{4} + a_{7}$$

For each species, two sets of coefficients $(a_{1-7} \text{ and } a_{1-7})$ are specified for two adjacent temperature intervals, lower and upper respectively. For the data available in Reference 3 the lower temperature interval is 300° to 1000°K and the upper temperature interval is 1000°K to 5000°K.

Ref. 20. McBride, B.J., and Gordon, S., "Fortran IV Program for Calculation of Thermodynamic Data", NASA TN-D-4097, Aug. 1967.

The input format required for this thermodynamic data is defined in Table 6-2. Data cards for the species AR, H, H₂, H₂O, N₂, O, OH, and O₂ are listed in Table 6-3 as examples. Thermodynamic data coefficients for many chemical species are supplied with the computer program. A list of these species is presented in Table 6-4. (For temperature range below 300° K see Section 6.1.1)

Data Tape Generation and Usage:

A computer run using thermodynamic data card input will generate a data tape on logical unit JANAF. This tape may then be saved and used at a later time. The program writes the THERMO data card images on unit JANAF as read but with two minor exceptions. The THERMO code card and the card numbers in card column 80 are omitted.

If thermodynamic data cards are not input, the program assumes the thermodynamic data is on logical unit JANAF. Logical unit JANAF is currently assigned a value of 25.

TABI E 6-2	FORMAT FOR	THERMODYNAMIC	DATA	CARDS
IADLE 0-4		•		

Card	Contents	Format	Card column
oruer		3A4	1 to 6
1	THERMU	3F10.3	1 to 30
2	efficients: lowest T, common T, and highest T		1 45 10
3	Species name	3A4	1 to 14
	Date	2A3	19 TO 24
	Atomic symbols and formula	4(A2,F3.0)	25 to 44
	Phase of species (S,L, or G for solid,	A1	45
	liquid, or gas, respectively	2F10.3	46 to 65
1	Temperature range	115	80
	Integer 1	5(E15 R)	1 to 75
4	Coefficients a'_i (i = 1 to 5) in equations (6-1) to (6-3)	5(115.0)	
	(for upper temperature interval)		80
	Integer 2	15	00
5	Coefficients in equations $(6-1)$ to $6-3$) (a' ₆ , a' ₇ for upper temperature interval and a ₁ , a ₂ , and a ₃ for lower)	5(E15.6)	1 10 / 5
		15	80
6	Coefficients in equations (6-1) to (6-3) (a_4, a_5, a_6, a_7) for lower temperature in-	4(E15.8)	1 to 60.
	terval)	T20	80
	Integer 4		1
(a)	Repeat cards numbered 1 to 4 in cc 80 for each species		1 +0 3
(Fina car	1 END (Indicates end of thermodynamic d) data)	3A4	

^aGaseous species and condensed species with only one condensed phase can be in any order. However, the sets for two or more condensed phases of the same species must be adjacent. If there are more than two condensed phases of a species their sets must be either in increasing or decreasing order according to their temperature intervals.

TABLE 6-3. THERMO DATA CARDS FOR AN O_2/H_2 PROPELLANT

(SPECIES AR, H, H_2 , H_20 , N_2 , 0, OH, AND O_2)

THERMO

300.000 1000.	000 5000.000		
AR	L 5/66AR 1.0	0 0.00 0.00 0.G	300,000 5000,000
.25000000E 01 0	•	Ο.	0. 0.
74537502E 03	.43660006E 01	.25000000E 01	0. 0.
0. 0	•	74537498E 03	43660006E 01
Н	J 6/74H l.	0. 0. 0.G	300,000 5000,000
.24999996E+01	.70881143E-09	38728927E-12	.85096613E-16 - 65768080E-20
.25474390E+05 -	.45989618E+00	.25000002E+01	- 19925608E+08 54929899E-11
64292197E-14	.26794037E-17	.25474390E+05	45989941F+00
H2	J 3/61H 2.0	0.0 0.0 0.6	300 000 5000 000
.31001901E+01	.51119464E-03	.52644210E-07	-34909973F = 10 $36945345F = 14$
87738042E+03 -	.19629421E+01	.30574451E+01	26765200F = 02 = 58099162F = 05
.55210391E-08 -	.18122739E-11	98890474E+03	22997056E+01
H2O	J 3/61H 2.0	1.00 0.00 0.G	300 000 5000 000
.27167633E+01	.29451374E-02	80224374E-06	10226682F = 00 = 48472145F = 14
29905826E+05	.66305671E+01	40701275E+01	-11084499F=02 $41521190F=05$
29637404E-08	.80702103E-12	30279722E+05	- 32270046E+00
N2	J 9/65N 2.0		300 000 5000 000
.28963194E+01	.15154866E-02	57235277E-06	99807393F = 10 = 65332555F = 14
90586184E+03	.61615148E+01	.36748261E+01	-12081500E-02 2223555E-14
63217559E-09	.22577253E-12	10611588E+04	235804247101
0	J 6/740 1.		300 000 5000 000
.25352638E+01 -	.14371898E-04	11360139F-07	66005131E-11 - 61181626E 1E
.29230265E+05	.49575621E+01	29558662F+01	-17061536E-02 $25025154E$
17837980E-08	.45709012E-12	29143654E+05	29243614E±01
ОН	J12/700 1.H	1.0 0.0 0 G	300 000 5000 000
.29131230E+01	.95418248E-03	19084325E-06	127307958-10 248020418 15
.39647060E+04 .	.54288735E+01	-38365518E+01	-10702014E-02 $04840757E oc$
.20843575E-09	.23384265E-12	.36715807E+04	49805456F+00
02	J 9/650 2.0	0.0 0.0 0.0	300 000 5000 000
.36219535E+01 .	73618264E-03	19652228E-06	36201558F = 10 = 28945627F = 14
12019825E+04 .	.36150960E+01	.36255985E+01	-18782184F = 02 70554544 $E = 05$
67635137E-08 .	21555993E-11	10475226E+04	43052778F+01
END			FROUDE//OLIVI

				C4
	AT.202	BE	CH2O2	C4H8O4
E		BE+	CH3	N-C4H10
AL	AL202+	BEBO2	CH3CL	T-C4H10
AL+	AR	BEBR	CH2OH	
AL-	AR+	BEBR2	CH3O	C4NZ
ALBO2	В	BEDIZ	CH4	C5
ALBR	B+	BECL	CH3OH	C6H5
ALBR3	в-	BECLT	CN	C6H6
ALC.	BCL	BECLF	CN+	CA
ALCI.	BCL+	BECL2	CN-	CA+
ATCT	BCLF	BEF	CN2	CABR
ALCLI	BCL2	BEF2	CNZ	CABR2
	BCL2+	BEH	CNN	CACL
	BCL2-	BEH+		CACL2
ALCLF2	BCI.3	BEI	COCL	CAF
ALCL2	BE	BEI2	COCLF	CAF2
ALCL2+	ביזם ביזם	BEN	COCL2	CAT
ALCL2-		BEO	COF	CAT 2
ALCL2F	BF2+	BEOH	COF2	CA12
ALCL3	BF2-	BEOH+	COS	CAU
ALF	BF3	BEO2H2	CO2	CAOH
ALF+	BH	DECE	CO2-	CAOH+
ALF2	BHF2	BES	CP	CA02H2
ALF2+	BH2	BE20	CS	CAS
ALF2-	BH3	BE20F2	CS2	CA2
ALF20	BN	BE202	C2	CL
AL.F20-	BO	BE303	C2-	CL+
ALL'20 ATE3	BOCL	BE404_		CL-
ALFJ ATEA-	BOF	BI		CLCN
ALF4" STU	BOF2	BIS		CLF
ALA	BO2	BR		CLF3
ALL	B02-	BR2	C2H	CLO
ALLI	BS	С	C2HF	CL02
ALN	22	C+	C2H2	CL2
ALO	B20	C-	C2H4	
ALO+	B20	CCL	C2H4O2	CH2O
ALO-	B202	CCL2	C2H4O4	
ALOCL	B203	CCL2F2	C2H5	CRN
ALOF	B303CL3	CCL3	C2H6	CRO
ALOH	B303F3	CCL3F	CH3N2CH3	CR02
ALOH+	B303H3	CCLA	C2H5OH	CR03
ALOH-	BA		CH3OCH3	CS
ALO2	BABR	CF	C2N	CS+
ALO2-	BABR2	Cr+	C2N2	CSCL
ALO2H	BACL	CF2	C20	CSF
ALS	BACL2	CF2+	C3	CSO
AT.2	BAF	CF3	C3460	CSOH
7114 71906	BAF+	CF3+	N_0247	CSOH+
ALZDRU NI DOI C	BAF2	CF4	$\mathbf{N} = \mathbf{C} \mathbf{S} \mathbf{H} 7$	CS2
ATSCTO	BAOH	CH		CS2CL2
ALZFO	BJOH+	CH+	CIHS	CS2F2
AL216	BAO2H2	CH2	1-C3H/OH	CS20
AL20	DAUGHA	CH2O	C302	
AL20+	DAD			

Table 6-4. (cont.)

CS202H2	UDC			
CS2504		KO	MGN	NAH
CU2304	HBR	KO-	MGO	NAI
	HCN	КОН	MGOH	NAO
CUT	HCO	KOH+	MGOH+	NAO-
	HCO+	K2	MGO2H2	NAOH
CUF	HCP	K2C2N2	MGS	NAOHT
CUF2	HCL	K2CL2	MG2	NAOII+
CUO	HD	K2F2	MG2F4	NA2 NA DODNO
CU2	HD+	K202H2	N	NAZCZNZ NAZCZNZ
CU3CL3	HD-	K2S04	NTT.	NAZCLZ
D	HDO	KR	N	NA2F2
D+	HF	T.T	N=	NA2O
D-	HI	T.T+	NCO	NA2O2H2
DCL	HNCO		ND	NA2SO4
DF	HNO	LIADE 4	ND2	NB
DOCL	HNO2		ND3	NBO
D2	HNO3		NF	NBO2
D2+	HOCL		NF2	NE
D2-	HOE	LIFO	NF3	NE+
D20	HOP		NH	NI
D25	HC2	LIH	NH2	NICL
F	HSU3F	LIN	NH3	NICL2
F-	H2	LIO	NO	NIO
FCN	H2+	LIO-	NO+	NTS
FO	H2-	LIOH	NOCL	0
FO	H2F2	LIOH+	NOF	0+
FO2	H2N2	LION	NOF3	0-
F2	H20	LI2 [÷]	NO2	on on
F20	H2O2	LI2CL2	NO2-	0 U U U
FS2F	H2S	LI2F2	NO2CL	
FE	H2SO4	LI20	NO2E	
FE+	H3B306	LI202	NO2	OH-
FE-	H3F3	LT202H2	NOS	02
FEC505	H4F4	LT2504		02+
FECL	H5F5		N2+	02-
FECL2	H6F6		N2-	03
FECL3	H7F7	LT3L2	N2D2	P
FEO	HE	MG	N2H4	P+
FEO2H2	HE+	MGPD	N20	PCL3
FES	HC	MGBR	N2O+	PF
FE2CL4	HCPDO	MGBR2	N2O4	PF+
FE2CL6	T TIGBR2	MGCL	N205	PF-
н	1	MGCL+	N3	PF2
н. Н.	12	MGCLF	NA	PF2+
и_ и_	K	MGCL2	NA+	PF2-
	K+	MGF	NAALF4	PF3
URO URO	KBO2	MGF+	NABO2	PF5
	KCN	MGF2	NABR	ਸਧ
NBO+	KCL	MGF2+	NACN	DH3
лво-	KF	MGH	NACT	DN
HBO2	KF2-	MGI	NAF	FN DO
HBS	KH	MGI2	NAF2-	PO
	-		MML 2	PO2

----- --

.

Table 6-4. (cont.)

			$AT,CT,3(T_i)$	BI(L)
PS	SOF2	S12	$\lambda T F3(A)$	BI2S3(S)
20	SO2	SI2C	ALLIS(A)	BR2(L)
	SO2CLF	SI2N	ALF3(B)	C(GR)
F4 D406	SO2CL2	SI3		CA(A)
P406	SO2F2	SR	ALI3(S)	CA(R)
P4010	50212	SRBR	ALI3(L)	
PB	303	SRCL	ALN(S)	
PBBR	52	SBCL2	AL2O3 (A)	CABR2(S)
PBBR2	SZCL	SPF	AL2O3 (L)	CABR2(L)
PBBR4	S2CL2	SPF+	AL2SIO5(AN)	CACO3 (CAL)
PBCL	52F2	CDF2	AL6SI2O13(S)	CACL2(S)
PBCL+	S20	CDT2	B(S)	CACL2(L)
PBCL2	S8	SR12 CPO		CAF2(A)
PBCL2+	SI	SRO	BN(S)	CAF2(B)
PBCL4	SI+	SKON	B203(L)	CAF2(L)
PBF	SIBR	SROHT	B303H3(C)	CAO(S)
PBF2	SIBR2	SR02H2	B)())	CAO(L)
DRF4	SIBR3	SRS		CA02H2(S)
DRT	SIBR4	TA	BA(B)	CAS(S)
FDI DBT2	SIC	TAO	BA(C)	CASO4(S)
FDIZ DDIA	SIC2	TAO2		CP(S)
PD14	STC4H12	TI	BABR2(S)	
PBO	STCL	TI+	BABR2(L)	
PBS	STCL2	TI-	BACL2(A)	CRN(S)
PB2	STCL3	TICL	BACL2(B)	CR2N(S)
S	SICIA	TICL2	BACL2(L)	CR203(S)
S+		TICL3	BAF2(AB)	CR2O3(L)
S-	SIF	TTCL4	BAF2(C)	CS(S)
SCL	SIF2	TTO	BAF2(L)	CS(L)
SCL2	SIF3	TTOCL	BAO(S)	CSCL(A)
SCL2+	SIF4	TTOCL2	BAO(L)	CSCL(B)
SD	SIH	T10022	BAO2H2(S)	CSCL(L)
SF	SIH+	1102	BAO2H2(L)	CSF(S)
SF+	SIHBR3	V VOT A	BAS(S)	CSF(L)
SF-	SIHCL3		BE(S)	CSOH(A)
SF2	SIHF3	VN	BE(L)	CSOH(C)
SF2+	SIHI3	VO	BFAL204(S)	CSOH(L)
SF2-	SIH2BR2	V02	BEAL204(L)	CS2SO4(II)
SF3	SIH2CL2	XE	DERD2(S)	CS2SO4(I)
SF3+	SIH2F2	XE+		CS2SO4(L)
SF3-	SIH2I2	ZN		CU(S)
CF1	SIH3BR	ZN+	BECL2(L)	CU(L)
CEAL	SIH3CL	ZN-	BEF2(LQ2)	CUF(S)
	STH3F	ZR	BEF2(HQ2)	CUF2(S)
514- CEE	STH3I	ZRN	BEF2(L)	CUF2(U)
SID	STHA	ZRO	BEI2(S)	
SF5+	CTT	ZRO2	BEI2(L)	CUO(3)
SF5-	511	AL(S)	BEO(A)	CUO2H2(3)
SF6	SII4 CTN	AL(L)	BEO(L)	CUSU4(S)
SF6-	SIN	ALBR3(S)	BEO2H2(B)	CU20(S)
SH	510	ALBRO (U)	BES(S)	CU20(L)
SN	5102	ALCT.3(S)	BI(S)	CU205S(S)
SO	SIS	ATCTS (C)		

FE(A) FE(C) FE(D) FE(L) FEC505(L) FEC12(S) FEC12(L) FEC13(S) FEC13(L) FE0(S) FE0(L) FE02H2(S) FE02H2(S) FE03H3(S) FES(A) FES(A) FES(C) FES(L) FES(C) FES(L) FES04(S) FE203(S) FE203(S) FE203(S) FE203(S) FE204(S) H20(L) H20(L) H20(L) H20(L) H20(S) H20(L) H30(S) I2(S) I2(S) I2(L) K(S) K(L) KCN(S) KCN(L) KCN(S) KCN(L) KF(S) KF(L) KHF2(A) KHF2(A) KHF2(C) KOH(A) KOH(C) KOH(C) KOH(C) KOH(C) KCO(C) K2CO3(C) K2CO3(C) K2CO3(C)	<pre>K2S(1) K2S(2) K2S(3) K2S(L) K2SO4(A) K2SO4(B) K2SO4(L) LI(S) LI(L) LIALO2(S) LIALO2(S) LIALO2(L) LICL(S) LICL(L) LIF(S) LIF(L) LIF(S) LIF(L) LIOH(S) LIOH(L) LI2O(S) LI2O(L) LI2SO4(A) LI2SO4(A) LI2SO4(B) LI2SO4(A) LI2SO4(B) LI2SO4(L) MGAL2O4(S) MG(S) MG(L) MGBR2(S) MGBR2(L) MGCO3(S) MGCL2(S) MGCL2(S) MGC2(C) MGC2</pre>	MGTI2O5(S) MGTI2O5(L) MG2SIO4(S) MG2SIO4(L) MG2TIO4(S) MG2TIO4(L) VN(S) NA(S) NA(S) NA(L) NAALO2(A) NAALO2(A) NABR(L) NABR(S) NABR(L) NACN(S) NACN(L) NACL(S) NACL(L) NACL(S) NACL(L) NAF(S) NAF(L) NAI(S) NAI(L) NAOH(A) NAOH(A) NAOH(L) NAOH(A) NAOH(L) NAOCO3(1) NA2CO3(1) NA2CO3(1) NA2CO3(1) NA2CO3(L) NA2O(C) NA	NB205(L) NI(A) NI(B) NI(L) NIS(B) NIS(A) NIS(L) NIS2(L) NIS2(L) NI322(L) NI352(L) NI352(L) NI352(L) NI352(L) NI354(S) P(V) P4010(S) PB(L) PBBR2(L) PBBR2(L) PBBR2(L) PBF2(A) PBF2(A) PBF2(B) PBF2(L) PBF2(A) PBF2(L) PB12(L) PB0(RD) PB0(RD) PB0(L) PB0(RD) PB0(L) PB0(C) PB0(C) PB304(S) S(S) S(L) SCL2(L) SIC2(L) SIC2(LQZ) SIO2(HQZ) SIO2(HQZ) SIO2(HCR) SIC2(L) SIC2(C) SI	SRCL2(L) SRF2(S) SRF2(L) SRO(S) SRO(L) SRO2H2(S) SRO2H2(L) SRS(S) TA(S) TA(L) TAC(S) TAC(L) TACO5(L) TI(A) TI(B) TI(L) TIC(S) TICL2(S) TICL3(S) TICL4(L) TIO(A) TIO(A) TIO(E) TIO(L) TIO2(RU) TIO2(L) TIO2(RU) TIO2(L) TIO2(C) TIO2(C) TIO3(C) TIO3(C) TIO3(C) TIAO7(C) V(
KO2(S) K2CO3(S) K2CO3(L) K2O(S) K2O2(S)	MGSIO3(RE) MGSIO3(PR) MGSIO3(L) MGTIO3(S) MGTIO3(L)	NBO(L) NBO(L) NBO2(S) NBO2(L) NBO2(L) NB2O5(S)	SI2N2O(S) SI3N4(A) SR(S) SR(L) SRCL2(1) SRCL2(2)	V2O3(S) V2O3(L) V2O4(1) V2O4(2) V2O4(L) V2O5(S)

.

Table 6-4. (cont.)

.

V2O5 (L) ZN (S) ZN (L) ZNSO4 (A) ZNSO4 (AP) ZNSO4 (B) ZR (A) ZR (B) ZR (L) ZRN (S) ZRN (L) ZRO2 (A) ZRO2 (B) ZRO2 (L)

- -

.

6.1.1 THERMODYNAMIC DATA BELOW 300°K.

If the temperature at any point computed by ODE, ODK, or TDK is found to be below the Thermodynamic Data lower temperature limit, T_l , the polynomial curve fit data (see Section 6.1) will be extrapolated to obtain values for the thermodynamic data. The extrapolated data can be inaccurate. The LØW T CPHS data set can be used to input low temperature data for those species for which extrapolation of the JANNAF data is not accurate. Only Cp vs. T is input. Enthalpy and entropy are obtained by integrating Cp vs. T within the computer program.

The lower temperature limit, T_l , in the Thermodynamic Data supplied with the program is 300°K. Thermodynamic Data below the temperature, T_l , may be input by data cards as described under "Input Specifications for Low Temperature Thermodynamic Data".

An example of this input is given in Table 6-5 which shows a card listing extending the Thermodynamic Data for the 18 chemical species given in Appendix A. Data in Table 6-5 is taken directly from the JANAF tables. The source references for these data are as follows:

Ref. 21: CO, CO, CL, F, HCL, H O, and NO. Ref. 22: CL. Ref. 23: CLF, F, F, HF, H, N, N, O, OH, and O.

Ref. 21: Stull, D.R., Prophet, H., et al., JANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37, National Standard Reference Data Series, National Bureau of Standards, June 1971.

Ref. 22: JANAF Thermochemical Tables, 1974 Supplement, J. Phys. Chem. Ref. Data 3,311 (1974).

Ref. 23: JANAF Thermochemical Tables, 1982 Supplement, J. Phys. Chem. Ref. Data 11,695 (1982).

The Input Specifications for Low Temperature Thermodynamic Data.

The first card is a directive card that identifies the start of the low temperature thermodynamic data input. It reads as follows, columns 1 through 10:

LOW T CPHS

The next card contains a species name consisting of 12 characters, or less, left justified to column 1. An integer is placed in column 21 indicating the number of T, Cp values that follow. A value of 1,2, or 3 can be used. For example:

H20

Next, the thermodynamic data for the species named above is input. There must be one pair of T, Cp values per card. These cards are numbered consequently in column 45. They are read as 2F10.0, 20X, I5. For example, for H_2O :

	7 961 -	1
100.		2
200.	7.969 -	_

2

Species name cards and thermodynamic data cards for other species, if any, follow.

A final directive card is used to identify the end of the low temperature thermodynamic data. It reads as follows, columns 1 through 14:

END LOW T CPHS

.

col. <u>1</u>		.21		45
LOW T C	CPHS			
100. 200.	6.956	2		1
CO2 100.	6.981	2		2
CL 100.	4.968	2		2
200. CLF 100.	5.038	2		2
200. CL2	7.200	2		1 2
200. F	7.001 7.576	2		1 2
100. 200. F2	5.068 5.403	2		1 2
100. 200.	6.958 7.095	2		1
H 100. 200.	4.968	2		1
HCL 100.	6.959	2		2
HF 100.	6.962	2		2 1
200. H2 100.	6.962 6.729	2	· •	2
200. H20	6.560	2	•	$\frac{1}{2}$
200. N	7.961	2		1 2
100. 200. NO	4.968 4.968	-		1 2
100.200.	7.721 7.721	2		1 2
100. 200:	6.956 6.957	2		1
0 100. 200.	5.665	2		1
ŎĤ 100.	7.798	2		2
02 100.	7.356	2		2
200. END LOW	6.961 T CPHS			2

)

6-15

6.2 · Title Cards

This input permits labeling of runs with alphanumeric information. As many title cards as desired may be input in sequence. Card format is as follows:

col 1-5 col 6-77 TITLE any alphanumeric information

The last card that is input will be used as a printed title for the output summary table, and a title for the linkage file to BLIMP (see Section 6.4.3.2, IPTAB).

It is not necessary to input title cards.

- i

6.3 DATA Directive and \$DATA Namelist Input.

The DATA directive and the \$DATA Namelist input set described below must always be input. It is required for all problems since it contains the input that controls which calculation modules are to be executed.

The first input item must be a single card, called the DATA directive card. The format of this card is as follows: the letters DATA must be punched in columns 1 through 4. The DATA card is used to inform the program that the \$DATA namelist input is to follow.

The card following the DATA card must contain the name \$DATA, and all cards in the namelist input set must start in column 2 or greater. Since Namelist input is card interpretive, items can be input in any order. The last card in the set must contain \$END.

Users unfamiliar with Namelist input are referred to their FORTRAN reference manual.

-

in Subroutine

Description

DATA directive card

PRØBLM

Namelist name, read

Assumed

Value(s)

Units

Item

1

DATA

\$DATA

6.3.1 Specification of Modules to be Executed.

If a module is to be executed, it is necessary to indicate the fact by input of a module flag as described below. For example, if a problem requires that the \emptyset DE module be run, it is necessary to input \emptyset DE = 1. Only certain combinations of modules are allowed. These are described in Table 6-6. The module flags are:

Item		Description	Units	Assumed Value(s)
ØDE	3	Set $\emptyset DE = 1$ if the ODE module is to be executed.	none	0.
ØDK.	=	Set $\emptyset DK = 1$ if the ODK module is to be executed.	none	0.
TDE	=	Set $TDE = 1$ if the TDE option of the MØC module is to be executed	none	0.
TDK	=	Set TDK = 1 if the TDK option of the MOC module is to be executed	none	0.
TOF	3	Set $TDF = 1$ if the TDF option of the MØC is to be executed	none	0.
TTDK	=	Set TTDK=1 to run the TDX option with tables supplied by ODK re- placing the TDK kinetic calcula- tions. See Section 2.5.3.	none	0.
BLM	3	Set $BLM = 1$ if the BLM option of the MOC module is to be executed	none	0.
PFGØPT	2	Set PFG ∂ PT = 1 if the constant proper- ties option of the MOC module is to be executed. See Section 6.9.1 for input instructions.	none	0.

Input	Mode of Execution		
ØDE=1,	ØDE is run alone. Options other than the rocket (RKT=T) option are allowed. See Section 6.4.3 and Reference 3.		
ØDE=1, ØDK=1,	ØDE is run. ØDK is run with ØDE providing start conditions. See Section 6.5.1.		
ØDK≖1,	ØDK is run alone with initial conditions supplied by the user. See Sections 6.5.1 and 6.5.1.1, and 6.5.3.6.		
ØDE=1, ØDK=1, TDK=1,	ØDE is run. ØDK is run with ØDE providing start conditions. TDK is run with ØDK and TRANS providing MØC initial data line conditions. The number of ØDE and ØDK runs will be equal to NZØNES.		
ØDE=1, ØDK=1, TDK=1, BLM=1,	As above with a BLM run added.		
ØDE=1, ØDK=1, TDK=1, BLM=1, IRPEAT=1,	As above with ØDE, ØDK, and TDK repeated using the BLM results. See Section 6.8.4. This option is for including the BLM results with regen cooling.		
ØDE=1, ØDK=1, TDK=1, BLM=1, IRPEAT=2,	As above except that the ØDE and ØDK runs are not repeated because there is no heat input correction due to regen cooling.		
DUREI, ORIEI, TTDKEI, BLMEI TRIMATEI Nº 2	As above except that TDK will use tables computed by ODK and not compute its own reacting chemistry.		
TDE=1,	ØDE will be run for NZØNES. TDE is run with ØDE chemical equilibrium gas properties, and with TRANS providing MØC initial data line conditions.		
TDE=1, BLM=1,	As above with BLM.		
TDE=1, BLM=1, IRPEAT=1 or 2,	As above with TDE repeated.		

Table 6-6: Usage of the Module Flags (continued)

Input	Mode of Execution		
ØDE=1, ØDK=1, TDF=1,	ØDE is run. ØDK is run with ØDE providing start conditions. However, the ØDK run will have a frozen chemical composition. TDK will also be run with a frozen composition.		
ØDE=1, ØDK=1, TDF=1, BLM=1,	As above with BLM.		
ØDE=1, ØDK=1, TDF=1, BLM=1, IRPEAT=1 or 2,	As above with TDF repeated.		
BLM=1,	BLM is run alone. This option requires a large amount of input that is provided automatically when BLM is run after TDE, TDK or TDF.		
PFG ØPT= 1,	The TRANS and MØC modules are run with constant gas properties. See Section 6.9.1.		

6.3.2 Inputs for Control for the Program.

Item		Description Units	Assumed Value(s)
IRPEAT =	=	Set IRPEAT = 1 or 2 to request that a none TDK (or TDE) calculation be automati- cally repeated after the BLM module has been used to calculate a displaced nozzle wall.	0
		If IRPEAT = 1, the ODE and ODK module executions will be repeated with adjusted enthalpies for regen cooling, see Section 6.8.4.	
		If IRPEAT = 2, the ØDE and ØDK module executions will not be repeated. The system enthalpy will be unchanged.	
IRSTRT	Ξ	The program allows for a limited none restart capability. If the MOC module has been run successfully and units 11,15,(23 if TDE), and 29 have been saved, then the run can be continued by inputing	.y
		IRSTRT = 2,	
		This will restart the program after the MOC calculation and before the BLM calculation. The restart handles all options involving BLM.	

<u>Item</u>	Description	<u>Units</u>	Assumed <u>Value(s)</u>
N Z Ø N E S	Number of zones N, to be used in the analysis. The ØDE and ØDK modules will be executed N times. Zone 1 represents the flow adjacent to the nozzle axis, and Zone N represents flow adjacent to the nozzle wall.	none	1
SI	If SI=0, English units are to be used for input and output. If SI=1, SI units are to be used for input and output. The SI units required for input are shown in parenthesis.	none	0
IØFF	When BLM is run with the MOC module, values defining the boundary layer edge conditions; x _e , y _e , U _e , T _e , and		0
	P are automatically calculated and		
	stored in the XINØ, RINØ, UEØ, TEØ, and PEØ arrays. If IØFF is not input, then these values are stored starting with the first entry in each array. If IØFF is input then these values are stored starting in the IØFF + 1 entry of each array. Values must then be input into entries 1 through IØFF. The boundary layer calculations will start at position XINØ(1) of these arrays using the \$BLM input. This input allows the user to account for the development of the boundary layer in the nozzle chamber, upstream of ECRAT. IØFF < 100. If IØFF is input, do not input NXINØ \$BLM.		
BLMF .	 This flag controls the choice of gas properties and edge properties to be used by the BLM. (See Section 2.6.3, etc.) If TDK has been run, then for BLMF=F, equilibrium (ØDE) properties will be used. If TDK has been run, then for BLMF=T, frozen (ØDF) properties will be used. For TDE, equilibrium properties will always be used. For TDF, frozen properties will always be used. 	none	F

851007

 \sim

/

6.3.3 Specification of nozzle geometry.

1

To eliminate redundancy, all geometry inputs that are common throughout the modules are input here. Note that the center of the nozzle geometry coordinate system is at the centerline at the throat plane, and that <u>all</u> coordinates are normalized by the nozzle throat radius, r_t . Hence, axial positions upstream of the throat are always <u>negative</u> numbers. In the figures describing the geometry, positive angles are shown as counter-clockwise, and negative angles are shown as clockwise.

Geometric area ratios at which $\emptyset DE$ and $\emptyset DK$ print out is to be made are specified using the input arrays ASUB(1) and ASUP(1).

The nozzle geometry is defined in Figure 6-1. The ØDK calculations start at the downstream end of the combustion chamber with a subsonic area ratio of ECRAT, as shown. The circular arcs RI and RWTU cannot overlap. Thus, it is necessary that ECRAT, RI, RWTU, and THETAI be input such that

$$\sqrt{\text{ECRAT}} > 1 + (\text{RI} + \text{RWEU}) (1 - \cos \text{THETAI}).$$

If this condition is not met, subroutine PRES of ØDK will print the terminal error message:

INLET GEOMETRY INCOMPATIBLE WITH INITIAL CONDITIONS.

In addition, the transonic analysis requires that a value of $RWTU \ge .5$ be input.

The wall geometry downstream of the nozzle throat can be specified using any one of several options. All of these geometries begin with a circular arc of radius RWTD which extends from the throat point through an angle of THETA. Geometries that can be input to both the ØDK and MØC modules are described in Section 6.3.3.1.

Figure 6-1: Nozzle Geometry, all coordinate values are normalized by RSI = r_t.

				Assumed
Item		Description	Units	Value(s)
RSI	3	Nozzle throat radius, r _t	in, (meters)	0.
ASUB(1)	=	Subsonic area ratios at which informa- tion will be printed.	none	0.
NASUB	3	Number of entries in the ASUB array < 50. Entries must be monotonic decreasing The value.	none	0.
ASUP(1)	-	Supersonic area ratios at which infor- mation will be printed. Entries must be monotonic increasing in value.	none	0.
NASUP	3	Number of entries in the ASUP array \leq 50.	none	0.
ECRAT	=	Nozzle inlet contraction ratio for use in ØDE and ØDK calculations.	none	0.
RI	3	Normalized inlet wall radius.	none*	0.
THETAL	2	Nozzle inlet angle.	degrees	0.
RWIU	=	Upstream normalized wall throat radius RWTU_> .5 is required.	none*	0.
ITYPE	2	Type of nozzle wall to be input. ITYPE = 0, if the real wall contour is input. ITYPE = 1, if the potential flow wall contour is input. If IRPEAT = 1 or 2, then the nozzle wall will be displaced by \pm_{δ}^* as cal- culated by BLM when the TDK (or TDE) calculations are repeated. This dis- placement is $-\delta^*$ for the real wall (ITYPE = 0), or $\pm\delta^*$ for the potential flow wall (ITYPE = 1).	none	0.

 \sim

•

^{*} Normalized by the throat radius, ${\bf r}_{\rm t}$
6.3.3.1 Exhaust Nozzle Geometry Specification, for ØDK and the MØC Modules.

Item		Description	Units	Assumed Value(s)
IWALL	=	option flag for specifying the downstream wall.	none	0
	=	1 cone option (input RWID, THEIA, and EPS)		
	3	2 parabolic nozzle contour option (input RWID, THETA, RMAX, ZMAX)		
	=	3 circular arc nozzle contour option (input as for IWALL=2)		
	I	4 nozzle contour (spline) option (in- put RWTD, THETA, THE, RS, ZS, NWS)		
	=	5 cone with specified end point. (input RWTD, RMAX, and ZMAX)		
	3	6 skewed parabola option. (input RWTD, THETA, RMAX, ZMAX, THE)		
The items	s requi	red for the various IWALL options are:		
RWID	=	downstream wall throat radius of cur- vature ratio**	none*	0.
THETA	3	nozzle attachment angle		
THE	=	nozzle exit angle (input if IWALL=4, or 6)	deg.	0.
EPS	=	nozzle expansion ratio (input if IWALL=1 only)	deg.	0.
RMAX	=	normalized radius at the nozzle exit plane (input if IWALL=2 or 3)	none*	0.
ZMAX	=	normalized axial position at the nozzle exit plane (input if IWALL = 2 or 3)	none*	0.

* Normalized by the throat radius rt

 $\overline{}$

^{**} If a corner expansion (i.e. Prandtl-Meyer fan) is desired, a value of RWTD = .05 is recommended. Experience has shown that values smaller than this give the same result but are computationally less efficient.

<u>Item</u>		Description	Units	Assumed Value(s)
RS(2)		table of normalized wall radii downstream of the nozzle tangency point (input if IWALL=4). The input tables RS and ZS start with the second entry because the first entry is calculated automatically by the program, i.e., $RS(1)=r_T$ and $ZS(1)=z_T$ in Figure 6-1. The wall angle at this position is also calculated so that the spline contour will be properly joined to the nozzle throat contour.	none	. 0.
ZS(2)	z	table of normalized axial position downstream of the nozzle tangency point (input if IWALL=4).	none ⁺	0.
NSW	=	total number of entries in the RS, ZS tables. Includes the first entry. NWS=≦ 50 (input if IWALL=4).	none	0
R 2 N Ø R M	-	optional normalizing factor for the RS, ZS, RIN, ZIN tables. For example, if RS, ZS, and RIN, ZIN were input as dimensional numbers, RZNØRM	none	1.

would be the throat radius in

+ See the input variable RZNØRM.

those units.

851007

6.4 ØDE INPUT DATA (ALL PROBLEMS SPECIFYING ØDE)

The \emptyset DE Input data described here is exactly as defined in NASA SP-273, Reference 3, except namelists input \$INPT2 and \$RKINP have been combined into a single list named \$ \emptyset DE. Any type of equilibrium calculation available with the computer program described in Reference 3 can thus be computed using the \$ \emptyset DE input data*. In this document, however, only the RKT option of namelist is described. The RKT option differs from that of Reference 3 for problem types other then single zone \emptyset DE.

The ØDE input data consists of the following input groups:

1.	REACTAN TS	directive card, followed by up to 15 data cards, followed by a blank card, specifying reactants.
2.	ØMIT and INSERT	directives to omit or insert species for equilibrium/frozen calculations.
3.	NAMELISTS	directive card followed by input namelist \$ØDE specifying input case data.
-	· · · · · · · · · · · · · · · · · · ·	

6.4.1 <u>REACTANTS CARDS</u>

This set of cards is required for all ØDE problems. The first card in the set contains the word REACTANTS punched in card columns 1 to 9. The last card in the set is blank. In between the first and last cards may be any number of cards up to a maximum of 15, one for each reactant species being considered. The cards for each reactant must give the chemical formula and the relative amount of the reactant. For some problems, enthalpy values are required. The format and contents of the cards are summarized in Table 6-7. A list of some REACTANTS cards is given in Table 6-8

<u>Relative amounts of reactants.</u> - The relative amounts of reactants may be specified in several ways. They may be specified in terms of moles, mole fraction, or mole percent (by keypunching M in card column 53) or in terms of weight, weight fraction, or weight percent (blank in column 53).

Relative amounts of total fuel to total oxidants can also be input. For this situation, each reactant must be specified as a fuel or an oxidizer by keypunching an F or O, respectively, in column 72 of the REACTANTS card. The amounts

^{*}These options include TP, HP, SP, TV, UV, or SV problems, Chap.nan-Jouguet detonation problems, and incident or reflected shock problems.

TABLE 6-7 REACTANTS CARDS

•

Order	Contents	Format	Card columns
First	REACTANTS	3A4	1 to 9
Any	One card for each reactant species (maximum 15). Each card contains:		
	(1) Atomic symbols and formula num- bers (maximum 5 seis) ²	5(A2, F7.5)	1 to 45
	(2) Relative weight ^b or number of moles	F7.5	46 to 52
	(3) Blank if (2) is relative weight or M if (2) is number of moles	Al	53
	(4) Enthalpy or internal energy ^a .	F9.5	54 to 62
	(5) State: S. L. or G for solid. liquid or gas. respectively	Al	63
	(6) Temperature associated with enthalpy in (4) , ^O K	F8.5	64 to 71
	(7) F if fuel or O if oxidant	Al	72
	(8) Density in g cm ³ (optional)	F8.5	73 to 3)
Last	Blank		

^aProgram will calculate the enthalpy or internal energy (4) for species in the THERMO data at the temperature (6) if zeros are punched in card columns 37 and 38. (See section Reactant enthalpy for additional information.)

^bRelative weight of fuel in total fuels or exidant in total exidants. All reactants must be given either all in relative weights or all in number of moles.

TABLE 6-6 LISTING OF SAMPLE REACTANTS CARDS

.

. . .

REACTANTS H 2. N ,7808810	.209795AR.0C4662		100. 100.	0. - 7,202	6298.1 1646298.1	.5 F .5 O
REACTANTS N 1. H C 1. H AL1. MG1. D 1 H 2. D 1	4, CL1, O 4, 1.869550 .031256S .00 1.	8415	72,06 18,58 9,00 ,20 ,16	-70730 -2999, +C.0 -14370(-68317,	• 5298,1 082L298,1 5298,1 0. 5298,1 • L298,1	5 F F F F F F 5 F
REACTANTS H 7. O 2.		-00 . 00	100. 100.0	a. 0.a	6298,15 6298,15	й О
REACTANTS N 2, H 8 N 2, H 4 F 2,	. C2.		50.0 50.0 100.	12734,8 12050, •3030,80	L298,15 L298,15 921 85,24	F ,786 F 1.903 0 1.54
REACTANTS LI1. F 2.			100. 100.	0. -3030,89	\$298,15 21 85,24	F 0 1,54
REACTANTS N 2, H 4, BE1, H 2, O 2,			80. 20. 100.	12100, 0.0 -44880,	L298,15 S298,15 L298,15	F 1.003 F 1.85 0 1.407

*Listed above are six examples. Each example must end with a blank card.

given on the REACTANTS cards are relative to total fuel or total oxidant rather than total reactant.

There are four options in the \$\varnothetaDE namelist for indicating relative amounts of total fuel to total oxidant as follows:

1. Oxidant to fuel weight ratio (ØF is true)

2. Equivalence ratio (ERATIØ is true)

3. Fuel percent by weight (FPCT is true)

4. Fuel to air or fuel to oxidant weight ratio (FA is true)

For each option, except \emptyset DE with NZ \emptyset NES=1, the values are given in the \emptyset FSKED array of $\$\emptyset$ DE (described in Section 6.4.3). For \emptyset DE with NZ \emptyset NES=1, the MIX array is used as described in Reference 3.

<u>Reactant enthalpy.</u> Assigned values for the total reactant are calculated automatically by the program from the enthalpies of the individual reactants. Values for the individual reactants are either keypunched on the REACTANTS cards or calculated from the THERMØ data as follows:

Enthalpies are taken from the REACTANTS cards unless zeros are punched in card columns 37 and 38. For each REACTANTS card with the "00" code, an enthalpy will be calculated for the species from the THERMØ data for the temperature given in card columns 64 to 71.

When the program is calculating the individual reactant enthalpy for values from the THERMØ data, the following two conditions are required: 1. The reactant must also be one of the species in the set of THERMØ data. For example, $NH_3(g)$ is in the set of THERMØ data but $NH_3(\ell)$ is not. Therefore, if $NH_3(g)$ is used as a reactant its enthalpy could be calculated automatically, but that of $NH_3(\ell)$ could not be.

2. The temperature T must be in the range $T_{low}/1.2 \le T \le T_{high} x 1.2$ where T_{low} to T_{high} is the temperature range of the THERMØ data.

For cases with NZØNES > 1 (see Problem card, Section 6.3) it may be desirable to modify the enthalpy of each zone. This can be done by using the DELH input array. For the ith zone the ith DELH entry will be added to the system enthalpy as computed by ØDE from the reactants cards (see above). For example, overall system enthalpy of the propellants in the tank can be input through the reactants cards and the work added or extracted per zone can be input by the DELH entries. An alternate method would be to input zero enthalpy on the Reactants cards and input enthalpy per zone by the DELH entries.

6.4.2 ØMIT and INSERT Cards

ØMIT and INSERT cards are optional. They contain the names of particular species in the library of Thermodynamic Data for the specific purposes discussed below. Each card contains the word ØMIT (in card columns 1-4) or INSERT (in card columns 1-6) and the names of from 1 to 4 species starting in columns 16, 31, 46, and 61. The names must be exactly the same as they appear in the THERMØ data.

6.4.2.1 <u>ØMIT Cards</u>

These cards list species to be omitted from the THERMØ data. If ØMIT cards are not used, the program will consider as possible species all those species in the THERMØ data which are consistent with the chemical system being considered. Occasionally it may be desired to specifically omit one or more species from considerations as possible species. This may be accomplished by means of ØMIT cards.

6.4.2.2 INSERT Cards

These cards contain the names of condensed species only. They have been included as options for two reasons.

The first and more important reason for including the INSERT card option is that, in rare instances, it is impossible to obtain convergence for assigned enthalpy problems (HP or RKT) without the use of an INSERT card. This occurs when, by considering gases only, the temperature becomes extremely low. In these cases, the use of an INSERT card containing the name of the required condensed species can eliminate this kind of convergence difficulty. When this difficulty occurs, the following message is printed by the program: "LOW TEMPERATURE IMPLIES CONDENSED SPECIES SHOULD HAVE BEEN INCLUDED ON AN INSERT CARD".

6-31

The second and less important reason is that if one knows that one or several particular condensed species will be present among the final equilibrium compositions for the first assigned point, then a small amount of computer time can be saved by using an INSERT card. Those condensed species whose chemical formulas are included on an INSERT card will be considered by the program during the initial iterations for the first assigned point. If the INSERT card were not used, only gaseous species would be considered during the initial iterations. However, after convergence, the program would automatically insert the appropriate condensed species and reconverge. Therefore, it usually is immaterial whether or not INSERT cards are used. For all other assigned points the inclusion of condensed species is handled automatically by the program.

6.4.3 <u>\$ØDE NAMELIST INPUT</u>

The ØDE subprogram contains namelist input sections \$ØDE and \$SHKINP. The Namelist \$ØDE must be preceded by a card with NAMELISTS punched in card columns 1-9.

The \$0DE Namelist is required if 0DE =1. or TDK =1, in \$DATA as described in section 6.3.

For the ØDE problem type any of nine (9) different equilibrium problems can be solved. These are TP, HP, SP, TV, UV, SV, RKT, DETN, and SHØCK. For the ØDE-ØDK, ØDE-ØDK-TDK, or TDE problem type, only the RKT problem can be solved. In this section only the RKT input option is discussed. Reference 9 is to be used to prepare input for the other equilibrium problems.

The variables input by the \$ØDE namelist are listed in Table 6-9. Additional information about some of these variables follows: Pressure units. - The program assumes the pressure in the P schedule to be in units of atmospheres unless either PSIA = true, or SI = true. <u>Relative amounts of fuel(s) and oxidizer(s)</u>. - These quantities may be specified by assigning 1 to 15 values for either o/f, %F, f/a, or r. If no value is assigned for any of these, the program assumes the relative amounts of fuel(s) and oxidizer(s) to be those specified on the REACTANTS cards. (See discussion in REACTANTS Cards, Section 6.4.1 and Section 5.2.1)

<u>RKT problem</u>. - Only one value for chamber pressure, P, is to be input for cases with NZØNES > 1 (see DATA input, Section 6.3). The stagnation pressure used for the ith zone will be the value input for P multiplied by the ith value input in the schedule XP. If not input, all XP entries are assumed equal to one. For TDK type

problems, zone one is taken about the nozzle axis of symmetry and the last zone is bounded by the nozzle wall. Similarly, the ith zone will have a mixture ratio equal to the ith entry in the ØFSKED schedule.

Print out will be given for the chamber pressure condition (i.e. stagnation) and the throat condition. Print out may be requested at other conditions by use of the PCP schedule and the SUBAR and SUPAR schedules.

The program will calculate both equilibrium and frozen performance unless FRØZ = F or EQL = F are input. If FRØZ = F, only equilibrium performance will be calculated. If EQL = F, only frozen performance will be calculated.

Ordinarily, rocket problems are run by specifying chamber values for P and H. It is possible, however, to run 1 zone cases (H ZOIEC = 1 in SDATA) by specifying P and T. For example:

\$ODE
RKT = 1
P = chamber pressure,
T = chamber temperature,

can be used to set the chamber temperature and run the rocket problem. The resulting chamber enthalpy will be calculated and included in the output.

TABLE 6-9

VARIABLES IN \$ØDE NAMELIST

.

-	Variable	No	-		
	, or rapid	entries	Туре	Value before read	Definition and comments
	RKT	1.	L	False	Rocket problem ^a
	Ρ	26	R	0	Assigned pressures: stagnation pres- sure for rocket problems: values in atm unless PSIA, or SI = .T., (see be- low)
	SI	1	L	False	^a Values in Parray are in N/-3
	PSIA	1	L	False	^a Values in P array are in nota units
	XP	50	R	1.	Multipliers for the i th zone stagna- tion pressure (zone 1 = (nner zone)
	ØF	1	L	False	Oxidant to fuel weight ratios are to be input ^a
	ERATIØ	1	L	False	Equivalence ratios are to be input ^a
	FPCT	1	L	False	Percent fuel by weight are to be input ^a
	A	1	L	False	Fuel to air weight ratios are to be input ^a
		50	K	0	For a Rocket problem, and NZØNES ≥ 1 , ØFSKED will be used rather than MIX (see Reference 3). Relative amounts of total oxidant to total fuel are input as defined by ØF, ERATIØ, FPCT, or FA. For ØDE-ØDK-TDK and TDE problem types these values define the oxidant to fuel ratios for each zone (zone 1 = inner zone)
	DELH	50	R	0	Corresponding to each zone this value will be added to the system enthalpy input thru the reactants cards. Units are BTU/# if PSIA=.T., joule/kilogram if SI=.T., otherwise cal/gram.
	DELH1	50	R	0	Corresponding to each zone this value will be added to the system enthalpy. These values can be used as a 1st est- imate for the heat returned to the main combustion chamber by regen cooling circuits (ØFC input in SBLM). The BLM will recalculate these values and, if IRPEAT =1 in SDATA, rerun the ØDE, ØDK, TDK (or TDE) analysis. Same units as DELH.

^aIf variable is set to be true.

Note: For rocket problems, only one value stagnation pressure can be input. This value multiplied by the i th entry of XP will be used for the stagnation pressure of the i th zone.

Table 6-9 (cont'd)

Variable	No. of entries	Туре	Value before read	Definition and comments
IØNS	1	L	False	Consider ionic species ^a
WFLØW	1	R	0	Input nozzle mass flow option for ØDE- ØDK-TDK or TDE problems. If a value for WFLØW is input an expansion with this mass flow will be computed. The values input for P and XP are used as estimates for computing stagnation pres- sure for each zone. The program will adjust these stagnation pressures to obtain the desired nozzle mass flow within a tolerance of RELERR. Units are lbs/sec if PSI=.T. otherwise kilo- grams/sec.
RELERR	1	R	.0005	Relative difference between requested and computed mass flow rate. The pro- gram stops if this error is exceeded.
PCP	50	R	0	Compute and print solutions at these values of chamber pressure to pressure ratio (entries must be >1.)
SUBAR	50	R	0	Compute and print solutions at these values of subsonic area ratios (en- tries must ≠ 1.)
SUPAR	50	R	0	Compute and print solutions at these values of supersonic area ratio (en- tries must ≠ 1)
ECRAT	1	R	0	Subsonic area ratio to start ØDK cal- culations with computed equilibrium conditions. The SUBAR input table must include an entry equal to ECRAT.
EQTHST	1	L	False	To start ØDK calculations with com- puted equilibrium conditions at the nozzle throat. ^a
EQL	1	L	True	Calculate rocket performance assum- ing equilibrium composition during expansion ^b .
frøz	1	L	True	Calculate rocket performance assum- ing frozen composition during expan- sion ^b .
LISTSP	1	L	False	List names and dates of all species residing on thermodynamic data used ^a .
KASE	1	I	0.	Optional assigned number associated with case.

^aIf variable is set to be true.

^bSet variable false if these calculations are not desired. 6-36

6.4.3.1 Variable Mixture Ratio Option

The MOC can be run with a variable mixture ratio option by setting VARMIX=.TRUE., and inputting values into the STREAM(1) table as described below.

