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1. Summary

Problem Statement

In this Task we evaluate the feasibility of using the hypercube-connected
concurrent processor systems for problems in Computational Fluid
Dynamics(CFD). We have found that concurrent processor systems can be a

cost effective approach to CFD,

Accomplishments

We have designed and implemented a Lax-Wendroff explicit method for the
Navier-Stokes equations. Our code runs on the Intel iPSC concurrent processor
system. Tests of this code show that it is reasonably efficient. This is so

because the computation dominates the communication as the size of the prob-
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lem domain increases. On a 32 ncde hypercube we obtained a sustained process-
ing rate (including the cost of communic:tion) of over 475,000 floating point
operations per second. Comparison of the identical code on a VAX 11/780 (one

node) shows that the cube achieves a floating point operation rate that is about

15 times faster than the VAX.

We have also designed and implemented the Beam and Warming implicit
factored method for Berger’s equation. This code has been run on the Intel iPSC
hypercube. Preliminary tests show that the efficiency of this code is poor. The
reason for this stems from the fact that a substantial amount of commu'nication
is required throughout the computation. The efficiency would no doubt improve
with the Navier-Stokes equations since the amount of computation relative to
communication increases. Additionally, there is little chance to overlap the com-
munication with the computation. Our implementation indicates that improve-

ments in the communication architecture would improve the efficiency of our

implementation.

On the Intel iPSC there is a large overhead for communication between
nodes and that large numbers of small messages can seriously impact the effi-

ciency of a computation[KO]. There are a number of issues concerning the Intel

commuiication architecture.

1. There is no separate I/O processor in the node. The communica-

tion coprocessors in the Intel node are not programmable.
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2. Too much data copying is required for I/0.

3. Processes in the same node cannot share address space. The
above factors make it impossible to reduce the communication

penalty by overlapping communication with computation.

The 512K bytes of main memory is inadequate for CFD. A version of the
Intel iSPC is available with 4.5 Mbytes of main memory per node and this confi-

guration would be significantly more useful in CFD experiments.

Projections

1. It is important to continue the evaluation of the CFD codes that
have been developed especially on a hypercube with substantially
more node memory. The Navier Stokes equations should be
implemented using the Beam and Warming implicit factored

method.

2. For the sake of completeness, a spectral method should be imple-

mented. Much would be learned from this project.

3. Codes developed at Ames should be ported to other concurrent
processor systems such as the JPL Mark III concurrent processor
system. Since this system supports overlapped I/0, the efficiency

of our implementations should improve.

1

R s

LR s




‘TR-86,7 «5- March 18, 1986
5 4. A study into the feasibility of using the hypercube concurrent ‘
v' ‘b i
1 B
’ processor system for grid generation should be undertaken. s

Careful consideration should be given to graphical input and out- |
' put, With the grid generation component in place, the previous
codes should be expanded to include metric terms. This will help

to improve efficiency,
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Once the basic methods for CFD have been implemented and

tested, zonal methods should be investigated.
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2. Introduction

In this report we present the results of an investigation into the feasibility of
using hypercube concurrent processor systems for problems in Computational
Fluid Dynamics(CFD). Specifically, we are interested in the numerical simula-
tion of the Navier-Stokes equations for situations in which few simplifying
assumptions can be made and for high Reynolds number, If we insist on a direet
simulation of the Navier-Stokes equations for any practical problem, an enor-
mous number of grid points is required to resolve the wide range of scales of
motion. An alternative to numerically resolving all scales of motion is to model
those scales not resolvable by the computational grid in terms of the resolvable
scales. This technique is referred to as Large Eddy Simulation(LES) and is alsq
computationally intensive. In either case we are faced with problems whose com-
putational demands in time and space are beyond the capacity of today’s super-
computers. Thus we are motivated to consider multiprocessor architectures with

the hope that they may be able to cope with the demands of CFD.

Fine-Grain Parallelism

When computational requirements outpace current technology, we often
turn to (parallel) concurrent architectures, There has been a great deal of effort
directed at speeding up single-processor systems using fine-grain parallelism. For
example, pipeline techniques have been applied to instruction processing and to

the construction of arithmetic units. Multiple memory banks are used to obtain
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adequate memory bandwidth to keep up with today’s central processors, The
supercomputers offered by manufacturers such as CRAY and CDC represent the

ultimate in this direction,

An important feature of these systems is that programmers are shielded
from the architectural complexities. The architectural features are usually hid-
den by the compiler technology which attempts to generate code that takes
advantage of the architecture. For the most part, scientists have been able to
maintain the abstraction provided by some programming language, such as
FORTRAN. Often, better results are obtained if the high level code is written
with the compiler optimizations in mind (such as writing DO loops which are
easy for the compiler to "vectorize") and additionally, one could write low-level
code which makes more effective use of the hardware. Many subroutine libraries
have been created using this latter approach. However, the vast majority of the
users of these systems are not overly concerned with their inherent complexities.

This is not true for the following classes of concurrent computer systems.

Shared Memory "

Multiprocessor systems with shared memory have been designed to help

meet the challenge, but these systems are most often used to provide higher

throughput rather than true parallel computation for a single instance of a prob- -

lem. The reason for this is that we are not yet able to hide this kind of parallel-

ism from the programmer. The programmer must explicitly design and imple-
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ment algorithms which take advantage of the multiple processors since compiler
technology has not been designed which can effectively shield the programmer
form the hardware environment, (An important research effort in the area of
automatic program restructuring is the Cedar Project at the University of Illi-
nois, Its purpose is to provide software which will automatically detect instances
where concurrent processors could be used effectively, Generally speaking, this
type of compiler technology is unavailable and we are forced to design parallel
algorithms which take explicit account of the concurrent hardware or find paral-

lel implementations for known sequential algorithms.)

Shared-memory systems employ mechanisms which permit the processors to
access shared memory. These mechanisms can be as simple as common bus or as
complicated as a crossbar switch, and generally we expect to find something in
between. Bus architectures suffer from too little bandwidth, for which they usu-
ally compensate with mechanisms such as processor caches. On the other hand,
a full crossbar switch is prohibitive in hardware and expense. Other approaches

trade interconnection complexity with ease and cost of construction.

Message Passing

Another important class of concurrent processor systems is the one in which
there is no shared memory. The processors communicate with each other by
sending messages(control and data) through a network. There is a wide range of

possible configurations depending on processor and network complexity.
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Regardless of the particular level of node complcxity and the choice of intercon-
nection network, the programmer is faced with the task of designing and imple-
menting algorithms which take the system architecture into account. In general,
the problem domain must be partitioned among th”* processors and the program-

mer must specify the details of the corresponding data communication.

In this report we study the feasibility of using concurrent processor systems
with no shared memory for problems in CFD, We shall consider implementa-

tions of explicit and implicit numerical methods for the Navier-Stokes equations,

In the next section i describe some of the features of concurrent processor
systems. After this we present the equations of interest, the Navier-Stokes equa-
tions, and give two numerical methods for their simulation. Finally we describe

implementations of these methods on an Intel iPSC 32-node hypercube.
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3. Processir

We define a concurrent processor system as a collection of nodes, where each
node consists of a processor, arithmetic unit(s), local memory, and an irtercon-
nection network which provides the means through which nodes communicate
with each other, Each node executes its own instruction stream and may have
access to externa) storage media and I/O devices, Since there is no shared
memory, the only way for processors to communicate with each other is by send-
ing messages through the network. There are many kinds of interconnection net-
works and we breifly describe a few of the more important ones. Throughout th
rest of the paper we will let N denote the number of nodes in the system. The

nodes are numbered beginning with 0 and ranging up to N -1.

3.1. Interconnection Architectures

Ring: We say the nodes are connected in a ring if there is a communiation link
from node ¢ to node { +1(modN ) for { =0,1,...,N —1. The ring architecture has
the advantage ths,t it is very simple and obviously scalablet, Interestingly
enough there are many problems for which the ring architecture is sufficient.
Unfortunately, there are also many problems for which the ring architecture is
not rich enough in the sense that the communication overhead caused by large

distances between the nodes is more than we can tolerate. For example, imple-

t A design is scalable if it can be adjusted up or down in size without loss of efficiency or functionality.
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mentations of the FFT algorithm on a ring connected systems suffer from exces-

sive communication overhead.

