

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

Report Oil the
Feasibility of Hypercube Concurrent Processing Systems

in Computational fluid Dynamics

,Iulm D ruizo

Mardi tE , 19so

'Research his,i.itute Im lkdvattced Coin-p ider 3ciencc,
'\,kSA Ames R.es^-areh Center

RJA(,S 'Technical Report 86.7

(NASA-TM-89396) REPORT ON THE FEASIBILITY	 N86-29158
CF HYPERCUBE CCXURCRENT PECCESSING SYSTEMS
IN COMPUTATIGNAL FLUID DYEAMICS (NASA) 72 P

CSCL 20D	 Unclas
G3/34 43341

Research Institute for Advanced Computer Science

'A

-1- March 18, 1986TR-86,7

Report on the
Feasibility of Hypercube Concurrent Processing Systems

-'	 in Computational Fluid Dynamics

John Bruno

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 86.7
March 18, 1986

We have studied the feasibility of using hypercube-connected concurrent processor systems for
problems in Computational Fluid Dynamics. We considered both explicit and implicit numerical
methods and we evaluated several alternative implementations of these methods on concurrent
processor systems.

Work reported herein was supported in part by
Contract NAS2-11530 and by Cooperative Agreement NCC 2-387
from the National Aeronautics and Space Administration (NASA)

to the Universities Space Research Association (USRA).

L Y. .

Page

1. Summary...................... : 2

2. Introduction	 ... 6

3, Processor	I.,................I........ 10

3 .1.	 Interconnection Architectures ... 10

3 .2.	 Conci ;Trent Processor Systems .. 14

3 .3.	 The	 InLeol	 iPSC	 17

4, The	 Equations	 22

5. Numerical Simulation Methods .. 24

5.1.	 Lax-Wendroff Explicit Method	 ... 25

5.2. Beam and Warming Implicit Factored Method (Berger's
Equation)	 ... 29
6. Requirements	 for	 CFD	 ... 38

6.1.	 Storage Requirements for CFD	 .. 38

6,2.	 Computational Requirements for CFD 39

7. Lax-Wendroff Method	 41
7.1.	 Implementatioa	 41

7,2.	 Efficiency	 ... 46

7 .3.	 Performance	 47

S. The Beam and Warming Implicit Factored Method 48
8.1.	 Implementation	 48

8.2,	 Cell-To-Node Mappings 	 .. 54

8.3.	 Performance	 58

9. References	 .. 59

10. Appendix	_........ 	 61

TR-86.7	 -2- 	 Match 18, 1984

Report on the
Feasibility of Hypercube Concurrent Processing Systems

in Computational Fluid Dynamics

John Bruno

Research Insitute for Advanced Computer Science

March 18, 1986

1. Summary

Problem Statement

In this Task we evaluate the feasibility of using the hypercube-connected

concurrent processor systems for problems in Computational Fluid

Dynamics(CFD). We have found that concurrent processor systems can be a

cost effective approach to CFD.

Accompli8hment8

We have designed and implemented a Lax-Wendroff explicit method for the

Navier-Stokes equations. Our code runs on the Intel iPSC concurrent processor

system. Tests of this code show that it is reasonably efficient. This is so

because the computation dominates the communication as the size of the prob-

1

1
I

aI

S^

F

f

i

f

f	 i

'	 . R-86.7	 . S .	 March 18, 1986

lem domain increases. On a 32 node hypercube we obtained a sustained process-

ing rate (including the cost of communication) of over 475,000 floating point

operations per second. Comparison of the identical code on a VAX 11/780 (one	 t

node) shows that the cube achieves a floating point operation rate that is about

15 times faster than the VAX.

We have also designed and implemented the Beam and Warming implicit

factored method for Berger's equation. This code has been run on the Intel iPSC

hypercube. Preliminary tests show that the efficiency of this code is poor. The

reason for this stems from the fact that a substantial amount of communication

is required throughout the computation. The efficiency would no doubt improve

with the Navier-Stokes equations since the amount of computation relative to

communication increases. Additionally, there is little chance to overlap the com-

munication with the computation. Our implementation indicates that improve-

ments in the communication architecture would improve the efficiency of our

implementation.

On the Intel iPSC there is a large overhead for communication between

nodes and that large numbers of small messages can seriously impact the effi-

ciency of a computation [KO]. There are a number of issues concerning the Intel

communication architecture.

1. There is no separate I/O processor in the node. The communica-

tion coprocessors in the Intel node are not programmable.

i

TR-88,7	 -4-
	 March 18, 1996

2. Too much data copying is required for I/O.

'.	 3. Processes in the same node cannot share address space. The

{

	

	 above factors make it impossible to reduce the communication

penalty by overlapping communication with computation.

The 512K bytes of main memory is inadequate for CFD. A version of the

Intel iSPC is available with 4.5 Mbytes of main memory per node and this confi-

guration would be significantly more useful in CFD experiments.

Projections

1. It is important to continue the evaluation of the CFD codes that

have been developed especially on a hypercube with substantially

more node memory. The Navier Stokes equations should be

implemented using the Beam and Warming implicit factored

method.

2. For the sake of completeness, a spectral method should be imple-

mented. Much would be learned from this project.

3. Codes developed at Ames should be ported to other concurrent

processor systems such as the JPL Mark III concurrent processor

system. Since this system supports overlapped I/O, the efficiency

of our implementations should improve.

^i

1

P'
v

i

TR-88,7	 .5- 	 March 18, 1988

4. A study into the feasibility of using the hypercube concurrent

processor system for grid generation should be undertaken.

Careful consideration should be given to graphical input and out-

put, With the grid generation component in place, the previous

codes should be expanded to include metric terms. This will help

to improve efficiency,

5. Once the basic methods for CFD have been implemented and

tested, zonal methods should be investigated,

t

1	 ^

t* 1:

TR-86.7	 - 8 -	 March 18, 1986

Z. Introduction

In this report we present the results of an investigation into the feasibility of

using hypercube concurrent processor systems for problems in Computational

Fluid Dynamics(CFD), Specifically, we are interested in the numerical simula-

tion of the Navier-Stokes equations for situations in which few simplifying

assumptions can be made and for high Reynolds number, If we insist on a direct

simulation of the Navier-Stokes equations for any practical problem, an enor-

mous number of grid points is required to resolve the wide range of scales of

motion. An alternative to numerically resolving all scales of motion is to model

those scales not resolvable by the computational grid in terms of the resolvable

r

	

	 scales. This technique is referred to as Large Eddy Siniulation(LES) and is also

computationally intensive. In either case we are faced with problems whose com-,

putational demands in time and space are beyond the capacity of today's super-

computers. Thus we are motivated to consider multiprocessor architectures with

the hope that they may be able to cope with the demands of CFD.

Fine-Grain Parallelism

When computational requirements outpace current technology, we often

turn to (parallel) concurrent architectures. There has been a great deal of effort

directed at speeding up single-processor systems using fine-grain parallelism. For

example, pipeline techniques have been applied to instruction processing and to

the construction of arithmetic units. Multiple memory banks are used to obtain

TR-86.7	 -7 -	 Much 16, 1966

adequate memory bandwidth to keep up with today's central processors, The

supercomputers offered by manufacturers such as CRAY and CDC represent the

ultimate in this direction.

An important feature of these systems is that programmers are shielded

from the architectural complexities. The architectural features are usually hid-

den by the compiler technology which attempts to generate code that takes

advantage of the architecture. For the most part, scientists have been able to

maintain the abstraction provided by some programming language, such as

FORTRAN. Often, better results are obtained if the high level code is written

with the compiler optimizations in mind (such as writing DO loops which are

easy for the compiler to "vectorize") and additionally, one could_ write low-level

code which makes more effective use of the hardware, Many subroutine libraries

have been created using this latter approach.. However, the vast majority of the

users of these systems are not overly concerned with their inherent complexities.

This is not true for the following classes of concurrent computer systems.

Shared Memory

Multiprocessor systems with shared memory have been designed to help

meet the challenge, but these systems are most often used to provide higher

throughput rather than true parallel computation for a single instance of a prob-

lem. The reason for this is that we are not yet able to hide this kind of parallel-

ism from the programmer. The programmer must explicitly design and imple-

possible configurations depending on processor and network complexity.

i
t	 a

TR-90,7	 8 •	 March 18, 1986

ment algorithms which take advantage of the multiple processors since compiler

technology has not been designed which can effectively shield the programmer

form the hardware environment, (An important research effort in the area of

automatic program restructuring is the Cedar Project at the University of Illi-

nois. Its purpose is to provide software which will automatically detect instances

where concurrent processors could be used effectively, (Generally speaking, this

type of compiler technology is unavailable and we are forced to design parallel

algorithms which take explicit account of the concurrent hardware or find paral-

lel implementations for known sequential algorithms.)

Shared-memory systems employ mechanisms which permit the processors to

access shared memory. These mechanisms can be as simple as common bus or as

complicated as a crossbar switch, and generally we expect to find something in

between. Bus architectures suffer from too little bandwidth, for which they usu-

ally compensate with mechanisms such as processor caches. On the other hand,

a full crossbar switch is prohibitive in hardware and expense. Other approaches

trade interconnection complexity with ease and cost of construction.

Mesaage Paasing

Another important class of concurrent processor systems is the one in which

there is no shared memory. The processors communicate with each other by

sending messages (control and data) through a network. There is a wide range of

rY
I

4	 ,f

7IR
TR-86.7	 .9-	 Much Is, 1906

Regardless of the particular level of node compl"ity and the choice of intercon-

nection network, the programmer is faced with the task of designing and imple

menting algorithms which take the system architecture into account. In general,	 .

the problem domain must be partitioned among th;- processors and the program-

mer must specify the details of the corresponding data communication.

