1

DEVELOPMENT OF DESIGN CRITERIA AND A QUALIFICATION TEST FOR BYPASS DIODES

N86 - 29402

JET PROPULSION LABORATORY

D. H. Otth

Objectives

- Define specific design criteria for bypass diodes in PV applications to ensure acceptable field reliability
- Develop a qualification test for assessing conformance to design criteria
 - Diodes integral with module
 - Externally mounted diodes
- Use test procedure to assess diode and heat-sink adequacy in a variety of modules and refine the qualification test

Design Criteria

DIODE TYPE	MAXIMUM ALLOWABLE JUNCTION TEMPERATURE	DERATED TEMPERATURE FOR LONG-TERM RELIABILITY		
p∙n	175°C	125°C		
Schottky	125°C	75°C		
APPLICABLE	100 mW/cm ²	100 mW/cm ²		
CONDITIONS	40°C	40°C		
	1.5 I _{sc}	1.0 I _{sc}		

DIODE JUNCTION TEMPERATURE ALLOWABLES

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Qualification Test Approach

- Develop test to determine diode junction temperature in situ using readily available laboratory test instruments
 - Use diode forward-voltage drop versus temperature to sense junction temperature
 - Extrapolate temperature to 100 mW/cm², 40°C field thermal conditions from laboratory temperature using NOCT relationships

Method for Assessing Design Conformance

- (1) Simulate field thermal conditions by heating module front surface with IR radiant heaters to obtain predicted module temperature rise above ambient for 100 mW/cm² irradiance
- (2) Apply test current 1.5 I_{SC} or 1.0 I_{SC} to dicde until thermal equilibrium is reached
- (3) Sense the diode junction temperate \cup (T_j) by measuring forward voltage drop across junction at a fixed, known current level (I_m)

Oven characterization tests used to obtain diode temperature vs voltage drop curve

(4) Compute junction temperature under 40°C ambient conditions as $T_j + 40$ °C minus the test environment ambient temperature (i.e., T_{room})

Test Circuit for Measuring Bypass Diode Junction Temperature

1

· 1/2

•••

Services.

į

Junction Temperature Assessments of Various Heat-Sinked Bypass Diodes for 100 mW/cm², 40°C Field Conditions

Module and Heat-Sink Dexign			Derated Temp (T _j) _D (125°C Limit)		Max Operating Yemp (T _j) _{max} (175°C Limit)	
Module Type	P·n Diode Location	NOCT °C	1.0 I _{sc} A	(Tj)D °C	1.5 I _{sc} A	(T _j) _{max} °C
A	Across Terminals, in Junction Box	46	2.27	83	3.40	105
B	Bracket in Junction Box	54	12.02	122	-	-
C	P-C Board in Junction Box	49	5.30	186	7.95	234
D	Moduls Frame	56	6.80	140	10.30	185
E	Bracket in Junction Box	47	5.3	130	7.95	169
F	Across Terminals, in Potted J-Box	51	1.44	57	2.16	79
G	Across Bus Bar Ends in Laminate Assembly	47	7.1	234	-	-
H	External Assembly Diode	-	1 X 60	91	1 X 9 0	128
		-	2 X 60	102	2 x 90	142

Conclusions

- Proposed qual test worked well with a wide variety of bypass diode mounting configurations
- Wide variability of performance obtained from module/diode test set
 - 3 devices junction temperatures well below limits
 - 2 devices: close to limits, i.e., 1 marginally under and 1 marginally over
 - 3 devices: well beyond the limits
- Diodes meeting the 125°C derated limit at 1.0 I_{SC} easily passed the 175°C maximum operating temperature limit at 1.5 I_{SC}
 - Derated junction temperature limit of 125°C is the more stringent design criterion
- · Properly heat-sinked diodes can easily meet the design criteria

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

7

۳۹. ۲

ľ

₽...

1

1

Future Work

- Continue to refine steps in test method to establish a detailed qualification test procedure
- Include bypass diode performance criteria and test procedure in Block VI module design and test specification

----- 🕑

.