Mesh: The 2-dimensional mesh architecture represents an attempt to mininuize
the communication distance between the nodes. In this case we envision the
nodes set out in a two-dimensional array with horizontal and vertical communi-

cation links between adjacent nodes.

Hypereube: Assume that N = 2%, Let bin (¢ ,k) denote the k-bit binary
representation of the integer i where 0<i <2¥, The hupercube interconnection
architecture provides a direct communication link between node s and node j if
bin (i ,k) and bin (7 ,k) differ in exactly one bit position. It follows that each
node has a direct communication link with k£ other nodes and that the rnaximum
number of communication links that is needed for any pair of nodes to communi-
cate is k. For example, consider nodes 0 and 2¥ 1. Clearly, bin (0,k) and

bin (2" -1,k ) differ in all n bit positions and therefore any message sent from
node 0 to node 2* —1 must pass through k -1 intermediate nodes and use at

least k differciit communication links. The hypercube network contains a total

of % N log,N bidirectional communication links.
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.
HyPERCuUAE
Butterfly: The butterfly network is frequently associated with the FFT algorithm, %

A butterfly network consists of k +1 ranks of network nodes. We denote the ¢ th

node on the r rank by p,; for 0<i <N and 0<r <k. Then node p,; on rank
r >0 is connected to two nodes on rank r —1, the two nodes p, _; ; such that

either j =i or the binary representation of j differs from ¢ in only the rth place

#
from the left. ' ﬁ
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L maRe

Usually, the r =0 and the r =k ranks are identified and correspond to the pro-

© e csmereroanres
-

cessor nodes and the remaining ranks contain network switching nodes.

The butterfly network is closely related to the hypercube network. If we coalesce P
all the nodes in the same column, then the network reduces to the hypercube

network.

Shuffle-Ezchange: The ezchange interconnection consists of links between nodes §
and 1 +1if { is even. The shuffle interconnection provides a link from processor

{ to 2i (mod N —1). As a special case, if i =N ~1 we connect N —1 to itself. |
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3.2. Concurrent Processor Systems

In ths section we give a brief description of some of the concurrent processor
systems which either have been implemented or are currently being designed or

implemented.

Cosmie Cube

The "Cosmic Cube" is an experimental hypercube concurrent processor system
built at The California Institute of Technology and consists of 64 nodes[Se85).
Each node contains Intel 8086 and 8087 co-processors and 136Kbytes of main

memory,

Intel 1PSC

Intel is marketing hypercube concurrent processor systems in 32, 64, or 128 node
configurations. Each node contains Intel 80286 /80287 co-processors and
512Kbytes of main memory. The communication links between nodes are
bidirectional and have a transfer rate of 10 Mbits per second. We will have
more to say about this system since it is available at NASA Ames and has been

used in conjuntion with this report.
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JPL Mark IIT

The hypercube research project at JPL is directed toward the design and imple- N
mentation of a high-performance hypercube concurrent processor system|[JPL85].

Each node contains Motorola 68020/68881 co-processors, a Motorola 68020 I/O

*" il el sa . . i

processor and up to 4 Mbytes of main memory. The communication links are

capable of transferring data at 100 Mbits per second. A 32-node prototype is

scheduled for completion in February 1986 and a 256-node version will be avail-

able in January 1987. Beyond this, there are plans to include a Weitek scalar i
floating point unit (.25-2.0 Mflops) in each node and later to add a Weitek vec-

tor floating point unit (5-10Mflops). The long-range objective at JPL is to con-

struct a 1024-node system which, when fully configured, would have a rated per-

B e——

formance of 5-10 Gflops and a memory capacity of 4 Gbytes.

NCUBE

The NCUBE is a new machine with a proprietary CPU and small local memory.
The current version can be configured with up to 1024 nodes each with a max-
imum of 128K bytes of main memory. The processors are interconnected in a

hypercube configuration.
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Lawrence Livermore Laboratory

The Parallel Processing Project at LLL is concentrating on shared memniory confi-
gurations with vector processing nodes. They are studying the performance of
various switch designs for processors which generate memory references typical

of today’s vector machines [BR185, BR 285).

The BBN Butterfly

The BBN Butterfly is a shared memory concurrent processor system with a But-
terfly interconnection network. Each node consists of a M68020 processor, a
M68881 floating point co-processor and up to 4 Mbytes of main memory, There
is a separate processor in each node called the Processor Node Controller(PNC).
The PNC initiates all messages transmitted over the butterfly switch and is
involved in every memory reference made by the M68020. The PNC uses a
memory management unit to translate the virtual addresses used by the M68020
into physical memory addresses. Physical addresses may correspond to locations
in some other node and it is the responsibility of the PNC to initiate the data
transfers through the switch. This translation is transparent to the M68020,
and thus the PNC provides a shared memory view. The butterfly switch has a
processor-to-processor bandwidth of 32 Mbits per second. A 128-node system

has been built.
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Los Alamos

Researchers at Los Alamos National Laboratory are designing a 1024 node con-
current processor system. The nodes will be capable of performing from 10 to 20
million non-pipelined floating point operations per second and are hypercube-
connected. The nodes consist of two AMD 29325s, a NS32032, and at least
16Mbytes of main memory organized into 16 banks. Each node will also contain

a disk with about 1/2 billion bytes of storage.

Princeton Navier-Stokes Machine

Daniel M. Nosenchuck and Michael G. Littman at Princeton University are
developing a concurrent processor system(called NSC) to numerically simulate
the full Navier-Stokes equations with no modeling. Each node has 8 Mwords of
32-bit interleaved memory and is capable of an average sustained computaion
speed of 100 million floating point operations per second. The nodes are mesh

connected and a 128 node prototype is under development.

3.3. The Intel iPSC

In this section we give a more detailed description of the architecture of the

Intel iPSC concurrent processor system.

Cube:

-

w Al




oW

[IERE T~ = - Tt S

TTT RS TR TR

R e - - A

TR-86,7 - 18- March 18, 1986

The Intel iPSC concurrent processor system consists of either 32, 64, or 128
nodes, Each node has an Intel 80286 central processing unit and an Intel 80287
numeric processing unit supporting 32-, 64-, and 80-bit floating point
operations(IEEE 754). Each node has 512 Kbytes of main memory(can be
upgraded to 4.5 Mbytes) per node. The communications between nodes is over a
10 Mbit per second point-to-point serial channel(Intel’s 82586 communication
processor). Each node has 8 communication channels: seven for communicating

with neighboring nodes and one for communicating with the cube manager.

Cube Manager:

The cube manager is an Intel 286/310 system which consists of an 80286 central
processing unit, an 80287 numeric processing unit, and up to 4 Mbytes of main
memory. It comes with either a 40 Mbyte winchester disk or a 320 Mbyte disk.
There is a global ethernet channel for communicating with the cube nodes. An
ethernet TCP/IP network subsytem is available which is used to provide access

to the cube manager from other hosts on a LAN.

Software:

The cube manager comes with the XENIX 3.0 operating system, FOR-

TRAN 77 compiler and a C compiler.

Intel provides a multiprocessing operating system which is resident in each

of the nodes and provides the following services to each of the node processes:
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System Call Meaning |
copen Creates a channel for node process communication, . -+
celose Destroys the communication channel created by copen. 1
send Initiates transmission of a message to another process. :
sendw Initates transmission of a message to another process and
returns only when the channel is available for reuse. |
recy Initiates the receipt of a message, 1
| recvw Initiates the receipt of a message and ‘
' blocks until the message is received. '
status Informs the calling process of the availability of a channel.
probe Determine if a message of the specified type has been
received on a given channel. ‘ 4
mynode Returns the node number of the calling process. '
mypid Returns the process id of the calling process. [
| cubedim Returns the dimension of the cube. |
| clock Returns the elapsed time(in milliseconds) since the g
node was initialized. |
flick Relinquishes the CPU.
Processes are downloaded into the nodes from the cube manager. We can . p
!
load more than one process into each node and provide user-assigned process id’s ' k :

for each. Additionally, as part of loading processes into nodes, the user can
optionally specify the maximum number of open channels and the maximum

stack size per process.

