
SOFTWARE ENGINEERING LA6ORATORv 4Eb SEL-85-006

PROCEEDINGS OF THE
TENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

DECEMBER 198b

I

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS

OF

TENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by :

Software Engineering Laboratory
GSFC

December 4, 1985

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

1

FOREWARD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics
and Space Administration Goddard Space Flight Center (NASA/GSFC) and created for the purpose of
investigating the effectiveness of software engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software development process in the GSFC environ-
ment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to
identify and then to apply successful development practices. The activities, findings, and recommenda-
tions of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of
reports that includes this document.

Single copies of this document can be obtained from

Ms. Tillery
NASA Scientific And Technical Installation Facility
P.O. Box 8757
B.W.I. Airport, Md 21240

ii

AGENDA

TENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM
DECEMBER 4, 1985

8:QQ a.m. Registration - ‘Sign-In’
Coffee, Donuts

8:45 a.m. INTRODUCTORY REMARKS

9:OO a.m. Session No. 1

“Can We Measure Software Technology; Lessons
from 8 Years of Trying”

“Recent SEL Studies”

1Q:QQ a.m. BREAK

10:3Q a.m. Session No. 2

‘ ‘Software Management Tools: Lessons Learned From
Use”

“DEASEL: An Expert System for
Software Engineering”

“An Experimental Evaluation of Error Seeding as a
Program Validation Technique”

‘ ‘Quality Assurance Software Inspections at NASA
Ames”

J. J. Quann, Deputy Director
(NASA/GSFC)

Topic: Research in the Software
Engineering Laboratory (SEL)

Discussant: J. Page (CSC)

V. Basili (Univ. of Maryland)

F. E. McGarry (NASA/GSFC)

Topic: Tools for Software
Management

Discussant: D. Card (CSC)

D. Reifer (RCI)

J. Valett (NASA/GSFC)
A. Raskin (Yale)

J. Knight (Univ. of Virginia)
P. Ammann

G. Wenneson (Informatics)

12:30 p.m. LUNCH

iii

1:30 p.m. Session No. 3 Topic: Software Environments

Discussant: E. Katz
(Univ. of Maryland)

“A Knowledge Based Software Engineering Environ-
ment Testbed” C. Gill (BCS)

“Experience with a Software Engineering Environment R. Blumberg (PRC)
Framework” A. Reedy

E. Yodis

“One Approach for Evaluating the Distributed Com-
puting Design System (DCDS)” L. Baker (TRW)

3:OO p.m. BREAK

3:30 p.m. Session No. 4 Topic: Experiments- with Ada

Discussant: E. Seidewitz
(NASAIGSFC)

“An Ada Experiment with MSOCC Software” D. Roy (Century Computing)

“Observations From a Prototype Implementation of the
Common APSE Interface Set (CAIS)” M. McClimens (Mitre)

“Measuring Ada as a Software Development
Technology in the SEL” B. Agresti (CSC)

5:OO p.m. ADJOURN

Results of the SEL Workshop Questionnaire will be
Found at the End of the Proceedings

iv

SUMMARY OF THE TENTH ANNUAL

SOFTWARE ENGINEERING WORKSHOP

Prepared for

GODDARD SPACE FLIGHT CENTER

bY

L. Jordan

COMPUTER SCIENCES CORPORATION

The Tenth Annual Software Engineering Workshop was held on
December 4 , 1985, at the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC) in
Greenbelt, Maryland. This annual meeting is held to report
and discuss experiences in the measurement, utilization, and
evaluation of software methods, models, and tools. The
workshop was organized by the Software Engineering Labora-
tory (SEL), whose members represent NASA/GSFC, the University
of Maryland, and Computer Sciences Corporation (CSC). The
workshop was conducted in four sessions:

e Research in the SEL
8 Tools for Software Management
e Software Environments
0 Experiments with Ada

Twelve papers were presented, and the audience actively par-
ticipated in all discussions through general commentary,
questions, and interaction with the speakers. Over 400 per-
sons representing 55 private corporations, 6 universities,
and 27 agencies of the Federal GGvernment attended the work-
shop e

John J. Quann, Deputy Director of NASA/GSFC, noted in his
opening remarks that programs such as this workshop are very
important for the exchange of ideas to improve software
development and products. This is especially due to the
increasing interest in software engineering (e.g., the pro-
curement of a Space Station software support environment
(SSE) by Johnson Space Center), the growth of the Space Sta-
tion Program, and the increasing use of Ada. Mr. Quam a l s o
noted that in the future, the workshop may need to be ex-
panded to 1-1/2 to 2 days and include representatives of the
international community.

Because this workshop represented the tenth anniversary of
the SEL, the major theme of the first session, Research in

L. Jordan
csc
1 of 20

the SEL, consisted of an overview of the SEL experimentation
process and a summary of recent studies completed, In his
introduction to the session, Dr. Gerald Page of CSC dis-
cussed the background of the SEL, its structure, the devel-
opment characteristics of SEL software, and the scope of SEL
activities. The SEL was formally established in 1976 by
NASA/GSFC to improve its software development process and
products by measuring the software development process,
evaluating existing technologies, and transferring success-
ful technologies into the development environment at NASA/
GSFC. The software studied within the SEL environment is
primarily scientific, ground-based, interactive, near-real-
time software written primarily in FORTRAN (85 percent) on
IBM mainframes, The typical project is 65 K source lines of
code (SLOC) (2 to 160 KSLOC) in size and takes 16 to
25 months (from start of design to start of operations) with
6 to 18 people to complete, Data have been collected by the
SEL for more that 50 projects that represent over 2 mil-
lion LOC produced by over 200 developers and reported by
over 30,000 forms submitted. About 50 state-of-the-art
technologies have been studied and many tools, standards,
and models for use by developers have been produced.

Dr. William Agresti of CSC presented the results of a ques-
tionnaire that was circulated to the meeting attendees. The
questionnaire was intended to help mark the tenth anniversary
of the workshop and requested information from the respond-
ents concerning their

0 Role in software development

0 Data collection activity

0 Perception of changes in software quality

L. Jordan
csc
2 of 20

0 Opinions regarding progress (or lack of it) in var-
ious areas of software engineering

The results are presented elsewhere in these proceedings.

Dr. Victor Basili of the University of Maryland drew on the
10-year history of the SEL to present SEL experience in the
area of measurement (Measuring the Software Process and
Product: Lessons Learned by the SEL). He noted that there
are many reasons for collecting data that measure the soft-
ware development process and products. These reasons in-
clude the establishment of a corporate memory (e.g., for
planning), the determination of strengths and weaknesses of
current methodologies and technologies, and the determina-
tion of a rationale for adopting new technologies. There
are also different aspects to measurement, including soft-
ware characteristics, development resources, and errors,
These aspects thus represent many classes of project data.
The most important lessons learned by the SEL in this area
revolve around the development of a goal-driven paradigm for
data collection., The reasons for collecting data must be
clearly defined at the detailed level to avoid collection of
too much or inappropriate data. T.his requires a clear char-
acterization of data in terms of explicit goals (e.g., what
phase was the greatest source of error) and metrics (cog.,
error distribution by phase). Dr, Basili defined six steps
for the data collection process:

8 Generate a set of goals

Q Derive a set of questions or hypotheses to quantify
the goals

e Develop a set of metriss to answer the questions

8 Define a mechanism to collect the data as accurately
as possible

L. Jordan csc
3 of 20

9 Validate the data

9 Analyze the data to answer the questions

He then discussed a goal-setting template in terms of pur-
pose (to characterize, evaluate, etc.), perspective, envi-
ronment, and hierarchy of perspective. A subtemplate
included the definition of the process (i.e., quality of
use, domain of use, cost, effectiveness), feedback (lessons
learned, model validation), the product, and the perspective.

Regarding the successes and failures for the S E L , Dr. Basili
noted that the effort data have been good (but can be im-
proved) and have led to the development of good cost models.
Error data have been good on occurrence (history of errors
and changes can be tracked) but have been poor for specifics
(detzriled technique information for error detection is not
easily available), Project characteristics are accurately
recorded, but recording problem characteristics is diffi-
cult, Technology data are good for level of use for the
overall methodology, but it is difficult to isolate the in-
dividual impact. In terms of the cost of data collection
for the SEL,

e Direct cost can be less that 3 percent

8 Processing cost is 5 percent or greater

9 Analysis cost is 15 to 20 percent (includes inter-
pretation, reporting, research support, publication
of papers, and technology transfer)

In response to questions, Dr. Basili indicated that some
measurement could be automated (this may include some as-
pects of software quality--productivity, reliability, and
maintainability--and overall records) and that the cost of
data collection does include corrective action in the areas
of documents, standards, and training. Some discussion of
the Rome Air Development Center work followed the discussion.

L. Jordan
csc
4 of 20

Mr. Frank E. McGarry of GSFC presented an overview of
10 years of SEL research and a more detailed look at specific
research projects in the last 2 years (Studies and Experi-
ments in the Software Engineering Laboratory). SEL research
in four areas has recently concentrated on the following:

0 Tools and environments--Management tools and pro-
gramming environments

Development methods--Testing approaches and Ada
studies

0 Measures and profiles--Design and specification
measures

0 Models--Relationship equations

In the measurement of environment (in terms of software
tools, computer support for batch versus interactive proc-
essing, and the number of terminals per programmer),
Mr. McGarry described an experiment using 14 projects that
showed

0 Positive correlation for tool support and produc-
tivity, effort to change, and effort to repair: no
correlation with reliability

0 No correlation between computer environment and any
of the factors measured

0 Negative correlation between terminals per pro-
grammer and productivity and reliability; no cor-
relation with effort to change or effort to repair

He described an experiment to determine the characteristics
of functional testing in an acceptance testing environment
and compare the test profile with operational usage. The
characteristics used were percent of code and modules

L. Jordan
csc
5 of 20

executed and the profiles of errors found. A single flight
dynamics program with 10 functional test and 60 operational
use cases yielded results showing that functional testing
during acceptance testing is very representative of opera-
tional usage.

Mr. McGarry then described an experiment using 3 FORTRAN
programs seeded with faults that were tested by 32 profes-
sional programmers using 3 verification techniques (code
reading, functional testing, and structural testing) . The
results showed code reading to be the best technique in
terms of faults detected (code reading, 61 percent; func-
tional testing, 51 percent; structural testing, 38 percent)
and number of faults detected per hour of effort (code read-
ing, 3.3; functional testing, 1.8; structural testing, 1.8).
Another analysis of testing techniques versus size showed
that functional testing may be more effective for larger
programs.

In the area of software design measures, Mr. McGarry pre-
sented study results that showed the effects of module
strength (types and numbers of module functions), size, and
coupling (parameter, mixed, and COMMON) on costs and errors.
Based on 450 FORTRAN modules and about 20 developers, the
fault rate was zero for 50 percent of the high-strength mod-
ules and 18 percent of the low-strength modules. A high
fault rate was found for 20 percent of the high-strength
modules and 44 percent of the low-strength modules. The
analysis for size showed a slightly higher percentage of
fault-prone modules for small modules (36 percent) than for
medium (2 9 percent) or large modules (27 percent), The
parameter coupling modules had a higher percentage of fault-
prone modules (40 percent) than either the mixed (29 per-
cent) or the COMMON (3 0 percent) coupling types. Overall,
good programmers tend to write high-strength modules with no
preference for size. High-strength modules have a lower

L. Jordan
csc
6 of 20

fault rate and cost less than low-strength modules, and
large modules cost less (per executable statement) khan
small ones. The fault rate does not appear to be directly
related to size.

In the area of computer use and technology over time,
Mr. McGarry defined a technology index and applied it to
projects that started between 1976 and 1982. Computer use
has increased from 130 runs per KLOC to 235 runs per KLOC,
and the technology index has increased from 90 to 140.
There is no significant correlation between computer use and
the technology index. In other specific areas:

e Software reuse is increasing over time and appears
to have significant potential as a technology.

e The total technology index has a favorable effect
on reliability but no obvious correlation with pro-
ductivity (productivity is too sensitive to too
many other factors).

e Individual techniques are difficult to measure.

Integrated methodologies have a favorable effect on
quality .

Responding to questions, Mr. McGarry clarified several
points about the detailed methods used in the experiment
that compared the 3 software testing techniques, and he em-
phasized that code reading could not be substituted for ac-
ceptance testing. He also indicated that the 32 programmers
participating in the study did not seem to be affected
(Hawthorne effect) by the monitoring of the experiment. He
stated that these results differed with those of Myers be-
cause of a difference in the definition of code reading. On
the issue of terminal use versus productivity, he felt that
more terminals available resulted in more concurrent tasks
so that productivity suffered more when the terminals were

L. Jordan
CSC
7 of 20

down. This effect may also be caused by the lack of a dis-
ciplined approach with respect to terminal use and may be
corrected with time and effort.

The topic of the second session was Tools for Software Man-
agement. Mr, Donald Reifer of Reifer Consultants, Inc.,
discussed experiences in inserting software project planning
tools into more than 100 projects producing mission-critical
software and in using a Project Manager's Workstation (PMW)
and a SoftCost-R cost estimation package (Software Manage-
ment Tools: Lessons Learned From Use). He defined the man-
agement process as beginning with planning, organizing, and
staffing a team and then in communicating, motivating, in-
tegrating, measuring, controlling, and directing the efforts
of the team through an iterative process. He listed a num-
ber of necessary tools in the contexts of the company's sys-
tem, project management, functional management, and line
management. Over 300 packages exist to support these func-
tions. Managers tend not to use tools because of time pres-
sures (too busy to learn and to use them) and because the
tools do not fit into the existing system, A need to over-
come this problem is recognized'by the STARS program in at-
tempting to develop management tools to eliminate paperwork
in such areas as scheduling.

PMW is an experimental system to integrate several tools
into a package to do scheduling, graphing Ie.gD, PERT), and
reporting in a variety of areas. Mr. Reifer found that the
manager/machine interface must be user-friendly (picture
oriented, function key driven, and menu based) and that the
package must be easy to learn and have built-in safeguards
and help facilities (managers do not read manuals). The
problem of initial data entry is severe: managers do not
have the time to do it and subordinates do not have the
knowledge. In general, Mr. Reifer noted that vendors do n o t
implement all the features in their manuals or make it easy

L. Jordan
csc
8 of 20

to interface their packages with other packages. He found
that the most useful tools are work-planning oriented, the
most used tools are time-management oriented, and the most
wanted tools are what-if oriented.

SoftCost-K is a package that generates schedule and resource
estimates for about 50 tasks making up a project. Based on
about 60 sizing and productivity factors, it computes a- con-
fidence factor for delivering on time and within budget,
produces a standard work breakdown structure for software
development tasks, and provides a capability for what-if
analysis and plotting. Mr. Reifer found that organizational
preconditioning is necessary. Data are not generally avail-
able in most companies for using SoftCost-R to develop cali-
brations for the models or to validate them. There is no
existing framework that can supply these tools with the
needed information. Application of cost models has, in some
cases, forced changes in business practice that seemed dis-
ruptive, but were really not. Calibrating the models to the
organization is difficult. Model architectures must expose
calibration points and sensitivities, and these must be eas-
ily altered, since organizations are dynamic. Users often
rely too much on models without understanding their scope or
limitations. A l s o , users often do not believe model results
(find it difficult to face or believe unpleasant truths).

In response to a question, Mr, Reifer noted that vendors
should add a user-fxiendly demonstration that shows a man-
ager how to get .what he wants. He said that, in some cases,
these demonstrations can be obtained by writing and that the
cost of the demonstration is subsequently subtracted from
the cost of the package. In summary, he noted that vendors
should pay as much attention to packaging as to functions
and features, should make systems manager-friendly and not
programer-friendly, and should provide what-if capability

L . Jordan
csc
9 of 20

and a lot of small useful tools. Users should not assume
vendors deliver what is advertised, should worry about
bridging between packages and not assume it is easily done,
and should realize that tools may act as a catalyst for OK-
ganizational change.

In response to questions regarding bridging applications,
Mr. Reifer suggested two strategies: (1) build a data re-
pository that is usable by different tools and (2) get tools
that adhere to standard formats. He also noted some possible
advantages of Softcost-R over the widely used COCOMO:
Softcost-R is suited for mission-critical software, covers
reused code, provides cradle-to-the-grave project coverage,
provides adequate support for parametric and statistical
studies. COCOMO does not.

Mr. Jon Valett of GSFC described a tool that combines the
SEL data base and a manager's experience to support project
estimation and development progress assessment in the flight
dynamics environment (DEASEL: An Expert System for Software
Engineering). Managers were interviewed in an effort to
capture their experience and combine it with specific SEL
data to form the knowledge base. The system is defined in
terms of rules (factors and weights) and assertions to as-
sess projects. The rules define relationships and weights
between specific parameters and system goals (e.g., change
rate and design stability). Assertions provide actual values
of parameters for a specific project that are then used to
compute an assessment of the project compared to system
goals in terms of a rating (good to bad) and a confidence
factor. The current system is applicable to the design
phase and uses 25 rules. It can provide project assess-
ments, explain the assessment, and provide what-if analysis.
Current plans are to add rules for other development phases,
to validate the existing rules and the current assessment

L. Jordan
csc
10 of 20

p r o c e s s , and t o c a t e n a t e t h e g e n e r a t i o n of a s s e r t i o n s . I n
r e s p o n s e t o q u e s t i o n s , he i n d i c a t e d t h a t t h e deve lopment
e n v i r o n m e n t w a s VAX and LISP.

D r . J o h n C. Kn igh t of t h e U n i v e r s i t y of V i r g i n i a described
a n e x p e r i m e n t t h a t seeded e r r o r s i n t o 2 7 f u n c t i o n a l l y i d e n -
t i c a l programs t o assess error s e e d i n g as a t e c h n i q u e f o r
v a l i d a t i n g programs (An E x p e r i m e n t a l E v a l u a t i o n of Error
Seeding a s a Program V a l i d a t i o n Techn ique) . H e n o t e d a s
background t h a t v e r i f i c a t i o n is p r e f e r r e d t o t e s t i n g b u t

t h a t it is u s u a l l y n o t feasible and is s u b j e c t t o e r r o r . I n
a n s w e r i n g t h e q u e s t i o n of when t e s t i n g s h o u l d s top, he i n -
dicated t h a t t e s t i n g t y p i c a l l y s t o p s when t h e money is gone
o r when t h e p r o j e c t r u n s o u t of t i m e .

The c lass ica l e r ror s e e d i n g a p p r o a c h re l ies on a r e l a t i o n -
s h i p between i n d i g e n o u s e r ror and seeded e r r o r d i s c o v e r y

' t h a t assumes t h e f o l l o w i n g :

0 Ind igenous e r r o r s a r e hard t o f i n d .

0 Ind igenous and seeded e r r o r s a r e independen t .

0 Seeded e r r o r s a r e a s hard t o f i n d as i n d i g e n o u s
errors.

D r . Kn igh t n o t e d t h a t t h e l a s t a s s u m p t i o n is o b v i o u s l y fa l se
because i n d i g e n o u s e r rors a re s u b t l e , and high-powered a r t i -
f i c i a l i n t e l l i g e n c e methods are r e q u i r e d t o generate e q u a l l y
s u b t l e e r r o r s f o r s e e d i n g .

For t h i s e x p e r i m e n t , simple seeding a l g o r i t h m s were a p p l i e d
t o FOR, IF, and Assignment s t a t e m e n t s . The 27 f u n c t i o n a l l y
i d e n t i c a l p rograms c o n s i s t e d of 327 t o 1 0 0 4 l i n e s of Pascal
code. Seed ing a l g o r i t h m s were applied 4 t i m e s t o each p r o -
gram t o p r o d u c e a t o t a l of 1 0 8 seeded programs. The p ro -
grams were s u b j e c t e d t o 1 m i l l i o n t es t cases. D r . Kn igh t
found t h a t a S u r p r i s i n g number o f seeded e r r o r s were found
o n l y a f te r t h o u s a n d s of t e s t s and t h a t t h e y were a c t u a l l y

L. Jordan
csc
11 of 20

being successfully executed (in one case, a seeded error
corrected a bug). His evaluation of the three assumptions
was that they were all questionable. He also stated that
the assumption of N-Version Programming, that independently
written programs will fail independently, is false. This
conclusion is based on his finding that many different types
of errors can produce similar patterns of failure.

In response to questions, Dr. Knight noted that the class of
seeded errors was very small compared to the class of indig-
enous errors and that robust testing techniques do not elim-
inate long-mean-time-to-failure errors. Simple errors may
survive 10,000 tests before being located. He said that
random test generation was used for his experiment and that
scientific testing might have done better.

Mr. Greg Wenneson of Informatics General Corporation de-
scribed procedures to control software quality (Software
Inspections at NASA Ames). Productivity gains of 40 percent
have been realized through the use of these inspection pro-
cedures (compared to 23 percent reported by IBM), based on
one program that was rewritten and that includes major
methodology changes. Inspection tools include standards,
material preparation criteria, error checklists, exit cri-
teria, and written records and statistics. The team members
are the moderator, reader, inspectors, and the author. The
inspection process comprises team selection, overview, prep-
aration, inspections sessions (may be desk inspections) I
rework, and followup. Mr. Wenneson also defined problem
recording (module inspection problein report, general prob-
lems report), problem statistics (module problem summary,
module time and disposition report)r and inspection statis-
tics (inspector time report, inspection general summary,
outline of rework schedule).

L. Jordan
csc
12 of 20

For FORTRAN modules, 144 problems were reported per RLOC for
preliminary design, 227 for detailed design, 67 for desk-
inspected code, and 8 3 for regular inspection. Effort for
this activity was 15 person-weeks per KLOC for preliminary
design, 24 for detailed design, 4 for desk-inspected code,
and 9 for regular inspection. The number of previous in-
spections affect both the error rates and preparation and
meeting time. The major error rate of 30 per KLOC for 1
previous inspection increases to 38 for 3 previous inspec-
tions. Preparation and meeting time increases from
9.2 person-weeks per KLOC for 1 previous inspection to 10
for 3 previous inspections.

In his summary, Mr. Wenneson emphasized that inspections are
not a substitute for thinking; that they must be scheduled
at the beginning of a project (and not j u s t tacked on); and
that participant training and customer and management sup-
port are crucial. Future plans include application to new
languages and design techniques, expansion to new methodolo-
gies and support tools, inclusion of feedback to current
methodologies, and expansion to other application areas.

In the following panel discussion, Mr. Wenneson stated that
the system used for his example consisted of about 5 percent
assembly language modules and that the assembly language
numbers for design in his presentation related to the target
language rather than to the design language. For downstream
savings, he said that, although his statistics stop at the
end of coding, other sources indicate that errors cost less
to repair. Desk inspection found 80 percent of the errors
found by regular inspection but cost 40 percent less. As a
guildeline, he suggested that a project of less than 1000 LOC

should not be split into too many pieces and that 50 to
100 LOC should be represented by 1 line of design.

L. Jordan
csc
13 of 20

The topic of the third session was Software Environments.
Mr. Chris Gill of Boeing Computer Services described a re-
search project to apply artificial intelligence to software
engineering (A Knowledge-Based Software Engineering Environ-
ment Testbed), The multiyear project has completed its
first year. The objectives are to determine the benefits of
applying artificial intelligence to software engineering,
demonstrate improvements in the software development process
and in software quality, and develop a test bed for experi-
mentation. The system consists of an integrated set of
tools covering the entire life cycle (analysis, design, and
production) and several areas of effort (project management,
software development support, and configuration management) .
The knowledge base is derived from procedures and inter-
views. The knowledge representation deals with modeling
software project concepts and links. Inference mechanisms
deal with the ways this knowledge can be used to solve user
development problems. The knowledge-based interface deals
with the intelligent display, explanation, and interaction
with the user.

After one year, a model of software development activities
has been created, and the groundwork has been done in the
module representation formalism to specify the behavior and
structure of software objects. The model and formalism have
been integrated to identify shared representation and inher-
itance mechanisms, Object programming has been demonstrated
by writing procedures and applying them to software objects
(e.g., by propagating changes) in a development system.
Data-directed reasoning has been used to infer the probable
cause of bugs by interpreting problem reports. Goal-directed
reasoning has been used to evaluate the appropriateness of a
software configuration. Plans for next year include using
knowledge-based simulations to perform rapid prototyping,
enhancing the user interface, using a "blackboard"

L. Jordan
csc
14 of 20

architecture to allow experts to confer, and using distrib-
uted systems to permit separate systems to act on goals sent
by other systems.

In his conclusion, Mr. Gill stated that the project showed
promise. It provides leverage of integration, because data
are keyed in only once. There is, however, a need to apply
it to real systems. In the following discussion, he indi-
cated that the system contains several hundred rules for
scheduling and task management. The current demonstration
uses the graphics and reasoning (egg., manager experience
versus complexity) capabilities. Most of the current capa-
bilities relate to specification and design.

During the panel discussion after the session, it was men-
tioned that there are currently seven projects using artifi-
cial intelligence approaches to software environments (five
in Japan, and two in England). The system reported by
Mr. Gill is the first heard of in the United States.

Ms. Ann Reedy of Planning Research Corporation described an
automated product control environment developed to reduce
life-cycle costs and increase automation of the software
development process (Experience With a Software Engineering
Environment Framework). This framework is not composed of
tools, but provides for overall control, coordination, and
enforcement. It provides automation of real-time status
tracking and reporting; configuration management of soft-
ware, documents, and test procedures; traceability of re-
quirements and change effects; testbed generation; and
component and system integration. It deals with people
(managers, developers, testers, and QA) , processes (phases
and integration levels), and products (software, documents,
and test procedures). The system was designed to be portable
(currently runs on the VAX-l1/780 with VMS, on ROLM and Data
General with AOS/VS, on IBM with MVS, and on Intel with

L. Jordan
csc
15 of 20

XENIX). In the area of distributability and interoperabil-
ity, the tool sets for different hosts may be different but
the functionality is assumed to be the same (the framework
only operates on tool products and does not contain tools
itself). Filters and standard forms can be used for adjust-
ment.

Ms. Reedy reported productivity figures for 3 projects rang-
ing from 121 to 384 LOC per day. In terms of level of ef-
fort, she reported first-year resource costs for the manual
environment of 5 6 staff-months versus 29 for the automated
environment. Annual recurring costs were 60 staff-months
for the manual environment versus 2 4 for the automated en-
vironment. Cumulative costs for 24 project-months were
$900,000 for manual implementation versus $500,000 for auto-
mated implementation. After the presentation, there was
some spirited discussion on the productivity fiqures cited.

Mr. Lloyd Baker of TRW Defense Systems Group reported on an
evaluation of an integrated environment for the specifica-
tion and life-cycle development of software (One Approach
for Evaluating the Distributed Computing Design System
(DCDS)). DCDS consists of integrated methodologies, lan-
guages, and an integrated tool set. Users can produce spec-
ifications for system requirements, software requirements,
distributed architectural designs, detailed module designs,
and tests. Five languages support the concepts for each of
the methodologies and are used to express the requirements,
designs, and tests. All languages use the same constructs
and syntax. (More information on the operation of DCDS is
available in the April 1985 issue of IEEE Computer Magazine.)

L. Jordan
csc
16 of 20

DCDS was compared with three other commercially available
products using a list of evaluation criteria partitioned
into three classes:

0 Factors lending credibility to the product
e Costs of acquiring and using the product
0 Benefits of the product

The criteria were weighted (high, medium, l o w) , and the
products were scored and evaluated (better, acceptable, de-
ficient). Development costs included costs for learning the
system, documenting results, and fixing errors, as well as
normal development work. Mr. Baker presented the detailed
evaluation results for each of the systems for 21 different
factors .
The topic of the last session was Experiments with Ada.
Mr. Dan Roy of Century Computing, Inc., presented an assess-
ment of a 1200-line (of Ada code) project that used George
Cherry's Process Abstraction Methodology for Embedded Large
Applications (PAMELA) and DEC's Ada Compilation System (ACS)
under VAX/VMS (An Ada Experiment With MSOCC Software). The
requirements analysis was performed with the standard
De Marco structured analysis. Ada was used as a data defi-
nition language to produce a data dictionary during the re-
quirements phase. A special package (the TBD package) aided
the top-down design of the data structure. Preliminary and
detailed design templates were created and proved very use-
ful. Ada was used as a program design language (PDL) that
was then refined into detailed code in the normal staged
manner. The tools and templates for Ada constructs (devel-
oped at the start of the project) had a dramatic effect on
productivity and code consistency (30 LOG per day during
development, 13 LOC per day from cradle to grave). Ada
training was difficult and complex (none of the standard
training devices alone were adequate). He tried a number

L . Jordan
CSC
17 of 20

of compilers with poor results before going to ACS and
achieving results reasonably approximating FORTRAN compiler
speeds and acceptable quality.

Mr. Mike McClimens of MITRE Corporation described an experi-
ment to study a standard CAIS implementation (Observations
from a Prototype Implementation of the Common APSE Interface
Set (CAIS)). CAIS is a tool interface to operating systems
that encapsulates machine dependencies such as data base
access, He first described the background and history of
its development. CAIS is defined as a set of Ada package
specifications and a description of associated semantics.
The underlying model is a directed graph with attributes.
Nodes can be files, processes, or directories. Both graph
nodes and edges have attributes. CAIS provides node manage-
ment, process management (spawn/invoke, abort/suspend/
resume), 1/0 (text, direct, sequential, scroll and page for
devices), and list utilities (abstract data type, heteroge-
neous list of items), It does not provide support for con-
currency, memory management, or interrupts for Ada or
scheduling, paging/segmentation, or low-level 1/0 for oper-
ating systems or a data base management system.

Mr. McClimans then described a number of objectives for work
on the system during 1985 and the technical approach used to
attain those objectives, He noted that the learning curve
for CAIS will be significant and that overall conceptual
consistency is good.

Dr. William Agresti of CSC described an experiment that is
underway in the SEL to develop a system in parallel in Ada
and in FORTRAN (Measuring Ada as a Software Development
Technology in the SEL). The size of the project is estimated
as 40 RSLOC (FORTRAN); it will take from 18 to 24 months to
complete with a staff of seven and will require 8 to
10 staff-years of effort. Forms will be collected for the

L. Jordan
csc
18 of 20

SEL data base. A study team is providing training, plan-
ning, and evaluation, The Ada team is more experienced
overall than the FORTRAN team but is less experienced in the
particular application. At the time of the presentation,
the Ada project was completing design and beginning code and
test; the FORTRAN project was completing code and test and
beginning integration and system test. The schedule differ-
ence is attributed to Ada training. The training material
and approaches were described. Training included the devel-
opment of a small electronic mail system to gain hands-on
experience with the Ada language and took 2 months of full-
time work *

Dr. Agresti provided statistics describing the training
exercise. The electronic mail system was originally devel-
oped as 1000 to 2000 SLOC in SIMPL. In Ada, the system was
5730 SLOC (1400 executable statements) and took 1900 hours
to develop (including 570 hours of training). The cost was
950 hours per 1000 executable statements (1360 including
training) with an error rate of 9 errors per 1000 executable
statements: thias can be compared with 720 hours and 12 er-
rors per 1000 executable statements for FORTRAN. The dis-
tribution of effort for design, code, and test was 60, 18,
and 22 percent for Ada and 3 3 , 3 3 , and 34 percent for
FORTRAN.

During the panel discussion at the end of the session, it
was noted that object-oriented design does not replace PDL.

Ada performance seems to be a major issue, and its suitabil-
ity to various applications must be investigated. The ren-
dezvous on the VAX compiler is 7 0 times longer than the
procedure call, for example. Many of the current areas of
poor performance will probably be considerably improved in
future implementations, so it is not wise to make major
decisions based on current implementations. Tasking and
other processes may be slow, but optimization is good for

L. Jordan
csc
19 of 20

L

compiled code and may offset the slow performance. It was
also mentioned that, in benchmark testing, The DEC Ada com-
piler is within 10 to 20 percent of FORTRAN speeds.

L. Jordan
CSC
20 of 20

. N86-30358
A

PANEL #1

RESEARCH IN THE SOFTWARE ENGINEERING
LABORATORY (SEL)

V. Basili, University of Maryland
F. McGarry, NASA/GSFC

Measuring the Software Process and Product:
Lessons Learned in the SEL

Victor R. Basili
Department of Computer Science

University of Maryland

There are numerous reasons to measure the software development process and product. It is
important to create a corporate memory in the software area to support planning, e.g. to answer
questions about predicting the cost of a new project. We need to determine the strengths and
weaknesses of the current process and product, e.g. to determine what types of errors are
commonplace. We need to develop a rational for adopting and refining software development and
maintenance techniques, e.g. to help us decide what techniques actually minimize current
problems. We need to assess the impact of the techniques we are using, e.g. to determine
whether our current approach to functional testing actually does minimize certain classes of
errors, as we might believe it does. Finally, we should evaluate the quality of the software
process and product, e.g. to assess the reliability of the product after delivery.
We have tried to address all of these problems to varying degrees within the Software Engineering
Laboratory at NASA Goddard Space Flight Center, grouping studies into four general categories:
the problem, the process, the product, and the environment. Within these categories, we have
concentrated on three aspects of measurement in the SEL: visibility, quality, and technology.
With regard to visibility we have tried to better understand how software is being developed by
making the current practices and products as visible as possible using measurement. Areas of
measurement have been based upon models of the resources, errors, environment, problem and the
product. We have tried to assess the quality of the process and product by examining such
characteristics as productivity, reliability, maintainability, portability and reusability.
Technology has been measured in an attempt to ascertain how much, if at all, certain techniques
help in the development and to isolate those practices and tools which improve productivity.
To achieve the goals related to visibility, quality and technology, we have collected a variety of
data. Table 1 provides some idea of the type of data collected. The scope of activity in the SEL
from 1977 through 1984 is shown in Table 2.

V i s i b i l i t y Q u a l i t y Tee hno 1 ogy

Resource D a t a P r o d u c t i v i t y Howmuch do c e r t a i n
Error Data R e l i a b i l i t y t echn iques he lp?
Environment Main ta inab i 1 i t y

Problem Complexity R e u s a b i l i t y p r o d u c t i v i t y ?
Product Da ta

C h a r a c t e r i s t i c s P o r t a b i 1 i t y Which t o o l s improve

Table 1

V. Basili
Univ. of Maryland
1 of 37

SEL
1977 - 1984

Number of P r o j e c t s
Number of Source Lines of Code
Deve 1 opmen t Cos t
Number of Data Forms

41
1 .3 m i l l i o n
$11 m i l l i o n
30 thousand

Tab le 2

GOAL/QUESTION/METRIC PARADIGM
There have been many lessons learned in the the SEL about measurement but the most important
one has been the need for a goal-driven paradigm for data collection. That is data collection
must be driven top down. What you measure is based upon a carefully articulated set of goals
stating what it is you want to know and whether you can gather the appropriate and valid data
needed to answer your questions. Whenever we have violated these rules we either ended up
collecting data that was not used or have not been successful in performing our task. For
example we have discarded data, such as run analysis data, even though it may be interesting
information, it was not associated with a specific goal of the laboratory. Also we have not had
success in areas where there was not a carefully focused goal allowing us to control for extraneous
effects, e.g. measuring the effectiveness of detailed techniques.
The approach to measurement used in the SEL has been the goal / question / metric paradigm
[Basili & Weiss 19841 developed specifically to help us define the areas of study and help in the
interpretation of the results of the data collection process. The paradigm does not provide a
specific set of goals but rather a framework for stating goals and refining them into specific
questions about the software development process and product that provide a specification for the
data needed to help answer the goals.
The paradigm provides a mechanism for tracing the goals of the collection process, i.e. the
reasons the data are being collected, to the actual data. It is important to make clear at least in
general terms the organization’s needs and concerns, the focus of the current project and what is
expected from it. The formulation of these expectations can go a long way towards focusing the
work on the project and evaluating whether the project has achieved those expectations. The
need for information must be quantified whenever possible and the quantification analyzed as to
whether or not it satisfies the needs. This quantification of the goals should then be mapped into
a set of data that can be collected on the product and the process. The data should then be
validated with respect to how accurate it is and then analyzed and the results interpreted with
respect to the goals.
The actual data collection paradigm can be visualized by a diagram:

Goal 1 Goa12 ... Goaln
.

. . .
a . .

Quest ion1 . Quest ion3 Ques t ion4 . . Quest ion8
. Quest ion6

. Quest ion2 . . Quest ion5 . Quest ion7 .
d l . . . m9 d2 m 5

ml m6 m7 m l m 2 m 3 m 4 m 2 d 3 m6

Here there are n goals shown and each goal generates a set of questions that attempt to define
and quantify the specific goal which is at the root of its goal tree. The goal is only as well defined
as the questions that it generates. Each question generates a set of metrics (mi) or distributions

V. Basili
Univ. of Maryland
2 of 37

of data (di). Again, the question can only be answered relative to and as completeIy as the
available metrics and distributions allow. As is shown in the above diagram, the same questions
can be used to define different goals (e.g. Question6) and metrics and distributions can be used to
answer more that one question. Thus questions and metrics are used in several contexts.
Given the above paradigm, the data collection process consists of six steps:
1. Generate a set of goals based upon the needs of the organization.
The first step of the process is to determine what it is you want to know. This focuses the work
to be done and allows a framework for determining whether or not you have accomplished what
you set out to do. Sample goals might consist of such issues as on time delivery, high quality
product, high quality process, customer satisfaction, or that the product contains the needed
functionality .
2. Derive a set of questions of interest or hypotheses which quantify those goals.
The goals must now be formalized by making them quantifiable. This is the most difficult step in
the process because it often requires the interpretation of fuzzy terms like quality or productivity
within the context of the development environment. These questions define the goals of step 1.
The aim is to satisfy the intuitive notion of the goal as completely and consistently as possible.
3. Develop a set of data metrics and distributions which provide the information needed to
answer the questions of interest.
In this step, the actual data needed to answer the questions are identified and associated with
each of the questions. However, the identification of the data categories is not always so easy.
Sometimes new metrics or data distributions must be defined. Other times data items can be
defined to answer only part of a question. In this case, the answer to the question must be
qualified and interpreted in the context of the missing information. As the data items are
identified, thought should be given to how valid the data item will be with respect to accuracy
and how well it captures the specific question.
4. Define a mechanism for collecting the data as accurately as possible
The data can be collected via forms, interviews, or automatically by the computer. If the data is
to be collected via forms, they must be carefully defined for ease of understanding by the person
filling out the form and clear interpretation by the analyst. An instruction sheet and glossary of
terms should accompany the forms. Care should be given to characterizing the accuracy of the
data and defining the allowable error bounds.
5. Perform a validation of the data
The data should always be checked for accuracy. Forms should be reviewed as they are handed
in. They should be read by a data analyst and checked with the person filling out the form when
questions arise. Sample sets should be set to determine accuracy the data as a whole. As data is
entered into the data base, validity checks should be made by the entering program. Redundant
data should be collected so checks can be made.
The validity of the data is a critical issue. Interpretations will be made that will effect the entire
organization. One should not assume accuracy without justification.
6. Analyze the data collected to answer the questions posed
The data should be analyzed in the context of the questions and goals with which they are
associated. Missing data and missing questions should be accounted for in the interpretation.
The process is top down, i.e before we know what data to collect we must first define the reason
for the data collection process and make sure the right data is being collected, and it can be
interpreted in the right context. To start with a set of metrics is working bottom up and does not
provide the collector with the right context for anaiysis or interpretation.

WRITING GOALS AND QUESTIONS:
In writing down goals and questions, we must begin by stating the purpose of the study. This
purpose will be in the form of a set of overall goals but they should follow a particular format.

V. Basili
Univ. of Maryland
3 of 37

The format should cover the purpose of the study, the perspective, and any important
information about the environment. The format might look like:
Purpose of Study: To (characterize, evaluate, predict, motivate) the (process, product, model,
metric) in order to (understand, assess, manage, engineer, learn, imyrove) it. E.g. To evaluate the
system testing methodology in order to assess it.
Perspective: Examine the (cost, effectiveness, correctness, errors, changes, product
metrics,reliability, etc.) from the point of view of the (developer, manager, customer, corporate
perspective, etc) E.g. Examine the effectiveness from the developer’s point of view.
Environment: The environment consists of the following: process factors, people factors, problem
factors, methods, tools, constraints, etc. E.g. The product is an operating system that must fit on
a P C , etc.
Process Questions:
For each process under study, there are several subgoals that need to.be addressed. These include
the quality of use (characterize the process quantitatively and assess how well the process is
performed), the domain of use (characterize the object of the process and evaluate the knowledge
of object by the performers of the process), effort of use (characterize the effort to perform each
of the subactivities of the activity being performed), effect of use (characterize the output of the
process and the evaluate the quality of that output), and feedback from use (characterize the
major problems with the application of the process so that it can be improved).
Other subgoals involve the interaction of this process with the other processes and the schedule
(from the viewpoint of validation of the process model).
Product Questions:
For each product under study there are several subgoals that need to be addressed. These include
the definition of the product (characterize the product quantitatively) and the evaluation of the
product with respect to a particular quality (e.g. reliability, user satisfaction)
The definition of the product consists of
1. Physical Attributes. e.g. size (source lines, #units, executable lines), complexity (control and
data), programming language features, time space.
2. Cost. e.g. effort (time, phase, activity, program)
3. Changes. e.g. errors, faults, failures and modifications by various classes.
4. Context. e.g. customer community, operational profile.
The evaluation is relative to a particular quality e.g. reliability. Thus the physical characteristics
need to be analyzed relative to these. Template questions for evaluation include:
How do you measure the quality?
Is the model used valid?
Are the measures used valid?
Are there checks?
Do they agree with the reliability data?