When the variable mixture ratio option is used, there are no sliplines in the flow. Instead, the flow mixture ratio will vary from the axis (ψ =0) to the wall (ψ =1) as specified in the tables of ØFSKED vs. STREAM. Sliplines can not be used when the shock option is invoked (SHØCK=1 in \$MØC), because shock-slipline interaction is not provided in the program. Thus, if the shock option is requested and there is variation in mixture ratio from streamline to streamline, then the variable mixture ratio option must be used.

The program will not function properly if the spacing in the mixture ratio table, \emptyset FSKED(1), is too large. The required spacing depends on the chemical system. As a rule each entry in \emptyset FSKED(1) must differ no more than 4 or 5% from its adjacent values depending on the stoichiometry of the system. There are no spacing requirements for the STREAM (1) table. However, the first entry must be 0 and successive entries must increase monotonically with the last entry equal to 1.

The tables XP(1), DELH(1), and DELH1(1) of \$0DE can be used, in which case each entry corresponds to entries in 0FSKED(1) and STREAM(1).

If VARMIX=.TRUE., the XM(1) table of \$0DK and \$TRANS will will be computed by the program and need not be input.

6-37

Assumed Value(s)

Description

Item F If VARMIX=.FALSE., do not use VARMIX= variable mixture ratio option. If VARMIX=.TRUE., the variable mixture ratio option is to be used. The following must be input: NZØNES in \$DATA, ØFSKED(1) in \$ØDE and STREAM(1) in \$ØDE, below. If VARMIX=.TRUE., values must STREAM(1) =be input here corresponding to the O/F values input in ØFSKED(1). The values input represent $(O/F)_i$ vs ψ_i i=1,...,NZØNES where ψ_i represents the mass flow between streamline i and the axis, divided by the total mass flow. Thus $\psi = 0$ at the axis, and $\Psi = 1$ at the wall. The ith entry of ØFSKED is $(O/F)_i$. The ith entry of STREAM is ψ_{i} $0 \leq \psi_i \leq 1$ i =,...,NZØNES = 50 and $\psi_i < \psi_{i+1}$

6.4.3.2 OPTION TO PUNCH TABLES FOR BOUNDARY LAYER PROGRAM INPUT (DOES NOT APPLY TO BLM)

Conditions computed along the nozzle wall can be output as punched cards for input to the ELIMP ,TOL or MABL boundary layer analysis computer programs. These conditions are taken by the boundary layer computer program as being the inviscid flow condition at the edge of the boundary layer. Tables to be punched are: x, y, and P/P_c (i.e. the nozzle wall coordinates and the ratio of pressure to chamber pressure along the wall). The tables are punched in NAMELIST format readable by BLIMP.

A maximum of 50 entries upstream of the throat are saved and punched. The wall point at the end of every characteristic is punched up to a maximum of 500 total table entries. The user may specify a number by which the punched table will be offset. Thus, the first point may be output with identification 5 by input of IOFF=4. The use of IOFF enables the user to extend the table by adding points upstream.

If punched cards for input to a boundary layer program are required, the following items must be input as part of the \$ØDE Namelist input:

Item Name

Description

IPTAB	Ξ	If IPTAB=1, one title card will be punched (this will be the last title card input as described in 6.2) followed by tables of X, Y, and P/P along the nozzle wall. These cards are for input to the BLIMP or MABL computer programs. The first point punched will correspond to beginning of the converging section of the nozzle (i.e. at ECRAT; see Figure 6-1, also table 6-9).
IØFF	=	The first point to be punched will be numbered as IØFF+1.
IPTBL.	=	If IPTBL and IPTAB=1, tables of M, T/T , C, V, and ρ , will also be punched. These additional Cards are required for input to the TBL computer program (i.e. the December 21, 1973 version).

If a TDE problem is specified, the following items <u>must</u> also be input when IPTAB=1: RSI, RWTU, THETAI, and RI in \$DATA.

These items define the nozzle geometry from the combustion chamber through the throat as shown in Figure 6-1. For a TDE option it is necessary that IPTBL=0.

ORIGINAL PAGE IS OF POOR QUALITY

ODK INPUT DATA 6.5

ØDK input data is required if ØDK =1 or TDK =1 in \$DATA as described in Section 6.3. The ODK input data consists of three data groups as follows:

SPECIES	data	group
REACTIONS	data	group
S ØDK	data	group

.

These data groups are described below in sections 6.5.1, 6.5.2, and 6.5.3, respectivly.

6.5.1 SPECIES

Species used by the computer program are determined in several possible ways, depending upon the problem type. Methods used to determine chemical species for each probelm type are discussed below.

ØDK

If ØDE=0 and ØDE=1 in \$DATA, then specied names and concentrations must be input, see Section 6.5.1.1.

ØDE-ØDK

If ØDE=1 and ØDK=1 in \$DATA, then the initial start conditions for the kinetic expansion are obtained from an ØDE equilibrium calculation. The continue generated by

ORIGINAL PAGE IS OF POOR QUALITY

the equilibrium calculation generally contains many more species than the 40 species for which the ØDK subprogram is dimensioned. Therefore a selection processes is required to interface the ØDE calculated equilibrium start conditions with the ØDK kinetic expansion calculations. This selection is performed using the following rules:

- Rule 1 If a species appears in a reaction, it is selected for the kinetic calculation.
- Rule 2 If a species is specified using INERTS directive it is selected for the kinetic calculations.
- Rule 3 If any species has a mole fraction greater than an input criterion, it is selected for the kinetic calculation.

Species which are selected but which do not appear in a reaction are treated as Inert and listed as such on the output list of selected species.

ØDE-ØDK-TDK

For problems with ØDE=0 and ØDK=1, species are selected by the

above rules. However, for multizone TDK cases it is necessary that each zone have the same species list. Thus the INERTS input (see Section 6.5.2...) must be used to assure the same species are selected for each zone.

6.5.1.1 SPECIES CARD OPTION FOR INPUT OF INITIAL SPECIES CONCENTRATIONS,

(APPLIES ONLY IF WOR=0 AND OFK=1 IN (DATA)

This input begins with a single card with SPECIES in columns 1 through 7 and with either MASS FRACTIØNS or MØLE FRACTIØNS in columns 9 through 22. If the identifier for mass or mole fractions is omitted, mass fractions are assumed. Up to 40 species cards may be input. <u>Only those species specified by input</u> <u>species cards will be considered for an ØDK problem</u>. The order of the input species cards is independent of the order in which the species appear on the master Thermodynamic Data file.

A chemical species is identified symbolically by 12 alphanumeric characters and must correspond identically with the species name as it eppears on the Thermodynamic Data file. A complete list of the current species names are listed in Table 6-4 (condensed species, however, may not be specified in the species list.) The species symbol may not contain the characters * or =.

Col	Function
1-10	Not used
11-22	Species symbol (left justified)
23-30	Not used
31-60	Value of initial species concentration (if Dere must be input as 0.0) free field F or E format
61-80	User Identification if desired

This type of input also requires input of other items that otherwise would be provided by ODE. These other items $(P_c, T_c, V_c, etc.)$ are input with the \$ODK data set and are described in Section 6.5.3.6. Example input is given in Table 6-12.

5-42

6.5.2 THE INPUT OF CHEMICAL REACTIONS

Chemical reactions must be input if ØDK=1 in \$DATA.

Up to 50 reactions with an implied third body and a total 150 reactions may be input to the program. Only one card per reaction, and only one reaction per card is permitted. Cards specifying third body reactions must precede cards specifying all other reactions. Species names appearing in the symbolic reaction set must correspond identically with the species names as they appear in the master Thermodynamic Data (see Table 6-4).

The symbolic reaction set contains directive cards and reaction/data cards in groups as outlined below:

REACTIONS Directive for start οf symbolic reaction input • Reactions with implied third body species END TBR REAX Directive for end of third body reactions . All other reactions LAST REAX Directive for end of reactions INERTS Specified Inert Species THIRD BØDY REAX RATE RATIØS Directive for start of third body reaction rate ratios . LAST CARD Directive for end of REACTIØNS input

The content and format of each type of card are defined below:

6.5.2.1 REACTIONS Through LAST REAX

The symbolic reaction input begins with a card containing the word REACTIONS in columns 1 through 9.

Columns 11 to 23 can be used to specify the nominal direction of the reaction rate data. For example the card

REACTIØNS FØRWARD RATES

will cause all reaction rate data to be in the forward (left to right) direction unless otherwise specified. The word REVERSE instead of FØRWARD means the rate data is input in the reverse direction. If left out, the nominal rate direction will be the forward direction.

Up to 50 dissociation reactions and a total of 150 reactions may be input following the REACTIONS card. Only one card per reaction and only one reaction per card is permitted. Cards specifying reactions with third bodies must precede cards format of the reaction cards is defined below.

The general form of a reaction is:

 $\Sigma v_i * \alpha_i = \Sigma v'_i * \alpha_i$

where the α_i 's are species names and the ν_i 's are the stoichiometric coefficients. The left hand side of the above equation represents the reactants and the right hand side the products.

Each species name must correspond identically with the species name as it appears in the Thermodynamic Data File, e.g., see Table 6-4.

The stoichiometric coefficients must be intergers and an * must separate the stoichiometric coefficient from the species name. If no stoichiometric coefficient is given, the value 1 is assumed. It is also required that

$$\sum v_{i} \leq 10$$
$$\sum v'_{i} \leq 10$$

examples:

Reaction			Interpretation		
H+H	-	H2	H + H	Ŧ	Н2
NA+CL-	=	NACL	Na ⁺ + Cl ⁻	-	NaCl
B+2+M-2	-	ВМ	B ⁺⁺ + M	=	BM
BE+2+2*ØH	=	ВЕЙНЙН	Be ⁺⁺ + 2ØH ⁻	=	Be(ØH) ₂

The reaction rates are defined by three numerical values P1, P2, P3 input as E or F format. Three types of reactions can be input, as discussed below.

Arrhenius form

 $\Sigma v_{i} \alpha_{i} = \Sigma v_{i}' \alpha_{i}, Mn, A = P1, N = P2, B = P3$ or $\Sigma v_{i} \alpha_{i} = \Sigma v_{i}' \alpha_{i}, Mn, KF = P1, P2, P3$

Input of the above type defines a reaction rate of the form $k = P1*T^{-P2} * e^{-P3*1000/RT} , R = 1.987$

Landau-Teller form

 $\Sigma v_i \alpha_i = \Sigma v'_i \alpha_i$, Mn, *KF = P1, P2, P3 Input of the above type defines a reaction of the form $k = \exp(P1 + P2^{-1/3} + P3^{-2/3}).$

Log 10 form

 $\Sigma v_i \alpha_i = \Sigma v'_i \alpha_i$, Mn, %KF = P1, P2 Input of the above type defines a reaction of the form $\log_{10} k = P1 + P2*T$.

In the above reactions if KF is replaced by KR, then the rate will be for the reverse (right to left) direction.

The Mn's in the above reactions are the third body descriptors for the reaction. These descriptors are optional for dissociation-recombination reactions, but must be left out for exchange reactions. They are used to multiply the reaction rate by a factor that is defined by the descriptor.

The dissociation-recombination reactions with third body terms must precede other types of rections, and must be followed by the directive starting in column 1:

Col 1 +

END TBR REAX

All reactions prior to the above directive will have a third body term added to each side of the reaction; e.g.,

> $H_2 = H + H, M4, \dots$ END TBR REAX

is the same as

 $H_{2} + M4 = H + H + M4, \dots$

where M4 is a generalized third body as specified in Section 6.5.2.3. If no Mn is specified, the generalized third body is assumed to be defined by Mo.

The reaction set is terminated by a card containing LAST REAX in columns 1 to 9.

6.5.2.2 Inert Species Option

Inert species (i.e. species not appearing in reactions) can be included in the input by input of a card with INERTS in columns 1 through 6 followed by a list of inert species names. The species names must each be followed by a comma and each name must be written exactly as in the master Thermodynamic Data. The last comma must be followed by the word END. The species list can continue onto the next card, but a species name cannot overlap onto the next card.

6.5.2.3 Third Body Reaction Rate Ratios

If reaction rate ratios, m_{ij} , are to be input for the dissociation-recombination reactions, a card with THIRD BØDY REAX RATE RATIØS in columns 1 through 27 must be input next. If this card is deleted from the input, the program assumes all $m_{ij} = 1$. If this card is included in the input, it must be followed either by a card with ALL EQUAL 1.0 in columns 1 through 13 (which sets all $m_{ij}=1$) or by cards defining the Mn's as described below.

The Mn's on the reaction cards are used to identify a group of third body efficiencies which pertain to all of the reactions which declare that grouping. The format of the Mn statement is

$$Mn = m + \alpha_j, m_k + \alpha_k, \dots, etc$$

where

n	-	integer between 0 and 100 inclusive
^m j	=	multiplier for the species named α_i
αj	3	species name
•		
•		
•		
etc.		

850149

6-47

If no multiplier is given for an α , a value of 1.0 is assumed. The user may declare that all of the third body reaction rate ratios for a particular grouping are 1.0 by using the statement

Mn = *

If no Mn is declared on the reaction card, then MO is assumed.

Example: (fictitious rates)

REACTIONS FORWARD RATES

H + \emptyset H = H2 \emptyset , A = 7.5E23, N = 2.6, B = 0.0, \emptyset + H = \emptyset H, M2, KF = 4.0 + 18, 1, 0, \emptyset + \emptyset = \emptyset 2, M2, KF = 1.2E17, 1, 0, H₂ = H + H, M3, KR = 6.4E17, 1, 0, END TBR REAX . . LAST REAX THIRD BØDY REAX RATE RATIØS MO = .5*H2, 20.*H2 \emptyset , M2 = .5*H2, 5*H2 \emptyset , M3 = *

LAST CARD

In the above example the first reaction does not declare an Mn, so MO is used. The second and third reactions share the same third body reaction rate ratios by declaring the same group identifier, M2. The fourth reaction uses the identifier M3 which has all of its third body efficiencies set equal to 1.0.

6-48

6.5.2.4 LAST CARD

The reaction input data is termInated by a card containing LAST CARD in columns 1 through 9.

6.5.2.5 Master Reaction Set

A master reaction set is presented in Table 6-10. It contains chemical species and reactions found necessary for C, Cl, F, H, N, and O systems according to the study presented in Appendix A in which the rate data was updated with a literature survey through June 1984. Third body efficiencies are included. For any given chemical system that is to be analyzed, great care must be taken in selecting the appropriate reaction set. Table 6-10 may or may not be sufficient.

Table 6-11 presents a minimal reaction set for Oxygen/Hydrogen systems. The third body efficiencies are included in Table 6-11 and illustrate their usage.

TABLE 6-10 REACTIONS AND RATE DATA FOR C,CL,F,H,N, AND O SYSTEMS (SEE APPENDIX A)

SEA SEPT 12.1984 K=AT**(-N)*EXP(-1000/K) 72.43 301
EACTIONS CLEFFIND A ± 6.4517 , N = 1.0, B = 0.0, (AR) BAULCH 72 (A) 100
$1 + H = H2$, H_1 , $A = 8$ (F21, $N = 2.0$, $B = 0.0$, (AR) BAULCH (2 (A) 100
H = H20 $H2$, $H2$, $H = 1.0013$ $N = 0.0$, $B = 1.79$, (AR) BAULCH 70 (C) 100
$0 + 0 = 02$, M_3 , $A = 1.616$, $N = 0.5$, $B = 0.0$, (N2) BAULCH 73 (C) 100
N + 0 = NO, $M4$, $A = 0.4E10$, $H = 0.0$, $B = .99$, (N2) BAULCH 75 (C) 100
N + N = N2, $M5$, $A = 5.0214$, $N = 0.0$, $B = 0.0$, (AR) BAULCH /6 (B) 500
$c_0 + 0 = c_0 2$, M6, A = 1.0E14, N = 1.0, B = 0.0, (AR) JENSEN 78 (B) 500
n + h = 0h, $M7$, $A = 3.62E18$, $N = 1.0$, $B = -6.38$ (AR) BAULCH 81 (A) 100
F + F = F2, M8, A = 3.25E8, N = 1.0, P = 35 13 (AR)BAULCH 81 (A) 300
H + F = HF, M9, A = 7.5E12, N = 0.0, B = 1.81 (AR) 13/BAULCH 81 100
$C_{1} + C_{1} = C_{1} + C_{1$
A = 2.6E13, N = 0.0, B = 19.7, (AVE) 11/(CP1A246) 250
A = 3.E16, $N = 0.5$, $B = 0.0$, $(A = 7.5)$
THE TRE PEAK (A) 1.50
A = 2.2E14, N = 0.0, B = 10.0, DALL (H 72 (A) 1.5U
$U_2 + n = 0$ $A = 1.8E10$, $N = -1.8 = 8.9$, BAULCH 72 (A) 2U
H2 + 0 = 120 + H A = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 3U
H2 + 0H = H20 + 0, $A = 6.3E12$, $N = 0.0$, $B = 1.09$, BAULCH 72 (A) 30
OH + OH = R20 + 0, $A = 1.5E7$, $N = 1.3$, $B =765$, BAULCH 74 (1) 31
CO + OH = CO2 + H, $A = 7.6F13$, $N = 0.0$, $B = 75.5$, BAULCH 73. (C) 20
N2 + 0 = N0 + N , $A = 4.6E9$, $N = -1.0$, $B = 6.25$, BAULCH 75 (C) 20
O2 + N = NO + O, $A = 2.5E6$, $N = 0.0$, $B = 3.18$, BAULCH 70 (B) 20
CO + O = CO2, $A = 1.7513$, $N = 0.0$, $B = 52.7$, BAULCH (6 (B) 30
co2 + 0 = co + 02, $A = 1.7513$, $H = 0.0$, $B = 1.08$, FOON 75 (A)500
F + H2 = HF + H, $A = 9.2213$, $H = 0.0$, $B = 2.40$, BAULCH B1 (A) 100
H + F2 = HF + F, $A = 0.0613$, $H = 0.0$, $B = 1.2$, 29/BAULCH 81 100
CL2 + H = HCL + CL, A = 8.0E13, H = 0.0, B = 4.4, 31/BAULCH 81 100
CL + H2 = HCL + H, A = 1.45E13, H = 6 32/CPIA246 25U
HCL + F = HF + CL, $A = 1.9E12$, $N = .63$, $B = .5$, 33/CPIA246 25U
CL2 + F = CL + CLF, A = 6.2E12, N = .00, B = 3' 34/CP1A246 250
CI + F2 = F + CLF, $A = 7.6E12$, $N = 0.00$, $B = 3.2$ 35/CPIA246 250
CIF + H = HF + CL, $A = 1.8E12$, $N = -30$, $D = 1.0$, $36/CPIA246$ 250
$r_{1}F + H = HCL + F$, A = 5.6E12, N = .00, B = .4.37 (PIA246 1000U
CLF + H2 = HCL + HF, A = 1.8E10, N =, B = 40.13, 38/CP1A246 1000U
52 + HCI = HF + CLF, A = 1.8E10, N = 52, B = 54.03, 30/CPIA246 1000U
$P_{1} = P_{1} = P_{1$
$c_1 + c_1 = c_1 + c_1 + c_1 + A = 1.8E10, N =5, B = 20.70, 40/c_1 + 26/c_2 + 250$
A = 2.9E12, N =68, B = -2, 52/01/12/6 25U
UN + F = HF + OH = 1.4E10, N = .68, B = .6, DAU (V = 81, 100)
$H_{20} + F = H_{10} + 0$, $A = 5.9E12$, $N = 0.0$, $B = 5.72$, BAULCH 81 100
CL + 0H = HCL + 0.0, $A = 2.25E12$, $N = 0.0$, $B = 1.02$, BAULLH 31, 100
HUL + UN = NEU + GL, N = E + = F + =
LAST REAX
THIRD BODT REAX RATE 402 25*H 4*H2.10*H20,1*N,1.5*N0,1.5*N2,20*0,
M1 ± 1WAR, 1.5*CU, 0.4*CC; 22 H, 7 H= 1
25*0H,1.5*02,2*HF,4*F,
M2 = 1*AR, S*CO, 4*CO2, 12.3*R, 5*R, 5*R, 5*R, 5*R, 5*R, 5*R, 5*R, 5
6*02, 6*02, 6*02, 6*02, 6*02, 5*0, 5*0, 10*N, 4*N0, 4*N2, 12.5*0, 12.5
$M3 = 1*AR_{4}*CO_{3}*CO_{4}(2, 12, 2, 3, 7, 7, 12, 2, 7, 7, 7, 7, 12, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$
11*02, 10*04, 1*02, 10*1, 2*12, 7*120, 10*N, 1*N0, 1*N2, 10*04, 1*02,
M4 = .8*AR, 1*CO, 3*CO2, 10*H, 2*H22, 10*N, 1*NO, 1*N2, 10*O, 10*OH, 1*O2, 10*D, 10*OH, 1*O2, 10*D, 10*OH, 1*O2, 10*O, 10*OH, 1*O2, 10*OH, 1
M5 = 1*AR, 1*CO, 2*CO2, 10*H, 2*H2, 3*H2O, 1*N, 1*NO, 2*N2, 1*O, 1*OH, 25*O2, 1*O, 1*OH, 2*OH,
M6 = 1*AR, 1*C0, 5*C02, 1*H, 1*H2, 1*H2, 1*H2, 1*H, 4*N0, 4*N2, 12.5*0, 12.5*0H,
$M7 = 1*AR, 4*CO, 5*CO2, 12.5*H, 5*H2, 5^H2, 5^$
5*02.
M8 = 1*H2.2.4*F2,1*HF,1*N2,1*N,2.4*F,1*N,
MQ = 8*H2.1*F2.2*HF, 2.8*N2, 1*N, 4*F, 20*H,
M10 = 1*AR.1*HCL,5*CL2,1*CL,
LASI CARD

TABLE 6-11. REACTIONS AND RATE DATA FOR H,O SYSTEMS.

```
REACTIONS HO
                     SEA, SEPT 12,1984
                                              K=AT**(-N)*EXP(-1000B/RT)
 H + H = H2
                  ,M1, A = 6.4E17, N = 1.0, B = 0.0, (AR) BAULCH 72 (A) 30U
,M2, A = 8.4E21, N = 2.0, B = 0.0, (AR) BAULCH 72 (A) 10U
M2 = 2.0E12, N = 2.0, B = 0.0, (AR) BAULCH 72 (A) 10U
 H + OH = H2O
 0 + 0 = 02
                  ,M3, A = 1.9E13, N = 0.0, B =-1.79, (AR) BAULCH 76 (A) 10U
O + H = OH
                  ,M7, A =3.62E18, N = 1.0, B = 0.0, (AR) JENSEN 78 (B) 30U
END TBR REAX
O2 + H = O + OH
                       , A = 2.2E14, N = 0.0, B = 16.8,
H2 + O = H + OH
                                                              BAULCH 72 (A) 1.5U
                       , A = 1.8E10, N = -1., B = 8.9,
H2 + OH = H2O + H
                                                              BAULCH 72 (A) 1.5U
                       , A = 2.2E13, N = 0.0, B = 5.15,
OH + OH = H2O + O
                                                              BAULCH 72 (A) 2U
                      , A = 6.3E12, N = 0.0, B = 1.09,
LAST REAX
                                                              BAULCH 72 (A) 3U
THIRD BODY REAX RATE RATIOS
M1=25*H,4*H2,10*H20,25*O,25*OH,1.5*O2,
M2=12.5*H,5*H2,17*H20,12.5*O,12.5*OH,6*O2,
M3=12.5*H,5*H2,5*H20,12.5*O,12.5*OH,11*O2,
M7=12.5*H,5*H2,5*H20,12.5*O,12.5*OH,5*O2,
LAST CARD
```

6.5.3 **SØDK NAMELIST INPUT.**

\$ØDK Namelist input specifies the conditions for the kinetic expansion calculation. The input is read in subroutine ØDKINP and consists of the following groups of data as outlined below: ŧ

6.5.3.1	Specification	of	Nozzle	Geometry
---------	---------------	----	--------	----------

- 6.5.3.2 Integration Control
- 6.5.3.3 Print Control
- 6.5.3.4 Species Selection and Mass/Mole Fraction Check
- 6.5.3.5 ØDK Problem Input

6.5.3.1 Specification of Nozzle Geometry.

All of the nozzle geometry is to be input using the \$DATA Namelist input, see Section 6.3.3 and Figure 6-1.

An QDK calculation will be carried out for each mixture ratio input in QFSKED of DK = 1 in DATA.

For a TDK problem, it is necessary that the ØDK calculations be run past the nozzle throat. Usually it is not desirable to run the ØDK calculations all the way to the nozzle exit because of the extra computer time and print out that results. However, if this is desired on a TDK problem, it can be requested by input of item EP as described below.

Item		Description	Units		
\$ØDK	=	Namelist, read in subroutine ØDKINP.			
EP	. =	If TDK = 1 and a value is input here for EP, then each ODK will be run to expansion ratio EP.	none	0	

6.5.3.2 INTEGRATION CONTROL

The integration routine controls the step size such that the relative error in the dependent variable increments are less than a prescribed fraction, DEL. Only doubling or halving of the step size is permitted, and on option, either all the variables may be considered (JF=0), or only the fluid dynamic variables (JF=1) may be considered.

When the flow becomes supersonic and the area defined fluid dynamic equations are used, an additional check on continuity is applied in the form

$$\frac{(\rho VA)_{N+1} - (\rho VA)_{N}}{(\rho VA)_{N+1}} < CØNDEL$$

where CØNDEL is an input relative criterion.

The step size is held between the two input bounds HMIN and HMAX. Fixed step cases may be run by setting input values for HI, HMAX, HMIN all equal. <u>Item</u> <u>Description</u> <u>Units</u> <u>Value(s)</u>

HI	=	initial step size	none	0.1
HMAX	=	upper bound on ston stor	none	.01
HMIN	_	Sound on step size	none	0.10001
		lower bound on step size	none	.005
DEL	=	fractional incremental error	none	.001

Item		Description	Units	Assumed Value(s)
TEXPLI	=	temperature below which explicit integration will start. Not recommended.	° _R	Û
CØNDEL	=	relative error criterion for continuity check for super- sonic flow	none	1×10 ⁻⁶
JF	= 0	all variables considered for step size control	none	0
	= 1	only fluid dynamic variables considered for step size control, i.e., p.u, and T	none	

6.5.3.3 PRINT CONTROL

Output from the Kinetic Expansion Calculation consists of complete output for each print station selected. The end point of the nozzle is always printed. Print stations are selected from one of the following options:

Item		Description Value(s)
JPRNT	= -2	print throat and input area ratios (see ARPRNT) -2
	= -l	print at <u>internally set area ratios</u> for conical nozzle.* Print at selected wall contour points for contoured nozzles. For the spline fit
		option (IWALL=4), print out will occur at each entry in ZS of \$DATA. For other con- tours (IWALL=2 or 3), print out will occur at 20 equally spaced axial locations along the nozzle.
	= 0	print at every integration step
	= +1	print every ND3rd step up to the throat and then nominal area ratios
	. = +2	print every ND3rd step over entire nozzle

Assumed

If JPRNT is +1 or +2, the following must be input:

<u>Item</u>		Description
NDI	=	first integration step to be selected for print
ND2	=	last integration step to be selected for print
ND3	=	print every ND3rd step between ND1 and ND2.

If JPRNT is -2, the following must be input:

Item		Description
ARPRNT(1)	=	requested area ratios for print, must be monotonic increasing and greater than 1.0 If no values are input, will use values from ASUP of formulation
NJPRNT	=	number of area ratios requested for print ≤ 100 .

An extended print option may be selected as follows:

Item	Value	-	
	value	Description	
IDYSCI .	= 0 = 1	no extended print requested extended print option selected (not suggested)	0

6.5.3.4 SPECIES SELECTION AND MOLE/MASS FRACTION CHECK

In order to interface ØDE equilibrium calculated start conditions with the kinetic expansion calculations, special consideration must be made for inert species (those not appearing in the reaction set). Inerts may be selected explicitly by use of the INERTS directive or by use of a relative selection criterion.

If A MULTIZONE TDK PROBLEM IS SPECIFIED INERTS <u>MUST</u> BE SPECIFIED VIA THE INERTS DIRECTIVE. This is required so that the chemistry selected for multizone cases will be compatible.

The INERTS directive is described in Section (6.5.2.2).

The relative selection criterion (ØDK or 1 Zone TDK problems,) is described below:

rungtion
all species which do not appear explicitly in the reaction set but whose mole fractions are greater then the input value for EPSEL, will be retained for the kinetic expansion. Species selected under this criterion are treated as inert. The program assumes EPSEL = 1.0E-5, unless input.

In some instances it may be desirable to use input species concentrations which do not sum to unity. Species concentrations, either input or from equilibrium start conditions, are summed and the sum checked as described below.

<u>Item Name</u>		Function
XMFTST	-	Input species concentrations are summed and checked versus unity using this input criterion. If $1 - \sum$ species concentrations <xmftst then the test is passed. The species concentrations will then be normalized such that \sum species concentrations = 1.</xmftst

The program assumes XMFTST = 1.0E-3, unless input.

If the test is not passed, an error message will be given and the run terminated.

6.5.3.5 Frozen Expansions with the ODK Module

The ODK module can be run using a frozen expansion by input

SHGAMF = 1,

An example of this option is presented in Table 6-12. Note that the REACTIONS, END TBR REAX, and LAST CARD directives are included in the input, but no chemical reactions are given. This option can be run with ODE, or as in Table 6-12, without ODE. Whenever TDF=1 is input, SHGAMF = 1 is set automatically.

6.5.3.6 ODK PROBLEM INPUT

This input is required when ØDE=0, ØDK=1 are input in SDATA.

A kinetic expansion from input arbitrary start conditions is

to be computed. In addition to the input items described in section 6.5.3, an ØDK problem requires input of those items described in Sections 6.5.11 and 6.5.2.

Input for a hydrazine monopropellant engine is given in Table 6-12 as an example of the ODK problem input.

<u>Item Name</u>		Input Quantity	<u>Units</u>	<u>SI Units</u>
PC	=	chamber pressure	PSIA	N/M ²
T	12	initial temperature	R	°K
v	=	initial gas velocity	ft/sec	m/sec
JPFLAG	= ()	pressure table calculated internally	none	none
	= 1	pressure table input		•
ECRAT	=	initial contraction ratio	none	none

For JPFLAG = 0 option the following must be input:

<u>Item Name</u>		Input Quantity	<u>Units</u>	<u>SI Units</u>	``
PI	3	initial pressure	PSIA	N/M²	
PESTAR	=	throat pressure	PSIA	N/M²	

For JPFLAG = 1 option the following must be input:

<u>Item Name</u>		Input Quantity	<u>Units</u>
PTB(1)	=	normalized pressure table entries*	none
ZTB(1)	=	normalized pressure table coordinates**	none
NTB		number of pressure table entries, ≤ 127	none
Z	=	initial axial position	none

normalized to input chamber pressure, PC

****** normalized to input throat radius, RSTAR. ZTB represents the streamline path length.

THERMO

300.000 1000.000 5000.000 H2J 3/61H 2.0 0.0 0.0 0.G 300.000 5000.000 .31001901E+01 .51119464E-03 .52644210E-07 -.34909973E-10 .36945345E-14 1 -.87738042E+03 -.19629421E+01 .30574451E+01 .26765200E-02 -.58099162E-05 2 .55210391E-08 -.18122739E-11 -.98890474E+03 -.22997056E+01 3 N2 J 9/65N 2.0 0.0 0.0 0.G 300.000 5000.000 4 .28963194E+01 .15154866E-02 -.57235277E-06 .99807393E-10 -.65223555E-14 1 -.90586184E+03 .61615148E+01 .36748261E+01 -.12081500E-02 .23240102E-05 2 -.63217559E-09 -.22577253E-12 -.10611588E+04 3 .23580424E+01 NH3 J 9/65N 4 1H 300 000 OG 0.24165177E 01 0.61871211E-02-0.21785136E-05 0.37599090E-09-0.24448856E-13 300.000 5000.000 1 -0.64747177E 04 0.77043482E 01 0.35912768E 01 0.49388668E-03 0.83449322E-05 2 -0.83833385E-08 0.27299092E-11-0.66717143E 04 0.22520966E 01 3 END 4 TITLE 5 LB THRUSTER, N2H4 MONOPROPELLANT DATA **SDATA** ODK = 1, RSI = .0937, ECRAT = 29.2,RI = .01, THETAI = 70, RWIU = 1.846, RWID = 1.846, IWALL = 5, RMAX = 9.872, ZMAX = 33.404, \$END SPECIES MOLE FRACTIONS NH3 .17310 N2 .30448 H_2 .52242 REACTIONS END TER REAX LAST CARD \$ODK JPRNT = -2,EP = 97.456, ARPRNT = 2,5,10,15,20,25,30,40,50,60,70,80,90,97.456, NUPRNT = 14,SHGAMF = 1,PSIA — Т, PC = 106, Т = 2030, V = 64.76, PI = 105.97, PESTAR = 57.812, \$END

MASS AVERAGED ØDK ISP 6.5.3.7

A mass averaged ØDK ISP summary page may be obtained at the end of the ØDK calculations as described below:

Itom Name		Description	
ILEM NOME	=)	Specifies mass averaged ISP option	
MAVIOP	-•	and the set flow rate of each zone (zone 1	
XM(1)	*	= inner zone) to the total mass flow rate.	

6-60
6.6 \$TRANS NAMELIST INPUT.

When a MØC problem has been specified, the input data set \$TRANS is required for the transonic calculation.

Item		Description	Assumed Value(s)
\$TRANS	=	Namelist, read in subroutine TRAN	
XM(1)	=	Ratio of mass flow rate of each zone (zone 1 = inner zone) to the total mass flow rate. (need not be input if MAVISP = 1 option spe- cified and XM input in \$0DK).	50*0
ALI	=	Number of degrees initial line will be disp- laced downstream. The program assumes ALI is zero. If ALI is not zero, a symmetric throat is required (RWTD = RWTU).	0
IBUG	=	If input is nonzero, intermediate transonic output will be printed.	0

The following input may be used to control the construction of the initial line:

Item

Description

Assumed

Value(s)

MP

Number of points to be placed on the initial 50 line. $MP \le 275$. A sinusiodal distribution of the following form is used:

$$r_{i} = [r_{w} \sin(\frac{i\pi}{N2})] \quad i = 0, 1, 2....N$$

where N = MP and ε_1 is EXP1 described below. Editing is done to control the spacing, see DRMIN and DRMIN1.

-61

÷

Assumed Value(s)

1.2 = ε_1 for sinusoidal distribution. EXP1 .01 sinusoidal Editing criteria for DRMIN = distribution. The first initial line point below the wall, r_1 , will be spaced such that $r_w - r_1 > \min [DRMIN * RWTD, .025]$ If a value of SHØCK=1 is to be input in \$MOC, then set DRMIN=.001 5*10⁻⁴ Editing criteria for sinusoidal DRMIN1 = distribution. Points on the initial line will be spaced such that r - r > DRMIN1 n n-1

Description

\$END

Item

6.7 <u>\$MOC NAMELIST INPUT</u>.

-

ORIGINAL PAGE &

This data set contains the input items for the supersonic Method of Characteristics (MOC) module. The items are divided into four types, which are described in the following subsections.

6.7.1 Characteristics Mesh Control
6.7.2 MMC Chock Option
6.7.4 Evint Control
6.7.4 Inputs from DER
6.7.5 Exit Plane Option

Often no \$MOC input is necessary since the default values are usually suf-

6.7.1 Characteristics Mesh Control

<u>Item Na</u>	ame	Input Quantity	<u>Units</u>	Assumed <u>Values</u>	<u> </u>
\$MOC	æ	Namelist name, read by subroutine CHAR.			
DS	-	insertions will be made such that successive points along streamlines will not be separated by more than DS $*M^{1/2}$ as described in Subroutine CNTRL.	none	.15	
DTWI	-	$\Delta \theta_{t\omega}$ criterion for insertion in subroutines INPT and DSPT as described in Subroutine CNTRL.	degrees	2.	
DWWCI	-	throat wall point insertion control parameter $\Delta \theta_{ m WC}$ described in Subroutine CNTRL.	degrees	.5	,
DWWI	-	wall point insertion control parameter Δθ described in Subroutine CNTRL.	degrees	3.	
EPW	-	the program will insert such that the wall end point is located within a tolerance EPW.	none	.01	
ES		ε _s for point editing as described in Subroutine CNTRL.	none	.0001	

850150

<u>Item Name</u>	Input Quantity	<u>Units</u>	Assumed <u>Values</u>
ETHI =	$arepsilon_{ extsf{ heta}}$ for point editing as described in Subroutine CNTRL.	degrees	.25
IMAX =	the maximum number of iterations to be allowed while attempting to achieve a relative convergence	none	1 0
	for the flow variables of $5*10^{-5}$.		
IMAXF = 1	the program will terminate the case if a printed point requires maximum iterations for convergence.	none	0
or			
IMAXF = O	the program will continue the case after IMAX iterations per point have occurred.		
STØPIL ≖	if a value other than zero is input, then the program will construct the initial data line for the MOC and call EXIT at the end of subroutine CHAR. No MOC calculations will be done.	none	0.
TEXPLI =	input temperature below which explicit integration for the species concentrations will be used (not recommended).	^o r, ^o k if si	0. Units

•

850150

~

•----

6.7.2 MOC Shock Option

The shock option can be run for the following problem types:

```
TDK,
TDF,
PFGØPT.
```

The shock option <u>cannot</u> be run for the following problem types:

TDE, TTDK.

There are three methods by which the shocks can be located, as discussed below.

a) Induced Shock Option

If the MOC induced shock option is requested (SHØCK=1, ISHCK=2), then the mesh construction begins at the intersection of the initial data line and the flow axis. RRC's are constructed. After the nozzle wall is reached, succesive RRC's may cross. If so, a shock is inserted into the flow field at the cross-over point. Next, LRC's are constructed starting at the wall, and the region up to the cross-over point is filled in. The LRC construction then continues with the _1st point on each LRC being a right running shock point. When the axis is reached, the shock is reflected as a left running shock. The program then reverts to a RRC construction scheme and the shock is traced until it reaches the wall. It is then reflected from the well, and is calculated as a right running shock propagating towards the flow axis. Only one shock will be traced, but multiple reflections are allowed.

b) Attached Shock Option

In the case of an attached shock (ISHCK=3), the mesh construction is the same as for the induced shock up to the requested x-location (XA) of the attached shock. Then, instead of looking for a crossing of RRC's, a shock point is attached to the wall at the XA location. The shock strength is determined by the deflection angle of the wall at the XA location. The shock is then traced just like in the case of an induced shock.

c) <u>Multiple Shock Option</u>

Two shocks can be traced with the multiple shock options (ISHCK=6 or 7). The first shock can be either an induced shock (ISHCK=6) or an attached shock (ISHCK=7), but the second shock must be an attached shock. The x-location of the second attached shock is specified by the variable XB.

The mesh construction for this option is now described. The first shock is calculated as above until the end of the nozzle is reached. Next, the calculation of the second shock and part of the flow field affected by it is repeated. In this construction, the first shock may not go to the center line and the two shocks must not cross over inside the nozzle.

ITEM NAME INPUT QUANTITY

ASSUMED VALUE

SHØCK= If SHØCK=0, shocks will be ignored and the MOC flow field will use LRC 0 construction. If SHØCK=1, a shock will be inserted traced as described above.

ASSUMED

VALUE

2

ITEM NAME INPUT QUANTITY

ISHCK= If ISHCK=2, crossing of RRC's will be ignored for all RRC's that originate at the wall upstream of axial coordinate position XA. If the shock is too strong, it cannot be ignored.

If ISHCK=3, an attached shock is started at the XA position.

If ISHCK=6, two shocks are traced. The first one is an induced shock as in ISHCK=2 and the second is an attached shock at the axial coordinate position XB.

If ISHCK=7, two shocks are traced. The first one is an attached shock as in ISHCK=3 and the second is an attached shock at the axial coordinate position XB.

X A	Avial coordinate position on wall	tangent
X A =	discussed under ISHCK, above.	point at
	urscussed under Estate,	end of
		throat
		circular
		arc.
	a string on Wall as	0.

XB= Axial coordinate position on wall as discussed under ISHCK=6 or 7 above. 6.7.3 Print Control

•

C;

•

Item Na	ame	Input Quantity		Assumed
NI	2	flow parameters will be printed for every N1 th interior point a- long characteristics selected for print	<u>Units</u> none	<u>Values</u> 1000
N2	-	every N2 th characteristic will be selected for print	none	1000
NC	3	for NC \neq 0 species concentra- tions (partial densities) will be printed with the flow parameters. If NC=1 the quantities A, B, γ , heat capacity (BTU/Lb-°R), and enthalpy (ft ² /sec ²) will be append- ed to the species concentration print.	none	0
MASSFL	-	at the completion of each left running characteristic (LRC) the massflow is integrated. If MASSFL = 0 then no mass flow printed MASSFL = 1 then total mass flow and the number of points on the LRC are printed for each LRC MASSFL = 2 then mass flow for each point along LRC is printed	none:	1
NDS	×	<pre>MASSFL = 3 Same as MASSFL = 2 with the addition of execution time at the end of each LRC see Subroutine CHAR for NDS = 1 Dividing Streamline Points will be printed. (Nominal) for NDS = 0 Dividing Streamline Points will be suppressed.</pre>	none	1

6.7.4 Inputs from DER, Reference 24.

,

Item Name		Input Quantity	Units
ØFBAR	-	Overall mixture ratio in- cluding condensed phases. For print out only.	none
ETABAR	.	Overall evaporation efficiency, i.e. the ratio of gas flow to total propellant flow at the throat. I _{sp} , total = I _{sp} , gas *ETABAR	none
DRPISP	2	Ratio of total condensed phase momentum to the mass flow at the throat. Not used, reserved for future use.	lbf sec/lbm (if SI Units then N sec/kg)

6.7.5 Exit Plane Option

On option, the TDK method of characteristics calculation will continue the mesh construction through the exit plane of the nozzle and print a summary of the exit plane properties.(not operational for the shock option.)

<u>Item</u>		Description	Assumed Value(s)
EXITPL	2	Exit plane calculation requested if set .TRUE.(not operational for shock option.) For the case when two TDK runs are to be made, i.e., when	.FALSE.
		IRPEAT = 1, or 2 in \$DATA	T
\$END		then the exit plane will be computed for the second TDK run, but not for the first TDK run.	

6.8 Boundary Layer Module (BLM) Input Data, \$BLM

This input data set is required if the BLM is to be executed, i.e., if BLM = 1.0 was input in the \$DATA namelist. Most of the data required by the BLM is communicated automatically by the ØDE and/or MØC modules, or is preset as assumed values. Hence, these data items do not necessarily need to be input to the BLM module. However, any value that is read in will override the assumed or communicated value.

The input data items to the BLM module are as follows.

				Assumed
Item		Description	<u>Units</u>	<u>Value(s)</u>
\$BLM	=	Namelist name, read in Subroutine INPUTB		
WDØT2D	-	w _{2D} , nozzle mass flow.	lb/sec	1.
		If the MOC module was not executed, a value can be input here so that a boundary layer ISP decrement can be computed.		
IPRNT	-	If IPRNT = 1, then print the boundary layer profiles at every 5th station.	-	0

850150

6.8.1 BLM Gas Properties

Gas properties that are required by the BLM are Y, C_p , R, and μ versus T, and a value for the Prandtl number, P_r , and the total enthalpy, h_T . Ordinarily these values are supplied automatically by the ODE module. The tables are prepared by ODE using a series of (T,S) equilibrium (or frozen) calculations, where T varies from 600° R to 7000° R at 200° R increments. The chamber entropy value is used for S. Values at 100° R are then extrapolated and added to the table. The tables are printed with the BLM output. Constants defining the gas viscosity, μ , and the Prandtl number, P_r , are also prepared by the ODE module.

Values for any or all of the above items can be input and used in place of the values prepared by ODE. If the ODE module has not been run, then all of the items listed below must be input. The assumed values are for air with constant C_n .

ITEM	DESCRIPTION		ASSUMED
	<u>DESCRIPTION</u>	UNITS	VALUE(S)
CKO(1) =	Table of ratio of specific heats, Y, versus T.	none	2*1.4
CPO(1) =	Table of specific heat at		
	constant pressure, C _p , versus T	ft/sec-R	2*6006
HS(1) =	Table of static enthalpy, h, versus T	ft ² /sec ²	-6.01E5,3.88E6

6-73

DESCRIPTION

HTØTAL = Total enthalpy, h_T , such that ft^2/sec^2 3.85E6 $h_T = h(T_{chamber})$.

- RRO(1) = Table of gas constant, $lb-ft/lbm^{O}R = 2*53.3$ R=1546.33/Mw vs T.
- TO(1) = Temperatures corresponding to ^OR 440,7000 the entries in CKO, CPO, RRO, and HS arrays, above.
- NTAB = number of values entered in the 3 CKO, CPO, and TO arrays. 2 \leq NTAB \leq 101.
- RMUI = Reference viscosity, μ_0 , where lbm/ft-sec. .605934*10^{-*} viscosity is expressed as $\mu = \mu_0 (T/T_0)^{\omega}$
- TI = reference temperature, T_o, for ^OR 6032 viscosity. See RMUI, above.
- $ØMEGA = Viscosity exponent, \omega$. See .76 RMUI, above.

PR = Molecular Prandtl number, Pr. - .72

Note: The above default values for $\mu_{0},\ \omega,$ and Pr are or air. 850150

ITEM

ITEM

DESCRIPTION

<u>VALUE(S)</u>

UNITS

HTØTAL = Total enthalpy, h_T , such that ft^2/sec^2 3.85E6 $h_T = h(T_{chamber})$.

RRO(1) = Table of gas constant, lb-ft/lbm^OR 2*53.3R=1546.33/Mw vs T.

TO(1) = Temperatures corresponding to ^{O}R 440,7000 the entries in CKO, CPO, RRO, and HS arrays, above.

NTAB = number of values entered in the - 3 CKO, CPO, and TO arrays. $3 \leq$ NTAB ≤ 101 .

RMUI = Reference viscosity, μ_0 , where lbm/ft-sec. .605934*10^{-*} viscosity is expressed as $\mu = \mu_0 (T/T_0)^{\omega}$

TI = reference temperature, T_0 , for R_R 6032 viscosity. See RMUI, above.

 $ØMEGA = Viscosity exponent, \omega$. See - .76 RMUI, above.

PR = Molecular Prandtl number, Pr. - .72

Note: The above default values for $\mu_{0}^{},\ \omega,$ and Pr are for air.

6.8.2 Boundary Layer Edge Conditions

The coordinates for the boundary layer are specified in the RINØ versus XINØ table. Conditions at the inviscid edge are specified in the UEØ, TEØ, and PEØ versus XINØ tables. Conditions at the wall are specified in the TQW and CQW versus XTQW tables. The program will redistribute the input stations (up to 501 total) in order to have 101 x-stations uniformly distributed per segment, except for the first five stations which are generated non-uniformly. The input values of y, U_e, T_e, P_e, T_W (or q_W), and $(\rho V)_W$ are interpolated at the new x-stations and used in the boundary-layer calculations.

Values of RINO versus XINO and the conditions at the inviscid edge of the boundary layer will be automatically transmitted from the MOC module if it has been run. Otherwise, they must be input here. See the description of IØFF in \$DATA. Conditions at the wall must always be input here.

Ttom		Description	Units	Assumed Value(s)
XINØ(1)	=	x _e axial coordinate	none	-
RINØ(1)	=	y, radial coordinate	none	-
UEØ(1)	=	U _e , gas velocity at the inviscid edge	ft/sec	-
TEØ(1)	=	T _e , gas static temperature at the inviscid edge	° _R	-
PEØ(1)	2	P _e , gas pressure at the inviscid edge	psi	-
NXINØ	=	number of items in the XINØ, RINØ, UEØ, TEØ, and PEØ tables. $2 \le NXINO \le 501$ Do not input if IØFF was input in \$DATA.	none	-

Item			Description	Units	Assumed Value(s)
XTQW(1)		=	X , axial coordinate for the TQW w and CQW tables.	none _1	000.,0.,1000.
IHFLAG		=	Flag specifying wall boundary con- dition input through TQW array. IHFLAG = 0, for temperature	-	1
TQW(1)		=	IHFLAG = 1, for heat flux T_w , wall temperature or q_w , wall heat flux, depending in IHFLAG. For an adiabatic wall, set IHFLAG = 1 and all TQW(1) = 0.	OR or BTU in ² -sec.	5 01 * 0.
			For a non-adiabatic wall with prescribed heat flux, set IHFLAG= 1, and note that for heat flux <u>from</u> <u>the boundary layer to the wall</u> , the TQW(1) entries will be <u>negative</u> .		
CQW(1)		2	(PV), mass transfer parameter at the wall (only useful for suction)	lbm/ft ² -sec	5)1 *0
NTQW	Ξ		Number of axial stations, X_W . Each of the above tables must have this number of entries. 2 \leq NTQW \leq 501.	-	3

* Default values are set for an adiabatic wall, i.e., IHFLAG = 1, and TQW(1) = 501*0.

•

.

6.8.3 Integration Step Size Control.

				Assumed
Item		Description	Units	value(s)
				•
NSEGS	Ξ	Number of Segments, 1 < NSECS < 10 The boundary layer will be divided into segments of equal length unless values are input into XSEG, below.	none	1
NISPS(1)	=	Number of Integration Steps per Segment, \leq 101 per segment.	none	10*101
XSEG(1)	=	Vector containing the axial (x) lo- cations which define the wall seg- ments. The vector is always NSEGS + 1 values long. Default values are:	none	se e descrip- tion
		XSEG(i) = z _c + (z _m -z _c) (i-1)/NSEGS i=1	,2,NSEGS+	1
		where z_{c} and z_{m} are the end of the		
		cylindrical combustion chamber, and the end of the nozzle, respectively, as shown in Figure 6-1.		
		If the boundary layer is to be extended upstream of z_c , the usual		\sim
		procedure is to input		
		XSEG(1) = XINO(1)		
		and XINØ(1) through XINØ(IOFF), etc., of \$BLM are input by the user as described in \$DATA under input item IØFF.		
NTR	=	Station at which transition to turbulent flow is allowed. The program starts with an assummed boundary layer profile, and then turns on the eddy viscosity terms for turbulent flow at station NTR. For a laminar boundary layer, set NTR large, i.e. NTR $\geq $ NISPS(I).	none	3

Note: The default value of NSEGS=1 is often too small for reliable results. The user must specify enough segments and integration steps (NISPS) so that reliable results are computed. In general, nozzles with high area ratio and/or low Renolds number flow will require more integration steps. See example cases in Section 7.