In this report we study the feasibility of using concurrent processor systems

with no shared memory for problems in CFD. We shall consider implementa-

tions of explicit and implicit numerical methods for the Navier-Stokes equations.

In the next section `a; describe some of the features of concurrent processor

systems. After this we present the equations of interest, the Navier-Stokes equa-

tions, and give two numerical methods for their simulation. Finally we describe

implementations of these methods on an Intel iPSG 32-node hypercube.

ij

t

Manch 18, 1986

e f

11

X10•

3. Procemor. r

We define a concurrent processor system as a collection of nodes, where each

node consists of a processor, arithmetic unit(s), local memory, and an intercon-

nection netwo;* which provides the means through which nodes communicate

with each other, Each node executes its own instruction stream and may have

access to external storage media and I/O devices. Since there is no shared

memory, the only way for processors to communicate with each other is by send-

ing messages through the network. There are many kinds of interconnection net-

works and we breifly describe a few of the more important ones. Throughout th

rest of the paper we will let N denote the number of nodes in the system. The

nodes are numbered beginning with 0 and ranging up to N —1.

3.1. Interconnection Architectures

Ring: We say the nodes are connected in a ring if there is a communiation link

from node i to node i +1(modN) for i =0,1,...,N —1. The ring architecture has

the advantage that it is very simple and obviously scalablet. Interestingly

enough there are many problems for which the ring architecture is sufficient.

Unfortunately, there are also many problems for which the ring architecture is

not rich enough in the sense that the communication overhead caused by large

distances between the nodes is more than we can tolerate. For example, imple-

t A design is scalable it it can be adjusted up or down in size without lost of efficiency or functionality.

9

.3
r^

•ks

^T
	

i

TR•9e.7	 -11-	 March 1$, 1906

mentations of the FFT algorithm on a ring connected systems suffer from exces-

sive communication overhead.

Mesh: The 2-dimensional mesh architecture represents an attempt to mininsize

the communication distance between the nodes. In this case we envision the

nodes set out in a two-dimensional array with horizontal and vertical communi-

cation links between adjacent nodes.

Xypereube; Assume that N = 2 k . Let bin (i ,k) denote the k-bit binary

representation of the integer i where 0<i <2 k , The h,,percube interconnection

architecture provides a direct communication link between node i and node j if

bin (i ,k) and bin (j,k) differ in exactly one bit position. It follows that each

node has a direct communication link with k other nodes and that the maximum

number of communication links that is needed for any pair of nodes, to communi-

cate is k. For example, consider nodes 0 and 2 k —1. Clearly, bin (O,k) and

bin (2 k —1,k) differ in all n bit positions and therefore any message sent from

node 0 to node 2k —1 must pass through k —1 intermediate nodes and use at

least k different communication links. The hypercube network contains a total

of
Z

N 1092N bidirectional communication links.

0

i "

I- _ 0

r_i

I-= Z

r= 3

F

tl

TR-86,7	 • 12 -	 March 18, 1986

141PrL RCuae

Butterfly: The butterfly network is frequently associated with the FFT algorithm,

A butterfly network consists of k +1 ranks of network nodes. We denote the i th

node on the r th rank by p r; for 0<i <N and 0<r <,k. Then node pri on rank

r >0 is connected to two nodes on rank r —1, the two nodes pr -I 1 such that

either j =i or the binary representation of j differs from i in only the r th place

from the left.

13 KTT a PLr

• 1S . March 18, 1956

t

1

I

G

Usually, the r =p and the r =k ranks are identified and correspond to the pro-

cessor nodes and the remaining ranks contain network switching nodes.

The butterfly network is closely related to the hypercube network. If we coalesce

all the nodes in the same column, then the network reduces to the hypercube

network.

Shuffle-Exchange: The exchange interconnection consists of links between nodes i

and i +1 if i is even. The shuffle interconnection provides a link from processor

i to 2i (mod N —1). As a special case, if i =N —1 we connect N —1 to itself.

^i

TR-86.7	 -14 -	 March 18, 1986

3.2. Concurrent Processor Systems

.

	

	
In the section we give a brief description of some of the concurrent processor

systems which either have been implemented or are currently being designed or

implemented.

Cosmic Cube

The "Cosmic Cube" is an experimental hypercube concurrent processor system

built at The California Institute of Technology and consists of 64 nodes[Se851.

Each node contains Intel 8086 and 8087 co-processors and 136Kbytes of main

memory.

Intel iPSC	
i?

Intel is marketing hypercube concurrent processor systems in 32, 64, or 128 node 	
1

configurations. Each node contains Intel 80286/80287 co-processors and

512Kbytes of main memory. The communication links between nodes are

bidirectional and have a transfer rate of 10 Mbits per second. We will have

more to say about this system since it is available at NASA Ames and has been

used in conjuntion with this report.

71'

TR.86,7	 .15.	 March 18, 1986

JPL Mark III

The hypercube research project at JPL is directed toward the design and imple-

mentation of a high-performance hypercube conciirrent processor system[JPL85).

Each node contains Motorola 68020/68881 co-processors, a Motorola 68020 1/0

processor and up to 4 Mbytes of main memory. The communication links are

capable of transferring data at 100 Mbits per second. A 32-node prototype is

scheduled for completion in February 1986 and a 256-node version will be avail-

able in January 1987. Beyond this, there are plans to include a Weitek scalar

floating point unit (.25-2.0 Mflops) in each node and later to add a Weitek vec-

tor floating point unit (5-10Mflops). The long-range objective at JPL is to con-

struct a 1024-node system which, when fully configured, would have a rated per-

formance of 5-10 Gflops and a memory capacity of 4 Gbytes.

NCLTBE

The NCUBE is a new machine with a proprietary CPU and small local memory.

The current version can be configured with up to 1024 nodes each with a max-

imum of 128K bytes of main memory. The processors are interconnected in a

hypercube configuration.

011, _o.

TR-88.7
	

-16-
	

March 18, 1984

Lawrence Livermore Laboratory

The Parallel Processing Project at LLL is concentrating on shared memory confi-

gurations with vector processing nodes. They are studying the performance of

various switch designs for processors which generate memory references typical

of today's vector machines (BR185, BR 2851.

The BBN Butterfly

The BBN Butterfly is a shared memory concurrent processor system with a But-

terfly interconnection network. Each node consists of a M68020 processor, a

M68881 floating point co-processor and up to 4 Mbytes of main memory. There

is a separate processor in each node called the Processor Node Controller (PNC).

The PNC initiates all messages transmitted over the butterfly switch and is

involved in every memory reference made by the M68020. The PNC uses a

memory management unit to translate the virtual addresses used by the M68020

into physical memory addresses. Physical addresses may correspond to locations

in some other node and it is the responsibility of the PNC to initiate the data

transfers through the switch. This translation is transparent to the M68020,

and thus the PNC provides a shared memory view. The butterfly switch has a

processor-to-processor bandwidth of 32 Mbits per second. A 128-node system

has been built.

i

w	a
	

?/,

^, i

TR-86.7
	 V.	 March 18, 1986

Los Alamos

Researchers at Los Alamos National Laboratory are designing a 1029 node con-

current processor system. The nodes will be capable of performing from 10 to 20

million non-pipelined floating point operations per second, and are hypercube-

connected. The nodes consist of two AMD 29325s, a NS32032, and at least

16Mbytes of main memory organized into 16 banks. Each node will also contain

a disk with about 1/2 billion bytes of storage.

Princeton Navier-Stokes Machine

Daniel M. Nosenchuck and Michael G. Littman at Princeton University are

developing a concurrent processor system(called NSC) to numerically simulate

the full Navier-Stokes equations with no modeling. Each node has 8 Mwords of

32-bit interleaved memory and is capable of an average sustained computaion

speed of 100 million floating point operations per second. The nodes are mesh

connected and a 128 node prototype is under development.

3.3. The Intel iPSC

In this section we give a more detailed description of the architecture of the

Intel iPSC concurrent processor system.

Cube:

K4

	

A`	 P

	

^	
Itl

TR •86.7	 - 18 -	 March 18, 1986

	

'!	 R

	

f "	 The Intel iPSC concurrent processor system consists of either 32, 64, or 128

nodes. Each node has an Intel 80286 central processing unit and an Intel 80287

numeric processing unit supporting 32-, 64-, and 80-bit floating point

operations(IEEE 754). Each node has 512 Kbytes of main memory(can be

upgraded to 4.5 Mbytes) per node. The communications between nodes is over a

10 Wit per second point-to-point serial channel(Intel's 82586 communication

processor). Each node has 8 communication channels: seven for communicating

with neighboring nodes and one for communicating with the cube manager.

Cube Manager:

The cube manager is an Intel 286310 system which consists of an 80286 central

processing unit, an 80287 numeric processing unit, and up to 4 Mbytes of main

memory. It comes with either a 40 Mbyte winchester disk or a 320 Mbyte disk.

There is a global ethernet channel for communicating with the cube nodes. An

ethernet TCP/IP network subsytem is available which is used to provide access

to the cube manager from other hosts on a LAN.