Thus a sample would be:
To evaluate the product (system) in order to assess its quality. Examine thc reliability relative to
the customer’s point of view.
INYESTIGATION LAYOUT
The original goal/question/metric paradigm has been refined with experience [Basili & Selby 19841
to include a step which provides for help in planning the type of investigative analysis possible
based upon the scope of the evaluation and the type of data available. Between steps 3 an 4
above is a step to plan the investigation layout and analysis methods. This step is important
because it allows the questions to reflect the types of result statements that can be wed in the
quantitative analysis.

V. Basili
Univ. of Maryland
4 of 37

With all the different methods and tools available, we need to better quantitatively understand
and evaluate the benefits and drawbacks of each of them. There are several different approaches
to quantitatively evaluating methods and tools: blocked subject-project, replicated project, multi-
project variation, and single project case study. The approaches can be characterized by the
number of teams replicating each project and number of different projects analyzed as shown in
Table 3.

* *
* # of p r o j e c t s *

* one more t h a n *
* * * 2 *

* one * s i n g l e p r o j e c t mu1 t i - p r o j e c t *
* * v a r i a t i o n *

.
* on e *

* * *
of
teams

Per
p r o j e c t * on e * p r o j e c t s u b j e c t - p r o j e c t *

* * *
* more than * r e p l i c a t e d blocked *

* * *
.

Table 3

The blocked subject-project type of analysis allows the examination of several factors within the
framework of one study. Each of the technologies to be studied can be applied to a set of
projects by several subjects and each subject applies each of the technologies under study. It
permits the experimenter to control for differences in the subject population as well as study the
effect of the particular projects.
The replicated project analysis involves several replications of the same project by different
subjects. Each of the technologies to be studied is applied to the project by several subjects but
each subject applies only one of the technologies. It permits the experimenter to establish control
groups.
Multi-project variation analysis involves the measurement of several projects where controlled
factors such as methodology can be varied across similar projects. This is not a controlled
experiment as the previous two approaches were, but allows the experimenter to study the effect
of various methods and tools to the extent that the organization allows them to vary on different
projects.
The case study is where most methodology evaluation begins. There is a project and the
management has decided to make use of some new method or set of methods and wants to know
whether or not the method generates any improvement in the productivity or quality. A great
deal depends upon the individual factors involved in the project and the methods applied.
The approaches vary in cost and the level of confidence one can have in the result of the study.
Clearly, an analysis of several replicated projects costs more money but will generate stronger
confidence in the conclusion. UnfortunateIy, since a blocked subject-project experiment is so
expensive, the projects studied tend to be small. The size of the projects increase as the costs go
down SO it is possible to study very large single project experiments and even multi- project
variation experiments if the right environment can be found.
The SEL has had some experience in almost all of theses categories. A blocked subject-project
study was the comparison of functional testing, structural testing and code reading [Basili & Selby
19851. Here programs of 145 to 365 lines of code were analyzed by programmers using each of the
techniques on different types of applications, e.g. a text formatter, a plotter, an abstract data type
, and a database. The goal was to compare the techniques with respect to fault detection
effectiveness, fault detection cost, and classes of faults detected. We were also able to compare
performance with respect to the software type and the level of expertise of the programmer.

V. Basili
Univ. of Maryland
5 of 37

Due to cost, we have only used the replicated project analysis to a limited degree. Here
comparisons have been of only two projects, e.g. comparing the development of a dynamic
simulator in the standard FORTRAN and Ada [Agresti 19851. The limitation of only two
replicated developments makes the analysis more like a pair of cases studies than a true replicated
project analysis. However replicated-project analysis has been used at the University of Maryland
to study similar issues to the SEL on a smaller scale, e.g. the effect of a set of software
development methods on the process and product [Basili & Reiter 19811, [Basili & Hutchens 19831.
A large number of projects have fit into the multi-project variation category. Various subsets of
the 41 projects have been analyzed for a variety of purposes. Studies have been performed to
develop and evaluate cost models [Basili & Zelkowitz 19781, [Basili & Beane 19811, [Basili &
Freburger 19811, [Bailey & Basili 19811, evaluate the relationships of product and process
variables [Basili, Selby & Phillips 19831, [Basili & Selby 1985a], [Basili & Panlilio-Yap 19853 ,
measure productivity [Basili & Bailey 19801, characterize changes and errors [Weiss & Basili
19841, predict problems based upon previous projects [Doerflinger & Basili 19851, and evaluate
methodology [Bailey & Basili 19811, [Card, Church & Agresti 19861.
Many projects have been studied in isolation as cases studies, to analyze the effects of changes
and errors [Basili & Perricone 19841, to measure the testing approach [Ramsey & Basili 19851, to
study the modular structure of programs [Hutchens & Basili 19851.

METHODOLOGY IMPROVEMENT PARADIGM
All this leads us to the following basic paradigm for evaluating and improving the methodology
used in the software development aqd maintenance process [Basili 19851.
1. Characterize the approach/environment.
This step requires an understanding of the various factors that will influence the project
development. This includes the problem factors, e.g. the type of problem, the newness to the state
of the art, the susceptibility to change, the people factors, e.g. the number of people working on
the project, their level of expertise, experience, the product factors, e.g. the size, the deliverables,
the reliability requirements, portability requirements, reusability requirements, the resource
factors, e.g. target and development machine systems, availability, budget, deadlines, the process
and tool factors, e.g. what techniques and tools are available, training in them, programming
languages, code analyzers.
2. Set up the goals, questions, data for successful project development and improvement over
previous project developments.
It is at this point the organization and the project manager must determine what the goals are for
the project development. Some of these may be specified from step 1. Others may be chosen
based upon the needs of the organization, e.g. reusability of the code on another project,
improvement of the quality, lower cost.
3. Choose the appropriate methods and tools for the project.
Once it is clear what is required and available, methods and tools should be chosen and refined
that will maximize the chances of satisfying the goals laid out for the project. Tools may be
chosen because they facilitate the collection of the data necessary for evaluation, e.g.
configuration management tools not only help project control but also help with the collection
and validation of error and change data.
4. Perform the software development and maintenance, collecting the prescribed data and
validating it.
This step involves the collection of data by forms, interviews, and automated collection
mechanisms. The advantages of using forms to collect data is that a full set of data can be
gathered which gives detailed insights and provides for good record keeping. The drawback to
forms is that they can be expensive and unreliable because people fill them out. Interview can be
used to validate information from forms and gather information that is not easily obtainable in a
form format. Automated data collection is reliable and unobtrusive and can be gathered from

V. Basili
Univ. of Maryland
6 of 37

program development libraries, program analyzers, etc. However, the type of data that can be
collected in this way is typically not very insightful and one level removed from the issue being
studied.
5. Analyze the data to evaluate the current practices, determine problems, record the findings and
make recommendations for improvement.
This is the key to the mechanism. It requires a post mortem on the project. Project data should
be analyzed to determine how well the project satisfied its goals, where the methods were
effective, where they were not effective, whether they should be modified and refined for better
application, whether more training or different training is needed, whether tools or standards are
needed to help in the application of the methods, or whether the methods or tools should be
discarded and new methods or tools applied on the next project.
6. Proceed to step 1 to start the next project, armed with the knowledge gained from this and the
previous projects.
This procedure for developing software has a corporate learning curve built in. The knowledge is
not hidden in the intuition of first level managers but is stored in a corporate data base available
to new and old managers to help with project management, method and tool evaluation, and
technology transfer.

SEL EXPERUENCE
There are several areas where we believe we have been successful in the measurement area. We
have been able to collect reasonably accurate effort data especially with regard to weekly effort
hours. The attribution of that effort data to various phases and activities has also been reasonably
successful.
We have been successful in extracting realistic histories of the errors and changes on a project but
have not been so successful in capturing detailed data on the effectiveness of the various error
detection techniques. The latter problem is due to the ad hoc way programmers tend to apply
techniques, not always recording all their efforts and to the common use of combinations of
techniques. We have been successful in capturing product characteristics but problem
characteristics are more difficult to capture. This is largely because they are difficult to quantify
and differentiate. We have been able to measure the relative level of the total set of methods
used in a project but less effective in isolating the effects of specific methods. This is because
most of the studies have been of the multi-project or case study type analysis and it has been
difficult to delineate the effects of a specific technique. One successful isolation of techniques was
the blocked subject-project study of testing techniques vs. reading.
With regard to the cost of the measurement program in the SEL, the data collection overhead to
tasks has been about 3% of total project cost and the processing of the data has been about 5%.
It is actually the analysis, interpretation and reporting of the results that have been the most
expensive in the SEL. This has been in the order of 15% to 20% but includes all the research
support, paper publication, report generation and technology transfer activities.
We have studied the question of what measurement can be automated, i.e. what tools can be
used to relieve the impact of measurement on the development or management team. We have
automated such things as computer utilization, code and changes growth, product complexity,
product characteristics (e.g. size) and source code change count. We have tried to automate but
failed with regard to error reporting, weekly resources, and effort by activity. Part of the lack of
success has been due to the variation in the development environments, i.e. the use of different
mainframes for development, the lack of consistent interactive development across projects. We
have not even tried to automate information about the techniques used, resources by component,
the environment, changes to the design and specifications, and problem complexity.
We have standardized on various measures of quality in the SEL. Productivity is defined as
developed source lines of code (SLOC) per day. Reliability is the number of errors after unit test
per 1000 SLOC. Maintainability is the average reported effort to modify or correct the software.
Reusability is the percent of components reused on new projects.

V. Basili
Univ. of Maryland
7 of 37

RECOMMENDATIONS AND CONCLUSIONS
From our experience within the SEL we would argue that software technology can and should be
measured.
excessive effort in trying to automate the data collection process. You should not collect and store
data that is not goal driven, i.e. you should collect the minimal set of data needed for the
purpose. You should measure top level information for all projects and detailed data for specific
experiments. It is difficult to measure the effects of specific techniques in a production
environment.
It is best to use the data to characterize the environment, making the problems visible. You
should set up both corporate and project goals and use the goal/question/metric paradigm to
articulate the process and product needs.

The measurement overhead to projects should be about 3%. You should not spend

REFERENCES
[Agresti 19853

William Agresti and the SEL Staff, Measuring Ada as a Software Development Technology
in the SEL, Eighth Minnowbrook Workshop on Software Performance Evaluation, Blue
Mountain Lake, New York, July 30, 1985.

John W. Bailey and Victor R. Basili, A Meta-Model for Software Development Resource
Expenditures, Proceedings of the Fifth International Conference on Software Engineering,
San Diego, California, pp 107-116, 1981.

Victor R. Basili, Quantitative Evaluation of Software Methodology, Proceedings of the
First Pan Pacific Computer Conference, 1985.

Victor R. Basili and John W. Bailey, The Software Engineering Laboratory: Measuring the
Effects of Software Methodologies within the Software Engineering Laboratory, Proceedings
of the Fifth Annual Software Engineering Workshop, November 1980.

Victor R. Basili and John Beane, Can the Parr Curve Help with Manpower Distribution and
Resource Estimation Problems?, Journal of Systems and Software, pp 59-69, Volume 2,
1981.

Victor R. Basili and Karl Freburger, Programming Measurement and Estimation in the
Software Engineering Laboratory, Journal of Systems and Software, pp 47-57, Volume 2,
1978.

Victor R. Basili & David H. Hutchens, An Empirical Study of a Syntactic Complexity
Family, EEE Transactions on Software Engineering, pp 664-672, November 1983.

Victor R. Basili and N. Monina Panlilio-Yap, Finding Relationships between Effort and
other Variables in the SEL, 9th COMPSAC Computer and Software Applications
Conference, pp 221-228, October, 1985.

Victor R. Basili and Barry T. Perricone, Software Errors and Complexity: An Empirical
Investigation, Communications of the ACM, pp 42-52, January, 1984.

Victor R. Basili and Robert W. Reiter, Jr., A Controlled Experiment Quantitatively
Comparing Software Development Approaches, IEEE Transactions on Software Engineering,
Vol. SE7, No. 3, pp 299-320, May 1981.

[Bailey & Basili 19811

[Basili 19851

pasili & Bailey 19801

[Basili & Beane 19811

[Basili & Freburger 19811

[Basili & Hutchens 19831

[Basili & Panlilio-Yap 19851

[Basili & Perricone 19841

[Basili & Reiter 1981)

V. Basili
Univ. of Maryland
8 of 37

[Basili & Selby 19841
Victor R. Basili and Richard W. Selby, Jr., Data Collection and Analysis in Software
Research and Management, Proceedings of the American Statistical Association, pp 21-30,
1984.

Victor R. Basili and Richard W. Selby, Jr., Comparing the Effectiveness of Software Testing
Strategies, University of Maryland Technical Report TR-1501, May 1985.

Victor R. Basili and Richard W. Selby Jr., Calculation and Use of an Environment’s
Characteristic Software Metric Set, IEEE Proceedings 8th International Conference on
Software Engineering, pp 386-391, August 1985.

Victor. R. Basili, Richard W. Selby, Tsai-Yun Phillips, Metric Analysis and Data Validation
Across FORTRAN Projects, IEEE Transactions on Software Engineering, pp 652-663,
November, 1983.

Victor R. Basili and David M. Weiss, A Methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on Software Engineering, Vol. SElO, No. 3, pp 728-
738, November 1984.

Victor R. Basili and Marvin V. Zelkowitz, Analyzing Medium Scale Software Development,
IEEE 3rd International Conference on Software Engineering, pp 116-123, May 1978.

D.N. Card, V. E. Church, and W. W. Agresti, An Empirical Study of Software Design
Practices, JEEE Transactions on Software Engineering, pp 264271, February 1986.

Carl W. Doerflinger and Victor R. Basili, Monitoring Software Development Through
Dynamic Variables, IEEE Transaction on Software Engineering, pp 978-985, September
1985.

David H. Hutchens and Victor R. Basili, System Structure Analysis: Clustering with Data
Bindings, IEEE Transactions on Software Engineering, pp 749-757, August, 1985.

James Ramsey and Victor R. Basili, Analyzing the Test Process Using Structural Coverage,
8th Internation Conference on Software Engineering, pp 306-311, August, 1985.

Evaluating Software Development by Analysis of Changes: Some Data from the Software
Engineering Laboratory, JEEE Transactions on Software Engineering, pp 157-168, February
1985.

pasili & Selby 19851

[Basili & Selby 1985a]

[Basili, Selby & Phillips 1983)

[Basili & Weiss 1984)

[Basili & Zelkowitz 19781

[Card, Church & Agresti 19861

[Doerflinger & Basili]

putchens & Basili 19851

[Ramsey & Basili 19851

[Weiss & Basili 19851

V. Basili
Univ. of Maryland
9 of 37

Here is the goal, question, metric hierarchy:

Goal 1 Goa12 . . .
.

. . .
Question1 . Question3 Question4 .

. Quest ion6
. Question2 . . Question5 .

dl . . . m9 d2 . . .

m l r r i 2 m 3 m 4 m 2 d 3 m6

Goaln
. . .

. Question8

Question7 .
. . . m 5

ml m6 m7

Here there are n goals shown and each goal generates a set of questions
that attempt to define and quantify the specific goal which is at the root
of its goal tree. The goal is only as well defined as the questions that
it generates. Each question generates a set of metrics (mi) or distribu-
tions of data (di). Again, the question can only be answered relative to
and as completely as the available metrics and distributions allow. As is
shown in the above diagram, the same questions can be used to define
different goals (e.g. Question6) and metrics and distributions can be used
to answer more that one question. Thus questions and metrics are used in
several contexts.

Given the above paradigm, the data collection process consists of six
steps:

Visibility Quality Technology

Resource Data Productivity Howmuch do certain
Error Data Reliability techniques help?
Environment Maintainabi 1 i ty

Problem Complexity Reusability productivity?
Product Data

Characteristics Portability Which tools improve

Table 1

How do you measure the quality?
Is the model used valid?
Are the measures used valid?
Are there checks?
Do they agree with the reliability data?

* *
* # of projects *
.
*
* on e more than * * on e .

* * *
* on e * single project mu1 t i-proj ect *

variation * * * # of
teams

V. Basili
Univ. of Maryland
10 of 37

* * *
* more than * replicated bloc ked * Per

project * on e * project subj ec t -pro j ec t * * * *
.

Table 3

V. Basili
Univ. of Maryland
1 1 of 37

THE VIEWGRAPH MATERIALS

FOR THE

VIC BASIL1 PRESENTATION FOLLOW

MEASURING THE SOFTWARE PROCESS AND PRODUCT:

LESSONS LEARNED I N THE SEL

VICTOR R , B A S I L 1

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

V. Basili
Univ. of Maryland
12 of 37

WHY MEASURE SOFTWARE?

CREATE A CORPORATE MEMORY (SUPPORT PLANN I NG 1

E4Gsj HOW MUCH WILL A NEW PROJECT COST?

DETERMINE STRENGTHS AND WEAKNESSES OF THE CURRENT

PROCESS AND PRODUCT

E I G l r ARE CERTAIN TYPES OF ERRORS COMMONPLACE?

DEVELOP A RATIONALE FOR ADOPTING/REFINING TECHNIQUES

EBG I J WHAT TECHNIQUES WILL MINIMIZE CURRENT PROBLEMS?

ASSESS THE IMPACT OF TECHNIQUES

EBGaj DOES FUNCTIONAL TESTING MINIMIZE CERTAIN

ERROR CLASSES?

EVALUATE THE QUALITY OF THE PROCESS/PRODUCT

ElGsj WHAT IS THE RELIABILITY OF THE PRODUCT AFTER

DELIVERY?

V. Basili
Univ. of Maryland
13 of 37

-I
w
v)

w
I
i-

z

m
w
rY
3
v)

w
51

Y

a

LL
0
v)
I- u
w
Q
v)

M
a

>.
c3
0
-I
0 z
I u
W
I-

>.
I-
-I

2
U

U

a

>-
I-
-I
U

U

a
CI

v)
U

>

>-
I-
>
w

u

.z
I-
Q

w
u

a

rr
3
0
v)

@-
CL
-I
W
I

c-
>-
I-
>
I- o
3

0
rY a
w >
0
rY
Q
E

m
-I
0
0
I-
I
V

I
1cr

U

U

a

U

Y

V. Basili
Univ. of Maryland
14 of 37

a
a n
I-

I- u
w
7
0
LT
a
LL
0
v)
W
v)
v)

-I u
a

v)
w
lY
3
-.I

LL

w
lY

3:
I-
LL
0
v)

n

a

a

0

z
0
v)
LT
W a
>- a -
v)
LT
I
>.
-.I
Y
W
W
3

0

W z
I-

>.

U

a

>-
I-
>
I- u

).

v)
LT
3
0
I

u

n

a

a

0

w a
>-
t-

I- z
W z
0 a
0 u
>-

v)
LT
3
0
I

a

0

w
CI
3
I-

z
(3

z

C(

a

z
0

I-
N

-I

I-
z)

CY
W
I-
=,
a
2c
0
V

U

a
Y

n

0

v)
W
(3 z
I
0

w
E
4
3
t-
LL
0
v)

a

0

0

v)
w
(3 z
1 u
z
c3

v)
W

a

Y

n
0

0

v)
W
(3 z
I u
z
0
n
I-
u
LL
n
0
w
a
v)

a

a
U

0

0

-
v)
w
3 a
z
I u
W
I-

CI

-

v)
0

I-
v)
n
E
W
I-
0

LT

I
V

I-
O
W
7
0
LT
a

U

a
a

n w
v)
3

v)
-I
0
0
I-

0

v)
w
I- a n

a
W
v)

I a
0

t)
W
n
-.I
0..
Q

v)
W
=I)
U
Z
I
V
w
I-

a

n

O

n
v)
I- z
W z
0
Q
E
0
0

w
t)
0 u
u-
0
v)
w z
J

w
N

v)

%

n

W

U

0

n - -
%

I-
Q u

>
OZI >
w fx
z)
I- u
3
lY

-
U
U

t 3

z
0

I-

N

Z

(3
lY
0

n

a

a
n

0

w
E
n

I-

>-
E9
W
N

v)
U

0

n
W
la
>
0
E a
c3 z
z

n

n

c.l

2
I-

0 0

>-
I-
X
w
-1
Q

I - = z o
w u
2c
Z E
o w
E - I u r n > o
Z l Y
w a

Y

0 0

0

>-
I-
X
w
-1
n,
E
0 u
t- u
3
G
0
LT a

0 0 0 0

u

V. Basili
Univ. of Maryland
15 of 37

rl a-

1 7 3
w 0 0 - c n
n 4
3 1
+ A
c o b . cn
m r l
I- u
W

o
0
-I
v)

ti

cJ3
I- o
W
-3
0
E a

w
N

v)

v)
I-
V
W
-3
0
E a
-I
Q
I-
O
I-

H

n w
k o
w
-I

I- -I
v) O
0 0
V

V. Basili
Univ. of Maryland
16 of 37

I-
0 z

R
w
-I
U

a
n
t;

z
0

I- u
W
-I
J
0
V

u
v)

3
a

LL
0

I
I-
w
E

x
0
I-
t-
0
cp

tn
v)
W z
W >
I- u
w
LL
LL
w

U

3 ..
(3

W
-
4

a
I- a a
tx
0
LL

E
0
H

n a
a CY a
z
w >
Y

W
I
3 R

w z n

I
I- s z

0
v)
v)
w
-I

a
n

a
a

I-
cl

>-
z

v)
3
0
0
LL

E
0
7

E
a E

n
i
-I

(3
3

v)

v)
U

R
I
a z

E
I
I-

W
I- a
n

v)
w
3 a
U

>-
-I

z a a

I-
O z
W

a z
X
V w
I-

w W >
I
a Q

0
-I
W >
W
n

R
M

>
W

V. Basili
Univ. of Maryland
17 of 37

GOAL/QUESTI ON/METRI c PARADI GI"~

MANAGEMENT-ORIENTED GOAL
(CHARACTERIZE ERRORS)

SPECIFIC QUESTION
OR HYPOTHESIS

(WHAT PHASE WAS GREATEST
SOURCE OF ERRORS?)

QUANTITATIVE METRIC
OR DISTRIBUTION

(ERROR DISTRIBUTION BY PHASE)

V. Basili
Univ. of Maryland
18 of 37

SEL

DATA COLLECT I ON METHODOLOGY

1, ESTABLISH THE GOALS OF DATA COLLECTION; ElGI t

CHARACTERIZE CHANGES DURING SOFTWARE DEVELOPMENT,

2 , DEVELOP A L I S T OF QUESTIONS OF INTEREST; E,G,,

WHAT PERCENTAGE OF THE CHANGES WERE f4ODIFICATIONS

AND ERRORS?

3 1 DETERMI NE THE METR I CS AND D I STR I BUT1 ONS NEEDED TO

ANSWER THE QUESTIONS,

DESIGN AND TEST DATA COLLECTION FORM,

5, COLLECT AND VALIDATE DATA,

61 ANALYZE AND INTERPRET THE DATA

V. Basili
Univ. of Maryland
19 of 37

SAMPLE GOALS

ON TIME DELIVERY

HIGH QUALITY PRODUCT

HIGH QUALITY PROCESS

CONTAINS NEEDED FUNCTIONALITY

SALABLE PRODUCT

CUSTOMER SATISFACTION

CHARACTERIZE ERRORS AND CHANGES TO LEARN '

FROM THIS PROJECT

LOW COST

TIMELINESS

1 1 1

V. Basili
Univ. of Maryland
20 of 37

CHARACTERIZING GOALS

1,
2 ,
3 ,
4,
5 6 CHARACTERIZE THE ENVIRONMENT

CHARACTERIZE RESOURCE USAGE ACROSS THE PROJECT

CHARACTERIZE CHANGES AND ERRORS ACROSS LIFE CYCLE

CHARACTERIZE THE DINENSIONS OF THE PROJECT

CHARACTERIZE THE EXECUTION TIME ASPECTS

QUALITY GOALS

PRODUCTIVITY GOALS

MAINTENANCE GOALS

TOOL AND METHOD EVALUATION GOALS

COST-ESTIMATION GOALS

ETC

V. Basili
Univ. of Maryland
21 of 37

Quantitative Analysis Methodology

Q Methodology for data collection & quantitative analysis

1. Formulate goals
2. Develop and refine subgoals & questions
3. Establish appropriate metrics
4. Plan investigation layout & analysis methods
5. Design & test data collection scheme
60 Perform investigation concurrently w/ data validation
7. Analyze data

0 Goal/question/metric paradigm defines analysis purpose,
required data, and context for interpretation

8 Questions are coupled with measurable attributes and reflect
the types of result statements from quantitative analysis

0 Identifies aspects of a well-run analysis

9 Intended to be applied to different types of studies
from a variety of problem domains

V. Basili
Univ. of Maryland
22 of 37

Analysis Classification: Scopes of Evaluation

#Projects

More Than

Single Project Multi-Project
Variation

Sub j ec t-Proj ec t

V. Basili
Univ. of Maryland
23 of 37

GOAL SETTING TEMPLATE

PURPOSE OF STUDY:

TO (CHARACTERIZE, EVALUATE, PREDICT, MOTIVATE) THE

(PROCESS , PRODUCT, METRIC) I N ORDER TO (UNDERSTAND,
ASSESS, MANAGE, ENGINEER, LEARN, IMPROVE, COMPARE) IT

EsC;,, TO EVALUATE THE SYSTEM TEST METHODOLOGY IN ORDER

TO ASSESS IT,

PERSPECTIVE:

EXAMINE THE (COST, EFFECTIVENESS, RELIABILITY, CORRECTNESS,

MAINTAINABILITY, EFFICIENCY, ETC,) FROM THE POINT OF

VIEW OF THE (DEVELOPER, MANAGER, CUSTOMER, CORPORATION,

ETC, 1
EA, , EXAMINE THE EFFECTIVENESS FROM THE DEVELOPER'S POINT

OF VIEW,

ENVI RONMENT:

LIST THE VARIOUS PROCESS FACTORS, PROBLEM FACTORS, PEOPLE

FACTORS, ETC a

V. Basili
Univ. of Maryland
24 of 37

DOMA I M

1) INDUSTRY-WIDE

HIERARCHY OF PERSPECTIVES

CONCERN S

- TECHNOLOGICAL CAPABILITY,

INTERNATIONAL COMPETITION

2) CORPORATE - PROFIT, MARKET POSITION

3) UN I T MANAGEMENT - EESOURCE ALLOCATION

4) PROJECT rV.NAGEMENT - PROGRESS AGAI NST MILESTONES

5) PROJECT TEAFi

6) INDIVIDUAL

- INTEGRATION OF INDIVIDUAL

PRODUCTS

- PRODUCT QUALITY, WORK RATE

V. Basili
Univ. of Maryland
25 of 37

GOAL AREA: PROCESS QUALITY

PURPOSE:

PERSPECTIVE:

ENVI RONPENT:

DEFINITION OF THE PROCESS:

QUALITY OF USE

DOMAIN OF USE

KNOWLEDGE OF DOMAIN

VOLATILITY OF DOMAIN

COST OF USE

EFFECTIVENESS OF USE

RESULTS

QUALITY OF RESULTS

FEEDBACK FROfl USE

LESSONS LEARNED

MODEL VALIDATION

INTEGRABILITY WITH OTHER TECHNIQUES

V. Basili
Univ. of Maryland
26 of 37

EXAMPLE

PURPOSE OF STUDY: TO EVALUATE THE SYSTEM TEST

METHODOLOGY IN ORDER TO ASSESS IT'S EFFECT

PERSPECTIVE: EXAMINE THE EFFECTIVENESS FROM THE

DEVELOPER'S POINT OF VIEW

DEFINIT ION OF PROCESS:

1, QUALITY OF USE

HOW F-IANY REQUIREMENTS ARE THERE?

WHAT I S THE DISTRIBUTION OF TESTS OVER

REQUI REIVIENTS?

NUMBER OF TESTS/REQUI REMENT

WHAT I S THE IMPORTANCE OF TESTING EACH

REQUIREMENT?

RATE 0-5
WHAT I S THE COMPLEXITY OF TESTING EACH

REQU I REMENT?

RATE 0-5
SUBJECTIVE

FANOUT TO COMYINENTS AND/OR NAMES

I S 91,2 CONSISTENT WITH Q1,3 AND @1,4?

V. Basili
Univ. of Maryland
27 of 37

EXAMPLE (CONT’D)

2, DOMAIN OF USE

KNOWLEDGE:

z l l HOW PRECISELY WERE THE TEST CASES KNOWN

IN ADVANCE?

RATE 0-5
2,2 HOW CONFIDENT ARE YOU THAT THE RESULT IS

CORRECT?

213 ARE TESTS WRITTEN~HANGED CONSISTENT WITH

Q L 3 AND Q1,4?
2,4 WHAT PERCENT OF THE TESTS WERE RERUN?

VOLAT I L I TY :

3 , COST OF USE

3,1 COST TO MAKE A TEST

3,2 COST TO RUN A TEST

3 , 3
3 1 4 COST TO ISOLATE THE FAULT

3,s COST TO DESIGN AND IMPLEMENT A FIX

COST TO CHECK A RESULT

316 COST TO RETEST

V. Basili
Univ. of Maryland
28 of 37

EXAMPLE (CONT'D)

EFFECTIVENESS OF USE

QUALITY OF RESULTS

4 , 1
4,2 WHAT PERCENT OF TOTAL ERRORS WERE FOUND?

Q I 3

HOW MANY FAILURES WERE OBSERVED?

WHAT PERCENT OF THE DEVELOPED CODE WAS

EXERC I SED?

ACCEPTANCE TESTS?

4 , 4 WHAT IS THE STRUCTURAL COVERAGE OF THE

RESULTS:

4 ,5 HOW MANY ERRORS WERE DISCOVERED DURING EACH

PHASE OF DEVELOPMENT ANALYZED BY CLASS OF

ERROR AND I N TOTAL?

4,6 WHAT IS THE NUMBER OF FAULTS PER LINE OF CODE

AT THE END OF EACH PHASE? ONE MONTH, SIX

MONTHSt ONE YEAR?

4,7 WHAT IS THE COST TO F I X AN ERROR ON THE

AVERAGE AND FOR EACH CLASS OF ERROR AT EACH

PHASE?

423 WHAT I S THE COST TO ISOLATE AN ERROR ON THE

AVERAGE AND FOR EACH CLASS OF ERROR AT EACH

PHASE?

V. Basili
Univ. of Maryland
29 of 37

GOAL AREA: HIGH QUALITY PRODUCT

PRODUCT:

PURPOSE OF STUDY:

ENVIRONMENT:

DEFINITION OF PRODUCT:

PHYSICAL ATTRIBUTES

COST

CHANGES AND ERRORS

CONTEXT

CUSTOMER COMMUNI TY

OPERATIONAL PROFILES

PERSPECTIVE:

MAJOR MODEL(S) USED:

VALIDITY OF THE MODEL FOR THE PROJECT

VALIDITY OF THE DATA COLLECTED

MODEL EFFECTIVENESS

SUBSTANTIATION OF THE MODEL

V. Basili
Univ. of Maryland
30 of 37

IMPROVING METHODOLOGY0 PRODUCTIVITY AND QUALITY

THROUGH PRACTICAL MEASUREMENT

1 CHARACTER1 ZE THE ENVI RONMENT

2, SET UP THE GOALS FOR IMPROVEPIENT

E,Ga 8 HIGHER QUALITY, LOWER COST, ON-TIME DELIVERY

3 8 REF1 NE AND ADJUST APPROACH/ENVI RONMENT TO

SATISFY THE GOALS

4 1 B U I L D THE SYSTEM0 COLLECT AND VALIDATE THE DATA

5, INTERPRET AND ANALYZE THE DATA TO CHECK I F THE

GOALS ARE SATISFIED

EVALUATE METHODOLOGY, PRODUCTIVITY AND QUALITY0 ETCa

6, GO TO STEP 1, ARMED WITH NEW KNOWLEDGE

V. Basili
Univ. of Maryland
31 of 37

SEL SUCCESSES/FAI LURES

EFFORT DATA

WEEKLY EFFORT HOURS CAN BE ACCURATELY CAPTURED

EFFORT BY PHASE AND ACTIVITY CAN BE IMPROVED

ERROR /C HANG E DATA

CAN EXTRACT REALISTIC HISTORY OF ERRORS AND CHANGES

CANNOT CAPTURE DETAILED TECHNIQUE INFORMATION

(FOR ERROR DETECTION)

PROJECT CHARACTERISTICS

PRODUCT CHARACTERISTICS CAN BE ACCURATELY CAPTURED

PROBLEM CHARACTERISTICS DIFFICULT TO CAPTURE

TECHNIQUES

CAN MEASURE RELATIVE LEVEL OF TOTAL METHODOLOGY

DIFFICULT TO ISOLATE EFFECTS OF SPECIFIC METHODS

V. Basili
Univ. of Maryland
32 of 37

COST OF DATA COLLECTION

OVERHEAD TO TASKS DOES NOT HAVE TO EXCEED 3%

PROCESSING OF DATA CAN BE CUT TO 5%

ANALYSIS, INTERPRETATION AND REPORTING

MOST EXPENSIVE

15 - 20% IN SEL

INCLUDES RESEARCH SUPPORT

PAPER PUBLICATION

TECHNO LOGY T RAN S F E R

V. Basili
Univ. of Maryland
33 of 37

@-
I- z
w 2c
W
CY
2
v)

W r:
*
w
I-

a

3

I-
I> a
w z

n w
w i -
I - 3

E =
0 0
i - u

a a

a 0

I z I
v) u
I-
v)

CY
W
I- u
CY

I u

Y

Y

a
a

>-
I-

X
w
-1

I- a a E
n 0

V w
cn w a n
I 0 a 0 0 0 0

C-(r I

C-(

I u

W u
v)w CY

00 0 z u v)

w n r>

I

a
a n
I-

a
0
CY
CY

I

a
I C J LL u u 0
>-3 I
-10 I-
yv) 3
W 0
w o CY
XI- c3

CY

0 0

w
N
v)
Y

w
c3 z
I
0
\
CY
0
CY
CY
W

a

a
I-
O

W

as
U

L
I-
3
0
CY
W
\
v)
W
(3 z
I u
w
0 u

a

n

0

n
W
v)
3

v)
W
3
U

z
I u
w
I-

Y

c3
Z'

I- cc
0 a
W as
CY
0
OL
CY
w

Y

>-
t-
X
w
-1
a =
0 u
I- o
3

0 as
a

Y

n

0

i- z
W z
0
a
2z
0
0

>-

v)
w u
CY
3
0
v)
W a

a

v)
w u
CY
3
0
v)
W as
>-
J
~

w
w
3

n . -
w
N
v)
U

W

v)
0
n

I-
v)

a
W
I- u
CY

I
0

I- u
3
n
0
CY

C-(

a
a

a
0

t- z
w
SI z
0
CY

> z
w

U

>-
I-

>
I-
V

>-

I-
CY
0 u-
LL
W

Y

U

a

m

I- z
3
0 u
w
(3 z
Q
I u
w
0
V

W
u
CY
3
0
v)

n

0

v)
u
w
v)
\ z
W

v)
W
n
0
I-
v)
w
W z:
L
0

a

Y

a

>-
I-
X
W
-1
a
E
0
V

E
w
-I

0
[r
a

n

a

I-
;7-
w
E
w
W

z
x
CY
0

z
W
I-

t- z
W x
a
0
-1
w >
W

0
i-

I-
O
Q a =
>- z

a
a

a

n

Y

a
w
2;
Y

-I
W
as
0
I-
W
CY
3

W
V
0 as a
as
0

-1
0
0
I-
v)
W

-I a
SI

n

C-(

Y

0

V. Basili
Univ. of Maryland
34 of 37

.A
w
v)

z
U

5

t
I-
U

-I

r> a

W

a
5

E

3

0
v)

a
t
LL
0
cn
W oc
3
v)

w
E
a

I-
U

a cnL)
\ E O

0-I

t
I- >.
U I-

-I
>
I- U

0 m
ca U

0 -I
E W
Q E

U

U

3 a

0 0

o w
I-E a !z
OLL
L O
LLv)
W-

I-
W W
+E
EE
00
Q V w- oc
t

wLL a-
E O
W E >

nu

an

a

m
z a
W CY a U

a Q
I W u oc
0 0
I- I-

i- I-
E E
0 0
LL LL
L LL

L-3
t
I-
A

Q: z

C(

M

m
M

a

a

I- z

TT
U

0

z
0

t
I-
-I

F9

v)
3
W oc

-
Y

a

0

V. Basili
Univ. of Maryland
35 of 37

Ly:
0 u-

t-
a
a a
n

a

W
-I

I-

U

z
0
U

I- u
w
-I
-I

BP +
M
I-
3

0 u z
W >
CK ca

I
-I
d
0
W

U

W
n -

v) W
I-
E
0
I-
3

a

a

v)
w
3 a

n
W
Ly:
3
v)

W z
a

0
m a

wi Y

v)
t- u
w

z
I
0
w
I- 7)

0 e
Q

0
I- W a

n
-I
3
0
1
u,

I-
O
z

w
Ly:

3

0
v)

0

LL

a
t

U

Y

W z
>- e
I-

Y t- z
w
E a
0
-I
w >
w n

u,

I-
d
L
I-

Y

-
a

n
I-
d -

n
a
a I-

c3

z
U tl z a I-
CY
0
L L
u-

z
0
a LL

0
0
W a
v)

0
I-

w
I-
w
v)

w > *
n
>-
c3
0
-I
0 z
I u
w
t-
v

n
5
I e
W >
0

W e
0
I-
v)
\
I- u
w
-I
-I
0 u

W
CY
3
v)

w
51
a

z
3 z
z
z
I-

Y

U

v)
v)
w
u
X
w

0
I-
t-
-1
=>
u
LL
LL

U

U

n
0

n z
w
Q
v)

I- -
I- z
w z
w
e
3
v)

w
E
a

W

Q
3
I- u-
0
v)

I-
O z

c r w
3 Q
v) v)
4:
W z

z
0 ca 0

n
0 0 0 0 0

V. Basili
Univ. of Maryland
36 of 37

OVERALL RECOMMENDATION

USE DATA TO CHARACTERIZE THE ENVIRONMENT, MAKING

PROBLEMS VISIBLE

SET UP CORPORATE AND PROJECT GOALS AND USE

GOAL/QUESTION/DATA PARADIGM TO ARTICULATE

PROCESS AND PRODUCT NEEDS

V. Basili
Univ. of Maryland
37 of 37

.r

N86- 30359 STUDIES AND EXPERIMENTS I N THE*
SOFTWARE E N G I N E E R I N G LAB (SEL)

BY
FRANK E. MCGARRY

NASA/GSFC
AND

5AVID N. CARD
COMPUTER S C I E N C E S CORPORATION (C S C)

ABSTRACT

T h e S o f t w a r e E n ~ i n e e r i n g L a b o r a t o r y (SEL) i s an o r g a n i z a t i o n
c r e a t e d n e a r l y 1 0 y e a r s a g o f o r t h e p u r p o s e o f i d e n t i f y i n g ,
m e a s u r i n g and a p p l y i n g q u a l i t y s o f t w a r e e n g i n e e r i n g t e c h n i q u e s
i n a p r o d u c t i o n e n v i r o n m e n t (R e f e r e n c e 1) . T h e members o f t h e
SEL i n c l u d e NASA/GSFC (t h e s p o n s o r and o r g a n i z e r) , U n i v e r s i t y o f
M a r y l a n d , and Computer S c i e n c e s C o r p o r a t i o n . S i n c e i t s i n c e p t i o n
t h e SEL has c o n d u c t e d numerous e x p e r i m e n t s , and has e v a l u a t e d a
w i d e r a n g e o f s o f t w a r e t e c h n o l o g i e s , T h i s p a p e r d e s c r i b e s
s e v e r a l o f t h e m o r e r e c e n t e x p e r i m e n t s a s w e l l a s some o f t h e
g e n e r a l c o n c l u s i o n s t o w h i c h t h e SEL has a r r i v e d .

1.0 Backg round (C h a r t 1)

O v e r t h e p a s t 9 yea rs , t h e SEL has c o n d u c t e d s t u d i e s i n 4 m a j o r
a r e a s o f s o f t w a r e t e c h n o l o g y :

1. S o f t w a r e T o o l s and E n v i r o n m e n t s
2. Deve lopmen t Methods
3 . Measures and P r o f i l e s
4. S o f t w a r e Mode ls

M o s t o f t h e s e s t u d i e s h a v e been c o n d u c t e d by u t i 1 i z i n g s p e c i f i c
approaches, t o o l s o r m o d e l s t o p r o d u c t i o n s o f t w a r e p r o b l e n i s w i t h i n
t h e f l i g h t d y n a m i c s e n v i r o n K e n t a t Goddard . By e x t r a c t i n g
d e t a i l e d i n f o r m a t i o n p e r t a i n i n g t o t h e p r o b l e m , e n v i r o n m e n t ,
p r o c e s s and p r o d u c t , t h e SEL h a s b e e n a b l e t o g a i n some i n s i g h t
i n t o t h e r e l a t i v e i m p a c t t h a t t h e v a r i o u s t e c h n o l o g i e s may h a v e
on t h e q u a l i t y o f t h e s o f t w a r e b e i n g deve loped .

More d e t a i l e d d e s c r i p t i o n s o f t h e o v e r a l l measurement p r o c e s s as
w e l l a s t h e SEL s t u d i e s may b e f o u n d i n R e f e r e n c e s 1, 2, and 3.
T h i s b r i e f p a p e r w i l l d e s c r i b e some o f t h e more r e c e n t , s p e c i f i c
e x p e r i m e n t s t h a t h a v e been c o n d u c t e d b y / i n t h e SEL and j u s t what
t y p e s o f i n s i g h t may b e p r o v i d e d i n a r e a s o f :

1. T o o l s and E n v i r o n m e n t s
2. S o f t w a r e T e s t i n g
3. D e s i g n Measures
4. G e n e r a l T r e n d s

*The work described i n th i s paper has been extracted from reports and studies carried
out by members o f the SEL.