6.8.4 Regenerative Cooling Heat Transfer.

When an engine is cooled using a regenerative device, propellant (usually fuel) is routed around the nozzle so that heat is transmitted from the boundary layer to the coolant. This heat is then returned to the combustion chamber in the form of increased propellant enthalpy. When the nozzle wall temperatures are assumed known (IHFLAG = 0 option), the BLM will calculate the heat flux from the boundary layer to the wall, $\hbar_w(BTU/ft - sec)$. These values can also be input directly (IHFLAG = 1 option). If the coolant circuit extends from position x_e to position x_o and operates at an efficiency, n, then the propellant enthalpy entering the chamber will be increased by

$$\Delta H = \frac{1}{m_{T}} \eta \int_{x_{O}}^{x_{e}} \hbar_{w} dA \qquad (BTU/1bm)$$

where

(

 ${}^{th}_{T}$ is the total engine mass flow rate

dA is the nozzle surface area differential, $2\pi rds$

Using the method outlined above, the BLM will compute increments of propellant enthalpy for up to 3 fuel or oxidizer circuits and print out the resultant enthalpy increments. These can be added to a later computer run by using the DELH1(1) input array. If BLM is to be automatically rerun, then the enthalpy increments will automatically be stored into DELH1(1) for the second pass through ODE, ODK, and TDK. These enthalpy increments can be calculated in two ways. If the enthalpy increase is distributed equally throughout the chamber, then

 $\Delta H_{i} = \Delta H$

i.e.

₩.

DELH1(1) = ΔH , ΔH , etc.

The second method is to assume that a fuel circuit adds enthalpy only to fuel, and an ox circuit adds enthalpy only to ox. It follows that

for a fuel circuit

$$\Delta H_{i} = \left(\frac{r+1}{r_{i}+1}\right) \Delta H$$

and for an ox circuit

$$\Delta H_{i} = \left(\frac{r+1}{r_{i}+1}\right) \frac{r_{i}}{r} \Delta H.$$

where r_i is the mixture ratio of zone i and r is the overall chamber mixture ratio.

For either method, the steady state engine cycle balance can be approximated as follows. First, calculate "adjusted tank enthalpies" for the fuel and for the oxidizer and input these on the reactant cards. These values must approximate the energy content of the propellant entering the main combustion chamber accounting for all energy gains and losses, except heat returned to the main combustion chamber by the regen cooling circuit(s). Estimates for these amounts are to be entered using the DELH1(1) input array. An estimate of zero is usually satisfactory. Corrected estimates will be calculated by BLM and stored in DELH1(1) for a second pass through TDK (or TDE). A second pass using these values will be executed automatically if IRPEAT = 1 was input in the \$DATA namelist.

Item		Description	
XCO(1)	Ξ	the Ith entry is the starting position for the Ith cooling circuit*.	3*0
XCE(1)	=	the Ith entry is the ending position for the Ith cooling circuit*.	3*0
ETAC(1)	E	the Ith entry is the efficiency for the Ith cooling circuit.	3*1
ØFC(1)	=	Type of coolant for the cooling circuit:	3 * 0
DISTRB(1)	Ξ	Flag for method of distributing ΔH increments	3*1.
		DISTRB(I) = 0. for equal distribution of heat to chamber	
		DISTRB(I) = 1. for distribution of ox heat to ox in chamber, and fuel heat to fuel in chamber.	

The Ith entry is for the Ith circuit.

* Normalized by the throat radius, r_t .

Ţ

(

The input described below is used to control plotted output from the BLM. The plot options available from BLM are:

- 1) Momentum thickness, θ , vs. axial position.
- 2) Displacement thickness, δ^* , vs. axial position.
- 3) Wall Temperature, T_w , vs. axial position.
- 4) Velocity profiles at specified area ratios, or at specified axial locations.
- 5) Temperature profiles at specified area ratios, or at specified axial locations.

Assumed

Example plots are presented in Figures 6-2 through 6-5 for types 1 through 5, above.

Item		Description	Value(s)
iprøf	=	If IPRØF = 0, then supersonic area ratios are input in APRØF.	0
		If IPRØF = 1, then axial loca- tions, x/r _t , are input in APRØF	
APRØF(1)	=	Area ratios (or axial locations, see IPRØF) at which velocity ratio and temperature ratio profiles will be plotted. Two frames per area ratio will be plotted: U/U vs. edge y/y and T/T vs. y/y . edge edge edge	20*0
nprøf	=	Number of area ratios (or axial locations) requested in APRØF. NPRØF \leq 20.	0
KDTPLT	=	If KDTPLT = 1, then displacement thickness, δ^* , vs. axial location, x, will be plotted.	0
KMTPLT	=	If KMTPLT = 1, then momentum thick- ness, θ , vs. axial location, x, will be plotted.	0
KTWPLT	=	If KTWPLT = 1, then wall tempera- ture, T_w , vs. axial location will be plotted.	0
: A (7) (7)			

\$END

⁶⁻⁸⁴

(

·-- · · ·

6.9 SPECIAL OPTIONS.

6.9.1 Constant Properties Gas Option.

The TDK program contains a useful option by which the real gas chemistry can be replaced by constant properties chemistry. Multiple zones can be calculated. The output includes the nozzle divergence efficiency, η_{DIV} , (see Section 5, subroutine PRINT).

The constant properties gas option is run by input of PFGØPT = 1 in \$DATA. Sample input data for the constant properties gas option is listed in Table 6-13.

Only the \$DATA, \$TRAN and \$MØC data sets are to be input. These data sets are input as described in Sections 6.3, 6.6 and 6.7, respectively, with the following required additions to the \$TRANS Namelist.

G(1)	=	Value of specific heat ratio, γ , for each zone, inner to outer, the number of zones is specified in \$DATA.
PSA	*	Chamber pressure in lbs/in^2 . $(N/m^2 \text{ if SL units})$
XP(1)	*	(From Table 6-9) All assumed = 1, if not input.
TC(1)	2	Chamber temperature, ^o R, for each zone, inner to outer. (^o K if SI units)
RGC(1)	×	Real gas constant, $ft^2/sec^2 \circ R$, (i.e., 49721/M = g*J*1.986/M.) for
XMW (1)	2	Gas Molecular Weight. If input then RGC(1) need not be imput.

Table 6-13: Sample Case for the Constant Properties Gas Option.

- -----

× .

```
TITLE SAMPLE CASE ONC
DATA
 SDATA
 PFGOPT=1,
 NZONES=1,
 RSI=2,
 RWTU=2, RHTD=,5,
 THETA=35,6738,
 IWALL=4.
 NW9=11,
 RS(2)= 1.10843,1.20475,1.47910,1.73375,2.04940,2.45930,
         3.68226,4.84772,5.79198,6.32451,
 ZS(2)= .39575, .53008, .82905,1.19473,1.66923,2.32795,
4.68717,7.68599,10.9601,13.3114,
  THE=11.5813,
  SEND
  STRANS
  G=1.23,
  PSA=100,
  TC=5500,
  XMN=20,
  XM=1,
  ALI=0,
                               .
  SEND
  SMOC
  SEND
```

023	And Carl	1246A 원	
OF	POOR	QUALITY	

6.10 INITIAL VALUES FOR THE \$ØDK, \$TRANS, AND \$TDK INPUTS

The following defines nominal values to which variables will be set if not input. If a variable is not listed, no nominal value is set. Variables are set in the subroutine containing the Namelist read..

0

\$ØDE, set in subroutine ØDE	ES
------------------------------	----

DELH(I)	➡ 0 DFLH1(I) =
ECRAT	= 0.
EQL	= .TRUE.
EQTHST	= .FALSE.
eratiø	= .FALSE
FA	FALSE
FPCT	= .FALSE
frøz	= .TRUE.
IØNS	= .FALSE.
KASE	= 0
LISTSP	= .FALSE.
ØF	= .FALSE.
ØFSKED(I)	= 0.
P(I)	= 0.
PCP(I)	≖ 0.
PSIA	= .FALSE.
RELERR	0005
RKT	= .FALSE.
SI	= .FALSE.
SUBAR (I)	= 0.
SUPAR(I)	= 0.
WFLØW	= 0.
XP(I)	= 1.

\$ØDK, set in subroutine ØDKINP

CØNDEL	*	1.0E-6
DEL	=	.001
EPS	=	0.
EPSEL	32	1.0E-5
HI	=	.01
HMAX	#	.10001
HMIN	÷	.005
IDYSCI	E	0
IWALL	±	1
JF	*	0
JPFLAG	-	0
JPRNT	*	-1
TEXPLI	æ	0.
(I) MX	=	0.
XMFTST	-	1.0E-3

\$TRANS, set in subroutine TRAN

ALI	= 0.
IBUG	= 0
MP	= 50
PMCRIT	= 1.
PMDEG	= 1.
(I) MX	= 0.

\$TDK, set in subroutine CHAR

=	0.
=	.15
æ	2.
=	3.
Ŧ	.01
E	.0001

\$TDK (cont'd)

÷

ETABAR	= 1.
ETHI	= .25
IMAX	= 10
IMAXF	= 0
MASSFL	= 1
NC	= 0
NDS	= 1
Nl	= 1000
N2	= 1000

THIS PAGE LEFT INTENTIONALLY BLANK

____ •

7. INPUT AND OUTPUT FOR SAMPLE CASES

In this section of the report input and output are presented for three engines, as follows:

- 1) the stratified flow engine.
- 2) the Pratt and Whitney RL-10 engine (prototype for OTV propulsion).
- 3) the Rocketdyne Advanced Space Engine, ASE, (prototype for OTV propulsion).

Complete input and output are given for the first case. For the next two cases only the program input and the summary output are given. All of the calculations were performed using a DEC PDP 11/750 VAX computer system. THIS PAGE LEFT INTENTIONALLY BLANK

-

7.1 THE STRATIFIED FLOW ENGINE, CASE 1

This test case is the same one that has appeared in all earlier versions of the TDK program manual. It is similar to the Rocketdyne stratified flow engine that is presented in CPIA 246, Ref. 1.

On the following pages input and output for the problem are presented. The engine operates with liquid oxygen/gaseous hydrogen propellants. The injector is assumed to produce a stratified nozzle flow with a mixture ratio of 6.5 near the axis, 8.0 in the central zone, and 5.0 near the wall. Equal mass flow is assumed for each of these zones. Each zone is assumed to have a different stagnation pressure. The pressures are 300, 285, and 270 psia from axis to wall.

The modules used in performing the analysis are ODE, ODK, TDK, and BLM. A brief description of the computer output is presented below, followed by Table 7-1 which is a complete listing of the computer program print out.

The output sequence for case 1 is outlined below:

- 1. Program name.
- 2. All input data cards are listed.
- 3. ØDE subprogram output.
 - a. Fuel/Oxidizer mixture description and list of species considered.
 - b. Equilibrium calculation output; Frozen calculation output.
 - c. Summary of · Equilibrium Contraction Ratio conditions.
- ØDK subprogram output.
 - a. Listing of Reactions, etc., cards as they are read.
 - b. Species list from Reactions.
 - c. Reaction table.
 - d. Selected species list for kinetic expansion.

PRECEDING PAGE BLANK NOT FILMED

- e. Dissociation/Recombination reaction rate ratios.
- f. Initial and Throat conditions for one dimensional ØDK expansion.
- 5. 2 and 3 above are repeated for each zone with redundant print omitted.
- 6. ODK I summary.
- 7. Inputs to the transonic calculations and the calculated results are printed. These include Y, mass flow for each zone and, the slipline locations, Y_n .
- 8. Number of points on the initial line, characteristics mesh control parameters and table of x vs. r wall coordinates are printed. The wall table is used by TDK to define the nozzle wall downstream of the throat plane (see Subroutine WALL).
- 9. A table of P, p, θ , V, r, x, and mass flow rate is printed corresponding to the initial data line for starting the method of characteristics calculations. The method used to calculate the mass flow rate, \dot{m} , and the characteristic velocity, C*, (also printed) is described in Subroutine CHAR.
- 10. Results of the method of characteristics calculations are then printed. The calculations begin at the initial data line (until the axis is reached) and follow each left running characteristic to the wall.
- 11. TDK performance summary.
- 12. BLM title page.

BLM input geometry, and values of velocity, temperature, and pressure at the edge.

- 13. Gas properties table supplied by the ODE module.
- 14. BLM geometry and edge conditions that are equally spaced in X.
- 15. BLM output data corresponding to 14, above.
- 16. Nozzle wall geometry displaced inwards a distance δ^{*} normal to the input wall contour.
- 17. TDK performance summary, including the effects of the boundary layer.
SET NOVERIFY

. .

 $\langle \cdot \rangle$

į,

SOFTWARE AND ENGINEERING ASSOCIATES, INC. 1050 E MILLIAM STREET; SUITE 402, CARSON CITY NEVADA 89701 (702) 882 1966

TABLE 7-1. INPUT AND OUTPUT FOR THE STRATIFIED ENGINE TEST CASE (3 ZONES).

20.27F .0709 90.180 1.149 77.350 .808 90. 0 BAULCH 72 (A) 1.5U BAULCH 72 (A) 1.5U BAULCH 72 (A) 1.5U BAULCH 72 (A) 2U BAULCH 72 (A) 3U (A) 300 (A) 100 (B) 300 B = 0.0, (AR) BAULCH 72 () B = 0.0, (AR) BAULCH 72 () B =-1.79,(AR) BAULCH 72 () B =-1.79,(AR) BAULCH 76 () B = 0.0, (AR) JENSEM 78 () -2154.L -3102.L -2939.L -2607.L CASE TITLE 3 ZONES TOK TEST CASE, LOX/GH2 - TDK MANUAL TEST CASE TITLE 3 20NES TDK TEST CASE, LOX/GH2 - TDK MANUAL TEST 100. 99.398 .053 .549 | = 0.0, 8 =16.8, | = -1., 8 = 8.9, | = 0.0, 8 =5.15, | = 0.0, 8 =1.09, REACTIONS H + H = H2 H + H = H2 H + H = H2 H + OH = H2O H + OH H = H2O Total and the set of t JPRNT=-2, EPE, XM=.3333,.3334,.3333, MAVISP=1, EFE, XM=.3333,.3334,.3333, MAVISP=1, STRANS MP=60, XM = .3333,.3333,.3334, SEND SEND SEND SEND SEND SEND SEND NAMELISTS SODE RATE.TRUE., P(1)=300.,PSIA=.TRUE., P(1)=1.,.95.9,.95.,9 OFSKED(1)=6.5,8.,5., SEND **\$**00K \$DATA DATA 7-6

ORIGINAL PAGE IS OF POOR QUALITY

DATA

, ************************************		RATIO AND	PRESSURE SCI	HEDULES FOR 2	oue 1	***	*****
REACTANTS H 2.0000 0.00 0 2.0000 0.00 N 2.0000 0.00 AR 1.0000 0.00 AR 1.0000 0.00 NAMELISTS	0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000	0.000 0.0000 0.0000 0.0000	100.000000 99.398003 0.549000	-2154.00 L -2154.00 L -23102.00 L -2939.00 L -2607.00 L	20.270 F 20.270 F 77.350 0 90.000 0	0.07090 1.14900 0.80800 0.00000
SPECIES BEING CONSID L 5/66 AR J 6/63 NO J 9/65 NH3	ERED IN THIS SYSTE J 6/74 + J 9/65 N	X _ N	J 3/61 J 6/74	6 H2	J 3/61 H J12/70 0	# S	J 3/61 N J 9/65 02
OF = 6.500000 ENTHALPY (KG-MOL)(DEG K)/KG	EFFECTIVE FUE HPP(2) -0.53769275E+0	3 L	EFFECTIVE 0 HPP(1) -0.48698235	XIDANT E+02	MIXTURE HSUB0 -0.11389750E+0		
KG-ATOMS/KG H O AR	B0P(1,2) 0.99209303E+0 0.0000000E+0 0.0000000E+0 0.0000000E+0	0000	B0P(1,1 0.0000000 0.62126074 0.37839032 0.137428656		80(1) 0.13227907E+0 0.53842597E-0 0.32793829E-0 0.11910484E-0	0-11	
ENTHALPY IN BTU/LBM FROM REACTANTS : FROM DELH() : L FROM DELH1() : L TOTAL :							

ORIGINAL PAGE IS OF POOR QUALITY

 \subset - 5

ş

 \sim

PC = 300.0 PSIA

"						
		VT FRACTION	ENTHALPY	STATE	TEMP	DENSITY
	CHEMICAL FORMULA	(SEE NOTE)	CAL/MOL		DEGK	2)22
FUEL	H 2.00000	1.00000	-2154.000	_	20.27	0.0709
OXIDANT	0 2.00000	0.99398	-3102,000	-	90.18	1.1490
OXIDANT	N 2.00000	0.00053	- 2939.000	_	77.35	0.8080
OXIDANT	AR 1.00000	0.00549	-2607.000	_	<u>%</u> .%	0.0000

0/F=0.6500E+01 PERCENT FUEL=0.0000E+00 EQUIVALENCE RATIO=0.1228E+01 STOIC MIXTURE RATIO=0.0000E+00 DENSITY=0.0000E+00

EXIT 7.5244 39.87 5093 -1976.5 4.2737 4.2737 2.107E-01	14.618 -1.01771 1.3878 1.9849 0.8194 1.1989 1.1289 4.422.3 2.0037	2.0000 7355 1.471 1.471 1.205 336.17 275.41 14.618
EXIT 1.0236 293.1 293.1 6098 -427.6 4.277.6	13.974 1.04043 1.7393 2.7827 2.7827 0.8443 1.1289 4948.9 0.2034 0.2034	3.0001 7355 3.068 0.137 701.30 31.28 31.28
THROAT 1.7268 173.7 173.7 5821 5821 -821.9 -827.9	14.156 -1.03435 1.6583 1.6583 2.6242 0.8383 0.8383 1.2011 1.1271 1.1271 1.0000 1.0000	1.0000 7355 1.235 0.653 0.653 281.59 149.20 14.156
CHAMBER 1.0000 300.0 6110 -417.4 4.2737	13.966 -1.04070 1.7427 2.7889 0.8445 1.1290 4955.8 0.0000	13.966
PC/P P, PSIA T, deg r H, bild r S, biu/(b)(r) dew (lbw/f13) d	M, MOL UT (DLV/DLP)T (DLV/DLT)P CF BRU/(LB)(R) CF GAS(SF) GAMMA (SS(SF) GAMMA (SS(SF) GAMMA (SS SOM VEL, FT/SEC MACH NUMBER	AE/AT CSTAR, FT/SEC CSTAR, FT/SEC CSTAR, FT/SEC I CF CSTAR I CF MOLEFSEC/LBM MOL MT(MIX) MOLE FRACTIONS

AR	0.001663	0.001686	0.001664	0.001741
Ŧ	0.046578	0.040226	0.046304	0.023887
Ŧ	0.210243	0.204338	0.209987	0.190609
HZO	0.658171	0.685100	0.659338	0.750661
Q.	0.000211	0.000176	0.000210	0.000082
N2	0.000123	0.000144	0.000124	0.000199
0	0.008472	0.006379	0.008377	0.002168
в	0.063976	0.053383	0.063517	0.027171
02	0.010562	0.008567	0.010478	0.003483
z	3.23E-07	1.96E-07	3.17E-07	3.706-08
NH3	1.20E-07	7.84E-08	1.18E-07	2.50E-08
NOTE				

WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS (SF) STANDS FOR (SHIFTING FROZEN)

i

CONCENTRATIONS	
ROM EQUILIBRIUM	PR -60607994E+00
PROPERTIES CALCULATED F	K (LBF/SEC-DEG R) 0.69233529E-01 0.66055410E-01
FROZEN TRANSPORT	(LBF-SEC/FT**2) 0.19873776E-05 0.19250290E-05
STATION	CHAMBER THROAT EXIT

0.61080652E+00 0.61080652E+00 0.62205720E+00 VISCOSITY EXPONENT (OMEGA) FOR THE FORM MU=MUREF*(T/TREF)**OMEGA IS MUREF FOR INPUT TO BLM= 0.64018110E-04 LBM/(FT-SEC) 0.57843409E-01 0.17565214E-05

0.68215

H20 0
PROPERTIES CALCULATIONS H2 N2 NH3
N TRANSPORT
CONSIDERED I H N
SPECIES AR N OH

ł

ZONE = 1 THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION DURING EXPANSION

PC = 300.0 PSIA	WT FRACTION (SEE NOTE)	ENTHALPY STA	IE TEMP Deg K 20.27	DENSITY 6/CC 0.0709
CHEMICAL FORMULA FUEL M 2.00000 Oxidant 0 2.00000 Oxidant M 2.00000	0.00053 0.0053 0.00549	-2939.000	90.18 90.00	1.1490 0.8080 0.0000
OXIDANT AR 1.00000 0/F=0.6500E+01 PERCENT FUEL=0.0000E+00 EQUIVALENCE RATIO=0.122	E+01 STOIC MIXTURE RAT	10=0.0000E+00	DENSITY=0.(000E+00

EXIT 8.4239 35.61 4221 EX17 1.0248 292.8 THROAT 1.7756 169.0 CHAMBER 1.0000 300.0 PC/P

6110 5543 0000 -407.4 883.1 -428.6 -1959.2 4.2737 4.2737 4.2737 4.2737 639E-010.396E-010.626E-010.110E-01	13.966 13.966 13.966 13.966 13.966 0.845 0.8324 0.8440 0.7912 1.2026 1.2062 1.2028 1.2193 5114.8 4878.8 5104.6 4280.2 0.0000 1.0000 0.2019 2.0588	 1.0000 7.182 7.17.36 685.46 326.89 151.64 32.03 273.89 	001663 H 0.046578 HZ 0.0 000123 0 0.000123 0
6110 -407.4 -8 4.2737 4.2 639E-010.396	13.966 13 0.8445 0.3 1.2026 1.1 5114.8 48	, , , , ,	001663
r, deg r H, btu/lb S, btu/(lb)(r) dem (lbm/ft3) 0.	M, MOL UT CP,BTU/(LB)(R) GAMMA (S) SON VEL,FT/SEC MACH NUMBER	AE/AT CSTAR, FT/SEC CF VAC CF VAC CF UAC TVAC, LBF-SEC/LBM I, LBF-SEC/LBM	MOLE FRACTIONS

7-10

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN .0000005 FOR ALL ASSIGNED COMDITIONS N NH3 0.658171 0.063976 HZO OH 210243 0.010562 28

WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS NOTE

EQUILIBRIUM CONTRACTION CONDITIONS ZONE 1

~

0 1111770		1 AR	
	S	OLE FRACTION	SPECIES M
0.10067490E+04	(FT/S)	VELOCI 1Y	
0.29308768E+0	(PSIA)	PRESSURE	
0.60978091E+0	E (DEGR)	TEMPERATURE	

0.16643750E-C 0.46303634E-C 0.46303634E-C 0.20998725E+O 0.20937535E+O 0.31651535E+O 0.31651535E+O 0.20977536E+O 0.12402659E+O 0.12402659E+O 0.4751741E-C	0.104778996-0.117621096-0
E THE REAL	02 NH3
-0m4100280	10

ZONE = 1

	INTERNAL **REAX **REAX ***REAX ***REAX **REAX **REAX **REAX **REAX
-	REACTIONS H + H = H2 H + H = H2 H + OH = H20 O + 0 = 02 O + H = 02 O + H = 02 O + H = 04 H + OH = H20 O + H = 04 O + H = 04 O + H = 04 O + H = 04 H2 + 06 H2 + 0
i	E E E E E E E E E E E E E E E E E E E

ORIGINAL PAGE IS OF POOR QUALITY

.

8 4 6 5 4 8 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4

SELECTED SPECIES FOR KINETIC EXPANSION

ZONE = 1

INERT SPECIES				INERT SPECIES				
0.16643750E-02	0.46303634E-01	0.20998725E+00	0.65933824E+00	0.12402629E-03	0.83772782E-02	0.63517161E-01	0.104778996-01	
1 AR	А Н	3 нг	4 Н2О	7 N2	8	9 OH	10 02	

DISSOCIATION RECOMBINATION REACTION RATE RATIOS

			ZONE =	-		
-	0.10000E+01 0.25000E+02	0.25000E+02 0.15000E+01	0.40000E+01	0.10000E+02	0.10000E+01	0.25000E+02
2	0.10000E+01 0.12500E+02	0.12500E+02 0.60000E+01	0.50000E+01	0.17000E+02	0.10000E+01	0.12500E+02
m	0.10000E+01 0.12500E+02	0.12500E+02 0.11000E+02	0.5000E+01	0.50000E+01	0.10000E+01	0.12500E+02
t	0.10000E+01 0.12500E+02	0.12500E+02 0.50000E+01	0.5000E+01	0.50000E+01	0.10000E+01	0.12500E+02

	INITIAL CONDITIONS	KINETIC EXPANSION
	ZONE = 1	0/F = 6.5000
FLOW PROPERTIES		NOZZLE GEOMETRY
MACH NUMBER VELOCITY (FT/SEC) PRESSURE (PSIA) DENSITY (LB/FT3) TEMPERTURE (DEG-R) GAS MOLECULAR WEIGHT HEAT CAPACITY (BTU/LB-DEG-R) GAMMA	0.19707128E+00 0.19067490E+04 0.29308768E+03 0.65570341E-01 0.60978091E+04 0.42886520E+03 0.13379290E+02 0.84399462E+00 0.12025388E+01 0.12025388E+01	THROAT RADIUS FT 0.16666667E+00 THROAT WALL RADIUS DNSTREAM 0.1000000E+01 THROAT WALL RADIUS DNSTREAM 0.1000000E+01 CONE ANGLE (DEG) 0.15000000E+01 0.2000000E+01 CONTRACTION RATIO 0.2000000E+01 0.2000000E+01 INLET ANLL RADIUS 0.2000000E+02 INLET MALL RADIUS 0.20000000E+02 INLET MALL RADIUS 0.20000000E+02 INLET MALL RADIUS 0.20000000E+02 INLET MALL RADIUS 0.20000000E+02
	CHEMICAL COMPO	SITION

					•		
ŇŌ.	SPECIES	MASS FRACTION	MOLE FRACTION	NO.	SPECIES	MASS FRACTION	MOLE FRACTION
-	AR	0.47601466E-0ž	0.16647248E-02	2	Ŧ	0.33414641E-02	0.46313372E-01
m	H2	0.30307118E-01	0.21003141E+00	4	H2O	0.85040307E+00	0.65947682E+00
5	NZ	0.24874465E-03	0.12405239E-03	Ŷ	0	0.95957909E-02	0.83790403E-02
~	Ю	0.77339672E-01	0.63530512E-01	80	02	0.24003910E-01	0.10480101E-01
STEP	SIZE SET	TO HMIN AT THROAT, HM	IN WAS TOO LARGE	ND HAS	BEEN RESET	ROM 0.50000E-02	TO 0.25882E-03

7-13

EXPANSION	6.5000	NCE PARAMETERS	
KINETIC	0/F =	PERFORMA	
CONDITIONS	ZONE = 1		
THROAT			
		LOW PROPERTIES	
		L	

MACH NUMBER	0.97005123E+00	VACUUM THRUST COEFFICIENT
PRESSURE (PSIA)	0.17345639E+03	VACUUM SPECIFIC IMPULSE (SEC)
VELOCITY (FI/SEC)	0.48069292E+04	CHARACTERISTIC VELOCITY (FI/SEC)
DENSITY (LB/FT3)	0.39317060E-01	
TEMPERATURE (DEG-R)	0.58181162E+04	INTEGRATION PARAMETERS
ENTHALPY (BTU/LB)	-0.87000177E+03	
GAS MOLECULAR WEIGHT	0.14159413E+02	SIEP SIZE
HEAT CAPACITY(BTU/LB.DEG)	0.83800578E+00	AXIAL POSITION
GAMMA	0.12011606E+01	PERCENT ENTHALPY CHANGE
		PERCENT MASS FRACTION CHANGE

CHEMICAL COMPOSITION

0.51763811E-03 0.0000000E+00 0.19432053E-01 0.29802322E-04

ġ.	SPECIES	MASS FRACTION	MOLE FRACTION	NO.	SPECIES	MASS FRACTION	MOLE FRACTION
-	AR	0.47601466E-02	0.16861745E 02	2	Ŧ	0.28714454E-02	0.40311620E-01
m	H2	0.29123077E-01	0.20442639E+00	4	Н2О	0.87214732E+00	0.68505377E+00
5	NZ	0.24874465E-03	0.12565080E-03	Ŷ	0	0.72312579E-02	0.63956906E-02
~	Ю	0.64192802E-01	0.53410478E-01	8	02	0.19424904E-01	0.85901842E-02

0.12318200E+01 0.28156735E+03 0.73542783E+04 EXPANSION CONDITIONS KINETIC EXPANSION AREA RATIO 2.000

ZONE = 1 0/F = 6.5000

FLOW PROPERTI	S			PERF	ORMANCE PARA	METERS	
MACH NUMBER PRESSURE (PSI- VELOCITY (FT/-	V) SEC)	0.1951 0.3957 0.8869	17127E+01 78793E+02 86348E+04		um thrust co um specific	EFFICIENT IMPULSE (SEC)	0.14699095E+01 0.33598944E+03
TEMPERATURE (I	15) 166-R) 211/18)	0.5047	2/495-01 83206+04 245886±02	INTE	GRATION PARA	METERS	
GAS MOLECULAR HEAT CAPACITY GAMMA CURRENT RO*V*/	WEIGHT (BTU/LB-DEG)	0.1458 0.8178 0.1999	9000000 192066+00 1820686+00 176+02	STEP AXIA PERC PERC	SIZE L POSITION ENT ENTHALPY ENT MASS FRA	change Ction change	0.33128839E-01 0.16775185E+01 0.19197460E-01 0.65565109E-04
			CHEMICAL C	OIT I SO MO	Z		
SPECIES	MASS FRA	ICTION	MOLE FRACTION	N NO.	SPECIES	MASS FRACTION	MOLE FRACTION
C V				4	;		

<u>.</u>	SPECIES	MASS FRACTION	MOLE FRACTION	Ю.	SPECIES	MASS FRACTION	MOLE FRACTION
-	AR	0.47601466E-02	0.17374079E-02	2	x	0.17749741E-02	0.25675621E-01
m	¥2	0.26431646E-01	0.19117150E+00	4	K20	0.92249739E+00	0.74661928E+00
5	NZ	0.24874465E-03	0.12946859E-03	ç	0	0.26705684E-02	0.24337531E-02
~	₹	0.33039320E-01	0.28325036E-01	80	8	0.85765254E-02	0.39079972E-02

· · · · · · · · · · · · · · · · · · ·	OR ZONE 2	
***********************************	DE AREA RATIO AND PRESSURE SCHEDULES	****************************
	CALCULATE O	

 # 8 J 3/61 J 9/65 ¥20 J 3/61 J12/70 Ϋo J 3/61 J 6/74 SPECIES BEING CONSIDERED IN THIS SYSTEM L 5/66 AR J 6/74 H J 6/63 NO J 9/65 N2 J 9/65 NH3

B0(1) 0.11023256E+00 0.55223178E-01 0.33634697E-04 0.12215880E-03 MIXTURE HSUBO -0.10303096E+03 EFFECTIVE OXIDANT HPP(1) -0.48698235E+02 80P(1,1) 0.0000000E+00 0.62126074E-01 0.37839032E-04 0.13742865E-03 B0P(1,2) 0.99209303E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 EFFECTIVE FUEL HPP(2) -0.53769275E+03 -368.5311 0.0000 0.0000 -368.5311 ENTHALPY IN BTU/LBM : FROM REACTANTS : FROM DELH() · : FROM DELH1() : TOTAL : ENTHALPY (KG-MOL)(DEG K)/KG OF = 8.000000 KG-ATOMS/KG ±o≇¥

)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

ł

į ŗ

1.1

: i

į

.

DENSITY G/CC 0.0709 1.1490 0.8080 0.0000

285.0 PSIA ₽C ≍

FRACTION ENTHALPY STATE TEMP DENSIT SEE NOTE CAL/MOL DEG K G/CC 1:00000 -2154,000 L 20.27 0.0703 0:0703 -3102.000 L 20.27 0.0703 0:0703 -2302.000 L 20.18 1.1491	0.00549 -2607.000 L 71.23 U.8080	IXTURE RATIO=0.0000E+00 DEMSITY=0.0000E+00			
20		9101C			
	RATI0=0.0081E+00				
	OUI VALENCE	EXIT 7.4332 38.34 5231 -1764.9 -1764.9	1.03203 16.633 1.6849 1.6849 0.73284 0.73232 1.1947 1.1157 1.1157	2.0013 2.0000 6952 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.633	002032 021586 021586 021586 029523 787126 787126 787126 787126 000158 000158 000158 000158 000158 00158 00158 00158 00150 00150 00100 00100 00100 00100 00000 00000 00000 00000 00000 00000 0000
	000E+00 E	EXIT 1.0235 278.5 6152 5386.5 3.8898 3.8898	15.830 1.05058 1.9178 2.8614 0.7524 1.1246 1.1246 4.661.6	3.0001 6952 3.068 0.136 662.83 29.47 15.830	-001934 0. -021934 0. -032558 0. -032858 0. -000354 0. -000354 0. -000399 0. -000399 0. -000399 0. -0018022 0. -2326-07 5.7 -235-08 0.0
۲٩	FUEL=0.0	THROAT 1.7234 165.4 5891 5891 777.6 3.8898 3.8898	16.047 1.04558 1.8641 1.8641 0.7476 0.7476 1.1985 1.1216 4524.4 4524.4 1.0000	1.0000 6952 1.231 0.651 266.00 140.62 16.047	001960 0 115314 0 115314 0 709230 0 709230 0 709230 0 709230 0 715378 0 7153780 0 715378 0 715578 0 7155780 0 7155780 0 7155780 0 7155780 0 7155780 0 7155780 0 7155780 0 71557800 0 71557800 0 71557800 0 7155780000000000000000000000000000000000
CAL FORMU 0000 0000 0000 0000	PERCENT	CHAMBER 1.0000 285.0 6164 .368.5 3.8898 3.8898 .681E-010	15.820 1.05080 1.92080 2.8639 0.7526 1.202 1.1247 4667.9 0.0000	15.820	001933 0. 039486 0. 124454 0. 679569 0. 0003556 0. 0003556 0. 0003556 0. 0003556 0. 0103518 0. 013518 0. 0000000 0. 013518 0. 00000000 0. 00000000 0. 00000000000
FUEL CHEMI FUEL H 2.0 Oxidant O 2.0 Oxidant N 2.0 Oxidant AR 1.0	0/F=0.8000E+01	PC/P P, PSIA T, DEG R H, BTU/LB S, BTU/(LB)(R) DEM (LBM/FT3) 0	M, MOL WT (DLV/DLP)T (DLV/DLT)P CP,BU/(LB)(R) CP GANHA GAS(SF) GANHA GAS(SF) GANHA (S) SON VEL,FT/SEC MACH NUMBER	AE/AT CSTAR, FT/SEC CF VAC JCF I IVAC,LBF-SEC/L I IVAC,LBF-SEC/LBM GMOL WT(MIX) MOLE FRACTIONS	KTUSSONS K

NOTE

WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS (SF) STANDS FOR (SHIFTING FROZEN)

OF POOR QUALITY

FROZEN TRANSPORT PROPERTIES CALCULATED FROM EQUILIBRIUM CONCENTRATIONS

	8E+00 0E+00 0E+00	0.67341
PR	0.6355775 0.6423015	U.BOUTOT
¥	(LBF/SEC-DEG R) 0.60462840E-01 0.57697557E-01	0.50773460E-U1
Ŧ	(LBF-SEC/FT**2) 0.20423211E-05 0.19826757E-05	0.18295742E-05
CTATION	CHAMBER THDOAT	EXIT

VISCOSITY EXPONENT (OMEGA) FOR THE FORM MU=MUREF*(T/TREF)**OMEGA IS U.C. Muref for input to BLM= 0.65770080E-04 LBM/(FT-SEC)

H20 0
PROPERTIES CALCULATIONS H2 N2 M13
TRANSPORT
See 1
CONSIDERED
SPECIES AR N OH

ZONE = 2 THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEM COMPOSITION DURING EXPANSION

STATE TEMP DENSITY DEG K G/CC	L 20.27 0.0709 L 90.18 1.1490 L 77.35 0.8080 L 90.00 0.0000	+00 DENSITY=0.0000E+00
ENTHALPY CAL/MOL	- 2154,000 - 3102,000 - 2939,000 - 2607,000	110=0.0000
WI FRACTION	(SEE MOIE) 1.00000 0.99398 0.00053 0.0053	STOLC MIXTURE RA
		0.00815400
285.0 PSIA	CHEMICAL FORMULA H 2.00000 II 0 2.00000	IT AR 1.00000
= 0	FUEL	OXIDAN

SIUL 0/F=0.8000E+01 PERCENT FUEL=0.0000E+00 EQUIVALENCE RATIO=0.9981E+00

EXIT 8.3924 33.96 4278 4278 -1750.9 3.8898 3.8898 117E-01	15.820 0.7071 1.2160 4043.2 2.0571	2.0000 6783 1.464 1.226 308.75 258.51
EXIT 1.0247 278.1 6139 -387.4 3.8898 .667E-010.	15.820 0.7522 1.2005 4812.7 0.2019	3.0001 6783 3.071 0.143 647.40 30.20
THROAT 1.7740 160.7 5598 791.7 3.8898 3.8898	15.820 0.7423 1.2037 4601.9 1.0000	1.0000 6783 1.242 0.678 261.86 143.03
CHAMBER 1.0000 285.0 6164 -368.5 3.8898 3.8898	15.820 0.7526 1.2003 4822.3 0.0000	
PC/P P, PSIA T, DEG R H, BTU/LB S, BTU/(LB/R?) O. DEM (LBM/FT3) O.	M, MOL WT CP, BTU/(LB)(R) CDMMA (S) SON VEL, FT/SEC MACH NUMBER	AE/AT CSTAR, FT/SEC CF VAC CF VAC IVAC,LBF-SEC/LBM I, LBF-SEC/LBM

MOLE FRACTIONS

	COND I T LONS
.679569 .096321	ASSIGNED
00	FOR ALL
420 04	\$000000.
2454 8218	ESS THAN
0.12	
ç₽o	
0.039486 0.00088	
2	
ΤZ	
0.000356	0.039577
AR NO	02

ÿ ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS N

:

NOTE WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

EQUILIBRIUM CONTRACTION CONDITIONS ZONE 2

0.61522261E+04

TEMPERATURE (DEGR)

0.27845251E+03	0.94859015E+03		0.19337191E-02	0.12406919E+00	0.68083990E+00 0.31980758F-06	0.354472026-03	0.18091913E-01	0.95856152E-01 0.305078855.01	0.42287063E-07
(PSIA)	(FT/S)	SN							
PRESSURE	VELOCITY	LE FRACTIO	×× ××	CH C			03	58	CHN
		SPECIES MO					~ 0	2	

ZONE = 2

S-0M4500F8 INTERNAL 5 **REAX **REAX **REAX **REAX **REAX **REAX **REAX 7, M = 1.0, B = 0.0, (AR) BAULCH 72 (A) 30U 8, N = 2.0, B = 0.0, (AR) BAULCH 72 (A) 10U 3, N = 0.0, B = -1.79, (AR) BAULCH 72 (A) 10U 14, N = 0.0, B = 10.0, (AR) JENSEN 78 (B) 30U 10, N = -1, B = 16.8, BAULCH 72 (A) 1.5U 13, N = -1, B = 8.9, BAULCH 72 (A) 1.5U 13, N = 0.0, B = 5.15, BAULCH 72 (A) 1.5U 12, N = 0.0, B = 5.15, BAULCH 72 (A) 1.5U 12, N = 0.0, B = 1.09, BAULCH 72 (A) 3U REACTIONS H + H = H2 H + 0H = H20, M2, A = 6.4E17, H = 1.0 H + 0H = H20, M2, A = 8.4E21, H = 2.0 0 + 0 = 02, M3, A = 1.9E13, H = 0.0 0 + H = 0, M7, A = 3.62E18, H = 1.0 12 + 0 = H + 0H, A = 2.2E14, H = 0 H2 + 0H = H20 + H, A = 1.8E10, H = 1 H1RD BODY REAX RATE RATIOS M1 = 2584, $4^{+}R2$, $17^{+}R0$, $12^{+}S^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $11^{+}02$, $M7 = 12.5^{+}H5^{+}2^{+}2^{+}R20$, $12.5^{+}0$, $12.5^{+}0H$, $5^{+}02$, $M7 = 12.5^{+}H5^{+}2^{+}H2$, $5^{+}H20$, $12.5^{+}0$, $12.5^{+}0$, $12.5^{+}0$, $13^{+}02$, $M7 = 12.5^{+}H5^{+}2^{+}H20$, $12.5^{+}0$, $12.5^{+}0$, $13^{+}02$, $M7 = 12.5^{+}H5^{+}2^{+}H20$, $12.5^{+}0$, $12.5^{+}0$, $5^{+}02$, $M7 = 12.5^{+}H5^{+}2^{+}H20$, $12.5^{+}0$, $12.5^{+}0$, $5^{+}02$, $M7 = 12.5^{+}H5^{+}2^{+}H20$, $12.5^{+}0$, $12.5^{+}0$, $5^{+}02$, $M7 = 12.5^{+}15^{+}12^{+$

SELECTED SPECIES FOR KINETIC EXPANSION

ZONE = 2

INERT SPECIES				INERT SPECIES			
0.19337191E-02	0.39257679E 01	0.12406919E+00	0.68083990E+00	0.88794040E-04	0.18091913E-01	0.95856152E-01	0.39507885E-01
AR	Ŧ	HZ	HZO	N2	0	Đ	0 02

DISSOCIATION RECOMBINATION REACTION RATE RATIOS

ć	00005+01	0_25000E+02	20NE = 0.40000E+01	с 0.10000E+02	0.10000E+01	0.25000E+02
2 8 2	000E+02	0.15000E+01		0 17000E103	n 1000E+01	0.12500E+02
23	0000E+01 2500E+02	0.12500E+02 0.60000E+01	0.50000E+U1	U. 170005105		0 12500E+02
	0000E+01 2500E+02	0.12500E+02 0.11000E+02	0.5000E+01	0.50000E+01	0.10000E+U1	0, 12,000, 01
	0000E+01	0.12500E+02	0.50000E+01	0.50000E+01	0.10000E+01	0.12500E+02
-	22005+02	0.0000000				

.

7-18

0.1666667E+00 0.1000000E+01 0.1500000E+02 0.2000000E+01 0.3000070E+01 0.3000000E+02 0.2000000E+01 0.2000000E+01 MOLE FRACTION 0.68108147E+00 0.39271604E-01 STEP SIZE SET TO HMIN AT THROAT, HMIN WAS TOO LARGE AND HAS BEEN RESET FROM 0.50000E-02 TO 0.25882E-03 0.18098332E-01 THROAT RADIUS (FT) 0. THROAT WALL RADIUS DNSTREAM 0. COME ANGLE (DEG) 0. EXPANSION RATIO 0. CONTRACTION RATIO 0. INLET ANGLE (DEG) 0. INLET VALL RADIUS UPSTREAM 0. THROAT WALL RADIUS UPSTREAM 0. 0.25014721E-02 0.77537346E+00 MASS FRACTION 0.18298339E-01 NOZZLE GEOMETRY KINETIC EXPANSION 8.0000 SPECIES 0/F =H20 × 0 CHEMICAL COMPOSITION Ň. N Ś 8 INITIAL CONDITIONS 0.19693609E+00 0.94859015E+03 0.27845251E+03 0.66778558E-01 0.66778598E-01 0.6572261E+04 0.6152261E+04 0.38846414E+03 0.75226027E+00 0.12002314E+01 N MOLE FRACTION n 0.19344053E-02 0.15811205E-01 0.12411321E+00 0.15724363E-03 0.88825538E-04 0.10305773E+00 0.95890157E-01 ZONE MASS FRACTION 0.48832833E-02 GAS MOLECULAR VEIGHT HEAT CAPACITY (BTU/LB-DEG-R) GAMMA (BTU/LB) DENSITY (LB/FT3) TEMPERATURE (DEG-R) MACH NUMBER Velocity (Ft/sec) Pressure (PSIA) FLOW PROPERTIES ENTHALPY SPECIES

Å ¥ Ň Ð

ŝ

Ň.

7-19

KINETIC EXPANSION THROAT CONDITIONS

8.0000 0/F =ZONE = 2

FLOW PROPERTIES

0.96897125E+00 0.16504788E+03 0.45317544E+04 0.4151076-01 0.411609E-01 0.58878354E+04 -0.78057235E+04 0.16050882E+02 0.74743026E+00 0.11985229E+01 0.11985229E+01 смінаLPY (BTU/LB) GAS MOLECULAR UEIGHT HEAT CAPACITY(BTU/LB-DEG) Gamma PRESSURE (PSIA) VELOCITY (FT/SEC) DENSITY (LB/FT3) TEMPERATURE (DEG-R) MACH NUMBER ENTHALPY

VACUUM SPECIFIC IMPULSE (SEC) CHARACTERISTIC VELOCITY (FT/SEC) VACUUM THRUST COEFFICIENT

PERFORMANCE PARAMETERS

0.12309867E+01 0.26598679E+03 0.69520313E+04

INTEGRATION PARAMETERS

STEP SIZE AXIAL POSITION PERCENT ENTHALPY CHANGE PERCENT MASS FRACTION CHANGE

SPECIES CHEMICAL COMPOSITION Ň. MOLE FRACTION 0.19608657E-02 MASS FRACTION 0.48832833£-02 SPECIES

Р. М

H20 Ŧ N 0.11541778E+00 0.1450505.xE-01 ¥ Ñ

0.79663646E+00 MASS FRACTION 0.21571529E-02 0 0.90040565E-04 0.15724363E-03 ¥

0.10352762E.02 0.0000000E+00 0.15772091E-01 0.59604645E-05

MOLE FRACTION 0.34329250E-01 0.70933062E+00 0.15400880E-01

0.75540572E-01 0.37868451E-01

0.15360956E-01

8

0.85602134E.01

0.90759225E-01

₹

ø 80

ORIGINAL PAGE IS OF POOR QUALITY

2.000 EXPANSION CONDITIONS KINETIC EXPANSION AREA RATIO

0/F = 8.0000 20NE = 2

PERFORMANCE PARAMETERS

0.19404051E+01 0.38096855E+02 0.38096855E+02 0.83668779E+04 0.1348549E-01 0.11348549E-04 0.11348549E-04 0.11348549E-04 0.151903032E+04 0.1657239E+02 0.16572239E+02 0.16572239E+02 0.16572239E+02 0.16572239E+02 0.16572239E+02 0.16572239E+02 0.16572239E+02
0.19404051E+0 0.38064855E+0 0.83668779E+0 0.83668779E+0 0.11348549E-1 0.113485492E+1 0.115642902E+1 0.11954241E+1 0.11954241E+1 0.11957239E+ 0.11957239E+
FLOW PROPERIES MACH NUMBER PRESSURE (PSIA) VELOCITY (FT/SEC DENSITY (LB/FT3) TEMPERTURE (DEG ENTALIVE (DF EATURE (DEG EANHA GANNA CURRENT RO*V*A CURRENT RO*V*A NO. SPECIES

0 80688255E-02 0.93013961E-02	0.070000000000000000000000000000000000		
	0	8	
r	Ŷ	Ø	
0.91196/985-01	0.93137278E-04	0.59066691E-01	
0.11080028E-01	0.15724363E-03	0.60542941E-01	
¥2	N2	: 2	
m	, v ^r	~ ~	-

	5/66 AR 6/63 NO 5.000000 4LPY 40L)(DEG K)/KG TOMS/KG	-0.53769275E+03 B0P(1,2) 0.99209303E+00	-0.48698255E+U2 B0P(1,1) 0.0000000E+U0	-0.13019/55E+U5 B0(1) 0.16534884E+00 0.5177173E-01	
--	---	---	--	---	--

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

PC = 270.0 PSIA

0/F=0.5000E+01 PERCENT FUEL=0.0000E+00 EQUIVALENCE RATIO=0.1597E+01 STOIC MIXTURE RATIO=0.0000E+00 DENSITY=0.0000E+00

EXIT 7.9454 33.98 4414 -2227.9 4.8515 4.8515 .861E-02	12.011 -1.00274 1.0655 1.1899 0.9279 0.9279 1.2170 1.1836 4.650.4 2.0193	2.0000 7730 1.467 1.215 352.34 291.87 291.87 12.011
EXIT 1.0239 263.7 5714 -488.7 4.8515 -502E-010	11.690 1.3277 1.3277 2.0513 0.9748 1.2112 1.1480 5281.9 0.2031	730 7730 737.29 737.29 737.29 11.690
THR0AT 1.7430 154.9 5381 -987.9 4.8515 4.8515	11.800 1.2439 1.2439 1.8031 0.9648 1.2115 1.1526 5111.9 1.0000	730 7730 1.235 0.661 296.73 1158.88 11.800
CHAMBER 1.0000 270.0 5728 -465.7 4.8515	11.684 1.01737 1.3315 2.0622 0.9752 1.2112 1.2112 1.2112 5289.6 5289.6 0.0000	11.684
PC/P P, PSIA T, DEG R H, BTU/LB S, BTU/LB(R) S, BTU/LB(R) DEN (LBM/FT3) O	M, MOL WT (DLV/DLP)T (DLV/DLT)P CP,BTU/(LB)(R) CP,BTU/(LB)(R) CP,GANMA GAS(SF) GANMA (S) SON VEL,FT/SEC MACH NUMBER AE/AT	CSTAR, FT/SEC CF VAC CF VAC IVAC,LBF-SEC/L I, LBF-SEC/LBM MOL WT(MIX) MOLE FRACTIONS
		7-21

40	0111000			
1	0.001338	0.001351	0.001339	0.001376
E .	0.037138	0.028055	0.036744	0 008058
HZ	0.357397	0.360034	0.35740K	0 368565
07H	0.578544	0.593816	0.579252	0 610108
	0.000057	0.000035	0.000056	000000
24	0.000155	0.000168	0.000156	0.000187
	0.001457	772000.0	0 001420	020000000
5	0.022967	0.015300	0.022613	1000000
02	0.000946	0.000405	0 000007	
2	1.225-07	5 166-08	1 101 07	120000-0
NH3	10 101 2	2 045-07		0.00E+00
	5	L. VUE - UF	2.7/E-U/	1.85E-U8
NOTE				

WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS (SF) STANDS FOR (SHIFTING FROZEN)

.

