HIGH-EFFICIENCY SILICON SOLAR CELLS

UNIVERSITY OF WASHINGTON

Larry C. Olsen

ORGANIZATION: JOINT CENTER FOR GRADUATE STUDY (UNIVERSITY OF WASHINGTON)

PRINCIPAL INVESTIGATOR: DR. LARRY C. OLSEN

CONTRACT NO.: 956614

CONTRACT PERIOD: SEPTEMBER, 1984 - AUGUST, 1985

OTHER CONTRIBUTORS: DR. BILL ADDIS DR. WES MILLER GLEN DUNHAM ERIC EICHELBERGER DAN DOYLE

Objectives and Approach

OBJECTIVES

- ACHIEVE AN AMI EFFICIENCY > 19%.
- IDENTIFY LIMITING CURRENT MECHANISMS FOR HIGH EFFICIENCY CELLS.
- . INVESTIGATE APPROACHES FOR PASSIVATING SURFACES OF SILICON SOLAR CELLS.

APPROACH

SILICON MINP SOLAR CELLS

- INCREASE JPHTO 36 mA/cm² WITH TIO, /MgF2 DBLAR AND BY USING COL-LECTOR GRID WITH 4% SHADOWING.
- OPTIMIZE EMITTER DONOR CONCENTRATION PROFILE TO MINIMIZE CUR-RENT LOSSES.

CURRENT LOSS MECHANISMS

- · CONDUCT TEMPERATURE-DEPENDENT I-V ANALYSES TO IDENTIFY CURRENT LOSS MECHANISMS.
- MODELING CALCULATIONS FOR INTERPRETING EXPERIMENTAL RESULTS.

SURFACE PASSIVATION

- INVESTIGATE PECVD SIN, FOR PASSIVATION OF SILICON. DETERMINE SURFACE RECOMBINATION VELOCITY FROM
- PHOTORESPONSE.
- DETERMINE D₈₅ FROM CAPACITANCE MEASUREMENTS ON HIGHLY DOPED N-TYPE WAFERS AND ON N* SURFACES OF N*/P CELLS.

PRECEDING PAGE BLANK NOT FILMUN

anthe between the cart

•

÷.

1.5

5

ь.

4

¥

ч,

-

2

Surface Passivation Studies

Γ, , 🖛

SURFACE STATE DENSITY

DETERMINE D₅₅ FROM HIGH FREQUENCY AND SLOW RAMP MEASUREMENTS WITH AI GATES.

- 2 ohm-cm (N_A = 7x10¹⁵ cm⁻³) P-TYPE
- 0.2 ohm-cm (N_A = 2x10¹⁷ cm⁻³) P-TYPE
- .08 ohm-cm (N_D = 7x10¹⁷ cm ⁻³) N-TYPE
- .01 ohm-cm (N_D = 5x10¹⁶ cm⁻³) N-TYPE

MODIFIED ROSIER MEASUREMENT

FABRICATE DEVICE STRUCTURE WITH SIN_ DEPOSITED ONTO DIFFUSED N^/P JUNCTIONS WHICH ALLOWS MEASUREMENTS OF:

- D_{SS} FROM HIGH FREQUENCY C-V APPLIED TO N⁺ SURFACE.
- SURFACE RECOMBINATION VELOCITY FROM PHOTORESPONSE.

Processing Outline for Recombination Study

1

·

2 5. 22

HIGH-EFFICIENCY DEVICE RESEARCH

ORIGINAL PICE 13 OF POOR QUALITY 1, , ···

ì

÷.

1

「中」に留計的

Device Structure for Surface Recombination Study

1

J

•

1

. . .

2

,

7

Internal Photoresponse vs Wavelength

۱. ,

Surface Recombination Studies

SAMPLE	OXIDE THICKNESS (Å)	SIN _X THICKNESS (Å)	ANNEAL OF SINX	S (cm/eec)	Dss (cm ⁻³ eV -1)
85-15	NATIVE			• 1.0x10#	
85-17	NATIVE	890		5.5x104	2.5x1013
\$5-16	NATIVE	820	Н.Т.	2.0x104	2.5x1013
85-24	20 Å			3.0x104	
83-23	20 Å	1020		6.0x104	2.5x1013
85-22	20 Å	1030	Н.Т.	1.0x104	2.4x10'3
85-20	100 Å			8.0x10 ³	
85-19	100 Å	950		4.0x104	2.5x1013
85-18	100 Å	1020	H.T.	9.0x10*	2.4x1013

NOTES: H.T. REFERS TO HEAT TREATMENT AT 400 °C FOR 15 MINUTES.

12

Sec. 15

していたい

Ş

SAMPLE RESISTIVITY (ohm-cm)	DOPANT CONCENTRATION (cm -3)	D _{SS} (cm ^{- t} eV ⁻¹) DEPOSITED	D _{SS} (cm ^{-z} eV ⁻¹) AFTER H.T	ESTIMATED SURFACE RECOMB VELOCITY (cm/sec)
2.0 P-TYPE	7x101#	5x10''	< 5x1010	25
0.2 P-TYPE	2x1017	5x1011	5x101*	25
7.0 N-TYPE (P-DOPED)	7x1014	1.7x10 ¹²	1.0x1012	500
.08 N-TYPE (Sb-DOPED)	1.3x1017	3x101#	3x1012	1.5x10 ³
.01 N -TYPE (Sb-DOPED)	3.0x101*	8x1012	\$x1012	4.1x10 ³

Variation of Surface State Density With Dopant Concentration

NOTES: (1) MEASUREMENTS ON 'MOS' STRUCTURES BASED ON PECVD SIN_X ON HOMOGEOUSLY DOPED WAFERS. (2) H.T. REFERS TO 40 MINUTES AT 450 °C IN ARGON. (3) ESTIMATED SURFACE RECOMBINATION VELOCITY BASED ON $\sigma = 10^{-14} {\rm cm}^2$.