F. McGarry
NASA/GSFC
1 of 37

T Y P E OF S C I E N T I F I C , GROUND-BASED, I N T E R A C T I V E GRAPHIC,
SOFTWARE: MODERATE R E L I A B I L I T Y AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN, 15% ASSEMBLER MACROS

COMPUTERS: I B M MAINFRAMES, BATCH W I T H TSO

P R O J E C T C H A R A C T E R I S T I C S : AVERAGE H I G H LOW

D U R A T I O N (MONTHS) 16 21 13

EFFORT (S T A F F - Y E A R S) e 24 2

S I Z E (1000 L O C I
DEVELOPED
D E L I VERED

S T A F F (F U L L - T I M E
E Q U I V A L E N T)

AVERAGE
PEAK
I N D I VUALS

57 142 22
62 159 33

5 11 2
10 24 4
14 29 7

A P P L I C A T I O N E X P E R I E N C E
(Y E A R S 1

MANAGERS 6 7 5
T E C H N I C A L S T A F F 4 5 3

OVERALL E X P E R I E N C E
(Y E A R S 1

MANAGERS
T E C H N I C A L S T A F F

10 14 8
9 11 7

F I G U R E 1. F L I G H T D Y N A M I C S SOFTWARE

F. McGarry
NAS A/GSFC
2 of 37

The F l i g h t Dynamics e n v i r o n m e n t t y p i c a l l y i s a FORTRAN e n v i r o n -
ment b u i l d i n g s o f t w a r e sys tems r a n g i n g i n s i z e f r o m 10,000 t o
150,0013 l i n e s o f c o d e - (s e e F i g u r e 1) .

2.0 S o f t w a r e T o o l s / E n v i ronmen ts * (C h a r t 2 and R e f e r e n c e 4 1

One o f t h e more i n t e r e s t i n g s t u d i e s t h a t was c o n d u c t e d w i t h i n t h e
p a s t s e v e r a l y e a r s 0 was o n e i n w h i c h a n a t t e m p t was made t o
measure t h e i m p a c t o f s e v e r a l d e v e l o p m e n t app roaches (r e 1 a t e d t o
e n v i r o n m e n t s u p p o r t) on t h e q u a l i t y o f s o f t w a r e w i t h i n t h e f l i g h t
dynamics d i s c i p l ine ,

The t h r e e p o i n t s o f s t u d y i n c l u d e :

1. S o f t w a r e T o o l s
2. Computer S u p p o r t
3. Number o f T e r m i n a l s / P r c g r a m m e r

T h e q u a l i t y o f t h e p r o d u c t was m e a s u r e d u s i n g 4 a t t r i b u t e s
i n c l ud i n g :

month,
1. P r o d u c t i v i t y - Number o f d e v e l o p e d 1 i n e s o f code p e r man

2. R e l i a b i l i t y - Nuuiber o f e r r o r s r e p o r t e d p e r 1,000 l i n e s
o f code.

3. E f f o r t t o C h a n g e - (A v e r a g e n u m b e r o f man h o u r s
r e q u i r e d t o make a s o f t w a r e m o d i f i c a t i o n) .

4. E f f o r t t o R e p a i r (A v e r a g e number o f man h o u r s r e q u i r e d t o
c o r r e c t an i d e n t i f i e d e r r o r)

2.1 E x p e r i m e n t D e s c r i p t i o n (C h a r t 3)

I n c a r r y i n g o u t t h e s t u d y , a r e v i e w o f a l l p r o j e c t s f o r w h i c h
d e t a i l e d p r o j e c t h i s t o r y d a t a was a v a i l a b l e and c o m p l e t e was
u n d e r t a k e n . F r o m t h e c o m p l e t e d 5 0 p r o j e c t s , 1 4 w e r e s e l e c t e d
because o f t h e q u a l i t y and c o m p l e t e n e s s o f t h e r e l e v a n t d a t a and
m o r e i m p o r t a n t l y b e c a u s e o f t h e g e n e r a l s i m i l a r i t y o f
c o m p l e x i t y o f p r o b l e m s t h a t t h e s o f t w a r e was a t t e m p t i n g t o s o l v e .

F o u r t e e n p r o j e c t s r a n g i n g i n s i z e f r o m 11 ,000 l i n e s o f c o d e t o
1 3 6 , 0 0 0 l i n e s o f c o d e w e r e s e l e c t e d . T h e s e p r o j e c t s h a d
i n f o r n a t i o n d e s c r i b i n g t h e e n v i r o n m e n t u n d e r w h i c h t h e y w e r e
d e v e l o p e d a n d a d d i t i o n a l i n f o r m a t i o n s u c h a s t h e number a n d
q u a l i t y o f au tomated t o o l s u t i 1 i z e d and t h e number o f i n t e r a c t i v e
t e r m i n a l s a v a i l a b l e t o t h e programming s t a f f .

*Lead inves t iga tors of t h i s work included F. McGarry and J. V a l e t t of NASA/GSFC
and D. H a l l o f NASA/HQ.

F. McGarry
NASAIGSFC
3 of 37

The 1 4 p r o j e c t s s e l e c t e d a l l d e a l t w i t h t a s k s i n s o l v i n g a t t i t u d e
d e t e r m i n a t i o n and c o n t r o l r e 1 a t e d p rob lems . The p r o j e c t s were
c o m p l e t e d be tween t h e y e a r s 1978 t o 1984.

The p r o j e c t s a l s o had d e t a i l e d i n f o r m a t i o n as t o manhours, s i z e r
e r r o r h i s t o r y , and e f f o r t r e q u i r e d t o make a l l c h a n g e s a n d
c o r r e c t i o n s t o t h e s o f t w a r e .

2.2 P r o j e c t V a r i a t i o n s (C h a r t 4)

I n a t t e m p t i n g t o c h a r a c t e r i z e each o f t h e d e v e l cprr.ent p r o j e c t s ,
a r a n k i n g scheme was u s e d f o r t h i s p a r t i c u l a r s t u d y . I t was
f o u n d t h a t t h e a v a i l a b i l i t y o f t e r m i n a l s r a n g e d f r o m a l o w o f
l e s s t h a n 1 p e r 8 p r o g r a m m e r s t o a h i g h o f b e t t e r t h a n 1 p e r 2
p r o 9 r anme r s

T h e r e w e r e a t o t a l o f 2 1 t o o l s c o n s i d e r e d i n t h i s s t u d y t h a t
w e r e a p p l i e d b y a t l e a s t some o f t h e p r o j e c t s s t u d i e d . S u c h
t o o l s as d o c u m e n t a t i o n a i d s , p r e p r o c e s s o r s , t e s t g e n e r a t o r s and
p rog ram o p t i m i z e r s were among t h e t o o l s c o n s i d e r e d .

I t was a l s o f o u n d t h a t t h e d i s t r i b u t i o n o f l e v e l o f use f o r t o o l s
r a n g e d f r o m a low o f o n l y 1 o r 2 a u t o m a t e d t o o l s b e i n g used, t o a
h i s h o f m o r e t h a n t? a u t o m a t e d t o o l s b e i n g used. T h e s e t o o l s a l s o
w e r e r a t e d a s f a r a s t h e a c t u a l u s a g e b y t h e p a r t i c u l a r p r o j e c t
and a l s o t h e r e was a r a t i n g f o r e a c h t o o l o f t h e a s s e s s e d
' q u a l i t y c o f t h e p a r t i c u l a r t o o l . Q u a l i t y h e r e was r a t e d f o r
e a c h t o o l o n a s c a l e o f 1 t o 5 and was a s u b j e c t i v e r a t i n g
d e t e r m i n e d b y t h e s o f t w a r e manager.

T h e r e were a t o t a l o f 11 c h a r a c t e r i s t i c s t h a t made up t h e
compu te r s u p p o r t measure. These 11 i n c l u d e d :

o T e r m i n a l A c c e s s i b i l i t y o O f f l i n e S t o r a g e
o T u r n a r o u n d t i m e o I n t e r a c t i v e A v a i l a b i l i t y
o C o m p i l e r Speed o T e r m i n a l s / p r o g r a m m e r s
o System R e l i a b i l i t y (2 measures) o Avg. CPU U t i l i z a t i o n
o D i r e c t S t o r a g e o A c c e s s i b i l i t y o f a l l

r e s o u r c e s

2.3 S t u d y R e s u l t s (C h a r t 5)

The r e s u l t s o f t h i s p a r t i c u l a r s t u d y were e n c o u r a g i n g on t h e one
hand and q u i t e p e r p l e x i n g on t h e o t h e r .

2.3.1 T o o l u s a g e r e s u l t s showed t h a t a s t h e number and q u a l i t y

F. McGarry
NASA/GSFC
4 of 37

of automated tools increased, there were significant increases in
3 of the 4 quality measures used in this study:

1. Productivity increased as tool usage increased

2. Maintainability (effcrt to change/effort to repair)
improved as the number and quality of tools increased.

3. Reliability did not seem to be significantly impacted in
this one particular study.

2.3.2 Computer Environment

Although all of the experiKenters felt that there would be
significant increases in all qual ity measures as the overal 1
qual ity of corriputer support increased, none of the measures
proved to be significant for this one particular study. It could
not be shown that an improved computer support environment (a t '
leastas far as the way the SEL described support environment)
directly, favorably impacted the four qual ity measures used by
the SEL.

This particular study is still undergoing further analysis.

2.3.3 Terminal Usage

The most perplexing result of this experiment study was the
one i n which the S E L attempted to assess the impact that
increased number of terminals would have on the four measures
described.

A 1 though the experimenters expected to observe a n iricrease in
both productivity and software reliability as the number o f
terminals made available increased, the study found just the
opposite. Both productivity and reliability of software
decrezsed as the ratio of tern:inals available increased. There
was no significance in the results for maintainability (effort tG
change/offort for repair).

Numerous suggestions have been put forth in attempting to explain
thls phenomena. Some felt that the increased terminal usage
possibly was not properly accompanied with interactive support
tools in the particular environment.

Another idea was that the increased terminal availabil ity wi.thout
proper training for the programmers led to a less disciplined
approach by the progranmers.

F. McGany
NASAIGSFC
5 of 37

There are several other possible explanations of the results and
for that reasonr this particular study has been continuing a n d
will be attempting to more thoroughly analyze this data as well
as the additional projects that have been completed in this
environment.

3.0 Software Testing

A second general set of studies that has been conducted over the
past several years within the SEL has been directed toward gaining
insight into approaches to testing software. Since this phase of
the development life cycle h a d previously been determined to
consume at least 30 percent of the development resources
(Reference 5Ir it was deemed as a critical ly important discipl ine
to study. Two major experiments were conducted d u r i n g 1984 and
1985 in an attempt to:

1. Determine the overal 1 coverage of software in the
typical testing scenario utilized i n the flight dynamics
software devel opment.

2. Investigate the relative merits of three standard
testing approaches:

o functional testing
o structural testing
o code reading

3.1 Test Coverage* (Chart 6 and Reference 6)

The first experiment on testing was designed to determine the
extent to which typical testing techniques within the flight
dynamics environment amp1 y exercised the software that had been
built. This particular environment util izes functional testing
during both the system test phase as well as the acceptance test
phase.

By instrumenting a major flight dynamics systemr then b y
executing the series of both system tests and acceptance tests -
experimenters could first determine the coverage attained in the
test phases. Next, the experimenters monitored the operational
execution of this same software over a period of months to
determine the extent to which portions of the completed software
were util ized. Final lyr the experimenters analyzed uncovered
errors in an attempt to determine if the errors occurred i n
portions of the system that had not been exercised d u r i n g the

*The lead investigator for t h i s work was Jim Ramsey of Univ. o f MD

F. McGarry
NASA/GSFC
6 of 37

t e s t p h a s e o f d e v e l o p m e n t . T h e s o f t w a r e s t u d i e d was a m a j o r
subsys tem o f a m i s s i o n p l a n n i n g t o o l and c o n s i s t e d o f 6 8 n i o d u l e s
(F o r t r a n s u b r o u t i n e s) w i t h 10,000 l i n e s o f c o d e . T h e r e w e r e 1 0
f u n c t i o n a l t e s t s m a k i n g up t h e a c c e p t a n c e t e s t p l a n f o r t h e
s u b s y s t e m a n d d u r i n g t h e o p e r a t i o n a l p h a s e , t h e e x p e r i m e n t e r s
m o n i t o r e d 60 o p e r a t i o n a l e x e c u t i o n o f t h e s o f t w a r e .

3.1.1 T e s t Coverage R e s u l t s (C h a r t 7)

The managers o f t h e f l i g h t dynamics d e v e l o p m e n t sys tems n o t e d
t h a t t h e a p p r o a c h t o t e s t i n g h a d h i s t o r i c a l l y b e e n q u i t e g o o d
(r e l a t i v e l y f e w e r r o r s f o u n d i n o p e r a t i o n s) a n d t h e y e x p e c t e d
t h a t t h e c o v e r a g e f o u n d f o r t h i s o n e e x p e r i m e n t w o u l d b e q u i t e
h i g h (f e w m o d u l e s w o u l d b e n o t e x e c u t e d) . T h e r e s u l t s o f t h e
e x p e r i m e n t showed t h a t f o r t h e 1 0 f u n c t i o n a l t e s t s execu ted , o n l y
7 5 p e r c e n t o f t h e 6 8 m o d u l e s w e r e e x e c u t e d a n d l e s s t h a n 6 0
p e r c e n t o f t h e t o t a l e x e c u t a b l e code was c o v e r e d i n t h e t e s t s .

A d d i t i o n a l l y , t h e s e r i e s o f o p e r a t i o n a l e x e c u t i o n s showed t h a t a
s l i g h t l y h i g h e r p e r c e n t a g e o f b o t h number o f m o d u l e s and 1 i n e s o f
code were e x e c u t e d f o r t h i s s e r i e s o f 6 0 e x e c u t i o n s .

F i n a l l y , a l l o f t h e e r r o r r e p o r t s were r e v i e w e d t o d e t e r m i n e i n
w h i c h p o r t i o n of t h e s y s t e m t h e e r r o r s h a d o c c u r r e d . I t was
f o u n d t h a t 8 e r r o r s h a d b e e n r e c o r d e d d u r i n g t h e e x t e n d e d
o p e r a t i o n a l phase of t h e s o f t w a r e , b u t i t was f o u n d t h a t none o f
t h e r e p o r t e d e r r o r s o c c u r r e d i n s o f t w a r e t h a t h a d n o t b e e n
e x e c u t e d d u r i n g t h e a c c e p t a n c e t e s t phase.

T h i s i n i t i a l s t u d y seemed t o i n d i c a t e t h a t t h e f u n c t i o n a l t e s t i n g
a p p r o a c h was p r o p e r l y l e a d i n g t o c o r r e c t p o r t i o n s o f t h e s y s t e m
b e i n g e x e c u t e d a n d i t a l s o was v e r y r e p r e s e n t a t i v e o f t h e
o p e r a t i o n a l usage o f t h e s o f t w a r e .

The r e s u l t s o f t h i s s t u d y i n d i c a t e d t h a t f u r t h e r i n v e s t i g a t i o n s
i n t o t h e v a r i o u s a p p r o a c h e s t o t e s t i n g may b e w o r t h w h i l e t o
d e t e r m i n e j u s t w h i c h a p p r o a c h e s were mos t e f f e c t i v e i n u n c o v e r i n g
e r r o r s i n t h e s o f t w a r e i t s e l f .

3.2 S o f t w a r e T e s t i n g Techn iques* (C h a r t 8 and R e f e r e n c e 7)

A n o t h e r s t u d y was c o n d u c t e d where t h r e e p r o g r a f i s were seeded w i t h
a number o f f a u l t s and 3 2 p r o f e s s i o n a l programmers f r o m N A S A / G S F C
and f r o m Computer S c i e n c e s C o r p o r a t i o n (CSC) p a r t i c i p a t e d i n an
e x p e r i m e n t t o d e t e r m i n e w h i c h t e c h n i q u e s were e f f e c t i v e i n
u n c o v e r i n g t h e s e f a u l t s .

The t h r e e t e s t i n g a p p r o a c h e s i n c l u d e d :

*The lead invest igator f o r this study was Rick Selby of Univ. of MD

F. McGarry
NASA/GSFC
7 of 37

o Functional Testing
o Structural Testing
o Code Reading

A l l programmers participated in a p p l y i n g each of the three
techniques.

When performing functional tests, the programmers were required
to use the functional requirements along with test results to
isolate faults - they were not to look at the source code itself
until after testing was completed.

Those programmers perfcrming structural testing used the source
code a n d test results b u t d i d not use the functional
requirements.

Code reading was carried out with no executions of the software.
Those performing code reading reviewed the requirements and also
looked at the source code.

3.2.1 Testing Technique Results (Charts 9 and 10)

The-results of this experiment indicated that code reading is the
most effective of the three testing techniques studied. This
technique uncovered an average of 61 percent o f 211 seeded faults
while functional testing uncovered 51 percent and structural
testing uncovered 38 percent.

Before the test, most of the managers i n the S E L felt that code
reading would prove to be a very effective testing techniquer
although they also felt that it would probably be the most costly
in manhours to apply; but the results of the experiment indicated
that code reading also was the most cost effective technique (3.3
faults per marhour vs 1.8 faults permanhour for structural a n d
for functional testing). It was also noteworthy that, before the
experiment, less than 1 out of 4 persons participating i n the
experiment predicted that code reading would be the most
effective approach.

An additional observa.tion that was made after the testing results
were compiled was that there seemed to be a difference i n the
relative effectiveness of each of the testing approaches as the
size of the software being tested increased. For the smaller
program, code reading was b y far the most effective technique,
but for the larger program, functional testing seemed to be quite
effective. This observation may indicate that there should be a
size limit o n how much code is utilized in a code reading
exercise. Further tests are planned for these studies.

F. McGany
NASA/GSFC
8 of 37

4.0 S o f t w a r e Measures

O v e r t h e p a s t 6 t o 8 y e a r s , t h e S E L h a s d e f i n e d , s t u d i e d , a n d
e v a l u a t e d numerous measures a p p l i c a b l e t o s o f t w a r e d e v e l o p m e n t
a n d management (R e f e r e n c e s 8 , 98 101. Most o f t h e s e m e a s u r e s
have f o c u s e d o n one phase o f t h e s o f t w a r e l i f e c y c l e - t h e code/
u n i t t e s t phase . I n an a t t e m p t t o d e f i n e a n d a p p l y m e a s u r e s i n
e a r l i e r p h a s e s o f t h e l i f e c y c l e , t h e S E L h a s b e e n r e v i e w i n g
s e v e r a l a p p r o a c h e s t o q u a l i f y i n g o r m e a s u r i n g a s p e c t s o f t h e
s o f t w a r e d u r i n g t h e s p e c i f i c a t i o n s p h a s e a n d d u r i n g t h e d e s i g n
phase. Work on t h e s p e c i f i c a t i c n phase was r e p o r t e d a t t h e E i i n t h
S o f t w a r e E n g i n e e r i n g W o r k s h o p a n d r a y b e f o u n d i n r e f e r e n c e 1 1
and 12. One a d d i t i o n a l p i e c e o f work t h a t has been c o n d u c t e d f o r
t h e d e s i g n phase w i l l b e d i s c u s s e d here.

4.1 S o f t w a r e D e s i g n Measures* (C h a r t s 11 and 12 R e f e r e n c e
131 1 4)

I n
t o
f o

an a t t e m p t t o q u a l i f y s o f t w a r e d e s i g n s , a s t u d y was c o n d u c t e d
d e t e r m i n e if m o d u l e s t r e n g t h may b e u t i 1 i z e d a s a g u i d e 1 i n e

r s o f t w a r e m o d u l a r i z a t i c n . A l t h o u g h t h e d e f i n i t i o n s o f
s t r e n g t h may b e w e l l u n d e r s t o o d # t h e p a r a m e t e r may n o t b e e a s y t o
d e t e r m i n e based s o l e l y on a s t r u c t u r e c h a r t o r d a t a f l o w d i a g r a m
w h i c h may b e p r o d u c e d d u r i n g t h e d e s i g n p h a s e o f s o f t w a r e
deve lopmen t .

F o r t h e p u r p o s e s o f t h i s S t u d y , s t r e n g t h i s d e f i n e d a s t h e
(s i n g l e n e s s o f p u r p o s e ' t h a t a s o f t w a r e m o d u l e i n h e r e n t l y
c o n t a i n s . S i n g l e n e s s o f p u r p o s e i s a s u b j e c t i v e p a r a m e t e r
a s s i g n e d a t d e s i g n t i m e by t h e d e v e l o p e r / m a n a g e r . From a l i s t o f
p o t e n t i a l f u n c t i o n a l i t y t h a t a component may have (e.9. computa-
t i o n a l , c o n t r o l , d a t a p r o c e s s i n g , ctc.) t h e programmer d e t e r m i n e s
w h i c h f u n c t i o n s t h a t m o d u l e c o n t a i n s . H i g h s t r e n g t h w o u l d b e
a t t r i b u t e d t o t h o s e components w h i c h h a v e b u t a t i n g l e f u n c t i o n
t o p e r f o r m I med ium t o 2 a n d l o w s t r e n g t h w o u l d h a v e t h r e e o f ~ i ~ r e
f u n c t i o n s t o p e r f o r m .

The s t u d y examined 450 F o r t r a n modu les (f r o m 4 s y s t e m s) w h i c h
were b u i l t b y a p p r o x i m a t e l y 20 d i f f e r e n t d e v e l o p e r s .

T y p i c a l SEL da ta , w h i c h i n c l u d e s d e t a i l e d c o s t and e r r o r d a t a f o r
a l l m o d u l e s was a l s o a v a i l a b l e f o r a l l o f t h e modules. The 450
m o d u l e s u s e d f o r t h i s s t u d y h a d a f c i r l y e v e n d i s t r i b u t i o n i n
s i z e a s w e l l a s i n d e s i g n s t r e n g t h . S m a l l m o d u l e s (1 0 4 o f t h e
450) were t h o s e w i t h up t o 3 1 e x e c u t a b l e s t a t e m e n t s , medium' (1 4 8
o f 450) were t h o s e w i t h up t o 64 e x e c u t a b l e s t a t e m e n t s and t h e r e
w e r e 1 5 1 l a r g e m o d u l e s w h i c h h a d m o r e t h a n 6 4 e x e c u t a b l e
s t a t e m e n t s .

*The lead inves t iga tors f o r t h i s study were D. Card and G. Page o f CSC and
F. McGarry o f NASA/GSFC

F. McGarry
NASAIGSFC
9 of 37

T h e o b j e c t i v e o f t h e s t u d y was t o d e t e r m i n e i f s t r e n s t h o f
m o d u l e s a s d e t e r m i n e d a t d e s i g n t i m e was r e l a t e d t o t h e c o s t and
re1 i a b i l i t y o f t h e c o m p l e t e d p r o d u c t .

4.2 R e s u l t s o f t h e S t u d y on S t r e n g t h (C h a r t s 13, 14, 1 5)

T h e r e s u l t s o f t h e s t u d y i n t h e S E L i n d i c a t e d t h a t m o d u l e
s t r e n g t h i s i n d e e d a r e a s o n a b l e c r i t e r i a f o r d e f i n i n g s o f t w a r e
m o d u l a r i z a t i o n . When e x a m i n i n g t h e r e 1 i a b i l i t y o f t h e 450
m o d u l e s r i t was f o u n d t h a t 5 0 p e r c e n t o f t h e h i g h s t r e n g t h
m o d u l e s h a d z e r o d e f e c t s w h i l e f o r med ium s t r e n g t h m o d u l e s 3 6
p e r c e n t had z e r o d e f e c t s and l o w s t r e n g t h m o d u l e s o n l y 1 8 p e r c e n t
o f t h e m o d u l e s h a d z e r o d e f e c t s . S i m i l a r t r e n d s w e r e f o u n d f o r
t h e m o d u l e s o f m e d i u m e r r o r p r o n e n e s s (u p t o 3 e r r o r s p e r 1 0 0 0
l i n e s o f c o d e) and f o r m o d u l e s h a v i n g a h i g h e r r o r r a t e (o v e r 3
e r r o r s p e r 1000 l i n e s o f code).

T h e d i s t r i b u t i o n o f t h e ' b u g g y ' m o d u l e s (o v e r 3 e r r o r s p e r 1 0 0 0
l i n e s o f c o d e) was s h o w n t o t e n d m o r e t o w a r d l o w s t r e n g t h a s
o p p o s e d t o h i g h s t r e n g t h . F o r t y - f o u r p e r c e n t o f t h e b u g g y
m o d u l e s h a d l ow s t r e n g t h w h i l e o n l y 2 0 p e r c e n t o f t h e b u g g y
modu les were f o u n d t o have h i g h s t r e n g t h .

S e v e r a l a d d i t i o n a l o b s e r v a t i o n s were made w h i l e c o n d u c t i n g t h i s
p a r t i c u l a r s t u d y . When t h e c h a r a c t e r i s t i c s o f t h e i n d i v i d u a l
p r o g r a m m e r s w e r e r e v i e w e d 8 i t was f o u n d t h a t t h o s e p r o g r a m m e r s
who p r o d u c e d h i g h q u a l i t y s o f t w a r e (l o w e r r o r r a t e a n d h i g h
p r o d u c t i v i t y) t e n d e d t o d e s i g n m o d u l e s o f h i g h s t r e n g t h b u t t h e y
a l s o d i d n o t show a p r e f e r e n c e f o r w r i t i n g m o d u l e s o f a n y
s p e c i f i c s i z e . Good programmers g e n e r a t e d m o d u l e s o f s i z e t h a t
seemed t o b e s t s u i t t h e i r d e s i g n a n d t h e y d i d n o t a r t i f i c i a l l y
c o n s t r a i n t h e m s e l v e s t o w r i t i n g s m a l l modu les .

5.0 G e n e r a l T r e n d s and O b s e r v a t i c n s

O v e r t h e p a s t s e v e r a l y e a r s , t h e S E L h a s c o n d u c t e d n u m e r o u s
s t u d i e s a n d e x p e r i m e n t s i n a n a t t e m p t t o b e t t e r u n d e r s t a n d t h e
i m p a c t t h a t v a r i o u s s o f t w a r e t e c h n i q u e s may h a v e o n p r o d u c i n g
i m p r o v e d s o f t w a r e . I n a d d i t i o n t o t h e s p e c i f i c s t u d i e s c o n d u c t e d
s u c h a s t h e o n e s b r i e f l y d i s c u s s e d i n s e c t i o n s 2, 3, a n d 4, t h e
S E L h a s o b s e r v e d g e n e r a l t r e n d s i n t h e d e v e l o p m e n t a n d
measurement o f s o f t w a r e . The o b s e r v a t i o n s i n c l u d e s u c h p o i n t s as
t r e n d s i n s o f t w a r e r e u s e ? t r e n d s i n u t i l i z a t i o n o f i m p r o v e d
s o f t w a r e d e v e l o p m e n t t e c h n o 1 o g y r and t h e o v e r a l 1 i m p a c t o f
i n ; p r o v e d d e v e l o p e d t e c h n i q u e s i n t h e c o s t a n d r e l i a b i l i t y o f
s o f t w a r e o v e r a l o n g p e r i o d o f o b s e r v a t i o n t i m e . Some o f t h e s e
g e n e r a l o b s e r v a t i o n s a r e summar ized here .

F. McGarry
NAS A/GSFC
10 of 37

5.1 T r e n d s i n Computer Use anc' T e c h n o l o g y A p p l i c a t i o n (C h a r t s
16 , 1 7)

From d a t a t h a t has been c o l l e c t e d on n e a r l y 60 p r o j e c t s o v e r t h e
p a s t 9 y e a r s , o n e t r e n d t h a t h a s b e e n n o t e d i s t h e t e n d e n c y t o
make h e a v i e r and h e a v i e r usage o f a v a i l a b l e computer suppor t . I n
1977 and 7978, computer use a v e r a g e d a p p r o x i m a t e l y 100 runs per
1 0 0 0 l i n e s o f d e v e l o p e d s o u r c e c o d e w h i l e i n 1 9 8 2 and 1 9 8 3 t h e
a v e r a g e use i n c r e a s e d t o n e a r l y 2 5 0 r u n s p e r 1 0 0 0 l i n e s o f
s o u r c e . T h i s t r e n d c o n t i n u e s t o i n c r e a s e w i t h i n t h e f l i g h t
dynamics envi ronment be ing s t u d i e d .

S i m u l t a n e o u s l y , i t was n o t e d t h a t t h e use o f more and more
s t r u c t u r e d d e v e l opment p r a c t i c e s , i mproved management approaches
and o v e r a l 1 h i g h e r q u a l i t y s o f t w a r e e n g i n e e r i n g has c o n t i n u a l l y
i n c r e a s e d . Each p r o j e c t h a s been r a t e d on i t s a p p l i c a t i o n o f
o v e r 200 s o f t w a r e techniques (s e e r e f e r e n c e 1 5) i n an a t t e m p t t o
q u a n t i f y t h e o v e r a l 1 1 e v e 1 of d e v e l opment and management tech-
n o l o g y u t i l i z e d f o r a p r o j e c t . T h e a g g r e g a t e o f t h e t o t a l s e t o f
t e c h n i q u e s a p p l i e d r e s u l t s i n a r a t i n g termed t h e S o f t w a r e Tech-
nology Index. From an a v e r a g e index of l e s s t h a n 1 0 0 i n 1976 t o
1978, i t was found t h a t t h e c v e r a l l deve lopmen t t e c h n i q u e s have
i n c r e a s e d t o an a v e r a g e o f o v e r 140 i n t h e 1980's. T h i s seems t o
p o i n t t o improved t r a i n i n g , b e t t e r d i s c i p l ine, improved a c c e s s t o
t o o l s a n d p o s s i b l y b e t t e r informed management p r a c t i c e s .

A1 t h o u g h b o t h p a r a m e t e r s (c o m p u t e r use and s o f t w a r e t e c h n o 1 ogy
i n d e x) seemed t o g e n e r a l l y i n c r e a s e o v e r t h e p a s t 7 o r 8 y e a r s ,
t h e r e i s no obse rved c o r r e l a t i o n between t h e s e two f a c t o r s .

5 .2 T r e n d s i n So f tware Reuse (C h a r t 1 8)

A n o t h e r g e n e r a l o b s e r v a t i o n t h a t w a s made f rom t h e d e t a i l e d
d e v e l o p m e n t d a t a c o l l e c t e d b y t h e S E L , w a s t h a t t h e r euse o f
s o f t w a r e h a s shown g e n e r a l t r e n d s of i n c r e a s e . Typ ica l s o f t w a r e
sys t ems i n t h e y e a r s 1 9 7 7 t o 1 9 7 9 a v e r a g e d a b o u t 1 5 o r 2 0 p e r c e n t
reused code w h i l e i n t h e 1982 t o 1984 t imeframe t h e a v e r a g e reuse
h a s i n c r e a s e d t o 30 t o 35 percent .

Although t h i s r e u s e i s c e r t a i n l y t e n d i n g i n t h e r i g h t d i r e c t i o n ,
t h e SEL has n o t conducted d e t a i l e d s t u d i e s t o d e t e r m i n e what t h e
d r i v i n g f a c t o r s a r e i n improving t h e p e r c e n t a g e of reuse. T h e
t r e n d s a r e p r o b a b l y i n d i c a t i v e o f i m p r o v e m e n t s i n d e s i g n
t e c h n i q u e a s w e l l a s numerous o t h e r f a c t o r s , b u t s t u d i e s h a v e
j u s t r e c e n t l y b e e n i n i t i a t e d i n t h e S E L t o d e t e r m i n e how t h e
t r e n d can be improved a t a even f a s t e r pace.

I t h a s a l s o been o b s e r v e d i n t h e S E L d a t a t h a t t h e r e d o e s n o t

F. McGarry
NASA/GSFC
11 of 37

seem t o b e a d i r e c t r e l a t i o n s h i p between p r o j e c t s t h a t a r e r a t e d
a s h a v i n g a h i s h s o f t w a r e t.echno1ogy index and h a v i n g a h i g h r a t e
o f s o f t w a r e reuse . B u t t h i s may n o t b e a s u r p r i s e s i n c e o n e
would e x p e c t t h a t h i g h t e c h n o l o g y usage would l e a d t o f o l l o w on
sys t ems b e i n g a b l e t o p i c k u p o r r e u s e s o f t w a r e p r o d u c e d b y t h e
p r o j e c t s u s i n g d i s c i p l i n e d app roaches f o r deve lopmen t and
management.

5.3 Impact of Developnient T e c h n o l c g i e s (C h a r t 19)

P r o b a b l y t h e m o s t b a s i c g o a l t h a t t h e SEL h a s , i s t o d e t e r m i n e
t h e i m p a c t t h a t s p e c i f i e d s o f t w a r e d e v e l o p m e n t / m a n a g e r ~ e n t
t e c h n i q u e s h a v e on t h e c o s t and r e 1 i a b i l i t y o f s o f t w a r e . With
n e a r l y 60 p r o j e c t s h a v i n g b e e n c l o s e l y moni tored o v e r t h e p a s t 8
o r 9 y e a r s , t h e SEL a t t e m p t e d t o look a t g e n e r a l t r e n d s i n t h e
r e l i a b i l i t y and c o s t o f t h e s e p r o j e c t s a s measured a g a i n s t t h e
s o f t w a r e t e c h n o l o g y i n d e x computed f o r e a c h o f t h e s e p r o j e c t s .
T h e 200 p a r a m e t e r s f a c t o r e d i n t o t h i s i ndex r e p r e s e n t e v e r y t h i n g
from s t r u c t u r e d t e c h n i q u e s t o d i s c i p l i n e d management approaches
t o c o n f i g u r a t i o n c o n t r o l p r o c e d u r e s . I t i s o n e a t t e m p t t o
c h a r a c t e r i z e each o f t h e p r o j e c t s w i t h a s i n g l e v a l u e .

T h i s t e c h n o l o g y i n d e x c o r r e l a t e s v e r y we1 1 (r = . 8 2) w i t h
r e l i a b i l i t y o f s o f t w a r e in t h e SEL. Those p r o j e c t s w i t h a h i g h e r
r a t i n g of good deve lopmen t p r a c t i c e s were t h e p r o j e c t s w i th t h e
lower f a u l t r a t e s of t h e prod.uct.

U n f o r t u n a t e l y , t h e i m p a c t o f t h i s t e c h n o l o g y i n d e x on
p r o d u c t i v i t y i s q u i t e u n c l e a r . T h e f i r s t g e n e r a l o b s e r v a t i o n
t h a t h a s been m a d e i s t h a t t h e r e i s n o t a c l e a r f a v o r a b l e impact
on d e v e l o p m e n t c o s t (c o s t per l i n e o f c o d e) w i t h p r o j e c t s w i t h
h i g h e r v a l u e s of t h i s t e c h n o l o g y index. S t u d i e s a r e c o n t i n u i n g
i n an a t t e m p t t o more o b j e c t i v e l y compute t h i s techncl logy r a t i n g
s o t h a t a m o r e c o n c l u s i v e s t a t e m e n t c a n b e m a d e . Some
r e s e a r c h e r s a l s o have s u g s e s t e d t h a t i t i s n o t t o b e unexpec ted
t h a t t h e s p e c f f i c deve lcp rnen t c o s t may n o t d e c r e a s e b u t s i n c e
t h e re1 i a b i l i t y has improved and t h e o v e r a l 1 s o f t w a r e s t r u c t u r e
has improved, t h e main tenance a c t i v i t y w i l l b e t h e b e n e f i c i a r y of
t h e o v e r a l l c o s t s a v i n g s , n o t t h e development c o s t .

5 . 4 Can S o f t w a r e Technology b e Measured? (C h a r t 20 and R e f e r e n c e
3)

Another major ques t iGn t h a t s o f t w a r e engineers a d d r e s s i s whether
o r n o t sof1,vat.e t e c h n o l o g y can be measured a t a l l . B y u t i l i z i n g
r e l i a b i l i t y a s o n e m a j o r a s p e c t o f s o f t w a r e q u a l i t y , t h e S E L
atterr ,pted t o determine t o w h a t e x t e n t s o f t w a r e deve lopmen t /
management p r a c t i c e s c o u l d b e m e a s u r e d .

F. McGarry
NASAIGSFC
12 of 37

T h e r e a r e t h r e e l e v e l s o f d e v e l o p m e n t p r a c t i c e s w h i c h t h e SEL has
h o p e d a n d a t t e m p t e d t o rr 'easure. F i r s t , t h e r e a r e i n d i v i d u a l
s p e c i f i c t e c h n i q u e s s u c h a s t h e u s e o f s t r u c t u r e d c o d e o r c h i e f
programmer team o r t h e u s e o f PDL i n des ign , e t c .

Second, t h e r e i s t h e u s a g e o f a s o f t w a r e m e t h o d o l o g y w h i c h i s a
c o m b i n a t i o n o f s e v e r a l methods i n t o a s i n g l e d i s c i p l i n e d
a p p r o a c h . T h i s c o u l d - b e t h e s e t o f m e t h o d s k n o w n a s s t r u c t u r e d
t e c h n i q u e s w h i c h r e f l e c t t h e u s e o f 6 o r 8 i n d i v i d u a l p r a c t i c e s
such as t o p down d e v e l o p m e n t , s t r u c t u r e d code, code r e a d i n g and
usage o f U n i t D e v e l o p m e n t F o l d e r s (UDF).

F i n a l l y , t h e a t t e m p t h a s b e e n made t o m e a s u r e t h e i m p a c t of t h e
t o t a l t e c h n o l o g y i n d e x w h i c h e n c o m p a s s e s 3 1 1 d i s c i p l i n e d
n ianagement /deve lopment p r a c t i c e s . T h i s s i g n i f i e s t h e l e v e l t o
w h i c h t h e p r o j e c t h a s a t t e m p t e d t o a p p l y recommended s o f t w a r e
deve lopmen t t e c h n i q u e s .

The r e s u l t s o f t h i s s t u d y i n d i c a t e d :

1. An i n d i v i d u a l t e c h n i q u e c a n n o t b e e f f e c t i v e l y measured i n
a p r o d u c t i o n e n v i r o n m e n t s u c h a s t h e o n e i n w h i c h t h e SEL i s
c o n d u c t i n g s t u d i e s . (r = .37 i s a t y p i c a l v a l u e f o u n d i n
c o r r e l a t i n g PDL usage and r e 1 i a b i l i t y) .

2. D i s c i p l i n e d m e t h o d o l o g i e s (c o m b i n i n g t e c h n i q u e s i n t o a
s i n g l e d i s c i p l i n e d a p p r o a c h) c a n b e m e a s u r e d (r = .65 for o n e
p a r t i c u l a r s t u d y) and t h e approaches c a l l e d Modern Prcgramming
P r a c t i c e s (6 t e c h n i q u e s) has a s i g n i f i c a n t , measurab le , f a v o r a b l e
i m p a c t on s o f t w a r e r e 1 i a b i l i t y .

3 . T o t a l S o f t w a r e T e c h n o l o g y c a n b e r c e a s u r e d (r = .82 f o r
t h i s o n e s t u d y) a n d h i g h e r l e v e l s o f a p p l i e d t e c h n o l o g y h a v e a
marked f a v o r a b l e i m p a c t on t h e r e 1 i a b i l i t y o f s o f t w a r e .

The t r e n d s and o b s e r v a t i o n s n o t e d h e r e a r e based on a p p r o x i m a t e l y
8 y e a r s o f d a t a c o l l e c t i o n a n d e x p e r i m e n t a t i o n w i t h i n t h e SEL.
A p p r o x i m a t e l y 55 p r o j e c t s h a v e been s t u d i e d and t h e r e s e a r c h i s
c o n t i n u i n g and w i l l c o n t i n u e i n t h e f u t u r e .

Many o f t h e r e s u l t s a r e i n c l u s i v e , b u t w i t h each e x p e r i e n c e and
s t u d y , g r e a t e r i n s i g h t i s p r o v i d e d i n t o t h e o v e r a l l
c h a r a c t e r i s t i c s o f t h e s o f t w a r e deve lopmen t p r o c e s s .

F. McGarry
NASA/GSFC
13 of 37

REFERENCES

1. S o f t w a r e E n g i n e e r i n g L a b o r a t o r y , SEL 8 1 - 1 0 4 , Iha Snfiulara
Enginasring La&nra%ary, D. N. Card , F. E. M c G a r r y , G. Page, e t .
a l , F e b r u a r y 1982.

2. SEL, 8 1 - 1 C 1 , Suida l;n !h&n GQllas%inn, V . E. C h u r c h , D o N.
Card, F. E. McGarry, e t . a l , Augus t 1982.