Software:

The cube manager comes with the XENIX 3.0 operating system, FOR-

TRAN 77 compiler and a C compiler,

Intel provides a multiprocessing operating system which is resident in each

of the nodes and provides the following services to each of the node processes:

status
probe

nynode
mypid
cubedim
clock

flick

19-
	

March Is, 1986

Meaning
Creates a channel for node process communication.
Destroys the communication channel created by copen.
Initiates transmission of a message to another process.
Initates transmission of a message to another process and
returns only when the channel is available for reuse.
Initiates the receipt of a message.
Initiates the receipt of a message and
blocks until the message is received.
Informs the calling process of the availability of a channel.
Determine if a message of the specified type has been
received on a given channel.
Returns the node number of the calling process.
Returns the process id of the calling process.
Returns the dimension of the cube.
Returns the elapsed time(in milliseconds) since the
node was initialized.
Relinquishes the CPU.

I

Processes are downloaded into the nodes from the cube manager. We can

load more than one process into each node and provide user-assigned process id's

for each. Additionally, as part of loading processes into nodes, the user can

optionally specify the maximum number of open channels and the maximum

stack size per process.

Software for, the cube is developed on the cube manager and then down-

loaded to the nodes. Typically, there is a cube manager process which communi-

cates with the node processes during course of a computation. At the very least

the cube manager process starts the computation by transmitting data to the

nodes and collects data from the node processes a the end of a computation.

,

TR-86.7	 -20- 	 March 18, 1986

Communication architecture:

The following is a list of observations concerning the communication archi-

tecture of the Intel system.

Little opportunity to overlap communication with computation. Each node

has a single CPU which is required to set up all communication between nodes.

This effectively eliminates much of the opportunity to overlap communication

with computation. The extent to which the overlapping occurs is provided by

the separate 82586 communication coprocessors. We would prefer a separate

I/O processor which is capable of independently executing its own instruction

stream.

Too much copying required, Communication often requires an inordinate

amount of data moves, If the data to be transferred are not contiguous, then

they have to be copied into contiguous locations before transfer. All data

received are first placed in system buffers and then copied to contiguous loca-

tions in the user's space and, finally, if the data belong in non-contiguous loca-

tions the user has to copy the data once more. There should be some way in

which constant stride data can be moved from one place to another without the

intervention of the node processor. It would be useful to have a simple DMA

device which could do memory-to-memory transfers.

Proceasea in the same node do not share address apace. Processes within the

same node should be able to share address space with each other. For example,

if we were to have a separate communications processor, then the 1/0 process

4

.a	
J

t
F

	
i

TR-86.7	 .21- 	 March 18, 1986

would most naturally be required to transfer problem data to and from the node.

The most efficisnt way to accomplish this would be to allow the 1/0 process to

share the address space with other processes within the same node, If it does not

share address space then the only way for the communication process to pass

data to other processes within the node is by message passing. This would

defeat the advantage of using a separate 1/0 processor. Another reason to share

address space within a node is to permit node processes to share code,

Performance:

The paper by Kolawa and Otto {KO] give a number of interesting performance

results for the Intel iPSC. This paper determines the speed of the basic opera-

tions used in the Intel iPSC hypercube. Because of its pertinence to our report,

we include the Kolawa and Otto paper as an appendix.

4

TR-86.7	 • 22 .	 March Is, 1986

4. The Equations

The unsteady, three-dimensional Navier-Stokes equations in Cartesian coor-

dinates (x ,y ,x i t) are taken as the basic set of equations[Lo82). The Cartesian

space represents both the physical domain and the the computational domain. It

is known that the physical domain can be transformed into other curvilinear

coordinates thus making it possible to treat a wide variety of geometries using

one basic set of equations over a simple computational domain. These transfor-

mations introduce additional metric terms into the basic equations. We have

chosen not to include these terms in order to simplify our presentation. Obvi-

ously, the elimination of the metric terms reduces the computational burden

and so later in the report we will determine the effect of the metric terms on our

performance estimates.

The three-dimensional Navier-Stokes equations are given by:

aQ + 8
(E —E^)+

8 (F • F^)+ a
(G —Gv)=0	 (4.1)

at	 ax	 a^	 az

where

Q = [P P u P V Pw e

41

E _ [pu puu +p pvu pwu (e +p)u) t ,

F = [pv puv pvv +p puiv (e +p)v] t ,

G = [pw puw pvw pww +p (e +p)w)

r, = ^(au
+ av + aw) + 2µ su

ax ay az	 ax

__ EV _L [Re 0 'r., Tyz 'rzz Qz)

	

1	 i
FV =

R e
10 r=y ryy T=y Ay)

	

1	 ^
GV =

1Re
[0 rzz ryz T:z Qz j

au	 av
rzy = ryz = 'U (

ay
+ ax) ,

I---- --	
ri I a- I

TR-86.7	 • 23 - March 18, 1986

au	 aV aw 	 PVryy	 ^^ at
+
ay ' ax) `^

2µ ay , rx:
au

rz: " ^`(az
aw

+ ax)

au	 au	 a	 aw

r`x	 ^(ax + ay	 Oz)	
2µ az ry.

aV
rzy '^ µ(Oz

aw
+ ay)

i

Ax	
Pr ax +

u rxx + U rxy + w rxs

ae
Qy	

Pr ay	 +
it ryx + V 'r,, + w ryz

de
Qz	

Pr az	
+ u r;z + u rxy + w rzz , ^s

Cl . r -. 2(u2 +v 2+W2).
P

The velocity components u ,v , and w are 'nade dimensionless by a 06 , the

freestream speed of sound, the density p is made dimensionless by p. and the

total energy a by p. a .2 . The pressure p is given by

(y-1)(e — 0.5p(u 2 +v 2 +w 2)) where -y is the ratio of specific heats. Also, r. is the

coefficient of thermal conductivity,µ is the dynamic viscosity, and a from

Stokes' hypothesis is —2/3µ. The Reynolds number is Re and the Prantl

number is Pr.

w;.	 LJ

-24 .

i'

r ,

tF
E	

I^u 	 r^
1 R-86.1

^t

March 19, 1966

Vri,
^f

R	
5. Numerical Simulation Methods

b	 t

In this section we describe two methods for numerically simulating the

Navier-Stokes equations. The first method is an explicit procedure of the Lax

Wendroff type(Am69) and the second is the implicit factored method developed

by Beam and Warming(BW78). Before presenting these methods we provide

some useful notation and definitions.

The computational domain D is the set, of spatial points over which we

attempt to numerically simulate the evolutiDn of the dependent variables p, pu ,

pv , pw , and e . The points in D are called grid points and they form a uni-

forrnly spaced "grid" over D . Let Ax Ay , and Az denote the grid spacings in

each to the coordinate directions, respectively. Let there be I grid points in the

z -direction, J grid points in the y -direction, and K grid points in the z -

direction.

Formally, we define D as

D = { (x ,y ,z) I z =i Ax , y = j Ay , z =k Oz 0.4jere i , j, and k are positive integers

and i <1, j <J,andk <K }

The grid points in D are represented by triples of indices i , j, and k .

That is, (i , j ,k) denotes the grid point (x ,y ,z) with x =i Ax, y =j Ay, and

z=k Oz.

The ;dependent variables are simulated over a discrete set of points uni-

formly spaced in time. The difference between successive simulation times is

TR-86.7	 25 -	 March 18, 1086

The notation p i"k refers to the quantity p at spatial location (x ,y ,z) and

time t where x - i Ax, y = j Ay , z =k Az , and t -n At . Extending this nota-

tion we have,

n	 I n	 n	 n	 n
jk	

n t
Qs jk = (Pi jk P oi jk P Vinjk Pwi tI jk	 +

and

E, ik = E (Qo jk)

and so on,

5.1. Lax-Wendroff Explicit Method

The Lax-Wendroff method is an explicit procedure for computing Qi" +1
jk

from Qj'jk for all grid points (i , j,k). Part of this procedure involves computing

intermediate values which are associated with the spatial indices

(i +112,j +1/2,k +1/2) and the time parameter n +1r2.

We introduce some notation for describing differencing and averaging

processes. Let

x/ace (i , j ,k) = {(i , j ,k), (i , j +1,k), (i , j ,k +1), (i , j +1, k +1) } +

yjace (i +j ,k) = {(i + j ,k), (i + 1 , j +k), (i + j ,k +1). (i +1, j ,k +1) } ,

xjace (i , j ,k) = {(i , j ,k), (i +1, j,k), (i , j +1,k), (i +1,j +1,k) } ,

and

cube (i , j ,k) = xjace (i , j ,k) U xjace (i +1, j ,k) .

at^^

1.

W

i

TR-88.7	 -26- 	 March 18, 1986

If in some quantity, say pi" , we replace the triple i , j ,k by a set of points,

say z1ace (i j ,k), then the notation denotes the sum of the values of p" over all

points in z/ace (i , j ,k). For example, if r denotes the triple (i , j ,k) then

PrIace (r) _

	

	 r	
Pan

a c zjace (r)

Finally, we define, by example, the numerical differencing operators 6,6Y6y ,

and 6. .

	

6z Pi jk
= P face (i +1, j,k) — P face (i, 	 j ,k)

40z

	

6y r, n = Fyjace (i , j +l,k) "' Fn 	 (i, j ,k)
40y

6z(el)ink
= (e/)zjace(i,j,k +T) — (e1)zjaee(i,j,k)

Y	 4Oz

It should be clear from the above examples how the numerical difference

operatoi works.

Let (i , j ,k) denote a triple of indices (not necessarily integer valued).

Then we define (i , j ,k)+ to be (i +112, j +1 /2,k +1/2) and (i , j ,k)` to be

(i —112,j —1/2,k =1/2).

