ADVANCED DENDRITIC WEB GROWTH DEVELOPMENT

WESTINGHOUSE ELECTRIC CORP.

R. H. Hopkins

Advanced Silicon Sheet Task

Technology	Report Date
Single Crystal Ribbon Growth	6/19/85
Approach	Status
Silicon Dendritic Web Growth	 Model-Driven Low Stress Design Led to Record Web Width - 6.7 cm
Contractor Westinghouse Electric Corporation Advanced Energy Systems Division	 New Length Record with Continuous Replenishment - 7.5 m (4.1 cm Width)
JPL Contract 955843	 Area Rates - 8 cm²/min (1.5 m) - 13 cm²/min Short Le⁻ gths
Goals For 1985 Demonstrate • Area Growth Rate of 13 cm ² /min (2 m Length) • Area Growth Rate of 16 cm ² /min (2 m Length) • Closed Loop Growth Control System	• 5 cm Wide Webs Grown Regularly
	 Sensor for Closed Loop Control Based on Dendrite Thickness Demonstrated
	 Software and Hardware Elements for Closed Loop Control Completed
	 Plastic Flow Modeling Initiated for Stress Reduction

Outline

Introduction — — — — — — — — — — — R. H. Hopkins

- Goals
- Organization

Closed Loop Wub Growth System Development

- Dendrite Thickness Monitor
- Closed Loop Control System
- System Monitoring

Stress Reduction for High Area Rate Growth

- Far Stress
- Near Stress

Plastic Deformation — — — — — — — — — J. Spitznagel

507

PRECEDING PAGE BLANK NOT Fine ...

Web Technology Development

Output Team - C.E. Buncan		
System Parlamance Task		
F.A. Fielrouchi	25,000 cm744466/Watt	6/38/85 12/31/85 12/31/86
Cualinuous Regionistenent York	Cleand-Loon Growth Control	
F.A. Ptyzwerky		
Instrumentation and Control Tank		
J.R. Euser		
Aree flate Toats - R.H. Heptins	P	8-6-
Histoling and Analysis Task	13 cm7mb (20)	3/31/85
R.G. Seidenslicker	16 carTain (Zml	12/31/06
Experiment Concept and Exclusion To	nais.	
J.P. McHugh	—	
Component Design and Implementatio	a Task	
R.P. Specato		
Cheracterization Task		
d. Spitznagoi		
Information Management - EL. Kechk	•	

•

5 a

ADVANCED SILICON SHEET

....

ļ

....

ORIGINAL PARE IS OF POOR QUALITY

7

ŧ,

-

1

Ę.

• •

:

•

1

L

Web Grc wth Control

1

Growth Temperature, T_G - Control Furnace Temperature
 Lataral Symmetry - Control Coll Position

509

......

š

1

3

.,

Closed-Loop Control System

- ---- -

ļ,

The second s

Basis for Web Closed-Loop Control

Dendrite Thickness Controlled Through Digital Feedback Loop

- DTM Provides Input to Two Uncoupled P-I-D Control Equations
 - Average L-R Thickness Controls Temperature
 - Thickness Difference Controls Spatial Temperature Distribution
- RF Coil Position (Left-Right) Adjusted Through PID Output to Motorized Stage for dT/dx Changes
- Temperature (RF Power) Adjusted By Biasing Light Pipe Input to Analog Temperature Controller (Based on PID Control Output)

Dendrite Thickness Monitor

Į,

......

Ęħ.

Dendrite Thickness Monitor (DTM)

- View-719 VidiconType Dimension Inspection System
- WDeveloped Application Software
 - Visual Display for Operator in Manual Mode
 - Input to Control System in Automatic Mode
- Automatic Calibration and Dendrite Tracking
- Gas Purged Viewport System on Furnace Provides Clean Sightpath
- 50 Microns (1 PIXEL) Resolution; with Software Averaging, Repeatability ~10 Microns

Data Acquisition System

.

.1

to the state

k

11

The second second

١Ì,

Data Acquisition System (DAS)

7

ł

1

- Based on HP-9817H Computer with HP-3497A Data Acquisition System
- Hardware Configuration Allows Maximum of 12 Data Channels
 Per Furnace
- Anticipated Storage Capacity ~1 Week of Data for 11 Furnaces
- Real-Time Graphics or Tabular Display
- Variable Sampling Rate Data Storage with Time Compression/ Expansion Capability on Recalled Graphics Display

Data Acquisition Cabling Plan

1.1.1.1

Monitoring with Real-Time Data Acquisition System

Closed-Loop Development Status

- DTM Tests Successful
 - Operator Acceptance for Manual Operation
 - Adequate Resolution
 - Reduced Terminations/Longer Webs
- Dendrite Thickness Data Compatible with Control Function
- Software for P.I.D. Control Algorithm Complete
- Computer Controlled Coil Positioner and Temperature Control Demonstrated
- Software for Dual Furnace Operation of DTM Complete
- Cabling of Furnaces for Data Acquisition and Monitoring Complete

1,3000

Z

• .