3. SEL, 86-002, k!mSuri[Lg M A Evalu%inng S ~ f t a i u s l a ~ n a l n g x ~
D . N. Card, F. E. McGarry , J. V a l e t t , t o b e p u b l i s h e d

4. McGarry,F.; V a l e t t , J . ; a n d H a l 1 , D., ' h n s u r l n g Ahs Irnpa~i
nf mdac Resaurai Qual iQ~ en U Uuslnpmanf F!LQGSSS
and erndu~i_?, P r o c e e d i n g s o f t h e H a w a i i a n I n t e r n a t i o n a l
Con fe rence on Systems Sc iences , J a n u a r y 1985

o f t h e S e v e n t h A n n u a l S o f t w a r e E n g i n e e r i n g Workshop , December
1982

6. Ramsey, J . 8 and V. R. B a s i l i n 9 n n l y z i n g Aha IasA E~QGSSS
U s i n g S i . r u ~ % u r n l S h ~ e r a g L P r o c e e d i n g s o f t h e E i g h t h
I n t e r n a t i o n a l c o n f e r e n c e on S o f t w a r e E n g i n e e r i n g , Augus t 1985

7. SEL 85-0001, h w a U m nf SoftwaEB Y _ e X A u & U n I B G . h a i W a
0. Card,R. Se lby , F, McGarry , e t . a l p A p r i l 1985

1 0. S E L 85 - 0 03 , Cnlla~Zad Snf imars Eaginsaring enpar= Y aluma
Ill, November 1985

1 2. Ag r e s t i , W . ; U n Apprnnsh in b Y a l Q p l n g SpaGlfiGniiQn
N g a s u r e S ; P r o c e e d i n g s f r o m t h e N i n t h A n n u a l S o f t w a r e
E n g i n e e r i n g Workshop, November 1984

13 . Card , D.; Page, 6; M c G a r r y , F.; lGriisria f n r Snffullriarie
J!!ladularizn&inn~ P r o c e e d i n g s o f t h e E i g h t h I n t e r n a t i o n a l
Con fe rence on S o f t w a r e E n g i n e e r i n g , Augus t 1985

F. McGarry
NASAJGSFC
14 of 37

1 4 . A g r e s t i , W . ; C a r d , D . ; C h u r c h , V . ; 'Sknkuas B S Q Q E ~ Pn
SpssAfisaLian nad Design B ~ i r l l r s Sk;udias'. CSCI December 1985

15. SEL 82-001, t E u n l u i i e a af l h i i s w af S Q ~ ~ W U &
DevelQpmanE!.z D . Card? G, Page, F . McGarry? September 1982

F. McGany
NASA I G S F C
15 of 37

THE VIEWGRAPH MATERIALS

for the

F. McGARRY PRESENTATION FOLLOW

F. McGarry
NASA/GSFC
16 of 37

cn
I-

W

W
L W x - r

a
Cn
w

>I cc
0
l- a
ICT
0
m a
_I

(3 z
I a
UJ

z
W
W a a

n
3
I- cn 3

I-
LL
0

Q
0
m
3

P
0 c

*- ZT
W

3 c: c

_r
t

a
.cI

a,
F

0
c

F. McGarry
NASA/GSFC
17 of 37

v)

0
0
I-
C
0

m
C
a,

3
0
0

U
C
m
C
0
m
C

-

.-
e -
E

n

.-
e

-.

E
- E
a, -

v)
U
0

a,
5
2

E

c
C
a,

Q
0
0 >
a,
D
U

3
0

-

c

2
L cn

m

F. McGany
NASA/GSFC
18 of 37

I-
77
Lu
2
a,
0
I
Lu >
W
c3
W
U

$
I-
LL
0 cn
z
0

z
i=
U
CT
3
0
a c
3
k

L

L

Oa,

8

8

8

z
0

n c
c
0

c a

c,

z
z
0

I

2
J

%

>
0
3
U
0

W

c,
._I

.-
c,

&
a

n
v)

ti
r;l
L

L .- a a
a,
[I
0

a
CI

E
i=
W

L .. a
CL
a,
[I

0
+Ir

c,

5
Y- *
W

a

N

I- =
4
I
0

F. McGarry
NASAIGSFC
19 of 37

v)

t
CI

t
0

> c
W
0
t
)5

L .-

.I

2 >

c
a,
a,

a,

v) c
0

a
a,

3
m
CI

.-
w -
L

5
0
0

U
a,
C

cd
X
W

L

rc

.-
E

0 0

rn
I- iz
4
I
V

0,

m
u)
v)
0

Q

9

s

F. McGarry
NASAIGSFC
20 of 37

0 - + a
CT

> a

W

0
U

z 5

0, c .- -
c
0
I:
.-

3
0
A

z
€
€
6)
ri:

cd

0

cn
I

0
0
I-

A

E
i=
a, cn c
0 a cn
a, a

c w

h
P
0

F. McGarry
NASA/GSFC
21 of 37

cn
I-
I
3 cn
W
U

+

0

+

0

0

0

0

0

0

I

I

C
0

m
a,

0
0
a, w
cp
m
a,
Z
II

.-
c -
L
L

-
c

I

Ln

i-
p:
Q
I
0

t
0

m
.- c -
L
&
0
0 z
II
0

F. McGarry
NASA/GSFC
22 of 37

W
(3

a:
W >
0
0

a
U
a,
3
0
a,
X
W

c
a,

0
- .-
c

&
c
v)
a, c
a,
0
C m
a
a,
0
0

c

a
2 m

0
0
0

E"

v)

v)
a,
I-
aa
0
C
(0

L1L
4)
0
0

a c
0

0
C
3
U

c

c

a

.- c

E
(II

v)
a,
v) a
0
aa
v)
f)

co
L

0
Q)

3
0 aa
X
w

c, U

L
2
iii
.c
0
rn

&
v) - m

t
0

a
aa

.-
c.

L

0"

t m
C
)r
D

v))r
0
3
G Y

a, >
0
a,

I- -
3
0

8 8
I

b c
(D
Y

I I I QD
(D

0

0

0
F

0
tD
0

w

0 0

F. McGany
NASAIGSFC
23 of 37

a,
n
v)
a,
3
U
0

-

2

0)
cd
v)
3
cd
C
0

a

-
.-
c.

;i
0"
ic

0
a, >
m
c
a,
v)
a,

.I_

c.

c.

u>
t-
II)
"3 cn
W
U
W
(3

U
W >
0
c)
F cn
W
t-

a

L
a,
Q
0 -
v)
a,
I-

c1 a
a,
0

2

n -
cd
0
I-

n
a,
3
0
a,
X
Lu
a,
73
0
0

.CI

w

c.

-
c.
v)
a, +
%

>
UJ

U
a,
3
0
a,
X
W
a,
73
0
0

i5
W

C,

=
cd
0
I-

U
a,
3
0
a,
x
W

c.

w

-
a,
3
'c)
0

-

E

c1
v)
a, +
%

>
W

i5
1

U
a,
3
0
a,
x
W
v)

c.

a,
3
U
0

-

E
$? $? $ $?

U
a,
v)
a,
c
3
c

.c-,

c.

.-

a,
0

L
n
a,
U
%

a, >
a,
a,

L

L

v)

v)
a,
I-
d)

.cI

0
C a
c.
n
a,
0
0 a

c
0
cd
0

U
0
0
c3
v)

0) c
v)

-
I-

C,

a,
t-

L .- > c
W
Cn
E
I-
0

.-

'L.

LL
m

b

I-
LY.
Q
I u

F. McGarry
NASAIGSFC
24 of 37

0
00
b

.- 8
t
3
1) o ̂m

0
a
C

v)
Q)
t-

.-
w

0 c
td
0
L
I/)
c3 -
v)

t
€
E a

I- ..
ul
C

v)
a>
I-

.-
c,

d
Q)
0
C
td > a

a
C

td
Q)
U

5
Q)
U
8

v) a
t

b
it
0

..
v)

Q) >
Q)
J
Q)
v)

-

.-
c,

ti
Q
X w

E
cd
CD
0

L

ri:
E
b
&

td

0

t
0

td
0
rc
0 a
Q
v)

.-
CI

.-

Q)
0
3
0 m
3
a, s

L

a,
3
0
a,
X w

u

Q)
U
0
0

3
5
a c u € 9 € 9 c u m

c’)

F. McGarry
NASAIGSFC
25 of 37

cn
I-
I
3 cn
W
U
(3 z
I- cn
W
I-
W
U

-

s
I-
L L
0 cn

I ,

I"

I IC'

LL 1

2

m

c
c a
0
C
v) a
I-

.- c

-
c $
0
'2
G
U
t
(D

w
C

Q
e
a
U m

F. McGarry
NASA/GSFC
26 of 37

I I I I I I I I I

0
7

I- !x
Q
I
0

F. McGany
NASAIGSFC
21 of 37

v)
L

E
E
b
fi

cd

0

cn
W
Qc
3 cn
W z
a

v)
a,
3
U
0

-

2
cd

a,
.(I

L

c, .-

v)

a,
Q
0
a, >
a,

L

-

n
c, c
a,
a,
L

w-
Y- .- n
0 cv
h
a>
a
X
0

-
c,

E

& a a

.-

ii
v)
cd
a,
N
cn .LI

U a
C .-
E
ii
n
c. a

)s

v) c
0

Q

0
v)
a,

c
0
v)
Q)

U
a,
a
a>
0
0

m

.I

c,

.-
L

n
.-
n
-
.m

c,

c
0
cd
cd
CI

n
L

L
L.

0 '13 c cn a v)
a,
3
U
0

-

s

W w * c
0 c
a,

CI

L
c,

0
W a a

h
Q
I
0

'13
t a

U a
E
b
ii
rc

Q,

3
U
0 E

i=
t
0
v)
a,
..I)

n
c, a

CI

v)
0
c)

c a
L
c,

ti
LL
0
v)
d=
0

v)
C
0 .- - cn U

3
U

a,
cd
3
a >
W

c,

-
U
a,
a
a,

0

- .-
c,

n

0
C
1
L I-

LL
0 cn

cn
ti +

c,
Yl.

0 cn a
a CI

0 0
n U

C
cp
Y

in

0
in
in
0

co

9

s
v)
a3
Q
)r
I- *

F. McGarry
NASA/GSFC
28 of 37

cn
W
U
3 cn
W z
z
(3
cn
W

W
U

a

-
n

$
I-
L L
0 cn

C
0
3
0

v;

.-
c

.-
L c
.-
Q
Q:
h
v: .-

a,

t

F. McGarry
NASAJGSFC
29 of 37

a

aC
O m

m
c

S
Y

F. McGarry
NASAIGSFC
30 of 37

F. McGariy
NASA/GSFC
31 of 37

a,
N
cn .-

>.
U

2 z
3 cn
cn
W
U
3 cn
W
2
z
(3
cn
W

a

a

I

n

a, v) 9
3
U
0
t

a,
0 c
a, z
it
+
a,

I c
0
r
a

.I

c,
L
.I

a, > 0

U
a,

.cI

v)
v) a
J 3 3

8

'Q)
4
+-#

0

0 z 0
I-

c, v)
Q)

3
U
0

9

z

v)
0
c) U c

a,
I-
v)

a,
L

E
E
is,
&

a
0

0 c v)
a,
3
U
-

.r"

0
a,
L .- n

cn
v)
L

E
E
is,
it

a
0

c
0
t

c,
v) c, a
3
U
0

-

2

0 z a,
L,
c, cn

I

I 3
0
d
c a c
I-

c
0
C a
cn

CI

L
CI

i5
3
0
4

Q cn U
0
0
(3

U
0
0
(3

c a

F. McGarry
NASAIGSFC
32 of 37

W W
-3-
-l-

0 0 0 0
a , - * 0 00
x o cu
- 0 7 7
c I I I

.r r -
)r
UJ
0
0 c r
0
Q)
I-

-

v)
a, c
J
U c
0
v)
3
0 z
I-
Q)

.-

L

e

I-
&
Q
I
0

F. McGany
NASAIGSFC
33 of 37

Z
0
t.
(3
O W A m

L>
00

W
LL
LL
W

0 0 0 0 0
0 (0 cu

F. McGarry
NASAIGSFC
34 of 37

a3
U
0
0
0
Q,
v)
3
al
U

0
0
r

e

Q)
v)
3
Q)
U

f
3
0
v)

0
C
0
0

c rc

rc

.- c
E e
Q

e

e

t a '

8

1 1 1 1 1 5 I(

0
00

a

I.
e

e

e
I
0 cu 0

cg
0
d

e

0
c3

0
r

0
d
F

o x
N Q ,
F U

C -

0
(D

d

F. McGarry
NASAIGSFC
35 of 37

I- z
W
2

W J
00

a

a
a

-

W
LL
LL
W

Q) (0 d (u

0 0 0

LT
W 0 0 0 0 0

9 9 9 9 5' (a9
0 L O

0
d
r

o x
cua
- P

L -

-
ill

0
(0

..
v)
v)
0

10
CD

a

cn

I-

7

F. McGarry
NASAIGSFC
36 of 37

z
0
W

zae

l-0 oco
W
L L
L L
ud

0
c a a

N
0
0

(0 t
0 0

m
0
9 9 9

L O 0 0 0 0

0
f

0
N f

0

0
m

0
u)

0
N

v) .-

!?

Y)

0 cu
I- cr:
Q
I
0

m
c)
In
In
0
U
CD
(0

o!

F. McGarry
NASAIGSFC
37 of 37

N86 - 30 360 1 .

PANEL#2

TOOLS FOR SOFTWARE MANAGEMENT

D. Reifer, Reifer Consultants Inc.
J. Valett, NASA/GSFC
J. Knight, University of Virginia
G. Wenneson, Informatics General Corporation

SOFTWARE MANAGEMENT TOOLS: LESSONS LEARNED FROM USE

Donald J. Reifer, President
Reifer Consultants, Inc.
25550 Hawthorne Blvd.

Torrance, California 90505

Abstract: Over the last five years, considerable progress has been made in
the area of software resource estimation, management and control. Numerous
tools have been developed and been put into use that allow managers to
better plan, schedule and control the allocation of the time, workforce and
material needed to develop their software products for NASA applications.
Currently, over 300 commercially available software project management tools
exist including about 180 project sfheduling and control packages for an ISM
personal computer-based workstation . In addition, numerous tools exist for
estimating software costs, measuring software progress through earned value
concepts which rely on reporting milestone completions, maintaining
configuration integrity over the software product data bases and measuring
software quality. The literature is full of promises and details when it
comes to these tools and it becomes confusing when you try to sort out what
they really can and can't do when you read the sales fiction. In addition,
much of the experience associated with transitioning these tools onto
operational projects where managers are trying to use such aids to reduce
the time it takes them to plan and control the delivery of their complex
software products has not been recorded or shared.

The purpose of this presentation i s to remedy this situation by
discussing the author's recent experiences in inserting software project
planning tools like those mentioned above onto more than 100 projects
producing mission critical software. The author will briefly summarize the
problems the software project manager faces and then will survey the methods
and tools that he has at his disposal to handle them. He will then discuss
experiences his firm and users of the RCI developed Project Manager's
Workstation (PMW) and the SoftCost-R cost estimating package have had over
the last three years. Flnally, he will report the results of a survey
conducted by his firm which looked at what could be done in the future to
overcome the problems experienced and build a set of usable tools that would
rea

bu i

ly be useful to and used by managers of software projects.

PROJECT MANAGER'S WORKSTATION

The Project Manager's Workstation (PMW) was a prototype system that was
t 3 years ago for a military client to research the following issues:

I . What tools does a software manager really need and what tools will
he really use on the job?

2. What are the criteria which govern the acceptability of management
tools by managers, not computer scientists?

3. Can management data be bridged between commercial tools developed
by different manufacturers and resident on different machines?

P. Kane, J. Bruscino, T. Pillsbury, D. Reifer and 5. Strahan, Project
Management Too1 Survey Report, Note RCI-TN-145, 29 March 1985.

1

D. Reifer
Reifer Consultants
1 of 22

The PMW is a collection of management tools that runs on a dual floppy
IBM personal computer with 512 KB. It has the following capabilities:
resource planning, scheduling and control via a Work Breakdown Structure
(WBS); Gantt and PERT chart (tabular and graphical) preparation and drawing;
user-oriented report generation for cost-to-completes, schedule-to-completes
and earned value determination; local bridges to packages like 1-2-3 and
dBase on the personal computer and global bridges to packages like PAC-I1
and VUE on mainframes: and a personal time manager which allows relational
development and searches of action item lists, calendars, distribution lists
and telephone lists.

The PMW was designed as a rapid prototype with both usability and
technical capability in mind. We hoped to learn from it as we put it into
prototype use within organizations who were willing to try to employ it on
their projects. It has been distributed to over 200 people over the last 3
years. Each user was required to attend a hands-on course on the system
where he/she was taught how to use the package for managing a software
project. A generic WBS was developed and inserted into the package to guide
its users in consistent work task identification and cost data collection.

Recently, RCI surveyed the users of the package to get their feedback
and to understand what their real requirements were when it came to project
management tools. It was interesting to learn the following:

e The man/machine interface design makes or breaks the system. The
user interface must be easy to learn and easy to use. It should
be picture-oriented, function key driven and menu-based. Tool
designers shouldn't assume managers know how to type, use a
computer and/or will read manuals. They won't based upon our
experience. To combat this, the package must have built-in "HELP"
and safeguards against inappropriate usage.

@ Most managers object to project management systems because they
are required to do a lot of data input. Managers do not have the
time, desire or skill to do it and often, don't do it right.
Subordinates don't have the knowledge or the experience to do it
correctly. Therefore, the system must support both working
together to relieve the manager of the drudgery of getting
the first set of workable plans into the system. To combat this,
many tool designers should looking at "games" and should try to
adapt their concepts to making data inputting "fun".

e Most vendors do not mechanize all the features and functions they
put in their manuals. This makes it extremely difficult to
interface packages together into an integrated system. File
interchange performance is the critical issue because management
users will not tolerate lengthy delays in getting responses to
their questions. In the development of the PMW, we had to drop
about half of the candidate packages from consideration and build
our own modules to replace them as a result. Tool designers should
therefore only rely on a core set of capabilities when they plan
to use commercial packages.

e Global bridging or linking a micro-based tool to a mainframe-based
system is much more difficult than first expected. Vendors do not

D. Reifer
Reifer Consultants
2 of 22

like to give you the file interchange formats and reverse
engineering is the only alternate solution to getting this needed
information. As a consequence, it took us 3 times more effort
than originally planned to provide this capability. Tool designers
should not count on the vendors of packages to make their jobs
easy. Instead, they should adopt a standard file format like OIF
and consider only packages that implement it.

a According to our users the most useful tools were work planning
oriented, the most used tools were time management oriented and
the most wanted tools were "what-if" oriented. This is not
surprising and should be factored into future system designs.

a Because the state-of-the-art i s moving towards networking,
managers wanted to evoive their tools so that they could
interrelate what their people were doing at different sites via
their management tools. According to their wish lists, they wanted
to do things like schedule a meeting on their people's calendar
electronically and to preview deliverables in their work units
libraries via remote inquiry privileges.

SOFTCOST-R

In another effort, RCI developed a cost estiyting package based upon
the work of Dr. Robert Tausworthe called SoftCost-R . In essence, RCI spent
s i x person years of effort to productize the experimental work done for the
Jet Propulsion Laboratory. SoftCost-R is hosted on an IBM personal computer
and versions exist for all of its models including the PC/XT and PC/AT. The
primary feature RCI implemented was usability. Learning from our PMW
experiences, we built a user-friendly screen editor to make the package easy
to learn and easy to use. Since we introduced our product earlier this
year, over 20 organizations have acquired it and are using it to predict
their costs. Most of these organizations work on small to medium-sized
projects developing software for embedded applications. The capabilities of
SoftCost-R are similar to other parametric and statistical cost models on
the market today like COCOMO, PRICE/S and SLIM. The key difference has to
do with the ease with which the management user can employ the model to
answer the "what if" questions he so desperately needs to answer.

Again, RCI surveyed its users and members of its development team to
determine what lessons could be derived from its experiences to-date. This
was very valuable to us because we were in the midst of planning
enhancements to our current product and wanted to factor these lessons into
our future releases. It was interesting to learn:

The number one issue on the minds of management when it comes to
costing is sizing. How can one determine in advance how big the
program will be when you don't have the foggiest idea of what the
system architecture will be was one of the comments heard during
one of OUF interviews. While some research in this area i s
underway, managers will be reluctant to accept the results o f cost
models unless some of it pans out. ...

Robert C. Tausworthe, Deep Space Network Software Cost Estimation Model,
JPL Publication 81-7, 15 April 1981.

D. Reifer
Reifer Consultants
3 of 22

a Most of our users employed at least two cost models to cross check
each’s results. The most popular model wag COCOMO and most of our
users employed it manually from the book. The reason for this
popularity seemed to be its availability. Unfortunately, many
users model’s
scope or limitations and were misusing it on the job.

in our survey did not seem to fully understand the

e Calibrating a cost model to the organization using it is the hard
part. Most organizations using our model did not have cost data
available to either calibrate the model or validate its accuracy.
Even if they had data, it was hard to make any sense out o f it.
Less than 5% of our users collected cost data as a norm and few
had a framework in place for cost estimating. While cost models,
like SoftCost-R forced these organizations to gather data, most of
it was not statistically homogeneous. Models must therefore be
architected so that their calibration points and sensitivities are
known and easily altered. In addition, the model must come with a
known calibration data base in order for its users to have enough
confidence in the model to believe its results.

a Non-management user‘s put too much reliance on models. Because a
model gives them an answer, many believe it is right and don’t do
any more homework.

a Management user‘s tend to be more skeptical and don’t believe the
results ‘of models even if they are perfectly calibrated to their
projects and their environments (which they are not). Often, this
is because managers really don’t want to know the truth - the
software don‘t
have sufficient budget allocated for it.

is going to cost more than they expected and they

e Many simple and mundane packaging concepts can make a model
acceptable to a management user who will sacrifice capability to
get something he can get answers from. Good user engineering goes
a long way with managers who neither have the time nor the desire
to become professional parameticians.

CONCLUSIONS

While the results reported seem logically and self-apparent, few seem
to have paid attention to them in the past. Considerable attention needs to
be paid to the packaging of tools when they are exported to production
’organizations from tool developers. The author sincerely hopes that this
presentation will stimulate renewed emphasis on this important topic.
Afterall, the results are based upon a survey of over 200 management users
and are not only the author’s opinion.

Barry W. Boehm, Software Ennineering Economics, Prentice-Hall, 1981.

D. Reifer
Reifer Consultants
4 of 22

THE VIEWGRAPH MATERIALS

for the

D. REIFER PRESENTATION FOLLOW

/

D. Reifer
Reifer Consultants
5 of 22

cn z
0 cn
Cn
W
I

cn
Ln
00
CD
l-

U
w
m
2
w
0
W
0

n
0
I
c/)
1L

ACT:
a 0
L

is
I- -

I - L L
a O
I - C A z

a
a CA

2

D. Reifer
Reifer Consultants
6 of 22

w
LT

3:
I-
LL
0
v)

a

3
0
I
I-

3:
M

v)

n
3 z
n.

LT W

z w
oc3

t - - y

v) [L
Y

- a
a u + a

I

n

a

W z a
w
-I

w >
I
W
3
m z
0
v)
v)
w
-I

W
I
l-

a

w
v)
3

I
c3
3
0 a

o z
I - z o o

w
O I

t - l -

e 0

w
n n z a a z
v) w z z
O I

a m
3 w
0 - y > a

-1
o w
I - s

D. Reifer
Reifer Consultants
7 of 22

cn cn
W
0
0
U
n
t- z
W
E
W
c3

z <
2
W
35
t-

a

z
w
I
l-

(3 z a
I

rT

I-
3
w
I
I-

(3 z
(3 z

e 3 - c 3
Z N Z

U

I - (3

o w
- I -

= >
E -
E t -
0 0 o z

a z

z a

I.

>. a
v) z
L3
w a

v) r z
w w
OI-
L
u , w
W I

I-
W
I L
I-0

~ - a

(3 z
t-
E
(3
w
t- z

U

a

U

-
v)
v)
w
0
0 w a
w >
t-
w
w
I- z
n

z

I
(3
2
0
E
I
I-

Y

a

a

-

D. Reifer
Reifer Consultants
8 of 22

cf)
A
0
0
t-
I-
2 u
t
W
(3

z
z
t
U

cn
cn
W
0
w z

a
a

a

v)
-I
0
0
I-
:
LL

I
I-
I
3 :

Y

a

B
a
I- =
0 a
Q
3
v)

z
0
v)

u
W
FI

Y

Y

m

tn
51
w
I-
v)
>-
v)

>-
I-

>
I- u
3

0
fx
a
w
0

LL
LL
0

Y

Y

n

Y

m

w >
I - a

I - +
v) v)

z u
- w
5 1 f x

Q L L

Y

a z

- a

n o

cn z
0
I- o z
3
LL

w
v)
w
I
I-

I- =
0 a a
3
v)

0
I-

I- cn
x
w
v)
W
c3

u
a
0
0
M
z
w >
0

Y

Y

a

a

D. Reifer
Reifer Consultants
9 of 22

-
w
(3

0

a
I- z
w
E
w
(3

z
z
I- u
w
-3
0 e a

w
I-

(3
w
I- z

9
a

a
a

n

a

m

%

-I

I- z
w
E
E
w a
X
w
z

a

U

a
m

2=
=E a.

U

-

m
m w
--I2
0 -
O I
I - u
I - z
x z
z w w
1 3
I - I - w w

a
a

3 m
n n

a n
w w
k c s t

U Q C
o m
v)
m w

M U

a m
m n w - l
3 3
m o
m u

w I -
U a
x a ~ - n
I 3 u o
LTx

m z
Llc

o w
I - w

Z

a n T
o w
-la
> z

a
w n
w a

n

9 m

w a
w a n z

I)

cra o u (3

m

W
0

LL
fY
w
I- z

W
I
I-

>-
LL

-l
a
T

m
0
I-
m
>- w
Y

z
0

I- u
Z
3
LL

v,
w
m
3

z

a

U

Y

m

m

n
a

E:
I- z
w
E
0

I z
w
w
rr
0 cn
m

m

w

I)

D. Reifer
Reifer Consultants
10 of 22

I-
CY

0
4
hi
CY
0
3
I- w z

v)
I-
LT

I
0

a

!= t
5
c3

C Y 0 t l v

w
0

2
Y

0
a

O L
0 0

a
a

m a
w n

n J n a

w z
C Y w

Q V

c3 z
L
W

Y

U

CY

\
c3 z

m

U

tr
w =

I-
v)

J
Y

E
w
I-
Y

z
0
U

I-
0 <

v)

z
T
E
0
V

n
a

w
0 z
I-
v)

a

L,
1

D. Reifer
Reifer Consultants
1 1 of22

> - I
-13 a z z w
w z

L I Z

E
w z
m u
3 >

W E

I - > m w
I 3 Y z z
w o
0 -

L I O
ocz
w = J
I - L I z
u -

w w
z t -
u z
I W
0 -

E O
\ I

u
oca
l a

M

m a

at-

a

a =

E W

z u m
a - a z ~ e a
w
I
I - m

fY
w
I-
3 n z
0
0

a
w
m
3

w
a
>-
I-
O
I-
3
0
I

3
0 z
Y

m
E
w
c3

z
E
W
E
1)
m
m

I-

3

a
a

a
-

w >
I
I-
m
=J
SI

a

5! a
z oc a
w e
-1n

-1
o w
I -r

B
>-
m a a z
w a

m

z a
a a m
o z

0

w
I
I - 0 0

m

D. Reifer
Reifer Consultants
12 of 22

0
I-
v)
w
C)

u
s
a
n

a
w
0

U
cr:
W
I- z

0
I-
>-
v)

w
I-
n

w
Y

E
t-
0 z
0

v) cr:
0

W >

U

a

a

n

9

6

I
w
5
CY
U z

E

a

U

a

a
0
i-
-I
0
0
I-

>- n -I
w I-
v) z a w a cr:

1 v) w
O I - u - c r : c r : u u o -
- u . Q 5 u .

w z a 3
w c r : aC)

Z C Y v)

= A z z
u r n 0
A U -

= I -
0 3 N u -
C) w z
w CY
azcr :
n u 0
- I -
c r : v) > -

v) w
J >
m w

- a -

= - a

z w a

a > - =

a n w

(.

E:
I- z
w
E
0
(3 z
z z
J

Y
cr:
0
3
w
K

Y

c)

a
n

a
v)
-I
0
0
I-
-I
3 u-
w
v)
3

I-
v)
0
5
w
I
I-

(.

E:
I- z
W

cr:
0
I- z
w z
w
C)

z
E
w
5
I-
W
LT

U

a
a

U

a
v)
-I
0
0
I-

W
v)
2

I-
v)
0
E
w
I
I-

n

(.

f?
I- z w
E
0
2
U

I
l-
I
3
2

W cr:

v)
-I
0
0
I-
n w
I- z
3
I-
v)
0
E
w
I
I-

U

U

a

a

a

6

EI w
I-
Z
w
cr:
0

I
Y
cr:
0
3

z
0
I-

C) z
I-
tY
C)

z

U

b

Y

a
U

v)
U

k a
I

W
I
I-
I u.
0

I
w
I-

I-
v)

w
I
I-

a

v)

z
w
E
I-

n

9 a
v)
I- u
U

LL
0
w
C)

I- z

a

a

a

5
W
Y

I-
a

f3
3
0
I
v)

CI

c(

I
3
5
w
I
I-

(.

D. Reifer
Reifer Consultants
13 of 22

n z
z
z

>. u
CY
3 u
0

U

U

a

a

a !2
v)
v)
w z
J

w
LT
L

I
LT
w
v)
3

I
I-

3

w
a
0
-I
w

Y

!2
U

U

n

2; n

.)

v)
W
CY
3
l-
w
L

W z
I-
I-
O
-I
a

a

Y

n
a Z

v)

v)
>-
-I

U

25 a
L
L

I
I-
I
3
e
-I
3
L
LT
W
3
0 a
v)
w
n
>
0
CY
a,

U

a

U

0

0
Ln

+
3
0 m

CY
0
L

v)
W
I-
z
I-
v)
w
w
0
CY
3
0
v)
w I -
LTO

w
z o
a

w
3

w 3
I
O W v)z
CnY
I - E
C Y v)
w Y zv)
m I -

a

a
U

n 3
a x

~a
n a

M

w a
a

w a

0

w
CY

3
I-
LL
0
v)

CY
0
L

W
CY
3
I- o
3
CY
I-
v)

z

a

6
9 a
W
LT
p9

Y
LT
0
2=

LT

z
I-
v)

n
a n
a

a
v)
w u
3

0
CY
a,

n

w
m
0
I-

v)
CY
w

E
CY

a
v,
-I
w
0 z

v)
J w
Jv)

w v) u
I - 0
- E

CY
W W

t;
a
a

n

av)

a z
nI-

U

z u a a
v) a w
Y I - J
v) z a w r :
I-

CYm
U Y

a

I- 0 z I > -

w
w z m
a E w n

z v)*

0 L T w
-I u (3
w v)z

n - 0

a

D. Reifer
Reifer Consultants
14 of 22

m e

LT
0
I-

w
n

n

5;

t
0
0

0
v,

c n c n
LTE
o o c n

w

z
0

I-
U

a

w
cn a
rn

D. Reifer
Reifer Consultants
15 of 22

z
0 z

I
I-
3
w
t-
r
t-
v)
w
I-
v)
LT
LL

LT

U

C(

a
Y

U

Y

3

4

z
Y

a

a U

z
v)
U

l.-a

t-
I-
O z
v)

a W
v)
3
v)

E
0
I-

Y

n

v)
LT
w
v)
3 2 z

-I

I
w
I
I-

I z

a
m

c.(

W
cn
I)

0
I-
t. cn
w
u)

U
I
t-
u)
0
0
t-
LL
0
u)

a

m

v)
-I

0
(3

a
OI-
I - v)

zv)
w v)
LT

v)z
I- - >
- I C Y
a 0
m - l
0

c(

w a
o n
a

a z

n
a z

i- z
w z a -.
I
v)

0
t-

z
c3
c(

v)
w

>
LT

z

n

a
U

n
a z t

-I
-I

w
I
I- r
w w
t - I -
e > -
w m z
w w
c 3 I

I-
O
I - z
0

w
- I C 3
m z

t- zt-
w w
w c 3
m u-
w o

x 3
0 m I

LT
w w
W Z =to

a w

a -

% C Y

Y

L

e3
Z
U

v)
3 LT

0 - I
- 0
L T L T
Q l -

Z

w u
t-
n o

a >
ntx - a
a m
-I=

> -
-I

v)
- I - o a -
I L T et-
v)v)
0

O L T
I - w
o z w 3
u-n

w
LT
a 3

I- z
w
U

c3 z
z
LT

-I

c(

3
I

!i
m
3
m

n
a
z v)

I
a

i=
1
I-
v)
0
V
I-

u-
0
w
v)

w a L
0
v,

0 e m 0 e 0 e

D. Reifer
Reifer Consultants
16 of 22

0

z
0
I-
-
a a
W z
W u
i-
tT
0
a,
w
tlc

8 .

U
I
I-
C/)
0
0
I-
LL
0
cn

r

L

D. Reifer
Reifer Consultants
17 of 22

cn
I-
0
I
Q.

lL

I-

k

n

a
L s

. e

CT
I
I-
v)
0
0
I-
L L
0

8

8

8

I + -
1 9
I #
I
I
I

I r n
I
1
I + -
l a 3
I V
1
I
I

t c
0
Q

1

c
u + -

I VI-Lu

I
I L a
1

I
8 + Q

I C 0
I N
I
I
1 * o
1 9
I N
I
1

D. Reifer
Reifer Consultants
18 of 22

m a
a m +
Z W I

a
I U c n cn W
c - c w o - l z - m o l -

m z r r
111- a

a c n u
I- a

m

n z
a E w

I - c n I
O C I - I-
a - w a z

O I-

fx V a z n
I O -I

Y a

n a a

w
w t - x a rr
I - % & - . . m - r r i n

a m 0 -

a w - l n

z a
a o w n
cc n a
o n z

w a u

-I M E
I - r . > w
N I - 0
- I - m z

c 3 m z

0
- I r r w w
w a f x r r
n a a . .
'0 w
z m m m

w z
W I - - 0

a O m m

m

ml-
Y

m c n
O O E
E X 0
w
I

I-.

m

D. Reifer
Reifer Consultants
19 of 22

CY
w
I
I-
O
v)

I- u
w
Q
v)
3
v)

urn

N I -
- v)
v) 3

-3
v)
u w

E

a

z a
Y

m a

-1
w
0 zz
n

a

a

a

w z
E
z
u
m

w u z
0
0

u z
u
Y
0

P

W z

c(

a

a

a
2

2
'=,
E:

a
w
-I
e
E:
v)

>. z
E

U

a

.)

t u
3

0
E
Q

n

a
(3 z
lL

r:
z

>-
3:

Y

a

U

a

u z
0
J

a
tn
w
0
(3

c-(

W
w
W z

I)

cs
0

D. Reifer
Reifer Consultants
20 of 22

v)

cs W
0 CY

LL
W v)

I- a

LL a

U

Iy: I
U I- w
I z
I- U

z
0 I-
U m z I- o
3 0 c3

m
w z
I - I

m c r :
-1 z w

I-I- >
X
w
I
0

I
3
-1
0
0
I-

(3 z
N
m

U

z L L a
U a

B
I- a n n

w I a

I - $
U

U

U

U

n

a
w
m
fa
I

V
n
a
m
U

t;
v)
v)
4

c3 w a
0
J
w >
W
n

I O
s r w
E a
e m 0

m

a
I
I-

3
U

t;
W
7
o m
E M
a m

2.
n J z a a z a
I-
m r
O U
V M
I - I

1 m a
o c w w
w i - o c
m t h
3- m

2.
J
J

u
LL

u
w
a
m
z
I
l-
m
0
0

0
v)

LL
o m

I- z z
o w - E
m a
E O
w - 1
> w >

a
U

U

t

w n
a

a n
z

4
m - a :
0 a k

n
7 9
m a

t r
o a

I-l-

ooc v m

v) o

0

D. Reifer
Reifer Consultants
21 of 22

I- z

f
w
LY

3
I-
LL
0
v)

a

I
I-
z=
w
V z
w
n

H

LY
w
Q
X
w
LY
3
0

9
v)
m
3
V
v)
H

R
v!

0
I-
O
R
3
0
t

w v)
3
J c 3 o z
z u
- a
R Y
w v
L Y Q

w o

.I

n a

a

z a
a

I-
I- O
0 -I z a
2
>
J

z
w v)
U w
LY cI(

U J-
I H

E -I w H

B
n a

c3 m

e
w z 0

L

a o I-

' 3 0 - u
E Z w
w w I
> w I-

~a a

-
- 3
-l I - w v)
w w z a

D. Reifer
Reifer Consultants
22 of 22

N86-3
DEASEL : An E x p e r t System f o r S o f t w a r e E n g i n e e r i n g

b y J o n D. V a l e t t and Andrew R a s k i n

ABSTRACT

F o r t h e p a s t t e n yea rs , t h e S o f t w a r e E n g i n e e r i n g L a b o r a t o r y C11
(SEL) has been c o l l e c t i n g d a t a on s o f t w a r e p r o j e c t s c a r r i e d o u t
i n t h e Systems D e v e l o p m e n t B r a n c h o f t h e F l i g h t Dynamics D i v i s i o n
a t NASA's Goddard Space F l i g h t Cen te r . T h r o u g h a s e r i e s o f
s t u d i e s u s i n g t h i s data, much k n o w l e d g e has been g a i n e d on how
s o f t w a r e i s d e v e l o p e d w i t h i n t h i s e n v i r o n m e n t . Two y e a r s ago
work began on a s o f t w a r e t o o l w h i c h w o u l d make t h i s k n o w l e d g e
r e a d i l y a v a i 1 ab1 e t o s o f t w a r e managers. I d e a l 1 y 8 t h e Dynamic
Management I n f o r m a t i o n T o o l (DynaMITe) w i l 1 a i d managers i n
c o m p a r i s o n a c r o s s p r o j e c t s , p r e d i c t i o n o f a p r o j e c t ' s f u t u r e , and
assessmen t o f a p r o j e c t ' s c u r r e n t s t a t e . T h i s p a p e r d e s c r i b e s an
e f f o r t t o c r e a t e t h e assessmen t p o r t i o n o f DynaMITe.

1.0 Back round

A s s e s s i n g t h e s t a t e o f a s o f t w a r e p r o j e c t d u r i n g d e v e l o p m e n t
i s a d i f f i c u l t p r o b l e m , b u t i t s s o l u t i o n c o n t r i b u t e s t o t h e
s u c c e s s o f t h e p r o j e c t . By d e t e r m i n i n g a p r o j e c t ' s weaknesses
e a r l y i n i t s l i f e c y c l e , p r o b l e m s c a n be d e a l t w i t h q u i c k l y and
e f f e c t i v e l y . F o r t h e s o f t w a r e manager t o p e r f o r m t h i s assessment
he needs easy a c c e s s t o d e t a i l e d , a c c u r a t e i n f o r m a t i o n
(k n o w l e d g e) r e g a r d i n g p a s t p r o j e c t s w i t h i n t h e d e v e l o p m e n t
e n v i r o n m e n t . He t h e n i n c o r p o r a t e s t h i s i n f o r m a t i o n w i t h h i s own
k n o w l e d g e o f s o f t w a r e e n g i n e e r i n g t o make some assessmen t o f a
p r o j e c t ' s s t r e n g t h e s and weaknesses. The DynaMITe E x p e r t A d v i s o r
f o r t h e SEL (DEASEL) i s t h e f i r s t v e r s i o n o f an e x p e r t s y s t e m
t h a t a t t e m p t s t o s i m u l a t e t h i s p r o c e s s .

2.0 D e v e l o p i n g and U s i n g R u l e s

B a s i c a l 1 y 8 DEASEL a s s e s s e s an o n g o i n g p r o j e c t b y a t t e m p t i n g
t o answer a s i m p l e q u e s t i o n s u c h as IIHow i s m y ' p r o j e c t doing?! '
To answer t h i s q u e s t i o n DEASEL u t i l i z e s a k n o w l e d g e base o f r u l e s
f o r e v a l u a t i n g s o f t w a r e p r o j e c t s . T h i s k n o w l e d g e b a s e c o n s i s t s
o f r u l e s d e r i v e d f r o m t w o s o u r c e s : t h e SEL d a t a b a s e and
e x p e r i e n c e d s o f t w a r e managers. DEASEL uses t h e s e r u l e s a l o n g
w i t h d a t a on t h e p r o j e c t o f i n t e r e s t , t o g i v e t h e manager a
r e l a t i v e r a t i n g o f t h e q u a l i t y o f t h a t p r o j e c t .

J. Valett
NASA/GSFC
1 of 21

2.1 C o r p o r a t e Memory

O f c o u r s e , a m a j o r e f f o r t i n t h e d e v e l o p m e n t o f t h e D E A S E L
s y s t e m was t h e a c t u a l c o l l e c t i o n o f knowledge. To d e r i v e r u l e s
f r o m t h e c o r p o r a t e memory, f o r m e r s t u d i e s [2 r3 r4 r5 r6 r7 ,81
p e r f o r m e d b y t h e SEL were r e v i e w e d t o f i n d r e l a t i o n s h i p s t h a t
a f f e c t t h e q u a l i t y o f a s o f t w a r e p r o j e c t . T h a t i s , many s t u d i e s
o f d a t a c o n c e r n i n g t h e SEL e n v i r o n m e n t h a v e been done w i t h i n t h e
l a s t t e n yea rs . These s t u d i e s g i v e some i d e a o f t h e c a u s e and
e f f e c t o f t e c h n o l o g i e s and m e t h o d o l o g i e s on a s o f t w a r e p r o j e c t .
Thus, r e l a t i o n s h i p s 1 i k e " i n c r e a s i n g t o o l use w i l 1 i n c r e a s e
p r o d u c t i v i t y " a r e found. Because o f t h e i n t e r d e p e n d e n c i e s amoung
t h e i t e m s t h e s t r e n g t h o f each r e l a t i o n s h i p i s t h e n de te rm ined .
F o r example, many d i f f e r e n t f a c t o r s may i n f l u e n c e p r o d u c t i v i t y ,
t h e r e f o r e t h e d e t e r m i n a t i o n o f w h i c h o f t h e s e h a v e t h e mos t and
w h i c h t h e l e a s t i n f l u e n c e m u s t b e made. T h i s h a s b e e n a l o n g a n d
d i f f i c u l t p r o c e s s because o f t h e amount o f d a t a and t h e p r o b l e m s
w i t h d e t e r m i n i n g what d a t a i s r e l e v a n t t o t h e assessment p rocess .