Finally, we define the sets C and I as

C = {(i,j,k)+I(i,j,k)eD } n {(i,j,k	 (i,j,k)ED } ,

I = { r I r cD and r +EC and r -eC } ,

and

—ITR -v r	 _

4

it
TR-86,7	 .27. 	 March 18, 1986

B=D—I

The grid points in B Are called boundary grid points, those in I are called

interior grid points, and those in C are called central grid points,

ti

4

TR-88,7	 -28
	

March 18, 1986

Lax-Wendrotf Method

Input: Q,n is given for all r cD and some nonnegative integer n .
Output: Qrn +1 for all r cD
Method:

Step 1: For all r X compute

Q
r
n +1/2 N Qcu6e

8
(r"}

—
 At (6 Z Er + by Fr" + 6z G,n) .

Step 2: For all r X compute
Ern +1/2 = E (Q, n +1/2)

Frn +1/2 = F (Qrn +1/2) , and

Grn +1/2 = G (Q rn +1/2) .

Step 3: For all r X compute (E„)r n , (Fv) rn , an d (Gv) rn . Some examples of
these computations are:

I TZx); — A(6, ur" + by vr" + 6z ,wrn) + 2µ6Z ur"

and

(Qz)rn —
Pr

6Z (el)rn + 8 (ucu6e (r") (TZx)rn ^" vcube (r") (Txy)rn + wcu6e (r") l Tzz)rn)

Step 4: For all r cI compute
Qrn +1 c Q r n _ A.t (6Z (Ern +1/2 _ (Ev

)rn
) + 6y (Frn T1/2 _ (

Fv)rn') + 6z (G'n +1/2 _ (Gv)r"))

Step 5:

For all r cB compute Q
r
n +1 from Q

r n according to the appropriate h;,undary
conditions.

March 18, 1986

J .,

-29 .

5.2. Beam and Warming Implicit Factored Method (Berger's

Equation)

Implicit .methods have been proposed for the numerical solution of various

forms of the Navier-Stokes equations. Implicit methods are more complex than

explicit methods since the former usually require the solution of a large number

of systems of equations.. However, implicit methods have improved stability pro-

perties over explicit methods thereby permitting a larger At . They have the

drawback that they require significantly more computation than explicit

methods.

The numerical method we shall consider is based on the work of Beam and

Warming. The formulation of the method by Beam and Warming actually

includes a number of different methods depending on the choice of certain

parameters. We will not give the complete details of the method since they can

be found in (BW78) and (Pu84).

As before, our objective is to determine Q n " given Q k where k < n

(Notice that we admit the possibility that Q 	 may depend on more than just

the immediately preceding time-step). The temporal scheme for advancing time

is given by

0

a

_	 T

i

TR-86.T
	

30 .	 March 18, 1986

&Q n — B At 8 OQ n+ of 8 Q n + E OQ n —1

1+eat	 1+fat	 1+^
+ 0[(0— 1/2 — e) of 2 + At 3]

where Q" = Q (n Q t) and A Q n = Q n +1 — Q n . The choice of 9 and ^
reproduces many two and three-level, explicit and implicit schemes,

The Navier-Stokes equations are solved for 8Q /8t and then substituted

into the temporal scheme given above. This results in a nonlinear set of equa-

tions for A Q n . A linear set of equations is obtained by the use of Taylor series

expansions of various terms. For example, E n +1 is replaced by

E n+1 = En + (pE) n (Qn +1 _ Q) + O (At 2)
aQ

We have implemented the Beam and Warming implicit factored method for

an equation called Burger's equation rather than the full Navier-Stokes equa-

tions. It was felt that the time spent in developing the code for the full Navier-

Stokes equations would be excessive and that the basic issue concerning the per-

formance of an implicit method could be resolved with the simpler equation.

Furthermore, the' implicit method for the Navier-Stokes equations leads to a

large number of block tridiagonal equations whose simultaneous solution requires

a large amount of intermediate storage which is not available on the Intel hyper-
4

cube. Burger's equation has only a single dependent variable and the implicit

'	 method gives rise to a large number of (scalar) tridiagonal equations. Both of

these factors mitigate the storage requirements and permit the use of reasonably

^.-„w r•.^-._^.,	_,_.,. ...-rte..;	 _._.._....._—...,^.=f.....-w.,..e..^-,,....-.

i^
f

TR-86. T
	 -31-

	
March 18, 1986

sized domains.

From a performance evaluation point-of-view, it appears that nothing is lost

by using Berger 's equation. The reason is that the computational requirements

for the Navier-Stokes equations are much greater than for Berger 's equation but

the communication requirements for Navier -Stokes are greater to a much lesser

extent. This implies that efficient implementations for Berger 's equation should

be more difficult to find than for the Navier-Stokes equations.

Berger 's equation is given by

aQ +ax (E - Ev)+ ay(F — Fv)+a (G -G"} =0

where Q = u , and

E = u 2 Ev = L
au

F = u2, Fv =v au
b

G = u 2 Gv = v	 .au

Setting = 0 and B = 1/2 in the temporal scheme yields the scheme used in our

implementation:

OQn _ At (aQ n+1 + aQ ►.)
2	 at	 at

(5.2a)

-lull

TR-86.7	 .32- 	 March 16, 1966

After linearization and factorization the temporal scheme can be written as

Lz Ly LZ AQ" H	 (5.1)

where L. , Ly , and L z are operators given by

L: _ (1	 (a+AtI x)u" — Z 2axJ}

L y _ (1 + At J(ay)u" _ 2aye J} ,

Lz = (1 + of J(a)u"
a
8 J} ,

i .	 and

au 	 a2 u
	 au 2 	a2 u	 au 2	a2uH = -At f(

ax -"ax2) + (ay	 ay -^) + (az - v az 2)J

Equation (5.1) holds pointwise in the spatial coordinates and relates the

dependent variable at the various time steps. The important point about the

operators, L. , Ly , and LZ is that they each involve spatial derivatives in a sin-

gle coordinate direction.

Letting X = Ly Lx A Q " and 'Y = Lz 4Q" we can rewrite equation (5.1)

as a sequence of equations which corresponds to the actual implementation

sequence.

LZ X = H ,
i	

. -

1i

TR•86.7
	

- 33 -
	

March 18, 1986

	

Ly Y =X ,	 (5.2b)

and

	

Lz A Q " = Y .	 (5.2c)

The idea is to first solve equation (5.2a) for X and then we use X in (5.2b)

and solve for Y . Finally, we use Y in (5,2c) and solve for A Q " .

We obtain, the basis for a numerical algorithm by approximating the spatis,

derivatives with finite-difference quotients. We assume a computational domain

D as defined at the beginning of section 5. When we substitute finite difference

quotients (three-point central-difference) for the spatial derivatives in nquation

(5.2a) we get a system of difference equations of the form

	

Cx, -I X; -I + Ax; X; + Bx;	 t1 X; + 1 = H; ,	 (5.3a)

where

Ax; =1+ At Ax z

20x	 Ax

and

Cxi	
0 t

(ui -- L)
2Az	 ax

for t <i <I.

In equation (5.3a) we have suppressed the j and k indices. The dependent

variable X and the coefficients are defined for each grid point and therefore we

E 1i. 1

!I

TR-86.7	 .34.	 March 18, 1998

should write them as X;;k , Azi jk , etc. However, we drop the j and k indices

since we are assuming that the suppressed indices are identical throughout

(5.3a). This will be the usual assumption for suppressed indices. Thus, according

to (5.3a) we get one system of equations for each pair j, k corresponding to

interior grid points.

We obtain similar results by approximating the spatial derivatives in (5.2b)

and (5.2c) with finite-difference approximations, namely,

Gy) -1 Yj -1 + Av.j Yf + By , +1 Yj +1 = X> >	 (5.3b)

for each i , k corresponding to an interior grid point, and

Czk - l A Qk -1 + A zk A Qk + Bzk + 1 0 Qk + 1 = Yk ,	 (5.3c)

for each i , j corresponding to an interior grid point.

Boundary conditions enter the picture when the terms in equation (5.3)

depend on values associated with boundary points. Just as in the case of the

explicit method, the boundary conditions are problem specific and therefore it is

difficult to say anything general about them. Usually equations (5.3) result in a

set of tridiagonal'equations. However, if the boundary conditions are periodic in

the x-direction then equations (5.3a) result in a periodic tridiagonal system of

equations for which solution algorithms are available (Te75).

r ,t

TR-86.7	 .35.	 March 18, 1986

We show by example how the boundary conditions can affect the form of equa-

tions (5.3). Let I = 7. Then equation (5,3&) for a fixed i and k, in matrix no-

tation, is	 I

Cx j AX 2 BX 3 0 0 0 0

0 CZ 2 AX3 BZ 4 0 0 0

0 0 Cx 3 AX 4 BZ 5 0 0

0 0 0 CZ 4 Az 5 BZ 6 0

0 0 0 0 Cx 6 AX 6 BX 71

X,	 H 2.

X 2
	

H 3

X 3
	

H 4	 (5.4)

X 4
	

H 5

X 5	 H6J
X 6

X 7

We have 5 equations and 7 unknowns and thus we need additional condi-

tions to completely specify the system of equations. These additional conditions

are obtained from the boundary conditions of the particular problem at hand.

For example, if the boundary conditions are periodic in the z -direction, then

Q " = Q " an i I ' = Q " . This implies that X I = X 6 and X 2 = X 7 . Substi-1	 6	 12	 7

tuting into (5.4) we get the following periodic tridiagonal system of equations.

AX 2 BX 3 	 0	 0	 CX1 X 2. H 2.

'CX2 Ax 3 Bz 4 	 0	 0 X3 H3

0	 Cx3 AX 4 BX 5 	 0 X4 H4

0	 0	 CX 4 AX 5 BX 6 X5 H5

BX 7 	 0	 0	 Cis AX 6 . X 6. H 6.

