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This report summarizes progress made on NASA Grant NAG-1-392 during the
period August 19, 1985 to February 18, 1986.
develop mathematical models and associated solution procedures which can be
used to désign heat pipe cooled structures for use on hypersonic vehicles.
The models should also have the capibility to predict off-design performance
for a variety of operating conditions., It is expected that the resulting
models can be used to predict startup behavior of liquid metal heat pipes to

be used in reentry vehicles, hypersonic aircraft and space nuclear reactors.

INTRODUCTION

The program work statement includes the following tasks.

I.

II.

ITI.

IV,

Previous status reports in this series (February 1985 and September 1985)

have covered the development of governing differential

startup behavior of initially frozen liquid metal heat pipes. The current

To investigate the physics of melting and freezing of the
working fluid in 1liquid metal heat pipes, and of other
performance limitations which are presently not well
understood, and to develop equations, adequate for design, to
predict associated performance limits.

To evaluate the Langley finite difference heat pipe design
computer program and the equations upon which it is based and
suggest improvements or additions to'upgrade the.program,

To work with the aerospace contractor who wins the heat pipe
study contract to upgrade the contractor's heat pipe analysis
capability.

To work with NASA to define the required instrumentation for
the heat pipe model which will be built under the heat pipe

study contract and to develop a test plan for the heat pipe.

The goal of the project is to

equations for the



report summarizes work to date related to numerical solutions of governing
differential equations for the outer shell and the combination capillary
structure and working fluid. The working fluid may be solid (frozen), liquid,
or partly liquid and partly solid. Finite element numerical equations using
both implicit, explicit and cﬁmbination methods have been examined, Both
enthalpy and specific heat approximations to melting have been examined. The
various numerical solutions have been verified using available analytical
solutions and experimental data. Work is now in progress aimed at modeling
vaporization and condensation processes and behavior of the vapor region

during startup. The next status report will cover this work.
GOVERNING DIFFERENTIAL EQUATIONS

The problem under consideration is the initially 1liquid state at a
constant temprature To, which is greater than the freezing temperature Tm.
For time t > 0, some surfaces are maintained at a constant temperature T that
is Tower than Tm and the others are insulated. A problem with a phase change
of a substance from one state to another is mathematically described as

follows

oT
S _ 3. > . .
Cs 3t = v [KS v TS] solid region (1)
aTn . .
C2 e V. [K2 v Tz] liquid region (2)
T=T, ' for t < 0 (3)
T=T1
w



or

i 0 on the boundary surfaces (4)
TS = Tl = Tm (5)
and
aT oT ’
L S _ das .
K2 ol KS = Hsz It on the interface ) (6)

where subscripts s and g indicate the solid and liquid phases, respectively,
and n represents the unit outward normal direction at the interface.

T T, denote respectively the initial, freezing, and

Temperatures T m

o’
boundary tempreaturs. Hsz is the 1latent heat of fusion, and S is the

interface postion in the X, Y, t domain.
ANALYTICAL SOLUTIONS

The problems of cooling and phase change of semi-infinite body with
constant boundary temperature has been solved by several authors. In the
present project, these solutions will serve as reference values for numerical
calculation.

The Temperature of a Semi-infinite Body

The exact solution to this problem is given by Luikou [1] as

T(x,t) - Tw
To - Tw_

= erf ( ——7 (7)
erf 2(at)1/2 )

where

a = —fr—

K
T
*p



Phase Change of a Semi-infinite Body

The analytical solution of phase change is given by Ozisik [2] as

T - T, erf[x/2(ast)1/2]

I Tw = erf (%) for solid region (8)
T, - T erfc[x/2(a2t)1/2]
7 = 172 for liquid region (9)
m 0 erfc[x(as/al) ]

and the location of the {nterface is

2
-\ K Tm - T -2 (as/al) AHSQ/F

e + _2 0 . (_C_I_E )1/2 . e - (10)
erf(%) Ks Tm = T % erfc(x(as/al)llz) Cps(Tm - Tw)

S(t)

) 2(ast)1/2

DESCRIPTION OF NUMERICAL METHODS

Finite Element Formulation
The Galerkin weighted residual method is used to derive finite element
formulations., Within each element, the unknown function T may be approximated

at any time t by the relationship

n
Txy,t) = Y Nxy) <Ti(t) (11)
i=1
where n is the number of nodes assigned to the element, Ti are the descrite
nodal values of T, and Ni are the shape functions,
By applying the Galerkin weighted residual method to equations (1) and