FROZEN TRANSPORT PROPERTIES CALCULATED FROM EQUILIBRIUM CONCENTRATIONS

Я	0.57290888E+00 0.57443625E+00 0.57555461E+00
K Store Bro By	(LBF/SEC 01 0.77825621E-01 0.73574215E-01 0.61276197E-01
ΠW	(LBF-SEC/FT*2) 0.182883381E-05 0.17521484E-05 0.15203000E-05
STATION	CHAMBER THROAT EXIT

0.71397 VISCOSITY EXPONENT (OMEGA) FOR THE FORM MU=MUREF*(T/TREF)**OMEGA IS MUREF FOR INPUT TO BLM= 0.58952501E-04 LBM/(FT-SEC)

007	020
PROPERTIES CALCULATIONS	HZ NZ
TRANSPORT	
N	т S
CONSIDERED	
SPECIES	AR A

ΣO	
H2 N2 NH3	
н <mark>М</mark>	
AR OH	

	TE TEMP DENSITY DEG K G/CC L 20.27 0.0709 1 20.18 1.1490	DENSITY=0.0000E+00	ED CONDITIONS
ING EXPANSION	ENTHALPY STA CAL/MOL - 2154.000 - 3102.000 - 239.000	I 0=0. 0000E +00	0.578544 0.022967 FOR ALL ASSIGN
POSITION DUR	WT FRACTION (SEE NOTE) 1.00000 0.99398 0.00053	C MIXTURE RAT	H20 0H 1AN .0000005
3 Ssuming Frozen con		=0.1597E+01 STOII	0.357397 0.001457 110NS WERE LESS T
ZONE = MANCE AS		E RATIO:	H2 0 DLE FRAC
XET PERFOR		EQUIVALENCI 8.5450 31.60 31.60 31.60 31.60 3888 4.20515 4.2053 1.230 2.0000 7582 1.464 1.464 1.464 1.464 1.464 1.464 2.0000 2.0653 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7582 2.0000 7.5827 7.582 7.582 7.5827 7.5827 7.5827 7.5827 7.5827 7.5827	037138 000155 UT WHOSE MC
ICAL ROC		EXIT EXIT 263.4 263.4 263.4 263.4 263.4 25704 1.0249 55704 1.0249 5503 1.0249 5503 1.0249 1.2145 5422.4 0.2017 7582 3.0001 7582 3.072 3.072 3.072 3.072 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.0777 3.07777 3.07777 3.077777 3.07777777777	0. 0. 1dered B 0tal Fue
THEOREI	٩	THROAT 1.7814 151.6 151.6 151.6 151.5 175 4.8515 4.8515 4.8515 174.0 1.0000 1.0000 1.0000 1.244 0.582 174.0 1.244 0.682 263.10 1.244 0.682 263.10 1.6000 1.0000 1.0000 1.244 0.682 263.10 1.244 0.682 263.10 1.244 0.682 263.10 1.244 0.682 263.10 1.244 0.6582 1.244 0.6582 1.244 0.6582 1.244 0.6582 1.244 0.6582 1.244 0.6582 1.2617 1.2617 1.2617 1.2617 1.2617 1.7817 1.7	n2 N2 Were cons
VISd	ICAL FORMUI 00000 00000 00000 00000	CHAMBER 1.0000 270.0 5728 4.8515 4.8515 4.8515 1.513E-010 0.9752 1.2112 5.433.7 0.0000	01338 00057 00946 CTS WHICH 1 CTS WHICH 1
PC = 270.0 F	FUEL H 2.0 OXIDANT 0 2.0 OXIDANT 0 2.0 OXIDANT N 2.0 OXIDANT AR 1.0	PC/P P, PSIA T, DEG R H, BTU/LB S, BTU/(LB)(R) DEN (LBM/FT3) 0 M, MOL WT C, BM/(LB)(R) GAMA (S) SON VEL, FT/SEC MACH NUMBER AE/AT CSTAR, FT/SEC CF VAC CF VA	MOLE FRACTIONS AR 0.0 NO 0.0 0.0 0.0 0.0 0.0 NH3 NH3 VOTE VEIGHT FRA

ORIGINAL PAGE IS OF POOR QUALITY

•

m EQUILIBRIUM CONTRACTION CONDITIONS ZONE

0.57135161E+04	0.26368848E+03	0.10733123E+04		0.13387334E-02 0.36743894E-01	0.35749605E+00	0.2/923242E-00	0.56386369E-04	0.15590010E-03 0.14196864E-02	0.22612970E-01	0.92356451E-U5	
(DEGR)	(PSIA)	(FT/S)	ş								
APERATURE	ESSURE	100117	FRACT 104	AR:	F 2H	HZO	z C	<u>S</u>	5	62	CHN 2
ΤEÞ	PRE	VEI	SPECIES MOLE		0 10		un ≺	~	00	10	:

ZONE 7-24

11

```
INTERNAL
**REAX
**REAX
**REAX
**REAX
**REAX
**REAX
**REAX
**REAX
                                                            REACTIONSM1, A = 6.4E17, N = 1.0, B = 0.0, (AR) BAULCH 72 (A) 300H + H = H2M2, A = 8.4E21, N = 2.0, B = 0.0, (AR) BAULCH 72 (A) 100H + 0H = H20M2, A = 1.9E13, N = 0.0, B = 1.79, (AR) BAULCH 76 (A) 1000 + 0 = 02M3, A = 1.9E13, N = 1.0, B = 10.0, (AR) LENSEM 78 (B) 3000 + H = 0HM7, A = 3.62E18, N = 1.0, B = 16.0, (AR) LENSEM 78 (B) 3000 + H = 0HM7, A = 2.2E14, N = 0.0, B = 16.8, BAULCH 72 (A) 1.5002 + H = 0HM = 2.2E14, N = 0.0, B = 1.09, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 1.09, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 1.09, BAULCH 72 (A) 2.50H2 + 0H = H20 + HA = 2.2E13, N = 0.0, B = 1.09, B = 1.265, H202, H2202, <math>H2202, H2202, H2202, H2202, H2202, H2202, H2202, H2202, H2202, H2202, <math>H2202, H2202, H2202, H2202, H2202, <math>H2202, H2202, H2202, H2202, H2202, H2202, <math>H2202, H2202, H2202, H2202, H2202, <math>H2202, H2202, H2202, H2202, H2202, H2202, H2202, H2202,
m
```

5:::::::::: 8 4 6 5 4 3 2 - 2 E

ZONE = 3

INERT SPECIES				INERT SPECIES				
0.13387334E-02	0.36743894E-01	0.35749605E+00	0.57925242E+00	0.15590010E · 03	0.14196864E-02	0.22612970E-01	0.92356431E-03	
AR	x	H2	H20	N2	0	₹	02	
-	2	m	4	~	60	0	10	

DISSOCIATION RECOMBINATION REACTION RATE RATIOS

.

			ZONE =	£		
~	0.10000E+01 0.25000E+02	0.25000E+02 0.15000E+01	0.40000E+01	0.10000E+02	0.10000E+01	0.25000E+02
2	0.10000E+01 0.12500E+02	0.12500E+02 0.60000E+01	0.50000E+01	0.17000E+02	0.10000E+01	0.12500E+02
m	0.10000E+01 0.12500E+02	0.12500E+02 0.11000E+02	0.50000E+01	0.50000E+01	0.10000E+01	0.12500E+02
4	0.10000E+01 0.12500E+02	0.12500E+02 0.5000E+01	0.50000E+01	0.50000E+01	0.10000E+01	0.12500E+02

INITIAL CONDITIONS KINETIC EXPANSION

ZONE = 3 0/F = 5.0000

FLOW PROPERTIES		NOZZLE GEOMETRY
MACH NUMBER VELOCITY (FT/SEC)	0.19782001E+00 0.10733123E+04	THROAT RADIUS (FT) 0.16666667E+00 THROAT WALL RADIUS DNSTREAM 0.1000000E+01
PRESSURE (PSIA) Density (LB/FT3)	0.26368848E+03 0.50266068E-01	CONE ANGLE (DEG) 0.15000000E+UZ EXPANSION RATIO 0.2000000E+01
TEMPERATURE (DEG-R)	0.57135161E+04	CONTRACTION RATIO 0.30000784E+01
ENTHALPY (BTU/LB)	-0.48887775E+03	INLET ANGLE (DEG) 0.3000000E+02
GAS MOLECULAR WEIGHT	0.11695736E+02	INLET WALL RADIUS 0.20000000E+01
HEAT CAPACITY (BTU/LB-DEG-R)	0.97425121E+00	THROAT WALL RADIUS UPSTREAM 0.1000000E+U1
GAMMA	0.12112339E+01	
	CHEMICAL COMPOSITION	
CDEFIEC MACC CDAFTION		CORFIES MACS SPACTION MOLE FRACTION

:IES MA 0.45 0.61 0.37 0.32	SS FRACTION MOLE FRACTION NO. SPECIES MASS FRACTION MOLE FRACTION	75664.6€-02 0.13388094Е-02 2 м 0.31688218Е-02 0.36745980Е-01	661471E-01 0.35751635E+00 4 H20 0.89284354E+00 0.57928526E+00	366056E-03 0.15590896E-03 6 0 0.19433954E-02 0.14197669E-02	904841E-01 0.22614254E-01 8 02 0.25285168E-02 0.92361670E-03	THROAT, HMIN WAS TOO LARGE AND HAS BEEN RESET FROM 0.50000E-02 TO 0.25882E-03
0.4575664 0E -02 0.13388094E-02 0.61661471E-01 0.35751635E+00 0.37366056E-03 0.15590896E-03 0.32904841E-01 0.22614254E-01	NU. STEUL	2 н	4 H2O	6 0	8 02	ND HAS BEEN
.165 MASS FRACTION 0.4575664.0E-02 0.61661471E-01 0.37366056E-03 0.32904841E-01	MULE FRACTION	0.13388094E-02	0.35751635E+00	0.15590896E-03	0.22614254E-01	IN WAS TOO LARGE AN
-	ES MASS FRAUTUN	0.4575664 <i>0</i> E-02	0.61661471E-01	0.37366056E-03	0.32904841E-01	SET TO HMIN AT THROAT, HMI
3 42 42 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	0. SPECI	1 AR	3 H2	5 NZ	7 OH	TEP SIZE

			THROAT CONDITIONS	KINE	TIC EXPANSION		
			ZONE = 3	0/F	= 5.0000		
	FLOW PROPERTIES			PERFI	ORMANCE PARAME	TERS	
	MACH NUMBER PRESSURE (PSIA)	0.0	7714138E+00 15462662E+03	VACU	UN THRUST COEF UN SPECIFIC IN	FICIENT PULSE (SEC)	0.12352805E+01 0.29663614E+03
	VELOCITY (FT/SEC) DENSITY (LB/FT3)	5°0	1191938E+04 11627500E-01	CHAR	ACTERISTIC VEL	OCITY (FT/SEC)	U.//20120/E+U4
	TEMPERATURE (DEG-R	0.5	3742822E+04	INTE	GRATION PARAME	TERS	
	GAS MOLECULAR WEIG HEAT CAPACITY(BTH/	B) -U.S HT 0.1 HR-DEGY 0.0	28919781E+U3 11802890E+02 26414113E+00	STEP	SIZE		0.10352762E-02 0.00000000E+00
	GAMMA	0.1	12115697E+01	PERC	ENT MASS FRACT	HANGE I ON CHANGE	0.68588299E-02 0.0000000E+00
			CHEMICAL COMP	01110	2		
NO.	SPECIES	MASS FRACTIC	N MOLE FRACTION	NO.	SPECIES	MASS FRACTION	MOLE FRACTION
-	AR 0.	45756646E-02	2 0.13510754E-02	2	Ŧ	0.24232785E-02	0.28358039E-01
m	н2 0.	61514165E-01	1 0.35992998E+00	4	H20	0.90647423E+00	0.59351736E+00
ŝ	N2 0.	37366056E • 03	3 0.15733739E-03	9	ο	0.10286119E-02	0.75834757E-03
2	ОН 0.	22233596E - 01	1 0.15420306E-01	80	02	0.13767871E-02	0.50752045E-03

2.000 EXPANSION CONDITIONS KINETIC EXPANSION AREA RATIO

~

5.0000 0/F = ZONE = 3

	FLOW PROPERTIE:	s		PERF	ORMANCE PARAMETE	RS	
	MACH NUMBER PRESSURE (PSIA) VELOCITY (FT/SE	0.00	0044303E+01 3545719E+02 4009004E+04	VACU	um thrust coeffi um specific impu	CIENT ILSE (SEC)	0.14652495E+01 0.35186014E+03
	TEMPERATURE (DE ENTHALPY (B)	0.43 EG-R) 0.43 FU/LB) -0.23	5109657E - 02 5445571E + 04 2308054E + 04	INTE	GRATION PARAMETE	RS	
	GAS MOLECULAR I HEAT CAPACITY(E GAMMA CURRENT RO*V*A	JELGHT 0.11 3TU/LB-DEG) 0.92 0.12 0.14	1975692E+02 2458695E+02 2487207E+01 128585E+02	STEP AXIA PERC PERC	SIZE L POSITION ENT ENTHALPY CHA ENT MASS FRACTIO	NGE N CHANGE	0.33128839E-01 0.16775185E+01 0.56242407E-02 -0.83446507E-02
			CHEMICAL COMPO	01110	7		
Ň.	SPECIES	MASS FRACTION	MOLE FRACTION	NO.	SPECIES	MASS FRACTION	MOLE FRACTION
-	AR	0.45756646E-02	0.13708560E-02	2	н	.11136207E-02	0.13222760E-01
m	HZ	0.61593093E-01	0.36566815E+00	4	H20 0	.92614126E+00	0.61527266E+00
ŝ	NZ	0.37366056E-03	0.15964088E-03	9	0	136063736-03	0 101782086-02
۲	i						CO-30020/101 0

				-		
0.74189629E-04	0.19835548E-03	05	Ø	0.41302163E-02	0.58691776E-02	5
0.10178208E-03	0.13606373E-03	0	Ŷ	0.15964088E-03	0.3/366036E-03	
0.61527246E+00	0.92614126E+00	H20	4	0.36566815E+00	0-359059510-0	2
			•			4

~

ODK ISP SUMMARY

ZONE MASS FLON	0.33330 0.33340 0.33330
00K 1SP	335.989 317.818 351.860
ZONE	+NW

335.221 MASS AVERAGED ISP =

6.29744 MASS AVERAGED 0/F =

DATA FOR ODE/ODK SAVED ON UNIT 15

TRANSONIC ANALYSIS SUBPROGRAM

3 ZONE(S) SPECIFIED

THROAT UPSTREAM RADIUS OF CURVATURE = 1.00000 THROAT DOWNSTREAM RADIUS OF CURVATURE = 1.00000 NUMBER OF POINTS ON INITIAL LINE (MP) = 60

SINUSOIDAL DISTRIBUTION FOR INITIAL LINE

MASS FLOW THRU ZONE	0.33330 0.33330 0.33340
GAMMA	1.12875 1.12153 1.16325
ZONE	- O M

********* CD = 0.99559

.

TWO DIMENSIONAL KINETIC ANALYSIS SUBPROGRAM

•

NUMBER OF POINTS ON INITIAL LINE = 59

CHARACTERISTICS MESH CONTROL PARAMETERS (SEE SECTION 5.9.3 TDK MANUAL)

IWALL = 1 OPTION SPECIFIED

Ì

.

	1.00034	0.02018	1.00151	3.07481	1.00351	0.U8368 4.72493	1.00633	0.11234		0.14090	8.02523	1.01444	0.16935 9.67540	1 01072	0.19766	29625.11	1.02583 0.22580	12.97528	1.03273	4.62505	
	1.00028	1.27588	1.00137	2.92589	1.00329	4.57313	1.00604	6.22414	1.00961	0.13831	7.87506	1.01400	9.52467	1.01921	0.19509	1 0050	0.22325	12.82537	1.03207	14.47649 1	
	1.00022	1.12453	1.00124 0.04972	2.77439	1.00308	4.42654	1.00576	6.07455	1.00925	0.13572	14421-1	1.01357 0.16410	9.37397	1.01871	0.19252 11.02545	1 02444	0.22070	095/0.21	1.03142 0.24869	14.32320	
	1.00017	0.97579	1.00111 0.04711	2.62551	1.00288 0.07585	4.27481	1.00548 0.10453	5.92502	1.00890	0.15512		1.01314 0.16160	9.22583	1.01821	0.18995	1.02408	0.21814		1.03077 0.24615	14.17498	
	1.00012	0.82445	1.00099	2.47666	1.00269	4.12569	1.00521 0.10192	5.77554	1.00856	7,42401		0.15902	9.07528	1.01771	10.72523	1.02352	0.21559		0.24362	14-02699	
	0.01309	C/C/0-0	0.04188	00776.2	0.07063	10474.0	1.00494 0.09932	0.62348	1.00822	7.27496	1 01734	0.15643	8.92468	1.01723	10.57652	1.02295	0.21303 12.22411	0.00/0	0.24108	000/0101	
ITES	1.00005 0.01047 0.52440		0.03926	1 00020	0.06802	****	0.09671	000/***	1.00789 0.12533	7.12510	1,01101	0.15385	014/110	1.01675 0.18224	10.42281	1.02240	12.07469	1.02887	0.23853		
L COORDINA	1.00003 0.00785 0.37569	1_00047	0.03664	1.00214	0.06540		0.09411		0.12274	6.97527	1.01151	0.15126 8.62636		0.17966	10.27673	1.02185	11.92521	1.02824	0.23599 13.57313		0.00000
NAL	0.00524	1.00058	0.03403	1.00197	0.06279 3.52429	00.200	0.09150	10200	0.12014	97628-0	1.01111	0.14867 8.47600	1 01500	0.17708	10.12569	1.02131 0.20535	11.77592	1.02763	U.23345 13.42546	1 41421	1.67752
	0.07566	1.00049	0.03141	1.00181	0.06018 3.37531	1.00396	0.08889	1,00603	0.11754		1.01073	0.14608 8.32307	1-01534	0.17451	11414-4	0.20279	11.62416	1.02702	13.27533	1.03407	0.25882
	0.0000	1.00041	1.57339	1.00166	3.22375	1.00373	0.08629 4.87677	1.00663	0.11494		1.01035	8.17539	1.01489	0.17193 9.82370	acoco t	0.20022	100/4-11	1.02642 0.22835	13.12519	1.03340	0.25629 14.77328
•	1 R/R* 1 X/R* SLOPE(DEG)	12 R/R* 12 X/R*	SLOPE (DEG)	23 R/R* 23 X/R*	SLOPE (DEG)	34 R/R#	SLOPE(DEG)	45 R/R*	SLOPE (DEG)	54 0,04	56 X/R*	SLOPE (DEG)	67 R/R*	stope(Deg)	78 R/R*	78 X/R* SLOPE(DEC)	80 0 000	89 X/R*	SLOPE (DEG)	100 R/R*	SLOPE (DEG)

MASS FLOW RATE 0.000006+00 0.403875+00 0.403875+00 0.403875+00 0.403875+00 0.597855+00 0.1103255+01 0.157035+01 0.157035+01 0.157035+01 0.157035+01 0.240116+01 0.240116+01 0.2510116+01 0.2510116+01 0.2510116+01 0.2510116+01 0.2510116+01 0.2510116+01 0.25256+01 0.443616+01 0.512256+01 0.512256+01 0.512256+01 0.51256+01 0.125566+02 0.112556+02 0.112556+02 0.112556+02 0.112556+02 0.112556+02 0.112556+02 0.112556+02 0.12556+02 0.12556+02 0.12556+02 0.12556+02 0.155276+02 0.155276+02 0.155776+02 0.155776+02 0.155776+02 0.15556+02 0.15576+02 0.15556+02 0.15576+02 0.15556+	0.15588E+U2 0.15600E+02 0.15603E+02 /! acv = 4395.54	+c.cvc+ = (181) CF ISP IT 1.2955 281 716 0
X 0.000006+00 0.556025-02 0.108216-01 0.177196-01 0.177196-01 0.217536-01 0.261586-01 0.261586-01 0.261586-01 0.255726-01 0.471656-01 0.471656-01 0.559496-01 0.559496-01 0.55746-01 0.55746-01 0.175956-01 0.115816+00 0.115816+00 0.115816+00 0.115826+00 0.1155526-01 0.155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1155526+00 0.1555526+00 0.1555526+00 0.1555526+00 0.255756+00 0.255556+00	0.274106+00 0.274306+00 0.274346+00	INITIAL THKUST VELOCITY -01 5809.73
 0. 100006+01 0. 98981E+00 0. 980355+00 0. 959535+00 0. 959535+00 0. 959535+00 0. 951135+00 0. 951354+00 0. 951354+00 0. 951354+00 0. 951354+00 0. 951354+00 0. 951354+00 0. 921386+00 0. 921386+00 0. 921386+00 0. 921356+00 0. 221366+00 0. 225386+00 0. 225586+00 0. 244576+00 0. 255586+00 0. 244576+00 	0.29697E-01 0.12932E-01 0.00000E+00	5996.46 PSI) DENSITY 69 0.27351E
VEL (F1/SEC) 0.572385E+04 0.57731E+04 0.57737E+04 0.57737E+04 0.57737E+04 0.57737E+04 0.57737E+04 0.57737E+04 0.57737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.55737E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.57137E+04 0.51137E+04 0.57137E+04 0.51137E+04	0.51368E+04 0.51368E+04 0.51361E+04	FAR (FT/SEC) = (r (DEG.R) P (5264.60 130-1
THE TA (DEG) 0.000006E-01 0.12655E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.28254E+00 0.1894E+01 0.1908E+01 0.1908E+01 0.19854E+01 0.19854E+01 0.19854E+01 0.19854E+01 0.19854E+01 0.19552E+01 0.18594E+01 0.18594E+01 0.19552E+01 0.19552E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.18564E+01 0.15555E+01 0.155555E+01 0.15555E+01 0.155555E+01 0.155555E+01 0.155555E+01 0.155555E+01 0.155555E+01 0.1555555555555555555555555555555555555	0.12926E+00 0.12926E+00 0.56314E-01 0.00000E+00	5027 CS1 MACH THETA 1 1.122 0.000
RHO(LBM/FT3) 0.2755156-01 0.2755156-01 0.2755156-01 0.2755156-01 0.277546-01 0.277546-01 0.277546-01 0.280356-01 0.280356-01 0.280576-01 0.280576-01 0.280576-01 0.280576-01 0.280576-01 0.280576-01 0.285756-01 0.285576-01 0.285756-01 0.285756-01 0.2559826-01 0.2555676-01 0.2555666-01 0.2555566-01	0.365775-01 0.36608E-01 0.36612E-01 0.36613E-01	(LB/SEC) = 15.0 000 X 00000
P(PS1A) 0.13132691403 0.13132691403 0.13132691403 0.131325014403 0.135132501403 0.135132501403 0.135132501403 0.135551403 0.135551403 0.135551403 0.135551403 0.135551403 0.135551403 0.135551403 0.135551403 0.15551403 0.15551403 0.15551403 0.155621403 0.15564	0.16001E+U5 0.16005E+03 0.16007E+03 0.16008E+03	MASS FLOW RATE LRC ID R 0 15 1.000

ORGANIC PARA

ZONE 3

.

ORIGINAL PAGE IS OF POOR QUALITY

ZOWE 3 3 3 1.000117E+00	ZONE 3 3 1.000244E+00 20NE 3	1.000454E+00 ³ 300E 20NE 3000776E+00 ³ 20NE	5 001247E+00 ZONE 3 3	0019066+00 - 204E 3 3 0027045-00 - 3 3	002/905 + 100 3 3 33965 E + 00 3	20NE 3 3 05465E+00	20NE 3 3 37350E+00 3	ZONE 3 3 9677E+00 2ONE 3
11 0 2 4 4 8 8 8 7 1 0 =	1 4 1 1 1 1 2 4	RATIO = 1 17 0 4 RATIO = 1 0 0	RATIO = 1 0 0	KATIO = 1. 0 20 20 210 = 1	ATI0 = 1.0	VTI0 = 1.0	110 = 1.0	710 = 1.00
0 1SP 0 0.000 5 281.719 6 281.728 4E+01 ARE	0.000 281.741 6+01 ARE/ 1SP 0.000 281.763	E+01 AREA ISP 0.000 281.795 E+01 AREA ISP 0.000	281.842 +01 AREA 1SP I 0.000 281.906	15P 1 15P 1 0.000 281.947 281.991 3 281.991 3 01 AREA F	15P 11 0.000 0 282.044 2 282.101 3 01 AREA R	15P 11 0.000 0 282.168 2 282.239 3 31 AREA R	15P 17 0.000 0 82.321 2 82.409 3 1 AREA RA	15P 11 0.000 0 82.508 2 82.614 3 1 AREA RA 1 AREA RA 15P 17 0.000 0
TY CF .21 0.000 .36 1.295 .66 1.295 - 9.819715	18 0.0000 42 1.2956 9.741134 77 0.0000 18 1.2957	y.648848 r CF 04 0.0000 51 1.2959 9.5431699 9.5431699 2. CF	0 1.2961 9.424390E CF 9.202607E	CF CF 0.0000 1.2966 1.2968 9.149142E4	CF 0.0000 1.2970 1.2973 8.993556E+	CF 0.0000 1.2976 1.2979 1.2979 3.826655E+(CF 0.0000 1.2983 1.2987 2.648976E+0 CF	0.0000 1.2991 21 1.2996 21 461109E+0 6.0000 0.0000
VELOCI -01 5791 -01 5791 -01 5850 -01 5890 -01 5890 -01 5890 -01 5890	01 5783. 01 5925. 01 5925. 01 5773. 01 5773. 01 5773.	VELOCITY VELOCITY 01 5763.(01 6012.(01 6012.) VELOCITY	T DELTA = VELOCITY VELOCITY 1 5737.7 1 6122.6 T DELTA =	VELOCITY 5723.4(6154.12 6185.64	VELOCITY 5707.92 6219.89 6254.17 0ELTA =	VELOCITY 5691.42 6291.04 6327.97 DELTA = 8	VELOCITY 5673.98 6367.43 6406.98 6406.98 0ELTA = 8	5655.68 6448.96 6448.96 6491.11 DELTA = 8. DELTA = 8. 5636.60
DEWSITY DEWSITY 0.27465E 0.27105E 0.26860E 0.26860E 2E+01 PERC	0.264.08E 1E+01 PERCE DENSITY 0.2573E- 0.2573E- 0.264.00E- E+01 PERCE	DENSITY DENSITY 0.276395-1- 0.261155-1- 5-01 PERCEI DENSITY 0.277145-1 0.277145-1	+01 PERCEN DENSITY 0.27796E-0 0.25444E-0 +01 PERCEN	DENSITY 0.27885E-0 0.25251E-0 0.25059E-0 01 PERCENT	DENSITY 0.279816-01 0.248506-01 0.246416-01 01 PERCENT	DENSITY 0.28083E-01 0.24417E-01 0.244193E-01 0.24193E-01 01 PERCENT	.281916-01 1.239546-01 1.237156-01 1.PERCENT FERCENT	.28305E-01 .23463E-01 .23209E-01 1 PERCENT (.28423E-01 .28423E-01
P (PSI) P (PSI) P (PSI) P (PSI) P (PSI) P (PSI) P (PSI)	P 126.76 = 1.51988 1.51988 1.51988 = 1.51988 = 1.505482 = 1.505482	P (PSI) 132.29 123.89 123.89 124.88993 132.70 132.70 122.04	1.470460E P (PSI) 133.16 120.10 1.449945E	P. (PSI.) 133.65 119.04 117.98 1.427514E4	P (PSI) 134.19 116.83 115.69 1.403239E+	P (PSI)	35.36 11.94 10.63 1.349475E+0	35.99 0 09.26 0 07.88 0 1.320162E+0 1.320162E+0 6.65 0.
T (DEG.R 5267.7 5266.8 5266.8 5249.1 A FLOWRATE T (DEG.R.	5 5242.62 A FLOURATE T (DEG.R) 5270.77 5234.96	T (DEG.R) 5272.61 5226.27 5226.27 FLOMRATE T (DEG.R) 5274.65 5274.65	FLOURATE = T (DEG.R) 5276.90 5205.45 FLOURATE =	T (DEG.R) 5279.34 5199.45 5193.40 5193.40 FLOWRATE =	F (DEG.R) 5281.95 5186.79 5180.13 1LOWRATE =	5284.72 5172.92 5165.64 10WRATE = (DEG.R)	5287.64 1 5157.79 1 5149.86 1 04RATE = 04RATE =	5141.36 5132.74 04/RATE = 1 04/RATE = 1 04/RATE = 1 5293.85 13
THET/ 0.00 0.300 0.50 0.62 0.62 0.62 0.12 THETA	1 06.17 THETA 0.177 1.220	THETA 0.224 1.596 1.596 DELTA 0.282 0.282 2.023 2.023	UELIA THETA 0.347 2.501 DELTA	THETA 0.418 2.764 3.029 DELTA	THE TA 0.496 3.317 3.607 3.607 DELTA THE TA T	0.579 3.919 4.234 DELTA F HETA T	0.668 4.570 4.909 DELTA FI DELTA T HETA T	5.269 5.269 5.632 5.633 FL FL FL FL 1.862
MACH 1.111 1.131 1.135 1.135 12945E-0	1.147 59025E-0 MACH 1.114 1.155 1.155 8930E-0	MACH 1.112 1.115 1.165 7798E-01 1.109 1.177 1.177	MACH HACH 1.106 1.189 257E+00	MACH 1.103 1.196 1.203 569E+00	1.210 1.210 255+00	1.097 1.226 1.234 37E+00 4ACH 1	1.243 1.243 1.252 33E+00 33E+00	ACH TH
x 0.00556 0.005339 0.01083 1 = 2.8 x x x x x x x x x x x x x x x x x x x	2 = 4.02 X 0.01082 0.02130 3 = 5.47	X 0.01407 0.02786 4 = 7.12 X 0.01772 0.03530 5 = 8 081	x 0.02175 0.04363 6 = 1.103	x 0.02616 0.04823 0.05284 7 = 1.3277 X	0.03092 0.05786 0.06291 3 = 1.5703 X	0.06835 0.06835 0.07382 = 1.8307 × 1.8307	0.07968 0.08557 = 2.10796 * 717 1	0.09184 1 0.09814 1 = 2.40108 .05317 1
R 0.98981 1.00001 1.00006 34 POINT R 0.98535 1.00012	M POINT R 0.98008 1.00023 W POINT	R 0.97402 1.00039 M POINT R 0.96717 1.00062 1.00062	R 0.95953 1.00095 POINT POINT	0.95113 1.00116 1.00140 POINT R	0.94196 1.00168 1.00198 POINT {	POINT 9	01 1.00318 01NT 10 .90999 0	.00423 (.00483 (01NT 11 .89788 0
LRC ID 1 5 1 5 1 5 1 5 1 5 MASS FLI LRC ID LRC ID 2 5 2 5	MASS FL(LRC ID 3 5 MASS FLO	LKC ID 4 1 4 4 1 4 4 1 4 4 1 MASS FLOU	LRC ID 6 1 6 5 MASS FLOW	LRC ID LRC ID	8 1 8 5 8 5 MASS FLOW LRC ID	AASS FLOW L	MASS FLOW F	MASS FLOW P LLRC ID R 12 1 0

· ____

3 312507E+00 20NE 3 3 3	015901E+00 ZONE 3 3 019921E+00	ZONE 3 3 .024631E+00 20NE	030098E+00	1.036390E+00	ZONE 3 3 3 3 1.043577E+00	ZONE 3 3 3 3 1.051723E+00	204E 22 23 33 33 34 1.062737E+00	M W W
VTI0 = 1.(ATIO = 1.	22 83 10 =	0 3 8ATIO = 1	11 0 3 8ATIO =	11 0 2 3 3 8 8 8 10 =	1T 0 2 3 3 3 10 =	11 0 0 7 8 8 8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10009 10000
82.732 2 82.857 3 82.857 3 11 AREA RU 15P 11 0.000 0 0.000 0 282.994 2 283.139 3	01 AREA R 15P 11 0.000 0 283.298 2 283.464 0 01 AREA 1	15P 1 0.000 283.645 283.833 01 AREA	15P 1 0.000 284.036 284.247 401 AREA	15P 0.000 284.472 284.706 :+01 AREA	15P 0.000 284.828 285.017 285.210 285.210 E+01 AREA	15P 0.000 285.344 285.549 285.758 285.758 285.758	15P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	15P 00 0.00 00 0.00 00 0.00 07 287.18
1.3002 2 1.3007 2 263668E+0 263668E+0 263668E+0 0.0000 1.3014 2 1.3014 2	057310E+(CF 0.0000 1.3028 1.3035 842723E+	CF 0.0000 1.3044 1.3052 7.620618E+	CF 0.0000 1.3062 1.3071 7.391790E	CF 0.0000 1.3082 7.156981E	CF 0.0000 7 1.3098 6.917008	Cf 0 0.0000 8 1.3122 4 1.3131 9 1.3141 6.672616	C C C C C C C C C C C C C C C C C C C	Y CF 26 0.000 02 0.000 55 0.000 72 1.320
6535.54 6580.20 611A = 8. ELOCITY 5616.84 5627.01	ELTA = 8 ELTA = 8 5596.49 6723.31 6772.86	6824.31 6824.31 6876.26 6876.26	VELOCITY 5554.41 6929.84 6984.09 DELTA =	VELOCITY 5532.88 7039.90 7096.45 DELTA =	VELOCITY 5511.18 7125.3 7169.00 7213.2 DELTA =	VELOCITY 5489.4 7243.1 7243.1 7288.4 1 7388.4 1 7334.2	velocity 5113.6 5113.6 5113.6 5095.6 5095.6 5095.6 7571.7 5571.7 5571.7 5571.7 5571.7 7572.1 7572.1 7572.1 7572.1 7572.1 7571.7 1 7577.7 1 7577.7 1 7577.7 1 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5577.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 7 5777.7 1 1 5777.7 11 5777.7 1 1 5777.7 1 577 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 5777.7 1 1 5777.7 1 1 5777.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	vELOCIT 5076.11 5246.01 5645.00 01 7572
22944E-01 22677E-01 11 PERCENT DE 1.28546E-01 0.22399E-01	0.221195-01 01 PERCENT D 0.286725-01 0.218305-01 0.215385-01	01 FEACENT 0 DENSITY 10 0.288016:01 0.212386-01 0.209356-01 01 PERCENT 0	DENSITY 0.289336-01 0.206256-01 0.203126-01 0.203126-01 +01 PERCENT	DENSITY 0.29067E-01 0.19993E-01 0.19671E-01 1.9671E-01	DENSITY DENSITY 0.29201E-01 0.19508E-01 0.19262E-01 0.19013E-01 0.19013E-01	DENSITY DENSITY 0.29337E-01 0.18847E-01 0.18595E-01 0.18341E-01 0.18341E-01 PERCEW	DENSITY 0.36593E-0 0.36595E-0 0.35942E-0 0.35942E-0 0.35942E-0 0.17830E-0 0.17484E-0 7E+00 PERCEN	DENSITY 0.36940E-(0.35344E-(0.28369E-(0.17029E-)
0.44 0 5.00 1.289356E+0 1.289356E+0 1.289356E+0 137.33 137.33	01.98 1.257159E+1 P (PSI) 38.04 00.42 8.855	1.2256//E+ P (PSI) 138.76 7242 5.619 5.619	P (PSI) 139.50 93.960 92.290 1.153320E	P (PSI) 140.24 90.589 88.874 1.1166835	P (PSI) 141.00 88.010 86.703 85.386 1.079241	P (PSI) 141.75 84.509 83.179 81.840 81.840	P (PSI) 141.75 141.75 142.48 138.92 147.53 138.92 137.92 137.92 137.92 137.92 137.92 137.92 137.92 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 137.93 147.04 1	p (PSI) 143.27 4 136.35 4 75.011
123.56 10 114.24 10 MRATE = ' 206.81 1 207.11 1 5104.25 1	5094.29 1 04RATE = (DEG.R) 5300.46 1 5083.67 1 5072.83 9	OURATE = (DEG.R) 5303.87 5061.44 5049.79 5049.79	(DEG.R) 5307.32 5037.62 5025.13 LOWRATE =	(DEG.R) 5310.80 5012.11 4998.71	r (DEG.R) 5314.30 4991.81 4981.28 4970.49	T (DEG.R) 5317.78 5317.78 4963.15 4961.91 4940.39	T (DEG.R) 5812.36 5814.88 5802.15 5802.15 5304.19 5304.19 5304.19 5304.19 5304.19 5304.19 5304.19	T (DEG.R) 5817.56 5793.74 5 5293.74 6 4880.8
6.015 6.401 6.401 06LTA FLC 06LTA FLC 0.967	7.215 DELTA FL HETA T 1.076 7.643 8.074	DELTA FL THETA T 1.191 8.522 8.974 DELTA FL	THETA T 1.309 9.443 9.916 DELTA F	THETA 1 1.432 10.404 10.897	THETA 1.559 11.150 11.533 11.918	0 DELIA THETA 1.689 12.180 12.577 12.976	0 0ELLA THETA 1.683 1.683 1.683 1.683 1.683 1.683 2.155 2.15	THETA 1.69 4 1.69 4 2.67 7 2.67 1 15.00
1.280 41.280 48E+00 48E+00 1.081	1.311 23E+00 MACH 1 1.076 1.322	7376+00 MACH 1.072 1.345 1.357 4836+00	MACH 1.068 1.370 1.382	MACH 1.063 1.395 1.408	58816+00 MACH 1.059 1.415 1.425 1.436	0304E+00 MACH 1.054 1.443 1.453	91622E+U MACH 1.103 1.1095 1.1095 1.1095 1.1075 2.11501 2.11501	MAC. MAC. 1 1.09 1 1.13 9 1.52
0.10479 0.11149 = 2.7091 X	0.12560 0.12560 = 3.0311 X 0.06595 0.13300 0.13300 0.13300	<pre>t = 3.3659 t = 3.3659 t = 3.3659 t = 3.3659 t = 3.712 t = 3.772 t = 3.7</pre>	X 0.07959 0.16406 0.17220	0 = 4.000 X 0.08669 0.18059 0.18059	17 = 4.43 X 0.09392 0.19339 0.19933 0.20651	18 = 4.81 X 0.10128 0.21099 0.21774 0.22454	19 = 5.1 0.10128 0.10851 0.10851 0.11598 0.235001 0.235001 0.23533	8 0.1158 8 0.1158 8 0.1158 8 0.1314
.00551 .00623 01NT 12 .88506	.00705 .00792 .00792 .01NT 13 .01NT 13 .00888	1.00991 1. POINT 1. R 0.85738 1.01104 1.01224	R 0.84254 1.01355	POINT R 0.82706 1.01644 1.01803	R POINT R 0.81095 1.01888 1.02019 1.02156	R POINT 8 0.79423 1.02251 1.02399	R POINT R 77742 0.77742 0.77742 0.77742 1.0508	OW POINT R 7601 0.7953 0.7953
12 5 1. 12 5 1. MASS FLOW P1 LRC ID R 13 1 0	13 5 1 13 5 1 MASS FLOW P LRC ID 7 14 1 14 5 14 5	14 5 MASS FLOW 1 LRC ID 15 1 15 5 15 5	MASS FLUM LRC ID 16 1 16 5 16 5 16 5	MASS FLOW LRC ID 17 1 17 5 17 5	MASS FLOW MASS FLOW 18 5 18 5 18 5 18 5 18 5 18 5 18 5	MASS FLO LRC 10 19 1 19 5 19 5 19 5	MASS FIC	MASS FL LRC 10 21 4 21 4 21 5 21 5

OF BUILT FOR STATE

Lu Lu <thlu< th=""> Lu Lu Lu<!--</th--><th>1.074506E+00</th><th>20NE 2222 3333 346065400</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>1.0980596+00 20NE 2 3 1.1112476+00</th><th>20NE 2 3 3 1.123764E+00</th><th>20NE 2 2 3 1.136406F+00</th><th>20NE 2 2 3 3 1.1491766+00</th><th>ZOWE 2 2 3 3 1.162081E+00</th><th>20NE 2 2 3 3 1.1750006+00</th><th>20NE 20NE 3</th></thlu<>	1.074506E+00	20NE 2222 3333 346065400	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0980596+00 20NE 2 3 1.1112476+00	20NE 2 3 3 1.123764E+00	20NE 2 2 3 1.136406F+00	20NE 2 2 3 3 1.1491766+00	ZOWE 2 2 3 3 1.162081E+00	20NE 2 2 3 3 1.1750006+00	20NE 20NE 3
URC D Staty is the initial of a staty is the initis of a staty is	A RATIO =	11 0 4 3 8ATIO =		11 11 3 3 3 8 7 10 =	11 0 2 3 8AT10 =	11 0 2 3 8 110 =	11 0 2 2 8 710 =	11 0 2 3 8 8 710 =	11 0 22 8ATIO =	FONN
URC ID Constrained Constrained <thconstrained< th=""> <thconstrained< th=""> <thc< td=""><td>E+01 ARE</td><td>15P 0.000 0.000 0.000 287.917 287.917</td><td>15P 0.000 0.000 0.000 0.000 288.656</td><td>15P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td><td>15P 0.000 0.000 0.000 290.154 +01 AREA</td><td>1SP 0.000 0.000 0.000 290.911 290.911 AREA</td><td>ISP 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td><td>ISP 0.000 0.000 0.000 292.441 AREA</td><td>ISP 0.000 0.000 0.000 293.211 01 AREA</td><td>1 SP 1 0.000 0.000 0.000 293.982</td></thc<></thconstrained<></thconstrained<>	E+01 ARE	15P 0.000 0.000 0.000 287.917 287.917	15P 0.000 0.000 0.000 0.000 288.656	15P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	15P 0.000 0.000 0.000 290.154 +01 AREA	1SP 0.000 0.000 0.000 290.911 290.911 AREA	ISP 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ISP 0.000 0.000 0.000 292.441 AREA	ISP 0.000 0.000 0.000 293.211 01 AREA	1 SP 1 0.000 0.000 0.000 293.982
Luc Luc <thluc< th=""> <thluc< th=""> <thluc< th=""></thluc<></thluc<></thluc<>	6.110817	CF CF 0.0000 0.0000 2 0.0000 7 1.3240 7 1.3240 5.827840	CF 0.0000 0.0000 0.0000 0.0000 0.2274 5.543333	CF 0.0000 0.0000 1.3308 5.258395E	CF 0.0000 0.0000 0.0000 1.3343 4.974400E	CF 0.0000 0.0000 0.0000 1.3378 4.691561E	CF 0.0000 0.0000 0.0000 0.0000 1.3413	CF 0.0000 0.0000 1.3448 .133797E+	CF 0.0000 0.0000 0.0000 1.3484 1.3484	CF 0.0000 0.0000 0.0000 1.3519
LEC 10 R. 234 0.75637 0.1233 1.000 1.700 2520.20 1.000 FREEMI FLAIL 105 0.37705-01 0.0006-01 103 1.199 5780.05 1.0000 FREEMI FLAIL 10244 0.017641 0.017715-01 103 1.199 5780.05 1.00000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.017775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.017775-01 0.017775-01 0.01775-01 0.017775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01775-01 0.01727110-01 0.01772-01 0.01727110-01 0.01772-01 0.01772-01 0.01727110-01 0.01772-01 0.01	DELTA =	VELOCITY 5056.86 5311.11 5720.55 7572.31 DELTA =	VELOCITY 5037.55 5378.43 5797.84 7574.04	VELOCITY 5018.42 5448.59 5878.11 7577.84 DELTA =	VELOCITY 4999.53 5518.33 5959.44 7583.46 DELTA =	VELOCITY 4980.95 5589.83 6042.49 7591.36 DELTA = 4	VELOCITY 4962.76 5663.11 6127.35 7601.08 DELTA = 4	VELOCITY 4945.03 5737.94 6213.78 6213.78 7612.81 7612.81	VELOCITY 4927.84 5813.80 6301.17 7626.18 0ELTA = 3	/ELOCITY 4911.24 5890.78 6389.55 7640.88
Left Direction and the constraint of the constr	IE+00 PERCENI	DENSITY 0.371206-01 0.347376-01 0.347376-01 0.278956-01 0.169986-01 0.169986-01 0.968766-01	DENSITY 0.37300E-01 0.37190E-01 0.34119E-01 0.27415E-01 0.16964E-01 E+00 PERCENT	DENSITY 0.37478E-01 0.37484E-01 0.33484E-01 0.356920E-01 0.16923E-01 E+00 PERCENT	DENSITY 0.37653E-01 0.32840E-01 0.26419E-01 0.16877E-01 0.16877E-01	DENSITY 0.378266-01 0.321886-01 0.259136-01 0.168226-01 0.168226-01	DENSITY 0.379966-01 0.315246-01 0.253976-01 0.167616-01 +00 PERCENT	DENSITY 0.38161E-01 0.30853E-01 0.24875E-01 0.16692E-01 +00 PERCENT	DENSITY 0.38321E-01 0.30177E-01 0.24349E-01 0.16615E-01 +00 PERCENT 0	DENSITY 0.384766-01 0.294956-01 0.238196-01 0.165336-01
LRC ID R 22 4 0.79619 0.14720 1103 3.199 5784.31 22 4 0.79619 0.14720 1103 3.199 5280.29 MASS FLOW POINT 23 = 6.509702E+00 DELTA FLOWARTE = LRC ID R 23 4 0.79717 0.15347 1.103 3.199 5282.36 23 4 0.79717 0.15347 1.119 3.776 5327.36 23 5 1.04836 0.31178 1.521 5.000 4991.39 24 4 0.79834 0.131788 1.5115.000 4991.39 24 4 0.79834 0.131788 1.5115.000 4991.39 24 4 0.79834 0.131788 1.5115.000 4991.39 24 4 0.79834 0.131788 1.1185 5.736 5257.04 24 0.79834 0.131788 1.521 5.000 4991.39 24 4 0.79834 0.131788 1.1182 5.2535.60 25 4 0.79834 0.19016 1.182 4.286 5253.60 25 4 0.79834 0.190727 1.193 1.521 5.000 4.991.39 25 4 0.79931 0.19727 1.193 1.521 5.000 4.991.90 25 4 0.79931 0.19727 1.193 4.284 5734.30 25 4 0.79931 0.19727 1.194 4.284 5734.206 25 4 0.09017 27 = 8.282644400 ELTA FLOMARTE = LRC ID R 26 1.0600 1.524 1.1773 1.177 5.44 5717.218 27 1 0.664.81 0.25356 1.207 4.930.64 28 4 0.08050 0.25696 1.207 4.930.64 28 4 0.08050 0.25696 1.207 4.950.64 28 4 0.08050 0.25696 1.207 4.950	5c45c.v =	P (PSI) 144.05 133.72 133.72 133.72 74.945 74.945	P (PSI) 144.83 131.06 131.06 74.844 74.844 8.649102	P (PSI) 145.61 128.32 128.32 74.698 8.204522	P (PSI) 146.38 125.55 125.55 74.510 7.7614130	P (PSI) 147.13 122.76 122.76 122.76 74.271 74.271 7.3201076	P (PSI) 147.87 119.92 119.92 73.989 6.882709E	P (PSI) 148.59 117.05 117.05 73.658 6.449844E	P (PSI) 149.30 114.17 114.17 73.285 73.285 6.023313E	P. (PSI) 149.97 111.28 111.28 111.28 72.878
LRC ID LRC ID		T (DEG.R) 5820.29 5784.31 5280.06 4886.93 FLOWRATE =	T (DEG.R) 5822.96 5774.41 5267.04 4891.59 FLOURATE =	T (DEG.R) 5825.60 5763.92 5253.18 4894.90 FLOURATE =	T (DEG.R) 5828.20 5753.42 5238.90 4897.08 4897.08	r (deg.r) 5830.74 5742.42 5224.00 4898.06	(DEG.R) 5833.22 5833.22 5730.96 5208.47 4898.08 tourate =	(DEG.R) 5835.63 5719.08 5192.31 4897.16 Lowrate =	(DEG.R) 5837.95 5706.86 5175.65 4895.46 LOURATE =	(DEG.R) 5840.19 5694.25 5158.44 4893.11
LRC ID R X X 0.13315 1.000 22 4 0.79619 0.14720 1.109 22 4 0.79717 0.15347 1.105 23 1 0.7717 0.16347 1.119 MASS FLOW POINT 23 = 6.5097025E+00 LRC ID R X 0.7717 0.16347 1.119 23 4 0.77717 0.16347 1.119 23 4 0.77717 0.16347 1.119 23 4 0.77717 0.16347 1.119 23 4 0.77813 0.13016 1.125 24 4 0.79834 0.18016 1.125 24 4 0.79834 0.19727 1.190 LRC ID R X 0.15575 1.190 25 4 0.77971 0.19727 1.197 25 4 0.77973 0.15526 1.252 25 4 0.77973 0.15575 1.154 25 4 0.77931 0.19727 1.197 25 4 0.270316 0.23549 1.232 25 4 0.28030 0.23549 1.232 25 4 0.28030 0.23549 1.232 26 4 0.80127 0.21477 1.215 26 4 0.80127 0.21477 1.215 26 4 0.80127 0.21477 1.215 26 4 0.80127 0.21477 1.215 26 4 0.80127 0.21477 1.217 27 = 8.282604E+00 28 1 0.66638 0.13793 1.524 28 1 0.66638 0.23549 1.237 28 4 0.803304 0.23249 1.2328 28 4 0.803304 0.23249 1.2328 28 4 0.803304 0.23249 1.2328 28 4 0.803304 0.23249 1.2328 28 4 0.803503 0.25059 1.2528 28 4 0.80750 0.25059 1.2528 28 4 0.80753 0.25059 1.2528 28 5 1.007004 0.2275 1.23896 1.2528 28 5 1.007004 0.2035690 1.2528 28 5 1.00805 0.25059 1.2528 28 5 1.00805 0.25059 1.2528 28 5 1.008055 0.26896 1.2528 28 4 0.80753 0.26896 1.2528 28 5 1.008055 0.26896 1.2528 29 4 0.80755 0.26896 1.2528 20 2.80755		THETA 1.740 3.199 3.199 3.199 15.000 15.000	THETA 1.782 3.736 3.736 15.000 15.000	THETA 1.822 4.286 4.286 15.000 15.000 DELTA	THETA 1.859 4.844 4.844 15.000 DELTA	THETA 1.895 5.404 5.404 15.000 DELTA	THETA 1 1.929 5.973 5.973 5.973 15.000 DELTA F	THETA T 1.960 6.544 6.544 15.000 DELTA F	THETA T 1.988 7.117 7.117 7.117 15.000 DELTA F	THETA T 2.014 7.694 7.694 15.000
LIRG ID R X X X X X X X X X X X X X X X X X X		MACH 1.090 1.149 1.149 1.103 1.521 39702E+00	MACH 1.085 1.165 1.119 1.119 1.521 3610E+00	MACH 1.081 1.182 1.182 1.136 1.521 8190E+00	MACH 1.076 1.198 1.158 1.522 1299E+00	MACH 1.072 1.172 1.172 1.524 2604E+00	MACH 1.068 1.233 1.190 1.526 003E+00	MACH 1.064 1.251 1.209 1.528 1.528 2867E+00	MACH 1.063 1.269 1.228 1.531 3399E+00	MACH 1.056 1.288 1.247 1.535
LRC ID R 22 4 0.79619 22 4 0.79619 22 4 0.79619 22 4 0.79619 23 4 0.79717 23 4 0.79717 23 4 0.79717 23 5 1.04226 MASS FLOW POINT LRC ID R 24 4 0.79834 24 4 0.79834 24 4 0.79834 24 4 0.79834 25 1 0.68605 24 4 0.79834 24 4 0.79834 25 1 0.66020 22 4 0.79971 25 1 0.68605 24 4 0.79834 25 1 0.66020 27 4 0.800127 25 1 0.66020 27 4 0.800127 25 1 0.66020 27 4 0.800127 25 4 0.79071 25 4 0.79071 25 4 0.79834 26 4 0.79830 27 4 0.800127 28 4 0.80020 27 4 0.800127 28 4 0.800127 28 4 0.80020 28 4 0.80020 28 4 0.80020 28 4 0.80723 28 4 0.80723 28 4 0.80723 28 4 0.80723 28 4 0.80723 28 4 0.80723 28 4 0.80723 29 4 0.80723 20 4 0.80765 30 4 0.80765 30 4 0.80965 30 4 0.80965 30 4 0.80965 30 4 0.80965		X 0.12315 0.14720 0.14720 0.28991 0.28991 23 = 6.5(X 0.13051 0.16347 0.16347 0.16347 0.31178 24 = 6.95	$\begin{array}{c} x \\ 0.13788 \\ 0.18016 \\ 0.18016 \\ 0.18016 \\ 0.33377 \\ 25 = 7.39 \end{array}$	X 0.14522 0.19727 0.19727 0.19727 0.35586 0.35586 26 = 7.84	X 0.15252 0.21471 0.21471 0.37806 27 = 8.28	X 0.15975 0.23249 0.23249 0.40035 8 = 8.72	X 0.16689 0.25059 0.25059 0.42275 9.15	X 0.17393 0.26896 0.26896 0.44522 0.44522 0.44522	X 0.18084 0.28757 0.28757 0.28757 0.46770
LSC 10 LSC 10		R 0.74237 0.79619 0.79619 1.04241 1.04241 1 POINT	R 0.72407 0.79717 0.79717 1.04826 1.04826	R 0.70529 0.79834 0.79834 1.05416 POINT	R 0.68605 0.79971 0.79971 1.06008 POINT	R 0.66638 0.80127 0.80127 1.06602 POINT	R 0.64630 0.80304 0.80304 1.07200 POINT	R 0.62582 0.80503 0.80503 1.07800 POINT 2	R 0.60498 0.80723 0.80723 1.08402 POINT 3	R 0.58380 0.80965 0.80965 1.09004
		LRC ID 22 1 22 4 22 4 22 4 22 4 22 4 8 22 5 MASS FLO	LRC ID 23 1 23 4 23 4 23 4 23 5 MASS FLOW	LRC ID 24 1 24 4 24 4 24 5 24 5 MASS FLOU	HC ID 23 1 23 4 4 23 4 7 104	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LRC ID 27 1 27 4 27 4 27 5 MASS FLOW	LRC 10 28 1 28 4 28 4 28 5 MASS FLOW	LRC ID 29 1 29 4 29 5 MASS FLOW	LRC 10 30 1 30 4 30 4 30 4

