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INTRODUCTION

This report summarizes progress made on NASA Grant NA6-1-392 during the

period August 19, 1985 to February 18, 1986. The goal of the project is to

develop mathematical models and associated solution procedures which can be

used to design heat pipe cooled structures for use on hypersonic vehicles.

The models should also have the capibility to predict off-design performance

for a variety of operating conditions. It is expected that the resulting

models can be used to predict startup behavior of liquid metal heat pipes to

be used in reentry vehicles, hypersonic aircraft and space nuclear reactors.

The program work statement includes the following tasks.

I. To investigate the physics of melting and freezing of the

working fluid in liquid metal heat pipes, and of other

performance limitations which are presently not well

understood, and to develop equations, adequate for design, to

predict associated performance limits.

II. To evaluate the Langley finite difference heat pipe design

computer program and the equations upon which it is based and

suggest improvements or additions to upgrade the.program.

III. To work with the aerospace contractor who wins the heat pipe

study contract to upgrade the contractor's heat pipe analysis

capability.

IV. To work with NASA to define the required instrumentation for

the heat pipe model which will be built under the heat pipe

study contract and to develop a test plan for the heat pipe.

Previous status reports in this series (February 1985 and September 1985)

have covered the development of governing differential equations for the

startup behavior of initially frozen liquid metal heat pipes. The current



report summarizes work to date related to numerical solutions of governing

differential equations for the outer shell and the combination capillary

structure and working fluid. The working fluid may be solid (frozen), liquid,

or partly liquid and partly solid. Finite element numerical equations using

both implicit, explicit and combination methods have been examined. Both

enthalpy and specific heat approximations to melting have been examined. The

various numerical solutions have been verified using available analytical

solutions and experimental data. Work is now in progress aimed at modeling

vaporization and condensation processes and behavior of the vapor region

during startup. The next status report will cover this work.

GOVERNING DIFFERENTIAL EQUATIONS

The problem under consideration is the initially liquid state at a

constant temprature T , which is greater than the freezing temperature T .

For time t > 0, some surfaces are maintained at a constant temperature T,. that
^~ W

is lower than T and the others are insulated. A problem with a phase change

of a substance from one state to another is mathematically described as

fol 1ows

9T
Ce -rr

1 = $ • IX $ T 1 solid region (1)
5 du S S

3T
C£ -^ = $ • [K£ $ T£] liquid region (2)

T = TQ for t < 0 (3)

T = T w
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or

8T '— = 0 on the boundary surfaces (4)9n

Ts •

and
3T, 3T s ̂  f on the 1nterfa«

where subscripts s and i indicate the solid and liquid phases, respectively,

and n represents the unit outward normal direction at the interface.

Temperatures T_, T_, I. denote respectively the initial, freezing, andu in w

boundary tempreaturs. H is the latent heat of fusion, and S is the

interface postion in the X, Y, t domain.

ANALYTICAL SOLUTIONS

The problems of cooling and phase change of semi-infinite body with

constant boundary temperature has been solved by several authors. In the

present project, these solutions will serve as reference values for numerical

calculation.

The Temperature of a Semi-Infinite Body

The exact solution to this problem is given by Luikou [1] as

T(x.t) - T
= erf• f - 1/2T0 Tw 2(at)1/Z

where

Ka =

- 3 -



Phase Change of a Semi -Infinite Body

The analytical solution of phase change is given by Ozisik [2] as

- Tw erf[x/2(ast)
1/2]

m w

T - T erfc[x/2(a

m erfc[x(a /a
5 X

for So11d region

for liquid region (9)

and the location of the interface is

ft T m - T o , i ,1/2
K T - T ' ' " 's m « ) " Cps(Tm ' V

where

DESCRIPTION OF NUMERICAL METHODS

Finite Element Formulation

The Galerkin weighted residual method is used to derive finite element

formulations. Within each element, the unknown function T may be approximated

at any time t by the relationship

T(x,y,t) = N.(x,y) -T.(t) (11)

1=1

where n is the number of nodes assigned to the element, T- are the descrite

nodal values of T, and N- are the shape functions.

By applying the Galerkin weighted residual method to equations (1) and

(2), and sujming the contributions from each element and boundaries, assembly

- 4 -



of the nonlinear transient element equations can be expressed in matrix form

as

[C] {T} + [K] {T} = {F} (12)

where [C] and [K] are, respectively, the capacitance and conductance matrices.

