ENCAPSULATION MATERIALS RESEARCH

SPRINGBORN LABORATORIES

P. Willis

Phase I

IDENTIFY AND DEVELOP LOW COST MODULE ENCAPSULATION MATERIALS

- POTTANTS
- COVER FILMS
- SUBSTRATES
- ADHESIVES/PRIMERS
- ANTI-SOILING TREATMENTS

Phase II

MATERIALS RELIABILITY

- AGING AND LIFE ASSESSMENT
- ADVANCED STABILIZERS
- ADHESIVE BOND DURABILITY
- FLAMMABILITY
- ELECTRICAL ISOLATION

Phase !!!

PROCESS SENSITIVITY

- INTERRELATIONSHIPS OF
 - FORMULATION VARIABLES
 - PROCESS VARIABLES
- MANUFACTURING YIELD ANALYSIS

(PROCESS DEVELOPMENT SECTION)

Module Components

CURRENT EMPHASIS ON MATERIALS AND MODULE PERFORMANCE CHARACTERISTICS

- DETERMINE CURRENT LEVEL OF PERFORMANCE
- ENHANCE PERFORMANCE (E.G. REFORMULATION)
- SERVICE LIFE PROGNOSIS

PERFORMANCE CRITERIA

- FLAMMABILITY
- ADHESIVE BOND DURABILITY
- ELECTRICAL INTEGRITY
- ENVIRONMENTAL DEGRADATION
- WHAT ARE DOMINANT FAILURE MODES ?
- WHERE IS STABILIZATION NEEDED ?

Module Flammability

PROBLEM:

- BURNING MODULES CAN SERVE AS IGNITION SOURCE FOR OTHER STRUCTURES
- MOST MODULES CONSTRUCTIONS NOT PASSING UL-790 BURNING BRAND TEST

MECHANISM(?)

 APPEARS TO BE RUPTURE OF THE BACK COVER WITH THE EVOLUTION OF BURNING GASSES

- MODULFS WITH KAPTON BACK COVERS (HIGH STRENGTH)
 PASS (EST DUE TO ABILITY TO RETAIN COMBUSTIBLE
 GASSES ("B" BRAND)
- KAPTON IS <u>VERY</u> EXPENSIVE
- INEXPENSIVE HIGH STRENGTH HIGH TEMPERATURE BACK COVER NEEDED
- SOME SUCCESS WITH COATED FIBERGLASS CLOTH
 (PROPRIETARY COATINGS) ("A" BRAND)

GOAL:

- PREVENT SPREAD OF FLAME
- PASS UL-790

APPROACHES:

- (1) HIGH STRENGTH HEAT RESISTANT BACK COVERS
 - CERAMIC PAPER
 - POLYMER FILM LAMINATES WITH GLASS CLOTH INTERLAYER
 - METAL FOILS
 - RESIN IMPREGNATED GLASS CLOTH
- (2) REDUCTION OF COMBUSTIBLE MATERIALS
 - THINNING OF POTTANT LAYER
- (3) FIRE RETARDANT ADDITIVES
 - J INERT DILUENTS (TALC, CALCIUM CARBONATE)
 - RELEASE OF WATER WITH HEAT ALUMINA TRIHYDRATE (35% WATER)
 - FIRE RETARDANTS (FREE RADICAL TRAPS)
 ANTIMONY OXIDE, ZINC BORATE
 BROMINATED ORGANICS
 ORGANIC PHOSPHATES
- (4) COMBINATION OF ALL THREE (MOST LIKELY)

The state of the

EVALUATION OF CANDIDAT, MATERIALS

CONVENTIONAL TESTS:

- UL-94 VERTICAL BURN TEST
- ASTM E-262 FLAME SPREAD INDEX
- ASTM D-2863 LIMITING OXYGEN 'NDEX

SPECIAL TEST METHOD:

- HIGH TEMPERATURE BURST CELL
- DETERMINE BURST STRENGTH AS FUNCTION OF TEMPERATURE AND PRESSURE
- CORRELATE TO ACTUAL EFFECTIVENESS UNDER FIRE CONDITIONS
- DETERMINE ADD-ON COST FOR IMPROVEMENT IN FIRE RATING
- RECOMMEND CANDIDATES FOR UL-790 TESTING

DATA:		BURST	STRENGTH	l, PSI	
	300	400	500	<u>600</u>	٥ŗ
TEDLAR 200BS30WH	~ 5	<< 5	0	0	
KAPTON (4 mil)	>50	40	30	20	
GLASS CLOTH		P	OROUS -		

(PROPRIETARY COATING)

- MOST EFFECTIVE BACK COVER IS POROUS !
- RELEASED GASSES DILUTED BELOW LOWER EXPLOSION LIMIT ? ?