Area Rate

1

TECHNICAL ISSUES

- - Far Stress
 - Near Stress
- 2. Maximum Interface Heat Loss ——— High Speed
 - Growth Stability with Deep Melts
 - Stress Trade-Offs

Schematic Growth Configuration (for modeling)

Calculated Web Thermal Profiles

1

71

516

1

the second second

Undeformed Web Width

140

۰ ۲

Recent Wide Web Crystals

	w	t	v	Area Rate
CRYSTAL	(cm)	<u>(µm)</u>	(cm/min)	(cni ² /min)
N126-14	5.0	210	1 13	5.6
N127-3	5.6	170	1.13	6.3
N127-4	5.0	140	1 43	7.1
ZC58-4	5.8	160	1.05	6.1
Z059-2	50	135	1 13	5.6
N12815	49	75	1.88	92
N128-16	5.2	95	1.65	8.6
N128-19	5.2	130	1.43	7.4
2060-14	4.5	135	1.57	7.1
H483-10	48	145	1.38	6.6
N13011	5.4	140	1.28	6.9
H485-/	4.5	105	2.04	<u>9.8</u>
N132-2	4.7	145	1.28	6.0
R486-12	50	210	1.38	6.9
R486-13	48	150	1.38	66
N132-2	4.7	145	1.28	6.0
ZC63-2	55	130	1.35	7.4
			2.10	11.5
J55-1J	5.2	125	1.29	6.7
1221-12	5.5	150	1.02	5.6
JJJJ2 1	0.7		1.29	<u>8.1</u>
1004-1	24	170	1.15	6.2
1555_1	5 J 5 O	103	1.15	6.1
1222-1	50	203	1 13	5.8
	* •	60	2.03	13.3
100-00	5.2	150	1.15	8.0
1557 E	23	100	1.29	
1337-3	6.0	150	1 15	/ •
1567_7	50	166	1 15	5.8
1550_9	50	170	1 15	
1560-2	40	166	1 15	20
1300-2	60	100	1 15	63
N141-1	52	150	1 28	67
Z066-7	50	140	1.22	6 1
2069-1	48	170	1.31	63
Z069-8	48	165	1.22	59
Z070-17	48	135	1 31	63
N142-3	48	120	1 28	61
H492	51	155	1.11	5.7

517

d i

A. . .

Ţ

<u>ب</u>د •

.

Melt Geometric Parameters

Variation in Web Buckling Eigenvalue with Crystal-Liquid Interface Position

·- ¥

Normalized Buckling Width Versus Melt Level

а.

Near Stress Reduction

APPROACHES

Model

- Direct Stress Calculation from Hypothetical Lid Design
- General Analysis from Synthetic Temperature Profiles
- Guidance from Effective Ambient Temperature Calculation

Fabricate and Test Lids

ļ

Evaluate Parametric Effects on Crystal Quality

Modeling New Lids for Interface Stress Reduction

(LIN = 0)

Model Case	Remarks	V Web (cm/min)	σ _y (0) (Md/cm ²)	Δσ _X (near) (Md/cm ²)
J460	Baseline	1.53	-645	155
New 1 (N-133)	Std. T's	1.53	-612	145
New 1 (N-133)	Hotter Cavity	1.52	-591	139
New 1 (N-133)	Hot/Deeper Cavity	1.48	-581	140

ŧ

ŕ

きいという

Typical Web Etch Pit and Stress Data

Growth Configuration	J435	Z058 (Far Stress Control)	R492 (Near Stress Contro!)
Residual Stress (Mdyn/cm ²)	20-40 (Tensile)	<10 (T and C)	<10 (Compressive)
Etch Pit Density (cm ⁻²)	20-00 K	~3K	<5K

Ţ

Plasticity Effects in Web Growth

3'

Web Slip Systems

ORIGINAL PAGE IS OF POOR QUALITY

Calculation of Resolved Shear Stresses

 $\sigma_{ij} = a_{ix} a_{jx} \sigma_{xx} + [a_{ix} a_{jy} + a_{iy} a_{jx}] \sigma_{xy} + a_{iy} a_{jy} \sigma_{yy}$

Where

aix = Cosine of Angle Between Normal to Slip Plane and [211]

x =Cosine of Angle Between Slip Direction and [211]

- aiy = Cosine of Angle Between Normal to Slip Plane and [011]
- aiv = Cosine of Angle Between Slip Direction and [011]

Plane	Direction	Resolved Shear Stress
(111)	[011]	-0.272 σ_{XX} + 0.470 τ_{XY}
(111)	[110]	0.136 σ _{XX} – 0.408 σ _{YY}
(111)	[101]	- 0.408 σ_{XX} + 0.471 τ_{XY} + 0.408 σ_{YY}
(111)	[011]	-0.272 σ _{XX} - 0.470 τ _{XY}
(111)	[101]	0.136 σ _{XX} - 0.943 τ _{XY} - 0.408 σ _{YY}
(111)	[110]	–0.408 σ _{XX} – 0.471 τ _{XY} + 0.816 σ _{YY}
(111)	[110]	–0.272 σ _{XX} – 0.471 τ _{XY}
(111)	[101]	-0.272 σ _{XX} + 0.471 τ _{XY}
(111)	[0ī1]	0.943 τ _{χy}

Resolved Shear Stresses for Single Crystal (111) Web Silicon

_ (

i

•

524

Critical Resolved Shear Stress Criterion for First Leration

$$\dot{\epsilon}$$
avg = $\frac{\partial(\alpha T)}{\partial t}$
 $\simeq 5 \times 10^{-5} s^{-1}$

 $\tau_{LY} = 1.505 \times 10^{-3} \text{ EXP} [9283/T]$

 τ_{LY} = Shear Stress at Lower Yield Point in MPa

T = Web Temperature, $^{\circ}K$ (T \geq 1000 K)

T°K	<u> τ_{LΥ} (MPa)</u>
1073 (800°C)	8.6
1173 (900°C)	4.1
1273 (1000°C)	2.2
1373 (1100°C)	1.3
1573 (1300°C)	0.55

Problems/Concerns

- (1) Reduction in Interface Stress for High Speed Grove Requires Analytical and Experimental Effort: Calendar Year redule is Ambitious
- (2) Uncertainties in High Temperature Properties of Silicon Impact Stress Modeling

1-