Time-Stepping Techniques

jmplicit Method

Let tn denote a typical time in the response so that tn = tn + At

where At is the time increment, and an intermediate time tm within each time

step may be expressed as

tm = t
n + mAt , 0 < m < 1 (13)

Then, Equation (12) at tm is given as

CC] {*}m + [K] {T}m = (F> (14)

By using a Taylor expansion,

{T}n = {T} - ̂ r {T}m • (mAt) + High Order Terms (15)
111 d U ill

(T}n+1 = {T)m + -^ {T}m - (mAt) + Higher Order Terms (16)

Subtracting Equation (15) from (16) yields

.d -
dT m ~ At

- 5 -



After the higher order terms of Equation (15) are neglected, substitution

of Equation (15) into (17) gives

- m){T}n + m{T}
n+1 (18)

Substitution of Equation (17) and (18) into the assembly Equation (14)

yields

m[K]) {T}n+1 = ( -tg - (1 - m)[K]){T}n + {F} (19)

Since the values of [C], [K] and {F} depend on {T} , a choice from among

the values m = 0 1/2, 2/3 and 1, respectively, yields explicit Euler forward-

difference, Crank-Nicolson center-difference, Galerkin, and fully implicit

backward-difference formulations. The fully implicit backward-difference is

unconditionally stable and predicts a smooth decay and is therefore chosen

with a Newton-Raphson iteration for the implicit method.

Explicit Method

The implicit method is much more stable then the explicit method, but

requires an iteration within each time step. To avoid- iteration, a three

level scheme proposed by Lees [3] was used by Comini et al . [4-8] and Morgan

[9]. Oscillations have been observed in certain circumstance, so a slightly

modified form was used to improve stability. This method has been used

successfully for phase change problems by several investigators.

Another three level scheme is referred to as the DuPont three level

schmem. Hogge [10] demonstrated the overall performance of the DuPont method

to be superior in accuracy and stability to other time stepping schemes in

- 6 -



solving the one-dimensional homogeneous equation.

Thomas [11] compared several time integration schemes such as the Lees,

the DuPont scheme, and Crank-Nicolson method. He concluded that the DuPont

three level scheme was clearly superior to that of Lees in both accuracy and

stability, and that temperature-dependent terms should be evaluated

using {T}n+1 instead of {T}"" . By using the DuPont method, Equation (12)

can be approximated as

<T)ntl + {T} t (F, (20)

»i O

The equations above allow the explicit evaluation of {T} without

iteration provided that {T}n+ and {T}n are known. However, this scheme is

not self-starting, so {T}n at the first time step may be calculated by using

the implicit method.

Latent Heat Evolution Schemes

The principal difficulties in the analysis of the phase change problem

are that the variation of the heat capacity is very rapid at the interface as

shown in Figure 1, the position of the moving interface is not known a priori

and their shapes may be multi-dimensional. Thus, physically realistic

approximation techniques must be used to overcome the difficulties.

It is convient to divide them into two groups, based on the choice of

grid used. In the first group, the moving mesh technique continously tracks

the location of the interface by deforming the grid system to maintain the

finest mesh in the vicinity of the critical phase change region. This

technique may be limited to very simple geometries.

In the second group, a fixed grid technique can avoid tracking down the

position of the moving interface, but the interface is generally at an unknown



location between nodes. Many different classes of methods are available with

the fixed grid sysstem.

The first method uses the enthalpy as a dependent variable along with the

temperature, and may be referred to as the enthalpy method. Since two

dependent variables are used, the system of algebaric equations are solved by

iteration.

The second method treats the latent heat effect accompanying a change of

phase in terms of a temperature-dependent specific heat or with the use of an

enthalpy function.

These methods avoid the moving interface difficulty so that instead of

continously tracking down the position of the moving interface, the same

numerical scheme for conduction heat transafer without phase change is equally

applicable to the phase change period. Then, the postion of the interface can

be easily determined by linear interpolation of nodal temperatures.

Specific Heat Method

This method approximate the rapid variations of heat capacity over the

phase change temprature, which is artificially defined, instead of using the

Dirac Delta function as shown in Figure 1. Thus, a volumetric heat capacity,

which includes the latent heat of phase change, can be expressed as

C for T < T - ATs m
C = C for T > T + ATI m

H C + C
-97T + S

 9 * for T - AT < T < T+ AT£ A T 2 m m
where AT is the phase change temperature interval.