FIRE RETARDANT ADDITIVES:

• GOAL: FIRE RETARDANT EVA

FORMULATION:	<u>PARTS</u>	PERCENT
ELVAX 150	100	49
TBEC PEROXIDE	1.5	0.7
ANTIMONY OXIDE	7.0	3.4
DECARBROMODIPHENYL OXIDE	20.0	9.8
ALUMINUM TRIHYDRATE	<i>7</i> 5.0	35,8

EVALUATION:

• UL-94

VERTICAL BURN V-0 (SELF EXTINGUISHING)

- COMPRESSION MOLDED WITH "CRANEGLAS" CLOTH:
- ASTM D-23863 LIMITING OXYGEN INDEX 30% (GOOD)

FOR COMPANISON:

MATERIAL	OXYGEN INDEX
PARAFFIN	16
EVA (ELVAX 150)	18
SILICONE RUBBER	30
PVC.	~ 50
TEFLON (FEP)	~ 93

CONCLUSIONS:

- FIRE RETARDANCY INCREASES WITH AMOUNT OF ALUMINUM TRIHYDRATE
- 4:1 BROMINE: ANTIHONY RATIO APPEARS TO BE OPTIMUM
- NON-WOVEN GLASS CLOTH PREVENTS DRIPPING -REINFORCES THE COMPGGITION
- EVA CAN BE FORMULATED TO HAVE FLAMMABILITY EQUIVALENT TO SILICONE RUBBER
- HIGHER OXYGEN INDEX VALUES POSSIBLE

1000

Adhesion Experiments

STATUS:

- PRIMER FORMULATIONS IDENTIFIED FOR ALMOST ALL INTERFACES IN MODULES
- SELF-PRIMING FORMULATIONS OF EVA (TO GLASS, CELLS) DEVELOPED; AVAILABLE

CONTINUED PRIMER STUDIES:

- GOAL: REDUCE LIST OF PRIMERS TO "UNIVERSAL" FORMULATION(s)
- EVA! UATE THE THREE "BASIC" PRIMERS -DR, PLUEDDEMANN - DOW CORNING
 - POLYMER/METAL
 - POLYMER/INORGANIC
 - POLYMER/ORGANIC
- METAL PRIMER (ALUMINUM) RECOMMENDATIONS
 DR. JIM BOERIO UNIVERSITY OF CINCINNATI

DURABILITY

ADHESIVE BONDS ARE RESPONSIBLE FOR MECHANICAL INTEGRITY OF ENTIRE MODULE - WHAT IS THEIR LIFETIME ?

- HOW DURABLE ARE ADHESIVE BONDS ?
- UNDER WHAT CONDITIONS ?
- REVERSIBILITY AND RECOVERY ?
- MODELLING AND PREDICTION ?
- TEST METHODS ?

ADHESION DIAGNOSTICS:

 PROGRAM STARTED WITH CASE WESTERN RESERVE UNIVERSITY - JACK KOENIG

The Market of the second

(+)

Adhesion Diagnostics

TEST SPECIMENS:

- EVA COMPOUNDED WITH HIGH LOADINGS OF SILANE TREATED GLASS BEADS - RESEMBLES GLASS REINFORCED POLYMER
- GLASS: SPHERICAL "A" GLASS BEADS, MEAN DIAMETER 20 µ , 2% BY WEIGHT SILANE PRIMER
- SPECIMENS AT CASE WESTERN FOR "DRIFT" ANALYSIS (SPECTROSCOPY)
- SPECIMENS AT SPRINGBORN FOR MECHANICAL ANALYSIS

GOALS:

- CORRELATE SPECTROSCOPIC OBSERVATIONS WITH MECHANICAL PERFORMANCE
- DETERMINE DEGRADATION RATES (KINETICS)
- ASSESS SERVICE LIFE

AGING CONDITIONS:

- HYDROLYSIS CONSIDERED TO BE DOMINANT FAILURE MECHANISM
- WATER IMMERSION:

TEMPERATURES: 40° , 60° , 80°

TIMES: 100, 250, 500, 1000, 2000 HRS,

TESTING: MECHANICAL, SPECTROSCOPIC

• LARGEST MEASURABLE CHANGE: WEIGHT GAIN (WATER ABSORPTION)

PERCENT WEIGHT GAIN

TEMPERATURE	<u>40° C</u>	<u>60° C</u>	30°C
EVA/GLASS	51 %	2015 %	500 %
<u>No</u> PRIMER	2,000 HR	2,000 HR	500 Hr
EVA/GLASS	3.5 %	35 %	62 %
WITH PRIMER	2,000 HR	2,000 Hr	1,000 HR
EVA, CONTROL	0.3 %	0.4 %	1.0 %
	2,000 HR	2,000 Hr	2,000 Hr

- * NO SPECIMENS SURVIVING THIS POINT
- WEIGHT GAIN ASSUMED TO BE WATER ABSORPTION AT POLYMER/GLASS INTERFACE (ALSO OBSERVED BY SPECTROSCOPY)
- PRIMER HAS SIGNIFICANT EFFECT ON ABSORPTION
- MECHANICAL PROPERTIES: LITTLE CHANGE UP TO 50 %
 WEIGHT GAIN-ELONGATION BEGINS TO DECREASE
- ALMOST NO CHANGE IN POLYETHYLENE/GLASS BEAD SPECIFIENS

REVERSIBILITY:

• DRIED AT 105°C/72 Hrs - LIMIT OF REVERSIBILITY

40° 60° 80°

NO PRIMER ALL 500 Hrs 250 Hrs

WITH PRIMER ALL 1,000 Hrs

THE WAR WAS THE WAS TH

- WATER ABSORPTION LARGEST PROPERTY CHANGE
- PRIMER STABILIZERS GLASS/POLYMER INTERFACE
- HYDROTHERMAL " DAMAGE " TO BONDS AT THE INTERFACE IS REVERLIBLE UP TO A LIMIT
- EQUILIBRIUM WATER ABSORPTION VALUES MAY PROVIDE NEW METHOD OF EVALUATING ADHESIVE BONDS - RECOVERY PROPERTIES

LIFETIME:

- DOES POLYMER GAIN WATER TO POINT OF NON-REVERSIBILITY, OR IS IT "INDUCTION PERIOD " TYPE?
- NEED MORE DATA POINTS FOR MODELING

Electrical Isolation

- POTTANTS AND COVER FILMS SERVE AS ELECTRICAL INSULATION
- NEED TO KNOW THICKNESS REQUIRED FOR VOLTAGE STANDOFF
- VARIATION WITH TEMPERATURE, ABSORBED WATER ?
- NEED TO KNOW VARIATION DIELECTRIC STRENGTH WITH AGING:
 LIGHT, HEAT, HUMIDITY, FIELD STRESS

METHOD:

- HV-DC POWER SUPPLY, SYMMETRIC ELECTRODES
- SPECIFIED RATE OF RISE (500 V/SEC)
- ullet PLOT AVERAGE BREAKDOWN VOLTAGE, V_{ullet} VS THICKNESS
- STRAIGHT LINE RELATIONSHIP: SLOPE EQUALS "INTRINSIC DIELECTRIC STRENGTH" (DC)
- MEASUREMENTS TO DATE:
 EVA 9918, DV/DT = 3.65 kv/MIL

GOALS:

- REMEASURE DV/DT:
 - THERMAL AGING
 - WATER ABSORPTION
 - ENVIRONMENTAL EXPOSURE
 - FIELD STRESS AGING
- RECALCU' ATE THE REQUIRED INSULATION THICKNESS FOR SERVICE LIFE OF THE MODULE

Accelerated Aging Test Program

OUTDOOR PHOTOTHERMAL AGING REACTORS (OPTAR)

- USE NATURAL SUNLIGHT, AVOIDS SPECTRAL DISTRIBUTION PROBLEMS WITH ARTIFICIAL LIGHT SOURCES
- USE <u>TEMPERATURE</u> TO ACCELERATE THE PHOTO-THERMAL REACTION
- INCLUDES DARK CYCLE REACTIONS
- INCLUDES DEW/RAIN EXTRACTION
- INTENDED PRIMARILY FOR MODULE EXPOSURE
- EXTRAPOLATE EFFECTS TO LOWER TEMPERATURES

THE REAL PROPERTY.