MASS FLOW POINT 22 = 6.068181E+00 DELTA FLOWRATE = 9.534531E+00 PERCENT DELTA = 6.110817E+01 AREA RATIO

 \sim

-			-	1.26	1.2863	
A RATIO = 11 11 2 2 3	A RATIO =	11 14 14 14 14 14 14 14 14 14 14 14 14 1	11 14 14 14 14 14 14 14 14 14 14 14 14 1	11 10 22 22 22 23 23 24 24 24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	A RATIO =	0 5 0
:+01 ARE 1SP 0.000 0.000 294.757	150 150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	15P 0.0000 0.0000 0.0000 0.0000 296.733 296.733	15P 0.000 0.000 0.000 0.000 297.213 297.262	15P 0.000 0.000 0.000 0.000 298.164 298.644 298.644	1.5P 0.000 0.000 0.000 0.000 2.99.111 2.99.59	0.00 0.00
5.5918228 CF 0.0000 0.0000 1.3555	CF CF 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	CF 0.0000 0.0000 0.0000 0.0000 0.0000 1.3623 1.3623 1.3623 2.803810	CF 0.0000 0.0000 0.0000 0.0000 0.0000 1.3660 1.3660 1.3660 2.553108	CF 0.000000	CF 0.0000 0.0000 0.0000 1.3755 1.3755 2.080984	Cf 0.0000 0.0000
DELTA = VELOCITY 4895.31 5969.21 5969.237 6479.37 7657.27	VELOCITY 5375.42 5375.42 5442.46 5442.46 5472.42 6072.42 6072.42 6072.42 7670.23 76870.23	VELOCITY 5337.96 5504.94 5024.06 6173.33 6713.05 7695.99 7708.82 DELTA =	VELOCITY 5320.37 5571.03 5571.03 5571.03 5088.93 6273.91 6273.91 6827.76 7721.90 7735.03 0ELTA =	VELOCITY 5303.46 5636.74 5153.07 6374.65 6942.30 7748.60 7748.60 7762.20 DELTA =	VELOCITY 5287.27 5704.26 5220.25 6475.66 6475.66 7056.88 7776.21 7776.21 7790.27	VELOCITY 5271.84 5771.31
E+00 PERCENT DENSITY 0.38624E-01 0.28805E-01 0.16442E-01	E+00 PEKCENI DENSITY 0.34692E-01 0.34850E-01 0.34850E-01 0.347992E-01 0.25583E-01 0.25583E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.16372E-01 0.255835 0.164722E-01 0.255835 0.164722E-01 0.255835 0.2558555 0.2558555 0.2558555 0.2558555 0.2558555 0.25585555 0.25585555 0.25585555 0.25585555555555555555555555555555555555	DENSITY 0.354999E-01 0.334095E-01 0.37410E-01 0.27040E-01 0.21908E-01 0.16167E-01 0.16167E-01 0.16167E-01	DENSITY 0.35144E-01 0.35144E-01 0.35809E-01 0.26186E-01 0.26186E-01 0.26186E-01 0.16099E-01 0.16030E-01 0.16030E-01 E+00 PERCENT	DENSITY 0.352835-01 0.35530E-01 0.36206E-01 0.255340E-01 0.15964E-01 0.15888E-01 0.15888E-01 5E+00 PERCENT	DENSITY 0.354166-01 0.355966-01 0.355996-01 0.355996-01 0.355996-01 0.355996-01 0.355996-01 0.199316-01 0.157436-01 0.157436-01 DE+00 DEKCENT	DENSITY 0.35543E-01 0.31442E-01
5.604217 P (PSI) 150.62 108.36 108.36 72.424	5.194205 P (PSI) 150.62 151.40 147.87 147.87 147.87 147.87 104.57 71.717 4.778598	P (PSI) 152.13 145.33 145.33 145.33 100.92 100.92 71.375 71.028 71.028	P (PSI) 152.84 142.71 142.71 97.346 97.346 70.682 70.582 70.329	P (PSI) 153.52 140.10 140.10 93.817 93.817 93.817 69.604 69.604	P (PSI) 154.18 137.45 137.45 90.337 90.337 69.232 68.859	P (PSI) 154.80 134.82
FLOWRATE = T (DEG.R) 5842.33 5681.18 5140.56 4890.06	FLOWRATE = 5743.63 5745.53 5746.53 5746.53 5734.58 5833.65 5833.65 5833.65 5833.65 5833.65 58887.25 5883.65 5883.55 5885.55 5885.55 5883.55 5883.55 58	T (DEG.R) 5726.01 5726.01 5825.40 5825.40 5846.16 5646.16 5692.18 4878.68 4878.68 4878.68	T (DEG.R) 5751.33 5751.33 5816.47 5628.39 5067.48 4875.64 4872.55 FLOMRATE =	T (DEG.R) 5753.67 5753.67 5753.67 5753.67 5753.67 5807.54 5610.20 5042.15 4865.99 4865.99 4865.99	T (DEG.R) 5755.91 5755.91 5798.00 5798.00 5591.54 5016.12 4862.53 4862.53 4862.53	T (DEG.R) 5758.04 5686.85
DELTA THETA 2.038 8.273 8.273 15.000	DELTA THETA 2.038 1.922 1.922 2.341 2.341 9.007 9.007 15.000 15.000 15.000	THETA 1.872 2.671 9.720 9.720 15.000 15.000 15.000 15.000	THETA 1.818 3.005 3.005 10.432 10.432 10.432 15.000 15.000 15.000	THETA 1.758 3.335 3.335 11.141 11.141 11.141 11.141 11.141 11.141 11.141 11.141	THETA 1.694 3.660 3.660 11.849 11.849 11.849 11.849 11.849 11.849 11.849 11.849	THETA 1.626 3.982
8495E+00 MACH 1.052 1.307 1.267 1.539	B845E+01 MACH 1.094 1.089 1.089 1.089 1.088 1.332 1.542 1.542 1.542 1.542 2411E+01	MACH 1.085 1.122 1.357 1.357 1.357 1.357 1.551 1.551 2801E+01	MACH 1.082 1.137 1.137 1.137 1.346 1.346 1.554 1.554 1.557 1.917E+01	MACH 1.078 1.152 1.152 1.152 1.152 1.561 1.561 1.561 1.564 1.564	MACH 1.074 1.167 1.167 1.128 1.128 1.432 1.432 1.567 1.567 1.567 1.571 1.571 1.571	MACH 1.071
31 = 9.994 X 0.18760 0.30646 0.30646 0.49031	24 = 1.04 18760 0.18760 0.18760 0.19427 0.20427 0.20427 0.33110 0.33110 0.50501 0.50501 0.51971 0.51971 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.5081 0.50821 0.50821 0.50821 0.50821 0.50821 0.50821 0.50821 0.50821 0.50822 0	x 0.20130 0.22127 0.22127 0.35526 0.35526 0.35526 0.53392 0.54812 35 = 1.12	X 0.20783 0.23858 0.37952 0.37952 0.37952 0.56231 0.57631 36 = 1.16	x 0.21410 0.25616 0.25616 0.40393 0.40393 0.59035 0.59035 0.60438 37 = 1.19	X 0.22012 0.27397 0.27397 0.42853 0.42853 0.42853 0.42853 0.42853 0.42853 0.42853 0.43240 0.63240 38 = 1.23	X 0.22585 0.29201
POINT R 0.56230 0.81229 0.81229 1.09610	PUINI R 0.56230 0.55294 0.55294 0.56294 0.56294 0.56294 0.81604 1.10398 POINT	R 0.51597 0.55368 0.55368 0.82002 0.82002 1.11159 1.11159 POLNT	R 0.49240 0.56454 0.56454 0.82433 0.82433 0.82433 1.11915 1.11915 1.11915	R 0.46859 0.56552 0.56552 0.82898 0.82898 1.12291 1.12667 1.12667 1.12667	R 0.44459 0.56660 0.56660 0.56660 0.56660 0.56660 0.56660 1.15445 1.15447 1.15447	R 0.42042 0.56781
MASS FLOW LRC 10 31 4 31 5 31 5	MASS FLOM 18C ID 322 1 322 4 322 4 322 4 322 4 322 5 MASS FLOM	LRC 10 33 1 33 4 33 4 33 4 33 5 MASS FLOW	LC ID LC ID 34 5 34 5 34 1 34 5 34 5 MASS FLOW	LRC 10 35 1 35 4 35 4 35 4 35 5 MASS FLOW	LRC 10 36 24 36 24 36 24 36 24 36 24 36 24 36 26 5 5 5 10 40 5 5 10 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LAC 10 37 1 37 4

Oracles and a second se

ORIGINAL PAGE IS OF POOR QUALITY

.

1 3076-200 3 3 3 3 3 3 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3	20ME 20ME	1.3205866+00 2016 1 2 2 3 3 1.33784.96+00 3	20NE 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ZONE 20NE 2 3726765+00	ZONE 20NE 2 2 3902796+00 3	20NE 1 1 2 2 3 3 407849E+00 3	ZONE
0.000 2 0.000 2 0.000 2 300.062 3 300.532 3 01 AREA RATIO =	ISP IT 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 3	ISP IT 1SP IT 0.000 2 0.000 3 0.000 3 0.000 3 0.000 3 0.000 3 0.2237 3 11 AREA RATIO =	ISP IT 0.000 1 0.000 2 0.000 2 0.000 3 0.000 3 0.000 3 1 AREA RATIO = 1	ISP IT 0.000 0 0.000 2 0.000 3 0.000 3 04.238 3 1 AREA RATIO = 1	ISP IT 0.000 0 0.000 2 0.000 2 0.000 3 0.000 3 0.148 3 0.810 = 1	IT ISP IT 0.000 0 0.000 2 0.000 3 0.000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.00000 3 0.0000 3 0.0000 3 0.0000 3 0.0000 3 0.0000000 3 0.00000000000000000000000000000000000	SP 11
7 0.0000 7 0.0000 3 0.0000 0 1.3799 5 1.3820 1.860765E+	CF 0.0000 0.0000 0.0000 0.0000 0.0000 1.3842 1.3842 1.3842 1.51805	CF CF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3885 1.454531E+C	CF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3949 1.269427E+0	CF 0.000000	CF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.4033 371210E+0(CF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.4074 30 37672+00	CF
1 5285.63 1 5285.63 6577.17 6577.17 7171.58 1 7171.58 1 7819.56	VELOCITY 5257.21 5257.21 5358.91 5351.74 5351.74 7855.07 7849.71 7849.71	VELOCITY 5243.40 5907.26 5918.34 574.77 7394.75 7865.26 7886.26 7880.85	VELOCITY 5230.46 5230.46 5485.99 5485.99 8864.44 7496.65 7912.96 DELTA = 1	VELOCITY 5218.39 6045.06 5552.85 6943.87 7587.35 7946.17 DELTA = 1	VELOCITY 5207.22 6114.16 5620.20 7011.51 7664.98 7980.28 DELTA = 9	VELOCITY 5196.97 6183.26 5687.61 7667.58 7729.66 8015.20 0ELTA = 7	VELOCITY
0.34990E-0 0.23673E-0 0.19284E-0 0.15667E-0 0.15667E-0 0.15591E-0 E+00 PERCEN	DENSITY 0.35663E-01 0.35863E-01 0.34378E-01 0.34378E-01 0.22865E-01 0.15652E-01 0.15536E-01 0.15536E-01 0.15536E-01 0.7556E-01 E+00 PERCENT	DENSITY 0.35777E-01 0.33763E-01 0.33763E-01 0.33763E-01 0.33763E-01 0.15357E-01 0.15357E-01 0.15357E-01 0.15377E-01	DENSITY 0.35835-01 0.29798-01 0.237148-01 0.237148-01 0.213748-01 0.17490E-01 0.15115E-01 0.15115E-01	DENSITY 0.35982E-01 0.29248E-01 0.22533E-01 0.20743E-01 0.16997E-01 0.16997E-01 0.14947E-01 0.14947E-01	DENSITY 0.36074E-01 0.28701E-01 0.31920E-01 0.319206-01 0.16578E-01 0.14776E-01 0.14776E-01	DENSITY 0.36159E-01 0.28157E-01 0.31311E-01 0.19760E-01 0.16230E-01 0.16602E-01 0.14602E-01	DENSITY
134.82 86.905 86.905 88.905 68.472 68.085 68.085	P (PSI) 155.39 132.18 132.18 132.18 83.565 83.565 67.688 67.293	P (PSI) 155.95 129.53 129.53 129.53 80.388 80.388 80.388 66.886 66.480 52.269464	P (PS1) 156.48 126.88 126.88 77.482 77.482 65.648 1.980650	P (PSI) 156.97 124.24 74.933 74.933 64.793 64.793	P (PSI) 157.42 121.62 121.62 72.779 63.921 63.921	P (PSI) 157.83 119.02 119.02 71.003 71.003 63.035 63.035	(ISd) d
5788.68 5572.36 4989.35 4855.34 4855.34 4851.61 FLOWRATE =	T (DEG.R) 5760.05 5676.53 5779.06 5552.99 4962.18 4847.73 4847.73	T (DEG.R) 5761.94 5665.94 5769.21 5534.16 4935.40 4835.66 4835.66	T (DEG.R) 5763.71 5655.14 5559.15 5759.15 5516.82 4910.21 4827.12 FLOWRATE =	T (DEG.R) 5765.35 5644.13 5644.13 5748.89 5501.83 4887.77 4818.15 4818.15	f (DEG.R) 5766.87 5766.87 5766.87 5632.96 5738.51 5489.58 4868.76 4808.84 1.0MRATE =	(DEG.R) 5768.26 5621.63 5727.98 5479.99 4853.26 4853.26 4799.19	(DEG.R)
3.982 12.551 12.551 12.551 15.000 15.000	THETA 1.553 4.302 4.302 13.240 13.240 15.000 15.000 15.000	THETA 1.476 4.617 4.617 13.892 13.892 13.892 13.892 13.892 15.000 15.000 15.000	THETA 1.396 4.930 4.930 4.930 14.474 14.474 15.000 15.100 DELTA	THETA 1.312 5.239 5.239 5.239 5.239 14.952 14.952 15.000 15.000	THETA 1.225 5.545 5.545 5.545 15.308 15.308 15.308 15.000 DELTA F	THETA 1 1.136 5.847 5.847 5.847 15.543 15.543 15.000 DELTA F	THETA T
1.143 1.458 1.458 1.425 1.574 1.578 9941E+01	MACH 1.068 1.197 1.159 1.483 1.483 1.483 1.452 1.585 1.585 1.585	MACH 1.065 1.212 1.174 1.508 1.478 1.589 1.589 1.593	MACH 1.062 1.1228 1.190 1.531 1.502 1.601 206E+01	MACH 1.059 1.244 1.244 1.255 1.555 1.552 1.552 1.552 1.552	MACH 1.057 1.259 1.222 1.569 1.543 1.543 055E+01	MACH 1.055 1.275 1.238 1.584 1.558 1.558 7.627 051E+01	масн
0.29201 0.45331 0.45331 0.45430 0.66640 0.66040 0.66040 39 = 1.26	x 0.23129 0.31023 0.31023 0.31023 0.47825 0.47825 0.47825 0.47825 0.47825 0.47835 0.67438 0.68355 40 = 1.30	X 0.23643 0.32859 0.32859 0.50334 0.50334 0.50334 0.70232 0.71629 41 = 1.333	X 0.24125 0.34710 0.34710 0.52854 0.52854 0.52854 0.52854 0.74421 42 = 1.362	X 0.24574 0.36569 0.35569 0.55383 0.55383 0.55383 0.55383 0.77712 43 = 1.389	X 0.24990 0.38435 0.38435 0.57913 0.57913 0.57913 0.79999	X 0.25373 0.40305 0.40305 0.60438 0.60438 0.60438 0.60438 0.82778 5 = 1.436'	×
0.56781 0.83934 0.83934 1.13793 1.13793 1.14168 1.14168	R 0.39613 0.56913 0.56913 0.84505 1.14542 1.14917 POINT	R 0.37175 0.57056 0.57056 0.85110 0.85110 0.85110 1.15291 1.15291 1.15655 POINT	R 34731 0.57210 0.57210 0.57210 0.85747 0.85747 1.16413 POINT	R 0.32287 0.57376 0.57376 0.57376 0.56411 0.86411 1.17161 1.17161	R 0.29846 0.57552 0.57552 0.87095 0.87095 1.17908 1.17908 POLNT	R 0.27413 0.57738 0.57738 0.57738 0.57738 0.87792 0.87792 1.18653 1.18653	œ
37 4 37 4 37 5 37 5 37 5 MASS FLON	LRC ID 38 1 38 4 38 4 38 4 38 5 38 5 MASS FLOW	LRC ID 39 4 39 4 39 4 39 4 39 5 39 5 MASS FLOW	LRC 10 LRC 10 L 40 4 4 L 70 L 70 L 70 L 70 L 70 L 70 L 70 L 70	LRC 10 41 1 41 4 41 4 41 4 41 4 41 4 41 4 4	LRC ID 42 1 42 4 42 4 42 4 42 4 42 4 42 4 42 4	LRC 10 43 1 43 4 43 4 43 4 43 4 43 4 43 5 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LKC ID K

1.460%	= 1.530	
	н	
ATIO = AT	2 2 8AT10	11
0.000 2 0.000 3 0.000 2 0.000 2 0.000 2 0.000 3 0.000 2 0.000 0 0.000 0 0.0	0.000 0.000 311.973 +00 AREA	ISP
0.0000 0.00000 0.000000	0.0000 0.0000 1.4346 1.277940E	CF
5187.65 5754.91 5754.91 5754.91 7783.09 8050.82 8050.82 8050.82 5179.22 5179.22 5179.22 5179.22 5179.22 5179.22 5152.81 77152.81 77152.81 77152.81 77152.84 5152.84 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5159.47 5154.06 7281.20 60827.98 6087.98 6	7290.45 7982.82 8266.66 DELTA =	VELOCITY
0.36236E-01 0.3706E-01 0.15943E-01 0.15943E-01 0.15943E-01 0.1426E-01 0.1426E-01 0.15704E-01 0.15704E-01 0.15704E-01 0.15704E-01 0.15704E-01 0.15704E-01 0.15704E-01 0.15704E-01 0.15255E-01 0.152656-01 0.15375E-01 0.15375E-01 0.15375E-01 0.15375E-01 0.15375E-01 0.15375E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15175E-01 0.15717E-01 0.15175E-01 0.15175E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.15176E-01 0.25555E-01 0.25555E-01 0.25555E-01 0.25555E-01 0.25555E-01 0.25555E-01	0.18045E-01 0.14878E-01 0.13379E-01 E-01 PERCENT	DENSITY
158.21 116.44 69.550 69.550 62.138 1.0246796 62.138 1.0246796 113.89 113.89 113.89 68.350 61.233 61.	64.239 64.239 56.845 = 1.993933	(IS4) 4
5769.52 5610.17 5717.32 5610.17 5717.32 5610.17 5771.62 5717.32 5770.68 5570.68 5570.66 5570.66 5570.68 5570.68 5570.68 5770.68 5770.68 5770.68 5770.68 5776.59 5565.90 5565.90 5577.52 5565.90 5577.52 5565.90 5577.52 5565.93 5565.93 5565.93 5575.22 5565.93 5565.93 5577.52 5565.93 5575.22 5563.55 5563.55 5563.55 5563.55 5563.55 5573.52 5563.55 5573.52 5563.55 5563.5	5444.10 5444.10 4796.99 4727.22 FLOURATE	T (DEG.R)
1.045 6.144 6.144 6.144 6.144 6.144 6.144 6.144 6.144 6.144 6.144 6.144 6.144 6.436 6.436 6.436 6.436 6.436 6.436 6.436 6.436 6.436 6.436 6.436 15.000 0.857 15.687 15.757	15.310 15.310 15.000	THETA
MACH 1.555 1.556 1.557 1.556 1.557 1.566 1.566 1.566 1.567 1.5666 1.5666 1.5666 1.5666 1.5666 1.5666 1.56666 1.56666	1.620 1.620 1.620 1.691 1.691	MACH
0.25721 0.42176 0.62954 0.62954 0.62954 0.65954 0.65954 0.65954 0.65454 0.65454 0.65754 0.65754 0.47751 0.47751 0.45903 0.45903 0.45903 0.45903 0.45903 0.47751 0.45751 0.45751 0.45751 0.45751 0.45751 0.45751 0.45751 0.45751 0.45751 0.57151 0.57151 0.571584 0.96450 0.96450 0.551584 0.551559 0.551584 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551559 0.551554 0.551559 0.551559 0.551559 0.551554 0.5515555555555555555555555555555555555	7212220 72478 0.77478 7 1.01680 7.52 = 1.54	×
0.58877 0.57935 0.57935 0.57935 0.57935 0.588495 0.58140 0.58140 0.58140 0.58140 0.58355 0.58355 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58377 0.58306 0.58577 0.58377 0.58306 0.58577 0.593806 0.58577 0.593806 0.58577 0.593806 0.59041 0.59042 0.59041 0.59042 00	0.9254 0.9254 1.2371	
HASS FLOW HASS FLOW HAS FL	1 4 4 7 2 2 2 2 2 2 2 2 4 4 4 4 2 2 2 2 2 2 4 4 4 4	LRC ID

.

.

	3 - 1.547407E+00	ZONE	- 00 1	3 3 1 5637005+00	ZONE		~~~	3 1.579443F+00		20NE	-~		3 1 502303E±00	20HE		- ~	~~~	1.607861E+00	ZONE		<u>v</u> 0 m	3 1 418/355.00	1.010423E+UU ZONF	• •-	- 0 0 4	.640140E+00	ZONF
000000 888888	REA RATIO =	20 0 20 1	~~~ 888	57 3 EA RATIO =	E E		000	3 3 EA RATIO =	11	0	101	20	3 A RATIO =	11	0 0	100	INM	A RATIO =	11) N N	122	3 RATIO =	2 =	201	~~~	3 RATIO = 1	Т
200000 200000 312.72	28E-01 A			5 313.46 5E-01 AR	ISP		88	E-01 ARI	1SP	00.0	000	0000	514.811 5-02 ARE	ISP	0.000	0.000	0.000	-02 ARE/	15P 0.000	000.0	0.000	315.845 -03 AREA	ISP	0.000	00000	516.758 03 AREA	I SP
	° 8.25542 V Cr	64 0.000	24 0.000 34 0.000	1,441 cu 4.82212	CF CF	2 0.000	0.000	2.393612	CF	7 0.0000 9 0.0000	00000	00000	8.719102	CF 0 0000	0.0000	0.000	0.0000	1.228559E	CF 0.0000	0.0000	0.0000	1.45298E	CF 0.0000	0.0000	0.0000	.122053E-	CF
01 5147 5147 513 513 513 513 513 513 513 513 513 513	VELOCIT	5145	7336.	DELTA =	VELOCITY	6830.8 6319.0	8057.2 8057.2 8145.7	DELTA =	VELOCITY	5142.3 6884.3	6371.1	80708	DELTA =	VELOCITY	6932.80	7396.72	8100.44 8422.52 06178 -	VELIA =	VELOCITY 5141.72	6970.25 6454.71	8116.53 8116.53	ELTA = -4	ELOCITY 5181.81	7045.66	7441.18 8149.47 8/84 34	ELTA = -5	FLOCITY
0.36566E-1 0.24090E-1 0.24090E-1 0.26759E-1 0.17876E-1 0.13216E-1 1F-01	DENSITY	0.36585E-0 0.23647E-0 0.25647E-0	0.17716E-0	E-02 PERCENT	DENSITY 0.36599E-01	0.23225E-01 0.25792E-01	0.14493E-01 0.12911E-01	-02 PERCENT	DENSITY 0 366085 01	0.228336-01	0.17417E-01	0.14378E-01 0.12772E-01	-02 PERCENT	DENSITY 0.36612F-01	0.22481E-01	0.172866-01	0.12646E-01 0.12646E-01 03 PERCENT 1		0.36613E-01	0.24656E-01	0.14193E-01 0.12550E-01	04 PERCENT D	JENSITY V J.36283E-01	0.21663E-01).24045E-01).16977E-01 0.14028E-01 0.12353E-01	4 PERCENT DI	ENSITY VE
22 159.84 29 99.772 19 99.772 13 63.573 10 55.026 1 28807 1 1.28807	(ISd) d (4 159.94 3 97.698 0 97.698	6 62.936 5 62.936 7 55.244	= 7.523823	P (PSI)	95.728 95.728 725.728	62.325 54.498	= 3.7346841	P (PSI) 160.05	93.902	61.752	61.752 53.803	· 1.360416E	P (PSI) 160.07	92.264 92.264	61.231 61.231	53.179 1.916885E-		r (PSL) 160.08 01.004	91.006 60.826	60.826 52.698	-7.247925E-	P (PSI) 1	88.475 88.475	60.004 60.004 51.720	-7.991791E-0	P (PSI) D
5774.5 5528.5 5642.5 5642.5 5642.6 5439.7 5439.7 4791.0	T (DEG.R	5517.9	54 35. 3 4785.2 4707.2	FLOURATE	T (DEG.R) 5775-46	5622.09	4779.44	- LOWRATE	1 (UEG.R) 5775.61	5497-01	5426.82	4688.83	LOWRATE =	(DEG.R) 5775.68	5604.18	5422.92 4768.67	4680.69	(DEC 0)	5775.69	5597.52	4764.56	ourate =	(DEG.R) 5770.20	5583.79	6413.49 4755.99 4661.23	OUKATE =	DEG.R)
4 0.385 9 8.063 5 8.063 5 8.063 5 8.063 5 8.063 5 15.197 6 15.197 9 15.000 9 15.000	THETA	8,305	15.089 15.089	DELTA	1HETA 0.210 8.536	8.536 14.985	14.985 15.000		0.129	8.750 8.750	14.890	15.000		0.056	8.944	14.806 14.806	15.000 DELTA FI	THFTA T	0.000	9.093 14.742	14.742	DELTA FL	THETA T 0.000 0.202	9.392	14.612	הנוז גין	HEIA T
7 1.04 4 1.39 4 1.36 4 1.66 4 1.66 7 1.66 8 1.65 547390E+	MACH	1.375	1.708		1.427	1.393	1.638 1.716 56536E+0			1.406	1.665	1.724		1.042	1.418	1.670	1.731 0079E+01	MACH	1.042	1.427	1.653	10+344C	MACH 1.051 1.270	1.445	1.661	MACH 1	
0.2721 0.5489 0.5489 0.5489 0.7973 1.04203 53 = 1.1	X 0.2730	0.5657	0.81905		0.27370	0.58189 0.83988	1.08989	×	0.27410	0.59709	0.85941	1.11190 6 = 1 55	····	0.27430	0.61093	0.87712	1.15190 = 1.560	×	0.27434 0.62169	0.89085	0.89085 1.14742 = 1 540		0.28236 0.64373	0.64373	0.91886 1.17916 = 1.540		_
0.08891 0.59522 0.59522 0.59522 0.93160 0.93160 0.93160 1.24395 1.24395	R 0.06811	0.59764 0.59764 0.93747	0.93747 1.25048 POINT	œ	0.60003	0.94307	1.25676 POINT	æ	0.02970	0.60234	0.94828	1.26266 POINT 5	œ	0.01293 0.60449	0.60449	0.95297			0.00000		.27217 .27217 01NT 58		.00000	-60979	-96393 -28068 -28068		
MASSI 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	LRC ID	25 25 25 7 25 7	52 4 52 5 MASS FLOW	LRC ID	222	22 22 7 7 7 7 7	53 5 MASS FLOW	LRC ID	54 1 54 4	24	141	- MOTJ SYM 7		7 22 7 7 7 7	25 25 4 4 25	222 25 25 2 4 2	MASS FLOW F	LRC ID F	26 25 26 25 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 6 6 6 6	200	MASS FLOW P	LRC 10 P	57 4 0 57 4 0	0 2 2 2 4 4 0	57 4 0. 57 5 1. MASS FLOW PC	LRC ID R	

		w			Munu .	0
NNMM	Mumuo 2			500 Z0	2(E+00	4
0E+0	42E+(36E+	335 E	670E	5558	
6309	\$8724	7125	. 739	.766	1.79	
1.6	1.6	-	,		n	
"	"	* 0	01.	110	1110	
	RA11 8411	FORMONOMM	L RAUNONUNO RAI	LOWWOOWWA	FUNNONNA	- ~ ~ ~ ~
0.000 0.000 0.000 0.000 0.000 0.000	15P 1 0.000 0.000 0.000 0.000 0.000 18.81 18.81 3 AREA	115P 1 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	15P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	15P 0.0000 0.0000 0.0000 0.0000 0.000000	15P 0.000 0.000 0.000 0.000 0.000 322.292 322.292 322.824 0.000	0.00 0.00 0.00
0000 0000 0000 1000000	0000 0000 0000 0000 0000 0000 0000 0000 0000	F 0000 0000 0000 0000 0000 0000 0000 0	CF 0.0000 0.0000 0.0000 0.0000 1.4725 1.4728 1.4728 1.4728 1.4728 1.4728	cf 0.0000 0.0000 0.0000 0.0000 0.0000 1.4772 1.4772 1.4772 1.4796 1.50207E	CF 0.0000 0.0000 0.0000 0.0000 0.0000 1.4821 1.4845 1.4845 .97401E	cf 0.0000 0.0000 0.0000
5.98 5.99 5.99 5.99 5.07 5.07 5.07 5.00 5.07 5.00 5.00 5.00	117 CI 77.80 0 55.48 0 55.40 0	2117 2117 266.82 266.82 26.85 26.85	65.57 (49.81 (49.81 (77.19 (77.19 (77.19 (77.19 (77.19 (77.19 (77.19 (77.19 (77.19 (77.19 (77.19)(7) (77.19)(7) (77.19)(7) (77.10)(7) (77.20)(7	00117 415.72 933.75 933.75 933.75 933.75 933.75 933.75 933.75 615.07 540.86 699.30 699.30 7724.62 11 = -4.	.00117 2467.15 7551.08 7018.35 7018.35 7654.57 3384.63 3384.64 33750.43 3776.43 3776.43	LOCITY 5520.18 7638.55 7103.02
522 712 660 818 818 853 853	527 527 528 528 529 520 527 520 527 520 527 520 527 520 527 527 527 527 527 527 527 527 527 527	012 22 22 22 22 22 22 22 22 22 22 22 22 2				×
CENT D	2000 - 20	7 88-01 96-01 96-01 96-01 96-01 96-01 860 860 860 860 860 860 860 860 860 860	Y 666-01 756-01 556-01 856-01 866-01 196-01 196-01 196-01 196-01	TY 40E - 01 85E - 01 24E - 01 00E - 01 00E - 01 90E - 01 90E - 01	TY 216E-01 206E-01 245E-01 245E-01 235E-01 265E-01 265E-01 265E-01	11Y 479E-0 635E-0 538E-0
	0.11942 0.11942 0.11942 0.11942	DENSIT 0.3515 0.1995 0.1995 0.1929 0.1172 0.1172 0.1172 0.1172	DENSIT 0.3475 0.1936 0.1936 0.115 0.115 0.115 0.115	DENSI 0.343 0.187 0.187 0.158 0.158 0.158 0.114 0.112	DENSI 0.335 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.112 0.123 0.112 0.112 0.112 0.112 0.112 0.123 0.110 0.123	DENS 0.33 0.17 0.19
500000		.49E -	602E	3677 (1		8 8 5 SI)
6.69 	(PSI) 54.83 54.83 5.248 5.248 5.248 8.248 8.248 8.248 0.199 9.684 7.1907	P (PSI 52.92 0.591 0.591 7.320 7.320 7.320 8.632 6.9427	P (PSI 150.95 77.926 77.926 56.358 56.358 56.358 47.561 -6.904	P (PS 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277 75.277	455.34 45.34 45.34 45.34 55.44 5	P (P 144.7 70.07 70.07
5555555 555555555	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			223 233 15 15 15 15 15 15 15 15 15 15 15 15 15	TTE = 84	
764.36 569.70 560.70 746.7 746.7 847.4	(DEG.R 5758.1 5758.1 5758.1 55554.2 5559.4 4640.3 4640.3 00RATE 00RATE	(DEG.R 5751.8 5415.9 55415.9 5538.5 5391.8 4726.2 4618.(4618.((DEG. 1 5745. 5398. 5528. 5528. 5583. 4610. 4610. 4602.	5778 5778 5505 5505 5377 4703 4594	T (DEG 5731 5731 5360 5360 5366 4690 4690 4577 4577 4569	1 (DEC 572 5341 547
. 000 . 701 . 701 . 482 . 000 5. 000	461A T 1600 1000 1700 177 177 177 177 177 177 177	HETA T 0.000 0.336 0.335 0.335 4.222 4.222 14.222 15.000 15.000 15.000	THETA T 0.000 0.000 10.656 14.095 14.095 14.095 14.095 15.000 15.000	11HETA 1 0.000 0.000 10.973 110.973 110.973 13.971 13.971 15.000 15.000	THETA 0.000 11.282 11.282 13.851 13.851 13.851 15.000 15.000 15.000	THETA 0.000 11.578 11.578
	ACH TI 071 - 071 - 071 - 071 - 071 - 071 - 071 - 072 - 079 - 079 - 079 - 079 - 079 - 079 - 0772 - 07	MACH 1 1.081 1.539 1.505 1.505 1.505 1.708 1.778 1.778 1.778 1.778	MACH 1.092 1.560 1.718 1.718 1.718 1.791 1.791	MACH 1.103 1.549 1.728 1.728 1.710 1.805	MACH MACH 1.114 1.571 1.573 1.7397 1.739 1.739 1.739 1.739 1.739 1.739 1.739 1.739 1.739 1	MACH 1.126 1.625 1.593
946 11 946 11 946 11 946 11 946 11 949 11 940 11 10 10 10 100 100 100 100000000	71 12 11 12 12 12 12 12 12 12 12 12 12 12	562 562 552 552 552 551 550 351	202 202 306 336 3343 343 2115 2115	3374 5051 7051 7742 7742 4062 4062	1. 560 54618 79906 79906 79906 711259 38029 40049	35932 82872 82872
0.291 0.666 0.948 0.948 1.212	x 0.300 0.691 0.677 0.978 1.247 1.247	282 2017 2017 2017 2017 2017 2017 2017 201	×000	× 00.7	58 = X = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	×°°°
.00000 .61369 .61369 .61369 .97154 .97154	82 INIO 100000 1.0000000 1.000000 1.0000000 1.0000000 1.00000000 1.0000000000	0.00000 0.62247 0.62247 0.62247 0.98748 0.98748 1.30854554 1.30854 1.30854 1.30854 1.3085455555555555555555555555555555555555	0.00000 0.62737 0.62737 0.62737 0.99578 0.99578 1.31368	PUINI 0.00000 0.63261 0.63261 1.00428 1.00428 1.32394 1.32394	POINT 0.63823 0.63823 0.63823 1.01299 1.33457 1.33958 1.33958	R 0.00000 0.64422 0.64422
00000-		M444400	0 M444400		ດີ ພາສາສາຊາຍເຫຼື	0 4 4
5252555 5255555 5255555 525555 5255 52	MASS FL LRC 10 59 59 59 59 59 59 59	LRC 10 60 60 60 60 60 60 60 60 60 60 7 7	- 31 31 55 55 55 55 55 55 55 55 55 55 55 55 55	MASS LRC I 622 622 622 622 622 622 622 622 622 62	MASS 63 63 63 63 63 63 88 88 88 88 88 88 88 88 88 88 88 88 88	222 ت

•

ORIGINAL PAGE IS OF POOR QUALITY

= 1.855723E+00 3 20WE 1 8521000 3 3 3 3 3 3 5 1 1 1 1 3 3 3 5 2 1 3 3 5 2 1 3 3 5 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20NE 22 22 33 33 1.8900366+00 33	20NE 20NE 20NE	1, Y24502E+00 20NE 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20NE 1 2 3 3 3 3 3 3
A RATIO	11 22 84110 =			
0 0.000 0 0.000 1 323.371 6-03 ARE 15P 0.0000 0.000 0.000 0.000 0.000 0.000000	15P 0.000 0.000 0.000 0.000 325.587 325.148 325.148 325.148 325.148	11SP 0.0000 0.0000 0.0000 0.000000	15P 11 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 27.877 3 28.455 3 3 AREA RA	SP 11 0.000 2 0.000 2 0.000 2 0.000 2 0.000 2 0.033 3
65 0.000 93 0.000 93 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.0000 5 0.0000 5 0.00000 5 0.0000 5 0.00000 5 0.0000 5	CF 0.0000 0.0000 0.0000 0.0000 0.0000 1.4972 1.4972 1.4972 1.4973 3.716239E-	CF 0.0000 0.0000 0.0000 0.0000 0.0000 1.5025 1.5051 1.5051 1.5051	CF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5078 3.5076E 0 435076E 0	CF 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.12132 5159 5159 5159 5159
7255.5 7725.5 7725.5 7725.5 7725.5 7738.3 88356.4 88356.4 88356.4 88356.4	VELOCITY 5630.32 7811.65 7811.65 7782.53 8524.75 8931.17 8938.93 8938.93	VELOCITY 5687.29 7896.11 7352.51 7828.28 8574.91 8966.99 8995.27 ELTA = -3	ELOCITY 5745.47 7978.28 7432.05 7875.48 8626.60 9023.82 9023.82 9052.62	2804.77 2804.77 25804.77 2508.96 7508.96 7508.96 7924.09 2679.79 081.68 110.99 1
0.15278E-0 0.12684E-0 0.12684E-0 0.10952E-0 0.10952E-0 0.10839E-0 0.33333E-01 0.33333E-01 0.1303E-01 0.1503E-01 0.1526E-01 0.1526E-01 0.1526E-01 0.10724E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10609E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10724E-01 0.10609E-01 0.10609E-01 0.10609E-01 0.10609E-01 0.10609E-01 0.10609E-01 0.10609E-01 0.15662E-01 0.156	DENSITY DENSITY 0.15576E-01 0.15572E-01 0.14722E-01 0.14722E-01 0.14722E-01 0.1244E-01 0.10378E-01 0.10378E-01 0.10378E-01	0.32110E -01 0.32110E -01 0.15006E -01 0.17716E -01 0.14434E -01 0.12017E -01 0.10262E -01 0.10146E -01 0.10146E -01 0.10146E -01 0.10146E -01	DENSITY VI 0.31636E-01 0.17553E-01 0.17153E-01 0.17153E-01 0.17153E-01 0.17153E-01 0.17153E-01 0.17158E-01 0.11785E-01 0.10229E-01 0.99119E-02 0.99119E-02	DEWSITY VE 0.31154E-01 0.15023E-01 0.16617E-01 13842E-01 0.113492E-01 0.17549E-01 0.17549E-01 0.97945E-02 0.96772E-02 0.96772E-02
53.300 77.44.829 344.277 53.300 77.44.829 344.277 53.300 7142.54 52.254 52.224 52.224 53.224 53.224 53.224 53.224	65.126 65.126 65.126 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.123 51.125 51.123 51.125 51.126 51.125 51.255 51.125 51	138.06 62.784 62.784 50.000 50.000 51.484 40.925 40.925	P (PSI) 135.76 60.552 60.552 8857 48.857 48.857 60.363 99.803 5.359650E	P (PSI) 33.44 8.436 8.436 7.698 7.698 7.698 9.240 1.880
6 5357.0 6 5357.0 6 4677.3 6 4677.3 7 5560.8 7 4550.8 7 4552.1 7 1066.8 5323.28 4543.33 4543.33 4543.33 4543.33 4543.32 4554.32 4554.32 4557.32 4577.32 4777.32 4777.32 4777.32 4777.32 4777.32 4777.32 4777.32 4777.32 47777.32 47777.32 47777.32 47777.32 47777.32 47777.32 47777.32 47777.3	5707.865 5303.066 5436.41 5336.99 4648.65 4548.65 4525.03 4515.72 flowrate	5699.31 5283.89 5419.18 5326.29 4633.28 4506.27 4496.66 4496.66	(DEG.R) 5690.68 5265.07 5402.31 5315.14 4617.05 4477.05 04RATE =	(UEG.R) 5681.78 52846.74 53385.94 53385.94 5600.48 6600.48 467.04 34 456.86 34
2013 13.75 2013 13.75 201 05.000 201 05.000 15.000 201 05.000 201 05.000	0.000 12.110 12.110 13.522 13.522 13.522 15.000 15.000 15.000	0.000 12.334 12.334 13.424 13.424 15.000 15.000 15.000	12.523 12.523 12.523 13.331 13.331 13.331 13.331 15.000 15.000 15.000 15.000 15.000	5.000 5.000 5.000 5.000 5.000
MACh MACh MACh 1.13 1.17 1.13 1.13 1.13 1.13 1.13 1.13	1.150 1.669 1.667 1.657 1.657 1.774 1.871 1.873 1.873 1.873 1.873 1.874	1.165 1.659 1.659 1.787 1.771 1.878 1.886 1.886 1.886 1.886 1.886	1.176 1.880 1.880 1.785 1.785 1.894 25E+01 25E+01	811,189 733 733 701 701 701 701 701 701 701 701 701 701
1.1489 1.1489 1.4214 1.4235 58 = 1.55 0.37316 0.37316 0.37316 1.46396 1.18647	0.89141 0.89141 0.89141 1.22521 1.22521 1.50799 1.50799 1.53037 8 = 1.56(0.92451 0.92451 1.26521 1.26521 1.55352 1.55352 1.55352 3 = 1.5607 X	0.41889 0.95879 0.95879 1.30647 1.30647 1.30647 1.62452 = 1.5603 = 1.5603	. 43554 . 99429 . 99429 . 34906 . 34906 . 67399
1.0219 1.02191 1.35555 1.35555 1.355561 1.35569 0.65061 0.65061 1.03104 1.03104 1.35569 1.35769 1.35769 1.35769 1.35769 1.35769 1.35769 1.35769 1.35769 1.35769 1.35776	0.00000 0.05738 0.65738 1.04040 1.36879 1.37479 POINT 5 0.00000	0.66455 0.66455 1.04998 1.04998 1.38099 1.38719 POINT 56	0.00000 0.67210 0.67210 1.05979 1.05979 1.39360 1.40001 58 01NT 58	
64 4 65 5 65 4 65 4 65 4 65 5 65 4 85 5 65 5 65 5 65 5 65 5 65 5 65 5 65 5	MASS 55 44 4 MASS 55 44 4 MASS 55 44 4 MASS 55 10 MASS 56 44 4 MASS 56 44 4 MASS 56 44 4 MASS 56 44 4 MASS 56 4 MASS	67 4 67 5 67 5 67 5 67 5 7 6 7 5 7 6 7 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	688 5 688 5 688 5 688 5 688 5 688 5 688 5 7 100 7 8 68 5 68 5 68 5 68 5 68 5 68 5 68 5 68	22222222222222222222222222222222222222

TOK PERFORMANCE SUMMARY : 3 ZONES TOK TEST CASE,LOX/GH2 - TDK MANUAL TEST CASE

_

 ISP (SEC)
 329.633

 F (LBF)
 5143.17

 F (LBF)
 5143.17

 MASS FLOW (LB/SEC)
 15.6027

 C0
 0.99554

 C1
 6991.46

 C5
 15.51585

 C6
 15.51585

•
TDK PERFORMANCE SUMMARY : 3 ZONES IDK TEST CASE,LOX/GH2 - TDK MANUAL TEST CASE REAL WALL CONTOUR 3 ZONES

-

~

FIRST TDK SOLUTION	300.0000 6001.056 6.297435		-413.8725 -413.8725 0.0000000F+00	0.000000E+00 3.000000	2.000000	1.00000	0.000000E+00	30.0000	2.00000	335.4859	326.8484	329.6335	5143.173	15.60271 6996_465	1.515854	0.000000E+00	38.67983	9110.994	0,0000000E+00	0.000000000000000000000000000000000000	0.0000000E+00 0.0000000E+00
	[PSIA] [R] [·]	[CAL/MOLE]	[BTU/LB] [BTU/LB]	[8TU/L8] [-]	[INCHES]	22	[DEGREES] [DEGREES]	[DEGREES]		[SECONDS]	[SECONDS]	[SECONDS]	[POUNDS]	[FT/SEC]		[PSIA]	[PSIA] [R]	[FT/SEC]]21		[-]
	CHAMBER PRESS CHAMBER TEMP MIXTURE RATIO EP (NOZZIE)	H (FUEL)	HCHAM (ODE) DELH (AVERAGE)	DELH1 (AV) ECRAT	RSTAR Rutd	RUTU	THETA	THETAI	KI NIT	ISP (ODE)	15P (00F)	ISP (TDK)	THRUST (TDK)	CSTAR (TDK)	CF (TDK) CD	P (AXIS, EXIT)	P (WALL, EXIT) T (WALL, EXIT)	V (WALL, EXIT) MA (WALL EXIT)	SHOCK STRENGTH	SHOCK (R/R*)	XA (X/R*) XB (X/R*)

3 ZONES TDK TEST CASE,LOX/GH2 - TDK MANUAL TEST CASE

ORIGINAL PAGE IS OF POOR QUALITY

7-41

~
æ
-
LU U
T
ō
- ū
3
بر
<u> </u>
z
-

.