Software for.'the cube is developed on the cube manager and then down-
loaded to the nodes. Typically, there is a cube manager process which communi-
cates with the node processes during course of a computation. At the very least
the cube manager process starts the computation by transmitting data to the

nodes and collects data from the node processes a the end of a computation.
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Communication Architecture:

The following is a list of observations concerning the communication archi-

tecture of the Intel system.

Little opportunity to overlap communication with computation. Each node
has a single CPU which is required to set up all communication between nodes.
This effectively eliminates much of the opportunity to overlap communication

with computation. The extent to which the overlapping occurs is provided by

3

- ommmT

the separate 82586 communication coprocessors, We would prefer a separate
1/0 processor which is capable of independently executing its own instruction

stream.

Too much copying required. Communication often requires an inordinate

reari | Sos

amount of data moves, If the data to be transferred art.; not contiguous, then
they have to be copied into contiguous locations before transfer. All data »
received are first placed in system buffers and then copied to contiguous loca- ;I
tions in the user’s space and, finally, if the data belong in non-contiguous loca-

tions the user has to copy the data once more. There should be some way in

which constant st‘ride data can be moved from one place to another without the

intervention of the node processor. It would be useful to have a simple DMA

device which could do memory-to-memory transfers.

Processes in the same node do not share address space. Processes within the
' same node should be able to share address space with each other. For example,

if we were to have a separate communications processor, then the I/O process
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would most neturally be required to transfer problem data to and from the node, ‘

The most efficiant way to accomplish this would be to allow the I/O process to
share the address space with other processes within the same node, If it does not '
share address space then the only way for the communication process to pass :
’ data to other processes within the node is by message passing. This would
defeat the advantage of using a separate I/O processor. Another reason to share
y 4

L~

address space within a node is to permit node processes to share code,

Performance:

LA e D i d

M

The paper by Kolawa and Otto[KO] give a number of interesting performance

results for the Intel iPSC. This paper determines the speed of the basic opera-

AR | S S
e e e

tions usad in the Intel iPSC hypercube. Because of its pertinence to our report,

we include the Kolawa and Otto paper as an appendix.
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4. The Equations

The unsteady, three-dimensional Navier-Stokes equations in Cartesian coor-
dinates (z,y ,z ,t ) are taken as the basic set of equations[Lo82]. The Cartesian
space represents both the physical domain and the the computational domain, It
is known that the physical domain can be transformed into other curvilinear
coordinates thus making it possible to treat a wide variety of geometries using
one basic set of equations over a simple computational domain, These transfor-
mations introduce additional metric terms into the basic equations. We have
chosen not to include these terms in order to simplify our presentation. Obvi-
ously, the elimination of the metric terms reduces the computational burden
and so later in the report we will determine the effect of the metric terms on our

performance estimates.

The three-dimensional Navier-Stokes equations are given by:

3Q @ d ) _
o T 5 E E")+ay(F F,,)+62(G G,)=0 (4.1)
where
Q =lppu pv pw e},
1
E = [pu puu +p pvu pwu (e +p)u)’ , E, = _R-;[O Toz Tyz Tax Bz)'
1
F =lpv puwv pw+p pwv (e +p)v]’, F, = -R—;[O Tag Tyy Tey By’ s

: 1
G =[pw puw pvw pww+p (e+p)w]', G, =—=[01, 1, 7, B;]",
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e = Mg + a o)t Ty =T = R %)
¢ .
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Ou  Ov  duw v ou , dw
- (Oz+8y+8z)+2”8y’ T T “(8z+az)'
Ju  Ov  dw ow v |, Ow
mx )\ (rm— e — D [ o ., = = s St
(Bz+8y+0z)+”6z' vz = Ty #(i)z+8y)’
Oe
K V¢
ﬂ,ﬂ%;»-&-+ur,,+vr,y+wr,,,
ae,
ﬁys%—a—y—-kury,-%vrw-bwry,,
de
K Y€
ﬂz=%—r--&-+ur,,+vr,y+wru,
c,z-f-—-‘!-(u2+vz+w2).
p 2

The velocity components u,v, and w aré made dimensionless by a ; the

freestream speed of sound, the density p is made dimensionless by p,, and the

total energy e by pa fo . The pressure p is given by

(7=1)(e =0.5p(u?+v?+w?)) where 7 is the ratio of specific heats. Also, x is the

coefficient of thermal conductivity, u is the dynamic viscosity, and A from

Stokes’ hypothesis is ~2/3u. The Reynolds number is Re and the Prantl

number is Pr .
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6. Numerical Simulation Methods

In this section we describe two methods for numerically simulating the
Navier-Stokes equations, The first method is an explicit procedure of the Lax-
Wendroff type[Am69)] and the second is the implicit factored method developed
by Beam and Warming[BW78|. Before presenting these methods we provide

some useful notation and definitions.

The computational domain D is the set of spatial points over which we
attempt to numerically simulate the evolution of the dependent variables p, pu ,
pv, pw,and e. The points in D are called grid points and they form a uni-
formly spaced "grid" over D . Let Az Ay, and Az denote the grid spacings in
each to the coordinate directions, respectively. Let there be I grid points in the
z -direction, J grid points in the y -direction, and K grid points in the z -

direction,

Formally, we define D as

D ={(z,w,2)|z=iAz,y=7Ay,z=kAz ithere i, j,and k are positive integers

and i £I,j5 <J,andk <K } .

The grid poiflts in D are represented by triples of indices /, j, and k.
That is, (1,7 ,k ) denotes the grid point (z,y,2 ) with z =i Az, y =7 Ay, and
=k Az,

The dependent variables are simulated over a discrete set of 'points uni-
formly spaced in time. The difference between successive simulation times is

called the time step and is cenoted by At .
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The notation p}; refers to vhe quantity p at spatial location (z ,y,2) and
time t where z=i Az,y=jAy,z=kAz,and t =n At, Extending this nota-

tion we have,
Q% = [pfk puie puR pUSK ’u';’k]‘ J
and
Ez";k =FE (Qs?’k) !

and so on,

5.1. Lax-Wendroff Explicit Method

The Lax-Wendroff method is an explicit procedure for computing Q,-';k'“

from Q7 for all grid points (¢ ,7,k ). Part of this procedure involves computing
intermediate values which are associated with the spatial indices
(f +1/2,5 +1/2,k +1/2) and the time parameter n +1/2,
We introduce some notation for describing differencing and averaging
processes. Let
zface (‘ vJ 7k) = {(‘. vJ ok )$ (i WJ +19k), (" ’j ke 4’1)a (i J+1.k +1) } '
V[acc (" ajak) = {(i )j )k)i (" +1,j sk)1 (i ’j ak +1)' (" +1aj $k +1) } P

zface (i yJ ,'rc) = {(" aj ’k)v (" +1yjak)a ('. W J +1’k)) (’. +1,J +1ak) } ’
and

cube (¢,5,k) = zface (¥ ,5,k) | zface (§ +1,7,k) .
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Ii in some quantity, say p,j;, we replace the triple i ,j ,k by a set of points,

say zface (i ,7 ,k ), then the notation denotes the sum of the values of p" over all ‘
points in zface (i ,j k). For example, if r denotes the triple (i ,j ,k ) then |
p:?acc r = )M rs !
s € zface (r) ;
Finally, we define, by example, the numerical differencing operators 4, , 6, ,
"y
and 6, .
n . . - n L ;:
5, pl = Pzface (i +1,7,k) — Pzface (i,5 k) i
z Pigk 4Az
5 T noo_ F.J;“‘” ("1].+1:k) - Fy'}ace(l',j,k)
y "J'k — 4A y I—
6 )1 = (el)zyace(:',j,k +1) ~ (el)z?ace (s,7.k) 1 '
2 (e ik = 1Az 1 'io
i
.';{ k
It should be clear from the above examples how the numerical difference o
operator works. g

Let (1,7 ,k) denote a triple of indices (not necessarily integer valued).
Then we define (1,7 ,k)* to be (i +1/2,7 +1/2,k +1/2) and (i ,5 ,k )" to be

(i —=1/2,7 -1/2,k=1/2).
Finally, we define the sets C and I as

C ={(r,7.k)"[(1,7.k)eD } O\ {(i,5.k)"[(i,5.,k)eD} ,

I ={r|reD and r*¢C and r "¢C } ,

and
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B=D-1.