Accelerated Aging

- USEFUL FOR EVALUATING CANDIDATE FORMULATIONS - COMPARISON
- EVALUATED WHOLE MODULES
- DETERMINE UPPER LEVEL SERVICE TEMPERATURES
- MODELLING:
 - TIME TO ONSET OF DEGRADATION (INDUCTION PERIOD, t;)
 EXAMPLE: POLYPROYLENE
 - ARRHENIUS: LOG, t; vs. 1/K°
 - PREDICT SERICE LIFE BY EXTRAPOLATION TO LOWER TEMPERATURES

TIME, HOURS

(1)

RELIABILITY PHYSICS

Accelerated Aging (OPTAR)

- INDUCTION PERICA MEASUREMENT USEFUL FOR STABILIZER SELECTION
- EXAMPLE: HALS TYPE STABILIZERS

- ADVANCE EVA FORMULATION (NO. 18170)
 LUPERSOL TBEC, UV-2098 (CYANAMIDE, UVSCREEN) UV-3346 (CYANAMIDE, HALS)
- MASSIVE TEST PROGRAM STARTED: MODULES, OUTER COVERS, ADHESION TEST SPECIMENS, POTTANT FORMULATIONS, ETC.
- RADIOMETER INSTALLED ON OPTAR DEVICES -POSSIBILITY FOR MODELING BASED ON HEAT PLUS LIGHT ? ? ?

Anti-Soiling Treatments

SURFACE CHEMISTRY:

- HARD
- SMOOTH
- HYDROPHOBIC
- OLEOPHOBIC
- ION FREE
- LOW SURFACE ENERGY

SURFACE INVESTIGATED:

- SUNADEX GLASS
- TEDLAR (100 BG 30 UT)
- ACRYLAR (ACRYLIC FILM)

TREATMENTS REMAINING:

- L-1668 FLUOROSILANE (3M)
- E-3820 PERFLUORODECANOIC ACID/ SILANE (DOW CORNING)
- STILL EFFECTIVE AT 46 MONTHS
 OUTDOOR EXPOSURE
- RESULTS IN IMPROVED POWER OUTPUT
- FLUOROALKYL SILANE CHEMISTRY APPEARS TO BE MOST EFFECTIVE

NEW TREATMENTS:

TWO NEW CANDIDATES FROM DOW CORNING JUST STARTED

Marie Charles

RELIABILITY PHYSICS

Soiling Experiments

FORTY SIX MONTHS EXPOSURE ENFIELD, CONNECTICUT

% LOSS IN I_{SC} WITH STANDARD CELL TREATED SUNDEX GLASS

46 MONTHS EXPOSURE

--- CONTROL, NO TREATMENT

---- L1668 (3M)

ESTIMATED AVERAGE POWER IMPROVEMENT, 1%

A KING SALES

FORTY SIX MONTHS EXPOSURE ENFIELD, CONNECTICUT

$\rm \%$ LOSS IN I $_{\rm SC}$ WITH STANDARD CELL TREATED TEDLAR 10GBG300UT

CONTROL, NO TREATMENT

---- E3820

• ESTIMATED AVERAGE POWER IMPROVEMENT, 3.8%

FORTY SIX MONTHS EXPOSURE ENFIELD, CONNECTICUT

${\it I}_{SC}$ LOSS IN I ${\it I}_{SC}$ WITH STANDARD CELL TREATED ACRYLAR (SUPPORTED ON GLASS)

45 MONTHS EXPOSURE

CONTROL, NO TREATMENT

--- ozone + E3820

ESTIMATED AVERAGE POWER IMPROVEMENT, 5.9%

Outer Covers

(SUBSTRATE DESIGN)

- RECENT INDUSTRIAL INTEREST BOTH CRYSTAL AND THIN FILM AMORPHOUS APPLICATIONS
- NEW CONCEPT: POTTANTS ARE VERY STABLE NO FURTHER NEED FOR UV SCREENING IN OUTER COVER (?)
- NON-SCREENING FILM REQUIREMENTS:
 TRANSPARENT, LOW SHRINKAGE, WEATHERABLE, BONDABLE
- BEST CANDIDATES: FLUOROPOLYMERS

FILM	REF. INDEX	% T	COST \$/FT ² /MIL
TEFZEL	1.403	85.6	0.128
KAYNAR	1.420	88.8	0.055
HALAR	1.40	85.3	0.096
. FA	1.30	88.4	0.123
FEP FLUOREX	1.34 1.46	93.6 90.0	0.109 0.17