NOTE: ESTIMATED 5 BASED ON $\sigma = 10^{-16} \text{sm}^3$.

¥

.;

1

414

Effect of Illumination on I-V Parameters

DARK CHARACTERISTICS

n = 1.00

 $J_0 = 2.1 \times 10^{-12} \text{ A/cm}^2$

 ϕ = 1.04 eV

DOMINANT LOSS MECHANISM: EMITTER RECOMBINATION

ILLUMINATED CHARACTERISTICS

n = 1.10

 $J_0 = 4.0 \times 10^{-11} \text{ A/cm}^2$

 ϕ = 1.01 eV

DOMINANT LOSS MECHANISM: DEPLETION LAYER RECOMBINATION

POSSIBLE TRAP CHARACTERISTICS: E_C-E_T \simeq 0.2 eV N_T \simeq 10^{17} cm ^3

Depletion Layer Recombination Revisited

R = Shociday - Read - Hall Expression For Recombination Rate

MODELING CALCULATIONS

 $J_{R} = J_{OR} \exp \left(\bigvee_{nkT} \right) V > > kT$

 $J_{OR} = J_{OO} \exp\left(-\frac{\phi}{kT}\right)$

4

.....

385

:J

1

۰. ,

1

.

HIGH-EFFICIENCY DEVICE RESEARCH

Short-Circuit Current Improvement

OBJECTIVE

- POLISHED, 0.2 ()-cm P- (YPE SUBSTRATE Jau 37.5 mA L = 150 um, DBLAR of TiO₂ and MgF₂
- ASSUMING 4% SHADOWING DUE TO CURRENT COLLECTOR GRID.

STATUS

- POLISHED CELL WITH SIO_X AR: J_{SC} = 32.3 _{cm}
- TEXTURED CELL WITH SIO_X AR: $J_{SC} \approx 35.5 \text{ cm}^{\text{mA}}$

. . .

PROGRESS

CALCULATED REFLECTANCE VS WAVELENGTH

- DEVELOPED PROCEDURES FOR DEPOSITING TIO2 AND MgF2. ELLIPSOMETRIC MEASUREMENTS WERE USED TO OBTAIN OPTICAL CONSTANTS. CALCULATED OPTIMUM FILM THICKNESSES FOR TIO2/MgF2 **DBLAR COATING.**
- DEVELOPED PROCEDURES FOR DEFINING FRONT COLLECTOR GRID BY LIFTOFF OF FULL METALLIZATION THICKNESS.
- · DESIGNED AND ACQUIRED SHADOW MASK WHICH WILL YIELD COLLEC-TOR GRIDS WITH 4% SHADOWING.

Voltage Improvement

OBJECTIVE

• FF = 0.81 and Voc = 650 mV

STATUS

FF = 0.81 and Voc = 636 mV

APPROACH

• EMITTER OPTIMIZATION USING ION IMPLANTION: m-3

$$N_8 \simeq 3$$
 to 4×10^{19} cr

$$\mathbf{R} \simeq 200 \,\Omega / [1]$$

- REDUCTION OF SURFACE RECOMBINATION:
 - $S \simeq 10^3$ cm/sec.
- $V_{OC} = 650 \text{ mV}.$
- ASSUMING $J_{SC} = 36 \text{ mA/cm}^2$, AMI EFFICIENCY = 19.0%.

in family

- t 2 :

٠.

۶.

4

Emitter j_0 vs Surface Donor Concentration

ι.,

N_S(cm⁻³)

387

J

٠,

÷.,

,

4

1

HIGH-EFFICIENC Y DEVICE RESEARCH

Key Results

1. 1

MINP SOLAR CELLS

- DOUBLE AR COATING CONSISTING OF TIO2/MgF2 AVAILABLE.
- APPROACH TO MORE OPTIMUM EMITTER CONCENTRATION PROFILE
- EFFICIENCIES: 16.3% (POLISHED), 17.0% (TEXTURED)
- VOLTAGE: V_{OC} = 636 mV.

CURRENT LOSS MECHANISMS

- HAVE IDENTIFIED LIGHT ENHANCED CURRENT LOSS MECHANISM IN HIGH EFFI-CIENCY CELLS. CAN BE EXPLAINED BY DEPLETION LAYER RECOMBINATION.
- HAVE EXTENEDED Sah-Noyce-Shockley MODELING CALCULATIONS TC INCLUDE TEMPERATURE DEPENDENT I-V CHARACTERISTICS AND ENERGY ACTIVATION ANALYSIS.

SURFACE PASSIVATION

- STUDIES OF 'MOS' STRUCTURES WITH SINX INSULATING LAYERS ON N-TYPE WAFERS IMDICATE SURFACE STATE DENSITY CORRELATES WITH DONOR DENSITY.
- MODIFIED ROSIER MEASUREMENT DEVELOPED. INVOLVES PHOTO-RESPONSE ANALYSIS TO OBTAIN SURFACE RECOMBINATION VELOCITY AND HIGH FREQUENCY C-V TO OBTAIN SURFACE STATE DENSITY.
- DETERMINED THAT PECVD SIN_X ANNEALED AT 400° C RESULTS IN S = 10⁴ cm/sec ON N+ SURFACE WITH N_S = 10²⁰ cm ³, SIMILAR RESULT OBTAINED WITH 100 Å SIO₂ PASSIVATION.