One advantage of the finite element method is the ability to formulate

contributions for individual elements before putting them together to

- 8 -



Figure 1. . Graphic representation of material
of material property variations.

Liquid State

Figure 2. Element Model Showing Solid, Liquid,
and Fusion Phase.
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represent the entire domain. The individual element characteristics are

determined by the shape functions and nodal values. Thus, the heat capacity

of the fusion element can be evaluated correctly instead of the direct use of

the averaged element temperature.

Consider the phase change element in Figure 2 and assume that the fusion

phase is within the element. If the variation of the density of the working

substance around the freezing temperature is quite small, the mass fractions

can be replaced by area fractions M , M , M_ for liquid, solid, and fusion

phases with unit thickness. Otherwise, mass fractions which are calculated

based on the area and density of each phase is employed.

For a linear element, the phases within the element are seperated by the

isothermal lines, T + AT and T - AT , passing through the element. The

intersecting points of the isothermal lines at the boundaries of the element

and nodal points are the vertices of the area occupied by each phase. Since

three-node, linear triangular elements are used, at least one of the phases

occupies an area having a triangular shape. Then, the area of the traingular

is obtained by using the known coordinate values of the vertices of the

triangle. For example, the area fracton of the element as shown in Figure 2

are expressed as

_ .
~ *

1_
2A

V V
Xp, Yp,

V vi
V V l

- Mf)
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where A is the total area of the element with the sign chosen so that the area

is nonnegative. This new technique, which uses the mass fractions M , M ,.
JC *>

M for liquid, solid, and fusion phases, is introduced to correct

misinterpretation of the specific heat without a vry fine element grid and/or

time step.

Enthalpy Function

When temperature approaches the phase • change temperature, the heat

capacity tends to the Dirac delta function and can not be satisfactorily

represented across the peak by any smooth function. In Comini et al [4], a

technique based on the integral of heat capacity with respect to temperature

is proposed

H = / PC dT
00

This is a smooth function of temperature in the phase change zone.

Therefore, the enthalpy is interpolated rather than the heat capacity in a

element as following

n
H = E N.(X,Y)H.(t) (22)

1=1

where again N^ are the shape functions and H^ are the enthalpy values at nodal

points.

From definition, the heat capacity can be expressed as

pc = dH/dT (23)

- 11 -



Thus, the values of the heat capacity can be approximated by evaluating

the gradient of enthalpy with respect to temperature. Defining the direction

S to be normal to the interface line, Equation (23) is expressed as

, 3H . 3Tpc - ( Is ' Is

where

and

3H , 3H « ., 3T . /o / i \
-37*sx + TY *sy)/( as > (24)

_ II / il il / il
sx 3x ' 3s ' ^sy 3y ' 3s '

2-
-35 L v 3X ' v 3y ' J

Hence, for the entire element, the final expression of the heat capacity

is given as

i- -i r 3H 3T 3H 3T -,/r/ 3T .2 / 3T .2-, /oc\
Cpc] - [ "37 ' "3X- + 37 ' ly ̂ /C( 13T.) + ( 17 } ] (25)

where, for linear temperature, tringular element,

— - -i— / r H 4. r w -».rt^
3Y ' 2A { 11 22 C3M3;

C3T3)
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The appropriate pc value to be used in the element can be evaluated by

Equation (25). This expression is developed by Del-Giudice [12].

Boundary Conditions

Since specified temperature boundary conditions are .abruptly imposed on

the boundary surface, the temperature gradient at this region is infinite

which may cause unstable conditions. This difficulty may be elimilited by

introducing a layer of fictitious elements with negligible thermal storage

capacity and very high thermal conductivity, such that the temperature

gradient at this region artificially becomes of finite value. For this

purpose, numerical values of the thermophysical properties of the fictitious

layer are chosen as following:

pc = 1.26 x 104 J/m3 K

k = 4.19 x 103 W/m K

SOME ILLUSTRATIVE TESTS

Example 1. Temperature of a Serai-Inifinite Body

This example involves pure conduction of heat, without phase change, over

a semi-infinite body. It is solved as a two dimensional problem shown in

Figure 3. This problem is used to test the general capability of the program

written in FORTRAN V.

Adiabatic boundary conditions are assumed throughout but at the face x =

0 the specified boundary temperature (253.0 K) is maintained constant during

the entire heat transfer process while the initial solid temperature (283.0 K)

is uniform. The conductivity and specific heat are assigned values of

aluminum.