The grid points in B are called boundary grid points, those in I are called

interior grid points, and those in C are called central grid points.
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Lax- Wondroff Method
Y
Input: Q" is given for all r ¢D and some nonnegative integer n . "
Output: Q" *! for all r (D o
Method: 1
| Step 1: For all r ¢C compute 1
Qe (r- i
Qr 1/t = cubse(r ) Azt (6, E% +6,F" +6,G").

¢
Step 2: For all r ¢C compute '

Ern+l/2 = E(Q7"+l/2) , §
Fr +1/2 _ p (@"*'/?) , and !

G +1/2 2 @ (Q" +1/2) ) ' ,%
; Step 3: For all r ¢C compute (E,),", (F,),", and (G, ),". Some examples of T
these computations are: i ?
]
(Tazyr = AMb 0> +6, 0" +6,0") + 2u6, 0", ¢

[\
=}
.
AR IeS SIS 1

n K 1 n
(ﬁz )r = %62 (el)rn' + E(ucr:;be (r7) (722 )rn + Yeube (r-) (sz )rn + wcr:;be(r‘) (Tzz)rn) .

.

Step 4: For all r el compute
| Q" *! = Q" - At (6, (Er".+l/2 - (B,)") + 5, (F,"-*l/z — (F,)) + JZ(Grn_H/Z - (Gy),1)) -

| Step 5:
For all r eB compute Q," *! from Q," according to the appropriate boundary
conditions,

‘i e s et
E., 4
- e e JUPSE e
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5.2. Beam and Warming Implicit Factored Method (Berger’s
Equation)

Implicit methods have been proposed for the numerical solution of various
forms of the Navier-Stokes equations. Implicit methods are more complex than !
explicit methods since the former usually require the solution of a large number

of systems of equations. However, implicit methods have improved stability pro-

T e

perties over explicit methods thereby permitting a larger At. They have the

drawback that they require significantly more computation than explicit

methods,

A A S 2o

The numerical method we shall consider is based on the work of Beam and

T

3 Warming. The formulation of the method by Beam and Warming actually
1
]
includes a number of different methods depending on the choice of certain
4
5 parameters. We will not give the complete details of the method since they can
‘. be found in [BW78] and [Pu84].
As before, our objective is to determine Q " *! given Q/c where k< n
(Notice that we admit the possibility that @ " *! may depend on more than just
r the immediately preceding time-step). The temporal scheme for advancing time
¥ is given by
.
:‘"
G
5
W
r
;

Y

r-
-

1

¢

1
T
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0 At d At 9 ¢ -1
A n .. s e [\ n ——— v () T ————— n
Q 14+ €0t @ +1+»sazQ +1+5AQ

+0[(0-1/2 - €&)at? + A%,

where Q" = Q(nAt)and AQ"™ = Q"*! — Q". The choice of § and ¢
reproduces many two and three-level, explicit and implicit schemes,

The Navier-Stokes equations are solved for 3Q /3¢t and then substituted
into the temporal scheme given above. This results in a nonlinear set of equa-
tions for AQ"™. A linear set of equations is obtained by the use of Taylor series

expansions of various terms. For example, E" ™! is replaced b
P 3

E"Tl = E" +(_g_g_)n (Qn-l-l - Q") +0(At2)

We have implemented the Beam and Warming implicit factored method for
an equation called Berger’s equation rather than the full Navier-Stokes equa-
tions. It was felt that the time spent in developing the code for the full Navier-
Stokes equations would be excessive and that the basic issue concerning the per-
formance of an impl.icit method could be resolved with the simpler equation.
Furthermore, the implicit method for the Navier-Stokes equations leads to a
large number of block tridiagonal equations whose simultaneous solution requires
a large amount of intermediate storage which is not available on the Intel hyper-
cube. Burger’s equation has only a single dependent variable and the implicit
method gives rise to a large number of (scalar) tridiagonal equations. Both of

these factors mitigate the storage requirements and permit the use of reasonably
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sized domains,

From a performance evaluation point-of-view, it appears that nothing is lost
by using Berger’s equation. The reason is that the computational requirements
for the Navier-Stokes equations are much greater than for Berger’s equation but
the communication requirements for Navier-Stokes are greater to a much lesser
extent. This implies that efficient implementations for Berger’s equation should

be more difficult to find than for the Navier-Stokes equations,

Berger’s equation is given by

where Q@ = u, and

G =u’ Gv=u§y-.

Setting £ = 0 and # = 1/2 in the temporal scheme yields the scheme used in our
implementation:
n+1 A
AQ" = At ( 0Q 9Q

2 ot +at)'
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After linearization and factorization the temporal scheme can be written as
L, L, L,AQ" = H (5.1)

where L, , L, , and L, are operators given by

_ 3, » v &

Lx "{1+At{(az)“ 2822]},

L, = {1+at[(2)un - 22y

y ay 2 6y2 !

L= {1+t - 28

d oz 2 92?2 !

and
du? u?  du u? du
H = -At|( e —bazz) + ( 5 —bayz) +( = —pazz)]

Equation (5.1) holds pointwise in the spatial coordinates and relates the
dependent variable at the various time steps. The important point about the
operators, L, , L, , and L, is that they each involve spatial derivatives in a sin-

gle coordinate direction.

Letting X = L, L, AQ" and ¥ = L, AQ" we can rewrite equation (5.1)
as a sequence of equations which corresponds to the actual implementation

sequence,

L, X

f
o

(5.2a)

2R

w e et 3 - e,

oA oailt.
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LY =X, (5.2b)

and ’
L,aQ" =Y, (5.2¢)

The idea is to first solve equation (5.2a) for X and then we use X in (5.2b)

and solve for Y. Finally, we use ¥ in (5.2¢) and solve for AQ",

We obtain the basis for a numerical algorithm by approximating the spatis’
derivatives with finite-difference quotients. We assume a computational domain
D as defined at the beginning of section 5. When we substitute finite difference
quotients (three-point central-difference) for the spatial derivatives in eéuation

(5.2a) we get a system of difference equations of the form :

Ce, . Xi_, + Az; X; + Bz; .\ X; ,, = H; , (5.3a) - (
where
At v
Az" - 1 + Azz [}
At v
le __ZAZ(' -A—;)’
and
At v
Czi = 5z =~ 37)
forl<i <I.

In equation (5.3a) we have suppressed the j and k indices. The dependent

variable X and the coefficients are defined for each grid point and therefore we

I e
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should write them as Xik » AZ;ji , etc. However, we drop the j and k indices
since we are assuming that the suppressed indices are identical throughout
(5.3a), This will be the usual assumption for suppressed indices. Thus, according
to (5.3a) we get one system of equations for each pair j, k corresponding to
interior grid points,

We obtain similar results by approximating the spatial derivatives in (5.2b)

and (5.2c) with finite-difference approximations, namely,
Cy, .1 Y;.1+Ay;Y; +By; Y, =X;, (5.3b)
for each i , k corresponding to an interior grid point, and
Cz AQY ) + Az AQY + By 1 AQY,, =T, (5.3¢)
for each i, j corresponding to an interior grid point.

Boundary conditions enter the picture when the terms in equation (5.3)
depend on values associated with boundary points. Just as in the case of the
explicit method, the boundary conditions are problem specific and therefore it is
difficult to say apything general about them. Usually equations (5.3) result in a
set of tridiagonal"equations. However, if the boundary conditions are periodic in
the x-direction then equations (5.3a) result in a periodic tridiagonal system of

equations for which solution algorithms are available [Te75).
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We show by example how the boundary conditions can affect the form of equa-

tions (5.3). Let I =7, Then equation (5.3a) for a fixed j and k, in matrix no-

tation, is

Cz, Az, Bz; O 0 0 0
0 Cz, Azy Bz, O 0 0
0 0 Cz; Az, Bz; 0 O
0 0 0 Czy Azg; Bzgy O
0 0 0 0 Cz; Azg Bz,

+

(5.4)

We have 5 equations and 7 unknowns and thus we need additional condi-

tions to completely specify the system of equations. These additional conditions

are obtained from the boundary conditions of the particular problem at hand.