2.2 Know ledge f r o m S o f t w a r e Managers

The o t h e r s o u r c e o f k n o w l e d g e i s t h e e x p e r i e n c e d s o f t w a r e
managers, who h a v e c e r t a i n " r u l e s o f thumb" t h e y u s e t o e v a l u a t e
a s o f t w a r e p r o j e c t . They a r e q u e s t i o n e d t o o b t a i n t h i s
s u b j e c t i v e i n f o r m a t i o n w h i c h i s t h e n used a l o n g w i t h t h e more
o b j e c t i v e m a t e r i a l t o p r o d u c e t h e k n o w l e d g e base. A g a i n t h e
d e t e r m i n a t i o n o f t h e s t r e n g t h e s o f t h e r e l a t i o n s h i p s mus t be
pe r fo rmed . The e n t i r e p r o c e s s o f c o l l e c t i n g k n o w l e d g e i s l o n g
and d i f f i c u l t and has o n l y j u s t begun f o r t h e DEASEL p r o j e c t .

2.3 R e p r e s e n t i n g t h e R u l e s

A f t e r c o l l e c t i n g a p r e l i m i n a r y s e t o f knowledge, t h o u g h t
began on how t o a c t u a l l y r e p r e s e n t t h i s knowledge. The i n i t i a l
work on k n o w l e d g e r e p r e s e n t a t i o n f o r DEASEL was d i r e c t e d a t u s i n g
s t a n d a r d e x p e r t s y s t e m t e c h n i q u e s , i n c l u d i n g i f - t h e n p r o d u c t i o n
r u l e s . B u t soon t h e d i s c o v e r y was made t h a t k n o w l e d g e r e g a r d i n g
t h e assessment o f a s o f t w a r e p r o j e c t ' s d e v e l o p m e n t i s more
n a t u r a l l y r e p r e s e n t e d i n a d i f f e r e n t manner. I n f a c t r t h e
o v e r a l l c o n c l u s i o n drawn f r o m an assessment i s q u i t e d i f f e r e n t
f r o m t h a t drawn by a t r a d i t i o n a l e x p e r t system. The d i f f e r e n c e
l i e s i n t h e t y p e o f q u e s t i o n answered b y DEASEL. The t r a d i t i o n a l
m e d i c a l e x p e r t system, such as t h e o f t e n c i t e d W Y C I N C91,
answers a q u e s t i o n l i k e "What d i s e a s e does p a t i e n t X h a v e ? "
Then, g i v e n some d a t a on t h e p a t i e n t t h e s y s t e m d e t e r m i n e s t h e
d i sease . DEASEL, on t h e o t h e r hand, must answer t h e q u e s t i o n
I'How i s p r o j e c t X do ing?I1 Thus, i t must g i v e a r a t i n g t o t h e
s y s t e m based on t h e f a c t s g i v e n t o it. The a n a l a g o u s q u e s t i o n i n
t h e m e d i c a l domain w o u l d be "How i s p a t i e n t X I S h e a l t h ? "

I n o r d e r f o r DEASEL t o answer t h e q u e s t i o n "How i s p r o j e c t X
doing?I1, i t needs t w o d i f f e r e n t t y p e s o f knowledge. The f i r s t
t y p e o f k n o w l e d g e i s t h e a s s e r t i o n s w h i c h r e l a t e t o t h e s p e c i f i c

J . Valett
NASAJGSFC
2 of 21

p r o j e c t i n q u e s t i o n , T h i s i n c l u d e s t h e f a c t s known a b o u t t h e
p r o j e c t as i t c u r r e n t l y s tands . The second t y p e o f k n o w l e d g e i s
t h e d e t a i l e d r e p r e s e n t a t i o n o f how d i f f e r e n t f a c t s a f f e c t t h e
o v e r a l l d e v e l o p m e n t p r o c e s s o f a p r o j e c t . These a r e t h e more
g e n e r a l 1 t ru les18 on wha t a f f e c t s t h e q u a l i t y o f a s o f t w a r e
p r o j e c t . These r u l e s a r e s e t up based on t h e k n o w l e d g e d e s c r i b e d
e a r l i e r f r o m t h e d a t a base and t h e s o f t w a r e manager. They a r e
used t o d e s c r i b e a l l o f t h e f a c t o r s w h i c h a f f e c t a s o f t w a r e
p r o j e c t ' s q u a l i t y and a l l t h e s u b - f a c t o r s t h a t a f f e c t t h o s e
f a c t o r s , e t c . F o r t h i s r e a s o n t h i s s y s t e m o f k n o w l e d g e
r e p r e s e n t a t i o n , w h i c h i s u n i q u e t o DEASEL, i s c a l l e d f a c t o r -
based. Each r u l e i n t h e f a c t o r - b a s e d r e p r e s e n t a t i o n scheme
s p e c i f i e s a s y s t e m and i t s f a c t o r s (sub -sys tems) and t h e w e i g h t
(s t r e n g t h o f t h e r e l a t i o n s h i p) each f a c t o r has on t h e system.
Thus, be tween t h e s p e c i f i c a s s e r t i o n s a b o u t t h e p r o j e c t and t h e
g e n e r a l r u l e s c o n c e r n i n g s o f t w a r e d e v e l o p m e n t w i t h i n t h e SEL
e n v i r o n m e n t DEASEL c a n r a t e a p r o j e c t .

2.4 An Exampl e R u l e

To e x p l a i n how t h i s r a t i n g p r o c e s s works, h e r e i s an e x a m p l e
r u l e f r o m DEASELfs k n o w l e d g e base:

The f a c t o r s t h a t a f f e c t C o m p u t e r - E n v i r o n m e n t _ S t a b i l i t y a r e
1) Operating-System-Stability . 3

3) H a r d w a r e - S t a b i l i t y . 4
4) Computer-Env-Proc-Stability a 1

2 1 S o f t w a re-Too 1 - S t a b i 1 t i y 02

The number a s s o c i a t e d w i t h each f a c t o r i s a w e i g h t , and t h e sum
o f t h e w e i g h t s m u s t a l w a y s t o t a l one. T h i s r u l e s t a t e s t h a t t h e
f o u r l i s t e d f a c t o r s h a v e an a f f e c t on t h e q u a l i t y o f t h e
Computer-Environment-Stability. The r u l e r s w e i g h t s i n d i c a t e t h a t
H a r d w a r e - S t a b i l i t y i s t h e mos t i m p o r t a n t f a c t o r i n t h e assessment
o f Computer-Environment-Stabil i t y , w h i l e
Computer-Env-Proc-Stabil i t y i s t h e l e a s t i m p o r t a n t f a c t o r ,
DEASEL u s e s t h e r a t i n g s o f a l l f o u r f a c t o r s t o d e t e r m i n e a r a t i n g
f o r Comp u t e r-E n v i r o nmen t - S t ab i 1 i t y.

2.5 D e r i v i n g C o n c l u s i o n s

DEASEL's o v e r a l 1 assessment p r o c e s s c o n s i s t s o f t r y i n g t o
a s s i g n a r a t i n g t o each o f t h e q u a l i t y i n d i c a t o r s s p e c i f i e d v i a
t h e k n o w l e d g e base. O b v i o u s l y j u s t a n s w e r i n g t h e q u e s t i o n "How
i s p r o j e c t X d o i n g ? " w i l l n o t g i v e t h e manager s p e c i f i c enough
i n f o r m a t i o n a b o u t h i s p r o j e c t . T h e r e f o r e , t h e k n o w l e d g e base
s p e c i f i e s t h e t o p l e v e l f a c t o r s DEASEL s h o u l d r a t e . C u r r e n t 1 y,
t h e k n o w l e d g e b a s e has f o u r s u c h q u a l i t y i n d i c a t o r s :
r e 1 i a b i l i t y , p r e d i c t a b i l i t y , s t a b i l i t y , and c o n t r o l l e d
deve lopmen t . Thus DEASEL a c t u a l l y g i v e s i n f o r m a t i o n (a r a t i n g)
o n e a c h o f t h e s e f o u r i n d i c a t o r s w h i c h g i v e s t h e m a n a g e r an
assessment o f how h i s p r o j e c t i s d o i n g i n t h e s e areas . I n o r d e r

J. Valett
NASAIGSFC
3 of 21

t o r a t e t h e s e f o u r f a c t o r s DEASEL m u s t f i n d t h e r u l e s w h i c h
r e l a t e t o t h e s e f a c t o r s and a s s i g n a r a t i n g t o t h e s e r u l e s . T h a t
i s , DEASEL r e a c h e s a c o n c l u s i o n on what i t b e l i e v e s i s t h e r a t i n g
o f t h e s e i n d i c a t o r s . For DEASEL t o do t h i s it mus t f i r s t r e a c h
t h e c o n c l u s i o n s on t h e f a c t o r s w h i c h a f f e c t t h e s e i n d i c a t o r s . O f
course , t h e s e f a c t o r s may h a v e r u l e s w h i c h s p e c i f y t h e i r
assessment, so t h i s p r o c e s s c o n t i n u e s u n t i l a l l o f t h e n e c e s s a r y
c o n c l u s i o n s a r e reached,

DEASEL r e a c h e s c o n c l u s i o n s i n one o f t h r e e ways:
1) The c o n c l u s i o n can be an a s s e r t i o n f r o m t h e k n o w l e d g e

2) DEASEL c a n i n f e r t h e c o n c l u s i o n based o n o t h e r

3) I f b o t h 1) and 2) f a i l , i t c a n a s k t h e u s e r t o s u p p l y

base.

c o n c l u s i o n s and i t s r u l e base.

t h e c o n c l u s i o n ,
The t h r e e t y p e s o f c o n c l u s i o n s combine t o a l l o w DEASEL t o make
i t s assessment o f t h e s u p p l i e d q u a l i t y i n d i c a t o r s . The b a s i c
p r o c e s s i s t o f i r s t f i n d a r u l e f o r o n e o f t h e q u a l i t y i n d i c a t o r s
t h e n t o r e s o l v e a1 1 o f t h e c o n c l u s i o n s n e c e s s a r y t o r e a c h a
c o n c l u s i o n f o r t h a t i n d i c a t o r . T h i s p r o c e s s c o n t i n u e s b y
r e a c h i n g c o n c l u s i o n s i n each o f t h e t h r e e ways, u n t i l a1 1 t h e
c o n c l u s i o n s a r e r e s o l ved.

To f u l l y u n d e r s t a n d t h e r a t i n g p r o c e s s one must a1 so
u n d e r s t a n d how t h e s e c o n c l u s i o n s a r e reached, A c o n c l u s i o n i s
reached when a r a t i n g has been a s s i g n e d t o a f a c t o r i n t h e
k n o w l e d g e base. A r a t i n g i s d e f i n e d as a number be tween z e r o and
one, t h e h i g h e r t h e r a t i n g t h e b e t t e r t h e f a c t o r ' s q u a l i t y . A
r a t i n g o f .5 w o u l d b e a v e r a g e o r n o r m a l . N o t e t h a t t h e r a t i n g s
a l w a y s i n d i c a t e q u a l i t y , f o r examp le a r a t i n g o f .7 f o r e r r o r
r a t e a s a f a c t o r w o u l d i n d i c a t e a l o w e r t h a n n o r m a l e r r o r r a t e .
I n a d d i t i o n , e v e r y c o n c l u s i o n has an a s s o c i a t e d c e r t a i n t y . A
c e r t a i n t y i s t h e p r o b a b i l i t y t h a t t h e c o n c l u s i o n ' s r a t i n g i s
c o r r e c t w i t h i n some f i x e d d e l t a . C u r r e n t l y , DEASEL s e t s d e l t a a t
0.1.

A l l t h r e e t y p e s o f c o n c l u s i o n s h a v e b o t h a r a t i n g and a
c e r t a i n t y . Type 1 c o n c l u s i o n s a r e r e a l l y t h e a s s e r t i o n s
d e s c r i b e d e a r l i e r . C u r r e n t l y , t h e a s s s e r t i o n s a r e e n t e r e d b y
h a n d i n t o t h e k n o w l e d g e base . I n t h e f u t u r e t h i s p r o c e s s w i l l b e
a u t o m a t e d a n d w i l l b e d o n e b y t h e D y n a M I T e t o o 1 , v i a t h e SEL d a t a
base, The c e r t a i n t i e s f o r t h e s e c o n c l u s i o n s a r e g e n e r a l 1 y v e r y
h i g h (a r o u n d . 9) because t h e r a t i n g s a r e b a s i c a l l y c o m p a r i s o n s
be tween r e a l d a t a and a v e r a g e o r n o r m a l numbers. C o n c l u s i o n s o f
t y p e 2 a r e computed u s i n g t h e f o l l o w i n g f o r m u l a e : 2 (R a t i n g o f f a c t o r (i 1 x W e i g h t o f f a c t o r (i 1 1

; = I J

R a t i n g =

C e r t a i n t y = x (C e r t a i n t y f a c t o r (i 1 x W e i g h t o f f a c t o r (i 1)
i

where n i s t h e number o f f a c t o r s i n t h e r u l e

Thus , a r u l e f o r a c e r t a i n f a c t o r i s g i v e n a c o n c l u s i o n b y u s i n g
t h e s e f o r m u l a e t o c a l c u l a t e i t s r a t i n g and c e r t a i n t y . The schema
used h e r e s h o u l d l o o k f a m i l i a r t o anyone w i t h k n o w l e d g e o f

J. Valett
NASA/GSFC
4 of 21

p r o b a b i l i t y , I n i t s t y p i c a l a p p l i c a t i o n , however , each o f t h e
f a c t o r s i n t h e s y s t e m b e i n g r a t e d mus t be i ndependen t . I n t h e
c o m p l e x and u n f a m i l i a r domain o f s o f t w a r e e n g i n e e r i n g , such an
a s s u m p t i o n may b e i n c o r r e c t . Our c o m p u t a t i o n s c o u l d t h e r e f o r e b e
s l i g h t l y o r g r o s s l y i n e r r o r d e p e n d i n g on how much t h e k n o w l e d g e
base v i o l a t e s t h i s c o n s t r a i n t . F u t u r e DEASEL k n o w l e d g e e n g i n e e r s
mus t keep t h i s i n m ind when c r e a t i n g and m o d i f y i n g t h e r u l e base.
Type 3 c o n c l u s i o n s a r e n e c e s s s a r y when t h e s y s t e m c a n n o t u s e t y p e
1 o r t y p e 2 c o n c l u s i o n s . I n o r d e r f o r t h e s y s t e m t o c o m p l e t e an
assessment it mus t h a v e c o n c l u s i o n s f o r a l l t h e f a c t o r s i n t h e
k n o w l e d g e base. S i n c e e x p e r t sys tems mus t d e a l w i t h i n c o m p l e t e
knowledge, whenever DEASEL c a n n o t r e a c h a c o n c l u s i o n f o r a f a c t o r
i t assumes a n o r m a l r a t i n g (. 5) w i t h a c e r t a i n t y o f .2. N o t e
t h a t t h e . 2 i s t h e p r o b a b i l i t y t h a t t h e r a t i n g w i l l b e c o r r e c t
w i t h i n + o r - d e l t a , w h i c h i n e f f e c t makes f o r a m e a n i n g l e s s
c o n c l u s i o n . Whenever DEASEL i s f o r c e d t o do t h i s , i t makes a
n o t e t o ask t h e u s e r i f t h e c o n c l u s i o n c a n b e p r o v i d e d . Thus,
t h e u s e r c a n l a t e r p r o v i d e t h e answers t o q u e s t i o n s a b o u t t h e
i n c o m p l e t e knowledge. Once t h e s e q u e s t i o n s a r e answered, DEASEL
g i v e s t h e r a t i n g s u p p l i e d b y t h e u s e r a c e r t a i n t y o f 1.0.

2.6 C u r r e n t DEASEL C a p a b i l i t i e s

The c a p a b i l i t i e s o f t h e c u r r e n t DEASEL s y s t e m i n c l u d e
a l l o w i n g t h e u s e r t o o b t a i n an a s s e s s m e n t o f h i s p r o j e c t , i f some
a s s e r t i o n s e x i s t f o r t h a t p r o j e c t . A f t e r t h e i n i t i a l assessment
i s g i v e n t h e u s e r has t h r e e o p t i o n s 1) a s k i n g f o r an
e x p l a n a n t i o n , 2) a n s w e r i n g q u e s t i o n s a b o u t h i s p r o j e c t , and 3)
p l a y i n g w h a t - i f games. F o r any c o n c l u s i o n , t h e u s e r c a n ask f o r
an e x p a l n a n t i o n o f how t h e c o n c l u s i o n was reached. The
e x p l a n a t i o n c o n s i s t s o f t h e c o n c l u s i o n s DEASEL r e a c h e d a b o u t t h e
f a c t o r s o f t h e o r i g i n a l c o n c l u s i o n . T h a t i s , t h e u s e r i s a b l e t o
ask DEASEL what caused i t t o r e a c h any s p e c i f i c r a t i n g f o r any
f a c t o r . T h i s p r o c e s s can c o n t i n u e as t h e u s e r a s k s f o r
e x p l a n a t i o n s o f t h e f a c t o r s p r e v i o u s l y r e p o r t e d on, and so on.
E a r l i e r we m e n t i o n e d t h a t DEASEL makes a n o t e o f t y p e 3
c o n c l u s i o n s . The u s e r may o p t t o answer t h e s e q u e s t i o n s as he
wishes. He may a l s o r e s p o n d t o t h e q u e s t i o n s by i n d i c a t i n g he
does n o t know t h e answer. I n t h i s case, DEASEL m a i n t a i n s t h e
m e a n i n g l e s s c o n c l u s i o n r e a c h e d e a r l i e r . A n s w e r i n g q u e s t i o n s i s
encouraged because i t l e a d s t o more c e r t a i n c o n c l u s i o n s . W h a t - i f
games a i d t h e manager i n e v a l u a t i n g t h e e f f e c t s o f changes he may
w i s h t o make i n h i s p r o j e c t . T h i s p r o c e s s a l l o w s t h e u s e r t o
e n t e r c o n t r o l s i n t o t h e system, by a c t u a l 1 y c h a n g i n g c o n c l u s i o n s .
T h a t i s , t h e u s e r c a n s e e w h a t w i l l h a p p e n i f h e c h a n g e s c e r t a i n
c o n c l u s i o n s i n t h e k n o w l e d g e base. A f t e r c h a n g i n g one o r more
c o n c l u s i o n s he can t h e n r e a s s e s s t h e p r o j e c t , t o d e t e r m i n e t h e
a f f e c t s o f t h e s e changes. T h i s i s an i m p o r t a n t f e a t u r e o f t h e
DEASEL system, because i t a l l o w s t h e manager t o d e t e r m i n e how he
m i g h t be a b l e t o i m p r o v e h i s s o f t w a r e p r o j e c t .

J . Valett
NAS A/GSFC
5 of 21

3.0 Summary

A l t h o u g h t h e c u r r e n t v e r s i o n o f DEASEL does b e g i n t o a t t a c k
t h e p r o b l e m o f p r o j e c t assessment , much more work i s needed t o
make t h e s y s t e m a u s e f u l t o o l . T h r e e p o t e n t i a l d i r e c t i o n s e x i s t
f o r f u t u r e work: a d d i n g t o and v e r i f y i n g t h e r u l e base,
v e r i f y i n g t h e a c c u r a c y o f t h e assessment p rocess , and a u t o m a t i n g
t h e c r e a t i o n o f t h e a s s e r t i o n p o r t i o n o f t h e r u l e base . A l l o f
t h e s e a r e a s w i l l r e q u i r e t i m e and e f f o r t t o c o m p l e t e , b u t a r e
n e c e s s a r y f o r s u c c e s s f u l l y d e t e r m i n i n g t h e v a l i d i t y o f t h i s
p r o j e c t . O b v i o u s l y , DEASEL i s b u t an i n i t i a l a t t e m p t a t s o l v i n g
t h e p r o b l e m o f a u t o m a t i n g t h e p r o c e s s o f a s s e s s i n g t h e s t a t e o f
an o n g o i n g s o f t w a r e p r o j e c t . DEASEL has, however , g i v e n some
i n s i g h t i n t o t h e p r o b l e m and ways t o s o l v e it. H o p e f u l l y t h i s
i n i t i a l work w i l l l e a d t o t e c h n i q u e s f o r s o l v i n g t h e p r o b l e m more
c o m p l e t e l y .

J . Valett
NASAIGSFC
6 of 21

REFERENCES

1. SEL-81-104, US W$Y,!ALB EnaiUiJQJ L_ahn.JXLQW* D * N * Card,
F.E. McGarry , G. Page, e t a l . , F e b r u a r y 1982

2. SEL-83-002, l4suums and Matr&s fer Zw3xa.m Qwlepmenk,

3. SEL-79-002, Itui Sefl;ura €nginswA..ag l . ahcdxry l J ? e l a t h a s h i g

D.N. Card, F.E. McGarry , G. Page, e t a l . 8 March 1984

E q U a t i o n d , K. F r e u b e r g e r and V.R. B a s i l i , May 1979

4. McGarry , F.E. , V a l e t t I J.# and H a l l , DI. M.gssu3n.g hugact
Qf €QiKQld&er RBSOY- UnliQ! QIl fhr: SQfjXara ~ Y B l ~ ~
P r u an8 P r o d u & # P r o c e e d i n g s o f t h e H a w a i i a n I n t e r n a t i o n a l
C o n f e r e n c e on Systems Sc iences , J a n u a r y 1985

5. SEL-85-001, h u m Qf Softr_are Y e r i f i c a fLinn u c h n u s r
D. Card, R. Se lby , F.E. McGarry, e t a l a r A p r i l 1985

9. S h o r t l i f f e , E.H.r !2m.&u-B& kksll~al G ~ D . S l i k & h m ~ MYGi"R9
E l s e v i e r , N o r t h H o l l a n d , New York, 1986

J . Valett
NASA/GSFC
7 of 21

THE VIEWGRAPH MATERIALS

for the

J. VALETT PRESENTATION FOLLOW

J. Valett
N ASAIGSFC
8 of 21

t
Q)
J

J
L
Q)

X
W

n

_I
Id m
W
a
n

S *-

Q)

CY
3

0 m

L

1
rc-

L

@4-
0

J. Valett
N AS AIGSFC
9 of 21

W
IL
c

J . Valett
NASAIGSFC
10 of 21

0- eu,

k

J. Valett
N AS AIGSFC
11 of 21

t rn
S I
a,
I

-e-
rn
a

a a

J. Valett
NASA/GSFC
12 of 21

J . Valett
NASAIGSFC
13 of 21

I,

I,

cc:

+
3
0

a?
=-v,
0 --

U
6

E

IC
0

zz
0

-e- o
a,
0
Q

.-
I

J. Valett
NASAIGSFC
14 of 21

W cn a m

n
LAJ
(3

W

0 z x
LL)
JT
I--

I"+- - * .-

J . Valett
NASAIGSFC
15 of 21

0

c3

a
W
Iz e

W

'141 Q)

C3
I

-
0

v3

0
W
U
G

L

+

J. Valett
NASA/GSFC
16 of 21

J. Valett
NASAJGSFC
17 of 21

1\
00

0 cv
a,
L
U

x
2z
9
CJ
a,

OL

0

v1

0
V
U
G

- .l
I- -
w--

I

+

a
T3
0
0

7
ro
0

a , -
73 o m
0 -

UJ z
+
QL
W
UJ
v,
4

0

I
v)

I

&

0

0 z

J . Valett
NASAIGSFC
18 of 21

.d=:

c)

n a

LL)
t=-
0
>-

U
t
U

Q,

e
F-
w

I
3
0
%

Y-
O

J. Valett
NASA/GSFC
19 of 21

E I n
0

e

J. Vdett
NAS AiGSFC
20 of 21

.
h

J . Valett
NASAIGSFC
21 of 21

N86-30362 m

AN EXPERIMENTAL EVALUATION OF ERROR SEEDING

AS A PROGRAM VALIDATION TECHNIQUE

John C. Knight Paul E. Ammann
Department of Computer Science

University of Virginia
Charlottesville, Virginia.

A Summary

Submitted To The Tenth Annual Software Engineering Workshop
Goddard Space Flight Center

Greenbelt, Maryland.

J . Knight
Univekity of Virginia
1 o f 4

The error seeding technique was originally proposed by Mills 111 as a method

for determining when a program has been adequately tested using functional or

random testing. The procedure resulted from a desire to apply statistical methods to

the problem of predicting the number of errors in a program in the hope that the

number of errors discovered during testing could be used to estimate the number of

remaining undetected errors. The method involves deliberately introducing or seeding

artificial errors into a program and subsequently testing that program.

Error seeding has the desirable property that i t is apparently simple to employ

and it provides a stopping condition for testing. Unfortunately. it has the major

drawback that, in order to work effectively and for the existing statistical model to

apply, it relies upon the following three assumptions:

(1) Indigenous errors, those introduced by the programmer, are all approximately

equally difficult to locate.

(2) Seeded errors are approximately as difficult to locate as indigenous errors.

(3) Errors, whether indigenous or seeded, do not interfere with one another.

A priori there is no reason to believe that any of these assumptions hold. The

first and third seem reasonable. However, error seeding has been criticized on the

basis of the second assumption. It seems unlikely that realistic seeded errors can be

generated but no definitive, empirical evidence for any of the assumptions has been

gathered previously. We have performed an experiment designed to check the

validity of each of the underlying assumptions. In particular, we were interested in

evaluating very simple, syntax-based algorithms for generating seeded errors.

J. Knight
University of Virginia
2 0 f 4

Briefly, as part of a separate experiment 12. 31. twenty-seven Pascal programs

have been written independently by diflerent programmers to a single specification.

Thus all twenty-seven are intended to perform the same function, the processing of

radar data in a simple antimissile system. As part of the other experiment, the

programs have been subjected to one million tests. and a great deal is known about

the indigenous errors present in the programs. These programs represent an excellent

starting point for an experiment with error seeding. Any results obtained can be

averaged thereby eliminating any bias attributable to individual programmers.

In the error seeding experiment, seventeen of the twenty-seven programs were

selected at random, errors were seeded into all seventeen, and the resulting programs

were tested. The algorithms used for seeding errors were very simple: two

algorithms modified the bounds on for statements, three algorithms modified the

Boolean expression in if statments, and one algorithm deleted assignment statements.

Each of these algorithms was applied four times to each of the 17 programs for a

total of 408 modified programs, each of which contained one seeded error. The

programs were tested using 25.000 of the 1,000.000 test cases from the previous

experiment.

The metric used for evaluating the seeded errors was the mean time to failure

(MTF). The MTF for a particular program containing a seeded error is defined as

the average number of test cases executed between detected failures. The MTF’s for

the seeded errors had a wide range. Some seeded errors caused a failure on every

test case; some had a very small number of failures in 25,000 test cases; and others

caused no failures af all in 25,000 test cases. We conclude that it is possible to

generate seeded errors that are arbitrarily difficult to locate, albeit at the expense of

creating others that are easy to locate. These results suggest, surprisingly, that it is

possible to comply with the second assumption listed above.

J . Knight
University of Virginia
3 o f4

An examination of the MTF’s of the indigenous errors revealed a similar wide

range of failure rates. In fact, there was a very strong resemblance in mean time

to failure between the resilient seeded errors and the indigenous errors. However, in

neither case were errors equally likely to be discovered, in conflict with the first

assumption cited above.

Finally it was discovered during the experiment that in two cases a seeded

error corrected, or partially corrected, an indigenous error. Clearly, the implication

is that assumption three above was violated. We conclude that the first and third

assumptions, those that seem most believable, are in fact violated, and that the

second, the one that seems totally unreasonable, can be complied with. Using the

data from this experiment, the underlying model of error seeding can be modified

and error seeding made a useful, practical technique.

REFERENCES

(1) Mills, H.D., “On The Statistical Validation of Computer Programs”. in Software

Productivity. Little Brown, Toronto.

(2) Knight, J.C.. and N.G. Leveson, “A Large-Scale Experiment In N-Version

Programming”, Proceedings of the Ninth Annual Software Engineering Workshop.

NASA Goddard Space Flight Center, November 1984. Greenbelt, MD.

(3) Knight J.C.. and N.G. Leveson, “A Large Scale Experiment In N-Version

Programming” Digest of Papers FTCS-15: Fifteenth Annual Symposium on Fa&-

Tolerant Computing, June 1985. Ann Arbor, MI.

J. Knight
University of Virginia
4 o f 4

N86- 30363 ..

Oualitv Assurance Software Insoections at NASA Ames
Metrics for Feedback and Modification

Greg Wenneson, Informatics General Corporation

Software Inspections are a set of formal technical review procedures held a t
selected key points during software development for the purpose of finding defects
in software documents. Inspections are a Quality Assurance tool and a Management
tool. Their primary purposes are to improve overall software system quality while
reducing lifecycle costs and to improve management control over the software
development cycle. The Inspections process can be customized to specific project
and development type requirements and are specialized for each stage of the
development cycle.
For each type of Inspection, materials to be inspected a re prepared to predefined
levels. The Inspection team follows defined roles and procedures and uses a
specialized checklist of common problems i n reviewing the materials. The materials
and results f rom the Inspection have to meet explicit completion criteria before the
Inspection is finished and the next stage of development proceeds. Statistics,
primarily time and error data, f rom each Inspection are captured and maintained
in a historical database. These statistics provide feedback and feedforward to the
developer and manager and longer term feedback for modification and control of
the development process for most effective application of design and quality
assurance efforts.

HISTORY
Software Inspections were developed in the early mid-1970s at IBM by Dr. Mike
Fagan, who was subsequently named software innovator of the year. Fagan also
credits IBM members O.R.Kohli, R.A.Radice and R.R.Larson for their contributions
to the development of Inspections. In the IBM Svstems Journal El], Fagan described
Inspections and reported that in controlled experiments a t IBM with equivalent
systems software development efforts, significant gains in software quality and a
23% gain in development productivity were made by using Inspections based
reviews a t the end of design and end of coding (clean compile) rather than
structured walkthroughs a t the same points. Fagan reported that the Inspections
caught 82% of development cycle errors before unit test, and that the inspected
software had 38% fewer errors f rom unit test through seven months of system
testing compared to the walkthrough sample with equivalent testing. Fagan also
cites a n applications software example where a 25% productivity gain was made
through the introduction of design and code inspections. As fur ther guidelines for
using Inspections, IBM published a n Installation Management Manual [2] with
detailed instructions and guidelines for implementing Inspections.

Inspections were introduced to NASA/Ames Research Center in 1979 by
Informatics General Corporation on the Standardized Wind Tunnel System (SWTS)
and other pilot projects. The methods described by IBM were adapted to meet the
less repetitious character of Ames applications and research/development software
as compared to that of IBM’s systems software development. Though not able to
duplicate IBM’s controlled environments and. experiments, our experience a t Ames
of gains in quality and productivity through using Inspections have been similar.
From a developed Wind Tunnel software application which had been reviewed in
structured walkthroughs and then later was rewritten and reviewed using

G. Wenneson
Informatics General Corp
1 of 22

Inspections, the Inspected version had 3565% less debug and test time and about
40% fewer post-release problems. Inspections implemented prior to unit test have
been shown to detect over 90% of software’s lifetime problems. Inspection results
have been sufficiently productive in terms of increased software quality, decreased
development times, and management visibility into development progress, that
Inspections have been integrated into Informatics’ development methodology as the
primary Quality Assurance defect removal method.

When Inspections were first implemented a t Ames, only design and code Inspections
were introduced. The scope and usage has expanded so that currently, Inspections
are used to review both system level and component level Goals (requirements)
Specifications, Preliminary Design, Detailed Design, Code, Test Plans, Test Cases,
and modifications to existing software. Inspections a re used on most Informatics
staffed development tasks where the staff level and environment are appropriate.
Inspections implementation and usage a t Ames are described in NASA Contractor
Report 166521 [3]. Within Informatics contracts outside of the Ames projects,
Inspections a re also used to review Phase Zero (initial survey and inventory of
project status), Project Goals, and Requirements Specifications generated through
structured analysis.

PARTICIPANTS
The Inspectors operate as a team and fi l l f ive different types of roles. The
Author(s1 is the primary designer, developer, or programmer who prepares the
materials to be inspected. The author is a passive Inspector, answering questions or
providing clarification as necessary. The Moderator directs the flow of the
meetings, limiting discussion to finding errors and focusing the sessions to the
subject. The moderator also records the problems uncovered during the meetings. A
Reader paraphrases the materials, to provide a translation of the materials
different f rom the authors’ viewpoint. One or more additional Inspectors complete
the active components of the team. A limited number of Observers, who are silent
non-participants, may also attend for educational or familiarizing purposes. Of the
team members, the moderator and a reader a re the absolute minimum necessary to
hold a n Inspection.

Team composition and size are important. Composition using knowledgeable
designers and implementors having similar background or f rom interfacing
software enable cross training of group members; understanding is enhanced and
startup time is lessened. However, team members must be sufficiently different so
that alternate viewpoints are present. Fagan recommends a four member team
composed of a moderator and the software’s designer, implementor, and tester. Our
experience is that the most effective team size seems to be three to f ive members,
exclusive of author and observers; more than this is a committee, less may not have
critical mass for the process. We also t ry to keep the team together for all of the
software’s Inspections.

TOOLS
Written tools are used by the participants during the Inspections process to assist in
the preparation, the actual sessions, and the completion of the Inspection.
Standards are necessary as guidelines for preparing both design and coding
products. The Entrance Criteria for inspection materials define what materials are
to be inspected a t each type of Inspection, the level of detail of preparation, and
other prerequisites for an Inspection to occur. Checklists of categories (Data Area
Usage, External Linkages, etc.) of various types of problems to look for are used
during the sessions to help locate errors and focus attention on areas of project

G . Wenneson
Informatics General C o p
2 of 22

concern. The Checklists a re also used by the author during his preparation of
materials and by the inspectors while they a re studying the materials. Exit Criteria
define what must be done before the Inspection is declared complete and the
materials can proceed to the next stage of development. Each of these tools will
have been customized for each projects type of development work, language,
review requirements, and emphasis that will be placed on each stage of the
development process.

PROCEDURES
An Inspection is a multi-step sequential process. Prior to the Inspection, the Author
prepares the materials to the level specified in the Entrance Criteria (and to
guidelines detailed in the project development or coding standards). The moderator
examines the materials and, if they are adequately prepared, selects team members
and schedules the Inspection. (IBM lists these preparations as the Planning step.)
The Inspection begins with a short educational Overview session of the materials
presented by the author to the team. Between the overview and the first Inspection
session, Preparation of each Inspector by studying the materials occurs outside of
the meetings. In the actual Inspection sessions, the Reader paraphrases while the
Inspectors review the materials for defects; the Moderator directs the flow of the
meetings, ensures the team sticks only to problem finding, and records problems on
a Problem Report form along with the problem location. Checklists of frequent
types of problems for the type of software and type of Inspection are used during
the preparation and Inspections sessions as a reminder to look f o r significant or
critical problem areas. After the Inspection sessions, the moderator labels errors as
major or minor, tabulates the Inspection time and error statistics, groups major
errors by type, estimates the rework time, prepares the summaries, and gives the
error list to the author. The author Reworks the materials to correct problems on
the problem list. Follow-uD by the moderator (or re-inspection, if necessary) of the
problems ensures that all problems have been resolved.

In certain cases, a desk Inspection or "desk check" may be a more effective use of
time than a ful l Inspection. Desk Inspections differ f rom normal Inspections in
that during the preparation period each inspector individually records errors found
and a single Inspection session is held to resolve ambiguities in the problems. The
moderator compiles all collected error reports to produce a single report. All other
Inspection steps proceed normally. Desk Inspections can be appropriate for code or
design that the team is familiar with and that has already been through previous
Inspections. Desk Inspections do not have the group synergy generated during
"normal" Inspections. The SWTS Inspections database for FORTRAN code
Inspections indicates that the desk check has an 80% error detection rate but only
takes 40% of the time required of a ful l Inspection.

STATISTICS
The statistics captured f rom the Inspection and tabulated by the moderator consist
of time and error values. The time statistics are average per person preparation
time (excluding the author) and Inspections sessions meeting time, both normalized
to a thousand lines of code (KLOC). The error statistics a re the numbers of major
and minor errors detected, also normalized to a KLOC. As part of the tabulating
and summarizing process, error distributions of major errors by Checklist headings
are recorded and summarized for the Inspection as a whole. The tabulated statistics
are entered into a database as weighted averages by size in lines of design or code
and keyed by expected implementation language and type of Inspection. The SWTS
Inspections database currently contains almost 250 entries of data f o r FORTRAN
and Assembler languages for the Goals (Functional Requirements), Preliminary

G. Wenneson
Informatics General Corp
3 of 22

Design, Detailed Design, and Code (desk and non-desk check) types’ of Inspections
held on developed Wind Tunnel System software f rom 1980 through 1985. Over
half of the entries a re for code Inspections. Figure 1 contains summary figures
f rom the database. The database summaries provide guidelines f rom which general
conclusions and assumptions can be drawn. The database was generated as a
development and management tool f rom several related SWTS project’s Inspections
and not f rom tightly controlled experiments. As such, when comparing individual
Inspections figures to the database figures, variances f rom one-half to twice the
average amounts summarized from the database are not considered extraordinary.

STATISTICS USE
The Inspections statistics in their raw and weighted forms can be used by the
author, the design team and manager, the project manager, and Software
Engineering as feedback, feedforward, and control mechanisms f o r individual,
team, project and Inspections process behavior modification for fu ture work to
achieve better results. In addition, the statistics can be used in the current project
and for future work and projects for tracking, estimating, planning, and
scheduling of development and QA work.

The author uses the statistics to determine immediately what is deficient in
inspected design or code and, over the longer term, patterns and general problem
areas on which to focus attention for future work. The problem list, besides
providing a working list of detected problems, includes locations of what needs to
be fixed before the next development stage can proceed. Additionally, a
distribution of major errors by checklist category across each module provides
warning signals of error prone modules and high or higher density error rates by
error type. A history of high error rates of certain error types also provides a
pointer to design areas which need more work or training to develop or better
understand.

The programming team and manager use error distribution by type and module
from individual Inspections and Inspections of related software to locate common
problem areas and thus focus future work and communication to diminish these.
Error rates higher than normal for the group as a whole or error distributions in
particular areas may indicate a group misunderstanding or a misstatement of the
requirements. Higher error densities in modules interfacing to existing (or new)
software, for example, can alert and direct effor t to understanding the interface or
provide warning to another group to clarify or improve that interface. For the
designer and the team manager, lines of design (or lines of code, depending on
development stage) and complexity per module give immediate feedback for design
considerations of module size, cohesion, and coupling; this additionally provides a n
opportunity to ensure that modules a re not proliferating f rom one design stage to
the next. The completion of any individual Inspection along with module quantity
and sizing gives quantitative and qualitative feedback for validity of component
estimating, scheduling, and tracking information.

The Project Manager utilizes the statistics to help locate trends in various problem
categories and help the team improve performance through group meetings or
education. The statistics provide a quantitative evaluation of software correctness
and allow prediction, based on Inspections held, of error prone sections of design
or code, in order to concentrate development, QA, and testing resources on the most
important areas. Additionally, each Inspection’s results can be “validated” to ensure
proper procedures were followed and the results are legitimate as compared to the
project database. As a n example, for a FORTRAN detailed design inspection, time

G . Wenneson
Informatics General Corp
4 of 22

SUMMARY O F INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS ..

Type Total Total No DENSITY-OF-PROBS. TIME-PER-PERSON
of Number "Lines" Per 1000 Lines

Inspect'n Lang. Held Inspected Major Minor Total
-- ---
CODE - ALL Lang 94 51186 22.0 59.9 81.9

Only FORTRAN 90 49389 22.4 60.4 82.8
NON-DESK

ASSEMBLY 4 1797 10.1 44.5 54.6

CODE - ALL Lang 47 23206 21.0 51.3 72.3

FORTRAN 43 21308 19.1 48.1 67.2
DESK

ASSEMBLY 4 1898 42.6 87.6 130.3

DETAILED
DESIGN ALL Lang 44 10349 76.74 144.6 221.3

FORTRAN 40 9205 83.1 143.4 226.5

ASSEMBLY 4 1144 25.3 153.9 179.2

PRELIMINARY
DESIGN ALL Lang 43 13268 68.1 107.5 175.7

FORTRAN 41 12570 54.3 89.8 144.1

ASSEMBLY 2 698 316.6 426.8 743.4

Per 1000 Lines
Meet'g Prep'n Total

4.6

4.6

5.0

3.9

3.7

6.3

14.5

14.5

14.3

10.8

9.1

39.8

- -
4.0 8.7

4.1 8.7

2.6 7.7

- 3.9

- 3.7

- 6.3

9.8 24.3

9.2 23.7

14.4 28.7

5.4 16.1

5.5 14.6

3.7 43.6

This chart summarizes the statistics f rom Informatics inspections on the
NASA Ames SWTS project. The statistics a re weighted averages, each
inspection being weighted by its size, in lines of design or code.

Figure 1
SWTS Inspections Database Summaries

G. Wenneson
Informatics General Corp
5 of 22

guidelines a re 23 hrs/KLQD (Thousand Lines of Design) per person for
preparation plus meeting time and the team can expect to f ind 83 major and 143
minor problems per KLOD. Meeting times and error rates sipnificantlv different
should be examined to determine their cause. A trend toward increasing error rates
may mean that not enough attention is being directed to proper design. A
decreasing error rate may mean design is becoming more effective or, when
accompanied by decreasing preparation and meeting times, may mean Inspections
are becoming less effective.

The statistics a re also used to modify the Inspection process itself or its
application. At the beginning of the project, the entrance and exit criteria, the
checklists, and the methodology and standards a re specialized to the project's
particular development environment, languages, and review requirements. As
statistics are compiled, evaluations of the data may lead to modifications to the
entrance criteria to change the level of materials preparation, to the checklists to
alter the attention given to certain design or code areas, and to the project
standards to remove ambiguity or set new standards as necessary. Removing
software components f rom a n Inspection requirement or adding or deleting a n
Inspection as a quality gate a t a particular design stage to more optimally use
available time are options made more apparent by the statistics.