March 18, 1988

^a
-38-

Next suppose that Q i is fixed at some freestream value and Q T - Q s . It fol-

`	 lows that X i = 0 and X 9 = X 6, Substituting into (5,4) we get the usual tridi-

agonal system of equations,
Axe Bx 3 	0 0 0 X2 H2

Cx 2 Ax 3 Bx 4 0 0 X3 H3

0	 Cx 3 A x 4 Bx5 0 X4 = H4

0	 0	 CZ Ax 5 Bx6 X 5 H5

0	 0	 0 Cx 5 (Ax 6 + Bx 7) X6 H6

The above examples were intended to show how boundary conditions affect

equations (5,3). Boundary conditions also come into play in computing, H, the

right-hand-side of equation (5,3a). The approximation of the spatial derivatives

in H in (5.1) with finite-difference quotients is affected by the boundary condi-

tions since some of the terms in H contain spatial derivatives in each of the

coordinate directions. Therefore, when the indices of H, jk are adjacent to a

boundary grid point, then the boundary conditions are taken into account.

We are now in a position to state the numerical algorithm,

f

TR-86,7	 . s7 .	 March H, 1986

Beam and Warming Implicit Factored Method

Input: Q,"k for all (i , j ,k)cD

Output: Qi" " for all (i , j ,k)cD .

Method:

Step 1: (Compute X, jk for all interior grid points) For each 1 < j < J and
1 < k < K solve equation (5,3a) for 1 < i < 1,

Step 2: (Compute Y, jk for all interior grid points) For each 1 < i < I and
1 < k < K solve equation (5.3b) for 1 < j < J.

Step 3: (Compute O Q,^k for all interior grid points) For each 1 < i < I and
1 < j < J solve equation (5.3c) for 1 < k < K.

Step 4 (Update the dependent variables) Set

Q,'k+i Q, jk + d Qilk

for all (i , j ,k)cI

Step 5. Update all values of Q,"k+1 for (i , j ,k)cB .

^	 d

	

t

	 l

TR.-86.7	 .38 .	 March 18, 1988
	

^I

	

P ''	 e. Requirements for CFD

6.1. Storage Requirements for CFD

We characterize the storage requirements for CFD in terms of the size of

the computational domain D and the amount of storage required per grid point.

The amount of storage per grid point depends on a number of factors, The

dependent variable Q occupies 5 floating point words per grid ,point for each

time step and even with an explicit method it is sometimes convenient to store

the value of Q " while computing Q " ". If we have transformed the original

problem from a physical domain into the computational domain, then there are

additional metric terms which are associated with each grid point, ,Also, when

using an implicit numerical scheme, intermediate results are usually generated by

algorithms for solving block tridiagonal systems. For example, forward substitu-

tion increases the storage requirements by 30 additional floating point values per

node. Whether we must store all these intermediate values simultaneously

depends on the particular implementation strategy.

We define gprper_node to be the number of grid points per node,

bytea_per node to be the amount of main memory per node devoted to storing

the data, and val_per gp to be the number of floating point values associated

with each grid point. We assume that it take 4 bytes to store one floating point

value. It is obvious that,

gp_perinode =
bytes per node

4 val_per node

x

M)

TR-98.7	 .39-	 March 18, 1986

e.2. Computational Requirements for CFD

In the following we develop some straight-forward relationships which give

some insight into the factors which determine the computational requirements of

CFD, As we shall see, an important measure of the capability of a concurrent

processor system is given by the product of the number of nodes times the sus-

tained floating point computation rate of each node, In the table below we

define some of the important terms,

NAME 4
	

MEANING

N	 Number of nodes,
D I	 Number of grid points in the domain,
gp_yer,wnode Number of grid points per node(defined above),
gp—per_ see	 Rate at which grid points are updated.
llop=per_,gp	 Number of floating point operations to update one grid point,
flop,_per—see	 Sustained rate at which node can perform floating point operations.
se:-_per_ts	 + The number of seconds to update a ► 1 grid points in the domain,

I i.e., The number of seconds to advance the solution by one time step,

There are some obvious relationships among the above quantities, namely,

	

gpper node = `D) f N
	

(1)

flopper see = flopperrgp gp perrsee
	

(2)

secper_ts = gp_per_node / gpperrsec
	

(3)

We use "node complexity" to refer to the computational capability of each node.

For example, a node with a bit-serial CPU would have a very low node complex-

ity while a node which consists of a CRAY CPU would have a high node com-

plexity, The sustained floating point operation rate of a node is a reasonable

measure of its complexity, and the product of the floating point operation rate of

{

job with an 8-node system, then each node would have to achieve a sustained

rate of 4 billion floating point operations per second.

i

^.r t.
lob 0,

TR-86.7	 .40-	 March 18, 1986

each node times the number of nodes is a useful figure of merit for a concurrent

processor system,

Using the above equations we obtain the product of Jlop_per_see and N.

It is interesting that this product is determined by the domain size, the number

of floating point operations per grid point(per time step), and the number of

seconds allowed per time step. The quantities on the right -hand-side are meas-

ures of the computational demands of the problem and the left -hand-side is a

measure of the computational capability of the concurrent processor system.

N to	 sec = (DI /lop per gp	
fI

p_per
 —	 sec_perts

For example, if we have that the number of floating point operations per grid

point is 2K, and if we require that the number of seconds per time step not

exceed one, and that the domain contains 2563 grid points, then we get:

N flop—per—sec = 235 .

Thus for a system with 1024 nodes, each node must be capable of a sustained

processing rate of 32 million floating point operations per second. The rated

performance of the proposed Los Alamos machine comes close to meeting this

requirement. If we have more nodes (no machine has been proposed with more

than 1024 nodes and significant floating point capabilities.) then a diminished

floating point capability would suffice. On the other hand, if we want to do the

r.

T1t•86,7	 -41.	 March 18, 1986

The Princeton machine will have 128 nodes and therefore each node would

have to achieve a sustained rate of 256 million floating point operations per

second. The predicted performance of each node is 100 million floating point

operations per second,

7. Lax- Wendroff Method

7.1. Implementation

In this section we describe an implementation of the Lax-Wendroff method.

The program was written in L and was run on a 32-node Intel hypercube.

	

The obvious way to implement the Lax-Wendroff method is to partition the
	

i
r	 ,y

1

	computational domain D into subsets, which we call cells, and to assign each of
	 4

these cells to a different node in the hypercube. Recall that the domain D has I

grid points in the x -direction, J grid points in the y -direction, and K grid

points in the z -direction. Each cell is a "box" of grid points with II grid points

in the x-direction, JJ grid points in the y -direction, and KK grid points in the

-direction. The indices i , j, and k are used to refer to grid points within a

cell and these indices range from 1 to II, JJ , and KK, respectively.

Throughout we assume tha t I , J , K , and II , JJ , KK are powers of 2.

r,
x

-42-

i'

i

o-:

TR-86,7

cell	 i,c

Cell	 0, 110

March 18, 1986

C. e l l	 3, 0, i

Y

a,

In the Figure we show a computational domain partitioned into 16 cells.

Each cell is identified by the coordinates a , b , and c . In general, we have AA

cells along the x -direction, BB cells along the y -direction, and CC cells along

the z -direction. The cell coordinates range from 0 to AA — 1, BB —1, and

F	
CC —1, respectively. It is easy to see that

AA = 11 BB = JJ '

and

CC = K
KK

We define ABIT , BBIT and CBIT as follows:

Mk .

- 43 -	 March 18, 1988

AA =2 ABIT BB = 2BRIT CC = 2CBIT

Ztation we assign each cell to a node according to the function

7i1

cell—to—node which maps the cell coordinates into a node number. In prepara-

tion for defining this function we introduce the function gray (r ,e) which is

defined for all integers r and a where 0 < r < 2' . The value of gray (r ,a) is a

Gray code on a bits for the integer r . This function has the important property

that gray (r ,a) and gray (r +1 mod 2'") differ in exactly one bit. Finally,

cell_to_node (a ,b.c) = gray (c ,CBIT) "gray (b ,BBIT) "gray (a ,ABIT)

where denotes concatenation. The importance of the cell—to—node mapping is

that "adjacent" cells map into "adjacent" nodes. Nodes are adjacent if they

have a direct communication link between them and cells are adjacent if they

differ by one in exactly one coordinate. Clearly, adjacent cells will have to

transfer data between themselves and so it is advantageous that they be mapped

to adjacent nodes. Certain cells which are not adjacent are also required to

exchange data, but these cases do not dominate and in the worst case the data

passes through two intermediate nodes.

Since there are AA *BB*CC nodes (there is a one-to-one correspondence

between cells and nodes), the dimension of the hypercube must equal

ABIT + BBIT + CBIT .

Each node must compute Q" t1 for all grid points in its cell. This evalua-

tion usefs the values of Q n associated with grid points in other cells. It turns

TR-88,7	 - 44 -	 March 18, 1986

out that cell (a ,6 ,e) will require certain values of Q" from cells with indices

(a 4:1,6 fl,c fl). In our program the dependent variable Q is represented by
	 I.

five 3-dimensional arrays called d , du , dv, , dw , and e , corresponding to p, pu ,

pv , pw , and e , respectively. The arrays are dimensioned 11 +2 in the x -

direction, JJ +2 in the y -direction, and KK +2 in the z -direction. As was men-

tioned earlier, the indices i , j, and k are used to refer to grid points within the

cell and they range from 1 to H, 1 to JJ , and 1 to KK , respectively, These

arrays are oversized to make room for values associated with grid points in

"neighboring" cells. For example, if our reference cell is (a ,6 ,c), then

d [0] [1] [KK +11 is the density associated with the grid point II , 1, 1 located in

cell (a —1,6 ,c +1). The values for variables such as d [0][1][KK +1] in cell

(a ,6 ,c) are obtained by explicit communication with the node that contains the

cell (a —1 1 6 ,c +1).