-	
-	•
	•
	•
>	,
١.	۰.
,	•
-	•
•	
	•
	۰.
•	

NPUT	GEOMETRY						
-	X(FT)	R(FT)	S(FT)	UE(FT/SEC)	TE(DEG. R)	PE(LB-F/FT2)	HSE(FT2/SEC2)
	- <u>3</u> .45300E-01	2.88675E-01	0.00000E+00	1.07331E+03	5.71352E+03 5.71346F+03	3.79711E+04 3.79617E+04	
~~~	-3.25315E-01 -2.42048E-01	2.880/5E-01 2.72280E-01	1.04746E-01	1.21460E+03	5.70943E+03	3.771946+04	
1-1-1	-1.67107E-01	2.37362E-01	1.87423E-01	1.63275E+03	5.69394E+03 5.66253E+03	3.50142E+04	
Ś	-1.13816E-01	2.06595E-01	2.48958E-UI	7.24766E+03	5.58988E+03	3.12172E+04	
0	- 7. 23290F-03	1.66823E-01	3.638056-01	4.90616E+03	5.40456E+03	2.33375E+04	
- ∞	0.00000E+00	1.66667E-01	3.71040E-01	5.80973E+03	5.26460E+03	1.88189E+U4	
0	1.80460E - 03	1.66677E-01	3.72844E-01	5.89066E+05	2.2491/E+U3	1 80546E+04	
2:	3.54942E-03	1.66705E-01	5. /4589E-U1 2 75683E-01	5. 90010E+U3	5.22627E+03	1.78278E+04	
= 6	4.04293E-U3	1.00/32E-01	3.76925E-01	6.06476E+03	5.21642E+03	1.75739E+04	
iΩ	7.271956-03	1.66825E-01	378314E-01	6.12264E+03	5.20545E+03	1./2958E+04	
14	8.80657E-03	1.66900E-01	3.79850E-01	6.18564E+U5	5.1934UE+U3	1.66592E+04	
512	1.04842E-02	1.6699/E-U1 1.47122E-01	3.81354F-01	6.32797E+03	5.16564E+03	1.63064E+04	
2₽	1 426205-02	1.67278E-01	3.85319E-01	6.40698E+03	5.14986E+03	1.59313E+04	
18	1.63560E-02	1.67472E-01	3.87422E-01	6.49111E+03	5.13274E+03	1.51106F+04	
6	1.85813E-02	1.67705E-01	3.89660E-01	6.58020E+U5	5 00620E+03	1_46857E+04	
25	2.09335E-02	1.6/98/E-U1 1.68318E-01	3.94524E-01	6.77286E+03	5.07283E+03	1.42351E+04	
52	2.59977E-02	1.68707E-01	3.97144E-01	6.87626E+03	5.04979E+03	1.37691E+04	
23	2.86995E-02	1.69157E-01	3.99883E-01	6.98409E+03	5.02513E+U5 / 00871E+03	1.27979E+04	
54	3.15083E-02	1.69672E-01	4.U2738E-U1 4.05708E-01	7.21327E+03	4.97049E+03	1.22956E+04	
0×	3.441005-U2 7.7235F-D2	1.70923E-01	4.08785E-01	7.33429E+03	4.94039E+03	1.17850E+04	
22	4.11057E-02	1.718156-01	4.12573E-01	7.49141E+03	4.89958E+03	1.113/3E+U4	
28	4.46977E-02	1.72763E-01	4.16288E-01	7.57272E+03	4.88084E+U3	1.060166704	
8	6.67243E-02	1.78667E-01	4.59092E-01	7.64.088F+03	4.89311E+03	1.04944E+04	
2 F	7.74495E-U2 8.66180E-02	1.810/3E-UI 1.83007F-01	4.59688E-01	7.68321E+03	4.88445E+03	1.03273E+04	
22	9.60525E-02	1.86525E-01	4.69455E-01	7.73503E+03	4.87255E+03	1.012/4E+U4	
23 23	1.00731E-01	1.87778E-01	4.74298E-01	7.76220E+05	4.80399E+03 4.85904E+03	9.91570E+03	
2 K	1.05400E-01	1.89028E-01	4.79156-01 4.83964E-01	7.81956E+03	4.85161E+03	9.80424E+03	
2%	1.14726E-01	1.91528E-01	4.88787E-01	7.84971E+03	4.84383E+03	9.69018E+03	
37	1.19382E-01	1.92775E-01	4.93608E-01	7.88085E+03	4.83566E+U5	0.1361676.9	
38	1.24035E-01	1.94022E-01	4.98425E-01	7.91296E+U3	4.81815E+03	9.33019E+03	
<b>5</b>	1.2868/E-U1	1.95268E-UI	5 08040E-01	7.98028E+03	4.80884E+03	9.20465E+03	
	10-379212 1	1 07755F - 01	5.12845E-01	8.01520E+03	4.79919E+03	9.07710E+03	
, ,	12586E-01	1.989936 01	5.17630E-01	8.05082E+03	4.78925E+03	8.94790E+U5	
~,	1.47185E-01	2.00225E 01	5.22391E-01	8.08702E+05	4.//9UDE+US	8 68775F+03	
1 L J 1	1.51754E-01	2.01450E-01	5.2/121E-UI	8 15074F+03	4.75831E+03	8.55877E+03	
4 7 4	1. 202021	2.02005E-01	5 36435E-01	8.19582E+03	4.74789E+03	8.43185E+03	
;;	1.65150E	2 05040E-01	5.40990E-01	8.23155E+03	4.73750E+03	8.30720E+U3	
48	1.69467E-01	061956-01	5.45459E-01	8.26666E+U5 a 30000E+03	4.727224+U3	8.06773E+03	
2 C 7 U	1.7368UE-U	1 2.0/3/3/ 11	5 54028E-01	8.33405E+03	4.70727E+03	7.95506E+03	
50	1.81648E-01	1 2.09460E-01	5.58070E-01	8.36579E+03	4.69779E+03	7.84771E+U3	

# ORIGINAL PAGE 13 OF POOR QUALITY

CASE
TEST
MANUAL
TDK
•
LOX/GH2
CASE,
TEST
TOK
ZONES
m

INPUT GEOMETRY

INPUT GEOMETRY

-		
¥	٠	
-		
	٠	
E	٠	
Σ.		
υ.	•	
2		
	•	
-		
	٠	
	٠	
	•	

ie(FT2/SEC2)		RGAS LBF - FT /I RM - DFGD	LBF-F1/LBM-DEGR 1.2803E +02 1.2804E +02 1.2805E +02 1.2805E +02 1.2807E +02 1
.8-F/FT2) HS	4763E+03 5778E+03 5778E+03 4772E+03 0308E+03 0308E+03 0308E+03 0308E+03 5507E+03 5507E+03 5562E+03 5460E+03 5460E+03 5316E+03 5316E+03 5316E+03 5316E+03 5316E+03	GANNA	1.35016+00 1.35016+00 1.32226+00 1.3124226+00 1.312426+00 1.312426+00 1.26116+00 1.26116+00 1.2676+00 1.2676+00 1.27536+00 1.27536+00 1.27536+00 1.1526+00 1.1526+00 1.1526+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1566+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+00 1.1556+000000000000000000000000
(DEG. R) PE(L	88835±-03 88835±-03 88069±+03 54725±+03 7.4 4775±+03 7.4 4777±+03 7.4 4775±+03 5.5 8665±+03 5.5 7.6 8655±+03 5.5 7.6 7.055±+03 5.5 7.6 86,6 86,5 86,5 86,5 86,5 86,5 86,5 86,	CP FT2/SEC2-DEGR	1.5915E+04 1.5915E+04 1.5159E+04 1.6159E+04 1.6159E+04 1.6555E+04 1.8572E+04 1.8572E+04 1.8371E+04 1.8371E+04 1.8371E+04 2.0358E+04 2.1398E+04 2.1398E+04 2.1398E+04 2.1398E+04 2.1398E+04 2.5131E+04 2.5131E+04 2.5518E+04 2.5518E+04 2.5518E+04 2.5518E+04 2.5518E+04 3.5518E+04 4.5518E+04 4.5518E+04 4.5518E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7772E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04 6.7792E+04
E(FT/SEC) TE	.395596+03 .422526+03 .422526+03 .422526+03 .428666+03 .428666+03 .428666+03 .577116,03 .577116,03 .577116,03 .574156,03 .574156,03 .574156,03 .5246,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55277,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03 .55276,03276,03276,03276,03276,03276,03276,03276,03276	K LBM-FT/S3-DEGR	9.09996-02 9.09996-01 4.07786-01 5.70956-01 5.70956-01 5.70956-01 5.70956-01 7.39816-01 1.00916+00 1.10016+00 1.10016+00 1.28496+00 1.28496+00 1.28496+00 1.72356+00 1.28496+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 2.55566+00 3.17966+00 5.45966+00 6.00666+00 5.45566+00 8.28556+00 8.28556+00 8.28556+00 8.28556+00 8.28556+00 8.28556+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.48446+00 1.4846
S(FT) UI	5.61868E-01 8 5.65196201 8 5.7531924E-01 8 5.77324E-01 8 5.77324E-01 8 5.91479E-01 8 5.91924E-01 8 6.14694E-01 8 6.14694E-01 8 6.14694E-01 8 5.26350E-01 8 5.26318E-01 8 5.26318E-01 8 5.26318E-01 8 5.26318E-01 8 7 ABLES	MU LBM/FT-SEC	3.27588-05 1.177586-05 1.44588-05 1.44588-05 2.15586-05 2.15586-05 3.16776-05 3.16776-05 3.15766-05 3.15766-05 3.15766-05 3.15766-05 3.15766-05 3.15766-05 3.15766-05 3.15766-05 5.15766-05 5.17666-05 5.17616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.19616-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266-05 5.2266005-05 5.2266-05 5.2
R(FT)	2.10443E-01 2.11335E-01 2.11335E-01 2.13447E-01 2.14935E-01 2.14935E-01 2.21527E-01 2.21527E-01 2.23330E-01 2.23198E-01 2.231932E-01 2.231932E-01 2.231932E-01 2.231932E-01 2.23335E-01 2.23335E-01 2.23335E-01 2.23335E-01 2.23335E-01 2.23335E-01 2.23335E-01 2.23335E-01 2.23545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.235545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545E-01 2.255545555456-01 2.2555555556-01 2.255555555555555555555555555555555555	HS FT2/SEC2	-1.41806+08 -1.33856-08 -1.33856-08 -1.25386-08 -1.25386-08 -1.260606-08 -1.17076+08 -1.17076+08 -1.17076+08 -1.05966+08 -1.05966+07 -9.33146+07 -9.33146+07 -9.33146+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.61756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+07 -5.51756+0756-0756+0756-0756+0756+0756+0756+0756+0756+0756+0756+
X(FT)	1.85317E-01 1.8550E-01 1.96527E-01 2.07885E-01 2.07885E-01 2.139718E-01 2.20192E-01 2.250632E-01 2.47682E-01 2.47682E-01 2.47682E-01 2.47682E-01 2.4778E-01 2.4778E-01 2.778998E-01	T Deg r	1.0000E+02 8.0000E+02 8.0000E+03 1.2000E+03 1.2000E+03 1.6000E+03 1.6000E+03 2.2000E+03 2.2000E+03 3.2000E+03 3.2000E+03 3.2000E+03 3.2000E+03 3.2000E+03 3.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+03 5.2000E+030
- :	2222228282828282838	-	-084592888557875666868788888855888

ORIGINAL PAGE 13 OE POOR QUALITY

	= 5.72839E+	TI (DEGREE R) OMEGA(CONSTANT)	= 5.89525E-05 = 5.72909E-01	I(LB-MASS/FT-SEC) (CONSTANT)
7.8794E-05 1.0425E+01 7.5800E+04 1.1626E+00 1.4475E+02 8.0098E-05 1.0425E+01 7.5800E+04 1.1648E+00 1.4563E+02 8.0098E-05 1.0583E+01 7.5699E+04 1.1670E+00 1.4648E+02	425E+01 7.5800 583E+01 7.5699	7.8794E-05 1.00 8.0098E-05 1.00	1.0886E+08 1.1714E+08	8.8000E+03 8.8000E+03 8.000E+03
7.6160E-05 1.0048E+01 7.5584E+04 1.1584E+00 1.4295E+02 7.7481E-05 1.0247E+01 7.5584E+04 1.1604E+00 1.4386E+02	048E+01 7.5584 247E+01 7.5584	7.6160E-05 1.0	7.2119E+07 1.0052E+08	8.6000E+03 8.6000E+03
7.3488E-05 9.5754E+00 7.54649E+04 1.1540E+00 1.4107E+02 7.4829E-05 9.8245E+00 7.54649E+04 1.1561E+00 1.4202E+02 7.54649E+04 7.510E+04 1.551E+00 1.4202E+02	754E+00 7.4645	7.3488E-05 9.5 7.4829E-05 9.8	7.5176E+07 8.3670E+07 9.2110E-07	8.0000E+03 8.2000E+03 8.2000E+03
6.9406E-05 8.6547E+00 7.1439E+04 1.1504E+00 1.3915E+02 7.0777E-05 8.9921E+00 7.2787E+04 1.1521E+00 1.4011E+02 7.2138E-05 9.2985E+00 7.2287E+04 1.1521E+00 1.4011E+02	5547E+00 7.143 921E+00 7.278 985E+00 7.278	6.9406E-05 8.6 7.0777E-05 8.9 7.2138E-05 9.2	4.9523E+07 5.8091E+07 6.6646E+07	7.6000E+03 7.6000E+03 7.6000E+03 7.8000E+03

108 : 1-		ARY CONDITION X(FT)	IS (IHFLAG = R(FT)	1) S(FT) (	JE(FT/SEC)	re(deg. R) PE	(L8-F/FT2) HSE	(FT2/SEC2) 0	U(BTU/IN2/S)	CON(LBM/FT2/SEC)
:	÷				•			0	000E+00 (	),00000E+00
	,		87886 0	0.000000000	1_07331E+03	5.71352E+03 3	79711E+U4 1.	22003E407 0	00000E+00	0.00000E+00
	- r	UCC4C.U-	0.28848	6.44534E-03	1.07518E+03	5.71350E+03 3	79681E+U4 1	22012F+07 0	00000E+00	0.00000E+00
	N N		0.28844	7.73441E-03	1.07555E+03	5.7135UE+U3 3	70450E+04 1	22016E+07 C	00000E+00 (	0.00000E+UU
	n √	-0.33435	0.28835	1.09571E-02	1.07649E+05	C CU1349CL/C	70629F+04 -1.	220246+07 0	00000E+00	0.00000E+00
	r un	-0.32791	0.28815	1.74024E-02	1.0/856E+U5	5 717845403	79247E+04 -1-	22264E+07 0	000000000000000000000000000000000000000	U.UUUUETUU A AAAAAE+AA
	0	-0.31259	0.28566	3.29427E-02	1.09981E+U3	5 71253E+03 3	79058E+04 1.	22385E+07 (	.00000E+00	0.00006+00
	~	-0.30612	0.28443	3.953136-02	1.110346+03	2 21222E+03	788706+04 1	22505E+07 (	0.00000E+00	
	. œ	-0.29965	0.28321	4.61198E-02	1.12088E+U5	- 10137371/°C	78682F+04 -1.	22626E+07 (	0,00000E+00	0.00006+00
	0	-0.29317	0.28198	5.27084E-02	1.15141E+U3	2.11505403	784.93E+04 1.	.22747E+07 (	0.00000E+00	
	, c	-0.28670	0.28075	5.92969E-02	1.14194E+US		78305E+04 -1.	.22868E+07 (	0.00000E+UU	0.00006400
-	·	-0.28023	0.27952	6.58855E-02	1.15248E+U5	2 7100KF+03	78116E+04 -1	.22988E+07	0.00000E+UU	U. UUUUUE + 00
	12	-0.27375	0.27829	7.24740E-02	1.10001E+00	5 71065F+03	1 77928E+04 1	23109€+07	0.00000E+00	0_0000E+00
	ŗ	-0.26728	0.27707	7.90626E-02	1.1/504E+U5	5 7103/E+03	77740E+04 -1	.23230E+07	0.00000E+00	
	2	-0.26081	0.27584	8.56511E-02	1.184U/E+U3	5 71007F+03	3.77551E+04 -1	.23351E+07	0.00000E+00	
	5	-0.25434	0.27461	9.22596E-U2	1. 1940 ETUJ	5 70071F+03	3.77363E+04 1	.23471E+07	0.00000E+00	
	9	-0.24786	0.27338	9.88282E-UC	1.200146-03	5 70030F+03	3.77119E+04 1	.23628E+07	0.000001.00	
	17	-0.24144	0.27200	1.0541/E-UI	1.21/995103	5 70807F+03	3.76389E+04 -1	-24104E+0/	0.000001400	
	18	-0.23547	0.26921	1.120036 01	2017277777	5 70684F+03	3.75658E+04 -1	.24580E+U/	0.000005100	0 000000
	6	-0.22950	0.26643	1.18594E-UI	1.204045403	5 70560E+03	3.749286+04 -1	.25056E+07	0.000000000	0 000005+00
	20	-0.22352	0.26365	1.25182E-UI	1.21/70C+03	5, 70437E+03	3.74197E+04 -1	25531E+0/	0.000005400	0 00000E+00
	21	-0.21755	0.26087	1.51//15-01	1 38461F+03	5.70313E+03	3.73467E+04 1	.2600/E+U/	0.000005+00	0.0000E+00
	22	-0.21158	0.25808	10-344600-1	1 41703F+03	5.70190E+03	3.72736E+04 -1	.204835401	0.00000E+00	0.0000E+00
	2	-0.20561	0.22250	1 51537F-01	1.451256+03	5.70066E+03	3.72006E+04 -1	10+346402.	0.0000E+00	0.0000E+00
	57	-0.19964		1 581256-01	1.48457E+03	5.69943E+03	3.71275E+04 -1	270105407	0 00000E+00	0.00000E+00
7.	33	-0.19566	0.26474	1 64714E-01	1.51790E+03	5.69819E+03	3.70544E+U4 -1	282845+07	0.00000E+00	0.00000E+00
- 2	95	- 0 10/07	0 24417	1.713026-01	1.55122E+03	5.69696E+03	5.69814E+U4 -1	28862E+07	0.00000E+00	0.00000E+00
16	2 c	- 17575	0.24139	1.77891E-01	1.58454E+03	5.69573E+U5	2.09U0JE104	29337E+07	0.00000E+00	0.00000E+00
	38	-114977	0.23860	1.84479E-01	1.61786E+03	5.69449E+U3	2 640675+04	1.30267E+07	0.00000E+00	0.00000E+00
	58	0.16395	0.23554	1.91068E-01	1.66939E+U3	0,092U0E103	3 65052E+04	1.31563E+07	0.00000E+00	0.00000E+00
	25	-0.15824	0.23225	1.97656E-01	1 /5562E+U.	5 68535F+03	3 63137E+04	1.32859E+07	0.00000E+UU	
	22	-0.15254	0.22895	2.04245E-01	1.80185E+US	5 48100F+03	3.61222E+04	1.34156E+07	0.00000E+00	
	m	3 -0.14683	0.22566	2.10855E-01	1.800005103	5 67863E+03	3.59307E+04 -	1.35452E+07	0.000006+00	0 000000 00
	34	4 -0.14113	0.22236	2.1/42/E-UI	2 0005/F+03	5 67526E+03	3.57393E+04 -	1.36748E+0/	0.000000000	0 000000
	8	5 -0.13542	0.21907	2.24011E-UI	2.000J#C+03	5_67190E+03	3.55478E+04 ·	1.38044E+U/		0 00000E+00
	Ř	5 -0.12971	1/612.0	2.20399E-01	5 13200F+03	5.66854E+03	3.53563E+04 -	1.3954UE+U/	0.000005+00	0.0000E+00
	ŝ	7 -0.12401	0.21248	0-3001/C.7	2.19922E+03	5.66517E+03	3.51648E+04 ·	1.4065/E+U/	0.00000E+00	0,00000E+00
	ñ	8 -0.11830	0.2020	2 50365E-01	2.27762E+03	5,66061E+03	3.49139E+04 -	1.423935401	0.0000E+00	0.00000E+00
	ň	9 -0.11258	14502.0	2 56053F-01	2.40082E+03	5.65163E+03	3.44444E+04 -	1.420206401	0.00000E+00	0.00000E+00
	3	0 -0.10682	0.1005/	2 63542F-01	2.52401E+03	5.64265E+03	3.39/496+04 -	1.493646101	0.00000E+00	0.00000E+00
	4	COLOL - L.	0 10635	2 70130F-01	2 64721E+03	5.63366E+03	3.35054E+U4	1.26/066-01	0.00000E+00	0.00000E+00
	4	67060 0 E	01201 0	2.76719E-01	2.77040E+03	5.62468E+03	3.50560E+04 -	1 507045+07	0,00000E+00	0.00000E+00
	<b>3</b> -		0 18097	2.83307E-01	2.89360E+03	5.61570E+03	5 20000E+U4	1 63168F+07	0.00000E+00	0,00000E+00
	<b>t</b> 4		578	2.89896E-01	3.01679E+03	5.606/1E+U3	3 20970E+04	1.66601E+07	0.00000E+00	0.00000E+UU
	r -1	6 0.07222	212359	2.96485E-01	3.13999E+U	C0430//2C.C (	3 11109E+04	-1.70453E+07	0.00000E+00	0.00000E+00
	1	7 -0.06638	0.13062	3.03073E-01	3.2/005E+U	5 56755F+03	3.02676E+04	-1.77836E+07	0.000000E+0U	0.00000E+00
	4	(8 -0 <b>.05996</b>	0.17912	5.09662E-UI	2.441336+0	5,54771E+03	2_94243E+04	-1.85218E+0/	0.00000E+00	0.0000E+00
	1	(9 -0.05354	0.17/65	3. 1023UE-U	3.80252E+0	5.52788E+03	2.85810E+04	-1.92601E+U/	0.0000E+00	0,00000E+00
	л <b>и</b>	CI / M . U . U . U . U . U . U . U . U . U .	0.17463	3.29427E-0	3.98002E+0	5.50805E+03	2.7/5//E+U4	- 1, 777006 יטי		
	1									

ORIGINAL PAGE IS OF POOR QUALITY

•

	()SEC)																																																
	S) CON(LBM/FT2		0.00000E+00	0.00000E+00	0.50000E+00	0.000005 00	0.000001.00	0.000001.00	0.00000	0	000000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	U-00000E+00	0.0000E+00	0.0000E+00	0.000005-00	0.000005.00	0.00005-00	0.00000F+00	0.00006+00	0.000005+00	0.0000E+00	0.00000E+00	0.00000E+00	0.00000E+00	.00000E+00				00000E+00	.000005+00	.00000F+00	.00000E+00	.00000E+00	.0000E+00	00000E+00	00000E+00
	C) QM(BTU/IN2/		0.00000E+00	0.000001.00	0.000005+00	0.000005400	0.00000F+00	0.00000F+00	0.000005+00			0.000001-00			0.000001-00	0.000005.00		0.000001.00	0.000001.00	0.000001-00	0.000001.00	0.00000c.00		0.000005+00		0 000005+00	0.000005400	0.000005400	0.00000F+00	0.000005+00	0.00000F+00	0.00000E+00	0.00000E+00	0.00000E+00 (	00+300000-r00	00+300001-0			000005400 0	000000000000000000000000000000000000000	.00000F+00 0	-00000E+00 0	.0000E+00 0	.00000E+00 0	-00000E+00 0	.00000E+00 0	.00000E+00 0.	00000E+00 0	.00000E+00 0.
HSFLET2/SEC				-2.22131F+07	-2.29513E+07	-2.36896E+07	-2.74116E+07	-3.01746E+07	-3.19871E+07	-3.37977E+07	-3.57009E+07	-3.77182F+07	-3.97613F+07	-4.15727F+07	-4-16383E+07	-4.14781E+07	-4.13170F+07	-4.12468F+07	-4.13374F+07	-4.14954F+07	-4.17121E+07	-4.19702F+07	4.22501F+07	-4-25606E+07	4.28951E+07	4.32522E+07	4.36345E+07	4.40388E+07	4.44601E+07	4.48814E+07	4-53157E+07	4-57621E+07	4.62162E+07	4.00//UE+07	2 7 X 1 20 E + 0 7	4. BURATETOT	4.85636E407	6.90424E+07	.95221E+07	.00030E+07 0	.04824E+07 0	.09368E+07 0	.15914E+07 0	.18453E+07 0	2750/1-07 0	.32014F+07 0	.36508E+07 0	.40988E+07 0.	. 10134E+0/ 0
PE(LB-F/FT2)		5 2-68044F+04	5 2.60511E+04	2.52078E+04	2.43645E+04	212212E+04	4 20C 20C 00			1.22954E+04	1.40949E+04	1.29420E+04	1.18339E+04	1.09110E+04	1.07669E+04	1-07244E+04	1.06818E+04	1.06222E+04	1.05314E+04	1.04218E+04	1.02964E+04	1.01615E+04	1.00213E+04	9.87344E+03	9.71937E+03	9.55986E+03	9.59436E+03	9.22373E+03	9.04844E+03	8.8694/E+03	0.008/8E+03	0.30/0/E+U5 -	8 148055402	7.97086F+03	7.79617E+03	7.62439E+03 -1	7.45468E+03 -4	7.28898E+03 -4	/.12670E+03 -4	0.96/68E+03 -5	2 - 20+3cn210.0	5. 511/75.02 -5	244305402 - 5	C- CU+34E00000 2, 22502E+03	087395+03	.95324E+03 -5	-82240E+03 -5	.09409E+U3 -5 .56989E+A3 -5	
TE(DEG. R)		5.48821E+0	5.46838E+03	5 / 2024 F 03	CO131 /024-0	5 306.86E+03	5.227356402	5.175326403	5 12107E-02	5 04500F.07			4.743C0E+U5	4.00094E+U5	4.00491E+US	4-86989E+03	4-0740/E+US	4.09/UBE+US	4.07420E+U5	4.00935E+U3	4.00201E+U3	4.0/458E+03	4.00388E+03	4.03022E+US	4.04302E+US	4.034/1E+US	4.0420020-4	4 70408E402	4 78311E402	4 768815403	4. 75411E+03	4.73916F+03	4.72399E+03	4.70865E+03	4.69318E+03	4.67760E+03	4.66187E+03	4-04011E+03	4.0303 E+U3	50867E407	.5827KE+03	56690F+03	.55107E+03	-53526E+03 6	51949E+03 6	.50375E+03 5	.4000/E+03 5	.45686E+03 5	
UE(FT/SEC)		1 4.15751E+0	1 4.33501E+0	69000F+01	4.86750F+03	5.54981E+03	6.00675E+03	6.27865E+03	6.54296E+03	6.80398F+03	7.063546403	7.322605403	7 546236402	7.570416+02	7 587605402	7 505805402	7 60000E407	7.631664-03	7 650264.02	7 601225-02	7 776186402	7 762655402	7 801385403	7.841005+03	7.884406+03	7.928856+03	7.97510F+03	8.02310E+03	8.07260E+03	8.12306E+03	8.17427E+03	8.22583E+03	8.27760E+03	8.32942E+03	0.30114E+US	0.43603E4U5 8 / 8/ 457.07	0.1041JE+U3	S 585ROELOZ	8.63618F+03	8.68605E+03	8.73542E+03	8.78430E+03 4	3.83265E+03 4	3.88045E+03 4	5.92767E+03 4	5.9/430E+03 4	.06594E+03 4	.11099E+03 4	
S(FT)	1	3.36016E-0	3.49107F-0	3.55781E-01	3.62370E-01	3.68959E-01	5.75547E-01	5.82136E-01	5.88724E-01	3.95313E-01	4.01901E-01	4.08490E-01	4.15078E-01	4.21667E-01	4.28255E-01	4.34844E-01	4.41433E-01	4.48021E-01	4.54610E-01	4.61198E-01	4.67787E-01	4.74375E-01	4.80964E-01	4.87552E-01	4.94141E-01	5.00729E-01	5.07318E-01	5.13907E-01	5.20495E-01	5.27084E-01	5.33672E-01	5.40261E-01	5.46849E-01	5 A00265-01	5 66615E-01	5.73203F-01	5.79792F-01	5-86381E-01	5.92969E-01	5.99558E-01	6.06146E-01	6.12735E-01	0.19523E-01	0.23912E-01		6.45677E-01 0	0.52266E-01 9	6.58855E-01 9	
R(FT)	ļ,	0.17164	0.17014	0.16865	0.16/15	1/001.0	0.100/3	0.16764	0 12/01	11001-0	0.10952	0.17086	0.1/245	0.17416	0.17586	0.17757	0.17927	0.18098	0.18268	0.18439	0.18609	0.18780	0.18950	0.19121	0.19291	0.19462	0.19632	0.19803	0.199/5	0 20744		0 20402	0.20826	0.20997	0.21167	0.21338	0.21508	0.21679	0.21849	0.22020	DK1 77 0	100000	07702 0	0.22872	0.23043	0.23213	0.23384	(((())))	
A(FI)	0.03430	3 -0.02788	4 -0.02146	27800 U- 9	7 -0.0020A	8 0.00451	9 0.01100	0 0.01765	1 0.02410	0 03068	11220 0 2	0.0757					0.07575		0.00000		0.07444		0 11767		04411-0	07071.0	0 13800	0 14535	0.15172	0.15808	0.16445	0.17081	0.17717	0.18354	0.18990	0.19627	0.20265	0.2157	000000	0 22800	27722.0	0.24081	0.24718	0.25354	0.25991	0.26627	0.27200		
·	U1	unt	- 14	۰ LC	ŝ	ŝ	ŝ	v	\$	9		5.2	5	\$2	52	5 4	34	58	~~	2:	:K	22	: K	22	22	. 2	22	80	8	82	83	2	8	88	200	88	66	55	6	10	76	<u> 8</u>	96	26	86	85	101		

ORIGINAL PAGE IS OF POOR QUALITY

DATA ( SEGMENT 1) X X/R* DELT* THETA H CF R DEL FT FT F1	EGMENT 1) X/R* DELT* THETA H CF R DEL X/R* DELT* THETA 1 0 0.0000E+00 0.0000E+00 0.0000 -2.07180 0.0000E+00 0.0000E+00 0.0000E+00 0.0000	) DELT* THETA H CF R DEL FT FT FT 0.0000E+00 0.0000E+00 0.0000 0.0000E+00 0.0000E+00 0.0000E+00 0.0000	THETA H CF R DEL FT	H CF R DEL H 0.0000E+00 0.0000E+00 0.0000 0.0000E+00 0.0000E+00 0.00000	CF R DEL 0.00006+00 0.0000 8.6546E-03 1.3368	R DEL	т. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	REX 0000E+00 5 9167E+03 5	TN 566 R .7276E+03 .7251E+03 .7251E+03	DF LBF B1 0.0000E+00 9.8341E+00 1.0752E+01	sau u/sec 
1.34530 -2.01100 -2.01635.04 5.6108E-05 2.5955E+00 8.6546E-03 1.2504 1.33886 -2.03315 1.4563E-04 5.1444E-05 2.5918E+00 7.9279E-03 1.462 1.33757 -2.02541 1.5925E-04 7.3380E-05 2.5278E+00 7.0346E-03 1.704 1.33435 -2.0009 1.8559E-04 7.3380E-05 2.2508E+00 7.241E-03 1.990 1.33435 -1.06723 2.1621E-04 9.5634E-05 2.2608E+00 7.241E-03 1.990	2.017160 1.4563E-04 5.6100E-05 2.5955E+00 8.6546E-05 1.2508 2.03315 1.4563E-04 5.1444E-05 2.5918E+00 7.9279E-03 1.462 2.00541 1.5955E-04 5.1444E-05 2.5518E+00 7.0346E-03 1.704 2.00609 1.8549E-04 7.3380E-05 2.5208E+00 7.2411E-03 1.990 1.05723 2.1621E-04 9.5636E-05 2.2608E+00 7.2411E-03 1.990 2.05608E+00 7.2411E-03 1.990	7.2505E-04 5.6108E-05 2.5595E+00 8.6546E-03 1.2508 1.4563E-04 5.144E-05 2.55918E+00 7.9279E-03 1.462 1.5525E-04 5.1444E-05 2.55918E+00 7.0346E-03 1.704 1.5549E-04 7.3380E-05 2.5278E+00 7.2411E-03 1.990 2.1621E-04 9.5636E-05 2.2608E+00 7.2411E-03 1.990	5.6108E-05 2.5955E+00 8.6546E-03 1.250 6.1444E-05 2.5918E+00 7.9279E-03 1.462 7.3380E-05 2.5278E+00 7.0346E-03 1.704 7.3380E-05 2.5208E+00 7.2411E-03 1.990 9.5636E-05 2.2608E+00 7.2411E-03 1.990	2.5955E+00 8.6546E-U3 1.250 2.5918E+00 7.9279E-03 1.462 2.5278E+00 7.0346E-03 1.704 2.2608E+00 7.2411E-03 1.990 2.2608E+00 7.2411E-03 2.23	8.6546E-U3 1.2508 7.9279E-03 1.462 7.0346E-03 1.704 7.2411E-03 1.990 7.2411E-03 1.990	704	76+02 76+02 46+02 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	1024E+03 0070E+04 6020E+04 0905E+04	7251E+03 7249E+03 7249E+03 7252E+03	1.0/> <pre>1.0/&gt;<pre>1.2512E+01 1.4512E+01 1.8242E+01 1.8242E+01 </pre></pre>	0,0000E+00 0,0000E+00 0,0000E+00
1.2579 11.87556 2.7954E-04 1.4393E-04 1.9422EF00 7.2029E-03 2.9 0.31259 11.87556 2.7954E-04 1.6294E-04 1.8451E+00 7.3029E-03 2.9 0.30612 1.83672 3.0732E-04 1.8077E-04 1.8451E+00 7.0424E-03 3.1 7.29665 1.77788 3.3353E-04 1.8077E-04 1.8451E+00 7.0424E-03 3.4	11.87556 2.7954E-04 1.4393E-04 1.9426E+00 7.3029E-03 2.9 -1.83672 3.0732E-04 1.6294E-04 1.8861E+00 7.3029E-03 2.1 -1.79788 3.3353E-04 1.8077E-04 1.8451E+00 7.0424E-03 3.1	2.7954E-04 1.4393E-04 1.9424E-00 7.3029E-03 2.9 3.0732E-04 1.6294E-04 1.8861E+00 7.3029E-03 2.9 3.3353E-04 1.8077E-04 1.8451E+00 7.0424E-03 3.1	1.4393E-04 1.9422E-00 7.3029E-03 2.9 1.6294E-04 1.8861E+00 7.3029E-03 2.9 1.8077E-04 1.8451E+00 7.0424E-03 3.1	1.94245+00 7.30295-03 2.9 1.88615+00 7.32295-03 2.9 1.84515+00 7.04245-03 3.1 1.84515+00 6.84815-03 3.4	7.30296-03 2.9 7.04246-03 3.1 6.84816-03 3.4	0.44	096E+02 3 864E+02 4 530E+02 5	7426E+04 4061E+04 0809E+04	7253E+03 7253E+03 7253E+03	2.2926E+01 2.2926E+01	0.0000E+00 0.0000E+00 0.0000E+00
0.29317 -1.75904 3.5821E-04 1.9703E-04 1.7872E+00 6.6458E-03 3. 0.28670 -1.72020 3.8188E-04 2.1368E-04 1.7872E+00 6.4888E-03 3. 0.28023 -1.68137 4.0411E-04 2.2893E-04 1.7652E+00 6.4888E-03 3.	-1.75904 3.5821E-04 1.9703E-04 1.7872E-00 6.6458E-03 3. -1.72020 3.8188E-04 2.1368E-04 1.7652E+00 6.4888E-03 3. -1.68137 4.0411E-04 2.2893E-04 1.7652E+00 6.388E-03 3.	3.5821E-04 1.9/03E-04 1.7872E+00 6.6458E-03 3. 3.8188E-04 2.1368E-04 1.7872E+00 6.6458E-03 3. 4.0411E-04 2.2893E-04 1.7652E+00 6.4888E-03 3.	1.9/03F 04 1.7872F 00 6.6458F 03 3. 2.1368E 04 1.7872F 00 6.6458F 03 3. 2.2893E 04 1.7652F 00 6.4888F 03 3.	1.7872E+00 6.6458E-03 3. 1.7872E+00 6.64888E-03 3. 1.7652E+00 6.4888E-03 3.	6.458E-03 3. 6.488E-03 3. 6.3415E-03 4.	mm v	7140E+02 5 9648E+02 6 2089E+02 7 2089E+02 7	1728E+04	. 7252E+03	-2.5563E+01 -2.6744E+01 -2.7844E+01	0.0000E+00 0.0000E+00 0.0000E+00
0.27375 -1.64253 4.252/F-04 2.43306-04 1.7284E+00 6.2211E-03 4. 0.26728 -1.60369 4.4536E-04 2.5768E-04 1.7130E+00 6.1059E-03 4. 0.26731 -1.56485 4.6475E-04 2.7130E-04 1.7130E+00 6.1059E-03 4.	-1.64253 4.252/F-04 2.4306 04 1.7284E+00 6.2211E-03 4. -1.60369 4.4536E-04 2.5788E-04 1.7130E+00 6.1059E-03 4. -1.56485 4.6475E-04 2.7130E-04 1.7130E+00 6.1059E-03 4.	4.252/fe-04 2.43306-04 1.72846+00 6.22116-03 4. 4.45366-04 2.57686-04 1.71306+00 6.10596-03 4. 4.64756-04 2.71306-04 1.71306+00 6.10596-03 4.	2.5788E 04 1.7284E+00 6.2211E-03 4. 2.5788E 04 1.7730E+00 6.1059E-03 4. 2.7130E-04 1.77130E+00 6.1059E-03 4.	1.7284E+00 6.2211E-03 4. 1.7130E+00 6.1059E-03 4.	6.2211E-03 4. 6.1059E-03 4. 6.0037E-03 4.	444	4459E+02 / 6792E+02 8 9071E+02 9	.8920E+04 .6237E+04 .3660E+04	5.7252E+03 5.7252E+03	-2.8886E+01 -2.9862E+01 -3.0641E+01	0.0000E+00 0.0000E+00 0.0000E+00
0.25534 -1.52601 4.8327E-04 2.8448E-04 1.0906E-00 5.9447E-03 5. 0.22534 -1.52601 4.8327E-04 2.9625E-04 1.6848E-00 6.2237E-03 5. 0.24786 -1.48717 5.0008E-04 2.9658E-04 1.6610E+00 6.2237E-03 5.	-1.52601 4.8327E-04 2.8448E-04 1.0700 5.9447E-03 5. -1.52601 4.8327E-04 2.9482E-04 1.6448E+00 5.9447E-03 5. -1.48177 5.0008E-04 2.9482E-04 1.6610E+00 6.2237E-03 5.	4.8327E-04 2.8448E-04 1.0906E-00 5.9447E-03 5. 5.0008E-04 2.9682E-04 1.6848E-00 5.9447E-03 5. 5.0008E-04 2.9682E-04 1.6810E+00 6.2237E-03 5.	2.84486-04 1.09000000 5.94476-03 5. 2.96826-04 1.68488+00 5.94476-03 5. 3.02506-04 1.6610E+00 6.22376-03 5.	1.6848E+00 5.9447E-03 5.1.6848E+00 5.9447E-03 5.1.6848E+00 5.9447E-03 5.1.6410E+00 6.2237E-03 5.1.6410E+00 6.2237E-03 5.1.6410E+00 6.2237E-03 5.1.6410E+00 6.2237E-03 5.1.6410E+00 6.2237E-03 5.1.6410E+00 6.2237E+03 5.1.6410E+00 6.1.6410E+00 6.10000000000000000000000000000000000	5.9447E-03 5. 6.2237E-03 5	(C) (C)	1205E+02 1986E+02	0119E+05 0904E+05 1884E+05	5.7251E+03 5.7251E+03	-2.9510E+01	0.0000E+00
0.24144 -1.44864 5.0200F.04 2.9929E.04 1.6349E+00 6.5208E-03 5 0.23547 -1.47281 4.8931E.04 2.9929E.04 1.6158E+00 6.6302E-03 5 0.23567 -1.47697 4.7575E.04 2.9443E-04 1.6158E+00 6.6302E.03 5	-1.44864 2.0200E-04 2.9929E-04 1.6349E+00 6.5208E-03 5 -1.41281 4.8931E-04 2.9443E-04 1.6158E+00 6.6302E-03 5 -1.37627 4.7575E-04 2.9443E-04 1.6158E+00 6.6302E-03 5	5.0260E-04 2.9226-04 1.6349E+00 6.5208E-03 5 4.75931E-04 2.9443E-04 1.6158E+00 6.6302E-03 5 4.7757E-04 2.9443E-04 1.6158E+00 6.6302E-03 5	2.99296-04 1.6349E+00 6.5208E-03 5 2.9443E-04 1.6158E+00 6.6302E-03 5	1.6349E+00 6.5208E-03 5 1.6158E+00 6.6302E-03 5 1.6158E+00 6.6302E-03 5	6.5208E-03 5 6.6302E-03 5 7.232E-03 5	ມເມີຍ	1737E+02 2056E+02	1.28986+05	5.7247E+03 5.7245E+03	-2.5977E+01 -2.5134E+01	0.0000E+00
0.22352 -1.34114 4.6729E-04 2.9136E-04 1.6036E+00 0.6211E-03 5 0.22352 -1.34114 4.6729E-04 2.8969E-04 1.5949E+00 6.6211E-03 5 0.21755 -1.30531 4.6205E-04 2.8967E-04 1.5849E+00 6.5724E-03 5	-1.34114 4.6729E-04 2.9136E-04 1.6038E+00 0.6434E-03 5 -1.34114 4.6205E-04 2.8969E-04 1.5949E+00 6.6211E-03 5 -1.30531 4.6205E-04 2.8969E-04 1.5848E+00 6.5724E-03 5	4.6729E-04 2.9136E-04 1.6038E+00 5.6211E-03 5 4.6205E-04 2.8969E-04 1.5949E-00 5.6211E-03 5 4.6205E-04 2.8969E-04 1.5848E+00 5.6214E-03 5	2.91366-04 1.6038E+00 0.0433E-03 2.8969E-04 1.5949E+00 6.6211E-03 5 3.8017E-04 1.5881E+00 6.5724E-03 5	1.6038E+00 0.0433E 03 1.5949E+00 6.6211E-03 5 1.5881E+00 6.5724E-03 5	6.6211E-03 5 6.5724E-03 5		.2692E+02	1.5027E+05 1.6143E+05	5.7241E+03 5.7241E+03 5.7240E+03	-2.3956E+01 -2.3537E+01	0.0000E+0
-0.21158 -1.26948 4.5924E-04 2.8961E-04 1.5824E+00 6.5092E-03 -0.20261 -1.123364 4.5829E-04 2.99089E-04 1.57744=00 6.4368E-03 -0.20261 -1.12734 4.5882E-04 2.9089E-04 1.57746=00 6.43548E-03	-1.26948 4.5924e-04 2.091E-04 1.5824E+00 6.5092E-03 -1.23364 4.5829E-04 2.8861E-04 1.5824E+00 6.504368E-03 -1.19781 4.5885E-04 2.9089E-04 1.5774E+00 6.54368E-03	4.5924E-04 2.091E-04 1.5824E+00 6.5092E-03 4.5829E-04 2.8961E-04 1.5824E+00 6.50328E-03 4.5885E-04 2.9089E-04 1.5774E+00 6.4368E-03	2.9080F-04 1.5824F+00 6.5092E-03 2.9080F-04 1.5774E+00 6.4368E-03 2.9080F-04 1.5774E+00 6.4368E-03	1.5824E+00 6.5092E-03 1.5774E+00 6.4368E-03 7.5774E+00 6.4368E-03	6.5092E-03 6.4368E-03 4.3588E-03		5.4671E+02 5.5937E+02 5.7362E+02	1.8473E+05 1.9689E+05	5.7238E+03 5.7237E+03	-2.3197E+01 -2.2922E+01	0.0000E+0
-0.19366 -1.16198 4.6069E-04 2.9289E-04 1.5/27720 0.2752E-03 -0.19366 -1.16198 4.6564E-04 2.9555E-04 1.5647E+00 6.2751E-03 -0.18769 -11.12615 4.6554E-04 2.9880F-04 1.5647E+00 6.1901E-03	1.16198 4.6069E.04 2.9289F-04 1.57629F-00 6.2751E-03 1.12615 4.6364E-04 2.9555E-04 1.5687E+00 6.2751E-03 1.12615 4.6364E-04 2.9555E-04 1.5647E+00 6.1901E-03	1 4.6069E-04 2.9289E-04 1.57679E+00 6.2753E-03 4.6564E-04 2.9555E-04 1.5687E+00 6.2753E-03 4.6564E-04 2.9555E-04 1.5647E+00 6.1901E-03	2.92896-04 1.5729540 0.27536-03 2.95556-04 1.5687E+00 6.2753E-03 5.9806-04 1.5647E+00 6.1901E-03	1.5687E+00 6.2753E-03	6.1901E-03		5.8933E+02 6.0639E+02	2.0937E+05 2.2218E+05 3.3532E+05	5.7233E+03 5.7233E+03	2.2518E+01 -2.2373E+01	0.0000E+00 0.0000E+00
-0.18172 -1.09051 4.67528-04 5.02586-04 1.5608E+00 6.1041E-03 -0.11775 -1.105448 4.7228E-04 3.0258E-04 1.5519E+00 6.2027E-03 -0.14677 -1.10185 4.7067E-04 3.0328E-04 1.5519E+00 6.2027E-03	-1.09051 4.0/238-04 5.02588-04 1.5608E400 6.1041E-03 -1.05448 4.72288-04 3.02588-04 1.55196400 6.2027E-03 -1.01855 4.7067E-04 3.03288-04 1.55196400 6.2027E-03	1 4.0/2016 04 5:0586 04 1:56086400 6.10416-03 3 4.72288 04 3.02586 04 1:5516400 6.20276 03 1 4.720576 04 3.03286 04 1:5516400 6.20276 03	4 3.02586-04 1.56086+00 6.1041E-03 4 3.02286-04 1.55196+00 6.2027E-03 4 3.03288-04 1.55196+00 6.2027E-03	4 1.5508E+00 6.1041E-03 4 1.5519E+00 6.2027E-03 4 EZZ/E+00 6.2027E-03	0 6.1041E-03 0 6.2027E-03 0 6.2027E-03		6.24/3E+02 6.3472E+02 6.2958E+02	2.6507E+05	5.7230E+03 5.7226E+03	-2.1661E+01 -1.9961E+01 -1.8276E+01	0.0000E+00
-0.15375 -0.98370 4.5381E-04 2.9537E-04 1.5322E+00 5.6942E-03 -0.15395 -0.94946 4.5142E-04 2.8323E-04 1.5232E+00 5.6942E-03 -0.15824 -0.94946 4.51422E-04 2.8323E-04 1.5166E+00 5.7280E-03	-0.98370 4.5381E-04 2.9537E-04 1.5232E-00 6.6942E-03 -0.94946 4.3142E-04 2.8323E-04 1.5232E-00 6.6942E-03 -0.94946 4.3142E-04 2.82323E-04 1.5532E-00 6.7280E-03	0 4.5381E-04 2.953/E-04 1.5304E-00 6.6942E-03 5 4.3142E-04 2.8332E-04 1.5328E+00 6.6942E-03 5 4.3142E-04 2.83332E-04 1.5166E+00 6.7280E-03	4 2.953/F-U4 1.5304E700 5.6942E-03 4 2.8323E-04 1.5232E+00 6.6942E-03 4 2.7247E-04 1.5166E+00 6.7280E-03	4 1.5232E+00 6.6942E-03 4 1.5232E+00 6.7280E-03 4 1.5166E+00 6.7280E-03	0 6.7280E-03		6.1965E+02 6.1360E+02	2.8390E+05 3.0328E+05 3.2321E+05	5.7211E+03	-1.7039E+01	0.0000E+00 0.0000E+00
-0.15254 -0.91229 4.11225 -0.8465-02 5.64755-04 1.5146E+00 6.6846E-03 -0.14683 -0.88099 4.0100E-04 2.54755-04 1.5146E+00 6.6096E-03	-0.91223 4.11225 02 2.64755 04 1.5146E+00 6.6846E-03 0.88099 4.0100E-04 2.64755 04 1.5146E+00 6.6096E-03 0.84545 3.9290E-04 2.5941E-04 1.5146E+00 6.6096E-03	9 4.11225 04 2.5475E-04 1.5146E+00 6.6846E-03 9 4.0100E-04 2.5475E-04 1.5146E+00 6.6996E-03 6.9390E-04 2.5941E-04 1.5146E+00 6.6096E-03	4 2.6475E-04 1.5146E+00 6.6846E-03 4 2.5941E-04 1.5146E+00 6.6096E-03	k 1.5146E+00 6.6846E-03 k 1.5146E+00 6.6096E-03	0 6.6846E-U3 0 6.6096E-03		6.2105E+02 6.2105E+02 6.2165E+02	3,4368E+05 3,6467E+05	5.7207E+03 5.7203E+03	-1.5354E+UI	0.0000E+0
-0.13542 -0.81252 3.8802E-04 2.5603E-04 1.5155E+00 6.5134E-03 -0.13542 -0.81252 3.8802E-04 2.5426E-04 1.5168E+00 6.4053E-03	0.81252 3.8802E-04 2.5603E-04 1.5155E+00 6.5134E-03 0.81252 3.8802E-04 2.5426E-04 1.5168E+00 6.4053E-03 7.7303 3.8668E-04 2.5426E-04 1.5168E+00 6.4053E-03	2 3.8802E-04 2.5603E-04 1.5155E+00 6.5154E-03 3 8568E-04 2.5426E-04 1.5168E+00 6.4053E-03 3 8568E-04 2.5426E-04 1.5168E+00 6.4053E-03	14 2.5603E-04 1.5155E+00 6.5154E-03 14 2.5426E-04 1.5168E+00 6.4053E-03	14 1.5155E+00 6.5154E-03 14 1.5168E+00 6.4053E-03 14 1.5168E+00 6.4053E-03	0 6.4053E-03		6.4589E+02	3.8618E+05 4.0821E+05	5.7198E+0	5 -1.3796E+01	0.0000E+0
-0.12401 -0.74405 3.8543E-04 2.5385E-04 1.5183E+00 6.2797E-03 -0.12401 -0.74405 3.8543E-04 2.5385E-04 1.5168E+00 6.2510E-03	1 -0.74405 3.8543E-04 2.5385E-04 1.5183E+00 6.2797E-03	5 3.8543E-04 2.5385E-04 1.5183E+00 6.2797E-03	04 2.53855.04 1.51835+00 0.2/9/E-03 7 3.53265.04 1.51685+00 6.2510E-03	04 1.5183E+00 0.2/9/E-00 04 1.5168E+00 6.2510E-03	0 6.2510E-03		6.7909E+02	4.30746+05	5.7189E+0. 5.7181E+0	5 -1.2491E+0	0.0000E+0
1 -0.11830 -0.70982 5.04-355 04 2.45655 04 1.5073E+00 6.5400E-03	0 -0.70982 3.04.335 04 2.45655 04 1.50735+00 6.5400E-03 3 -0.67551 3.70265-04 2.45655 07 1.60875+00 6.7784E-03	12 5.84535 04 2.45655 04 1.50736+00 6.54006-03 11 3.70266-04 2.45655 04 1.50736+00 6.77845-03	04 2.45656-04 1.50736+00 6.54006-03 04 2.45656-04 1.50736+00 6.77846-03	04 1.5073E+00 6.5400E-03	0 6.5400E-03 0 6.7784E-03		6.75/3E+U2 6.5905E+02	4.8756E+05	5.71696+0	3 -1.1199E+0	0.0000E+(
0.0.10682 -0.64091 3.4736-04 2.31626-04 1.49696-00 6.81076-03 0.0.10682 -0.64061 3.28496-04 2.1944E-04 1.49696-00 6.8107E-03	2 -0.64091 3.4735E-04 2.3102E-04 1.4969E+00 6.8107E-03	72 3.2849F-04 2.1944E-04 1.4969E-00 6.8107E-03 72 3.2849F-04 2.1944E-04 1.4969E-00 5.8107E-03	14 2.3102E-04 1.4969E-00 6.8107E-03 14 2.1944E-04 1.4969E-00 6.8107E-03	04 1.4969E+00 6.8107E-03	00 6.8107E-03		6.4818E+02 6.4880E+02	5.5291E+05	5.7145E+0	3 -9.2293E+0	0.0000E+
2.0.09529 -0.57172 3.1698E-04 2.1110E-04 1.5019E+00 6.6197E-03	9 -0.57172 3.1698E-04 2.1110E-04 1.5010E+00 0.190E-03	72 3.1698E-04 2.1110E-04 1.5010E+00 0.190E-03 72 3.1692E-04 2.15079E+00 6.6197E-03	04 2.1110E-04 1.5010E+00 0.1300 03 04 2.0574E-04 1.5079E+00 6.6197E-03	04 1.5079E+00 6.6197E-03	00 6.6197E-03		6.5719E+02	5.8618E+05 4 1078E+05	5.7153E+U 5.7121E+O	3 -8.0305E+0	0.0000E+1
5 -0.08952 -0.55/15 5.0024E-04 2.0268E-04 1.5161E+00 6.4723E-03 -0.08376 -0.50254 3.0727E-04 2.0268E-04 1.5161E+00 6.4723E-03	2 -0.55/15 5.0024E-04 2.0228E-04 1.5161E+00 6.4723E-03 6 -0.50254 3.0727E-04 2.0258E-04 1.5161E+00 6.4724E-03	13 3.1024E-04 2.0268E-04 1.5161E+00 6.4723E-03 54 3.0727E-04 2.0268E-04 1.5161E+00 6.4723E-03	04 2.0268E-04 1.5161E+00 6.4723E-03 04 2.0268E-04 1.518F+00 6.4724E-03	04 1.5161E+00 6.4723E-03 04 1.518E+00 6.4723E-03	00 6.4723E-03 00 6.3424E-03	~ ~	6.722UE+U2 6.9144E+02	6.5368E+05	5.7110E+0	3 -7.5671E+0	0 0.0000E+
5 -0.07799 -0.46794 3.0664E-04 2.0150E-04 1.5272E+00 6.2242E-03 5 -0.07799 -0.43335 3.0770E-04 2.0147E-04 1.5272E+00 6.2242E-03	0 -0.46794 3.0664E-04 2.0150E-04 1.5272E+00 6.2242E-03	94 3.0664E-04 2.0150E-04 1.5272E+00 6.2242E-03 35 3.0770E-04 2.0147E-04 1.5272E+00 6.2242E-03	04 2.0147E-04 1.5272E+00 6.2242E-03 04 2.0147E-04 1.5272E+00 6.2242E-03	04 1.5272E+00 6.2242E-03	00 6.2242E-03	~ ~	7.1383E+02 7.2151E+02	6.8/82E+0	5.7082E+(	3 -7 0457E+0	0 0.0000E+1
7 -0.06538 -0.39826 3.02516-04 1.98096-04 1.22/16+00 6.23906 02 7 -0.06638 -0.39826 3.02516-04 1.90116-04 1.52906+00 6.47506-03	28 0.39826 3.02516-04 1.9809E-04 1.5271E+00 0.3370E-03 38 0.39826 3.02516-04 1.9011E-04 1.5290E+00 6.4750E-03 356274 2.9068E-04 1.9011E-04 1.5290E+00 6.4750E-03	26 3.0251E-04 1.9809E-04 1.22/1E+00 6.2750E-03 77 2.906A8E-04 1.9011E-04 1.5290E+00 6.4750E-03	04 1.9809E-04 1.52/1E+00 0.3370E-03 04 1.9011E-04 1.5290E+00 6.4750E-03	04 1.5290E+00 6.4750E-03	00 6.4750E-03	<u> </u>	7.1542E+02	7.6214E+0	5.7035E+(	13 -5. 7272E+(	0 0.0000E+0
8 - 0. 03354 - 0. 32127 2.81595 - 04 1.83345 - 04 1.53595400 6.46/95 - 03 9 - 0.05354 - 0.32127 2.81595 - 04 1.83345 - 04 1.54905 + 00 6.38105 - 03	0 20127 2.81506-04 1.8334E-04 1.5359E+00 6.4679E-05 54 0.32127 2.81506-04 1.2017E-02 1.5490E+00 6.3810E-03	27 2.8159F-04 1.8334F-04 1.5359E+00 6.4679E-03	04 1.8334E-04 1.5359E+00 6.4679E-03 04 1.7017E-04 1.5490E+00 6.3810E-03	04 1.5359E+00 6.4679E-03 04 1.5490E+00 6.3810E-03	00 6.46/9E-03	$\sim \sim$	7.2042E+02	8.3801E+0	5.7011E+I	33 -5.1400E7	0 0.0000E+0
0 -0.04713 -0.24427 2.75976-04 1.76986-04 1.55936+00 6.2972E-03	13 -0.24427 2.7597E-04 1.7698E-04 1.5593E+00 6.2972E-03	27 2.7597E-04 1.7698E-04 1.5593E+00 6.2972E-03	.04 1.7698E-04 1.5593E+00 6.2972E-03	-04 1.5593E+00 6.2972E-03	-00 6.2972E-03	$\sim$	1.364 12706	0.11101			

.

.

1 OUTPUT DATA ( SEGMENT

.___

	THETA	H
2	DELT*	ī
	X/R*	
•		:

Ę	/SEC	•	0000E+00	000E+00	00+3000C	000E+00	1000E+00	00+3000	00000000	000E+00	000E+00	000E+00	000E+00	UUE+00	00E+00	00+300	00E+00	100E+00	00E+00	00E+00	00E+00	00E+00	00+300	00E+00	JUE+00 \0E+00	00E+00	00+30(	0E+00	0E+00	06+00	0E+00	0E+00	0E+00	0E+00	06+00 DE+00	00+3(	)E+00	E+00	00	E+00 E+00	) ) 1	
0	810°		38	80	88	96 0 0	0.0	0.0 0.0			0.0	0.0			0.0	0.0			0.0	0.0		0.0	0.00	00.0		0.00	0.00	000.0	0.000	000.0	000.0	0.000	000.0	0000.0	0.000	0.000	0000-0	0.0000	0.000	0.0000		
DF	LBF	2 ./ 4EATE	3 -3.7269E+	3 -3.3278E+		-8.2395E-	1.2292E-(	- 3C021.2	9.0107E-0	1.2751E+0	1.5827E+0	1.8930E+0	2.1643F+0	2.2953E+0	2.4386E+0	0+340/0-2	2.9478F+0	3.1957E+0(	3.3864E+00	3.5811E+00	3.9871F+00	4.1981E+00	4-4136E+00	4.0340E+U0	5.0822E+00	5.3069E+00	5 7616E+00	5.9907E+00	6.2212E+00	6-4320E+00	6.9150E+00	7.1467E+00	7.6101F+00	7.8413E+00	3.0719E+00	5.2978E+00		.9730E+00	.1959E+00 .4178E+00	.6385E+00		
NI	DEG R	5.6964F+0	5-6940E+0	5 68005403	5.6835E+03	5.6684E+03	5 4520E403	5.6472F+03	5.6416E+03	5.6355E+03	5 62525-02	5.6279F+03	5.6324E+03	5.6349E+03	5.6366E+03	5.6382F+03	5.6383E+03	5.6381E+03	5.63/9E+03	5.6371E+03	5-6364E+03	0.6357E+03	.0348E+U3	6327E+03	-6316E+03	.0505E+03	.6281E+03	.6269E+03	.025/E+03	.6232E+03	.6219E+03	020/E+03	6182E+03	6169E+03	015/E+03 8	6132E+03 8	6119E+03 8	6107E+03 8	0083E+03 9	5071E+03 9		17385-U6 177459
REX		9.0925E+05	9.4275E+05	1.0047E+06	1.0328E+06	1.0621E+06	1.0695E+06	1.0676E+06	1.0608E+06	1.0492E+06	1.0175E+06	1.0263E+06	1.0386E+06	1.0508E+06	0740E+06	1.0846E+06	.0945E+06	11285406	.12116+06	.1288E+06	1360E+06	14875+06	.1534E+06	-1579E+06	.1018E+06 5	1683E+06 5	1708E+06 5	1730E+06 5	1762E+06 5	1773E+06 5	1/81E+06 5	17916+06 5	1791E+06 5.	1790E+06 5.	1781E+06 5	1775E+06 5.	768E+06 5.	748F+06 5.	735E+06 5.	/21E+06 5.	0E - 0 4 0 4 2 E -	(SEC) = 0.0