For example, if the boundary conditions are periodic in the z -direction, then

Q@7 =Qg ani 2?7 = Q7. This implies that X, = X and X, = X,;. Substi-

' Az, Bz; O
‘022 Aza BZ4 0 0

I Bz7 0 0

0 Cz; Az, Bz; O
0 0 C:B‘ AZS st

0 ‘Czlﬁ

CZs AZ'G_

tuting into (5.4) we get the following periodic tridiagonal system of equations.
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Next suppose that Q7 is fixed at some freestream value and Q7 = Qg . It fol-
lows that X, = 0 and X, = X4, Substituting into (5.4) we get the usual tridi-

agonal system of equations,

Az, Bz, 0 0 0 11 x,1 [ H,]
Cz, Azz Bz, O 0 X3 H,
0 Cz3; Az, Bz, 0 X =1 Hy| .
0 0 Cz, Azg Bz, X H,
0 0 0 Czjy (Azg+ Bzy)| | X | He|

The above examples were intended to show how boundary conditions affect
equations (5.3). Boundary conditions also come into play in computing, H , the
right-hand-side of equation (5.3a). The approximation of the spatial derivatives
in H in (5.1) with finite-difference quotients is affected by the boundary condi-
tions since some of the terms in H contain spatial derivatives in each of the
coordinate directions. Therefore, when the indices of H;, are adjacent to a

boundary grid point, then the boundary conditions are taken into account.

We are now in a position to state the numerical algorithm,
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)33eam and Warming Implicit Factored Method

Input: Q% for all (i ,j ,k)eD .
Output: Q/4*! for all (V5 k)eD .
Method:

Step 1: (Compute X,, for all interior grid points) For each 1< j <J and
1 < k < K solve equation (5.3a) for1 <1 < I,

Step 2: (Compute Y, for all interior grid points) For each 1 <i < I and
1 < k < K solve equation (5.3b) for1 < j < J,

Step §: (Compute AQ,} for all interior grid points) For each 1< i <[ and
1 < j < J solve equation (5.3¢c) for1 < & < K.

Step 4: (Update the dependent variables) Set
QN = Q% + AQ

for all (i ,7 ,k)el .

Step 5: Update all values of Q/}*! for (i,5 ,k )eB .
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6. Requirements for CFD
6.1. Storage Requirements for CFD

We characterize the storage requirements for CFD in terms of the size of
the computational domain D and the amount of storage required per grid point,
The amount of storage per grid point depends on a number of factors, The
dependent variable Q occupies 5 floating point words per grid point for each
time step and even with an explicit method it is sometimes convenient to store
the value of Q" while computing Q" *!, If we have transformed the original
problem from a physical domain into the computational domain, then thfsre are
additional metric terms which are associated with each grid point, Also, when
using an implicit numerical scheme, intermediate results are usually generated by
algorithms for solving block tridiagonal systems. For example, forward substitu-
tion increases the storage requirements by 30 additional floating point values per
node., Whether we must store all these intermediate values simultaneously

depends on the particular implementation strategy.

We define gp_per node to be the number of grid points per node,
bytes_per node 'to be the amount of main memory per node devoted to storing
the data, and val_per_gp to be the number of floating point values associated
with each grid point. We assume that it take 4 bytes to store one floating point

value. It is obvious that,

bytes per node
4 val_per _node

gp__per_node =

' & e 5
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6.2. Computational Requirements for CFD

In the following we develop some straight-forward relationships whick: give
some insight into the factors which determine the computational requirements of
CFD. As we shall see, an important measure of the capability of a concurrent
processor system is given by the product of the number of nodes times the sus-

tained floating point computation rate of each node, In the table below we

define some of the important terms,

NAME | MEANING
N Number of nodes,
'Di Number of grid points in the domain,
gp_per_node | Number of grid points per node(defined above),
gp_per__scc Rate at which grid peints are updated.
flop_per_gp | Number of floating point operations to update one grid point.
flop_per__sec ; Sustained rate at which node can perform floating point operations.
ses_per_ts The number of seconds to update all grid points in the domain,

i

i i.e,, The number of seconds to advance the sclution by one time step.

There are some obvious relationships among the above quantities, namely,

gp_per_node =|D|/ N (1)
flop_per_sec = flop per_gp gp_per_sec (2)
sec_per_ts = gp per node [ gp_per_sec (3)

We use “node complexity" to refer to the computational capability of each node.
For example, a node with a bit-serial CPU would have a very low node complex-
ity while a node which consists of a CRAY CPU would have a high node com-
plexity, The sustained floating point operation rate of a node is a reasonable

measure of its complexity, and the product of the floating point operation rate of

vl
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each node times the number of nodes is a useful figurz of merit for a concurrent

»

processor system,

Using the above equations we obtain the product of flop_per_sec and N .
It is interesting that this product is determined by the domain size, the number
of floating point operations per grid point(per time step), and the number of
seconds allowed per time step. The quantities on the right-hand-side are meas-
ures of the computational demands of the problem and the left-hand-side is a

measure of the computational capability of the concurrent processor system.

|D| flop_per gp
sec_ per_1s

N flop_per_sec =

For example, if we have that the number of floating point operations per grid
point is 2K, and if we require that the number of seconds per time step not

exceed one, and that the domain contains 256° grid points, then we get:
N flop _per sec = 235

Thus for a system with 1024 nodes, each node must be capable of a sustained
processing rate of 32 million floating point operations per second. The rated
performance of tiie proposed Los Alamos machine comes close to meeting this
requirement. If we have more nodes(no machine has been proposed with more
than 1024 nodes and significant floating point capabilities.) then a diminished
floating point capability would suffice. On the other hand, if we want to do the
job with an 8-node systefn, then each node would have to achieve a sustained

rate of 4 biilion floating point operations per second.
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The Princeton machine will have 128 nodes and therefore each node would
have to achieve a sustained rate of 256 million floating point operations per
second. The predicted performance of each node is 100 million floating point

operations per second,

7. Lax-Wendroff Method

7.1. Implementation

In this section we describe an implementation of the Lax-Wendroff method.

The program was written in C and was run on a 32-node Intel hypercube.

The obvious way to implement the Lax-Wendroff method is to partition the
computational domain D into subsets, which we call cells, and to assign each of
these cells to a different node in the hypercube. Recall that the domain D has I
grid points in the z -direction, J grid points in the y -direction, and K grid
points in the z -direction. Each cell is a "box" of grid points with II grid points
in the J:-direction., JJ grid points in the y -direction, and KK grid points in the
z -direction. The 'indices 1, J,and k are used to refer to grid points within a
cell and these indices range from 1 to I, JJ, and KK , respectively.

Throughout we assume that I, J, K ,and IT,JJ , KK are powers of 2.
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. cell 3,0,14

i cell 1,0, 1 s o

. . g o™

N cdi ]

f/

. cell o,14,0 -
F é 7 1_/—’ /
-
¥
|
| Y Yy
;
t In the Figure we show a computational domain partitioned into 16 cells.
E Each cell is identified by the coordinates a, b, and ¢. In general, we have AA
; cells along the z -direction, BB cells along the y -direction, and CC cells along
I'd
g the z -direction. The cell coordinates range from 0 to A4 -1, BB -1, and

x CC -1, respectively. It is easy to see that
' I J
: AA =-—, BB = — ,
E: 7] JJ

- and

K
CC = — .
KK
We define ABIT , BBIT and CBIT as follows:
E et i S e — -
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AA = 2AﬁlT : BB = 2BBIT ; CcC = ZCBIT

In this impiementation we assign each cell to a node according to the function
cell_to_node which maps the cell coordinates into a node number. In prepara-
tion for defining this function we introduce the function gray (r ,2 ) which is

defined for all integers r and s where 0 < r < 2’. The value of gray (r ,8) is a

i
k ' Gray code on s bits for the integer r . This function has the important property

; ¥
E : that gray (r ,s ) and gray (r +1 mod 2° *) differ in exactly one bit. Finally, :
E' ' cell_to_node (a ,b.c) = gray (¢ ,CBIT ) “gray (b ,BBIT ) "gray (a ,ABIT) ,
where "~ denotes concatenation. The importance of the cell to node mapping is ,
r: I
: that "adjacent" cells map into "adjacent" nodes. Nodes are adjacent if they ’
‘v 14
X ’
d . , . b
E have a direct communication link between them and cells are adjacent if they b
E’ differ by one in exactly one coordinate. Clearly, adjacent cells will have to ,

transfer data between themselves and so it is advantageous that they be mapped
: to adjacent nodes. Certain cells which are not adjacent are also required to
exchange data, but these cases do not dominate and in the worst case the data

passes through two intermediate nodes.

i i

Since there are A4 *BB*CC nodes (there is a one-to-one correspondence

L et

between cells and nodes), the dimension of the hypercube must equal

A
iR

‘ ABIT + BBIT + CBIT.