The node program is the following:

init_dataO;
for(i = 1; i <= ITER; i++) {

xfer_data() ;
sweep O ;

The init data() routine initializes the data arrays.

The xfer dataO routine specifies all communications between the nodes.

The idea is to transfer into each node sufficient information from "neighboring"

nodes so that each node can advance the solution to Q " +1 for all of its grid

T1. _	 "► '.>

r

TR-88,7	 .45 -	 March 18, 1986

points, Each node uses nonblocking receive system calls(recv) to establish

buffers for the incoming data, then uses blocking send system calls(sendw) to

transmit data to neighboring nodes, and finally waits until all the anticipated

data arrives.

The sweep() routine performs the Lax-Wendroff computation for one time

step. Sweep() corresponds to Steps 1 to 5 of the Lax-Wendroff method

presented earlier. The implementation of this routine takes into account that

the terms Qr +112 , Er" +112, (E„) r", etc. for r X are common to the evaluation

of Q " +t for eight different grid points. The grid points (i , j ,k) corresponding

to a fixed value of k, (called a k —plane) depend on terms evaluated at central

grid points with r =(i , j ,k 4-1/2). Accordingly, we compute the values associ-

ated with central grid points for two successive k-planes of central grid points.

This enables us to evaluate Q " -r"i for all grid points on the k-plane in between

the two k-planes of central grid points. After this we compute the next k-plane

of central grid points, r =(i , j ,k +1 +1/2) using the space occupied by the values

associated with r =(i , j ,k —1/2) . In this manner we "sweep" through the

domain and at any time we need only store the values associated with central

grid points associated with two k-planes.

TR-88.7	 -46. 	 Marelt 18, 1988
	 ,

7.2. Efficiency

We define the efficiency, E A , of an algorithm, A , as follows:

EA = (t01'IN)ItN

where N is the number of nodes, t Opt is the time to solve the problem on one

node using the best possible algorithm, and tN is the time to solve the problem

on N nodes using algorithm A . Clearly, t OPt IN is the fastest time we could

achieve using N nodes and so e'1 is not greater than 1.

We can estimate the theoretical efficiency of our implementation of the

Lax-Wendroff method. Each cell contains v (cell) grid points and 8(cell) grid

points on the boundary of the cell. We estimate the values of t I and tN for

one time step as follows:

t oot = N u (cell)t,,,,, d

and

tN = u (cell) t calc d + 8(cell) t comm c

where tcalc is the time for a floating point operation, d is the number of floating

mpoint operations required per grid point, tco ►h is the time required to transfer

one floating point number between adjacent nodes, and c is the number of float-

ing point numbers that are transferred per boundary grid point. We are glossing

over a few details which do not change the qualitative nature of this efficiency

estimate. For example, not all floating point operations require the same

I- 	 f	 b	 h	 f	 damount time, and the num er o floating point num ers t at are trans erre

i

i

TR-88.7	 -47- 	 March 18, 1986

between cells depends on the ceUa , and not all transfers are between adjacent 	 1

nodes.

Using the above equations and after some simplifications we get

tell	 Commt 	 C

CA 	
1 — 8

 v (cell) t	 dcolt

Next we estimate 8(cell) and v (cell) in terms of 11, JJ , and KK . The result,

after simplification, is

CA > 1 — 2(1 + 1
+ 1) t comm C

II TKK tcalc d

It is easy to see that the efficiency grows as 1 - Q (1 D) ' /3). Also, it is expected
k r/

that d >>c and so this tends to improve the efficiency, In the case of the Intel 	 k '`

s	 G'
cube the ratio tcomm / teak is 149 [KO], but this is offset by the other terms. 	 p

7.3. Performance

The code has been instrumented to count the total number of floating point

operations performed and to determine the amount of time devoted to the com-

putation and the communication. We worked with a cell size of 11 = 8,

JJ = 10 and KK = 10. Therefore each cell contained 800 grid points and since

there are 32 nodes, D contains 25,600 grid points. The total time for a run in

which ITER was 10 took 309 seconds and each node performed 4,594,680 float-

ing point operations. This amounts to a total of 475,936 floating point opera-

tions per second.

k

1

r

i	 TR, 88,7	 -48 -	 March 18, 1986
P:

Out of the 309 seconds, 288 seconds were devoted to computation and 21

seconds were devoted to communication. A crude estimate for the efficiency is;

t.
FLAX— 21 +288 —

0.932 .

P`

	

	 The same code, specialized to a single node, was run on a VAX11/780 and we

found that the VAX maintained a sustained rate of approximately 32,000 float-

ing point operations per second. Thus the 32-node hypercube is almost 15 times

faster than the VAX.

The Lax-Wendroff code has not been extensively tested and there is a prob-

lem with the way in which the C deals with NaNs generated by the 80287 copro-

cessor. The NaN problem is expected to be cleared up shortly. The next phase

will be to test this code extensively for a variety of boundary conditions and

domain sizes.

8. The Beam and Warming Implicit Factored Method

8.1. Implementation

We have implemented the Beam and Warming implicit factored method for

an equation called Berger's equation rather than the full Navier-Stokes equation.

It was felt that the time spent in developing the code for the full Navier-Stokes

equations would be excessive and that the basic issue concerning the performance

of an implicit method could be resolved with the simpler equation. Furthermore,. '

R_

TR-86.7	 .49- 	 March 18, 1986

the implicit method for the Navier-Stokes equations leads to a large number of

block tridiagonal equations whose simultaneous solution requires a large amount
i'

of intermediate storage which is not available on the Intel hypercube. Burger's

.r	 equation has only a single dependent variable and the implicit method gives rise
t

	

	
to a large number of (scalar) tridiagonal equations. Both of these factors miti-

gate the storage requirements and permit the use of reasonably sized domains.

From a performance-evaluation point-of-view, it appears that nothing is lost

by using Berger's equation. The reason is that the computational requirements

for the Navier-Stokes equations are much greater than Berger's equation but the

communication requirements for Navier-Stokes are greater to a much lesser

extent. This implies that efficient implementations for Berger's equation should

be more difficult to find than for the Navier-Stokes equations,

The following is Berger's equation:

au	 au 2	au 2	 au 2	 a2 	 a, u 	 a2U
at	 dT	 ay	 OZ	 8Z 2	 ay 2	 az 2

The most important aspect of the implementation is the mapping of the domain

D to the nodes. Consider Step 1 of the Beam and Warming method where we

solve the equation

Cx, — I X{ -1 + Axi Xi + Bx; +1 Xi+ 1 ' Ht,

for all j and k Remember that the j and k subscripts are suppressed and Cx;

and Bxj depend on the value of u associated with grid point i jk .

LV

TR-8e.7	 so •	 March 10, 1986

We use Gaussian elimination to solve the tridiagonal systems. The algo-

rithm consists of a /onward sweep in which we eliminate variables and a backward

sweep where we back-substitute to find the solution. The efficiency of our imple-

mentation of Gaussian elimination depends on the mapping of grid points to

nodes. A desirable mapping would map all grid points with the same j, k coor-

dinates into the the same node. If this were so, then the above equation, for a

particular choice of j and k, could be solved completely within the node

without communication with neighboring nodes, except for the case of H; .

Next consider Step 2 of the Beam and Warming method where we solve the

following equation,

Cyr i Y; - I + Aye Yj + Byj +1 Yj +1 Xi

for all i and k . In this case the i and k subscripts are suppressed and the Xj s

are determined by Step 1. A desirable mapping for Step 2 would map all grid

points with the same i and k coordinates to the same node. If this were the

case then the above equation, for a particular choice of i and k , could be solved

completely within a node.

Finally, if • e consider Step 3 of the Beam and Warming method we find yet

another preferred mapping, one that maps grid points with the same i and j

coordinates into the same node.

In the Figure we show the preferred mappings of the grid points into the

nodes. X solve corresponds to Step 1 and shows how the preferred mapping

f .

k

}

r	 kD+!

J'

x

TR•86.7	 -51 -	 March 18, 1986

would map grid points lying Along a line in the x-coordinate direction into the

sauce node. If the whole domain were partitioned and mapped in this manner,

then all. the nodes could compute in parallel, each one solving the set of tridiago-

nal systems corresponding to the x-coordinate lines it contains. The Figure also

shows the preferred mappings for Steps 2 and 3, indicated as y solve and

z Solve , respectively,

. ,

The preferred mappings for each of the three Steps are not compatible and

because of the communication costs it seems undesirable to change the mapping

in between Steps.' We are motivated to look for mappings which can be main-

tained throughout the computation and which are efficient at each Step.

As before, we partition the computational domain D into cells and assign

each cell to a node. However, we do not insist that each cell be mapped into a

distinct node. Each cell is identified by its coordinates a , b , and c where,

Its

t.

..52.	 March 18, 1906

AA 1, 04b <BB =
jJ

, 0<c < CC - KK,

AA - 2A8i°r, BB = 2a^^T, CC = 2ceir

Before discusing the effect of various mappings, we describe the our imple-

mentation in terms of cells and cell processes. We assign a procee8, sailed a cell

process, to each cell. This means that if a mapping assigns r cells to a particu-

lar node, then the node will contain r processes, one corresponding to each cell.

r	 Each cell process determines its own cell coordinates a , b , c , from its node iden-

tifier, its process identifier, and the cell—to—node mapping. It turns out that

our implementation is relatively easy to specify in term of the cell processes,

Each cell process is given by:

init data();
for(i = 1; i <= ITER; i++) ,({

xfer data();
X sOlveo);
y_solveO;
z solve();

}

The init_ dataO routine initializes the value of u in each cell.