DATABASE ANALYSIS
Examination and analysis of the SWTS Inspection database indicate correlations
between preparation time, meeting time, inspection rate, and errors detected. These
correlations and others allow the overall Inspections procedures to be modified and
guidelines established for the optimal conduct of Inspections within a project.

For FORTRAN code Inspections, errors detected a re related to inspection rate
(LOC inspected per hour), f igure 2. Most sessions inspected code a t the rate of 100
to 300 LOC per hour and detected between 10 and 80 major errors/KLQC. When
the Inspection rate is too rapid, the error detection rate falls gradually. When the
Inspection rate is excessively slow, there is a wide range of error densities. For
excessively slow Inspection rates, we believe this wide range of error densities
results f rom Inspecting two types of materials: "Difficult Materials" where the
materials a re complex and require a slower Inspection rate to evaluate but result in
a normal to above normal error density; and "Poorly Prepared Materials" which
were not ready for Inspection, but were still inspected and thus generated a large
number of errors, were difficult to understand, and slow to inspect. The inspection
of "Poorly Prepared Materials" represent abnormal situations which the moderator
is supposed to prevent prior to scheduling or holding a n Inspection. To this end,
there a re also cut-off limits before and within the Inspection, if the Inspected
materials a re too hard to understand and/or are producing too many errors, that is,
they a re probably not ready to be Inspected, the Inspection is stopped and the
materials a re returned to the author to be properly prepared.

There is a linear correlation between inspection rate and preparation rate
(LOC/hr), f igure 3. Materials requiring a slower preparation rate also experience a
slower Inspection rate, and vice versa. We believe the correlating factor is
complexity of materials, more "difficult" code takes more inspector preparation
time and more inspection time (lower inspection rate).

G. Wenneson
Informatics General Corp
6 of 22

0
' R

t?

5 0 0 - 3

400-
A
I
I
0

8 300-
\
c
w 200-
!

f -
la, - I"

O*

0 I
3
0 0

O B

0

U

1 3 , , ::

Inspection Rate vs. heparation Rate
Mmnoticssmshspstid~

01) 'I

0.7 i
1 0.6

0
0

0
0

" I I I I I I I 1

0 0.2 0.4 0.6

wwy -A
O C o d O

Figure 3

3

Of any Inspection, we believe the Preliminary Design Inspection is the most
critical Inspection to hold, as i t helps f ind modularization errors, data definition
errors, and can help to emphasize software re-usability before unit development
begins. Based upon major error detection rate and translating preliminary and
detailed design lines of design (LOD) to implemented lines of code (LOC), the
preliminary design Inspection detects (and removes) a greater number of errors.
The translation from lines of design to lines of code is based on a development
methodology that requires a preliminary design modularization with logic
development where 1 LOD can eventually be coded by 15 to 20 LOC; detailed
design logic development is where 1 LOD can be coded by 3 to 10 LOC. Using
major errors normalized to estimated implemented LOC, the preliminary design
Inspection finds and fixes about 1000 errors per KLOC, the detailed design
Inspection locates about 600 errors per KLOC, while the code Inspection is least
effective by detecting a mere 20 errors per KLOC. Using the generally accepted
cost to repair of an order of magnitude for errors between successive development
steps fur ther emphasizes these figures for cost savings purposes: a few ounces of
prevention are worth pounds of cure. The SWTS environment uses walkthroughs
for reviewing functional requirements specifications; for environments that
uniformly use Structured Analysis to generate specifications, the Requirements
Specification Inspection would undoubtedly supercede the Preliminary Design
Inspection in importance.

Experience in performing Inspections is cumulative and if applied can have an
effect on the Inspections process. Over the first two years on the SWTS project,
the error rates were widely scattered. In the second year, a n examination of the
Inspections process resulted in changes in error definition, Inspections procedures,
and staff education. Consequently error rates dropped significantly and today
remain in a much smaller range.

CONCLUSION
Inspections a re not a panacea for Quality Assurance defect removal. They are
technical review procedures and may not be appropriate for some situations such

G. Wenneson
Informatics General Gorp
7 of 22

as those needing heavy user interaction (such as user interface definition). They
should be used in conjunction with (but probably not as a substitute for) military
PDR/CDR large reviews. In appropriate situations, they have been proven to be
effective and efficient error detection methods which have extremely important
and beneficial "side effects" of accurate planning, scheduling, a n d tracking for
project management and control. The primary effect of Inspections is to move
error detection and correction to the earlier (and less costly) development stages. As
such, this front-loads the project schedule, but the time is more than recovered
during the coding and implementation phases. Consequently, Inspections usage on a
project requires proper education, scheduling, and implementation and should not
be used on schedule driven projects where the customer understands only two
development phases: c'ode and test.

At NASA Ames, based on experience gained using the original IBM model on pilot
projects, Inspections have been modified and specialized for numerous projects,
development phases, and environments. At Ames, Inspections are expected to play
an increasingly major role as a Quality Assurance tool in software development.
Some of the directions this can be expected to take are expansion to cover new
software languages, incorporation of new structured development methodologies,
and modification of the methodologies for the Ames environment based on
information gained during Inspections of software developed using those
methodologies. Inspections a re a significant Quality Assurance tool in their own
right and flexible enough to be integrated and implemented with other tools,
especially defect prevention, to provide a comprehensive Quality Assurance
environment to approach zero defect products.

REFERENCES
1. M.E.Fagan, "Design and Code Inspections to Reduce Errors in Program

Development", IBM Systems Journal, Vol.15 No.3, 1976
(This article can be ordered as a reprint, order no. G321-5033)

Guidelines", Installation Management Manual GC20-2000-0, IBM Corporation,
1977

3. "Guidelines for Software Inspections", NASA Contractor Report 166521, August
1983, NASA Ames Research Center, Moffett Field, Calif. 94035

2. "Inspections in Application Development - Introduction and Implementation

G. Wenneson
Informatics General Corp
8 of 22

THE VIEWGRAPH MATERIALS

for the

G. WENNESON PRESENTATION FOLLOW

6. Wenneson
Informatics General Corp
9 of 22

SOFTWARE INSPECTIONS A T NASA AMES

METRICS FOR

FEEDBACK

AND

MODIFICATION

GREG WENNESON

INFORMATICS GENERAL CORPORATION

G . Wenneson
Informatics General Corp
10 of 22

WHAT THEY ARE (AND ARE NOT)

INSPECTIONS :

FORMAL REVIEW PROCEDURES

FOR ERROR DETECTION ONLY

DEFINED TEAM MEMBER ROLES

SPECIFICALLY DEFINED TOOLS

HELD AT SELECTED POINTS IN DEVELOPMENT CYCLE

DEFINED INPUT

DEFINED OUTPUT

INSPECTIONS ARE NOT :

DESIGN SESSIONS
WALKTHROUGHS
EVALUATIONS OF THE AUTHOR

RUBBER STAMP PROCEDURES

G . Wenneson
Informatics General Corp
11 of 22

HISTORY

AT IBM

MIKE FAGIN, PUBLISHED - 1976
ALSO - O.R.KOHL1, R.R.LARSON, R.A.RADICE

FORMAL GUIDELINES - 1977, 1978

PRODUCTIVITY GAIN 23%

ERROR DETECTION 82%

ERROR REDUCTION 38%

AT NASA AMES

PILOT PROJECTS BY INFORMATICS - 1979
(ALSO COMMERCIAL PILOT PROJECTS)

STANDARDIZED WIND TUNNEL SYSTEM (SWTS)

PRODUCTIVITY GAIN 40%*

ERROR DETECTION 90%*

ERROR REDUCTION 40%*
(* - INCLUDES MAJOR METHODOLOGY CHANGES)

NOW USED ON MOST INFORMATICS AMES PROJECTS

G. Wenneson
Informatics General Corp
12 of 22

INSPECTION COMPONENTS

DEFINED TOOLS

STANDARDS
CRITERIA FOR MATERIALS PREPARATION

CHECKLISTS FOR ERRORS

EXIT CRITERIA
WRITTEN RECORDS AND STATISTICS

TEAM MEMBERS
MODERATOR

READER

INSPECTORS

AUTHOR

INSPECTION PROCESS
TEAM SELECTION (PLANNING)

OVERVIEW
PREPARATION

INSPECTIONS SESSIONS DESK INSPECTION

REWORK

FOLLOW-UP

G. Wenneson
Informatics General Corp
13 of 22

PROBLEM AND STATISTICS RECORDING

PROBLEM RECORDING

MODULE INSPECTION PROBLEM REPORT
"GENERAL" PROBLEMS REPORT

PROBLEM STATISTICS
MODULE PROBLEM SUMMARY

MODULE TIME AND DISPOSITION REPORT

INSPECTION STATISTICS
INSPECTOR TIME REPORT

INSPECTION GENERAL SUMMARY

OUTLINE OF REWORK SCHEDULE

G. Wenneson
Informatics General Corp
14 of 22

INSPECTIONS DATA BASE FOR SWTS

- SUMMARIES -

Inspect'n Lang. Held Inspected Major Minor Total

CODE - ALL Lang 94 51186 22.0 59.9 81.9

Only FORTRAN 90 49389 22.4 60.4 82.8

NON-DESK

ASSEMBLY 4 1797 10.1 44.5 54.6

CODE - ALL Lang 47 23206 21.0 51.3 72.3

FORTRAN 43 21308 19.1 48.1 67.2
DESK

ASSEMBLY 4 1898 42.6 87.6 130.3

DETAILED
DESIGN ALL Lang 44 10349 76.74 144.6 221.3

FORTRAN 40 9205 83.1 143.4 226.5

ASSEMBLY 4 1144 25.3 153.9 179.2

PRELIMINARY
DESIGN ALL Lang 43 13268 68.1 107.5 175.7

FORTRAN 41 12570 54.3 89.8 144.1

ASSEMBLY 2 698 316.6 426.8 743.4

Per Thousand Lines
Meet'g Prep'n Total
-
4.6

4.6

5.0

3.9

3.7

6.3

14.5

14.5

14.3

10.8

9.1

39.8

- -
4.0 8.7

4.1 8.7

2.6 7.7

0.0 3.9

0.0 3.7

0.0 6.3

9.8 24.3

9.2 23.7

14.4 28.7

5.4 16.1

5.5 14.6

3.7 43.6

This chart summarizes the statistics f rom Informatics inspections on the
NASA Ames SWTS project. The statistics a re weighted averages, each
inspection being weighted by its size, in lines of design or code.

G . Wenneson
Informatics General Corp
15 of 22

STATISTICS USE

AUTHOR

PROBLEM REPORTS

MODULE PROBLEM SUMMARY

PREVIOUS INSPECTION STATISTICS

DESIGN TEAM AND MANAGER

PROBLEM REPORTS

MODULE PROBLEM SUMMARY

OUTLINE OF REWORK SCHEDULE

MODULE TIME AND DISPOSITION

INSPECTION GENERAL SUMMARY

PREVIOUS INSPECTION STATISTICS

PROJECT MANAGER; TEST GROUP; QA GROUP

MODULE PROBLEM SUMMARY

INSPECTION GENERAL SUMMARY

PREVIOUS INSPECTION STATISTICS

SOFTWARE ENGINEERING

MODULE PROBLEM SUMMARY

INSPECTION GENERAL SUMMARY

PREVIOUS INSPECTION STATISTICS

G. Wenneson
Informatics General C o p
16 of 22

CODE 1NSPECTlON SUMMARIES

NEW FORTRAN CODE, MODIFICATIONS, AND BOTH

SUMMARY O F INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS

Type Total Total No DENSITY-OF-PROBLEMS TIME-PER-PERSON
of Number “Lines“ Per Thousand Lines Per Thousand Lines

Inspect’n Lang. Held Inspected Major Minor Total Meet’g Prep’n Total

CODE - NON-DESKCHECK
FORTRAN 90

/New 46

/Mods 13

/Both 31

CODE - DESK CHECK

FORTRAN 43

/New 8

/Both 25

/Mods 10

49389

25981

7019

16389

21308

4121

14453

2734

-

22.4

26.3

17.2

18.5

19.1

26.3

18.6

10.6

--

60.4

68.3

42.4

55.6

48.1

51.7

50.1

32.2

82.8 4.6

94.6 5.5

59.6 3.0

74.1 3.9

67.2 3.7

7 8.0 4.9

68.7 3.4

42.8 3.8

-

4.1

4.9

3.2

3.3

0.0

0.0

0.0

0.0

-

8.7

10.3

6.2

7.2

3.7

4.9

3.4

3.8

This char t summarizes the statistics f rom Informatics inspections on the
NASA Ames SWTS projcct. The statistics are weighted averages, each
inspection being weighted by its size, i n lines of design or code.

G. Wenneson
Informatics General Corp
17 of 22

INSPECTIONS DATA BASE

"MAJOR" PROBLEM DISTRIBUTION, BY PERCENT

PRELIMINARY DESIGN

Category FORTRAN ASSEMBLER
SPECIFICATION 10% 13%
CLARIFICATION 17 1
DATA 18 21
LOGIC 21 21
I/F 5 20
LINKAGES 20
PERFORMANCE 4 3

DETAILED DESIGN

DETAIL 9
LOGIC 29
DATA 20
LINKAGES 22
RETURN CODES 5

CODE

FUNCTIONALITY 9
DATA 19
CONTROL 18
LINKAGES 24
READABILITY 17
REG. USE

29
66
1
1

4
37
22
23
2

12

G. Wenneson
Informatics General Corp
18 of 22

PREVIOUS INSPECTIONS EFFECT ON MAJOR ERROR RATES

STAGE OF
DEVELOPMENT

CODE NON-DESK

CODE DESK

DETAIL DESIGN

PRELIM. DESIGN

NUMBER OF PREVIOUS INSPECTIONS
0 1 2 3

17.7 30 32.6 38

15.1 27 30 21

95 79 54 -
58 45.6 - -

Major Errors Per KLOC

AND ON PREPARATION AND MEETING TIME

STAGE OF
DEVELOPMENT

NUMBER OF PREVIOUS INSPECTIONS
0 1 2 3

CODE NON-DESK 8.2 9.2 9.1 10

CODE DESK 4 3.2 3.5 2.5

DETAIL DESIGN 27.7 23.0 9.5

PRELIM. DESIGN 14.7 14.4 - -
HOURS of Preparation plus Meeting time Per KLOC

G. Wenneson
Informatics General Corp
19 of 22

INSPECTIONS RATE AND PREPARATION TIME RELATIONSHIP

An importont area of consideration is the amount of preparation time
required in order to allow the participants to proceed at a reasonable
ra te in .the inspection meeting. The graph below, based on the individual
inspections to date, suggests that preparation times of 4-7 hours per I,OOO
lines m y allow the team to proceed at an optimum rate in the meetings.
Less preparation time will cause the meeting to slow down because of
poor wnderstonding and rmny questions, More preparation time m y hove
a negative impact on the rate because of over-emphasizing minor problems
or discussing the functionality or goals during code or design inspections.

UPPER AND LOWER RANGES OF RATES ACHIEVED
I N INSPECTIONS WITH VARIOUS

PREPARATION TIMES

1 2 3 4 5 6 7 0 9

Preparation Time
(Hours Per Person Per Thousand Lines)

G. Wenneson
Informatics General Corp
20 of 22

INSPECTIONS AS A PROJECT COORDINATION TOOL

INSPECTIONS CAN INTEGRATE THE FOUR MAJOR PROJECT FACTORS

PROJECT MANAGEMENT

METHODOLOGY

QUALITY ASSURANCE

STAFF PERFORMANCE

THRU:

REINFORCEMENT O F METHODOLOGY AND STANDARDS

MAJOR MILESTONE TRACKING INFORMATION MATCHING WBS

DETAILED TRACKING AND ESTIMATING INFORMATION MATCHING WBS

DETAILED ERROR AND DESIGN NEEDS AT EACH DEVELOPMENT STAGE

EASY EXTRACTION OF TECHNICAL INFORMATION ABOUT COMPONENTS

INDICATIONS OF TRAINING AREAS NEEDING ATTENTION ACROSS THE

PROJECT

INDICATIONS DIRECTLY T O INDIVIDUAL STAFF MEMBERS OF THEIR

TRAINING NEEDS

G. Wenneson
Informatics General Corp
21 of 22

ALMOST THE END

CAUTIONS

DOESN’T SUBSTITUTE FOR THINKING

MUST BE SCHEDULED AT BEGINNING - CAN’T BE “TACKED” ON

PARTICIPANTS MUST BE PROPERLY TRAINED

NEED CUSTOMER UNDERSTANDING AND SUPPORT

MANAGEMENT DIRECTION AND SUPPORT CRUCIAL

STATISTICS ARE FOR BETTER SOFTWARE AND MANAGEMENT,

NOT A NUMBERS EXERCISE

WHERE TO GO FROM HERE

EXPAND TO NEW LANGUAGES AND DESIGN TECHNIQUES

EXPAND TO NEW METHODOLOGIES AND SUPPORT TOOLS

FEEDBACK T O CURRENT METHODOLOGIES

EXPAND TO OTHER APPLICABLE COMPANY/CONTRACT AREAS

G. Wenneson
Informatics General Corp
22 of 22

PANEL #3

SOFTWARE ENVIRONMENTS

C. Gill, Boeing Computer Services
A. Reedy, Planning Research Corporation
L. Baker, TRW Defense Systems Group

The Carnzgie Group I n c o r p o r a t e d
(CGf) and t h e Boeing Computer
S e r v i c e s Company (ECE) arc
j o i n t l y developing a knawfedge
based so f tware e n g i n e e r i n g

of t h i s m u l t i - p a r expe r imen t is
t o bemonstratiz dramat ic
improvfments i n s o f t w a r e
p r o d u c t i v i t y by a p p l y i n g

t e r h f i i q u e s t o the s o f t w a r e
development prac=ss* T ~ E
r e s n f t a n t envi ronment w i l l
p r o v i d e a framework i n which

engineering toofr; can b2
integrated with A I based tocl B

t o prom&e se-ftware d e v e l o p r n ~ n t
automat i on.

en'VirGnm€Tkt tE5thEd.. fhS EJC!af

~ r t i f ic ial r r ; t f f I i g e n r e (AI I

CSnVSRtiGnSl 5 G # t W & T f

T h e o b j e c t i v e s OS t h e t e s t b e d
are:

0

0

f3

G

to d m m n s t r a t e t k i n t e g r a t i o n

system t h a t improvfs both t h e
sof h a r e development prcreEis.

s ;of tware being develrspad;

of n u a t i p l f t e c h n i q u e 5 f o r a

and t h e q u a l i t y a-f t h e

tr, d e t f r i x i n e , through

tEchnoBogy;

e x p e r i m e n t a t i o n , thst benefits
that may r e s u l t f rom pi1

t G evaf u a t e al t e r n a t i VE
f tinc t f a n a.1 i mpf s n e n t a t i ons ;
and

The pr imary e m p h a ~ i ~ a+ t h e
t e s t b e d is on t h e t r a n s S e r af
r e l e v a n t A I technokogy t~ t h e

The appraaczh being used is t w o -
f o l d :

0 tc e x p f a r e the USQ of A I tools
and t e c h n i q u e s fm- a s o f t w a r e
e n g i n e e r i n g envi ronment
f r a m e w c - r k ; and

o t o explm-e t h e iise of A I tzols
and t e c h n i q u e s f o r s p e c i f i c
sobtwai -e enginefring tools;.

The envi ranment wi 1 l p r o v i d e
f u n c t i o n a l i t y f o ~ P r o j e c t
Manageser~t , Sof tsrare D e v e l q m e n t
Suppor t and Canfiguraticn/Change
Managesent t h roughou t ths
zofteiare l i f e c y c l e . For
puri;oses e+ the ~ x p e r i m e n t s , the
devefopmect envi ronment is
ccnsiderfd to have tk-efl
diaensions: t h e functioria!. a r ~ i i 5
mentiGnPd above, t h e liie c y c l e
phases, and a dimEnsion of
p o t E R t i a f A I techniques. These
patent ia l t..&niqc;es can be
groliped i r r t G three najor
cstegor; A f S :

knowledge r e p r e s e n t z i t i o n ,
w h i c h d e a l s w i t h rnode?ir;g
s o f t w a r e p r a j e c t concepts a d
I i n k ;

in+erer;c= n~chanisnr, cishich
deal w i t h t h e ways t h i s
knowledge c a n D e u s 4 t o 5oIve
usEr development prnbfemc,; and

k n o d edge based i n t e r f bce,

d i s p l a y , E x p l a n a t i o n , and
i n t e r a c t i o n w i t h t h e tiser.

which d e a l s w i t h intelliqent

F i g u r e 1 i l l u s t r a t m r the three
dimensicfif; af t h e esper-imtsnt.

C. Gill
Boeing Computer Service
1 of 10

Sta%.L!.Z i3 used gaaf-directid r e a s s n i f i g

W e have proceeded i n a breadth- a p p r a p r i a t f n e s s 03 a s G f tware
f i r s t refiner, pErforming conf i g u r a t i o n ; azd
sxperimentr in each c ~ f f of thtz

tG evaluatSI t h e

m a t r i x i n F i g u r e 1 rather than Ct dSrnCKlStrak=d knG%f Edgf bdZ€!r?
ccncentratinq on any p a r t i c u l a r graphics by c o n v e r t i n g
cefi. Dtrr i f ig t h f first year of: sof tware p r i f i i t i v e s ta foe4
t h e p r a j e t t CGI haz: l e v e l g r q b i c primitiver.

0

0

0

0

Q

c r e s t e d a mudel of s d t n a r e FSLanc?
develapment by r e p r e s m t i n g
softwarf activities; P l a n s fa- the n e x t phase inclgde

deve loped a m a , d ~ t . i l ~ rzrnaining cells a+ t h e F i g u r e 1
representati~n f o r m a i i - , m to matrix a l~t - ig with s c l m ~
s p e c i f y the behavior and additional general F;I
Btructurf US 5.0f tnare okiferts; e x p e r i m e n t s i n c l u d i n g :

c o m p l e t i n g experiments i n the

i n t e g r a t e d the m ~ d e f w i t h t h e o us2 of knawfiedge ba5s6
formalism to identify shared simulations ta perfarm rapid
r e p r e s s n t a t i o n an& i n h e r i t a n c e prototyping or- t r t t r y
neihanisms a l t e r n a t i v e p r n f e c t scheduler;

d e m o n s t r a t e d c-bj f r t

p r u c ~ d ~ w ~ s and applying them

p r o p a g a t i n g changes i n a
d e ~ e l opment systam5 ;

prGqramming by w r i t i n g

tG - ,aftware objfcrtf (e . g . 5

o GSEL o.f a bl=ckb.oa;-b
architecture to permit
 expert^;" ta confer with each
o t h s r to e , o l v ~ problem-,; and

o t.is~t of d i s t r i b u t e d prmzesc ing
t h a t would permi t s e p a r a t e

to them by tithers.
Sys t fms tc; act Lipon gas:= 5jELFit

C. Gill
Boeing Computer Service

AREASW EFFOm

FIGURE 1: ENVtRONMENT FUNCTIONALITY of

THE VIEWGRAPH MATERIALS

for the

C. GILL PRESENTATION FOLLOW

C. Gill
Boeing Computer Service
3 of 10

z
W
W z

cn
C
cu
0

.I

m

mi a

a

3
2
2

I
I-
2
I-
W

C. Gill

)r
C
(0

2
0
V
211
E
a
0
m

.-

r‘

n

al

w+
0
U

.-
L

Boeing Computer Service
4 of 10

s
Iss,

c3;r m
c a

m L a
VI a

C C
c3;r c
Lu

..I
+
L
.c1

.I E a
m aJ

a
3
L

CI

C
*- I I
0
T

U a
U a a
C
c

0 0 0 0

e m

C. Gill
Boeing Computer Service
5 of 10

CJI c
aJ a c

.I

L

.I

0 c
W

.I - e e m

aJ
9
a c
.I

E

n

L

+ a a

e

In
VI a
U
0
k

E

c, c aJ
e
0
a > a
'D
aJ

-.I

L m
3 + +
VI
0

c
C

.I

w

E
aJ >
0
2
E
.I

aJ
(0

c
0
E aJ
P
e

w
L
w
VI

c
c a

.I

clr

E
aJ >
0
L
II
E
.I

a
m

c
0

w
L
w
VI

E
2
e

c
0

m
c aJ

.I +
c,

E
.I

L a e
x
aJ
L

w-
0

Q
0
a >
-
2
e

C. Gill
Boeing Computer Service
6 of 10

>

cn
Ill

(0
rT

.-
-
6

t m
aJ
.-
cn

a

C. Gill
Boeing Computer Service
7 of 10

c
0

m
c a
a
e a
a
=I =
0

.- *
*
VI
L

L

-

m c
..I

E
E m
En
0
L e
.c,
U a
9

L

9-

0
0

m
C
C
0
VI
(0 a

"CJ a *
U a

.I

L

L .-
-a
a
0
(3

I -

0

m
U

s a rn
cn

.I

L

-a a
m
9

QI
-a a

0 c x

VI

d,

3
-

C. Gill
Boeing Computer Service
8 of 10

c
0

m
.I
+3

-..

.I

VI
w c

"0 aJ
a
9

m

VI

dr
U
aJ

0 c
4!

-
3

0

0 c
VI
VI
a,
W
0
Q.
U a
=I
9

.I

L

+3

..I

L
+.r
VI .- n
a

C. Gill
Boeing Computer Service
9 of 10

S

8

aJ
VI .-
E
0
Q

S
0

i;c3 c aJ
aJ

L

VI

E
;=
a

aJ rn
10
aJ > aJ
A

L

a

VI
CI
U
aJ
0

*-

L
Q -
Q aJ
C
0
Q,

3
0

U
aJ
Q, z

L

VI

+J

0

C. Gill
Boeing Computer Service
10 of 10

Experience w i th a Software Engineering Env ironment Franework

by
R. Blunberg, A. Reedy, and E. Yodis

PI ann i ng Research Cor pora t i on

1 .O In t roduct ion

Th is paper describes PRCfs experience to date w i t h a software engineering
env ironment f ranework too l cal I ed t h e A u t p a t e d Product Control
Environment (A P E) . The paper presents t h e goals of t h e franework
design, an overview of the major func t ions and features of t h e franework,
a summary of APE use t o date, and t h e r e s u l t s and lessons learned fran
the imp1 m e n t a t i o n and use of the f ranework. Concl usions are drawn f r a n
these r e s u l t s and t h e franework approach i s b r i e f l y compared t o other
sof h a r e devel opment environment approaches.

2.0 Franework Goals

The A P E was developed t o reduce software I i f e c y c l e costs.
taken was t o increase autanat ion of t h e software I I f e c y c l e process and
thereby t o increase product iv i t y .
reduct ion coul d be achieved for the shor t term by attack1 ng th ree major
probl an areas:

The approach

It was f e l t t h a t maximum cost

o autanat ion of labor in tens ive but rou t ine admin ls t ra t i ve tasks

o prov l s ion o f an overal I control , coordination, and enforcement
f ranework and I nf ormati on reposl t o r y for ex1 s t I ng t o o l s

o prov is ion for maximun franework p o r t a b i l i ty , d i s t r i b u t a b i l 19,
and data 1 nteroperabi I ity wi th the bounds of perf wmance constral n t s

A d i s t i n c t i o n was made between t o o l s and t h e environnent. In t h e PRC
view, t o o l s a r e a c t i v e e l m e n t s I n t h e software 1 l f e c y c l e process. They
create a- modify (document or software) components, t e s t components, or
order the execution of groups of t o o l s upon components. The environnent
or franework, on t h e other hand, i s a more passive element. It provides
fa- w e r a l I control, coordination, and enforcement and ac ts as an
informat ion reposi tory. Th is d i s t i n c t i o n is important because it serves
t o separate environment a- franework issues f ran too l issues. PRC wanted
t o b u i l d a franework which could incorporate e x i s t i n g too ls . In t h i s
way, PRC could b u i l d on t h e exce l len t work done by others i n t h e tool
arena I n a t imely fashion.

A Reedy
Planning Research Corp
1 of 25

3 . 0 APCE Overview

The APCE prov ides autanat i on for:

o real- t ime pro jec t status t r a c k i n g and r e p o r t i ng

o conf i gu ra t i on management of software, documentation, and t e s t
procedures

o requirements t raceabf l ity and change impact t raceab i l ity

o t e s t bed generation, component integrat ion, and system
I ntegra t i on

A b r i e f averview of hcu the APE i s organized t o support these funct ions
and hcu the A P E i s designed t o support por tab i l i t y , d i s t r i b u t a b i l i ty,
and in teroperabi l ity i s given below.

3.1 Autmat ion and Control

As suggested by Stoneman [l], a database provides t h e i n teg ra t i ng
mechanism for the environment franework.
i ncorporates a f I ex i b l e model of the software devel opnent process.
Pro ject d e f i n i t i o n informat ion based on t h i s model is entered i n t o the
database dur ing p ro jec t i n i t i a l ization, and t h i s in format ion i s used t o
cont ro l the p ro jec t and provide the bas is for autanated t r a c k i n g and
conf igura t ion management. The pro jec t def I n i t i o n i s d iv ided I n t o th ree
components as II lus t ra ted i n S I ide 3 (APE E n t i t i e s) .

The database design

User groups are i d e n t i f led as managers, developers (those who create
products), or testers; mu1 ti pl e ro t es a re a l I wed. The organizat ional
hierarchy i s a l so described so t h a t p ro jec t problem repor ts can be
autanat ical l y forwarded up t h e chain o f command i f they are not pranpt ly
dea l t with. Products, both documents and software, are described
i n terms of ~ e l r component s t ruc tu re and are associated w i th software
I l f ecyc le phases which are a lso entered i n t o t h e APE database. SI ide 4
(APE - DOD Documentation and Review Sequence) il I ust rates t h e I i fecyc l e
phases as speci f led i n M i I -Std 2167.

The leve ls o f In tegra t ion describe the hierarchy of the t e s t and
i ntegra t lon processes t h a t a l I products (documents o r y f h u a r e) must go
through.
standards and qual i t y assurance.
t e s t prodedures developed by t h e t e s t e r s t o autanat ical l y create t e s t i n g
basel ines and t e s t harnesses as requlred.

This t e s t i n g process a l Icus for the enforcement of p ro jec t
The APE uses t h e product s t ruc tu re and

A Reedy
Planning Research Corp
2 of 25

3.2 Portab i l i ty , D i s t r i b u t a b i l i ty , and ln teroperabi l ity

The APCE approach t o support for po r tab i l ity, d i s t r i b u t a b i l lty, and
in teroperabf l i t y i s based on th ree arch i tec tu ra l features:

o APE Inter face Set (A I S)

o data-coup1 ed design

o open system arch i tec tu re

These features a r e 11 l us t ra ted i n Figure 1 (APE S t a t i c V i e w) , which
shaws t h e APE as p a r t of a Software Engineering Environment (SEE).

The APE subsystems and data management capabil I t i e s depend on a standard
s e t of in ter faces t o system services ca l l ed t h e AIS. These In ter faces
def ine a Stoneman KernaI AdaQ Progrmmlng Support Env ironment (KAPSE) I ike
layer for por tab i l ity purposes.
operat ing system services. If the needed level of support i s not
d i r e c t l y avai l able fran the host operat ing system, then an e x t r a layer
of software Is created t o sa t l s f y the requiranent. Ex i s t i ng operat ing
system services a re not dupl icated. The A I S I s no t based on an imp1 i c i t
model l i k e the Common APSE Interface Set (CAIS) [2].

The A I S al laws a mapping t o e x i s t i n g

The data-coupled design provides for both control and d i s t r i b u t a b i l i t y .
A I I pro jec t informat ion i s stored I n t h e f rmework database. The
database cont ro ls t h e a c t i v i t i e s o f t he A P E funct ional subsystems since
they do not in te r face d i r e c t l y but i n te rac t through the database. Users
do not d i r e c t l y manipulate the database; they a f f e c t t h e database
contents i n d i r e c t l y through in te rac t i on w i th the funct ional Subsystems.
The database i s designed t o minimize Informat ion exchange, so data i s
d i s t r i b u t a b l e (wi thout rep1 ica t ion) . The funct ional subsystems a re a lso
d i s t r i b u t a b l e since they are control l ed by t h e database contents. The
database design i s cont ro led by the f rmework and hidden fran the users.
Thus, integr ity and i nteroperabi I i t y of data i s ensured.

The open system arch i tec tu re approach means t h a t t he APCE a
of ex1 s t i ng host t oo l s, lnc l ud i ng management schedul ing and
too ls . The A P E does not in te r face d i r e c t l y wi th the t o o l s
cont ro ls t o o l invocat ion and t h e too l products. Both e x i s t
t o o l s can be used w i t h i n t h e APE f rmework wi thout a l t e r a t

laws t h e use
cost I ng
but ra ther
ng and f u t u r e
ons.

4.0 Results

The APCE has been used on a va r ie t y of in-house and c l i en t p ro jec ts over
the past 21 months. It has been used In-house a t PRC t o support
proposal and document production as we1 I as software development and
I I fecyc l e mal ntenance projects. The f rmewcrk has a l so been ins ta l I ed
for Army, Navy, and A i r Force c l ients. In one example c l i e n t
I ns ta l l a t i on , A P E features were used t o b r i ng a software system under
conf igura t ion contro l for a Navy software support a c t i v I t y . The

A Reedy
Planning Research Corp
3 of 25

APCE NO INTERFACE
ACROSS THIS LINE

URE 1: APCE TATlC VIEW

c -1>
A Reedy
Planning Research C o p
4 of 25

The f u l I p r o j e c t team for Pro ject 1 consisted o f 9 persons, inc l uding a
manager, 2 computer system sc ien t is ts , 1 system analyst, 1 analyst, and 4
associate analyst/programmers. Two of the associate analyst/progrmmers
acted as t h e t e s t team. A l l of t h e other team members, except t h e
manager, functioned as APCE developers. The senior s t a f f members were
q u i t e experienced w i t h 10 t o 15 years experience each. The j u n i o r s ta f f
members were a l I new col lege graduates w i t h no commercial progranming
experience and no V P X experience. The APE al lawed a l I personnel t o be
extremely product ive despi te t h e i r learn lng curve w i t h a new machine and
a new env ironment.

4.2 Cost/Benef It Analysis

PRC has conducted a cost/benef i t s ana lys is o f APE use fa- one of our
cl ients. This c l l en t needed conf igura t ion management and I i fecyc l e
maintenance control for mission c r i t i c a l software. PRC developed plans
for both a manual and a APCE contro l I ed development support f a c l l i t y and
plans for t r a n s i t i o n s t o these f a c i l i t i e s . A est imat ion of both
t h e t r a n s i t i o n costs and t h e annual recur r ing resource costs was
performed for both f a c i l i t i es . The r e s u l t s o f the analys is a re given on
SI ides 6 (Level of E f f o r t Analysis) and 7 (Cumulative Cost Comparison).

The estimated t imes for t r a n s i t i o n t o both the manual and t h e A P E
control led f a c i l i t l e s were t h e same (3 months). The a c t i v i t i e s involved
i n t h e t r a n s i t i o n per iod invo lve t h e establ ishmsnt and implementation o f
pol i c i e s and procedures and, i n t h e case of the APCE contro l led f a c l l i t y ,
t h e i ns ta l I a t i o n of software and t r a i ning. As shown on S I ide 6 (Level of
E f f o r t Analysis), the cost for t r a n s l t i o n i n t e r n s of e f f o r t was
SI i gh t l y more for the APCE c o n t r o l l e d f a c i l ity. However, t h e t o t a l labor
months requ i red fa- the f l r s t year and f o l l o w Ing years were very much
I ess for the APCE contro l led f a c i l i t i es .

SI ide 7 (Cumulative Cost Comparison) shows t h e t o t a l cumulative costs o f
t h e two f a c i l i t i e s pro jected over a two year period. The larger i n i t i a l
costs for fhe APE contro l l e d f a c i l ity i s caused by t h e A P E I icensing
fees.
t h e APCE control led . f a c i l ity a f t e r seven months (4 months a f t e r
t r a n s i t l o n) .
t h e increased autanat ion of the control , tracking, and conf igura t ion
management functions. The estimates d id no t i nc l ude cos t sav lngs due t o
I ncreased praduct iv l t y of devel opers and testers.

The cumul a t i v e costs o f t h e manual fac l I ity surpass t h e costs o f

The cost savings achieved by the A P E f a c l l i t y are due t o

4.3 Por tab i l ity

The f rmework has proven very easy t o rehost. Par t of t h i s ease I s due
t o the design features o f the A I S and p a r t i s due t o r i g i d enforcement of
coding standards for the t ranspor tab le por t ions of the APE. To rehost
t h e APCE on a new machine, al I t h a t i s necessary i s t o reimplement t h e
A I S functions. The APE t ranspor tab le subsystems have been w r i t t e n i n C
using coding standards designed t o e l iminate use of %on-standardI1
features o f the language. The C progranming language was o r g i n a l l y

A Reedv
Planning Research Corp
5 of 25

franework i s now being used t o continue control throughout t h e
mal ntenance cycle, inc l udi ng t h e Incorporat ion of modul e upgrades
suppl led by other contractors. These var ious appl fcat lons of the
f ranework have r e s u l t e d I n rehos t i ng of t h e APE t o a v a r i e t y of
d i f f e r e n t hardware conf iguratlons.
a l lowed PRC t o col le& t h e data on productiv Ity, t ranspor tab i l ity, and
d i s t r i b u t a b i l ity presented below.

This experience i n using t h e A P E has

4.1 Produc t iv i t y

A t t h e National Security Indus t r ia l Associat ion (NSIA) DOD/lndustry
Software Technology for Adaptable, Re1 i a b l e Systems (STARS) Progran
Conference i n Apr i l 1984 [3, pg. L-211, t h e NSIA Industry Sfudy Task
Group repor ted t h a t t h e average produc t iv i t y for U.S. software
development p ro jec ts was 200 I ines o f code per labor month. This works
ou t t o a I i t t l e over 10 I ines per day.
APCE control , PRC has recorded product iv Ity In excess o f 120 I lnes per
day. SI ide 5 (Example Pro jects) g ives t h e produc t iv i t y f igures col lected
for th ree PRC in-house pro jec ts under APCE contro l (CI fent p ro jec ts are
not f a r enough at ong t o r e p o r t mean1 ngf ul product iv Ity f Igures. 1
Product iv i t y i n these three pro jec ts was an order of magnitude greater
t h a t the average repor ted for industry as a whole.

On unclassi f led pro jec ts w i t h

A I I of the repor ted p r o j e c t s used a high level programing I anguage
(HOL). Project 1 was t h e i n i t i a l development of a sofhuare system. This
system has been mal n t a i ned under APE contro l
Pro ject 1 r e f l e c t only t h e developers' labor and do not count t ime for
t h e manager cr the t e s t e r s (who basical l y functioned as Qual Ity Assurance
personnel 1. Productiv ity dur i ng upgrades was equival ent or b e t t e r than
t h a t exper ienced dur I ng t h e i n l ti al devel opment.
Pro ject 1 are given below. Pro ject 2 was an upgrade t o an e x i s t i n g
system under APCE contro l . This upgrade inc l uded f u l I documentation.
Pro ject 3 was a prototyp ing a c t i v i t y , and i s somewhat a typ ica l since only
p a r t i a l documentation (e.g., no fcrmal users manual 1 was produced. The
f igures given for Pro jec t 2 and Pro jec t 3 inc l ude the tes te rs r time.
These pro jec ts were m a l I, so t h e same personnel functioned as both
devel opers and testers .

The f lgures given for

Further detai I s o f

Pro ject 1 was a f o u r month pro jec t t o develop system software i n t h e C
programming language. The development host was a V A X 11/780 and t h e non-
APCE t o o l s used are commercial l y avai l ab le for the VAX. The pro jec t
products I ncl uded: System Engi neer I ng PI an, Acceptance Test PI an,
Functional Description, R e 1 iminary Design Speci f icat ion, Deta i led
Specif i c a t l o n (22,000 I ines of Ada PDL), Operators Manual, and Users
Guide i n a d d i t i o n t o 58,297 I ines of source code. In addit ion, 660 t e s t
procedures were developed and used t o t e s t t h e components o f t h e
products. (The t e s t procedure development and t e s t t ime i s no t Included
i n t h e product iv i t y f igures given for Pro ject 1 . I Sane of these t e s t
procedures were used t o enforce the pro jec t speci f IC coding and PDL
standards .

A Reedy
Planning Research Corp
6 of 25

chosen because it was avai I ab1 e on a w ide range of host machines.
However, It has caused some problems because there are no standards for
C. In t h e process o f transport ing, some features of C t h a t were assuned
t o be commonly implemented turned ou t t o be system specif ic.
vers ion of t h e t ranspor tab le software i s maintained t h a t runs on a l I
supported machines. (Future pl ans cal I fm conversion t o Ada as soon as
t h e r e are Ada compilers on a s u f f l c i e n t l y wide range of machines,)

The APE i s now running on t h e fo l low ing machines: V A X 11/780 with VMS,
ROLM and Data General w l th Aos/vs# IBM w i t h ws# and I n t e l 310 with
XENIXO.
experiences t o date.