- 13 -
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•Both the fully implicit backward-difference and the explicit time

stepping schemes are tested. The explicit scheme causes small oscillations at

early time steps. Hence an implicit scheme is employed to eliminate the

oscillations in the first five time steps. A time step of 10 seconds is used,

and numerical calculations are terminated as asymtotic conditions are

approached.

Numerical results are compared in Figure 4 to the well known analytical

solution. Both results from the implicit and explicit schemes agree well with

the analytical solutions.

Example 2. Solidification of a Semi-Infinite Body in Liquid

This example as represented in Figure 5 tests the ability of the

numerical methods to handle the latent heat of phase change which accompanies

the discontinuity of the properties at the phase change region.

The same initial temperature and boundary conditions as example 1 are

used. The initial temperature is higher than freezing (273.0 K). The

properties of water are assigned to the specific heat and conductivities of

the solid and the liquid state. The phase change interval, 2AT is assumed to

be .5 °K and a time step of 400 seconds is used for Figure 6, 7 and 8.

Numerical results using the specific heat method and the enthalpy

function together with a implicit or explicit time stepping scheme are

compared with the results from an analytical solution [2] in Figures 6 and 7,

respectively. As shown in Figures 6 and 7, the temperature predictions of the

solid region by both methods agree well with analytical solutions. In the

liquid region, the maximum deviation is about 2°K.

Numerical results predicted by the explicit method using an implicit

scheme for the initial five time steps are closer to the analytical ones than

that by the implicit scheme. Also, the explicit method consumes less

- 15 -
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computational time since iteration is not involved.

In Figure 8, numerical results calculated by using specific heat and

enthalpy function with an explicit time- stepping scheme are compred with

analytical ones. At early time steps, the specific heat method predicts

better temprature distributions than that of the enthalpy function but for the

later time steps, numerical results predicted by using the enthalpy function

gives better agreement to analytical solutions. This method requires much

less computational time than the specific heat method. In the solid region,

both methods yield quite good results.

To predict temperature distributions for longer time, the enthalpy

function with an explicit time scheme are chosen because the results shown in

Figures 6, 7 and 8. The same initial and boundary conditions are used, but

the domain is extended as shown in Figure 5 and a time step of 500 seconds is

used.

The calculated results are compared with analytical solutions in Figure

9. Good prediction is achieved except for the phase change region, but even

in this region the maximum deviation is less than 2 K. In Figure 10, the

position of interfaces calculated by linear interpolation of adjacent nodal

temperatures of the freezing temperature gives good agreement with analytical

solutions.

Example 3. Phase Change of Sodium

In this example, sodium is used as the phase change material for one and

two-dimensional regions. The initial temperature of the sodium is 393.K which

is higher than the freezing temperature (371.K). First kind boundary

conditions (293.K) are imposed on boundary surfaces. The phase change

interval, 2AT is assumed to be 2.K and a time step of 5 seconds is employed.

The finite element meshes are shown in Figures 5 and 11.
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Figure 11. Two-dimensional mesh used to represent a
corner region; 242 elements, 144 nodes.
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The enthalpy functions with an explicit time stepping scheme is used for

the phase change of sodium. In Figures 12 and 13 the temperature

distributions for pure conduction and phase change in a one-dimension region

show excellent agreement with analytical solutions.

For the two-dimensional case, the position of the interface is compared

with an analytical solution given by Jiji [13]. This analytical solution

assumes that the ratio of diffusivity for the solid to liquid is unity and

that the interface at points beyond three times the one-dimensional stationary

interface in x and y directions is the same as the one-dimensional stationary

interface position.

Since the ratio of diffusivities is not unity, the numerical solutions

can not be directly compared with the analytical solutions. However, as shown

in Figure 14, the solutions are close to each other for early time steps

because adiabatic boundary conditions at surfaces which do not have first kind

boundary conditions are effective for both solutions. The difference of

diffusivities relatively small. As time increases the positions of the

interface given by numerical calculation advance further than the analytical

ones and interface lines obtained from the analytical method are not

perpendicular to boundary surfaces. This means that numerical calculations

matches adiabatic boundary conditions, but the analytical solution does not.

Also, the effect of the difference of diffusivities is not negligible since

quite a lot of mass has changed from liquid to solid. Even though numerical

solutions do not exactly match analytical solutions because of the different

conditions of the problem, general trends of the numerical results are

verified.
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