The xfer dataO routine transfers the values of u between cells, Cell

a ,b ,c needs values of u from cells a fl,b ,c , a ,b fl,c , and a ,b ,c fl. The

transmitted values are those which are required to evaluate H in equation (5.1)..

TR-86,7	 .53- 	 March 18, 1984

The x 3olveo routine consists of forward and backward sweeps along the

x-direction far each value of j and k where 1 < j <JJ and 1 <k <KK , In gen.

eral, each cell process does only a portion of the forward and backward sweeps

along the x- .direction for each j and k, The forward and backward sweeps

along a "line" in the x-direction will span AA different cells. Cell processes

a ,6 ,c with a =1 can begin their forward ,weeps immediately. When all the

sweeps reach i =II, the intermediate results are sent to cell processes with coor.

dinates 2,b ,c . In general, a cell process a ,b ,c with a #1, must wait until it

receives intermediate results from cell process a —1,b ,e before proceeding with

its forward sweeps. If a 0 A A —1, then when all the forward sweeps reach i =II,

intermediate results are sent to cell process a +1,b ,c ,

Similarly, when a cell process a ,b ,c with a =AA -1 finishes all its forward

sweeps, it begins back substitutions for all j and k. When all the back substi-

tutions reach i =1, the intermediate results are sent to the cell process with coor-

dinates AA —2,6 ,c , In general, all cell processes a ,b ,c with a 96AA —1, after

completing their forward sweeps, wait until they receive intermediate results

from cell processes a +1,b ,c before they perform their portions of the back sub-

stitutions and send their intermediate results to cell process a —1,b ,c ,

Since each node contians more that one cell process, all waiting must be

structured to relinquish Qhe node CPU. Typically, a cell process waits for data

to arrive on a channel. The wait code is:

7

TR-86,7	 - 54 -
	

March 18, 1986

while (status (channel)) flich ();

Note that cell processes finish sweeps for all j and k before sending intermedi-

ate results. Another alternative would be to send intermediate results for each

j and k. This strategy leads to much more communication overhead and would

be intolerable on the Intel iPSC. In a system with an efficient and independent

I/O processor this method might be effective in eliminating all waiting for inter-

mediate results.

8.2. Cell-To-Node Mappings

In this section we discuss the gross effect of the cell-to-node mapping on the

efficiency of our implementation. A reasonably complete discussion of these

issues can be found in [CSS851 and (JSS85] where various implementations of the

Alternating Direction method are presented and analyzed for the two-

dimensional case.

Suppose we have a 3-dimensional hypercube and AA = BB = CC = 2. In

the Figure 8.1a we slow, >au adjacency preserving 1-1 mapping of the cells into

the nodes of the hypercube. It is easy to see that during the the course of the

computation that at least half of the nodes will be idle at every point in time.

TR-86.7	 -55-
	

March 18, 1988

e_ I

	

T S
	

Q

^. v

o i
	 7	

10 1
 1

2 3
	

(a)
	 z 3	 ^'° ^

FIWOW S- 1

Next consider a 2-dimensional hypercube and a computational domain parti-

tioned into 8 cells. The cell-to-node mapping in this case is shown in Figure

8.1b. Since each node contains a cell with a = 1, during the x_solve phase all

nodes will have work to do and are initially active. Furthermore, all the nodes

contain a cell with a 	 2 so that all the nodes will remain active after the cells

with a = 1 have finished their portion of the forward sweep. Of course, all the

nodes will be idle during the time that the partial results from the forward sweep

are transmitted from the cells with a = 1 to the cells with a = 2. The the

situation is the same for the backward sweep.

The y_solve phase is not as favorable since only half of the nodes contain

cells with b = 1. Therefore at least half of the nodes are idle throughout the

W_solve phase.

The z solve phase is similar to the ; phase , since all the nodes contain

cells with c = 1 and c = 2.

1

AJ

1March 18, 1986- 56 -

These examples demonstrate the nature of the relationship between the

cell-to-node mapping and the potential efficiency of our implementation. It fol-

lows that the best case would be to have every node contain exactly one cell for

each different value for a , b , and c and have adjacent cells map into adjacent

nodes or the same node. This would mean that in each "solve" phase, every

node would be busy except for the time during the transmission of intermediate

results to neighboring cells. We have not achieved this condition in the previous

example since node 0 contains two cells with b = 1. It is easy to show that it is

not possible to achieve such a mapping for any hypercube with dimension less

than 6. It is also clear that the dimension of the hypercube would have to be

even, say 2d , and that AA = BB = CC 2 d . It is not obvious whether such

cell-to-node mappings exist.

We might relax the above conditions by requiring that each node contain at

least one cell for each different value for a , b , and c and that adjacent cells

map into adjacent nodes. We can always find cell-to-node mappings which

satisfv this condition. An example is shown in Figure 8.2. The difficulty with

such mappings is ' -that additional communication and cell processes are required.

k1I

Y

TR-88.7	 . 57 .	 March 18, 1984

In this case Cella which are adjacent in the z direction are mapped into nodes

which are at a distance 2 from each other. All other adjacencies are preserved.

8.3. Performance

The code for the Beam and Warming method was run using the cell-to-node

mapping shown in Figure 8.3 on a 16-node hypercube with 4 cell processes per

node. We have II JJ = KK = 5. This amounts to a domain with 20 3 grid

points. The total number of floating point operations is approximately 214,000

and the time per iteration (x solve, y solve, and z_ solve) is about 2.5 seconds.

This is a sustained rate of 5.350 floating point operations per second per node.

The same code, specialized to a single node, was run on a VAX11/780 and we

obtained a sustained rate of approximately 32,000 floating point operations per

second. This is the same rate obtained for the Lax-Wendroff code on the VAX.

i

f i

C.
s

4

Z

A	 C = 3

^qq F

8t

I

-57 -A 	March 18, 1986

E

kr

4f

'a

n

,s.

a

Another possibility is to relax the constraint that adjacent cells map,into

adjacent nodes. It can be shown that if we allow adjacent cells to map into

nodes that are at most a distance 2 apart, then we can find a cell-to-node map-

ping in which each node contains exactly one cell for each value of a , 6 , and c .

In this case it is also clear that the dimension of the hypercube must be

even (2d) and AA = BB = CC. = 2 d . Such a mapping is shown in Figure 8.3.

In this case cells which are adjacent in the z direction are mapped into nodes

which are at a distance 2 from each other. All other adjacencies are preserved.

5° 7 6 y
13 /s /y /2ls iy /s /3 9 !/l0 8

/0 1 'V I

 7 11312-10
/o p 9 I! 3 Z 0
2 a / 3 7 1 6 y S
G y S 7

!^y ,IZ l3 1S

0 / 3 2
y s 7 b

/Z 13 /S Jy

! 9 11 /o

TR-86.7
	 -58-

	
March 18, 1986

8.3. Performance

The code for the Beam and Warming method was run using the cell-to-node

mapping shown in Figure 8.3 on a 16-node hypercube with 4 cell processes per

node.. We have II = JJ KK = 5. This amounts to a domain with 20 3 grid

points. The total number of floating point operations is approximately 214,000

and the time per iteration (x solve, y solve, and z solve) is about 2.5 seconds.

This is a sustained rate of 5,350 floating point operations per second per node.

The same code, specialized to a single node, was run on a VAX11/780 and we

obtained a sustained rate of approximately 32,000 floating point operations per

second. This is the same rate obtained for the Lax-Wendroff code on the VAX.

We conclude that a 32-node cube is about 5.3 times faster than a VAX on this

code. The performance for this code is only 30% of the performance of the Lax-

W endroff code.

The hypercube performance is poor for the Beam and Warming code. One

reason is that the tridiagonal systems do not require much floating point compu-

tation. Implementation of the Navier Stokes equations will result in systems of

block tridiagonal equations which require significantly more floating point opera-

tions. This will tilt the balance away from communication and should result in

improved performance.

More extensive tests of this code should be carried out for different cell-to-

node mappings. These results should be compared to massive data rearrange-

ment strategies.

J 1.

7	 .59- 	 March 18, 1986

71F

!J

9. References

[Am09)
W. F. Ames, Numerical Methods for Partial Differential Equations, Barnes
and Noble, 1969,

[Br185]
Eugene D. Brooks III "A Butterfly Processor-Memory Interconnection for a
Vector Processing Environment," UCRL-92325, preprint. Parallel Process-
ing Project, Lawrence Livermore Laboratory, February 1985

[Br285)
Eugene D. Brooks III "The Share Memory Hypercube," UCRL-92479, pre-
print. Parallel Processing Project, Lawrence Livermore Laboratory, March
1985

[BW78]
R. M. Beam and R. F. Warming, ".An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations", AIAA, vol. 16, no. 4, pp. 393-402,
April 1978.

[CS85]
Tony Chan and Youcef Saad, "Multigrid Algorithms on the Hypercube
Multiprocessor," Research Report, YALEU/DCS/RR-368, February 1985.

[CSS851
Tony Chan, Youcef Saad, Martin Schultz, "Solving Elliptic Partial Differen-
tial Equations on the Hypercube Multiprocessor," Research Report,
YALELT /DCS/RR-373, March 1985.