’is

%’M Each node must compute Q" *! for all grid points in its cell. This evalua-
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out that cell (a ,b,¢) will require certain values of Q" from cells with indices
(a +1,b £1,¢ £1). In our program the dependent variable Q is represented by
five 3-dimensional arrays called d , du, dv, dw, and e, corresponding to p, pu,
pv, pw, and e, respectively. The arrays are dimensioned II +2 in the z -
direction, JJ +2 in the y -direction, and KK +2 in the z -direction. As was men-
tioned earlier, the indices i, 7, and k are used to refer to grid points within the
cell and they range from 1 to II, 1 to JJ, and 1 to KK , respectively. These
arrays are oversized to make room for values associated with grid points in
"neighboring" cells, For example, if our reference cell is (a ,b ,¢ ), then

d [0][1][KK +1] is the density associated with the grid point IT, 1, 1 located in
cell (a =1,b ,¢ +1). The values for variables such as d [0][1]{KK +1] in cell

(a ,b ,c) are obtained by explicit communication with the node that contains the

cell {a -1,b,c +1).
The node program is the following:

init_data();

for{i=1;i <= ITER; i++ ) {
xfer _data();
sweep();

The init__data() routine initializes the data arrays.

The xfer _data() routine specifies all communications between the nodes.
The idea is to transfer into each node sufficient information from "neighboring"

nodes so that each node can advance the solution to @ " *! for all of its grid
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points, Each node uses nonblocking receive system calls(recv) to establish
buffers for the incoming data, then uses blocking send system calls(sendw) to
transmit data to neighboring nodes, and finally waits until all the anticipated

data arrives.

The sweep() routine performs the Lax-Wendroff computation for one time
step. Sweep() corresponds to Steps 1 to 5 of the Lax-Wendroff method
presented earlier. The implementation of this routine takes into account that
the terms Q" *'/%, E" *V/2 (E, ), etc. for r ¢C are common to the evaluation
of Q" *! for eight different grid points. The grid points (1,7 ,k) corresponding
to a fixed value of k, (called a k —plane ) depend on terms evaluated at central
grid points with r =(i,j ,k £1/2). Accordingly, we compute the values associ-
ated with central grid points for two successive k-planes of central grid points.
This enables us to evaluate Q" *! for all grid points on the k-plane in between
the two k-planes of central grid points. After this we compute the next k-plane
of central grid points, r =(i ,j ,k +1+1/2) using the space occupied by the values
associated with r =(¢,7 ,k =1/2) . In this manner we "sweep" through the
domain and at any time we need only store the values associated with central

grid points associated with two k-planes.
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7.2. Efficiency

We define the efficiency, ¢, , of an algorithm, A , as follows:

e = (P /N)/4

Opt is the time to solve the problem on one

where N is the number of nodes, ¢
node using the best possible algorithm, and t,(’ is the time to solve the problem
on N nodes using algorithm A . Clearly, t,o”' /N is the fastest time we could

A

achieve using N nodes and so ¢ is not greater than 1.

We can estimate the theoretical efficiency of our implementation of the
Lax-Wendroff method. Each cell contains v (cell ) grid points and d(cell ) grid
points on the boundary of the cell. We estimate the values of ¢ Opt and tg for

one time step as follows:
1P = N v (cell Yt,q, d
and
tit = v(cell )t d + 0(cell Ytomme -

where 1.y, is the time for a floating point operation, d is the number of floating
point operations required per grid point, ¢.,,,, is the time required to transfer
one floating point number between adjacent nodes, and ¢ is the number of float-
ing point numbers that are transferred per boundary grid point. We are glossing
over a few details which do not change the qualitative nature of this efficiency
estimate. For example, not all floating point operations require the same

amount time, and the number of floating point numbers that are transferred
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between cells depends on the cells , and not all transfers are between adjacent
nodes,

Using the above equations and after some simplifications we get

¢ _ A(cell ) teomm <
47z v(eell) t.qe d

Next we estimate d(cell ) and v (cell ) in terms of II , JJ , and KK . The result,

after simplification, is

1 1 1 teomm K3

7t TR toate @

’

It is easy to see that the efficiency grows as 1 - O (|D| /%), Also, it is expected
that d >¢ and so this tends to improve the efficiency, In the case of the Intel

cube the ratio ¢,opmm / leae 15 149 [KOJ, but this is offset by the other terms.

7.3. Performance

The code has been instrumented to count the total number of floating point
operations performed and to determine the amount of time devoted to the com-
putation and the communication. We worked with a cell size of I = 8,

JJ =10 and KK = 10. Therefore each cell contained 800 grid points and since
there are 32 nodes, D contains 25,600 grid points, The total time for a run in
which ITER was 10 took 309 seconds and each node performed 4,594,680 float-
ing point operations. This amounts to a total of 475,936 floating point opera-

tions per second.
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Out of the 309 seconds, 288 seconds were devoted to computation and 21

seconds were devoted to communication. A crude estimate for the efficiency is:

288

=—2 __ _o0.932.
‘LAX = 31 1 288

The same code, specialized to a single node, was run on a VAX11/780 and we
found that the VAX maintained a sustained rate of approximately 32,000 float-
ing point operations per second. Thus the 32-node hypércube is almost 15 times

faster than the VAX.

The Lax-Wendroff code has not been extensively tested and there is a prob-
lem with the way in which the C deals with NaNs generated by the 802-87. copro-
cessor., The NaN problem is expected to be cleared up shortly. The next phase
will be to test this code extensively for a variety of boundary conditions and

domain sizes.

8. The Beamm and Warming Implicit Factored Method

8.1. Impleméntation

We have implemented the Beam and Warming implicit factored method for
an equation called Berger’s equation rather than the full Navier-Stokes equation.
It was felt that the time spent in developing the ccde for %h; full Navier-Stokes
equations would be excessive and that the basic issue concerning the performance

of an implicit method could be resolved with the simpler equation. Furthermore,
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the implicit method for the Navier-Stokes equations leads to a large number of
block tridiagonal equations whose simultaneous solution requires a large amount
of intermediate storage which is not available on the Intel hypercube. Burger’s
equation has only a single dependent variable and the implicit method gives rise
to a large number of (scalar) tridiagonal equations. Both of these factors miti-

gate the storage requirements and permit the use of reasonably sized domains.

From a performance-evaluation point-of-view, it appears that nothing is lost
by using Berger’s equation. The reason is that the computational requirements
for the Navier-Stokes equations are much greater than Berger’s equation but the
communication requirements for Navier-Stokes are greater to a much lesser
extent. This implies that efficient implementations for Berger’s equation should

be more difficult to find than for the Navier-Stokes equations,

The following is Berger's equation:

Ou du? du? Au? 3’y %y %y
mitme — 17 =0
ot t oz + oy + az L(axz + Ay ? * 822)

The most important aspect of the implementation is the mapping of the domain
D to the nodes. Consider Step 1 of the Beam and Warming method where we

solve the equation
Cz; 1 Xi .+ A5, X; + By (X 1y = H;,

for all j and k. Remember that the j and k subscripts are suppressed and Cz;

and Bz; depend on the value of u associated with grid point 17k .

+ e gyt 8
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We use Gaussian elimination to solve the tridiagonal systems, The algo-
rithm consists of a forward sweep in which we eliminate variables and a backward
sweep where we back-substitute to find the solution. The efficiency of our imple-
mentation of Gaussian elimination depends on the mapping of grid points to
nodes. A desirable mapping would map all grid points with the same j, k coor-
dinates into the the same node. If this were so, then the above equation, for a
particular choice of j and k, could be solved completely within the node

without communication with neighboring nodes, except for the case of H;.