R DELT*		7.4954E+02	7.9523F+02	8.2231E+02	/./998E+02 7 1847E+02	7.0842E+02	7.4131E+02	/.7736E+02	8 20085402	8.6270E+02	9.1232E+02	9.8554E+02	12555+03	.1837E+03	.2219E+03	-2713E+03	- 3505F+03	-3990E+03 1	4371E+03 1	-4729E+03 1	5383F+03	5682E+03 1	5965E+03 1	6234E+03 1	6761E+03 1	70136+03 1	7259E+03 1.	7732E+03 1	7961E+03 1.	5184£+03 1. 8/0/5+03 1.	3621E+03 1	3834E+03 1.	1042E+03 1.	446E+03 1	651E+03 1	9466+03 1.	0/1E+U3 1.1	480E+03 1.1	680E+03 1.1		4)= 0.421882	DELTA ISP
CF	•••••	6.2070E-03 6.001E-03	5.9960E-03	5.8906E-03	7.1628E-03	6.8687E-03	6.4401E-03	0.11356-03	6.0690E-03	5.9478E-03	5.6172E-03	2.1300E-U3	4.6884E-03	4.5788E-03 1	•.5327E-03	. 30366-02	.3691E-03 1	3477E-03 1	.31146-03 1	- 2654F-03 1	.2512E-03	-2349E-03 1	21895 03 1.	.2131E-03 1	.2034E-03 1.	.1955E-03 1.	1792F-03	1693E-03 1	1629E-03 1.	14665-07	1367E-03 1.4	1281E-03 1.8	11096-03 1.0	1018E-03 1.9	0938E-03 1.9	1/89E-03 1.9	0692E-03 2.0	0600E-03 2.0	1520E-03 2.0		ER (KE AND KI	56n270
Ŧ		1.5705E+00 1.5822E+00	1.5938E+00	1.5972F+00	1.6355E+00	1.6871E+00	1.7772F+00	1.81426+00	1.8378E+00	1.8886E+00	1.9541E+00	1.9692E+00	1.9778E+00	1.9825E+00	1.9690F+00	1.9942E+00	1.9794E+00 4	1.9835E+00 4		1.9986E+00 4	.0038E+00 4	C-0092E+00 4	.0205F+00 4	.0275E+00 4	.0352E+00 4	-0450E+00 4	.0590E+00 4	0673E+00 4	.0/2/E+00 4.	0931E+00 4.	1019E+00 4.	1198F+00 4.	1288E+00 4.	13796+00 4.	14/9E+00 4	1687E+00 4.1	1792E+00 4.0	1897E+00 4.(	2108E+00 4.(	· · · · · · · · · · · · · · · · · · ·	ITION PARAMET	ו = (אסר/שמ
THETA FT	1 76705 01	1.7705E-04	1./8//E-04	1.71356-04	1.5264E-04	1.5270F-04	1.5927E-04	1.6591E-04	1./279E-04	1.9255E - 04	2.0722E-04	2.2195E-04	2.3550E-04	2.5966E-02	2.7063E-04	2.8111E-04	2.9105E-04	3.10025-04	5.1909E-04	5.2790E-04	0.30495-04 2	.5308E-04 2	.61195-04 2	-6920E-04 2	.// ISE-04 2	.9305E-04 2	.0097E-04 2	.0890E-04 2	2477E-04 2	3273E-04 2.	40/2E-04 2.	56766-04 2.	6481E-04 2.	/ 2885 - 04 2. 80965 - 07 3	8920E-04 2	9744E-04 2.	0572E-04 2.	2230F-04 2.	30766-04 2.2		RELIMINARIZA MASS FLOU 21	
DELT* FT	2.7600E-07	2.8013E-04	2.9120E-04	2.7368E-04	2.4965E-04	2.6486E-04	2.8305E-04	5.0100E-04	3.41085-04	3.7216E-04	4.0494E-04	4.3707E-04	4.91726-04	5.0970E-04	5.3286E-04	0.6060E-04	0.101UE-U4	5.1651E-04	5.3613E-04	22.27E-04	9289F-04	.1133E-04 3	.2978E-04 3	-4856E-04 3	.8679E-04 3	.0611E-04 3	-2559E-04 4	- 433 IE - 04 4	853/E-04 4	0275E-04 4	4718E-04 4	6823E-04 4	8948E-04 4. 0110E-07 /	0331E-03 4.	0602E-03 4.	0788E · 03 4.	1256F-03 5.	1494E-03 5	1734E-03 5.		93001E-05 22339E-02	
X/R*	-0.20577	-0.16728 -0.12878	-0.09028	-0.05178	0.02704	0.06653	0.10591	0_18411	0.22281	0.26117	0.23936	40,000.0	0.41391	0.45209	0.49028	0.56565	0.60483	0.64302	0.68120	0.75757	0.79575 6	0.83394 7	0.8/212 7	2 67876.0	0.98667 7	1.02486 8	1.10123 B	1.13941 8	1.17759 8.	1.25396 0	1.29215 9	1.33033 9	1.40670	1.44489 1.	1.48307 1.	1 52120-1	1.59762 1	1.63581 1.	1.67399 1.		(FT) = 0.1t = 0.12 = 0.12	
X X FT	2 -0.03430	5 -0.02788 4 -0.02146	0.01505	-0.00208	0.00451	0.01109	0.02419	0.03068	0-03714	0.04353	0.05626	0.06262	0.06898	0.0/535	0.08808	0.09444	0.10080	0.10717	0.11000	0.12626	0.13263	U. 13899 D 17535	0.15172	0.15808	0.16445	0.17717	0.18354	0.18990	0.20263	0.20899	0.21536	0.22809	0.23445	0.24081	0-2-18 227	10	1.25:027	22000			SEN NUMBER	
Z ;	iñ l	Υ.Υ.	5 Y	ŝ	58	2.0	5	62	63	<b>3</b> .2	8	67	<del>8</del> 85	65	22	22	۳,	えん	22	21	<b>2</b> 2	208	8	828	ζų Υ	58	86	87	38	8	5.6	28	22	۶3 2	26	66	0 8 8		2	MFAN	KNUD	

ORIGINAL PAGE IS OF POOR QUALITY

# NEW VALUES OF NOZZLE GEOMETRY PARAMETERS (NEGATIVE DISPLACEMENT)

.

1.9970 INCH RWTU = 1.0030 RWTD = 1.0030 EPS = 1.9841 THE = 14.800 DEG

	SLOPE(DEG) 15.000	14.208	14.707	11 816	14.822	14 829	14.839	14.842	14.832	14.831	14.832	14.828	14.820	14.816	14.812	14.788	14.820	14.791	14.800	
	X/R* 0 2505955	0.3387269	0.4152935	0.4918421	0.5683912	0.04440.0	0.7080713	0 87/5610	0.0511083	1 027650	1 104 194	180739	1 257285	222227	282017 1	1 486941	1 563480	1.640351	1.678324	
1.9970 INCH	R/R*	1.054212	1.074391	1.094643	1.114889	1.135145	1.155410	400C/1 1	1.4661.1	242017.1	01 (0(7) 1	£1/0C7.1	C+0772.1	1.27127	1.51(744	1.35//00	144100-1	797805 1	1 408579	
RSI =	2	- 0	<b>1</b> M	14	5	. v	7	æ	<u>م</u>	10	=	12	<u>5</u> :	14	15	16	17	8	25	2 U

-----

TDK PERFORMANCE SUMMARY : 3 ZONES TDK TEST CASE,LOX/GH2 - TDK MANUAL TEST CASE

T D K T D K T D K A B L M T D K / B L M ISP (SEC) 329.633 DISP(BLM) 0.617748 0.617748 F (LBF) 15.6027 DF (BLM) 2.63854 0.995594 ISP(TDK-BLM) 2.29.016 C f (TDK-BLM) 1.5130 C f (TDK-BLM) 1.5130 C f f (TDK-BLM) 1.5130 C f (TDK-BLM) 1.5130 C f (TDK-BLM) 1.513

TDK PERFORMANCE SUMMARY : 3 ZONES TDK TEST CASE,LOX/GH2 · TDK MANUAL TEST CASE REAL WALL CONTOUR 3 ZONES ADIABATIC

			FIRST TDK/BLM SOLUTION
	CHAMBER PRESS	[PSIA]	
	CHAMBER TEMP	[K]	300.0000
	EP (NOZIF)		001.000 6.207435
	H (OXID)	[CAL /MOLET	2.00000
	H (FUEL)	[CAL/MOLE]	-3099.196
	DELH (AVEDACE)	[BTU/LB]	-413, 8725
	DELH1 (AV)		0.000000E+00
	ECRAT		U. 0000000E+00
	KS AR PUTD	[INCHES]	5.00000 2.000000
		Ŀ.	1 00000
	THE	(ЛЕСРЕЕС]	1.00000
	THETA	[DEGREES]	0.0000000E+00
	RIAL	[DEGREES]	00000.cl
	NIT	[-]	2.00000
	1SP (ODE)	[SFCONDC)	59.00000
	1SP (00F)	[SECONDS]	335.4859
		[SECONDS]	326.8484
	THDIST (TDK)	[SECONDS]	220827.000
	UDOT (TOK)	(POUNDS)	215 172
7	CSTAR (TDK)	[FT/SEC]	15.60271
-	CF (TDK)	[-]	6996.465
51	P LAVIS COLUMN	[-]	0.00055254
	P (WALL, EXIT)	[PSIA]	0.0000000000000000000000000000000000000
	T (WALL, EXIT) [	[K]	38.67983
	W (WALL, EXIT) [ MA (UALL EVIT) [	FT/SEC]	4456.856
	SHOCK STRENGTH L		1.918942
	SHOCK (X/R*)		0.000000E+00
	SHOCK (R/R*)	· ,	0.0000000E+00
	XB (X/R*)		0.0000000000000000000000000000000000000
	DFOPT (BLME) [P		0.000000E+00
		[SONDO	18.98157
	THET (EXIT) IS	SECONDS]	0.6177480
	DEL* (EXIT) [F	EET]	0.5307631E-03
	SODOL (SCIEN)		0.0000005.02
		TU/SEC]	0.0000000E+00
	ISP (IC) (5) (5) (5) (5)	DUVUSI CONOSI	U.000000E+00 5133.535
	cr (ic) []		529.0155 1.513014
TRAN	STOP		+->>

# FORTRAN

job terminated at 26-0CT-1985 04:11:30.46

Peak working set size: 500 Peak page file size: 2331 Mounted volumes: 0 00:11:30. Elapsed time: 0 00:11:30. 120 1087 3758 0 00:11:03.34 Accounting information: Buffered 1/0 count: Direct 1/0 count: Page faults: Elapsed CPU time: 00

0 00:11:30.37

ORIGINAL PAGE IS OF POOR QUALITY

THIS PAGE LEFT INTENTIONALLY BLANK

- ----

_ .

# 7.2 PRATT AND WHITNEY TEST ENGINE FOR RL-10 OTV PROPULSION

This engine uses a hydrogen expander cycle with oxygen preheating and a nozzle that is regeneratively cooled with hydrogen. A flow schematic for the engine which was taken from Reference 25 is shown in Figure 7-1. The engine is sized to produce a nominal vacuum thrust of 15,500 pounds when operated at a chamber pressure of 394 psia and an expansion ratio of 205:1. Complete input for the case is presented in Table 7-2. This input has been prepared by SEA, Inc. from data provided by NASA MSFC. The complete output for the case is rather lengthy and is not given here. It is available from SEA, Inc. However, the output summary table is given in Table 7-3.

The calculations were carried out using the TDK shock option (SHOCK=1). An induced shock wave was found that originated from the wall inflection point just downstream of the throat. The shock was found to be weak,  $(P_2 - P_1)/P_1 = .03$ , within the domain of influence for the nozzle wall.

The sequence of calculations is as follows:

- ODE calculation with the system enthalpy set at the propellant tank values, i.e., liquid oxygen and liquid hydrogen at their normal boiling points.
- 2) ODK calculation starting from the above ODE results at a chamber contraction ratio of 3.98, corresponding to the chamber diameter.
- 3) TDK calculation using the above ODE and ODK results.
- 4) BLM calculation using the above ODE, ODK, and TDK results. A new wall geometry is calculated by displacing the wall inward a distance of  $\delta^*$  normal to the real wall. This new wall defines the boundary of the invisid core flow. BLM calculated that 5288 BTU/LBM were picked up through the wall by the regen cooling circuit. Since the nozzle mass flow was found by TDK to be 33.82 lb/sec, the propellant enthalpy was increased by 156.3 BTU/LB.
- 5) ODE calculation with the increased propellant enthalpy. The expansion ratio of the invisid core flow is automatically placed in the ODE output schedule.

850138

- 6) ODK calculation using the above ODE results, including the new expansion ratio.
- 7) TDK calculation using the above ODE and ODK results, including the new wall contour.
- 8) Output summary table.

The total number of flow field points computed by the MOC was more than 65,000 for each pass. Computer execution time for the case was 2 hours and 50 minutes using a DEC PDP 11/750 VAX computer system.



. .

7- 55

ORIGINAL PAGE IS OF POOR QUALITY

Table 7-2. TDK Input for the RL-10 OTV Test Engine.

Table 7-2. (Continued).

\$END \$END \$BLM IPRNT=0, TRNNT=0, T

-----

.

TDK PERFORMANCE SUMMARY : 1 ZONE RL-10 (WITH SHOCK SIMULATION) REAL WALL CONTOUR 1 ZONES WALL TEMP INDUCED SHOCK AFTER XA

		FIRST TDK/BLM SOLUTION	SECOND TDK/BLM SOLUTION
CHAMBER PRESS Chamber temp	(PSIA)	394.3000	394.3000
MIXTURE RATIO		5815.918 5 02527 /	5892.477
EP (NOZZLE)	[-]	205 D338	5.035244
	[CAL/MOLE]	-3102.000	-3102 000
HCHAN (ODE)	(CAL/MOLE)	-2154.000	-2154.000
DELH (AVERAGE)		-404.2365 0 0000000-00	-307.9082
DELH1 (AV)	(BTU/LB)	0.0000000E+00	0.000000E+00
ECKAI Petad	[·]	3.98000	0440.0C1
RUTD	[INCHES]	2.570000	2.573304
RUTU	22	0.1900000 2 042300	0.1884720
THE	[DEGREES]	11-5600	2.038368 10 25555
THFTAT	[DEGREES]	30.0000	30,00000
RI	[-]	26.25000	26.25000
	:Ξ	104 0000	1.789900
ISP (00E)	[SECONDS]	477.5184	196.0000
		456.1371	459,4965
ISP (TDK)	[SECONDS]	474.4465	479.8922
THRUST (TDK)	[POUNDS]	407.0439 15885 37	475.5385
WDOT (TDK)	[LB/SEC]	33.82393	15972.03
CSIAK (IDK)	[FT/SEC]	7782.584	7857 501
	<u>.</u>	1.941564	1.952167
P (AXIS EXIT)	['] [DS1A]	0.9963781	0.9989328
P (UALL, EXIT)	[PSIA]	0.000000E+00 0 7950/585 01	0.0000000000000000000000000000000000000
T (WALL, EXIT)	[R]	0.10394306-UI	0.8903214E-01
V (WALL, EXIT)	[FT/SEC]	14947.51	15101 62
CHOCK STDENCTU	[-]	5.909647	2010101
SHOCK (X/R*)		0.3437161E-01	0.90159186-02
SHOCK (R/R*)	Ŀ	8./49036	9.098541
XA (X/R*)	·	0.9500006-01	1.162930
XB (X/R*)	[·]	0.000000E+00	0.000000E+01
DF (BIMF)		412.6425	436.4781
DISP (BLME)	[SECONDS]	395.3395	417.3250
1 (11×1) 13H1	FFE TI	11.68816	12.42511
		U.4160855E-01 0.8098879E-01	0.4160833E-01
C. (KFUEN) SOOAT ZDE		57.88868	57 88868
SODOT (LOSS)	BTIL/SFC	5288.230	5288.230
THRUST (TC)	[SOUNDS]	1214.UUU 15489.93	1214.000
	SECONDS	457.9577	463.1133
	-	1.893244	1.901160

ORIGINAL PAGE IS OF POOR QUALITY

Table 7-3. TDK Performance Summary: RL10 Engine.

### 7.3 <u>ROCKETDYNE PROTOTYPE ADVANCED SPACE ENGINE FOR OTV</u> PROPULSION

This engine uses a hydrogen expander cycle with oxygen preheating and a nozzle that is regeneratively cooled with hydrogen. A flow schematic for the engine which was taken from Reference 25 is shown in Figure 7-2. The engine is sized to produce a nominal vacuum thrust of 22,500 pounds when operated at a chamber pressure of 2300 psia and an expansion ratio of 400:1.

Complete input for the case is given in Table 7-4. This input has been prepared by SEA, Inc., from data provided by NASA MSFC. The complete output for the case is lengthy and is not given here. It is available from SEA, Inc.. However, the output summary table is given in Table 7-5.

As with the RL-10 engine discussed in the previous subsection, 7.2, the calculations were carried out using the TDK shock option (SHOCK=1). The sequence of calculations is the same as given in subsection 7.1. An induced shock wave was found that originated from the wall inflection point just downstream of the throat. The shock strength at the last left running characteristic surface inside the nozzle (i.e., on the boundary of the domain of influence for the nozzle wall) was found to be  $(P_2 - P_1)/P_1 = .12$ .

The total number of flow field points computed by the MOC was more than 95,000 for each pass. Computer execution time for the case was 3 hours and 38 minutes using a DEC PDP 11/750 VAX computer system.

The ASE engine was also run using the TDE option (no shocks allowed); i.e., the two-dimensional expansion was assumed to be

850138

7-59

in a state of chemical equilibrium. A complete input data listing for the case is presented in Table 7-6. The boundary layer plots given in Section 6.8.5 were obtained for this case by input of APROF = 400, NPROF = 1, KDTPLT = 1, KMTPLT = 1, and KTWPLT = 1 in \$BLM. The sequence of calculations for TDE is as follows:

- 1) ODE calculation with the system enthalpy set at the propellant tank values, i.e., liquid oxygen and liquid hydrogen at their normal boiling points.
- 2) ODE calculation to generate the TDE gas tables (see Table 7-7 for this output), and the BLM gas tables.
- 3) TDE calculation using the TDE gas tables.
- 4) BLM calculations using the above ODE, TDE results. A new wall geometry is calculated by displacing the wall inwards a distance of  $\delta^*$  normal to the real wall. This new wall defines the boundary of the invisid core flow. BLM calculated that a total of 10592.2 BTU/sec. were conducted through the nozzle wall. Of this amount a total of 8333.8 BTU/sec. were picked up by the two regen cooling circuits, the remainder being lost from the system. Since the nozzle mass flow was found by TDE to be 47.75 llm/sec, the propellant enthalpy was increased by 174.5 BTU/lbm.
- 5) ODE calculation with the increased propellant enthalpy. The expansion ratio of the invisid core flow is automatically placed in the ODE output schedule.
- 6) ODE calculation to generate the TDE gas tables.
- 7) TDE calculation using the above ODE results, including the new wall contour.
- 8) Output summary table, see Table 7-8.

With the TDE option the flow field is constructed using a left running characteristics procedure, and shock waves from the wall are suppressed. Results obtained from the calculations are given in the output summary table, Table 7-8. These results can be compared with those given in Table 7-5 for the same engine but with full kinetics and shock tracing. The difference in predicted specific impulse is

$$I = I = 475.6 - 474.1 = 1.5 sec.$$
  
 $Sp_{TPE} = TPK$ 

Computer execution time for this case was 39 minutes using a DEC PDP 11/750 VAX computer system.

850138

ORIGINAL PAGE IS OF POOR QUALITY



. .

20.27F .0709 90.180 1.149 = 0.0, (AR) BAULCH 72 (A) 30U = 0.0, (AR) BAULCH 72 (A) 10U =-1.79, (AR) BAULCH 76 (A) 10U = 0.0, (AR) JENSEN 78 (B) 30U BAULCH 72 (A) 1.5U BAULCH 72 (A) 1.5U BAULCH 72 (A) 2.0 BAULCH 72 (A) 2U BAULCH 72 (A) 3U RS = .0, 2.1934, 3.3462, 5.0972, 6.7240, 8.4642, 9.7250,11.0035, 12.5609,14.1654,15.8849,18.6739,21.6611,25.1027 ZS = .0, 1.2654, 2.6315, 4.0818, 7.5269,10.6702,13.2392,16.3252, RZNORM=1.254, EPS=400.7248, IOFF=4, SEM REACTANTS H 2. 0 2. 0 2. ASUP = 2,4,6,8,10,15,20,25,30,40,50,75,100,125,150,175,200, 225,250,275,300,325,350,375,400,400.7148, \$0ATA \$0ATA ODE=1, ODK=1, NZOMES=1, TDK=1, BLM=1, IRPEAT=1, IRSTRT=0, SHOCK = 1, SHOCK = 1, ASUB=7, MASUB=7, H = 0.0, B =16.8, H = -1. B = 8.9, H = 0.0, B =5.15, H = 0.0, B =1.09, MASUP=26, RSI=1.254, RUTU=1, RUTD=.3429, THETAI=17, RI=8.3732, IWALL=4, THE=6.5036, THETA=41, NUS=14, TITLE 1 ZONE ASE (WITH SHOCK SIMULATION) DATA IPRNT=0, XINO = -5.778, -5.582, -5.183, -4.749, NAMELISTS \$00E RKT=_TRUE, P(1)=2287,PSIA=.TRUE.,XP=1., OfSKED(1)=6.3780, \$END JPRW1 2,EP=400.7148, SEW5 S19AN5 MF-200, XM(1)=1., OFSKED(1)= SEND REACTIONS H + H = H2 \$END SMOC NC=0, ISHCK=2, \$END \$8LM

Table 7-4. (Continued).

ORIGINAL PAGE IS OF POOR QUALITY

-.4785, -.3987, -.1595, 63.5649, 1210, 430,1180, 1080, NSEGS=7, 0.10, 0.07, APROF=2,10,50,100,200,300,390,400, NPROF=0, KDTPLT=0,KMTPLT=0,KTWPLT=0, \$END .190 0138 IHFLAG = NTOW = 1' XTOW = -0 TOU = 91 XCG = 3 XCE = 3 R I NO = UEO = PEO = TEO = OFC = 2 DISTR8= u

TDK PEI	RFORMANCE SUMMAR) REAL WALL CO INDUCED SHOCK	<pre>/ : 1 ZONE ASE (WIT DNTOUR 1 ZONES WAL AFTER XA</pre>	H SHOCK SIMULATION) L TEMP	
			FIRST TDK/BLM SOLUTION	SECOND TDK/BLM SOLUT
	CHAMBER PRESS	[PSIA]	2287.000	2287.000
	MIXTURE RATIO	s:	6.378000	6.378000
	EP (NOZZLE)		400.7248	384.4752
	H (FUEL)	[CAL/MOLE]	-3102.000	-3102.000
	HCHAN (ODE)	(BTU/LB)	-411-5210	000.4512-
	DELH (AVERAGE)	[BTU/LB]	0.000000E+00	0.000000E+0
	DELM1 (AV) FCPAT	[BTU/.B]	0.000000E+00	174.5418
	RSTAR	(INCHES)	1.254000	5.046226 1.256817
	RUTD		0.3429000	0.3398899
	THF	[-] []FCDEEC1	1.000000	0.9955171
	THETA	(DEGREES)	6. 202000 41.00000	6.02020 41_00000
	THETAI	[DEGREES]	17.00000	17.00000
•	K I N I T	<u>.</u>	8.373200	8.373200
	1SP (00E)	[SECONDS]	485.5364	196.0000
	ISP (00F)	[SECONDS]	457.5597	461.1883
_	ISP (TDK)	[SECONDS]	484.1501	490.3438 487 0460
	THRUST (TDK)	[POUNDS]	22981.83	23173.47
	GSTAR (TDK)	[LB/SEC]	47.73488	47.49179
	CF (TDK)	[-]	2.034106	2.051068
	CD P (AVIS EVIT)	[-] [Detai	0.9896481	0.9940407
	P (WALL, EXIT)	[PSIA]	0.1151442E-01 0.4545023	0.1154842E-0
	T (WALL, EXIT)	[R]	1690.341	1780.143
	MA (WALL, EXII) MA (WALL, EXII)	[FT/SEC]	15046.61 5 502.228	15231.09 5 522072
	SHOCK STRENGTH	Ξ	0.1198294	0.4595399E-0
	SHOCK (X/R*) SHOCK (R/P*)	[]]	17.87842	18.09883
	XA (X/R*)	] .	0.2249627	4.240627
	XB (X/R*)	Ē	0.000000E+00	0.000000E+0
	DF (BLME)		683.8337 ASD 0222	691.0768
	DISP (BLME)	[SECONDS]	13.63641	13.83194
	THET (EXIT)	(fEET)	0.1998608E-01	0.1998608E-0
		- cc + J	u. 585U599E - UT 175 . 4 796	0.5850599E-0 175.4796
		[BTU/SEC]	8331.736	8331.736
	THRUST (TC)		2289.264	2289.264
	1SP (TC) CF (TC)	[SECONDS]	467.8110	474.1150
			. 4/04/0	1.44240

**N**01 g N _ 0 ------1.992926

ORIGINAL PAGE IS OF POOR QUALITY

# Table 7-5. TDK Performance Summary: ASE Engine.

Table 7-6. TDK Input for the ASE OTV Test Engine.

 IIILE
 1 Cole
 ASE - TOE OFTICA

 AMA
 AMA

 AMA
 AMA

 AMA
 AMA

 AMA
 AMA

 AMA
 AMA

 CERT-1
 CONCOL

 AMA
 AMA

 AMA
 AMA

 CENT-1
 CONCOL

 AMA
 AMA

 AMA
 AMA</

MACH NO	0,000000E+00	1.127213	1.253724	1.482871	1.689988	1.881458	2.060988	2.393127	2.828062	3.868471	4.223525 5.420125	6.806742 0.820318	24.55089	
ENTHALPY (FT2/SEC2)	-0_1030305E+08	-0.2259110E+08 -0.2564447E+08	-0.2892166E+08	-0.3536805E+08	0.3852501E+08	-0.41030600-00	-0.5345665E+08	-0.589/009E+08	-0.7834301E+08	-0.90/2590E100 -0.1021462E+09	-0.1127972E+09	-0.1316647E+09	-0.1398936E+U9 -0.1463893E+09	
TEMPERATURE	LEG N	6192.129	6000.000	5900.000	5700.000	5600.000	5400.000	5000.000	4200.000	3600.000	2400.000	1800.000	0000.009	
GAMMA		1.141751	1.141336	1.142116	1.142796	1,144831	1.147869	1. 157297	1.163571	1.205911	1.223118	1.270487	1.305148	1.34992.1
TG ION		14.14817	14.34392	14.38510 14.42552	14.46485	14.50296	14.60774	14.66821	14.76264	14.84074	14.87303	14.87359 14.87360	14.87360	14.87360
	PRESSUKE (PSI)	2287.000	1317.704	976.4395	855.852/ 711.2675	606.2949	516.4310	271.4484	197.2862 143 8113	56.45561	21.800/1 7.756236	2.376307	0.94633016-01	0.5423629E-05
	-	-	2	n -1	un ∢	~	<b>60 C</b>	> º	=:	žΰ	24	22	17	20

7-66

Table 7-7. Gas Properties Table Prepared for TDE.

ORIGINAL PAGE IS OF POOR QUALITY

----

	SECOND TDK/BLM SOLUTION	2287 000	6642.690	6.378000 28/ 200	-3102.000	-2154,000	-25/.0014 0_0000005+00	174.5199	2.04040 1.256778	0.3399320	0.9955798 5.728048	41.00000	8.373200	192.0000	441.1822	0.000000E+00 280.4770	23248.76	47.47814	2.057731	0.9937611	0.5004708	1820.351	5.488873	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00 705 3000	668.9509	14.08966	0.1994434E-01 0.3928238E-01	175_4854	8333.813 2258 387	22579.80	1.998522
E - TDE OPTION ES WALL TEMP	FIRST TDK/BLM SOLUTION	2287.000	6556.935 * 220000	400,7248	-3102.000	010.4612-	0.000000E+00	0.000000E+00 3.662000	1.254000	U.3429000 1 000000	6.503600	41.00000	8.373200	192.0000	457.5597	u.UUUUUU0E+00 482.9971	23064.45	7612.330	2.041418	U.9894.540 0.0000000E+00	0.4573059	15082-84	5.582643	U.UUUUUU00E+00 0.0000000E+00	0.000000E+00	0.0000000000000000000000000000000000000	681.5857	647.8039	0 100/27/5-01	0.3928238E-01	1/2.4854 8332 012	2258.387	22416.64 469.4313	1.984082
<pre>&lt; PERFORMANCE SUMMARY : 1 ZONE ASE REAL WALL CONTOUR 1 ZONE</pre>	,	CHAMBER PRESS [PSIA] CHAMBER TEMP rdi	MIXTURE RATIO [-]	EP (NOZZLE) [-]	H (FUEL) [CAL/MOLE]	HCHAM (ODE) [BTU/LB]	DELH1 (AVERAGE) (BTU/LB)	ECRAT [-]	RUTD []		THE (DEGREES)	THETAI (DEGREES)		ISP (ODE) [SECONDS]	ISP (ODK) [SECONDS]	ISP (TDE) [SECONDS]	WDOT (TDE) [POUNDS]	CSTAR (TDE) [FT/SEC]		P (AXIS, EXIT) [PSIA]	T (WALL, EXIT) [PSIA]	V (WALL, EXIT) [FT/SEC]	SHOCK STRENGTH F-1	SHOCK (X/R*) [-]	XA (X/R*) [-]	XB (X/R*) [-]	DFOPT (BLME) [POUNDS]	DISP (BLME) (-CONDS)		E (REGEN) (FEET)	SUDOT (REGEN) [BTU/SEC]	THRUST (IC) [BIU/SEC]	ISP (TC) [SCONDS] CF (TC) [SCONDS]	
101																		7	<b>_</b> F	57														

 $\sim$ 

THIS PAGE LEFT INTENTIONALLY BLANK

# 7.4 DISCUSSION OF SUMMARY OUTPUT

At the end of each computer run, the TDK program prints a table of summary output. Examples of this output are given in Table 7-1, and Tables 7-3, 7-5, and 7-8. As can be seen from Table 7-8, the first item printed is the title

TDK PERFORMANCE SUMMARY: (title)

where the title is taken from the input data last title card (see Table 7-2, first card image).

Next, performance parameters summarizing the results of the calculations are printed in three columns. The left hand column identifies each item to be printed and its units. The first column of results is for the first MOC/BLM solution, and second column of results is for the second MOC/BLM solution.

The items labeled ISP(TDK), THRUST(TDK), WDOT(TDK), CD, CSTAR(TDK), and CF(TDK) are defined as:

Units	Definition
Sec	Specific Impulso
lbf	Thrust. F
lbm/sec	Mass Flow
-	Flow coofficients
ft/sec	Characteristic Volcett
-	Thrust coefficient, CF.2D
	<u>Units</u> sec lbf lbm/sec - ft/sec -

If a TDF or TDE calculation was made rather than TDK, then these items will be relabeled.

850138

..

#### EXECEDING PAGE RUARE NOT FILMED

7-69

The values given for  $I_{sp,2D}$  and  $m_{2D}$  are obtained by evaluating the integrals discussed in the documentation for MOC module subroutine CHAR. The mass flow integral is evaluated across the MOC initial data line. The I  $_{
m Sp}$  integral is evaluated across the initial data line, plus the integral of the axial component of wall pressure from the initial data line to the nozzle end point. The thrust is

$$F_{2D} = I_{sp,2D} \stackrel{\text{m}}{=} 2D$$

The nozzle flow coefficient is calculated as

 $C_{D.2D} = \dot{m}_{2D} / \dot{m}_{1D}$ 

where

$${}^{\dot{m}}_{1D} = {}^{\rho}_{1D} {}^{v}_{1D} {}^{\dot{m}}_{1D}$$

is obtained from ODE. A is the geometric throat area. The characteristic velocity,  $C^*$ , is calculated as

$$C_{2D}^{*} = I_{sp,2D} g^{/C}F,2D$$

where the thrust coefficient,  $C_{\rm F}^{}$ , is defined by

$$C_{F,2D} = F_{2D} / P_{c} A^{*}$$

Again, A^{*}, is the geometric throat area.

The items labeled DISP(BLME), DFOPT(BLME), DF(BLME), ISP(TC), THRUST(TC), and CF(TC) are defined as follows:

Name	Units	Definition
DISP(BLME)	sec	∆I _{sp,BLM}
DFOPT(BLME)	lbf	$\Delta F_{BLM}$ for $P_e = P_{amb}$
DF(BLME)	lbf	ΔF _{BLM}

850138

Name	Units	Definition
ISP(TC)	sec	I SD 2D RIM
THRUST(TC)	lbf	
CF(TC)	-	C _{F,2D,BLM}

In the above, the thrust loss calculated by the BLM is given by the following relation:

$$\Delta F_{BLM} = 2\pi r_e \cos \alpha_e * \rho U^2 \theta_{BLM}$$
$$= 2\pi r_e \cos \alpha_e * (P_e - P_{amb}) \delta_{BLM}$$

The additional items, printed are

∆I _{sp,BLM}	=	^{∆F} blm [/] ^m 2D
I sp,2D,BLM	=	(F _{2D} - ΔF _{BLM} ) / m _{2D}
^F 2D,BLM	=	F _{2D} - ΔF _{BLM}
^C F,2D,BLM		F _{2D,BLM} / P _c A [*]

Performance parameters summarizing the results of the second MOC/BLM calculation differ from the first set printed as follows:

- 1) The TDK and ODE results are for the second (invisid core) run have a modified wall contour, throat area, and expansion ratio. Note that the system enthalpy is different than used in the first run if the BLM wall calculation is not adiabatic.
- 2) The BLM results are re-calculated using edge conditions from the second TDK run. BLM itself is not re-run, and the values of  $\delta^*$  and  $\theta$  are not changed.

The equations used are the same as given above.

THIS PAGE LEFT INTENTIONALLY BLACK

.

#### 8. ERROR DIAGNOSTICS

# 8.1 DISCUSSION OF PROGRAM USAGE

Error diagnostics are printed by the program when it has either found an input card error or is unable to continue with its computations because it has obtained an impossible result. The analysis performed by the computer program is limited by the physical assumptions used in its development and by the numerical methods used. Consequently, an understanding of these assumptions and of the numerical methods that have been applied is necessary in order to correctly run cases using the computer program. Although the computer program contains many error diagnostics, it is not possible to diagnose all errors.

Input values given for the sample cases (see Section 7) can be used as a guide in preparing data for similar calculations. Special care must be taken, however, to avoid errors of the type given below:

8.1.1 The computer program will not give valid results if the input kinetic reaction rate parameters are unrealistic. A common mistake is to input an implied third body reaction rate backwards; which gives a very large error. Tables 6-10 and 6-11 can be used as guides in preparing reaction rate data. It should be remembered that the computer program automatically calculates equilibrium constants from the input JANAF thermochemical data.

* Error diagnostics can also be given by the computer system subroutines. These vary with the operating system and are not discussed here.

851010

8-1

8.1.2 Although the ØDK and TDK calculations allow condensed phases to be present in the flow, no mass transfer between phases is allowed.

8.1.3 A common mistake in using the computer program is to input inlet and throat geometry parameters that are physically impossible when compared with Figure 6-1.

8.1.4 A value RWTU > .5 should be used because of inaccuracies which can occur as a result of the transonic method of solution⁹.

8.1.5 For some chemical systems (e.g., H-F) it is possible that the two-dimensional throat Mach number will be subsonic as a result of the kinetic process. In this case the initial data line can be displaced downstream, increasing the Mach number, by use of the input parameter ALI (see Section 6.6). If ALI is input greater than zero, a symmetric throat is required and it is necessary that RWTD be set; to the same value as RWTU.

An important consideration in preparing data for all 8.1.6 but ØDE calculations concerns input of the nozzle wall. The derivative of the wall contour has an important effect on the nozzle flow field and it is required that wall derivatives vary slowly with respect to the local characteristic mesh spacing. In this respect the TDK program is no different than any other Usually the most of characteristics calculation. method satisfactory method of specifying a nozzle wall contour is through the use of the spline fit contour option (IWALL=4). Too many points should not be input when using this option since a bad derivative could result. Never place points close together. Although the initial section of the contour is assumed to be a circular arc, a small value of THETA can be used if necessary.

851010

5 **-** 2

In case of difficulty with the method of characteristics calculations, a useful procedure is to plot the (r,x) coordinates of mesh points in the region of difficulty. A plot of this type will frequently locate the cause of the problem. For this purpose it is necessary to print each calculated mesh point (i.e., N1=1 and N2=1).

# 8.2 LISTING OF ERROR DIAGNOSTICS

Errors printed by the program are listed in Table 8-1 in alphabetical order. The subroutine printing the error message is listed in Table 8-1 in parenthesis at the right of each message. Table 8-2 and the write-up for the subroutine printing the error message should be referred to when the message is encountered.

Suggested corrective action for some of the errors listed in Table 8-1 is given in Table 8-2.

Error diagnostics consist of two types: fatal errors and nonfatal errors. A fatal error will terminate the case being executed and the program will proceed to the next case. The case may not be immediately terminated. For example, in processing input data cards the program will attempt to find as many input card errors as possible before terminating the case. A nonfatal error serves only as a warning and the program will continue the case. If the error diagnostic is of the nonfatal type the symbol (NF) appears in the explanation.

851010

8-3

í.

#### ORIGINAL PAGE IS **OF POOR OUALITY**

3 PHASES OF A CONDENSED SPECIES ARE OUT OF ORDER (EQLBRM) 35 ITERATIONS DID NOT SATISFY CONVERGENCE REQUIREMENTS FOR THE POINT (EQLBRM) ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN .0000005 FOR ALL ASSIGNED CONDITIONS (OUT1) ALL REACTION RATE RATIOS INPUT AS 1.0 (PACK) BLM MODULE COULD NOT FIND DATA FROM ODE MODULE -- WILL ASSUME DATA TO BE READ IN \$BLM (READAT) CALCULATIONS WERE STOPPED BECAUSE NEXT POINT IS MORE THAN 50 DEG BELOW TEMP RANGE OF A CONDENSED SPECIES (ROCKET) CANNOT FIND POINT 4 FOR 2ND RRS CALCULATION (SHCKA) CANNOT FIND POINT 4 FOR LRS CALCULATION (CNTR13) CANNOT FIND POINT 4 FOR RRS CALCULATION (CNTR12) CANNOT FIND POINT 4 FOR RRS CALCULATION (CNTR14) CANNOT FIND POINT 4 FOR RRS CALCULATION (CNTR14) CANNOT FIND POINT 4 FOR RRS CALCULATION (CNTR24) CANNOT FIND POINT 5 FOR 2ND RRS (CNTR22) CANNOT FIND POINT 5 FOR 2ND RRS (SHCKA) CANNOT FIND THETA FOR WALL OPTION 5 - RUN ABORTED IN ODKINP (ODKINP) CANT FIND MATCHING PHASE FOR TMELT= 0.000000000E+00 CURRENT TEMP= 0.1 COMPUTED HS = 0.0000000E+00 AT J = 0 IS OUT OF GIVEN RANGE. (COEF1) 0.0000000E+00 (MAIN1D) CONDENSED REACTANTS NOT PERMITTED IN DETN OR SHOCK PROBLEMS (ODES) CONSERVATION EQNS WERE NOT SATISFIED IN & ITERATIONS (DETON) COULD NOT LOCATE PRES 0.000000E+00 FOR ZONE 0 AND POINT DATA FROM MODULE OUT OF ORDER IN MODULE BLM. CARD 0 HAS DERIVATIVE MATRIX SINGULAR (EQLBRM) POINT O IN OOK GENERATED TRANSONIC TABLES (GETIL) O HAS SEQ. NO. O (READAT) DID NOT CONVERGE FOR AREA RATIO = 0.00000 (ROCKET) DID NOT CONVERGE FOR U1= 0.00 ANSWERS PROBABLY NOT RELIABLE SOLUTION MAY NOT EXIST (SHCK) DID NOT CONVERGE ON ELECTRON BALANCE (EQLBRM) DIMENSIONS IN/SPECIES/TOO SMALL TO CONSIDER (SEARCH) END OF FILE ENCOUNTERED WHILE READING PROFILE PLOT FILE IN BLPLTS - RUN CONTINUES (BLPLTS) END OF LRC CONSTRUCTION FROM CNTR41 (CNTR41) END OF NOZZLE DETECTED (CNTR91) END OF RRC CONSTRUCTION FROM CNTR21 (CNTR31) ENTIRE TRANSONIC TABLE FILE HAS BEEN READ (GETIL) EP NOT REACHED (MAIN1D) ERROR - THE WALL TEMPERATURE/HEAT FLUX TABLE MUST CONTAIN AT LEAST 4 POINTS WHEN CUBIC INTERPOLATION IS USED (INPUTB) ERROR DETECTED DURING INPUT PROCESSING (REAXIN) ERROR DETECTED DURING TRANSONIC CALC (TRAN) ERROR DURING LOW T THERMO EVAL, T= ERROR DURING LOW T THERMO EVAL, T= ERROR DURING LOW T THERMO EVAL, T= 0.0000000 E+00 (SKPB1) 0.0000000 E+00 (THERM) 0.0000000E+00 (CPHS) ERROR FOR SKEWED PARABOLA OPTION - STOP (SKPB1) 

 ERROR FOR SKEWED PARABOLA OPTION - STOP (SKPB1)

 ERROR FROM BANDI- (BANDI)

 ERROR IN ABOVE CARD. CONTENTS IGNORED. (ODES)

 ERROR IN ATSHCK (ATSHCK)

 ERROR IN BLW WHILE READING LINKAGE DATA (BLTK)

 ERROR IN BLW WHILE READING LINKAGE DATA (BLW)

 ERROR IN BLW, NWS EXCEEDS 50 (BLW)

 ERROR IN CNTR21, CROSSING OF RRC SHOULD HAVE BEEN TERMINATED IN CNTRL1 (CNTR21)

 ERROR IN CNTR21, CROSSING OF RRC SHOULD HAVE BEEN TERMINATED IN CNTRL1 (CNTR31)

 ERROR IN CNTR21, CROSSING OF RRC SHOULD HAVE BEEN TERMINATED IN CNTRL1 (CNTR31)

 ERROR IN CNTR21, INSERTION TABLE EXCEEDS MAXIMUM (CNTRL1)

 ERROR IN CNTRL1, INSERTION TABLE EXCEEDS MAXIMUM (CNTRL1)

 ERROR IN CNTRL1, INSERTION TABLE EXCEEDS MAXIMUM (CNTRL2)

 ERROR IN CNTRL1, IP=
 0 EXCEEDS MAXIMUM=

 0 (CNTR21) ERROR IN CNTRL1, IP= ERROR IN CNTRL1, IP= O EXCEEDS MAXIMUM= 0 (CNTR31) 0 EXCEEDS MAXIMUM= O EXCEEDS MAXIMUM= 0 (CNTRL1) ERROR IN CNTRL1, IP= ERROR IN CNTRL1, IP= O EXCEEDS MAXIMUM= 0 (CNTRL2) ERROR IN FINDT (FINDT) ERROR IN GAUELM. UNABLE TO FIND PIVOT FOR LINE 0 EPSILON=0.00E+00 (GAUELM) ERROR IN GETPT, ID= 0 (GETPT) ERROR IN GETPT- POINT NOT PREVIOUSLY WRITTEN (GETPT) ERROR IN IVPL, NP EXCEEDS NPT (IVPL) ERROR IN ODWALL, IWALL= 0 RUN ABORTED (ODWALL) ERROR IN ORDER OF CARDS FOR (TTAPE) ERROR IN RBL WHILE REAC'NG FILE 0 (RBL) ERROR IN REACTANT CARDS (ODES)
1

#### ORIGINAL PAGE IS OF POOR QUALITY

ERROR IN SAVPT, ID= 0 (SAVPT) ERROR IN SHCKA, ITERATION FOR REFLECTED SHOCK ANGLE FAILED, DLT3A= 0.0000 DLT3B= 0.0000 DEG (SHCKA) ERROR IN SHCKW, ITERATION FOR REFLECTED SHOCK ANGLE FAILED, DLT3A= 0.0000 DLT3B= 0.0000 DEG (SHCKA) ERROR IN THE CALCULATION FOR REFLECTED SHOCK, X3 = 0.00000E+00 X4 = 0.00000E+00 (CNTR16) ERROR MESSAGE FROM BLTABL - THE REQUESTED TABLE SIZE OF 0 EXCEEDED THE INTERNAL DIMENSIONS OF 0 (BLTABL) ERROR OCCURS WHILE POSITIONING BLM TAPE FOR RESTART (READAT) ERROR TYPE= 0 IN CNTR12 (CNTR12) ERROR TYPE= 0 IN CNTR13 (CNTR13) ERROR TYPE= 0 IN CNTR13 (CNTR13) ERROR( ) .... (ERRORZ) ERROR( 2) OR ( 4) THE PROGRAM IS ATTEMPTING TO INSERT AN EXCESSIVE NUMBER OF FLOWFIELD POINTS. (ERRORZ) ERROR( 6) ERROR( 7) THE LRC INSERTION TABLE HAS OVERFLOWED. (ERRORZ) THE MAXIMUM NO. OF POINTS FOR A LRC HAS BEEN EXCEEDED. (ERRORZ) THE PROGRAM IS ATTEMPTING TO LOCATE A WALL POINT UPSTREAM ERROR( 8) THE PROGRAM IS UNABLE TO LOCATE POINT 1 IN SUBROUTINE INPT (ERRORZ) THE PROGRAM IS UNABLE TO LOCATE POINT 1 IN SUBROUTINE INPT (ERRORZ) THE PROGRAM IS UNABLE TO LOCATE POINT 1 IN SUBROUTINE DSPT (ERRORZ) ERROR( 9) OR (10) ERROR(11) OR (12) ERROR(50) AN IMPROPER INITIAL LINE POINT IS SOUGHT. (ERRORZ) THE CALCULATION FOR THE LAST POINT EXCEEDED MAXIMUM ITERATIONS (ERRORZ) NO MORE THAN 275 POINTS MAY BE INPUT ON INITIAL LINE (ERRORZ) ERROR(13) ERROR(14) ERROR(15) SUM OF INPUT SPECIES CONCENTRATIONS FOR ABOVE POINTS NOT ONE. (ERRORZ) ERROR(16) WALL TABLE VIOLATES INSERTION ANGLE CRITERION (ERRORZ) INCOMPLETE TDK INITIAL LINE HAS BEEN GENERATED (ERRORZ) ERROR(17) EXIT PLANE OPTION REQUIRES GREATER WALL EXTENSION (CNTRL) EXIT PLANE OPTION REQUIRES LARGER NCHMXE, NPTMXE (CNTRL) FAILED TO CONVERGE IN IVPL (IVPL) FATAL ERROR ENCOUNTERED DURING REACTION PROCESSING DUE TO ABOVE CARD (REAXIN) FATAL ERROR ENCOUNTERED WHILE PROCESSING THIRD BODY REACTION RATE RATIOS - ERROR ON ABOVE CARD (REAXIN) FIND* VAR OUTSIDE TABLE (FIND) FROZEN DID NOT CONVERGE IN 8 ITERATIONS (FROZEN) ILL-CONDITIONED MATRIX IN ROUTINE SKPB ERROR = 0.00000E+00 -STOP- (SKPB1) NOT IN MASTER SPECIES TABLE (SEARCH) INERT INERT SPECIES (SEARCH) INERTS FOUND IN TOK PROBLM, INERTS NOT SPECIFIED, CANNOT USE RELATIVE SELECTION CRITERION FOR TOK CASE (SELECT) INFINITELY WEAK SHOCK BT1 M1 M1*ABS(SIN(BT1))= 0.000000E+00 0.000000E+00 (SHOCK) INLET GEOMETRY INCOMPATIBLE WITH INITIAL CONDITIONS (PRES) INTERNAL SEQ NUM (REAXIN) ITERATIONS EXCEEDED ITMAX (BLSEG) KIN EXPN CODE DIMENSIONED FOR MAX. OF 40 SPECIES, CURRENT CASE USES (SELECT) LOW T THERMO EXTENSION AT T= DEG-K (THERM) LOW TEMPERATURE IMPLIES CONDENSED SPECIES SHOULD HAVE BEEN INCLUDED ON AN INSERT CARD, RESTART (EQLBRM) LOW TEMPERATURE IMPLIES CONVENSED SPECIES SHOULD HATE SEEN THESE THE SEEN THE SEEN THE SEEN THE NOZZLE (CNTR13) MACH NUMBER CONVERGENCE FAILED, ZONE = 0 CONV CRIT = 0.00E+00 CONV OBTAINED = 0.00E+00 (PRINT) MACH NUMBER CONVERGENCE FAILED, ZONE = 0 CONV CRIT = 0.00E+00 CONV OBTAINED = 0.00E+00 (PRINTS) MASS FRACTION SUM NOT 1. (OUT1) MASS OF MOLE FRACTIONS NOT SPECIFIED MASS FRACTIONS ASSUMED (REAXIN) MAXIMUM ITERATION REACHED- RUN IS TERMINATED (PRINTS) MORE THAN 12 CHARACTERS SPECIFIED FOR AN INERT SPECIES NAME (REAXIN) NE DID NOT CONVERGE (PRES) NO \$ODE VALUE GIVEN FOR OF, ECRAT, FA, OR FPCT (ODES) NO ECRAT SPECIFIED FOR ODK START-RUN ABORTED (ODES) NO ECRAT SPECIFIED FOR OOK START-RUN ABORTED (ODES) NO LINKAGE DATA FOUND, EXPECT MANUAL INPUT (READAT) NO MAICH -DR SPECIES NAME (REAXIN) NO MAICH -DR SPECIES NAME (REAXIN) NON-NUMERIC ENCOUNTERED IN ECNV WHILE DECODING... (ECNV) NON-NUMERIC ENCOUNTERED IN ECNV WHILE DECODING... (ECNV) NONCONVERGENCE IN ENCALC, T1 T1= 0.0000000E+00 0.0000000E+00 (ENCALC) NONCONVERGENCE IN ENCALC, T1 T1= 0.0000000E+00 0.0000000E+00 0.0000000E+00 (TSCALC) NONCONVERGENCE IN SCALC, T P S SD= 0.00000000E+00 0.0000000E+00 0.0000000E+00 (TSCALC) NOT ENOUGH POINTS FOR SECOND SPLINE (WALL) NOZZLE PWZS COORDINATES NOT MONOTONIC INCREASING AT PT 0 (PACK) NP EXCEEDED NPT -- PROGRAM TERMINATED (BLMAIN) NUMBER OF SHOCK REFLECTIONS EXCEEDS MAXIMUM= 0 (CNTR91) NUMBER OF SPECIES TOO LARGE FOR TABLES, MUST REDIMENSION (REAXIN) NUMBER OF TEMP VALUES OUTSIDE RANGE (LTCPHS)