(2), and sujming the contributions from each element and boundaries, assembly



of the nonlinear transient element equations can be expressed in matrix form

as
[ J
[CI (T + [K] (T} = {F} (12)

where [C] and [K] are, respectively, the capacitance and conductance matrices.
Time-Stepping Techniques

Implicit Method

L_oiM s at

Let t" denote a typical time in the response so that tn+
where At is the time increment, and an intermediate time tm within ‘each time

step may be expressed as

t, = t" + mat , 0<mgl (13)

Then, Equation (12) at t, is given as
[ J
[c] (M + [K] (T} = (F) (14)

By using a Taylor expansion,

n d

{n, - i m

{m o (mat) + High Order Terms (15)

m

n+l _ d_ .
{T} =M, +gqt My * (mat) + Higher Order Terms (16)

Subtracting Equation (15) from (16) yields

n

n+l
4 m, =4

t m At

- {1}




After the higher order terms of Equation (15) are neglected, substitution

of Equation (15) into (17) gives
M= (1-mm" + nm™ (18)

Substitution of Equation (17) and (18) into the assembly Equation (14)

yields
(Blsnikny @™ = (Kl g Cmrnm” -6 (19)

Since the values of [C], [K] and {F} depend on {T}m , a choice from among
the values m = 0 1/2, 2/3 and 1, respectively, yields explicit Euler forward-
difference, Crank-Nicolson center-difference, Galerkin, and fully implicit
backward-difference formulations. The fully implicit backward-diffefence is
unconditionally stable and predicts a smooth decay and is therefore chosen
with a Newton-Raphson iteration for the implicit method. |

Explicit Method

The implicit method is much more stable then the explicit method, but
requires an iteration within each time step. To avoid- iteration, a three
level scheme proposed by Lees [3] was used by Comini et al. [4-8] and Moryan
[9]. Oscillations have been observed in certain circumstance, so a slightly
modified form was used to improve stability. This method has been used
successfully for phase change problems by several investigators.

Another three Tlevel scheme 1is referred to as the DuPont three level
schmem. Hogge [10] demonstrated the overall performance of the DuPont method

to be superior in accuracy and stability to other time stepping schemes in



solving the one-dimensional homogeneous equation.,

Thomas [11] compared several time integration schemes such as the Lees,
the DuPont scheme, and Crank-Nicolson method. He concluded that the DuPont
three level scheme was clearly superior to that of Lees in both accuracy and

stability, and that temperature-dependent terms should be evaluated

using {T}n+1 instead of {T}"+3/2 . By using the DuPont method, Equation (12)
can be approximated as
(2 + L ymm2 Loyt L K s iy (20)

The equations above allow the explicit evaluation of {T}n+2 without
iteration provided that {T}n+1 and {T}n are known, However, this scheme is
not self-starting, so {T}n+1 at the first time step may be calculated by using
the implicit method.

Latent Heat Evolution Schemes

The principal difficulties in the analysis of the phase change problem
are that the variation of the heat capacity is very rapid at the interface as
shown in Figure 1, the position of the moving interface is not known a priori
and their shapes may be multi-dimensional. Thus, physically realistic
approximation techniques must be used to overcome the difficulties.

It is convient to divide them into two groups, based on the choice of
grid used. In the first group, the moving mesh technique continously tracks
the location of the interface by deforming the grid system to maintain the
finest mesh in the vicinity of the critical phase change region. This
technique may be Timited to very simple geometries.

In the second group, a fixed grid technique can avoid tracking down the

position of the moving interface, but the interface is generally at an unknown



location between nodes. Many different classes of methods are available with
the fixed grid sysstem.

The first method uses the enthalpy as a dependent variable along with the
temperature, and may be referred to as the enthalpy method. Since two
dependent variables are used, the system of algebaric equations are solved by
iteration.

The second method treats the latent heat effect accompanying a change of
phase in terms of a temperature-dependent specific heat or with the use of an
enthalpy function.

These methods avoid ;he moving interface difficulty so that instead of
continously tracking down the position of the moving interface, the same
numerical scheme for conduction heat transafer without phase change is equally
applicable to the phase change period. Then, the postion of the interface can
be easily determined by linear interpolation of nodal temperatures.