Next consider Step 2 of the Beam and Warming method where we solve the

following equation,
CU;‘»I Y]—l + AU', Yj + BVJ‘+1 Yj-f-l = XJ B

for all  and k. In this case the i and k subscripts are'suppressed and the X;s
are determined by Step 1. A desirable mapping for Step 2 would map all grid
points with the same { and k coordinates to the same node, If this were the
case then the above equation, for a particular choice of ¢ and k, could be solved

completely within a node.

Finally, if - e consider Step 3 of the Beam and Warming method we find yet
another preferred mapping, one that maps grid points with the same { and j

coordinates into the same node,

In the Figure we show the preferred mappings of the grid points into the

nodes. X solve corresponds to Step 1 and shows how the preferred mapping
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would map grid points lying along a line in the x-coordinate direction into the
same node, If the whole domain were partitioned and mapped in this manner,
then all the nodes could compute in parallel, each one solving the set of tridiago-
nal systems coiresponding to the x-coordinate lines it contains, The Figure also
shows the preferred mappings for Steps 2 and 3, indicated as y_solve and

z_solve , respectively.

Y-s0LVE -

X.SOLVE %

Yy

The preferred mappings for each of the three Steps are not compatible and
because of the communication costs it seems undesirable to change the mapping
in between Steps:' We are motivated to look for mappings which can be main-

tained throughout the computation and which are efficient at each Step.

As before, we partition the computational domain D into cells and assign
each cell to a node. However, we do not insist that each cell be mapped into a

distinct node. Each cell is identified by its coordinates a , b, and ¢ where,

OSSN S——
= 4
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0<a < AA ”,Osb<BB ”,O\c<CC XK’
and

AA = 2‘43['[‘, BB = 255/7', CC = 205[7' ,

Before discusing the effect of various mappings, we describe the our imple-
mentation in terms of cells and cell processes. We assign a process, salled a cell
process, to each cell. This means that if a mapping assigns r cells to a particu-
lar node, then the node will contain r processes, one corresponding to each cell.
Each cell process determines its own cell coordinates a , b, ¢, from its node iden-
tifier, its process identifier, and the cell _to node mapping, It turns out that

our implementation is relatively easy to specify in term of the cell processes.
Each cell process is given by:

init__data();

for(i = 1;i <= ITER; i++){
xfer_data();
x__solve();

y__solve();
z_solve();
}

The init__data() routine initializes the value of u in each cell.

The xfer _data() routine transfers the values of u between cells, Cell
a ,b,c needs values of u from cells a +1,b ,c, a ,b £1,c, and a ,b,c 1. The

transmitted values are those which are required to evaluate H in equation (5.1).
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The x__solve() routine consists of forward and backward sweeps along the
x-direction for each value of j and k where 1< <JJ and 1<k <KK. In gen-
eral, each cell process does only a portion of the forward and backward sweeps
along the xz-direction for each j and k. The forward and backward sweeps
along a "line” in the x_ direction will span AA different cells. Cell processes
a ,b,¢ with a =1 can begin their forward sweeps immediately. When all the
sweeps reach ¢ =II, the intermediate results are sent to cell processes with coor-
dinates 2,0 ,¢ . In general, a ceil process a ,b ,¢ with a #1, must wait until it
receives intermediate results from cell process @ —1,b ,¢ before proceeding with

its forward sweeps. If a #44 -1, then when all the forward sweeps reach i =IT,

intermediate results are sent to cell process a +1,b ,¢ .

Similarly, when a cell process a ,b ,¢c with @ =44 =1 finishes all its forward
sweeps, it begins back substitutions for all ; and k. When all the back substi-
tutions reach ¢ =1, the intermediate results are sent to the cell process with coor-
dinates AA —2.b,c. In general, all cell processes a ,b ,¢ with a #44 ~1, after
completing their forward sweeps, wait until they receive intermediate results
from cell processes a +1,b ,¢ before they perform their portions of the back sub-

stitutions and send their intermediate results to cell process a =1,b ,¢ .

Since each node contians more that one cell process, all waiting must be
structured to relinquish vhe node CPU. Typically, a cell process waits for data

to arrive on a channel. The wait code is:
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while(status(channel))flick();

Note that cell processes finish sweeps for all j and k before sending intermedi-
ate results. Another alternative would be to send intermediate results for each
J and k. This strategy leads to much more communication overhead and would
be intolerable on the Intel iPSC. In a system with an efficient and independent
I/O processor this method might be effective in eliminating all waiting for inter-

mediate results,

8.2. Cell-To-Node Mappings

In this section we discuss the gross effect of the cell-to-node mapping on the
efficiency of our implementation. A reasonably complete discussion of these
issues can be found in [CSS85] and [JSS85) where various implementations of the
Alternating Direction method are presented and analyzed for the two-

dimensional case.

Suppose we have a 3-dimensional hypercube and AA = BB = CC =2. In
the Figure 8.1a we shaw 21 adjacency preserving 1-1 mapping of the cells into
the nodes of the hypercube. It is easy to see that during the the course of the

computation that at least half of the nodes will be idle at every point in time.
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213 (b)

FlGuRE S.1

Next consider a 2-dimensional hypercube and a computational domain parti-
tioned into 8 cells, The cell-to-node mapping in this case is shown in Figure
8.1b. Since each node contains a cell with a = 1, during the z_solve phase all
nodes will have work to do and are initially active. Furthermore, all the nodes
contain a cell with @ = 2 su that all the nodes will remain active after the cells
with a = 1 have finished their portion of the forward sweep. Of course, all the
nodes will be idle during the time that the partial results from the forward sweep
are transmitted from the cells with @ = 1 to the cells with a = 2. The the

situation is the same for the backward sweep.

The y_solve phase is not as favorable since only half of the nodes contain
cells with 4 = 1. Therefore at least half of the nodes are idle throughout the

y__solve phase.

The z_solve phase is similar to the z_phase , since all the nodes contain

cells with ¢ =1 and ¢ = 2.
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These examples demonstrate the nature of the relationship between the
cell-to-node mapping and the potential efficiency of our implementation. It fol-
lows that the best case would be to have every node contain exactly one cell for
each'different value for a , b, and ¢ and have adjacent cells map into adjacent
nodes or the same node. This would mean that in each "solve" phase, every
node would be busy except for the time during the transmission of intermediate
results to neighboring cells. We have not achieved this condition in the previous
example since node 0 contains two cells with b = 1, It is easy to show that it is
not possible to achieve such a mapping for any hypercube with dimension less
than 6. It is also clear that the dimension of the hypercube would have to be
even, say 2d , and that AA = BB = CC = 2% . It is not obvious whether such

cell-to-node mappings exist.

We might relax the above conditions by requiring that each node contain at
least one cell for each different value for @, b, and ¢ and that adjacent cells
map into adjacent nodes. We can always find cell-to-node mappings which
satisfy this condition. An example is shown in Figure 8.2. The difficulty with

such mappings is that additional communication and cell processes are required.
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In this casc 2clls which are adjacent in the z direction are mapped into nodes

which zre at a distance 2 from each other. All other adjacencies are preserved.

},
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8.3. Perfornance

The code for the Beam and Warming method was run using the cell-to-node
mapping shown in Figure 8.3 on a 16-node hypercube with 4 cell processes per
node. We have II = JJ = KK = 5. This amounts to a domain with 203 grid
points, The tota‘l‘ number of floating point operations is approximately 214,000

and the time per iteration {x_solve, y_solve, and z_solve) is about 2.5 seconds.

Sndng ¥ W

This is a sustained rate of 5.350 floating point operations per second per node.

A A

The same code, specialized to a single node, was run on « VAX11/780 and we

obtained a sustained rate of approximately 32,000 floating point operations per

Lann L il D -SSR o

second, This is the same rate obtained for the Lax-Wendroff code on the VAX.
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Another possibility is to relax the constraint that adjacent cells map into

adjacent nodes. It can be shown that if we allow adjacent cells to map into

nodes that are at most a distance 2 apart, then we can find a cell-to-node map-

ping in which each node contains exactly one cell for each valueof a, b, and ¢.