A s i n g l e

SI ide 8 (Rehost E f f o r t s) presents a summary of rehost ing

4.4 D i s t r i b u t a b i l ity and ln teroperabi l i t y

The environment data I s in teroperable because the franework c o n t r o l s t h e
database s t r u c t u r e and because the franework c o n t r o l s only t h e products
o f t o o l s ra ther than i n t e r f a c i n g d i r e c t l y wi th the tools. The too lse ts
a v a i l a b l e on d i f f e r e n t hosts may d i f f e r , but equivalent funct ional ity I s
usual ly avai lable. F i l t e r s and standard fmms can be used t o ad jus t for
d l f ferences between speclf i c too ls . For example, d i f f e r e n t e d i t o r s
sometimes embbed contro l characters i n t h e text . F i I t e r s a re used a t f%C
head quar ters t o move t e x t anong t h e V A X EDT edi tor , t h e IBM PC Wordstar
edi tor , and t h e Macintosh MacWrite ed i tor . A standard, p l a i n t e x t f o r m
has been establ ished so t h a t only one new f l l t e r needs t o be w r i t t e n t o
i ntroduce another edl tor.

Pro ject data has been proven t o be in teroperable between d i f f e r e n t
framework i ns ta l la t ions. Software and documentation have been r o u t i n e l y
devel oped on one ins ta l I at1 on and then t rans fer red together w i t h
documentation, t raceabi l Ity and conf igura t ion management Information, and
p r o j e c t h i s t o r y information t o a d l f f e r e n t i ns ta l l a t i o n on d i f f e r e n t
hardware w i t h no problems. This feature has proven useful I n a l lowing
p r o j e c t work t o proceed i n para1 le1 w i th the APE rehost t o new
hardware. That is, t h e ear ly phases of a p ro jec t can begin under APE
control on one machine w h i l e t h e A P E i s rehosted t o t h e desired
development host. When t h e rehost i s compl ete, t h e pro jec t can be
t ransfered t o i t s own host.

The f ranework was designed t o f unct l on I n a d i s t r I buted, heterogeneous
hardware environment. Both the database and t h e processing may be
d ls t r ibuted. Work c u r r e n t l y underway w i l I al l o w d i s t r i b u t i o n o f
developer processing t o IBM PCs and Macintoshes connected t o a V A X v i a a
local area network. Future plans c a l l for f u l l d i s t r i b u t i o n of both
processing and data.

5 .O Concl us i ons

The pre l iminary r e s u l t s presented above provide good evidence t h a t the
A P E approach can achieve i t s goals.
product iv i ty , a l lows use of e x i s t i n g t o o l s wi thout modif icat ion, and i s
easy t o transport .

The franework increases

PRC management has been impressed enough to make the

A Reedy
Planning Research Corp
7 of 25

APE a company standard.
I arge pro jec ts has begun.

The task o f technology
Because of I t s f I ex lb l

i ntroduced 1 n t o ex i s t l ng p ro jec ts w i thou t undue d

nser t ion i n t o
ty, t he APE can be
sruption. Most of the

t r a n s l t l o n problems a r e - i n t h e areas of t ra in lng . The use of t he APE
does involve understandlng o f some baslc concepts. During t h e next f e w
years, more data w i t 1 be col lec ted on t h e benef I t s of using t h i s type of
env lronment f ranework.

The APE franework approach i s I n a n t r a & w l th other env l roment
approaches both I n t h e areas of goals and o f benef I ts . Many other
recent ly developed envlroments, such as t h e Ada Language System (AL
[41, have a very d i f f e r e n t se t of goals. One of the goals o f the ALS i s
t o provide a m inlmal se t of t ransportabl e t o o l s I ncl udl ng a re targetabl e
Ada compiler. Much of the e f f o r t expended I n t h e ALS development has
been t o develop tools, especial l y the Ada compll er. Many of the benef i t s
expected fran the ALS are the benef I t s derived fran the use of a standard
t o o l s e t and command I anguage.

The approach taken by the ALS does not a1 low the use of non-PLS tools.
To work w I t h the ALS, e x l s t i ng t o o l s must be rehosted t o t h e ALS KAPSE
and r e w r l t t e n i n Ada, I f necessary. The ALS t o o l s a re t ransported by
rehost lng t h e ALS KAPSE on new hardware j u s t as t h e APE franework i s
t ranspor ted by rehost ing t h e A I S on a new operat ing system.
approach means t h a t there w l l 1 be s l g n i f lcant lead t ime before the ALS
has a reasonably f u l I too l set. Further, features such as f u l I
conf lgura t ion management and p ro jec t repo r t l ng must be added as t o o l s t o
t h e ALS. These important p roduc t iv i t y t o o l s a re not p a r t of the minlmal
toolset . Important aspects of t h e ALS approach, such as produc t iv l t y and
po r tab i l lty, have y e t t o be proven. The problem of d i s t r l b u t l o n was not
d i r e c t l y addressed i n t h e f l r s t vers ion of the ALS.

The ALS

The ALS approach may work fcr organfzatlons such as t h e U.S. Army t h a t
wish t o standardize as much as poss ib le on a mlnlmal too l se t and a
I iml ted se lec t ion of standard hardware. Havever, for a contractor w l th a
wide va r ie t y of c l l e n t and In ternal standards, methodologies, and
hardware, a much more f l e x i b l e approach i s necessary. The APE franework
Is an example of a v i a b l e a l t e r n a t i v e approach,

A Reedy
Planning Research Corp
8 of 25

References

[l] Requirments f w Ada Progranming Support Env irorments (ltStonemanll),
Department of Def ense, February, 1980

[Z] Proposed MIL-STD-CAIS,
Deparhnent of Defense, 31 January 1985

[3] Proceed1 ngs F i r s t DOD/I ndustry STARS Progrm Conference,
NSIA, 30 Apr i l - 2 May 1985, San Diego, CA

[4] Arch i tec tu ra l Descr ip t ion of t h e Ada Language System (ALS),
J o i n t Service Software Engineering Environment (JSSEE) Report No.
J SSEE-PRCN-00 1 , 3 December 1 984

[5] Arch 1 t e c t u r a l Descr 1 p t i on of t h e Automated Product Control Env 1 ronment,
D r a f t , 4 October 1985

Ada i s a r e g i s t e r e d trademark o f the Uni ted States Government (Ada
J o i n t Progrm O f f i c e)

Xenix i s a reg is te red trademark of Microsoft, Inc.

A Reedy
Planning Research Corp
9 of 25

THE MEWGRAPH MATERIALS

for the

R. BLUMBERG PRESENTATION FOLLOW

A Reedy
Planning Research Corp
10 of 25

m
Q) a
3

L.

E
m

A Reedy
Planning Research Corp
11 of25

c, c
E
c
0
> c w

L,
.I

v)

a
0

-
(3

v)

0
0
-
c,

v) >

0
L .- >
C w
I I

.o a
cb
Q)
Q
0
Q)

I=

L

L

c,

.o

I

u) c
0
0
C
3

LL

.I

c,

I I

2
0
I

b
I

A Reedy
Planning Research Corp
12 of 25

\

A Reedy
Planning Research Gorp
13 of 25

0
0 n
13
0

a
0 c

A Reedy
Planning Research Corp
14 of 25

8

t-
o) cu

F
+..r
0
a,
0

0-

&

m
F

w
N
0
m"
F

t-
cu T-

cu
Y

cu

0 m
t-

m"
0

m
0
a,
0

+..r

0-

2

A Reedy
Planning Research C o p
15 of 25

r w

Y

n

m
0 c.
'
v)

c
0

5
E

c.
5
Q
Q
3
v)

Q)

v)

c1 .-
I

t
0
w - a c.

r-0

v)

c
0

5

E
.c .c

c,
a
v)

c
-0
a,
v)
v)

P
X
a,

.-

2

v)
a,
3
a >
-

A Reedy
Planning Research C o p
16 of 25

I I I I I 1 I I I I
0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o 8
0- 0 0 0 0 0 0 8 0-
0 0 , 0 E (C > V) d C 3 C U r 0 0 0

0 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0

0- tn

A Reedy
Planning Research Corp
17 of 25

a,
N
u)
E
cp e

L
a,
ua,
= E

0
iEF

3
\

I

v)

tn
>5
cp c
cp

CI

-
w
0 a.
* a

v)
?c
c CI

E
v) c
c .cI

E
cu

..
a,
0
Z
CI

A Reedv

D

i

Planning Research Corp
18 of 25

r

A Reedy
Planning Research Corp
19 of 25

cn
0
0

-
CI

c

Q) cnz

0 . 0 .

A Reedy
Planning Research Corp
20 of 25

I

L

A Reedy
Planning Research Corp
21 of 25

0
LL
v)

u
0

2
I
0
W c
u
2

d (3

4 cn
4
2
). m

\

W
U a

W
I c
0 c

v)
v)

0
U e

s
v)
v)
W
0
0
U e
c

I

LL
3 v)

v)
W
0
0
U e

W
U

5
I-

v)

v)
v)

2 - W
0
0
3
v)

i=
E
v)

W

v)
W - c 2

W
2 v) c - c

2
W
E e
0
I
W >
W

u
0

2
i;

n
W
I:

r e W

2
U
W
U
v)

W
U w o e

0 0

>
I
W

W n

3
v)
4
W

v)
I

c cn
W

-
2

3
4 >
I

W

I
W

W
>
n

2
U c

I
0
W c E

0
I- I

LL
n
(v

n
cu) n

0 s j:
I

W

5 v) 0
I

a a a
A Reedy
Planning Research Cop
22 of 25

I
W
v)

LL
0

A Reedy
Planning Research Corp
23 of 25

0
0
4
v)

Y

W

W
a!
00
F

0
I-
CD

m

m

m
m

m

8

m
m

m

1

m

m

m
m

m
m

n
m

m
m

8

a

m

m

m

s

8

8

m
8

8

s

m
8

m
m

8

8

m

m
m

W
N

v)
W

v)
U
W
I=

W
II
3
W z
0
v)

n
(3
4
3
(3

2
II

(3
2
is
UI

I=
v)

a
>

W
a!
).
I= e 0

0

A Reedy
Planning Research Corp
24 of 25

IC

0
LL

v)
W

0
0
2
3e
0
W c
c

ij;
II

%

6
w
I
I=

w c
c
v)

a

v)
II w. n
0
E

2
0

E r

m

G
v)
W

v)

c
0

s -
a

cn
W

>
F:
I

I

W n
* W

e 3 LL o + v) 8
0 v)

+ u
0 I

0

0
0

2

I

5 %

LL

ai
n
a

n
a 2

2 CI
v)
0
0
W

2
5
s c
v)

0 ua

2
I +
W
pc
0
E

cn' n

n 2
2 c
v)

a

a
'c

I W cn >
n I-

I-
Q)
'c
U

2 a 0 c a
P -

O
pc
LL

c
CI

a
a
n

ti
z;

W

W
II

0

c
v)
W c

v)
pc
W e

I
0

0
pc e e

a

a

0 ua W).

2
E
n

v)

W
k c

3
0 m a
n
n
W -
3 c
v)

W
pc s c
L L
0
v)

w

).

n
ai

pcupc
W W W > > >
0 0 0

W
0
3

0
pc e

n
a
E

2 a
I I 1 1 1

0 0 0

A Reedy
Planning Research COT
25 of 25

N86 303 66

One Approach for Eva1 uating

The Distributed Computing Design System (DCDS)
*

- Extended Abstract -

Submitted to:

Tenth Annual Software Engineering Workshop
Scheduled for December 4, 1985

Missile Operations and Data Systems Directorate
Flight Dynamics Division
Goddard Space F 1 i gh t Center

John T. Ellis

*This material was presented
by L. Baker of TRW

TRW Defense Systems Group
213 Wynn Drive
Huntsvi 1 le, Alabama 35805
(205) 830-3326

SEPTEMBER 25, 1985

J . Ellis
TRW
1 of 24

a

One Approach For Eva1 uating the Distributed Computing Design System

DCDS provides an integrated environment to support the life cycle
o f developing real-time distributed computing systems. The primary
focus o f DCDS is to significantly increase system reliability and
software development productivity, and to minimize schedule and
cost risk, DCDS consists o f integrated methodologies, languages,
and tools to support the life cycle o f developing distributed soft-
ware and systems. Smooth and well-defined transistions from phase
to phase, language-to language, and tool to tool provide a unique
and unified environment. An approach to evaluating DCDS high1 ights
its benefits .

1. OCDS OVERVIEW

Distributed solutions to complex systems require sophisticated tools and
techniques for the specification and development of distributed software. In
response to this need, TRW has developed the Distributed Computing Design
System (DCDS) to provide an integrated environment for the specification and
life-cycle development of software and systems, with an emphasis on the
development of real-time distributed software. The primary focus o f DCDS is
to significantly increase system reliability and software development produc-
tivity, through the use of disciplined techniques and automated tools. To
minimize schedule and cost risk, DCDS offers management visibility into the
development process. The development o f DCDS i s sponsored by the Ballistic
Missile Defense Advanced Technology Center (BMDATC).

As illustrated in Figure 1, DCDS consists of integrated methodologies,
integrated languages, and an integrated tool set. Following the five methodo-
logies, the user can produce specifications for system requirements, software
requirements, distributed architectural designs, detailed module designs, and
tests. The five languages support the specific concepts for each of the
methodologies, and provide the medium for expressing the requirements,
designs, and tests. All five languages use the same constructs and syntax.
DCOS formal languages, as opposed to natural languages such as English, can be
used without ambiguity - all components of the language are explicitly
defined .

J. Ellis
TRW
2 of 24

INTEGRATED WTEGRATED
MElHOOOLOGlES ILANGUAGES

a -ATE ANALYSIS

a TRACEUILITY
Bt3WEEN DATA

S L - t Y m M PlECIF lU~OW LANGUAGE
R8L - REWiREUENlSPECll lUTKm LAMUAGE
M)L - DIITII IUTED DftlGh W G U A G P
NDL - YOWL€ DEVELOPMENT W A G E
TU - nn tultow LANGUAGE - DATA PROQSINC m I I

Figure 1. The DCDS Unified Environment

As shown in Figure 1, the user has access to a variety of tools to incre-
mentally define the specification contents, and to check them for completeness
and consistency. For each methodology, the tools maintain a data base to
store the specification contents. The data base maintains the specification
information in a support suitable for automated and thorough analysis. DCDS
tools can also support simulation and various types o f analyses.

Data extraction tools are used to generate readable listings according to
user-defined formats. The listings can be used as working-level documen-
tation, briefing charts, or incorporated into formal specifications. The data
base from one methodology is used as a source to initialize the data bases in
downstream methodologies, permitting automated traceability between specifica-
tions.

J . Ellis
TRW
3 of 24

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

THE FIVE DCDS METHODOLOGIES

System Requirements Engineering Methodology (SYSREM) for defining
and specifying system requirements, with an emphasis on the data
processing subsystem.

Software Requirements Engineering Methodology (SREM) for defining
system software requirements, with an emphasis on stimulus-
response behavior.

Distributed Design Methodology (DDM) for developing a top-level
architectural design for the system software, including distributed
design, process design, and task design.

Module Development Methodology (MDM) for investigating and select-
ing algorithms, defining detailed design, and producing units o f
tested code.

Test Support Methodology (TSM) for defining test plans and proce-
dures against requirements, producing an integrated tested system,
and recording test results.

THE FIVE DCDS LANGUAGES

System Specification Language (SSL) for specifying structured
sequences of functions to be performed by the system, inputs/out-
puts between functions, performance indices for functions, and
allocations of functions to subsystems.

Requirements Statement Language (RSL) for describing a stimulus-
response structure of inputs, outputs, processing, and perfor-
mance of a DP subsystem in a form which assures unambiguous
specifications of explicit, testable software requirements.

Distributed Design Language (DDL) for describing the distributed
hardware architectures of processing nodes and interconnections,
the software architecture, the a1 location of processing and data
to nodes, and the communication topology.

Module Development Language (MDL) for recording detailed designs
and algorithms considered and selected for the design.

Test Support Language (TSL) for recording tests, their relationship
to the requirements, test procedures, and test results.

Figure 2. DCDS Methodologies and Languages

J. Ellis
TRW
4 of 24

DCDS i s used t o produce u n i t s o f tes ted software, and t o i d e n t i f y the

data processing hardware. Tools are ava i lab le t o a i d i n the software process

const ruct ion a c t i v i t i e s . The f i n a l output (Figure 1) from DCDS i s the

in tegrated and tested Data Processing Subsystem.

The DCDS methodologies and languages are def ined i n Figure 2. Within

each methodology, i nd i v idua l steps are provided and are e x p l i c i t and obser-

vable. A c i t i v i t e s are defined and must be completed p r i o r t o each o f the

major reviews duirng the development l i f e cycle. Well-defined in ter faces bet-

ween the l i f e - c y c l e phases a l low a u n i f i e d approach f o r using DCDS. DCDS also

provides measurable intermediate m i lestones f o r management v i s i b i 1 i ty between

t h e major review points.

DCDS provides a unique and proven capab i l i t y . F i r s t , DCDS i s the on ly

in tegrated environment which addresses the e n t i r e 1 i f e cyc le o f d i s t r i b u t e d

software development. The techniques are independent o f the implementation

language, and can be appl ied e f f e c t i v e l y t o development a c t i v i t i e s o r used as

a v e r i f i c a t i o n and va l i da t i on too l . Second, DCDS concepts are based on proven

technology - the e a r l y resu l ts , or iented f o r software requirements, have been

validated, improved, and now extended t o support the complete system develop-

ment l i f e cycle. DCDS i s the r e s u l t o f 12 years o f research and development,

as discussed i n I€€€ COMPUTER magazine.*

2. DCDS EVALUATION

To gain a be t te r perspect ive on DCDS and i t s charac ter is t i cs , DCDS was

compared against three other comnerical ly ava i lab le products. These th ree

products provide methodologies and/or t o o l s for developing spec i f i ca t ions and

software. To a l low an ob jec t ive and mul t i - fac to red comparative evaluat ion o f

t he d i f fe ren t methodologies and tools, TRW prepared a l i s t o f evaluat ion c r i -

t e r i a p a r t i t i o n e d i n t o three classes: (1) fac to rs lending c r e d i b i l i t y t o the

product, (2) costs o f acqui r ing and using the product, and (3) benef i ts o f the

product .

*M. Al ford, "SREM A t the Age o f Eight", IEEE COMPUTER, A p r i l 1905, pp. 36-46.

J. Ellis
TRW
5 of 24

The ind i v idua l c r i t e r i a from each o f the three classes was assigned a
value weight o f Nhight@, Nmediumll, and A score o f "bettert1,

*acceptable", o r *def ic ient" was used t o evaluate each product against each

evaluat ion c r i t e r i a . An explanation o f each evaluat ion c r i t e r i a and the

r a t i o n a l e fo r each i n d i v i d u a l score against each product i s avai lable.

Since the eva-

l u a t i o n was not performed by an independent organization, the other three pro-

ducts s h a l l remain nameless. However, they do represent we1 1-known products.

A l l the products support an o v e r a l l acceptable ra t i ng , and have been used suc-

c e s s f u l l y i n major appl icat ions. DCDS received an o v e r a l l higher r a t i n g

w i t h i n t h i s evaluat ion process due t o the fo l l ow ing d iscr iminat ing factors:

The r e s u l t s o f the evaluat ion are sumar ized i n Figure 3.

0 Automated t r a c e a b i l i t y across l i f e - c y c l e phases

0 Automated analysis t o o l s

0 Documentation support c a p a b i l i t i e s

0 R e l a t i v e l y low cos t t o acquire and use the product

It i s ant ic ipated t h a t the evaluat ion approach and c r i t e r i a as ou t l i ned

i n t h i s r e p o r t could be used by an independent agency f o r a more in-depth ana-

l y s i s and evaluat ion of various methodologies and tools, The author wishes t o

acknowledge Mack A l f o r d and Bob Loshbough of TRW f o r t h e i r extensive technical

con t r i bu t i on t o the author 's sumnation o f DCDS and i t s evaluation.

J . Ellis
TRW
6 of 24

X
X X
X
X
X X

X
X

X X
X
X

X
X

Figure 3. Evaluation Results

J . Ellis
TRW
7 of 24

THE VIEWGRAPH MATERIALS

for the

J. ELLIS PRESENTATION FOLLOW

J. Ellis
TRW
8 of 24

J. Ellis
TRW
9 of 24

85086934

W
I c
I

J . Ellis
TRW
10 of 24

..-.
c
00
Q)

Z Z
04 * W W 01

> a!=

>-
CY
0

0

0
I
I-
W
z
z
W >
U
n
c),
I- z
W
2
W
U
3
d
W
a:

z
0

J

n

-

-

a

n

m

W

2

J5
(3
Z
Q
J

W
n

a t-
U
(L3
W
t-
Z -

I- z
W
E
W u
Q z a z
n
a z

z
0
t- o
W
I-
W

-

n

a

a

3
CY z
J
I-
0
J
a,
X
W
cn
J

-

0
0
I-

I-

z
0
I-
3

n

a
W

a

v,
cn
W
I
I- z
>-
v,

z
cn

-

n
a

,”
a
a

-
J

Z

z
(3
cn
W

-
n

I

W >
v)
Z
W
I
W
U
e
E
0 o
W
U
0
E
z
t.

-

n
a

a
-I
E

W

I

J
-I
Q
U
0
LL

t.
CY
0
J
0
D
0
31
t-
W
2

I-

U
(3
W
t- z

n

a
W

-

n

I- z
W o
U
W e
0
0
‘rl-
0
I-
I- z
W o
U
W e
0
0
N

W
Y

2
W
U
0 z
>-
t-
>
I- o
3

0
E
a.

-
-
-

n

0
0
0

a:
W e
I- o

’c-

W
U
W
n

0
I-
n

n

W o
3

W
U

r
0
W
U
W
n
Y

W

2 w c a n

m
0

J. Ellis
TRW
11 of 24

v)
W

(3
0
J
0
0
I

z
z
W

-

n

5

:
5 m
cn
I- a
0
U
U
W
U
0
z
0
i= a
a

E

m

[3

z -

2
0
3

0
LT
n

z
tn
v)
W
0
0 a
n
W
I
I-

0
c3 z
z

n

n
a

U

- n
a
5
a
n

a

W

z
I)

I-
I-
m

W

W

v)
W
VI a

a n

m

2

..e..

c"
2
I a
I
W
cn
I- z
W z
W a
3
U
a
2
a a

-
W

W

v) a
0 a
U
W

z a

k
5

W a

0

LL
0
z
0
I-
0
3
W
a
Z

U
LL

n

-

n

0 >
2
a
J

W
U
v)
W

0 . 0

I- a

n
I?
2
J
0
0
I-
n
I- a
I

3
a
m

W

2
o... 0 0 . 0 .

c
.J -
m
W
0

K
I-
(3 z
0
K

a
a

!2
0

z - r z
u
I
W
J
W
z
W

E W

m

m

>

W
J

a
W -
I
0

e. e

J . Ellis
TRW
12 of 24

v)
K
UJ
v)
3

85-05-6538R 1

J . Ellis
TRW
13 of 24

8511.7574

r -
I
I
I Ri o a

MIA

I
I

I
I
i
I

J . Ellis
TRW
14 of 24

W
b

3
c;l

>
W

a

a

0 n

J . Ellis
TRW
15 of 24

=e:
c.L
U
0
CT e e
U
w

CI
U c
5,

'T
U

0

v)
K
0
t
0
LL
>
a

k
=!
m
a
0
W

u

X

x x x

x x

% x x

0 0 0 0

v)
0:
0

<
I-
LL
W

t;
LL

-
E
m

85- 12-7675

x x x u x x x

x x x x x x x LI x x

m

a
Y

W
t
L
m

C
..
2
W
8-
C

a

z

J. Ellis
TRW
16 of 24

85-1 2.7676

* * *

J. Ellis
TRW
17 of 24

85-1 2.7678

*
I * *
I

J. Ellis
TRW
18 of 24

85-1 2-7677

J. Ellis
TRW
19 of 24

J . Ellis
TRW
20 of 24

n
a
t;;
z

U
W

Z
3
0
I-
cn
c3
Z
I-

2

n

-
W
W

+ + + +

).
U

W

+
>

v)

3
v)
W

5
a

85-1 1-7589R

t l- I

>-r” 5 3 a u X U 0 u > a

Z

v)
U
0
U
U
W

X -
U

v) a
0
U
U

t- W

I
2
XES
%
W

J. Ellis
TRW
21 of 24

* cn
L
0
I=

3
0
4

0
W
A

.I

a

a

i a
x
W

m J

W
0
0
13E
c en
0
0

LA

0 -

0 -

n z
Q:

a t;
W
i3 z
3

P
VI
c3

I-
W
W
E

I

4-

h
cc.
LA
c
Y

LA
cu

0
rn

0
cr\

a
W

ti
0
0
+

0
c

0
c

0 -

v)
w >
E-

z
K
w

-
a

5

a

4
W
!-

c3
!-
v)
W > z

-

-
i

Ln

0

0

v)
-I
0
0
F-
0
I-
2

K
W
I- z
W

+

-

Ln

Ln
N

tn

>.
LL
a
W >
+

0
yr)

0
M

in

5)
3
VI
W

I-
Z
W
z
3

0
+

a

53

w
0
N -

c

I E- 1 z

J
v) a
0 a
a
W

-I
1 + + + J

El O N
- I PJ

w-
W

*

in
K
0
K

W
X

a

-
LL

J. Ellis
TRW
22 of 24

L'
N

tn
Y

>
(3
0
J
0 c
0
S
t-
w z
z
cr
iL1
J

+
a

W

J. Ellis
TRW
23 of 24

W
I
I-
C/)
v)
W
[I

D
n
a - I-

n
z
0

\ cn
I- rn
0
0
W

S e
U
W
I- z
W

2

I

v)
[I
0
U
a
W
n
2 a
r
v)
0
0
v)
W
0
3

W
U
z
0

n

I-

0 e e
3
v)

n

z
W
3:
I-
2
0
n
6 a

w cn

cn
W
I:

0
I-

t-

0

[I

w z
J

0 z
w a a

a

2

-

v)
I-
v)
0
0
.I
0
0
I-

z
(3 z

n
a

v)
I-
v)
0
0

cn
W
0
3
w
a:
z
0
I-
Q
t-
7
W
z
3
0
0

n

-.-

n
n
LJJ
I-

v)
W
I

0
3 t-

I
c.3
[I

W
I
I-
z
0
I- e
W
Y
(3 z

-

-

n
0

0
U
e e

a

a

w
o=
v)
J 2

0
CT
e e
6

0
0
I-
v)

0
I:
I-
W
z
0
W
I-
d a
(3
W
I- z

\

n

.-

I-

0
U

W

a

a
>
n
I- a
E
0
I-
3

-
-

W

a.

U a
w
J
0
W
[I a

W > Lu
[I

z
0 -

L

I-
6
I- W

m
-
I-
Z
6
3
d

cn n 2
0
I- <
3
J
d >

-

W

I-
O z
v)

I-

-
a
a
n

z
w
U
I-
W
z
0
v>

v)
[I
0 Lr
a
w

z
U

W
J

a
LL

u-l

-
a
>

0
I-
I- -
n
W a a a a

J. Ellis
TRW
24 of 24

*

N86-30361

PANEL #4

EXPERIMENTS WITH ADA

D. Roy, Century Computing Inc.
M. McClimens, Mitre Corporation
W. Agresti, Computer Sciences Corporation

SEL Workshop 86 paper

Daniel M Roy
Century Computing, Inc.

Abstract

A 1200 l ine Ada source code p r o j e c t simulating t h e
most b a s i c functions of a n opera t ions c o n t r o l center
w a s developed f o r code 511. W e s e l ec t ed George
Cherry's Process Abstraction Methodology f o r Embedded
Large Applications (PAMELA) and DEC's Ada Compilation
System (ACS) under VAX/VMS t o bu i ld the software from
requirements t o acceptance test. The system runs
f a s t e r than i ts FORTRAN implementation and was
produced on schedule and under budget with an o v e r a l l
p roduc t iv i ty i n excess of 30 l i n e s of Ada source code
pe r day.

Author c u r r e n t address:
Century Computing Incorporated,
8101 Sandy Spring Rd.
Laure l , Md. 20707
(301) 953 3330

Trademarks :
ALS is a trademark of Softech Corp.
Ada is a trademark of t h e Department of Defense.
PAMELA and PAM are trademarks of George W.
ACS, VAX, VMS are trademarks of D i g i t a l Equipment Corp.

Cherry.

D. Roy
Century Computing, Inc .
1 of 41

SEL Workshop 86 paper
BACKGROUND

1 BACKGROUND

The Mul t i - sa te l l i t e Operations Control Center branch (MSOCC), code
511, has embarked on a n e f f o r t t o improve productivity i n the
development and maintenance of Operations Control Center (OCC)
systems. This productivity e f f o r t is addressing a range of i s sues
from equipment and facil i t ies improvements t o the development and
acquis i t ion of too ls and the t ra in ing of personnel.

Century Computing's previous work on MSOCC's productivity improvement
program, ident i f ied the Ada language a s a promising technology, and
recommended evaluating Ada on a small "pi lot project" re la ted t o MSOCC
appl icat ions [Century-84].

2 PURPOSE OF THE STUDY

The object ive of t he s tudy w a s t o evaluate the app l i cab i l i t y of Ada
and its development environment f o r MSOCC. Metrics w e r e i den t i f i ed
f o r t h i s evaluation, along with an approach t o co l lec t ing the da ta
required f o r these metrics. The evaluation was based on using Ada t o
re-develop from scratch a small scale, real-time project re la ted t o
MSOCC appl icat ions: an Application Processor (AP) benchmark system.

3 DESCRIPTION OF THE AP BENCHMARK SYSTEM

An AP is a computer t h a t performs the functions required by a
satel l i te operations cont ro l center. The AP Benchmark system w a s
previously developed t o simulate the charac te r i s t ics of a typ ica l
MSOCC's AP software system [CSC/SD-831. Like most AP software, t h e
Benchmark w a s developed i n FORTRAN with some supporting assembly
language.

The AP Benchmark software simulates the following AP functions:

Reads a telemetry data stream from tape - meters the
frequency of tape reads t o simulate various data rates.

Decommutates t h e telemetry data.

Performs some l i m i t checking on the data.

Displays some of the telemetry data on CRT screens.

Simulates t he h i s t o r y and a t t i t u d e data recording processes.

Simulates s t r i p char t recorders and associated functions.

Gathers statistics on the above process and generates
reports .

D. Roy
Centurj, Computing, Inc.
2 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

4 DESCRIPTION OF THE ADA PILOT PROJECT

The p i lo t project began wi th a reverse engineering phase t o construct
requirements from the ex i s t ing FORTRAN code. Then, a staged approach
w a s used t o develop the software, using Ada f o r a l l project phases:

o We used Ada as a Data Definit ion Language t o produce a data
dictionary during the requirements analysis phase. A spec ia l
package, the "TBD" package (f ig . 1) helped i n t h e top down
design of the d a t a s t ructure .

o We used Ada as a Program Specification Language very ea r ly i n
the project and eas i ly prototyped the data flow. The Process
Abstraction Methodology too l s [Cherry841 (see appendix B)
produced a tasking model t h a t worked a t f i r s t t r y (f ig . 2a
and b). The preliminary and detai led design templates w e
created (f ig . 3a and b) proved t o be very usefu l f o r
enforcing good prac t ices .

o We used Ada as a Program Design Language [IEEE-9901 (f ig . 4)
and ref ined t h e PDL i n t o detai led Ada code i n t h e usual
staged manner. The DCL too ls and templates f o r Ada
construct, developed a t the onset of the pro jec t , had a
dramatic impact on productivity and code consistency.

o We enjoyed the elegance of Ada as an implementation language
and used most of its features (a t t r ibu tes , generics,
exception handlers, etc.)

o Full assessment of the DEC ACS tools was beyond the scope of
t h i s study, but w e appreciated the built- in configuration
control t oo l , t h e automatic recompilation system and the
symbolic debugger [DEC-851-

The t o t a l re-development approach we followed (from requirements t o
f i n a l t e s t s) l ed us t o believe t h a t w e could produce a s t i l l more
e f f i c i en t design. Actually, the PAMELA methodology design ru l e s
detected several extraneous tasks i n the cu r ren t AP benchmark model,
but w e decided t o respect t h e ex i s t ing global s t ructure as the model
w a s b u i l t t o represent t h e typ ica l CPU load of an ac tua l OCC.

D. Roy
Century Computing, Inc.
3 of 41

SEL Workshop 86 paper
DESCRIPTION OF TEE ADA PILOT PROJECT

-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -
--

e

Raises :

Overview: -- 1 Purpose:

Effects : -I Description:

None

This i s an improvement over Intermetrics' TBD package and IEEE 990
recommendations about dec is ion de fe r r a l techniques.

The d is t inc t ion i s c l a r i f i e d between types, variables and values.
The naming is more consis tent (enum-i, component i ...) and more

readable (scalar var iable intead of scalFrValue)
There are more d e f i n i t i o n s (enurn-type, record type)
Better compatibil i ty with BYRON (or search u t y l i t y processing)

Please only "WITH" t h i s package. By systematically specif ying
"TBD.x" i t e m s , it is easier t o assess the s tage of development of
a compilation uni t .

Requires : -1 Assumptions :

Notes :

Daniel Roy 9-AUG-1985 B a s e l i n e
Change log:

--

type access-type is access in teger ;
access - variable : access-type;

type record type is record
component-1 : in teger := 0;
component-;! : in teger := 0;
component-i : in teger := 0;
componentg : in teger := 0;
component-n : in teger := 0;

end record;
record - variable : record-type;

-c Inspired by IBM PDL s tu f f
Condition,CD : Boolean := t rue ;

-- Queues services
type queue type is a r r ay (array-index-type) of integer;
type queuegtr-type i s access queue - type; -

end TBD; -1 --*
Fig. 1: Excerpt from the TBD package

-------------_-------________________I___------------------

-- -I
--I -

D. Roy
Century Computing, Inc.
4 of 41

PAtlLevel 1

Figure 2 ~ : PAM decomposition l eve l I

D. Roy
Century Computing, Inc.
5 of 41

extractor

PAM level 2

I

switch
load

Decommu tator

Figure 2b: PAM decomposition level 2

D. ROY
Centuj Computing, Inc.
6 of 41

SEL Workshop 86 paper
DESCRIPTION OF TEE ADA PILOT PROJECT

procedure P (-1 synopsis --*
param-1 : IN some-type := some-constant ; -1 descr ipt ion --*
param-n : OUT some - type --I descr ipt ion --*
1 ; -1 --*

separate ()
procedure body P (--I -- &trt synopsis. Must be the same as i n body. -*

param-1 : IN some-type := some-constant ; --I descr ipt ion -*
param-n : OUT some - type --I description -*
1 is -1 --*

-- I - ****** Cut and p a s t e from specif icat ion.

- Packages

Use Gold D f o r rest of DOC. ****** --

-- types

- subtypes

- records

- variables

- functions

- procedures

- separate clauses

begin -1 --*
end P ; --I --* null;

Fig. 3b: Detailed design template f o r a procedure (proc body) ..

D. ROY
Centurj Computing, Inc.
7 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

...
package body user i n t e r f ace i s

function inquire i n t (

--I Isolate user in te r face -*
--I Emulate DCL verb f o r in tegers -*
--I --*

- --
prompt : s t r i n g --I --*
) re turn inquired var-type is
inquired var : inquired var type ; --* The var iable w e ' l l r e turn - - - --

begin --I inquire i n t --*
--* Displays "prompt (min. .max) : It
f o r t r y i n I.. max-nr-errors loop -* u n t i l good value or else --

begin --* <<exception block>>
-* G e t unconstrained vzlue
-* Validate and t r a n s l a t e unconstrained value
re turn inquired var ; -1 --* - -

exception --* recoverable exception when inva l id input
when da ta e r ro r 1 constraint-error => --* --* dTsplay II t r y again" message

-1 end exception --*
end ; --* <<exception block>>
--

end loop;

except ion

--* u n t i l good qalue or else

--* catch a l l handler
--

-
when others => --*

r a i se ; --*
end inquire - i n t ; --I --*

Fig. 4: PDL extracted from code by PDL t o o l ...

D. Roy
Century Computing, ~nc .
8 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5 RESULTS SUMMARY

Some of t h e objectives of t h e eva lua t ion were t o determine what is
requi red t o t r a i n software engineers t o use Ada, t o def ine adequate
metrics t o measure productivity and q u a l i t y g a i n s and t o assess the
cu r ren t Ada developuent environment.

5.1 Tra in ing

We found t h a t Ada i s s u f f i c i e n t l y complex t h a t w e kept learning
throughout t h e p i l o t p r o j e c t , and even beyond. We a l s o found t h a t
none of t h e standard t r a i n i n g devices (seminars, books, computer aided
i n s t r u c t i o n) could alone address t h e broad range of i s sues t h a t r e a l l y
are a t t h e h e a r t of the problem:

In the Ada era, a comprehensive educa t ion i n the software engineering
p r i n c i p l e s that form t h e b a s i s of t h e Ada c u l t u r e aast rep lace ad-hoc
t r a i n i n g in t h e syntactic r ec ipes of a language.

That i s why w e recommend a v a r i e t y of continuous education measures i n
our r e p o r t : Assuming adequate f a m i l i a r i z a t i o n w i t h modern software
engineering p rac t i ces , a t least 4 person-week is t h e minimum minimorum
t r a i n i n g t i m e . This t i m e inc ludes teaching a methodology adapted t o
Ada and 50% hands on experiments under the superv is ion of a n expert.

5.2 Metrics And Data Collection Approach

After a review of es tab l i shed r e sea rch i n t h e areas of metrics and
d a t a c o l l e c t i o n , a b r i e f paper ou t l in ing t h e metrics approach w a s
i s sued . The metrics work of t h e NASA Software Engineering Laboratory
w a s t h e key input [McGarry-82]*

Simple DCL too l s were b u i l t t o ga ther the metrics da ta and
comprehensZve logs of e r r o r s , problems and i n t e r e s t i n g so lu t ions were
maintained on-line and are p a r t of t h e de l iverables .

5.3 Product iv i ty

Our produc t iv i ty during t h e seven weeks coding period averaged 32
l i n e s of Ada source code (LOC) pe r day and nea r ly 130 l i n e s of text
(LOT) per day (includes embedded documentation, comments and blank
l i n e s) , W e experienced a low po in t of 10 LOC pe r day a t t h e beginning
of the coding phase, and reached a peak of 90 LOC and 370 LOT per day
during t h e f i n a l week (f ig . 5) . Averaged over t h e whole 18 weeks of
development (including reverse engineering wi th DeMarco before PAM,
t o o l s development, two seminars, compilers i n s t a l l a t i o n , etc.)
p roduc t iv i ty still remains above 13 LOC and 50 LOT per day.

D. Roy
Century Computing, Inc.
9 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

Although formal verification techniques were not employed, intense
validation testing discovered two errors, both due to subtle
differences between our implementation and its FORTRAN precursor. A
detailed log of all the problems we had at various phases of the
implementation was kept on-line .
Those productivity and quality results are interesting data points,
but they must be taken with the following caveat:

o We were re-implementing a working system.

o Our deliverables did not include all standard documentation.

o We did not produce a performance prediction study.

o We did not perform a deadlock avoidance study.

o Unit testing was not up to the standards we would have
applied to an operational system.

o We sometimes abandoned early our search for better solutions.

o When a problem arose we did not always research why.

o More than 90% of the code was written by a single individual.

On the other hand, we wrote much more scaffolding and experimental
("throw away") software than a normal project would require.

D. Roy
Century Computing, Inc.
10 of 41

w
CI
0 u
W u a a
8
v)
W I
d
t u

.I

3 P

D. Roy
Century Computing, Inc.
12 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5.4 Compilers Experience

We first used Century's NYU Courant Institute Ada interpreter on our
VAX 11/750 for training and tools development. We quickly became
frustrated with this system.

Thanks to NASA's cooperation, we got some exposure to the Telesoft
compilers and the DEC Ada Compilation System (ACS).

We then installed Softech's Ada Language System (ALS) on another
VAX.
ALS made it unsuitable in light of our schedule constraints.

NASA
Our conclusion was that the current performance problems of the

In the end we were granted access to code 520's test version of DEC's
Ada Compilation System (ACS) under VMS 4.1 which we used to develop
most of the pilot project. It is clear to us that the ACS made the
timely completion of our project possible and that, in general, the
quality of the development environment significantly impacts software
development productivity.

As delivered, the Ada pilot project features about the same number of
statements as its FORTRAN precursor (about 1200) but is larger in the
number of lines of text (4,500 vs 2,000). Image sizes are comparable
(about 170 kbytes for Ada vs about 200 kbytes for FORTRAN).

Even though it is difficult to compare run time performance on the
very different computer environments we used, our preliminary results
seem to Indicate that the Ada code runs faster than its FORTRAN
counterpart. We suspect that our good results may be due to the fact
that some data elements could be directly addressed in Ada and not in
FORTRAN. Nevertheless, this is a completely unexpected result that is
even contrary to popular belief. We think if speaks for the high
quality DEC's ACS and the adequacy of the chosen methodology (the
Process Abstraction Methodology for Embedded Large Applications).

of

6 CONCLUSIONS

Ada is clearly a step forward in the software industry's search for a
better programming language for real-time and embedded systems. Ada
also represents significant advancements in the field of practical
programing language development.

Furthermore, the Ada Programming Support Environment (APSE) and the
Software Technology for Adaptable Reliable Systems (STARS) initiative
will support the language with an impressive set of evolving tools.

But even with these features, it is possible to develop poor software
in Ada. In fact, packaging, generics, multitasking and, above all,
representation clauses (that allow direct access to the hardware!)
will have to be closely controlled by competent project managers
because these features are powerful, hence dangerous. Moreover, those
powerful features provide another dimension of design decision. We

D. Roy
Century Computing, Inc.
13 of 41

SEL Workshop 86 paper
CONCLUSIONS

f e e l t h a t a methodology t h a t he lps t h e software engineer a l l o c a t e
func t ion and d a t a s t r u c t u r e s t o packages and t a sks is necessary.

A& should prove t o be a n exce l l en t t o o l i n t h e hands of competent and
proper ly t r a ined software developers. It w i l l not be a panacea,
compensating f o r inadequate methods o r t r a i n i n g , but i t w i l l be
b e n e f i c i a l i f p roper ly applied.