Specific Heat Method

This method approximate the rapid variations of heat capacity over the
phase change temprature, which is artificially defined, instead of using the
Dirac Delta function as shown in Figure 1. Thus, a volumetric heat capacity,

which includes the latent heat of phase change, can be expressed as

C for T < T - AT
S m
C = C for T> T + aT
2 m
H cC +¢C
St S L
5T + 5 for Tm - AT < T« Tm + AT

where AT is the phase change temperature interval.
One advantage of the finite element method is the ability to formulate

contributions for individual elements before putting them together to
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represent the entire domain, The individual element characteristics are
determined by the shape functions and nodal values. Thus, the heat capacity
of the fusion element can be evaluated correctly instead of the direct use of
the averaged element temperature.

Consider the phase change element in Figure 2 and assume that the fusion
phase is within the element. If the variation of the density of the working
substance around the freezing temperature is quite small, the mass fractions

can be replaced by area fractions Mz’ Ms’ M. for liquid, solid, and fusion

f
phases with unit thickness. Otherwise, mass fractions which are calculated
based on the area and density of each phase is employed.

For a linear element, the phases within the element are seperated by the
isothermal 1lines, Tm + AT and Tm - AT , passing through the element. The
intersecting points of the isothermal lines at the boundaries of the element
and nodal points are the vertices of the area occupied by each phase. Since
three-node, linear triangular elements are used, at least one of the phases
occupies an area having a triangular shape. Then, the area of the traingular
js obtained by usiﬁg the known coordinate values of the vertices of the

triangle. For example, the area fracton of the element as shown in Figure 2

are expressed as

X., Y., 1
1 1 1
M.Q. = tz—A XO’ Yo, 1
, ¥, 1
r r
, Y. 1
1 1 1
Mf = t'z—A' Xp, Yp, 1 - Ml
X, Y¥Y,1
q q
MS=1- (Ml-Mf)



where A is the total area of the element with the sign chosen so that the area

is nonnegative. This new technique, which uses the mass fractions M2 . MS .

Mf for liquid, solid, and fusion phases, is introduced to correct
misinterpretation of the specific heat without a vry fine element‘grid and/or
time step.

Enthalpy Function

When temperature approaches the phase - change temperature, the heat
capacity tends to the Dirac delta function and can not be satisfactorily
represented across the peak by any smooth function. In Comini et al [4], a
technique based on the integral of heat capacity with respect to temperature

is proposed

T
H=f pC dT
T

This is a smooth function of temperature in the phase change zone.
Therefore, the enthalpy is interpolated rather than the heat capacity in a

element as following

n
Ho= 2 N, (XYM, (¢) (22)
S el

where again N; are the shape functions and H; are the enthalpy values at nodal
points.

From definition, the heat capacity'can be expressed as

pc = dH/dT (23)



Thus, the values of the heat capacity can be approximated by evaluating
the gradient of enthalpy with respect to temperature. Defining the direction

S to be normal to the interface line, Equation (23) is expressed as

pC 35/ 35 )
_ (B M ar
= ( 3x Fsx T Y lsy)/( 35 ) (24)
where
' . 8T , 3T _ 8T , 3T
Lsx = ax / 3s °? lsy Ty / as °?
and
aT ¢ (31,2, T \211/2

Hence, for the entire element, the final expression of the heat capacity

is given as

el = L. 2+ . By E )2 (£)% (25)

where, for linear temperature, tringuiar element,

%E =-%K (b1 H1 + sz2 + b3H3)
=25 G+ Gy + gy
A = 35 (byT, + b,T, + b.T.)
%% =-%X (C1T1 + CéT2 + C3T3)

- 12 -



The appropriate pc value to be used in the element can be evaluated by .
Equation (25). This expression is developed by Del-Giudice [12].
Boundary Conditions
. Since specified temperature boundary conditions are abruptly imposgd on
the boundary surface, the temperature gradient at this region is infinite
which may cause unstable conditions. This difficulty may be elimilited by
introducing a layer of fictitious -e1ements with negligible thermal storage
capacity and very high thermal conductivity, such that the temperature
gradient at this region artificially becomes of finite value. For this
purpose, numerical values of the thermophysical properties of the fictitious

layer are chosen as following:

1.26 x 107 a/m° K

pC

x~
|

= 4.19 x 10° W/m K
SOME ILLUSTRATIVE TESTS

Example 1. Temperature of a Semi-Inifinite Body

This example involves pure conduction of heat, without phase change, over
a semi-infinite body. It is solved as a two dimensional problem shown in
Figure 3. This problem is used to test the general capability of the program
writteﬁ in FORTRAN V.