```
POOR CONVERGENCE - STOP - (SKPB1)
PRESSURE = 0.0000000E+00 IS OUT OF RANGE FOR STREAMLINE = 0 (FINDT)

PROG NOT DIMENSIONED FOR 0 POINTS AND 0 ZONES (XPIL)

PTB( 0)= 0.0000000E+00, DID NOT CONVERGE (PRES)

REACTANT 0 IS NOT IN THERMO DATA (HCALC)

REACTANT TEMPERATURE OUT OF RANGE OF THERMO DATA (HCALC)
REACTION 0 HAS MASS IMBALANCE OF
REACTION CARDS (REAXIN)
                                                                                                        0.0000000E+00 (PACK)
REACTION EXTENDS BEYOND CARD COL 80 (REAXIN)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR12)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR12)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR14)
REGULAR REFLECTION IS NOT POSSIBLE (CNTR24)
REGULAR REFLECTION NOT POSSIBLE (CNTR12)
REGULAR REFLECTION NOT POSSIBLE (CNTR12)
REGULAR REFLECTION NOT POSSIBLE (SHCKA)
REGULAR REFLECTION NOT POSSIBLE (SHCKA)
REG AREA RATIO 0 0.00000000E+00
                                                                                                       DELETED (ODKINP)
RESTART (EQLBRM)

RIGHT RUNNING SHOCK DETECTED (CNTR31)

RIGHT RUNNING SHOCK DETECTED (CNTR31)

RIGHT RUNNING SHOCK DETECTED (CNTR41)

RRS PT IS OUTSIDE THE NOZZLE (CNTR12)

RRS PT IS OUTSIDE THE NOZZLE (CNTR14)

RRS PT IS OUTSIDE THE NOZZLE (CNTR22)

RRS PT IS OUTSIDE THE NOZZLE (CNTR24)

SHOCK DETECTED ON RCC FROM INITIAL LINE (CNTR11)

SHOCK DETECTED ON RCC FROM INITIAL LINE (CNTR31)

SHOCK DETECTED ON RCC FROM INITIAL LINE (CNTR31)

SHOCK DETECTED ON RCC FROM INITIAL LINE (CNTR31)

SHOCK SHOCK INTERSECTION DETECTED- RUN ABORTED (CNTR22)

SHOCK-SHOCK INTERSECTION DETECTED- RUN ABORTED (SHCKA)

SHOCKED GAS (2)--INCIDENT--EQUILIBRIUM (SHCK)

SHOCKED GAS (5)--REFLECTED--EQUILIBRIUM (SHCK)

SHOCKED GAS (5)--REFLECTED--FOZEN (SHCK)

SHOCKED GAS (5)--REFLECTED--FOZEN (SHCK)

SINGULAR MATRIX (EQLBRM)

SINGULARITY, K,A(K,K) 0 0.00000000E+00 (LESK)

SPECIES REQUIRES ELEMENT THIS ELEMENT IS NOT IN

SPECIES NO. 0 NOT CONTAINED IN MASTER EQUILIBRIU
 RESTART (EQLBRM)
                                                                               SPECIES NO. 0 NOT CONTAINED IN MASTER EQUILIBRIUM SPECIES TABLE (SEARCH)
SPECIES NOT ON THERMO TAPE (PACK)
                                                                                                                                                                  0.00000000E+00 NO. SPECIES = 0 (ODKINP)
  SUM OF INPUT MOLE OR MASS FRACTIONS NOT ONE. THE SUM IS #
  TEMPERATURE IS OUT OF RANGE OF THE THERMO DATA (SHCK)
  THE FOLLOWING CARD WAS IGNORED (REAXIN)
  THE REPEAT OPTION SHOULD NOT BE USED WITH A POTENTIAL WALL (PROBLM)
THE SUM OF THE STOICHIOMETRIC COEFFICIENTS FOR THE REACTANTS OR/AND PRODUTS EXCEEDS 10
                                                                                                                                                                                                                                  (PREAX)
   THE TEMPERATURE= IS OUT OF RANGE FOR POINT (EQLBRM)
   THIRD BODY REAX RATE RATIOS ENCOUNTERED BEFORE LAST REAX CARD (REAXIN)
   TRY REMOVING CONDENSED SPECIES (EQLBRM)
  UNEXPECTED END DURING INERTS PROCESSING LAST CARD ENCOUNTERED BEFORE END SPECIFICATION (REAXIN)
WALL TABLE ERROR ON 2ND SPLINE ... (R,X)= 0.00000E+00 0.00000E+00 (WALL)
  WALL TABLE ERROR... (R, X) = 0.00000E+00 0.00000E WALL TABLE REQUIRES TOO MANY PTS ON 2ND SPLINE (WALL)
                                                                                                                0.00000E+00 (WALL)
   WALL TABLE REQUIRES TOO MANY PTS. (WALL)
  WALL TABLE REQUIRES TOO MANY PTS. (WALL)

WARNING CARD SEQUENCE ERRORS (LTCPHS)

WARNING IN INTEXT, Z1 ZEXIT Z2= 0.0000000E+00 0.0000000E+00 0.0000000E+00 (INTEXT)

WARNING IN RBL, XFIRST = 0.0000000E+00 XI = 0.0000000E+00 (RBL)

WARNING IN RBL, XLAST = 0.0000000E+00 XI = 0.0000000E+00 (RBL)

WARNING, TBL TABLES EXCEED THEIR DIMENSIONS IN OUT1 (OUT1)

WARNING, UNABLE TO POSITION BLM TAPE FOR RESTART (READAT)
  WEIGHT FLOW DID NOT CONVERGE (CHAR)
XTEST=0.0000000E+00 ERROR IN TCALC, RUN ABORTED (TCALC)
Z OUTSIDE NOZZLE WALL TABLE, Z AND JNOZ ARE 0.0000
                                                                                                                          0.0000000E+00
                                                                                                                                                                       0 (FLU)
   Z OUTSIDE PRESSURE TABLE (FLU)
```

OHSONDAIG		
OITOMBUIG	CORRECTIVE ACTION CORRECTIVE ACTION	
ALL REACTION RATE RATIOS INPUT AS 1.0	(NF) Informative, no action necessary.	PACK
AN IMPROPER INITIAL LINE POINT IS SOUGHT	Check input of nozzle throat geometry.	ERRORZ
CALCULATIONS WERE STOPPED BECAUSE NEXT POINT IS MORE THAN 50 DEG. BELOW TEMP. RANGE OF A CONDENSED SPECIES	(NF)ØDE frozen calculation can not be con- tinued. No action required.	RØCKET
CONDENSED REACTANTS NOT PERMITTED IN DETN OR SHOCK PROBLEMS	Only gaseous reactants are permitted (see Ref. 3 , pg. 70).	ØDES
CONSERVATION EQNS WERE NOT SATISFIED IN 8 ITERATIONS	On detenation option convergence is usually obtained in 3 or 4 iterations (see Ref. 3 , pg 70).	DETØN
COULD NOT LOCATE PRES FOR ZONE AND POINT IN ØDK GENERATED TRANSONIC TABLES	Check nozzle throat geometry and the initlal line flow MACH number.	GETIL
DID NOT CONVERGE FOR AREA RATIO=	(NF) The area ratio is probably too close to 1.0 the usual number of iterations is less than 6. Here it exceeded 10. (see Ref. 3, pg. 71).	RØCKET
DID NOT CONVERGE FOR U1= ANSWERS PROBABLY NOT RELIABLE SOLUTION MAY NOT EXIST	Ul was probably less than the minimum value re- quired for shock to occur (see Ref. 3 , pg. 71).	SHCK
DID NOT CONVERGE ON ELECTRON BALANCE	Check input charge balance.	EQLBRM

TABLE 8-2: ERROR MESSAGES, POSSIBLE CORRECTIVE ACTION

•

8-7

DIAGNOSTIC	EXPLANATION OR POSSIBLE CORRECTIVE ACTION	SUBR OU'IINE
MENSIONS IN/SPECIES/TOO SMALL TO CON- Jer	Too many species are possible for the system being input. Use OMIT cards or recompile program dimensions.	SEARCH
TIRE TRANSONIC TABLE FILE HAS BEEN READ	Occurs while constructing initial line for the method of characteristics. Check throat geometry.	GETIL
NOT REACHED RØR DETECTED DURING INPUT PROCESSING	Refer to section 6.5.3.1 and discussion of EP Check input for bad reaction card.	MAIN1D REAXIN
RØR DURING LOW T THERMO EVAL, T=	Low temperature out of range. Check LØW T CPHS input if used (see section 6.1.1).	THERM
RØR IN ABOVE CARD. CONTENTS IGNORED	A card is missing, extraneous, or in error (see Ref. 3 , pg. 71).	ØDES
RØR IN ORDER OF CARDS FOR	THERMGS data cards for this species are out of order (see Ref. 3, pg. 71).	TTAPE
RØR IN REACTANT CARDS	Chemical symbol not left-justified, or not in- cluded in BLØCK DATA program (see Ref. 3, pg.	ØDES
IT PLANE OPTION REQUIRES GREATER WALL TENSION	71). Check nozzle wall input, section $6.3.5$	CNTRL

TABLE 8-2: CONTINUED

	E						origi Of P	inal p oor q	AGE IS UALITY				
_	S UBRO U TI N	DRIVER	FIND	FRØZEN	ERRØRZ	SELECT	SELECT	PRES	EQLBRM	SELECT	THERM	EQLBRM	ØUTPUT
8-2: CONTINUED	EXPLANATION OR POSSIBLE CORRECTIVE ACTION	Correct bad problem card.	Interpolation was requested outside of the range of the input tables. Check input tables for range of independent variable.	&DE could not converge in frozen calculations. If desired add more area and/or pressure ratios (see Ref. 3, pg. 71),	Check STRANS input, section 6.6.	Species not in thermo file, check species name and correct.	See section 6.5.3.4 for explanation of species selection.	$\sqrt{EC} < 1 + (R_u + R_i)$ (1-cos $\theta_i$ ) see 5.3.25.	Check output for cause of non-convergence. If not obvious, re-run with intermidiate output (see Ref. 3, pg. 73).	More than 40 species found. Check input	(NF) LG/W T CPHS input is being used, section 6.1.1.	An important condensed species has been omitted causing unrealistically low combustion temperature (see Ref. 3, pg. 72).	$\left 1-\sum_{i}\right  < .01$ the ØDK output subroutine has detected an error in mass conservation.
TABLE	DIAGNOSTIC	FATAL ERRØR ENCOUNTERED WHILE PROCESSING PROBLEM CARD-PROCESSED TO NEXT CASE	*FIND* VAR OUTSIDE TABLE	FRØZEN DID NOT CONVERGE IN 8 ITERATIONS	INCOMPLETE TDK INITIAL LINE HAS BEEN GEN- ERATED	INERTNOT IN MASTER SPECIES TAELE	INERTS FOUND IN TDK PROBLEM, INERTS NOT SPECIFIED, CAN NOT USE RELATIVE SELECTION CRITERION FOR TDK CASE	INLET GEOMETRY INCOMPATIBLE WITH INITIAL CONDITIONS	35 ITERATIONS DID NOT SATISFY CONVERGENCE REQUIREMENTS FOR THE POINT	KIN EXPN CODE DIMENSIONED FOR MAX. OF 40 SPECIES, CURRENT CASE USES	LOW T THERMO EXTENSION AT T= DEG-K	LOW TEMPERATURE IMPLIES CONDENSED SPECIES SHOULD HAVE BEEN INCLUDED ON AN INSERT CARD, RESTART	MASS FRACTION SUM NOT 1

8-9

<b>_</b>
Ē
<u> </u>
~
_
H
<u> </u>
<b>-</b>
<b>Z</b>
~
$\mathbf{O}$
ς٦
-
••
•••
2:
-2:
-2:
8-2:
8-2:
8-2:
E 8-2:
.Е 8-2:
LE 8-2:
3LE 8-2:
BLE 8-2:
ABLE 8-2:
CABLE 8-2:
<b>TABLE 8-2:</b>

DIAGNOSTIC	EXPLANATION OR POSSIBLE CORRECTIVE ACTION	UBROUTINE
MASS OR MOLE FRACTIONS NOT SPECIFIED, MASS FRACTIONS ASSUMED	(NF) Informative - mass or mole fractions not specified on species card.	REAXIN
MORE THAN 12 CHARACTERS SPECIFIED FOR AN INERT SPECIES NAME	Check Inert species names (see section 6.5.2.2).	REAXIN
NE DID NOT CONVERGE	Unable to find an expansion coefficient, N _e , when generating ØDK pressure table (see section ^e 5.3.2.	PRES 5)
NØ ECRAT SPECIFIED FOR ØDK START-RUN ABORTED	Initial contraction ratio must be input (see section [.3.2.5).	ØDES
NØ MORE THAN 275 POINTS MAY BE INPUT ON INITIAL LINE	Check input initial line and modify for $275$ or less points.	ERRØRZ
NØ \$ØDE VALUE GIVEN FOR OF, EQRAT, FA, OR FPCT	Input the desired value as true in $QDE$ .	ØDES
NON-NUMERIC ENCOUNTERED IN ECNV WHILE DECODING	Fatal error, correct bad number in data field.	ECNV
NOZZLE PWZS COORDINATES NOT MONOTONIC INCREASING AT PT	Check input of nozzle wall and correct error (see section $6.3.3.1$ ).	PACK
NUMBER OF SPECIES TOO LARGE FOR TABLES, M UST REDIMENSION	The ØLK program allows only 40 species per re- action. If possible omit unimportant species. Check input. If program is to be modified to allow more species various arrays must be redimensioned.	REAXIN
NUMBER OF TEMP VALUES OUTSIDE RANGE	Temperature below range specified in LØW T CPHS input, section 6.1.1.	LTCPHS
PRØG NOT DIMENSIONED FOR POINTS AND ZONES	The maximum number of initial line points $(275)$ and/or mixture ratio zones (50) has been exceeded.	ХРЦ
PTB ( ) = _ DID NOT CONVERGE	Unable to calculate P/P _e vs. area table entry in ØDK. See F.S.M.	PRES

8-10

~

						ŗ		OF OF	riginal 5 poor	. PAGI QUA	E IS LITY		
SUBROUTINE		S HCALC	HCALC	ot PACK	REAVEN	LESK, NESK	EQLBRM	SELECT	PACK	PACK	ERRØRZ	SELECT	НСК
EXPLANATION OR POSSIBLE CORRECTIVE ACTION	Enthalpy can be computed only for theorem	data (see Ref. 3, pg. 72).	Assigned temperature is more than 20% beyond temperature range over which thermodynamic data have been fitted (see Ref. 3, pg. 72).	Fatal error: either stoichiometric coeffients do ne match cr a reaction or molecular weight input in- correctly in thermo data.	Ending comma left out of a reaction card.	Ax=b. Solution may be in error.	Assign a slightly modified equivalence ratio or O/F ratio (see Ref. 3 pg. 73).	Check reaction species names against thermo- dynamic data species names.	Check reaction species names against thermo- dynamic data species names.	Check input for misspelled species or element name.	If INLINF option was input in #TTX, check input data for Mot initial data line points.	vee detailed discussion in section 6.5.3.4.	Converged temperature for a shock problem is beyond TLØW/1.5 > T > 1.25* THIGH. Results may be inaccurate (see Ref. pg. 73).
DIAGNOSTIC	REACTANT IS NOT IN THERMØDATA	REACTANT TEMPERATURE OUT OF RANGE OF THERMØ DATA	REACTION HAS MASS IMBALANCE OF	REACTION EXTENDS BEYOND CARD COT	SINGULARITY	LINGULAR MATRIX	SPECIES NO. NOT CONTAINED IN	SPECIES NOT ON THERMØ TAPE	SPECIES REQUIRES ELEMENT	SUM OF INPUT SPECIES CONCEMENTIABLE	SPECIES NOT ONE SPECIES NOT ONE SPECIES NOT ONE THATTONS	TEMPERATURE IS OUT OF RANCE OF THE	DAIA UNIVERSITY OF THE THERMO

9-11

INUED

TABLE 8-2: C(

____

TABLE 8		
DIAGNOSTICS	E.(PLANATION OR POSSIBLE CORRECTIVE ACTION	ANTI UOS
THE CALCULATION FOR THE LAST POINT EX- CEEDED MAXIM UM ITERATIONS	Check MOC output to see if run is in error. If no El input errors are found and run is to be continued either increase IMAX and/or set IMAXF=0 (see	RRØRZ
	6.7.1). R	KEAXIN
THE FOLLOWING CARD WAS IGNORED THE LRC INSERTION TABLE HAS OVERFLOWED	(NF) Check this can be seeded more than 20 left E The calculation has inserted more than 20 left E running characteristics. Try more points on the initial line (see section 6.6).	<b>ERRØRZ</b>
THF MAXIMUM NO. OF POINTS FOR A LRC HAS	More than 275 points are on the initial data line. I Reduce by modifying \$TRANS input (see section 6.6).	ERRØRZ •
BEEN EXCEEDED THE PROGRAM IS ATTEMPTING TO INSERT AN EXCESSIVE NUMBER OF FLOWFIELD POINTS	Probable cause is too few points on the initial Probable cause is too few points on the initial line up:tream of the region being computed. Try more points or a redistirbution of points on the initial line (see section 6.6).	ERRØRZ
THE PROGRAM IS ATTEMPTING TO LOCATE A	Check input of intial line (see section 6.6) and nozzle wall (see section 6.3.3.1).	ERRØRZ
THE WALL TABLE THE PROGRAM IS UNABLE TO LOCATE POINT 1	Check input to be sure a value given in XM is not too smaill. If XM value is < .05, eliminate this	ERRØRZ
IN SUBROUTINE DSPT	zone and adjust mixture ratios.	ERRØRZ
THE PROGRAM IS UNABLE TO LOCATE POINT I	Fron In 200. All almany and the should be checked.	
IN SUBROUTINE INPT THE TEMPERATURE= IS OUT OF RANGE FOR	Converged temperature input on card following THERM(X card is beyond the allowed range: THERM(1, 5 > T > 1.25*THIGH (see Ref. 3, pg. 73).	EQLEKIV
THIRD BODY REAX RATE RATIOS BEFORE END OF	LAST REAX card was left out. Check for a mistake in reaction order.	REAXIN
REAX THREE PHASES OF A CONDENSED SPECIES ARE OUT OF ORDER	THERM(#) data for condensed species must be in either increasing or decreasing order depending on their temperature intervals (see Table 6-2).	EQLBKM
TRV REMOVING CONDENSED SPECIES	Use ØMIT cards on trace condensed species.	EQLBRN

TABLE 8-2: CONTINUED

•

-~~~

ł

DIAGNOSTIC	EXPLANATION OR POSSIBLE OR CORRECTIVE	SUBROUTINE
UNEXPECTED END DURING INERTS PROCESSING LAST CARD ENCOUNTERED BEFORE END SPECIFI- CATION	Self explanatory, check reaction input.	REAXIN
WALL TABLE VIOLATES INSERTION ANCLE CRITERION	The program calculates wall angles from point to point and prints them and the wall table points. (e.g. see pg 7-29). If the difference of any adjacent slopes exceed DWWI this error is printed. Modify the wall input	ERRØRZ
WARNING CARD SEQUENCE ERRORS	(NF) Ch⇔ck input LØW T CPHS cards for proper order (see section 6.1.1)	LTCPHS
WEIGHT FLOW DID NOT CONVERGE XMDØT= PEST=	Specified weight flow option. Input value esti- mated by the program for chamber pressure, PEST, into P(1) of \$ØDE and rerun (unless run is obvious in error).	CHAR ly

TABLE 8-2: CONTINUED

8-13

THIS PAGE LEFT INTENTIONALLY BLANK

•

REFERENCES

- 1. "JANNAF Rocket Engine Performance Prediction and Calculation Manual", CPIA Publication 246, April 1975.
- Nickerson, G. R., Coats, D. E., and Bartz, J. L., "The Two-Dimensional Kinetic (TDK) Reference Computer Program" Engineering and Programming Manual, Ultrasystems, Inc., December 1973, prepared for Contract No. NAS9-12652, NASA JSC.
- 3. Gordon, Sanford and McBride, B. J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA SP-273, 1971.
- 4. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, "<u>Molecular Theory of Gases and Liquids</u>", John Wiley and Sons, Inc., New York, N.Y., 1954.
- 5. S. S Penner, "<u>Chemistry Problems in Jet Propulsion</u>", Pergamon Press, New York, N.Y., 1957.
- 6. K. N. C. Bray, "<u>Atomic Recombination in a Hypersonic Wind</u> <u>Tunnel Nozzle</u>", J. Fluid Mechanics <u>6</u>, 1 (1959).
- 7. S. W. Benson, and T. Fueno, "<u>Mechanism of Atom</u> <u>Recombination by Consecutive Vibrational Deactivations</u>", J. Chem. Physics 36, 1597, (1962)
- Sauer, R., "General Characteristics of the Flow Through Nozzles at Near Critical Speeds", NACA Tech. Note No. 1147 (1947).
- 9. Nickerson, G. R., "Striated Flow in a Converging-Diverging Nozzle", Dynamic Science Report CS-2/71-1, prepared for NASA JSC, February 1971.
- 10. Zucrow, M. J., and Hoffman, J. D., "<u>Gas Dynamics</u>", Volume 1 and 2, John Wiley & Sons, Inc., New York, 1976.
- 11. Keller, H. B., and Cebeci, T.,: Accurate Numerical Methods for Boundary Layer Flows, Pt. 2, Two-Dimensional Turbulent Flows. AIAA J., 10, 1972, P. 1193.
- 12. Cebeci, T., and Smith, A. M. O.,: "<u>Analysis o: Turbulent</u> <u>Boundary Layers</u>", Academic Press, N.Y., 1974.

- 13. Bradshaw, P., Cebeci, T., and Whitelaw, J. H.,: "Engineering Calculation Methods for Turbulent Flows". Academic Press, London, 1981.
- 14. Svehla, R. A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures", NASA TR-132, 1962.
- 15. Bird, R. B., Stewart, U. E., and Lightfoot, E. N., "Transport Phenomena", John Wiley & Sons, 1960.
- 16. Mason, E. A., and Saxena, S. C., "Physics of Fluids", Vol. 1, No. 5, pp. 361-369, 1958.
- 17. Tyson, T. J., and Kliegel, J. R., "An Implicit Integration Procedure for Chemical Kinetics", AIAA 6th Aerospace Sciences Meeting, Paper No. 68-180, (January 1968).
- 18. Gordon, Sanford, Zeleznik, Frank J., and Huff, Vearl N., "A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants", NASA TD D-132, 1959.
- 19. Zeleznik, Frank J., and Gordon, Sanford: "A General 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouguet Detonations", NASA TN D-1454, 1962.
- 20. McBride, B. J., and Gordon, S., "Fortran IV Program for Calculation of Thermodynamic Data", NASA TN-D-4097, Aug. 1967.
- 21. Stull, D. R., Prophet, H., et al., JANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37, National Standard Reference Data Series, National Bureau of Standards, June 1971.
- 22. JANAF Thermochemical Tables, 1974 Supplement, J. Phys. Ref. Data 3,311 (1982).
- 23. JANAF Thermochemical Tables, 1982 Supplement, J. Phys. Ref. Data 11,695 (1982).
- 24. Combs, L. P., "Liquid Rocket Combustion Computer Model with Distributed Energy Release", Rocketdyne Final Report, Contract NAS7-746, December 1971.
- 25. Cooper, L. P., "Advanced Propulsion Concepts for Orbital Transfer Vehicles", AIAA 19 Joint Propulsion Conference, Seattle, WA. June 27-29, 1983.

APPENDIX A

REACTION RATE DATA

NOVEMBER 1984

PREPARED BY:

GARY R. NICKERSON THUAN K. NGUYEN

#### REACTION RATE DATA

Reactions and reaction rates for determining loss in performance due to chemical kinetics are presented in Reference 1, which is CPIA 246, the JANNAF Rocket Engine Performance and Evaluation Manual (see Section 6.2, titled Reaction Rate Data.) The reactions and reaction rates presented in CPI 246 were revised by Kushida in Reference 2 in 1976. Until the present time, no further revisions have been made.

A literature review through June 1984 has now been carried out by SEA, Inc. The review includes the systems discussed by Kushida, i.e. those containing the elements CHNO and FHN. The result of this study shows almost no change in the CHNO system and minor changes in the FHN system. A revised uncertainty factor, U, is given for each rate coefficient such that k x U and k/U provide probable approximate upper and lower bounds respectively to k for temperatures within the range 250 to 3000 °K.

Tables 1 and 2 give reactions and rates for the CHNO system, and correspond to Tables I and II of Reference 2 except that the species  $HO_2$  and  $N_2O$  have been deleted. These species are not considered important for engine performance prediction. Although there are no changes in the rate data, new information regarding some of the reactions have been obtained that suggest a change in the form of the rate expression.

For certain reactions involving the OH radical, in particular the reactions,

ОН	+	^Н 2	=	н ₂ 0	+	Н	(1)
ОН	÷	ОН	=	H ₂ 0	+	0	(2)
со	+	ОН	×	c0,	+	Н	(3)

The rate data do not conform to an Arrhenius  $plot^3$ . For reaction (3), the experimental results are now numerous and precise enough to confirm the deviation from the Arrhenius form at low and high temperature. The form that fits the data adequately over the temperature range 250-2500 °K is,

 $\log_{10} k = 10.83 + 3.94 \times 10^{-4} T.$ 

The present form of the rate data, 7 T  $^{1.3}$  exp (765./RT).

is in close agreement with the above expression up to 2000  $^{\circ}{\rm k}.$  In addition, it is necessary for use in the existing computer programs.

Tables 3 and 4 give reactions and rates for the FHN system, and correspond to Tables III and IV of Reference 2.

For the two reactions,

 $F + F + M = F_2 + M$ H + F + M = HF + M

the rate coefficient expressions are completely different than those listed in Table III of Reference 2. These new expressions give a much higher rate at low temperature, but about the same value in the high temperature range.

As, in Reference 2, the tables given here define the rates in the form accepted by the TDK computer program, i.e., the constants A, N, and B are given for the expression

 $k = AT^{-N} = (1000B/RT)$ ; in units of cc, °K, mole, sec.

The reference for each reaction is listed in the tables, e.g. BAULCH 72 is Reference 7. The uncertainty estimate is also given; e.g. 30 U is an uncertainty factor of 30.

TABLE 1. Reaction Rate Data for the CHON System:

For Chemical Reactions between species, CO,  $CO_2$ , H,  $H_2$ ,  $H_2O$ , N, NO, N₂, O, OH, and O₂ in initial equilibrium expanding through an adiabatic nozzle.

 $k = A T^{-N} \exp(-1000B/RT);$  in units of cc, K, mole, sec.

REACTIONS

H	+	Н	7	н2	,	A	=	6.4E17,	N	×	1.0,	В	= 0.0	,	Μ	=	AR,	BAULCH	72	(A)	300
Н	+	он	=	H ₂ 0	,	A	=	8.4E21,	N	=	2.0,	В	= 0.0	,	Μ	Ŧ	AR,	BAULCH	72	(A)	100
0	+	0	×	0 ₂	,	A	=	1.9E13,	N	=	0.0,	В	<b></b> 1.79	,	Μ	=	AR,	BAULCH	76	(A)	100
N	+	0	=	NO	,	A	8	6.4E16,	N	=	0.5,	В	= 0.0	,	Μ	Ħ	N2,	BAULCH	73	(C)	100
N	+	N	=	N ₂	,	A	-	3.0E14,	N	æ	0.0,	В	=99	,	Μ	-	N2,	BAULCH	73	(C)	100
СО	+	• 0	=	co ₂	,	A	=	1.0E14,	N	-	0.0,	В	- 0.0	,	Μ	F	AR,	BAULCH	76	(B)	30U
0	+	Н	#	он	,	A	=	3.62E18,	, N	=	1.0,	в	= 0.0.	,	Μ	=	AR,	JENSEN	78	(B)	30U

END TBR REAX

 $O_2 + H = 0 + OH$ , A = 2.2E14, N = 0.0, B = 16.8, BAULCH 72 (A) 1.5U  $H_2 + 0 = H + OH$ , A = 1.8E10, N =-1., B = 8.9, BAULCH 72 (A) 1.5U  $H_2 + OH = H_2O + H$ , A = 2.2E13, N = 0.0, B = 5.15, BAULCH 72 (A) 2 U  $OH + OH = H_0 O + O$ , A = 6.3E12, N = 0.0, B = 1.0, BAULCH 72 (A) 3 U  $CO + OH = CO_2 + H$ , A = 1.5E7, N =-1.3, B =-.765, BAULCH 74 (A) 3 U  $N_2 + 0 = NO + N$ , A = 7.6E13, N = 0.0, B = 75.5, BAULCH 73 (C) 3 U  $O_2 + N = NO + O$ , A = 6.4E9, N =-1.0, B = 6.25, BAULCH 73 (C) 2 U  $CO + O = CO_2$ , A = 2.5E6, N = 0.0, B = 3.18, BAULCH 76 (B) 2 U  $CO_{2} + O = CO + O_{2}$ , A = 1.7E13, N = 0.0, B = 52.7, BAULCH 76 (B) 3 U

LAST REAX

**À**-4

Species	Н + Н	H + OH	- 0 + 0	N + O	N + N	CO + O	0 + H
AR	1.	1.	1.	.8	· 1.	 ].	
CO	1.5	3.	4.	1.	1.	1.	1.
^{C0} 2	6.4	4.	8.	3.	2.	5.	5.
Н	25.	12.5	12.5	10.	10.	1.	12.5
н ₂	4.	5.	5.	2.	2.	1.	5.
H20	10.	17.	5.	7.	3.	1.	5.
N	1.	1.	10.	10.	10.	1.	1
NO	1.5	3.	4.	1.	1.	1.	• • با
N ₂	1.5	3.	4.	1.	1.	2.	4.
0	25.	12.5	12.5	10.	10.	1	10 5
ОН	25.	12.5	12.5	10.	10.	1.	12 5
02	1.5	6.	11.	1.	1.	25.	5.

TABLE 2. Third Body Recombination Efficiency Ratio for CHON System: (as recommended by Kushida, Reference 2)

TABLE 3.	Recommend reactions in initi nozzle.	ed Reacti between al equili	on Data (H species H brium expa	HFN Syste F, F ₂ , H, and throu	m): For HF,H ₂ ,N gh an a	chemcial , and N ₂ diabatic		
	$k = AT^{-N}$	e ^{(-1000B/}	^{RT)} ;in un	its of co	,°K,mole,s	ec.		
REACTIONS	:							
H + H =	H ₂ , A -	• 6.4E17,	N = 1.0,	B = 0.	, BAULCH	172, M=	AR (A)	30 U
F + F =	F ₂ ,A.	<b>3.25E8</b> ,	N =-1.0,	B =-6.3	8, BAULCH	181, M	= AR (A)	10 U
H + F =	HF , A =	= 7.5E12,	N = 0.0,	B =-35.	13, BAULCH	181, M	= AR (A)	30 U
N + N =	N ₂ , A	<b>-</b> 3.0E14,	N = 0.0,	B = -,	.99, BAULCH	173, M	= N ₂ (A)	10 U
END TBR R	EAX							
F + H ₂ =	HF + H ,	A = 9.2E1	3, N = 0.	0 B = 1	.08, FOON	75,	(A)	30 U
H + F ₂ =	HF + F ,	A = 8.8E1;	3, N = O.	.0, B = 2	.40, BAUL	CH 81,	(A)	10 U
	,							
LASI READ	<b>、</b>					<b>N</b>		
TABLE 4.	Third Bo	dy Reacti	on Rate Ra	atios (H	F N System	<u>)</u>		
	(as reco	mmended b	y Kushida	, Kereren	ce Z)			
REACTION		H + H	F + F	H + F	N + N			
SPECIES	^H 2'	4.	1.	8.	2.			
SPECIES	F ₂ ,	1.	2.4	1.	1.			
SPECIES	HF,	2.	1.	2.	1.			
SPECIES	N ₂ ,	1.5	1.	2,8	1.			
SPECIES	N,	1.	1.	1.	10.			
SPECIES	F,	4.	2.4	4.	1.			
SPECIES	н,	25.	1.	20.	10.			

А-б

.

# Other Elemental Systems

Consideration was given to expanding the reaction set of Reference 2 to other elemental systems. Tables 5 and 6 have been prepared to indicate liquid propellant rocket engine systems of possible interest. This approach leads to 11 combinations of the elements C, Cl, F, H, N, and O, which are listed alphabetically in Table 6. Sets 3, 4, 7, 8, 10, and 11 are covered by the reactions presented in Tables 1 through 4. There is presently a lack interest the oxidizer/fuel combinations that require sets 1, 2, 5, 6, and 9. However, screening studies, such as References 4, 5, and 6, have indicated the species and reactions that control these systems. The additional species required are: Cl, Cl₂, ClF, HCl. The additional reactions required are presented in Table 7.

Many of the rates given in Table 7 are estimates rather than measured values. The reaction set given in Table 7 must be considered preliminary.

The reaction numbers used in Reference 1 are indicated in Table 7. For example, the first three reactions in Table 7 are the reactions numbered 13, 12, and 11 in Reference 1.

Good measured data are now available for the Cl + Clrecombination reaction. The reaction rate for the reaction H + Cl + M = HCl + M is obtained from the data for the reverse reaction and the equilibrium constant. The third body efficiencies for the reactions listed in Table 7 are given in Table 8. For the reaction  $Cl + Cl + M = Cl_2 + M$  with  $M = Cl_2$ an efficiency ratio of about 5 is reported from 4 sets of experiments. A value of unity is used for the other third body efficiencies because of a lack of data.

Measured data was found for reactions 29 and 31 of Reference 1. Reaction 30 of Reference 1, i.e.

 $H_2 + C\ell_2 = HC\ell + HC\ell$ 

### ORIGINAL PAGE IS OF POOR QUALITY

Table 5. Oxidizers and Eucle for Liquid Rocket Propellants Containing Flements C, CL, F, H, D, O

Oxidizers	Fuels
Containing Elements Cl, F, H, N, O	Containing Elements C, H, N
Formula, Name	Formula, Name
ClF ₃ , Chlorine Trifluoride ClO ₃ F, Perchloryl Flouride F ₂ , Flourine HNO ₃ , Nitric Acid N ₂ O ₄ , Nitrogen Tetroxide O ₂ , Oxygen OF ₂ , Oxygen Difluoride	$\begin{array}{llllllllllllllllllllllllllllllllllll$

5

## ORIGINAL PAGE IS OF POOR QUALITY

Table 6. Elemental Compositions for Cxidizer/Fuel Combinations used in Liquid Rocket Engines

.

	Elemental Composition	Example		
1.	С, F, H, N	F ZCH N Reserve		
2.	C, F, H, N, O	$\frac{12^{10} \text{ C}^{\text{N}} 2^{1}}{\text{OF}_{2}/\text{N}_{2}} = \frac{12^{10} 2^{\text{H}} 8^{\text{N}} 2}{2^{10} 2^{\text{H}} 8^{\text{N}} 2}$		
2.	С, Н, О	$2^{-2^{+}4}$ $2^{+}8^{+}2^{-}$		
4.	С, Н, N, О	$\frac{10^{27} \text{ m}^{-2}}{\text{N}}, \frac{0}{2^{27} \text{ m}^{2}}, \frac{0}{4}, \frac{10^{2} \text{ m}^{2}}{\text{3}^{12} \text{ m}^{2}}$		
5.	C1, F. H, N	$\frac{\sqrt{2} \nabla \mu^{2} \nabla H}{2} \frac{N_{2}}{2} N_{$		
6.	11, F, H, N, O	$\frac{2}{2} \frac{2}{2} \frac{1}{4}$		
7	F, H	$V_2 V_3 V_2 H_4$		
8.	^у . Н, N			
у.	F, H, N, O	$2^{\prime} 2^{\prime} 2^{\prime} 4$		
10.	H, N, O	$\frac{012^{N}2^{H}4}{2}$		
11.	Н, О	^N 2 ^O 4 ^{/N} 2 ^H 4 ^O 2 ^{/H} 2		

i.

was deleted as unimportant. Reactions 11, 32, 33, 34, 35, 36, 37, 38, 39, 40, 52, and 53 with their estimated rates, were taken from Reference 1.

There are some scattered data reported for the reactions 32, 33, and 34, i.e.

These data are within a factor of 10 of the estimated values. No other data was found for these reactions.

Two reactions were added to the system that did not appear in Reference 1, but are believed to be important (for example see References 4, 5, and 6). Measured data is available for these reactions, which are:

 $C\ell + OH = HC\ell + O$ 

and

 $HC\ell + OH = H_2O + C\ell.$ 

TABLE 7. Additional Chemical Reactions of Importance in C, Cl, F, H, N, O Systems
<pre>k = AT^{-N}e^(-1000B/RT); in units of cc, ^oK, mole, sec.</pre>
REACTIONS
Cl + Cl = Cl ₂ , A = 2.23E14 , N=O , B=-1.81, M = AR 13/BAULCH 81 10U
H + Cl = HCl, A = 2.6E13 , N=0 ,B=-19.9, M = AR 12/BAULCH 81 51
C1 + F = C1F, A = 3. E16, $N=.5$ , $B=0$ , $M = AVE 11/CPIA246$ 250
END TBR REAX
Cl ₂ + H = HCl + Cl, A= 8.6E13, N=O , B = 1.2 , 29/BAULCH 81 10U
Cl + H ₂ = HCl + H , A= 1.45E13, N=O , B = 4.4 , 31/BAULCH 81 10U
HC1+ F = HF + C1, A= 1.9E12, N=68, B = .6 , 32/CPIA246, 25U
C1 ₂ +F = C1 + C1F, A= 6.2E12 , N=68, B = .5 , 33/CPIA246, 25U
Cl + F ₂ = F + ClF, A= 7.6E12, N=68, B= .3 , 34/CPIA246, 250
ClF+ H = HF + Cl, A= 1.8E12, N≖58, B= 3.2 , 35/CPIA246, 250
C1F+ H = HC1 + F, A= 5.6E12, N=68, B= $1.9$ . $36/CP1A246$ 250
ClF+ H ₂ = HCl + HF, A= 1.8E10, N=5, B=46.34 , 37/CPIA246 1000U
F ₂ + HCl= HF + ClF, A= 1.8E10, N=5, B=39.43 , 38/CPIA246 1000U
ClF+ HCl= HF + Cl ₂ , A= 1.8E10, N=5, B=46.03 , 39/CPIA246 1000U
F ₂ + Cl ₂ = ClF + ClF, A= 1.8E10, N=5, B=26.76 , 40/CPIA246 1000U
OH + F = HF + O , A= 2.9E12, N=68, B= .2 , 52/CPIA246 250
$H_2^{O+}F = HF + OH$ , A= 1.4E10, N=68, B= .6 , 53/CPIA246 251
C1 + OH = HC1 + 0, $A = 5.9E12$ , $N = 0$ , $B = 5.72$ , $PAULOU OT$
$HC1+OH = H_2O+C1$ , $A= 2.25E12$ , $N= 0$ , $B= 1.02$ , BAULOU 81 100
LAST REAX

≢ ¹ata

TABLE 8.	Third	Body	Reaction	Rate	Ratio
REACTION		H +	CI CI	+ Cl	
SPECIES	Ar	1	1		
SPECIES	HC 1	1	1		
SPECIES	C1 ₂	1	5		
SPECIES	C1	1	1		

_____

ł

ŗ

-

-

ł

)

- Ref. 1. JANNAF Rocket Engine Performance Prediction and Evaluation Manual, CPIA Publication 246, April 1975.
- Ref. 2. Kushida, R., "Revision of CPIA 246, Section 6.2, Reaction Rate Data," JPL 383CR-76-211, 29 March 1976.
- Ref. 3. Baulch, D.L., Campbell, I.M. "Gas Phase Reactions of Hydroxyl Radicals," Gas Kinetic Energy Transfer, 4, p. 137-88 (1981).
- Ref. 4. Gold, P.I., et. al., "Chemical Species and Chemical Reactions of Importance in Nonequilibrium Performance Calculations," TRW02874-6001-R000, 6 December 1966.
- Ref. 5. Coats, D.E., et. al., "A Screening and Numerical Study for the One Dimensional Kinetics (ODK) Nozzle Program", Prepared for AFRPL, Contract F4611-77-C-0046, by Software & Engineering Associates, Inc., Sept. 1979.
- Ref. 6. Cherry, S.S., "Kinetic Rate Data Screening and Update Procedure", JANNAF Performance Standardization Subcommittee, Salt Lake City, UT, Jan. 25-26, 1979.
- Ref. 7. Baulch, D.L., Drysale, D.D., Horne, D.G., Lloyd, A.C., "Evaluated Kinetic Data for High Temperature Reactions, Vol.I Homogeneous Gas Phase Reactions for the H₂-0₂ System," CRC Press, Cleveland, Ohio (1972)
- Ref. 8. Baulch, D.L., Drysdale, D.D., Horne, D.G., Lloyd, A.C., "Evaluated Kinetic Data for High Temperature Reactions, Vol.II Homogeneous Gas Phase Reactions for the H₂-0₂-N₂ System," CRC Press, Cleveland, Ohio (1973)
- Ref. 9. Baulch, D.L., Drysdale, D.D., Duxbury J., Grant, S., "Evaluated Kinetic Data for High Temperature Reactions, Vol.III Homogeneous Gas Phase Reactions of the 02-03 System, The CO-02-H2 System, and of Sulfur - Containing Species, Butterworth-Inc., Mass. (1976)
- Ref.10. Baulch, D.L., Duxbury, J., Grant, S.J., Montague, D.C., "Evaluated Kinetic Data for High Temperature Reactions, Vol.IV: Homogeneous Gas Phase Reactions of Halogen and Cyanide- Containing Species," Journal of Physical and Chemical Reference Data, Vol.10, supplement No.1 (1981)
- Ref.11. Jensen, D.E., Jones, G.A., "Reaction Rate Coeffecients for Flame Calculations," Combustich and Flame 32, p. 1-34 (1978).
- ^{*} Ref.12. Foon, R., Kaufman, M., "Kinetics of Gaseous Fluorine Reactions," Prog. in Reaction Kinetics 8:2, 81-160, (1975).