[Ho841
M. Holt, Numerical Methods in Fluid Dynamics, Second Revised Edition,
Springer-Verlag, 1984.

[JPL85J
Hypercube Research Project: Mark III Core Engineering Notebook, JPLD-
2431, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena CA 3 June 1985.

.0
4 M	 [JSS851

S. Lennart Johnsson, Youcef Saad, and Martin H. Schultz, "Alternating
Direction Methods on Multiprocessors," Research Report

e=.

TR-86,7	 . 60 ..	 March 18, 1986

YALEU/DCS/RR-382, October 1985.

[KOLA. Kolawa and S. Otto, "Performance of the Intel iPSC Hypercube," Cal
Tech Report Hm205,

[Lo821
H. Lomax and T, H, Pulliam, "A Fully Implicit, Factored Code	 Com-
puting Three-Dimensional Flows on the Illiac IV," in Parallel Computations,
ed. G. Rodrigue, 1982.

{PT831
R, Peyret and T. D. Taylor, Computational Methods for Fluid Flow,
Springer-Verlag, 1983

[Pu841
T. H. Pulliam, "Euler and Thin Layer Navier-Stokes Codes: ARC21),
ARC3D," Notes for Computational Fluid Dynamics User's Workshop, The
University of Tennessee Space Institute, Tullahoma, Tennessee, March 12-
16, 1984.

[SS85]
Youcef Saad and Martin H. Schultz, "Data Communication in Hypercubes,"
Research Report YALEU/DCS/RR-428, October 1985.

[Se851
C. Seitz, "The Cosmic Cube," Communications of the ACM, V. 28, N. 1, pp.
22-33, January 1985

[Te75]
C. Temperton, "Algorithms for the Solution of Cyclic Tridia.gonal Systems,"
Journal of Computational Physics, V. 19, pp. 317-323, 1975.

[U1831
J. D. Ullman Computational Aspects of VLSI, Computer Science Press,
1983.

V ^j

TR-elo.7

10. Appendix

March 18, 1986

Hm2A5

t

Performance of the Intel IPSC Hypercube

4 Kolawa, S. Otto +

Physics Dept„ Caltech, Pasadena CA 91125

October 8, 1985

Introduction:

The purpose of this note is to present the speeds of the fundamental opera-

tions used in the Intel Hypercube, IPSC, It is a companion to an earlier note

Hm188 describing the timing of the Marls II hypercubes constructed at JPL

Floating Point Speed

First off, we give the floating point performance `single precision. 32 bit) of

a node. This was done by employing an accurate timing routine which runs

independently in every node.

YulLWY

"rho following code was timed

float a,b,c;

for 4=0; i < NumTimes; ++i)

a = b0c;

r	 ^

a
if

.2.

The loop overhead was separately measured (see below) and subtracted,

Intel IPSC : 40,4 µsee/multiply or ,024 Mflops,

The same measurement done for a,b,c being double gives:

Intel IPSC : 43,5 µsec/multiply or .023 Mflops,

Add:

The code:

float a,b,c;

for (1=0; 1 < NumTimes; t+i)

a=b+c;

loop overhead was again subtracted, We find:

Intel IPSC : 39.5 µs/add or ,025 Mflops

For a,b,c double it Is:

Intel IPSC: 43 µs/add or ,023 Mflops,

Loop Overhead

Just the above loop was run and timed,

Intel IPSC : 8,2 µs/loop

For more complex, realistic expressions, the apparent floating point perfor-

mance increases in realistic codes (e,g„ lattice gauge). To illustrate this, we

give a second measure of floating point speed.

7

* Research supported by the Department of Energy grants DE-AS03-ER131I8,DE-FG03.
85ER25000 and by the Parsons Foundation and Systems Development Foundation. S.Qtto
holds a Bantrell Research Fellowship at Caltech

i

-3

FioaUnS Point Performance p2

The code executed:

float a, b, c, d, e

for (i = 0; i< NumTLmes; ++ ►)

a = boo + b oo + d•c;

3

The time to execute this was;

Intel IPSC :	 119,3 ps When a,b,c,d,e were double the execution time was;

Intel IPSC :	 128,8 w

Giving as the performance figure (A floating point operation is now con-

sidered as a "•" or "+",):

Intel IPSC : 23.88 As /flop -> .042 Mflops

For double performance we got:

Intel IPSC : 25.36 µs/flop	 -> .039 Mdops

Integer (16 bit) performance

YultiplT

The code:

short j, k,1;

for (1= 0;1< NumTimes; ++i)j

i = k•l:

PSC :	 4 As/ integer multiply

.4-

The code;	 short j, k, l;

for (1= 0; l< NumTimen, ++l)J

J=k+l;

I

giving:

Intel IPSO : 2 As / integer add

Intemods Communicatiam:

Single Packet:

The objective is to measure the speed of the fundamental communications

routines, wtELT /rdELT, The Hypercube was mapped to a ring and each node

along the ring transferred a single, 84 bit packet one step forward in the rung,

This is the sort of thing which happens in many codes: each node is both sending

and receiving data. The code executed was:

int data (4];

for (i = 0; i< NumTimes: + +i)f

wtELT (data, forward chan):

rdELT (data, backward chan):

The timings per single, 64 packet transfer are:

Intel IPSC :	 11920 As / single packet transfer

This gives us a for single precision arithmetic by dividing these

times by two, since f,,,. is conventionally dedned as the transfer time of a 32

bit word. Note that t,., , . is the time both to write and read a 32 bit word - this

^i

W

is what normally occurs - in homogeneous applications at least, (This deAnition

is different from that In reference 1.)

^•	 Therefore, the "tco ft. " appropriate to the usual aMcieacy analyses is:

t'C.,,,M = 5M As Intel IPSC

We can also relate to "t fwp ", defined as the time to do a single float-

inR point operation (32 bit), "tfy," has also been railed " tiW"; "t,,,,,' " in other

Hm memos, For the Intel IPSC machine, we have:

teow." = 149 • tfyp,

t,,,,,,, for double precision work is achieved by doublin g the above and all' follow-

ing tc,,,m estirnates,

Glgbal Communications ("ncsi aendsit)

The global broadcast utility, recsig, was timed, It N is the number of nodes

in the Hypercube, the timings are of the form:

	

a + P (log N + 1)	 t'

where a reresents a constant startup time, P represents the communication

time through each of the log N stages of the broadcast, and the +1 is them

because the corner node must first read from the IH, Results are,

Dimension	 Intel
of Cubp

1	 9600µs
2	 12000

3	 17000

4	 22000

S	 2'1600

These timings do not take into account the operating system overhead,

waiting, etc, ,

"

	

	 The Umings , fit the theoretical form given in the above quite well, the

parameters are:

•a-
a

Intel IPSO	 7000us	 2500us

Trandw. "Shpt'

Fe measured the block transfer of data between two neighboring nodes and

are result with MarkII(5MHz) Caltech Hypercube [2j.

Lmber of Packets t.., . per packet t..... per packet
Shiftin the Intel MarklI(5MHz)
1 5980µs 125µs
2 3007 93
4 1510 76
8 777 68

18 390 84
32 202 62
64 110 81

128 65 80
129 102 60
132 100 60
138 97 60
144 93 80
160 88 60
192 75 60
258 02.5 80
257 so 60
280 79.1 6U
272 77 60
288 75.5 60
320 69 60
384 60 60
385 73 60
416 71 80
448 67 60

i

r
t

i+s

The above results are plot on figure 1, They show that when message length

is equal to multiplicity of 1kbyte then communication time per packet is

minimal. The next byte cause the jump of communication time which then

starts to decrease until the length of the message is again the multiplicity of

ikbyte. This behavior is caused by the operating system which tends to sends

messages to lkbyte pieces, It seems that asymptotic communication time per

64 bit packet is 58 60 µs.	
ri

-?-

erformance of the Caltech Hypercube in Scientific Calculations; A

,nary Analysis;, G. C. Fox at Symposium of "Algorithms, Architec-

cures, and the Future of Scientific Computation", Austin, March 1985

2) Performance of the Mark 1I Hypercube, S. Otto, A. Kolawa, A. Hey Caltech

report Hm188

Figure Captions:

1) Plot of logarithm of communication time per packet vs iog&nthm of base P.

of number of 84 bits paNkets in the message. The solid line presents com-

munication time per packet for Intel IPSO. The dashed lines represent

communication time per packet for the Interrupt Driven Operating System

(IDOS) and the Crystalline Operating System (CrOS) on Mark II 5MHz and

8MHz Caltech/JPL Hypercubes . The dashed area presents range of change

of floating point performances on Intel IPSO and MarkII(8MHz) machines.The

"scalar" is floating point multiply and "vector" is an operation like that is

section Floating Point Performance #2,

OF POOR

l

t
i

^II

10 ms

S ms

2 me

	

t io"M	 100006
Single Precision)

	

1/2 tcomm	 soov6
Double Precision)

40006

10000

Sobs

tflop Single or Double
Precision

20 06

Packet n • •yte6

t c@mm : Time per 4 bytes
(Single Precision)
Time per b byten
Double Precision)

Intel Operating System
I P S C

a

•	 ♦♦

	

♦%% 	 , ^ `. %IDOS(SMfls)

.iooS (8 MMs)

• ^Colfoch Operating Systems

	

• .	 on Mark II (J ► L)%

	

♦ `	 srOS (SMM)

C ► OS(I MHc)

L
1̂	 1	 3	 4	 5	 5	 1	 S	 9

flkilobyto
109 4 of the number of packets

'scolar' IpS H
tflop Meg

, vector • (84

ld .

ir.

5

k	 1

	1986019686.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