Adiabatic boundary conditions are assumed throughout but at the faﬁe X =
0 the specified boundary temperature (253.0 K) is maintained constant during
the entire heat transfer process while the initial solid temperature (283.0 K)
is uniform.  The conductivity and specific heat are assigned values of

-aluminum,

- 13 -
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‘Both the fully implicit backward-difference and the explicit time
stepping schemes are tested. The explicit scheme causes small oscillations at
early time steps. Hence an implicit scheme is employed to eliminate the
~oscillations in the first five time steps. A time step of 10 seconds is used,
and numerical calculations are terminated as asymtotic conditions are
approached.

Numerical results are compared in Figure 4 to the well known analytical
solution., Both results from the implicit and explicit schemes agree well with
the analytical solutions,

Example 2. Solidification of a Semi-Infinite Body in Liquid

This example as represented 1in Figure 5 tests the ability of the
numerical methods to handle the latent heat of phase change which accompanies
the discontinuity of the properties at the phase change region,

The same initial temperature and boundary conditions as example 1 are
used. The initial temperature 1is higher than freezing (273.0 K). The
properties of water are assigned to the Epecific heat and conductivities of
the solid and the 1iquid state. The phase change interval, 2AT is assumed to
be .5 % and a time step of 400 seconds is used for Figure 6, 7 and 8.

Numerical results using the specific heat method and the enthalpy
function together with a implicit or explicit time stepping scheme are
compared with the results from an analytical solution [2] in Figures 6 and 7,
respectively. As shown in Figures 6 and 7, the temperature predictions of the
solid region by both methods agree well with analytical solutions. In the
liquid region, the maximum deviation is about 2%k,

Numerical results predicted by the explicit method using an implicit
scheme for the initial five time steps are closer to the analytical ones than

that by the implicit scheme. Also, the explicit method consumes less
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computational time since iteration is not involved.

In Figure 8, numerical results calculated by using specific heat and
enthalpy function with an explicit time- stepping scheme are compred with
analytical ones. At early time steps, the specific heat method predicts
better temprature distributions than that of the enthalpy function but for the
later time steps, numerical results predicted by using the enthalpy function
gives better agreement to analytical solutions. This method requires much
less computational time than the specific heat method. In the solid region,
both methods yield quite good results.

To predict temperature distributions for longer time, the enthalpy
function with an explicit time scheme are chosen because the results shown in
Figures 6, 7 and 8. The same initial and boundary conditions are used, but
the domain is extended as shown in Figure 5 and a time step of 500 seconds is
used.

The calculated results are compared with analytical solutions in ngure
9. Good prediction is achieved except for the phase change region, but even
in this region the maximum deviation is less than 2 K, In‘Figure 10, the
position of interfaces calculated by linear interpolation of adjacent nodal
temperatures of the freezing temperature gives good agreement with analytical
solutions,

Example 3. Phase Change of Sodium

In this example, sodium is used as the phase change material for one and
two-dimensional regions. The initial temperature of the sodium is 393.K which
is higher than the freezing temperature (371.K). First kind boundary
conditions (293.K) are imposed on boundary surfaces. The phase change
interval, 24AT is assumed to be 2.K and a time step of 5 seconds is employed.

The finite element meshes are shown in Figures 5 and 11.

- 21 -
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The enthalpy functions with an explicit time stepping scheme is used for
the phase change of sodium, In Figures 12 and 13 the temperature
distributions for pure conduction and phase change in a one-dimension region
show excellent agreement with analytical solutions.

For the two-dimensional case, the position of the interface is compared
with an analytical solution given by Jiji [13]. This analytical solution
assumes that the ratio of diffusivity for the solid to liquid is unity and
that the interface at points beyond three times the one-dimensional stationary
interface in x and y directions is the same as the one-dimensional stationary
interface position.

Since the ratio of diffusivities is not unity, the numerical solutions
can not be directly compared with the analytical solutions. However, as shown
in Figure 14, the solutions are close to each other for early time steps
because adiabatic bouﬁdafy conditions at surfaces which do not have first kind
boundary conditions are effective for both solutions. The difference of
diffusivities relatively small. As time increases the positions of the
interface given by numefical calculation advance further than the analytical
ones and interface lines obtained from the analytical method are not
perpendicular to boundary surfaces. This means that numerical.pa1culations
matches adiabatic boundary conditions, but the analytical solution does not.
Also, the effect of the difference of diffusivities is not negligible since:
quite a lot of mass has changed from liquid to solid. Even though numerical
solutions do not exactly match analytical solutions because of the different
conditions of the problem, general trends of the numerical results are

verified.
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Solidification of sodium in a corner region;
position of interface at different times,
a time step of 5 seconds is used.
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