In this case it is also clear that the dimension of the hypercube must be

even(2d ) and AA = BB = CC = 2¢,

Such a mapping is shown in Figure 8.3.

In this case cells which are adjacent in the z direction are mapped into nodes

which are at a distance 2 from each other. All other adjacencies are preserved.
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8.3. Performance

The code for the Beam and Warming method was run using the cell-to-node
mapping shown in Figure 8.3 on a 16-node hypercube with 4 cell processes per
node. We have II = JJ = KK = 5. This amounts to a domain with 20? grid
points. The total number of floating point operations is approximately 214,000
and the time per iteration (x_solve, y_solve, and z_solve) is about 2.5 seconds.
This is a sustained rate of 5,350 floating point operations per second per node.
The same code, specialized to a single node, was run on a VAX11/780 and we
obtained a sustained rate of approximately 32,000 floating point operations per
second. This is the same rate obtained for the Lax-Wendroff code on the VAX.
We conclude that a 32-node cube is about 5.3 times faster than a VAX on this
code. The performance for this code is only 30% of the performance of the Lax-

Wendroff code.

The hypercube performance is poor for the Beam and Warming code. One
reason is that the tridiagonal systems do not require much floating point compu-
tation. Implementation of the Navier Stokes equations will result in systems of
block tridiagonal'equations which require significantly more floating point opera-
tions. This will tilt the balance away from coramunication and should result in

improved performance.

More extensive tests of this code should be carried out for different cell-to-
node mappings. These results should be compared to massive data rearrange-

ment strategies,
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Performance of the Intel IPSC Hypercube

A Kolawa, S, Otto *
Physics Dept,, Caltech, Pasadena CA 91125

October 8, 1985

Introduction:

The purbose of this note is to present the speeds of the fundamental opera- i

tions used in the Intel Hypercube, IFSC. It is a companion to an earlier note
Hm188 describing the timing of the Mark II hypercubes constructed at JPL.

2
1
:
y
;i 3

-

Floating Point Speed .
3

. First off, we give the floating point performance {single precision, 32 bit) of

a node, This was done by employing an accurate timing routine which runs

S ey i

independently in every node,
Multiply
The following code was timed :
float a,b,c;
for (i=0; i < NumTimes; ++i) {

a = b®e;
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The loop overhead was separately measured (see below) and subtracted,
Intel IPSC : 40,4 usec/multiply or .024 Mflops
m sa;:‘;;asuroment done for a,b,c being double gives:
Intel IPSC ; 43,5 usec/multiply or .023 Mflops,
Add:

The code:
float a,b,c;
for (i=0: i < NumTimes; ++i)

a=b+g

J
loop overhead was again subtracted., We find:
Intel IPSC : 39.5 us/add or .025 Mfiops
Fer a,b,c double it is:

Intel IPSC : 43 us/add or .023 Mflops.

Loop Overhead
Just the above loop was run and timed,
Intel IPSC ; 8.2 us/loop

For more coinplex. realistic expressions, the apparent floating point perfor-
mance increases in realistic codes (e.3,, lattice gauge). To illustrate this, we

give a second measure of floating point speed,

* Research supported by the Department of Energy grants DE-AS03-ER13118,DE-FG03-
85ER25009 and by the Parsons Foundation and Systems Development Foundation. S.0tto
holds a Bantrell Research Fellowship at Caltech.
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Floating Point Performance #2
The code executed:
float a, b, ¢, d, e;
for (i = 0; i< NumTimes; ++{) §
a = b’ + b +d;

J

The time to execute this was:

Intel IPSC : 119.3 us When a,b,c,d,e were doubie the execution time was:

Intel IPSC: - 126.8 us

Giving as the performance figure (A floating point operation is now con-

sidered as a"*' or "+".);
Intel IPSC: 23.86 us / flop -> .042 Mflops
For double performance we got:

Intel IPSC : 25.36 us/flop  -> .039 Mflops

Integer (16 bit) performance

Multiply:

The code:

short j, k, I;

for (i = 0; i< NumTimes; ++i){
j=kk

giving:

Intel IPSC: 4 us / integer multiply
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The code: short j, k, 1;

for (i = 0; i< NumTimes, ++1)}
J=k+l;

J

giving:

Intel IPSC: 2us /integer add

Intarnods Communications:

Sngle Packet:

The objective is to measure the speed of the fundamental communications
routines, wtELT/rdELT. The Hypercube was mapped to a ring and each node
along the ring transferred a single, 84 bit packet one 'step forward in the ring,
This is the sort of thing which happens 1n many codes: each node is both sending
and receiving data. The code executed was:

int data [4];

for (i = 0; i< NumTimes; ++i){
wtELT (data, forward chan);
rdELT (éhta. backward chan);

The timings per single, 64 packet transfer are:
Intel IPSC : 11920 us / single packet transfer

This gives us a "feomm' for single prezision arithmetic by dividing these
times by two, since {;,mm (s conventionally defined as the transfer time of a 32

bit word. Note that femm IS the time both to write and read a 32 bit word - this

e e
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is what normally occurs - (n homogeneous applications at least, (This definition
is different from that in reterence 1.)
I’ Therefore, the "t.,mn" appropriate to the usual atficiency analyses is:
| feemm = 5060 us  Intel IPSC
' Ve can also relate "fi,pm " t0 "ty,y,"', defined as the time to do a single float-
ing point operation (32 bit), "ty,," has also basn called "fey,": "teme” in other
Hm memos, For the Intel IPSC machine, we have:
teamm = 149 Lpppp.,
t.omm for double precision work is achieved by doubling the above and al! toliow-
ing tcemm estimates,

Glbal Communications ('recsig, sendsig’)

The global broadcast utility, recsig, was timed, If N is the number of nodes
in the Hypercube, the timings are of the form:
a+f(logN+1)
where a reresents a constant startup tune, 8 represents the communication
time hrough each of the log N stages cof the broadcast, and the +1 is there

‘because the corner node must first read from the [H. Kesults are;

Dimension Intel '

of Cube 9500
: d

12000
17000
22000
27500

AP DN

These timings do not take into account the operating system overhead,
waiting, ete, .
; The timings ft the theoretical form given in the above quite well; the

parameters are;

ymﬁ’c“"WWH—W"M“”W»M oy ke 3 e o R e e e s

S SRR R

e e gL -




e >

Bl e

~g

g
%!

a EETETT

& Sl e e e e et B ¢
4

S b S ek R - N T - - - - - -

a 8 }
L Intel [PSC 700043 2500

Block Transfer. '"Shift"

VWe measured the block transfer of data between two neighboring nodes and

compare result with Markil(5MHz) Caltech Hypercube (2).

Number of Packets tcomm POr packet - teomm PeOr packet
in the Shift Intel Markll(SMHz)

1 5560us 125us
2 3007 93
4 1510 76
8 (A 68
18 390 64
az 202 62
64 110 81
128 65 é0
129 102 60
132 100 60
138 97 60
144 83 80
160 88 60
192 75 60
258 82.5 eo0
57 80 60
260 79.1 60
272 (4 60
<88 76.5 60
320 69 80
384 60 60
3a8s 73 €0
4186 71 60
448 87 €0
512 31.8 _60

The above results are plot on figure 1. They show that when message length
is equal to multiplicity of ikbyte then communication time per packet is
minimal. The next byte cause the jump of communication time which then
starts to decrease until the length of the message is again the multiplicity of
ikbyte. This behavior is caused by the operating system which tends to sends
messages 1n lkbyte pieces, It seems that asymptotic communication time per

84 bit packet is 58 ™ 60 us.
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Fgure Captions:

1) Plot of logarithm of communication time per packet vs iogarithm of base 2

of number of 84 oits packets in the message. The solid line presents com-
munication time per packet for Intel IPSC. The dashed lines represent
communication time per packet for the Interrupt Driven Operating System
(IDOS) and the Crystalline Operating System (CrOS) on Mark I1 5MHz and
8MHz Caltech/JPL Hypercubes . The dashed area presents range of change
of floating point performances on Intel [PSC and Markil(8MHz) machines.The
“scalar” is floating point multiply and "vector” is an operation like that in
section Floating Point Performance #2,
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