- FEP MAY BE GOOD CHOICE:
 - HIGH TRANSPARENCY
 - OUTSTANDING WEATHERABILITY
 - MAY IMPROVE OPTICAL THROUGHPUT BY 2% DUE TO OPTICAL COUPLING
 - REQUIRES BONDING TECHNOLOGY:
 SURFACE TREATMENT NOT UV STABLE (DU PONT)
 - UNDER EVALUATION IN MODULE FABRICATION AND OUTDOOR EXPOSURE EXPERIMENTS

Thin-Film/Amorphous Photovoltaics

CANDIDATE POLYMERS:

- PROCESSABLE < 100° C
- OPTICALLY TRANSPARENT (BEFORE OR AFTER CURING)
- CURABLE: NO THERMAL CREEP
- EXTRUSION: THIN FILMS DESIRABLE
- WEA THERADLE OR UNGRADABLE
- FLEXIBLE

MATERIAL CLASS	<u>MANUFACTURER</u>	\$/LB
POLYETHYLENE (LDPE)	MANY	.5060
ETHYLENE/VINYL ACETATE	DU PONT, USI	.6080
ETHYLENE/ACRYLIC	DOW, GULF	.80 - 1.00
IONOMER	DU PONT	1.08 - 1.60
ALIPHATIC URETHANE	UPJOHN	1.70 - 2.50
HOT MELT ADHESIVES	MANY	80 - 2.50
(HYDROCARBON, POLYAMIDE		
POLYETHER, ACRYLIC)		

ENCAPSULATION METHOD:

- EXTRUSION COATING
- FILM LAMINATION: EXTRUDE THE POTTANT ON AN OUTER COVER FILM AS A CARRIER, USE COMBINATION FOR LAMINATION.

CURE METHOD:

- MOISTURE CURE (MODIFIED CHEMISTRY)
- PEROXIDE DECOMPOSITION (HEAT)
- UV CURE (PHOTOINITIATION)
- ELECTRON BEAM (?)
 MAY BE POSSIBLE WITH AMORPHOUS SILICON

Conclusions

FLAMMABILITY:

- BACK COVERS - FUNCTION ?
- SELF EXTINGUISHING FIRE RETARDANT EVA DEVELOPED

ADHESION:

- NEW TEST METHOD FOR PRIMER EVALUATION AND BOND DURABILITY
- CAN DEMONSTRATE BOND RECOVERY & LIMIT OF REVERSIBILITY

ELECTRICAL ISOLATION:

INTRINSIC DIELECTRIC TEST METHOD DEVELOPED

ACCELERATED AGING:

- " OPTAR " METHOD BEST AGING TECHNIQUE DISCOVERED SO ARE
- MODELING/LIFE PREDICTION ENCOURAGING
 - 70° & 90° C VERY GOOD CONDITION
 - COPPER REACTIONS NOT AS SEVERE AS ANTICIPATED - EXCEPT AT 105° C
 - LUPERSOL TBEC CURED FORMULATIONS APPEAR MORE STABLE
- BEST STABILIZERS: UV-2098 SCREENER,
 UV-3346 HALS TYPE (BOTH CYANAMIDE)

SOILING:

- TREATMENTS STILL EFFECTIVE AFTER 46 MONTHS
- MOST EFFECTIVE ON ORGANIC FILMS

THIN-FILM PV:

ENCAPSULANT INVESTIGATIONS BEGUN

I want to the work of the

Future Work

- FLAMMABILITY:
 - ENHANCED FIRE RETAR DANT FORMULATIONS
 - SMALL SCALE MODULE "BURNS"
- ADHESION:
 - MORE WORK ON " UNIVERSAL " PRIMERS
 - MORE DEVELOPMENT OF DIAGNOSTIC TEST METHOD
 - AGING OF ADHESION TEST SPECIMENS
- ELECTRICAL INTEGRITY: DIELECTRIC STRENGTH VERSUS AGING OF ENCAPSULATION MATERIALS:
 - ACCELERATED AGING
 MASSIVE NUMBER OF TEST SPECIMENS BEING
 DEVELOPED MODULES, OUTER COVERS
 ADVANCED STABILIZER SYSTEMS
 - NON-SCREENING WEATHERABLE OUTER COVERS EMPHASIS ON BONDING
 - THIN-FILM PV: DEVELOPMENT WORK AND MATERIALS RECOMMENDATIONS