I n t h a t context, w e make t h e following predic t ions r e l a t i v e t o t h e
f u t u r e of A&:

1.

2.

3 .

4.

5.

6 .

The momentum of t h e Department of Defense w i l l make Ada a
r e a l i t y . The last t i m e t h a t DoD backed a language (COBOL),
t h e language became, and s t i l l i s , t h e most popular i n the
world.

There w i l l be major false starts in the use of Ma,
especially when the aerospace contractors tackle large
projects with newly trained programmers. Ada i t s e l f w i l l
become t h e focus of these p ro jec t s , leaving t h e t a r g e t
app l i ca t ion i n second place.

The " rea l i t y" of Ada w i l l be delayed due t o t h e immaturity of
the compiler technology, expense of computer resources, and
the t r a i n i n g problem.

There w i l l be major d i f f i c u l t i e s at - both ends of t h e
programmer competency scale. Many of t h e b r igh te s t
programmers w i l l tend t o produce overly complex designs,
using every poss ib le f e a t u r e of t h e language; t h e appl ica t ion
i t s e l f becoming a s i d e i s s u e . Many of t h e less competent
programmers w i l l never r e a l l y understand the Ada technology.

Programmer product iv i ty w i l l decrease (r e l a t i v e t o
conventional languages) before i t eventually increases.

Un ive r s i t i e s w i l l eventua l ly produce p ro f i c i en t Ada software
ehgineers, using t h e language as a bas i s f o r teaching a l l t he
t r a d i t i o n a l computer s c i ence courses. (This day i s g e t t i n g
near. W e r ecen t ly po l l ed area u n i v e r s i t i e s and found Ada
present i n every computer sc ience curriculum.)

7 A FINAL NOTE

I n Ju ly 1985, following t h e recommendation of the APSE Beta T e s t S i t e
Team headed by D r . McKay (Universigy of Houston a t Clear Lake), NASA
o f f i c i a l l y adopted Ada as t h e language of choice f o r a l l f l i g h t
software of t h e space s t a t i o n program.

D. Rov
Centujr Computing, Inc.
14 of 41

APPENDIX A

BIBLIOGRAPHY

[Century-841 Century Computing Inc ., %of tware Tools and Methodology
Study f o r NASA MSOCC", Laurel, Md., June 1984.

[Cherry-841 George W. Cherry, "Advanced Software Engineering wi th
Ada", Seminar notes , 1984.

[Cherry851 George W. Cherry, "The PAMELA (TM) Methodology, A
Process-oriented Software Development Method f o r Ada.", To be
published.

[CSC/SD-831 Computer Science Corporation, "Gamma Ray Observatory E r a
Appl ica t ion Processor Benchmark User's Guide", Update 1, Doc. No.
CSC/SD-83/6101UDI, January 1984.

[DEC-85] D i g i t a l Equipment Corporation, "Developing Ada Programs On
VAX VMS", February 1985.

[IEEE-9901 IEEE working group on Ada PDL (990), ''Ada PDL d r a f t
recommended prac t ice" , 5 March 1985.

D. ROY
Centuiy Computing, Inc.
15 of 41

BIBLIOGRAPHY

[McGarry-821 Frank McGarry et al, , "Guide t o Data Collection",
SEL-81-101, NASA GSFC, August 1982.

[Methodman-82] Peter Freeman, Anthony Wasserman, "Software Development
Xethodologies and Ada", National Technical Information Service, ADA
123-710, November 1982.

D. Roy
Century Computing, Inc.
16 of 41

APPENDIX B

THE PROCESS ABSTRACTION METHODOLOGY

"The Process Abstraction Methodology f o r Embedded Large Applications
(PAMELA or PAM f o r s h o r t) is a real-time software development method
which takes f u l l advantage of Ada's features of type abstract ion,
process abstract ion, exception handling, top-down separa te
compilation, and bottom-up separate compilation.

Because the PAMELA method recognizes tha t abs t rac t processes as w e l l
as abs t rac t data types are i d e a l modules fo r programming i n the la rge ,
the method is process-oriented as w e l l as object-oriented.

The method i s primarily a top-down, outside-in method; but i t allows
and encourages the bottom-up generation or incorporation of software
components (l i b ra ry un i t s) .

The PAMELA method contains guidel ines t o ensure t h a t program u n i t s are
reusable It a l s o contains
guidelines t o ensure super ior real-time performance (for example,
guidelines t o ensure t h a t t h e minimum number of necessary tasks are
defined) .It [Cherry-85]

or portable or both reusable and portable.

"The process abs t rac t ion methodology (PAM) is based on the concept of
a hierarchical s t ruc tu re of processes. The process as a da ta
transforming element and da ta flow as a connection l i nk between
processes are cen t r a l concepts i n t h i s method." [Cherry-841

A t f i r s t glance, the PAMELA methodology "process graphs" (f ig . 2a and
2b) look very much l i k e DeMarco's Data Flow Diagrams. The major
difference however, i s t h a t i n any da ta driven methodology, there i s
no apparent synchronization between the processes nor any e x p l i c i t
representation of t h e synchronization between the flow of data and the
processes. I n a process graph, t he processes communicate by the Ada
rendez-vous mechanism. Because the concepts of data flow and task t o
task synchronization are p a r t of t he semantics of the Ada rendezvous,
PAM'S process graphs overcome one of the major l imi ta t ions of data
flow diagrams f o r real-time applications. This makes PAMELA
applicable t o the requirements analysis phase. Most importantly,
PAMELA defines a l imited number of "process idioms" and provides r u l e s
f o r t h e i r use. These r u l e s guide the analyst i n a very smooth
t rans i t ion between requirements analysis and preliminary design. It
is t h i s author's personal s t y l e t o indicate the applied ru l e s by t h e i r

D. Roy
Centuiy Computing, Inc.
17 of 41

THE PROCESS ABSTRACTION METHODOLOGY

number on the process graph. For in s t ance , t h e symbols [1,6 I S] at
t h e bottom of t h e T L M stream multibuf box i n f i g . 2a, i nd ica t e t h a t
t h i s Single thread 'i;rocess-(S), r e s u l t s from a user's requirement t o
provide an asynchronous i n t e r f a c e (rule 1) of an app l i ca t ion
independent and hardware dependent na tu re (rule 6). The '*?" and " 1 "
show which process requested or or ig ina ted t h e da t a flow, a con t ro l
information v i t a l t o real-time app l i ca t ions (but s p e c i f i c a l l y
forbidden on DeMarco 's DFDs) .
During t h e preliminary des ign phase, t h e h ie rarchy of process graphs
is mapped t o Ada cons t ruc t s such as a b s t r a c t da ta types (type
d e f i n i t i o n , procedures and func t ions) , packages and t a s k s
s p e c i f i c a t i o n ob jec t s by a small set of simple rules. These r u l e s
encourage the re-use of l i b r a r y un i t s . To s impl i fy , multiple th read
processes are mapped t o packages. These packages encapsulate t h e
s i n g l e thread processes mapped t o Ada tasks. "The leaves of t h e tree
of t h i s h i e r a r c h i c a l s t r u c t u r e are t h e procedures and func t ions
invoked by the s i n g l e thread processes." [Cherry-85]

I n t h e de t a i l ed design phase, Ada PDL is entered i n the preliminary
design object bodies. T h i s PDL is then r e f i n e d i n t o Ada code.

W e found t h a t PAMELA bui lds on proven modern software engineering
techniques (DeMarco, Parnas, Hoare, Myers) t o provide a very smooth
t r a n s i t i o n between a l l software development phases; a q u a l i t y deemed
fundamental i n t h e methodman document [Methodman-82]. Furthermore,
"PAMELA uses a l l of Ada's advanced f e a t u r e s (generics, packages,
t a s k s , exceptions, and both forms of s e p a r a t e compilation) wisely and
e f f ec t ive ly . PAM adds a welcome l i m i t a t i o n , form, and r a t i o n a l e t o
t h e use of Ada's many f e a t u r e s which, without a su i t ab le design and
programming d i s c i p l i n e , can and l i k e l y w i l l be used i n b izar re ,
i n e f f e c t i v e , and i n e f f i c i e n t ways." [Cherry-84]

D. Rov
CentuG Computing, Inc.
18 of 41

THEVIEWGRAPH MATERIALS

of the

D. ROY PRESENTATION FOLLOW

0 M
M
M
I
M
VI
QI

D. Roy
Century Computing, Inc.
19 of 41

w

a

0
A
0

0
I
I-
W z
a
2
m
A
0
0
I-

>
W
0
2
0 z
I u
W
I-

%!
m
m
z
0
QL e

m

4
v)
4

W
n
U

LL

I-
I
W

u

n
M

s
4

u u
0
v) z
OL
0
LL

e a
4
W
I-
4
=) s
W

0
I-
a
W
W z

0 0 ' 0

W
W

W z
s
4
E5 e

v)
v)

v)
4
kk!

I I

D. Roy
Centuiy Computing, Inc.
20 of 41

D. Roy
Century Computing, Inc.
21 of 41

v)
W
t-

e r
W
t-

5

CIL
0
t-
U a
W

i<
W
i-

I

n

W
b

rr

rr
I u
QI e
W
v)
U

v)

0
0
l-

W
I
U

t-
v)

x
W

U

I

a
W u
3
c1
0
QL
e
W
3

v)
J
0
0
I-
w
I
I-

rr

CI)

v,
3

0

v) z
0
t-
U

=s
U

2 e e
4
W r
+
W
QL

I
t-
3

n

;;2

n

w
I

0

D. Roy
Centuiy Computing, Inc.
22 of 41

OPCQN Is the benchmark software’s operator interface
(>QPCON-val-op-int). It also con t ro l s t h e l n l t i a l ac t iva t ion and the
shutdown of t h e system’s o ther tasks.

SPECIPfCATIOEl

Level-l-slngle-tasks Is (EVEPBT, - Events pr in te r
TIMLOD) -- CPU t i m e loader

Begin

1. Prompt operator f o r Run-params

2. Activate OGC simulator - >OPCON-ver-OCC-act

3. f o r t a s k In Level-l-slngle-tasks

1. Activate task - >QPCON-ver-st-act

4. end loop

5. f o r I - 1 to IDLE-number-tasks

1. Activate IDLE-i - XPCOM-ver-ldle-act

6 . end loop

7. delay req-run-time - XPCON-ver-run-time

8. Shutdown all ac t iva ted t a sks

9. delay 1 second -- See note 2 >OPCON-ver-shut-time

10. Pr in t s ta t - report (PRTRPT) - MPCON-val-stat-rep

end

Fig 4-3: Minispec example b u i l t with the tools -- ------------- _I------

D. Roy
Century Computing, Inc.
23 of 41

cr:
0

D. Roy
Century Computing, Inc .
24 of 41

D. Roy
Centuiy Computing, Inc.
25 of 41

D. Roy
Century Computing, Inc.
26 of 41

D. Rov
Centu;Y Computing, Inc.
27 of 41

DEVELOPMENT EFPORT DESCRIPTION

GOLB B => BARON TBD package GOLD C e> --I (doc), -* (PDL)
GOLD D => Bring i n DOC template GOLD E => Task en t ry
GOLD F => Function GOLD H => This text
GOLD P => Package GOLD S => Procedure
GOLD T => Task GOLD W e> Bring WITHSEBP f i l e i n
GOLD X => Exception

GOLD > => half t a b ad jus t r ight (*)
GOLD TAB => half t a b

GOLD < => half t a b adjust l e f t (*)
GOLD DEL => d e l e t e half t a b (**)

(*) Must select range f i r s t l i ke you would fo r tab adjust (control T)
(**) Careful, r e a l l y does "delete" 4 t i m e s .

BE SHORT I N PRELIMINARY DESIGN DOCUMENTATION

Algorithm:

,Effects : -- I mini-spec :

Errors:

Modifies : --I Side effects:

Notes :

Can be ref t o textbook and other biblio.

Describes module functional requirements (more de ta i led than overview).

Describes e r r o r messages issued by module.

L i s t s non-local var iables modified (x.all I Access values, Global var).

User or iented descr ipt ion of dependencies, l imi ta t ions , version
number, s t a t u s (p r e l des, code, etc.). L i m i t change log t o
package level.

Describes module usage i n very general terms.

L i s t s the exceptions tha t can be raised and not handled by module.

Warns designer and user about l imi ta t ions of implementation.

Describes synchronization requirements, tasks termination conditions,
rendezvous time-outs, deadlocks prevention and other tasking reqs.

Specify timing and performance requirements.
i s sues that user can control.

Overview : - 1 Purpose:

Raises :

Requires : --I Assumptions:

Synchronization:

Tuning : -1 Performances :
Addresses performance

D. Rov
Centuj Computing, Inc.
28 of 41

C .kage TBD is --I Decision deferral package -*
Raises :

Overview: - I Purpose :

Effects : -- 1 Description:

None

This is an improvement over Intermetrics' TBD package and IEEE 990
recommendations about decision deferral techniques.

The distinction is clarified between types, variables and values.
The naming is more consistent (enum-i, component-i ...) and more
There are more def initio% (enum-type, record type)
Better compatibility with BYRON (or search utrlity processing) - I Assumptions :
Please only "WITH" this package. By systematically specifying
"TBD.x" items, it is easier to assess the stage of development of
a compilation unit.

readable (scalar variable intead of scalarvalue)

Requires :

Notes :

Daniel Roy 9-AUG-1985 Baseline
Change log:

-- 1 -- Constants
some-constant : constant := 1;
positive-constant : constant := 10;
negative-constant : constant := -10;
real constant : constant := 1.0; -

-- -- Defer decision about type (real),(discrete(enum,integer)), subtype
(natura1,defined subtypes), range etc... that belong to detail design

subtype sail& type is integer range integer'first a . integer'last; -- --I subtype some type is integer range integer'first .. integer'last;
-

-- --
-- Should be Enumeration ... all over for consistency. --

Distinguishes between type, variable and value (enum 1).
By convention (consistent with math notation) n is last,

But this is so much more comfortable.
type enum-type is (enum-1, enum-2, enum-i, enumj, enum-n);
enum - variable : enum-type := enum-1;

-- Keep consistency with enum-type
type record-type is record

component-1 : integer := 0;
component-2 : hteger := 0 ;
component-i : integer := 0;
componentg : integer := 0;
component-n : integer := 0;

end record;
record - variable : record - type;

-- Inspired by IBM PDL stuff
Condition,CD : Boolean := true;

-- Queues services
type queue type is array (array-index-type) of integer;
type queuegtr-type is access queue-type; --

end TBD; --I --*

-- --I
--I --

D. Roy
Century Computing, Inc.
29 of 41

D. Roy
Centuiy Computing, I ~ C .
30 of 41

procedure P (-1 synopsis -*
param-1 : I N OUT some type := some-constant ;
param-n : IN OUT sometype -

--I descr ipt ion -*
--I descr ipt ion -* --* 1 ;

separate ()
procedure body P (--I -- i i rops i s . Must be the same as i n body. --*

param-1 : I N OUT some type := some-constant ;
param-n : I N OUT some-type -

--I descr ipt ion -*
--] descr ipt ion --* --* 1 is -- 1 - ****** Cut and pas te from specification.

-- Packages

Use Gold D for rest of DOC. ****** --

- types

- subtypes

- constants

- records

- variables

- functions

- procedures

- separate clauses

Fig. 4-8: D e t a i l e d design template f o r a procedure (proc body) ...

D. Roy
Century Computing, Inc .
31 of 41

separate (mbuf) 0- 0-*

task body P is - I processing task -*
-I

procedure process block (0-1 Do something useful --*
i n p g t r : IN Zata-ptr type: - fo r Input blocks -*

f o r output block -* o u t p g t r : IN d a t a g t F - type --I - -*

-I -1 H f

1 : -
Dump block queue -*

-0 Where a l l output blocks are queued -* Queue : 13 out t t y p e
procedure put blocks (

1 ; -
begin - 1 P-*

<<except ion block>> -*
-

-
begin -* fo r recoverable exceptions

<< till EOF >> --I loop u n t i l a11 Input task6 are termlnated 4
w h i l e TBD.CD loop -4 Verlflccrtloa:
<< build out Q >> -1 loop u n t i l LOP or output queue f u l l -*

wMl? TBg.condition loop -* Verification:
-* g e t l n g t r (RV vith I t8sk8)

--f build queue
A* build - 0ut-q

process-block (l n g t r , outgtr); -*
end loop;

put-blocks (out-queue) ;
end loop; -

exception - 1 --*

-* watch EOF case
"* till EOF -

when others => - J ,*
-0

- 1 end exception; -*
end :

exception --I --*
--* <<exception - block>> -

when others -> 0 - 1 -* -
- 1 end exception; --* -
end P ; -1 -*

D. Roy
Century Computing, Inc.
32 of 41

D. Roy
Centu j Computing, Inc.
33 of 41

DEVELOPMENT WFORT DESCRIPTION

Gold A Access type
Gold B Block statement (range ,rename)
Gold C Case statement
Gold D Bring i n doc template
Gold E Entry statement
Gold F Function (declarat ion and code)
Gold G Generics (overloading)
Gold H This BELP menu
Gold I IF-TEEN-ELSE statement
Gold L Loop statements

Gold M Modulo statement
Gold N & (iastantiations/aecess/tasks)
Gold P Package use examples
Gold R Record (variable clause)
Gold S Procedure (declarat ion and code)
Gold T Tasks (select,terminate)
Gold U Predefined a t t r i b u t e s
Gold W ?
Gold X Exception (raise)

GOLD > => half t ab ad jus t r i g h t (*)
GOLD TAB => half t ab

GOLD < -> half tab adjust l e f t (*)
GOLD DEL => dele te half t ab (**)

(*) Must select range f i r s t l i k e you would for tab adjust (control T)
(**) Careful, r e a l l y does "delete" 4 t i m e s .

D. Roy
Century Computing, Inc .
34 of 41

Selective entry call (no more that 2 alternatives I)
<<TLM-in>> --*

select --*
else --*

calls TLM stream-multibuf.dogou - have -- a block 1

TLM - stream - multibuf.dogou-have -- a block (nascom - block-Xbuff);
--* increment TLM strem-multibuf overrun
TLM stream - mu1tiGf stat .increment (overrun);

end selzct; --* <cIw - iz>>
Selective WAIT (any number of alternatives)
<<scr loop>> --* Accept and send block

lCop --*
select --*

accept here - is -- a block (-1 Accept NASCOM block -*
nascom block-Xbuff : IN nascom block Xbuff - type --I -*
local-block :- nascom - block - Xbuff ;

--* calls strip chart-multibuf.hete - is -- a set 1
put - line ("SCR - zata - extractor saw a block");

or
terminate;

end select; -*

- - - --I --f) do

end her e-is-a-bl ock ; --I --*

--*
-- could be delay for time-out

end loop; --* scr-loop

D. Rov
Centujr Computing, Inc.
35 of 41

D. Roy
Century Computing, Inc .
36 of 41

v) u
e
I-
W r:

L(n
e
W
-J
c-.l.

2
0 u 5s

0

n
W
W e
3
W

J
3

I- -
0
LL
LL
W

V
0
J

%
0

u,
0

cy:
W
W
W
0
2
U

w z z
0 u

3L cr:
0
3

to
W e
==,
t-
4
W
LL

W z > cr:
0
I-

0
m
s!
5

A u ca W
V z

v)
J
0
0
I-

W
J e z
v)

ca
W e
0

U

U

W
2

u,
m

CI

z
v)
m =

U

W v)
I- cr:
0
e
W cr:

W z s
4

J

W >
W
v)

W
I

s CI
W z

m ..
v)
E:
W
J

0
aL e

m

cr:
W
W z

m

LL
W cr:
<
CI
W e
0
-I
W >
W
CI

I
0

I I I A w
3,
W ca

l- e
W
4L

0 0 0 0

D. Rov
CentuG computing, Inc.
37 of 41

D. Roy
Centuiy Computing, Inc.
38 of 41

DEVELOPMENT EFFORT DESCRIPTION

------------------I--------

I Hours I x I . I
Training 253 22.9

Design 93 8.4
Code/ test 335 30.3
Tools dev 319 28.9

Requirements 105 9.5

D. Roy
Century Computing, Inc.
39 of 41

W
W

0
v)

a a

n

4
0
0
VI
P

0
J
0
0
N

&

u"

c
Y

4 ; I I I I I I I I I I I I I
I

t
I

I
i

I
I

M N

04
(v

c
(v

QI
c

40
c

CI
c

4 0
c

D. Roy
Century Computing, Inc.
40 of 41

n
u)
A
0
0
t
0
2 e
* co
0
A
0
0
0
3:
t
W
z
<
a!
0
CL

c)
W
W
3:

r
t
%
W
a

Y

U

am
X
0
0

U
CI <

n
0
L:
0
0
W
v)

*
0 e
t

LT
CL

W
H

*

Y

Y

=.
0
t

0
;L
Y

0 a
0
t
* e
Ir
W
I
t
u,

t u
W
3
0

Q

t
0

CL

w

a

U

n
L
c3
n
W
0

)I.
L
W

u
L c
W

Q
W

U

M

Y

u s
Q
0
CL
Q

Y)
3

Y

0
0
IL

W
S <
p.

0 0 0 0 0 0

a,
w
Q s

e

a

m

v)
V
4:

u
W
0

0

D. Roy
Century Computing, Inc.
41 of 41

N 39368
OBSERVATIONS FROM A PROTOTYPE IMPLEMENTATION

OF THE COMMON APSE INTERFACE SET (CAIS)

Mike McClimens, Rebecca Bowerman, Chuck Howell,
Helen Gill, and Robbie Hutchison

MITRE Corporation

EXECUTIVE SUMMARY

This paper presents an overview of the Common Ada Programming Support
Environment (APSE) Interface Set (CAIS), its purpose, and its history.
The paper describes an internal research and development effort at the
Mitre Corporation to implement a prototype version of the current CAIS
specification and to rehost existing Ada software development tools
onto the CAIS prototype. Based on this effort, observations are made
on the maturity and functionality of the CAIS. These observations
support the Government's current policy of publicizing the CAIS
specification as a baseline for public review in support of its
evolution into standard which can be mandated for use as Ada is today.

CAIS HISTORY

The Ada programming language was developed by the United States
Government to promote the maintainability, portability, and
reusability of software. Although no special software tools are
required to use the Ada language, a collection of portable and modern
tools is expected to enhance the benefits of using Ada. The term Ada
Programming Support Environment (APSE) is used to refer to the support
(e.g., software tools, interfaces) available for the development and
maintenance of Ada application software throughout its life cycle.
The Common APSE Interface Set (CAIS) is the interface between Ada
tools and host system services, which is being standardized to promote
portability of tools among APSEs.

In 1980, the DoD sponsored two efforts to develop APSEs: the Ada
Language System (ALS) contracted to Softech by the Army and the Ada
Integrated Environment (AIE) contracted to Intermetrics by the Air
Force. The DoD also funded publication of the document, Requirements
for Ada Programming Support Environments , nicknamed "Stoneman". It is
the Stoneman document that first defined layers within an Ada
Programming Support Environment. The Ada Joint Program Office (AJPO)
was formed in late 1980 to serve as the principle DoD agent for the
coordination of all DoD Ada efforts.

Multiple DoD-sponsored APSEs threatened to undermine the Ada program's
goal of commonality. In late 1981/early 1982 AJPO established the

M. McClimens
MITRE Corp.
1 of 29

Kernel APSE Interface Team (KIT) as a tri-service organization chaired
by the Navy. The KIT was supported by an associated group consisting
of members from industry and academia, called the KIT Industry and
Academia (KITIA). The charter of the KIT and KITIA was to define the
capabilities that comprise the Kernal APSE layer (KAPSE) and its
interface to dependent APSE tools. The interface between the KAPSE
and dependent APSE tools became called the Common APSE Interface Set
and a subgroup of the KIT/KITIA called the CAIS Working Group was
formed to define a standard for this set of interfaces.

The CAIS has been an evolving concept. It began as a bridge between
the Army and Air Force APSES but has become a more generalized
operating system interface. However, issues such as interoperability,
configuration management, and distributed environments have not yet
been addressed. Significant changes have appeared with each iteration
of the CAIS specification up to the submittal in January 1985 of CAIS
Version 1 as a proposed Military Standard (MIL-STD-CAIS).

In response to concern from the Ada community that the CAIS, as
defined in Version 1, is too premature for standardization, a policy
statement was released along with the proposed MIL-STD-CAIS directing
that use of the CAIS be confined to prototyping efforts. The policy
clearly states that the CAIS should not at this time be imposed on
development or maintenance projects where the primary purpose is other
than experimentation with the CAIS.

Further refinement of the CAIS is planned, but a contract to produce
Version 2 of the CAIS specification has not yet been competed.
Potential future applications of the CAIS include several major
government projects (e.g., STARS and the NASA Space Station).

CAIS OVERVIEW

The CAIS is a set of Ada package specifications that serve as calls to
system services. The implementation of these packages may differ
between systems while the package specifications remain the same.
These package specifications then become a system independent
interface between software development tools and the host operating
systems. The CAIS is composed of four major sections: a generalized
node model, support for process management, an extended input/output
interface, and an abstraction for the processing of lists.

The generalized node model is by far the most significant part of the
CAIS. Processes, structures, and files may all be represented as
nodes. Among other features, the node model provides a replacement
for the host file system. As such it contains enough functionality to
support the needs of tools rehosted from a wide range of file systems.
The node model is a hierarchical tree augmented by secondary
relationships between nodes. Attributes may be assigned to any node
or relationship in the tree. The attribute and relationship
facilities provide a powerful mechanism for organizing and
manipulating interrelated sets of nodes. The node model also provides
support for mandatory (secret, etc.) and discretionary access control
(fead only, etc.).

M. McClimens
MITRE C o p .
2 of 29

Process support and an extended set of 1/0 interfaces are integrated
with the node model. Process support is not extensive but does
include the facilities to spawn and invoke processes or jobs and
facilities for communication of parameters and results between
processes. The 1/0 interfaces, on the other hand, are quite
voluminous. Although they constitute more of the specification than
the node model, the 1/0 interfaces largely duplicate the 1/0 support
provided in Ada. In addition to integrating 1/0 with the node model,
CAIS 1/0 tightens some of the system dependencies left in Ada and
defines standard interfaces for devices such as scroll terminals, page
terminals, and tapes.

The CAIS defines an abstract data type for processing lists. CAIS
Lists may be any heterogeneous grouping of integers, strings,
identifiers, sublist, or floating point items. Items may be named or
unnamed. Lists are used throughout CAIS for the representation of
data such as attributes and parameter lists, and they provide a
powerful abstraction for tool writers in general.

MITRE'S PROTOTYPE CAIS

Under a three staff year (Oct 84 to 85) internal research and
development effort, MITRE Corporation has implemented a large subset
of the CAIS specification and has exercised both rehosted and newly-
written tools on this prototype. The MITRE prototype includes the
node model, the list utilities, Text - Io, Direct-Io, and Sequential-Io.
Parts of the process model and scroll-terminal have also been
implemented in support of a line editor and a menu manager rehosted
from other systems. In the next year the prototype will be completed,
additional tools will be rehosted, the CAIS will be rehosted to a
second system, and an analysis of distributing the CAIS will be
undertaken. The prototype CAIS was developed using the Verdix Ada
compiler running under Ultrix on a DEC VAX 11/750. Of the two tools
rehosted to the prototype, one was originally developed using the Data
General Ada compiler, and the other, using the Telesoft compiler.

The objective of MITRE'S prototype development was to submit the CAIS
specification to the rigor of implementation and actual use. It was
believed that implementation of a prototype would test the
implementability of the CAIS specification, would identify the level
of support that CAIS provided to existing tools, and would result in
practical input to CAIS designers, DoD policy makers, and program
managers. The primary focus was on evaluating the CAIS functionality
and not on developing an efficient implementation.

The consensus from this study is that the CAIS, for the most part, is
internally consistent and provides a good foundation for continued
work in standardized operating system interfaces for Ada programming
support environments. The next version of the CAIS must, however, be
considerably more complete in its specification. Table 1 lists the
specific observations made as a result of the prototype

M. McClimens
MITRE Corp.
3 of 29

S e c t i o n

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

I t e m

The conceptual model i s c o n s i s t e n t ,
except f o r t h e I / O packages.

Some o f t h e semant ics a r e ambiguous.

Redundant c a p a b i l i t i e s and a l t e r n a t e
i n t e r f a c e s need t i g h t e n i n g .

The n e s t i n g o f packages w i t h i n t h e
package CAIS i s n o t e x p l i c i t l y r e q u i r e d .

The use o f l i m i t e d p r i v a t e t y p e s i m p l i e s
a need f o r a d d i t i o n a l f a c i l i t i e s .

The e r r o r h a n d l i n g model i n t h e
s p e c i f i c a t i o n i s i n s u f f i c i e n t .

Medium

M i n o r

M i n o r

Ma jor

M i n o r

M i n o r

M i n o r

M i n o r

Minor

Medium

e a p a b i l i t i e s f o r node i t e r a t o r s a r e
1 i m i t e d .

Both

N/A

N/A

Both

I n t e r f a c e

I n t e r f a c e

I n t e r f a c e

N/A

Semantics

Semantics

3.1.7

3.1.8

3.2.1

Parameter modes and p o s i t i o n s a r e
sometimes i n c o n s i s t e n t .

The use o f f u n c t i o n s versus procedures
should be c o n s i s t e n t .

M u l t i p l e d e f i n i t i o n s o f subtype names
e x i s t .

Medium Semantics

~

3.2.2

3.2.3

3.2.4

3.2.5

Medium Semantics

,~

I n c o n s i s t e n t d e s c r i p t i o n s o f access
s y n c h r o n i z a t i o n c o n s t r a i n t s a r e g iven.

Unnecessary c o m p l e x i t y i s i n t r o d u c e d
w i th t h e p r e d e f i n e d r e l a t i o n 'User.

The d e s c r i p t i o n o f i m p l i e d b e h a v i o r o f
open nodes i s good b u t needs t o be
more e x p l i c i t .

Boundary c o n d i t i o n s a r e undef ined.

M. McClimens
MITRE Corp.
4 of 29

3.2.7

3.2.8

D e f i n i t i o n o f node i t e r a t o r c o n t e n t s i s
ambiguous.

Pathnames a r e i n a c c e s s i b l e f rom node
i t e r a t o r s .

S e c t i o n

3 . 3 . 2

3 . 3 . 3

3 . 4 . 1

3 . 4 . 2

3 . 4 . 3

3 . 4 . 4

3 . 4 . 5

3 . 4 . 7

3 . 4 . 8

3 . 4 . 9

3 . 5 . 1

3 . 5 . 2

3 . 5 . 3

3 . 5 . 4

~~

Parameter pass ing and i n t e r - t o o l
communication need t o be re-evaluated.

T Major 1 Bo th

~ ~~~

I t e m Sca le Scope

A b i l i t y t o s p e c i f y i n i t i a l va lues f o r M i n o r Both
p a t h a t t r i b u t e s i s m i s s i ng.

E r r o r i n sample imp lementa t ion o f M i n o r N/A
a d d i t i o n a l i n t e r f a c e f o r
Structural-Nodes.Create-Node.

Treatment o f f i l e s d e p a r t s f rom t h e Major Both
node model.

Consequences a r e i m p l i e d by a common Medium Both
f i l e type.

I n i t i a l i z a t i o n semant ics a r e incomplete. Medium Semantics

Mode and I n t e n t a r e coupled. Minor Both

A d d i t i o n a l semant ics a r e needed f o r Medi um Seman t i c s
m u l t i p l e access methods t h a t i n t e r a c t .

Impor t -Expor t o f f i l e s i s under- Medium Both
s p e c i f i e d .

Semantics o f a t t r i b u t e va lues a r e M i n o r Semantics
c o n f 1 i c t i ng.

I n t e r f a c e s d i v e r g e f rom Ada IO. M i n o r I n t e r f a c e

C l a r i f i c a t i o n o f dependent processes M i n o r Semantics
i s needed.

Suppor t f o r process groups i s needed. Medium Both

P r o l i f e r a t i o n o f process husks i s M i n o r Semantics
i m p l i e d by t h e i n t e r f a c e s .

D i s p o s i t i o n o f handles f o l l o w i n g process Medium Semantics
t e r m i n a t i o n needs t o be c l a r i f i e d and
r e s t r i c t e d .

M. McClimens
MITRE Corp.
5 of 29

Section

3.5.6

3.5.7

3.6.1

3.6.2

3.6.5

3.7.1

3.7.2

3.7.3

3.7.5

3.7.6

4.3

4.4

M. McClimens
MITRE Gorp.
6 of 29

Item Scale Scope

Response is undefined when attempting to Minor Semantics
spawn a process that requires locked
file nodes.

Clarification of IO-Units and IO-Count Mi nor Semantics
with respect to meaning of Get and Put
operations is needed.

The use of predefined attributes should Medi um Semantics
be clarified.

Attribute values should not be restricted Medium Both
to Li st-Type.
The order of Key and Relationship Mi nor Interface
parameters should be reversed.

Enclosing string items in quotes Mi nor Seman t i c s
decreases readability and is unnecessary.

List-Utilities should present a textual Medium Both
rather than a typed interface.

Token-Type should include all list items, Minor Both
not just identifiers.

The Position parameter should never be Mi nor Interface
required for operations on named lists.

Nested packages names conflict with Mi nor Interface
Item-Kind enumerals.

Handling of control characters remains Medium Semantics
poorly defined.

The Scroll-Terminal package provides N/A N/A
improvements over Ada IO packages.

implementation. Many of these comments reflect ambiguities in the
text. Some major refinement of exception handling, input/output, and
the list utilities is recommended. Other comments reflect specific
technical areas and may be addressed by simple modification or
addition to existing interfaces. While the required changes certainly
appear to be within the scope of the planned upgrade, Version 2.0 of
the CAIS will likely contain significant changes to the operational
interfaces for tools. The most difficult problems to evaluate are the
ambiguous areas of the specification which may simply disappear or
which may result in considerable conflict depending upon the nature of
the resolution that is adopted.

MAJOR OBSERVATIONS - AND RECOMMENDATIONS

The results of MITRE'S prototype implementation of the Common APSE
Interface Set support the Government's current policy for promulgating
the CAIS. The CAIS provides a relatively consistent set of interfaces
which address portability issues, but it is not refined to the degree
that it can be mandated as a standard. The non-binding Military
Standard CAIS issued 31 January 1985 publicizes the direction that the
CAIS is taking. It can be used as guidance for current development
efforts and provides a baseline for public critique.

An upgrade of the current definition of CAIS is planned. The new
document, CAIS Version 2.0 will be an input to the Software Technology
for Adaptable Reliable Systems(STARS) Software Engineering Environment
program. It is intended that CAIS Version 2.0 have the quality and
acceptance required of a true military standard. To achieve this
quality, the upgrade will have to add rigorous precision to the
current document, will have to refine several existing technical
areas, and will have to include technical areas previously postponed.

CAIS Version 2 . 0 should be expected to contain major refinements and
additions to the current document. The MITRE prototype effort has
found five major issues that must be addressed in the next revision of
the current document:

The current document is ambiguous and imprecise--more
rigor and precision is required.

The List-Utilities abstraction can be made simpler,
more complete, and more consistent.

A central model is required for CAIS exception
facilities.

The CAIS IO model is not uniform-- it is inconsistent
with Ada and with the CAIS node model

The CAIS does not adequately address interactions
between itself and the host operating system.

M. McClimens
MITRE Corp.
7 of 29

RESOLUTION AMBIGUITIES

The precision with which the CAIS is specified in the current document
leaves many issues open to the interpretation of the implementor. The
semantics of many routines are not specified in detail; implications
of alternate interfaces and suggested implementations are not
addressed in text; broad statements are made in introductory sections
and then are not reflected in discussions of specific routines;
information on specific topics (such as predefined attributes) is
dispersed throughout the document; and interactions among routines are
not qualified. Together these deficiencies result in confusing the
intentions of the CAIS and in giving an impression that the CAIS is
not completely thought out. Unless corrected, they will make
implementation of the CAIS difficult and standardization across CAIS
implementations improbable. Clarification of the specification is
also necessary to achieve the widespread acceptance necessary for
adoption of CAIS as a standard.

LIST UTILITIES REFINEMENT

During the most recent revision of the CAIS document, the
List-Utilities package underwent significant modification. Further
refinement is necessary. The List-Utilities package provides an
abstraction that is used throughout the CAIS. Our recommendation is
that the definition of Token Type be expanded so that it can represent
any of the list items currently supported (lists, integers, floating
points, strings, and identifiers). This will allow the removal of
redundant subprograms, will provide a more consistent interface, and
will provide more functionality with less complexity. Enhancements to
List-Utilities may allow the CAIS features that rely on List - Utilities
to also be enhanced.

CENTRAL EXCEPTION MODEL

The treatment of exceptions in the current document is inadequate.
The Ada specifications do not correspond to the text, and the text
references exceptions by unqualified names. The same exception name
is used to refer to several different error conditions. Thus it is
difficult to determine the complete set of CAIS exceptions and their
relationships. It appears that exceptions were considered only on a
procedure-by-procedure basis. A CAIS user will expect a single
exception model that is consistent across the entire GAIS. We have
proposed a candidate set of exceptions that addresses the entire CAIS
and that reduces the instances of exceptions with multiple meanings.
The method of exception handling in the Ada 1/0 packages could -be
adopted as a model for coordinating exceptions across several
packages, or all exceptions could be declared in the package CAIS.
However, the CAIS must evolve to one, consistent, well-engineered
model for exception handling.

M. McClimens
MITRE Corp.
8 of 29

CLARIFICATION J/O MODEL
The co-existence of both node handles and file handles makes the CAIS
file nodes inconsistent with either process or structural nodes. The
entire treatment of 1/0 facilities in CAIS suffers from its unclear
relationship with Ada 1/0 facilities. Large sections of the CAIS 1/0
packages currently refer to Ada 1/0 packages without addressing
specific effects of differences. While Ada defines distinct file
types for Text-Io, Direct Io, and Sequential-Io, the CAIS defines a
single file type and indicates that operations from different 1/0
modes may be intermixed. However, many implications arising from this
capability are not adequately addressed. The description of CAIS 1/0
would be greatly improved by discussing its intended compatibilities
and differences with Ada I/O.

CAIS AND THE HOST OPERATING SYSTEM

For an indefinite time, CAIS environments will be required to co-exist
with the environment of the host operating system. It is unreasonable
that all host facilities be converted to interface with a newly
installed CAIS. Military Standard CAIS simply does not address issues
related to this co-existence. Even the procedures for importing and
exporting files between the two systems disregard important properties
of host files and of CAIS files. Methods need to be established for
reporting host errors, activating host processes, and making the
contents of file nodes available to non-CAIS programs. Unless
standards are established to integrate the host and CAIS environments,
users of each CAIS will develop their own methods, and portability
across CAIS implementations will be impacted.

M. McClimens
MITRE Corp.
9 of 29

THE VIEWGRAPH MATERIALS

for the

M. McCLIMENS PRESENTATION FOLLOW

M. McClimens
MITRE Corp.
10 of 29

U

M. McClimens
MITRE Corp.
1 1 of 29

3
Q)
CL

+ Q)
Eb13
w c b

n
5

9
U

M. McClimens
MITRE Corp.
12 of 29

a
4

T

M. McClimens
MITRE Corp.
13 of 29

b b b

a" a
m

5

E

M. McClimens
MITRE Corp.
14 of 29

a

e
W
cr;l cn
W

Q)
a4

a

W cn
2

a
M. McClimens
MITRE Corp.
15 of 29

EE:
5"
m

.
(d
0

a
4

9
U

M. McClimens
MITRE C o p .
16 of 29

m
QI
ISI,

7
U A

cn'w

2 4

b

a a
m
3"

M. McClimens
MITRE Gorp.
17 of 29

a
a,
lw cn
h cn . Q) z

E

z

0
0
0

4

h b
0
\ .
b

w
Q) cn

cn

cu
ICI,

o r l

‘CI

ti

I I

a
4
m
2

9
U

M. McClimens
MITRE C o p
18 of 29

cn
2
V

4
4

b b b b b b

cn
rn n

c
3
% m

m
P

9
U

M. McClimens
MITRE Corp.
19 of 29

M. McClimens
MITRE Cop.
20 of 29

4 W
y.r
0 -
Q) cn

*

'Q) m

Q)
$4
h
0
0

.(lr

*
k"

.
cb

cn
0
.
Es"
3.,

PII
$4
7 cn

3
0

a
4
cr)

E

CI
cn
4
CI)

4

k"
*rl
3
0

b
M. McClimens
MITRE Corp.
21 of 29

'ICI

0
rc,
a,

b

Q)
'k
0
3;

Td
Q)

5
m .

h
cf)
rc,
k

f4
0
Q) +

Q)

G .
d
4

b
M. McClimens
MITRE Corp.
22 of 29

4

plr
Q)

0
2
u - . .

z
H

o m
' L a E E

M. McClimens
MITRE Corp.
23 of 29

'5

3
aJ
aJ r:
cn
2
d
A
E

u
E-r cn

b

E

E E

W z
0
E

M. McClimens
MITRE C o p .
24 of 29

A w n
B
L w s
0
I-

M. MeClimens
MITRE Corp.
25 of 29

rc. , -w 4 u u

b

E

t

M. McClimens
MITRE Corp.
26 of 29

.
V

Q)
slr e I
Q)’

Q) .rl slr (;L

.

. .
Q) .

b b

a
4

M. McClimens
MITRE Corp.
27 of 29

b
M. McClimens
MITRE Corp.
28 of 29

0
rcI,

cn .
0

b b

I3
cn
d
0
0

M. McClimens
MITRE Corp.
29 of 29

N86 - 30369
IN THE SOFTWARE ENGINEERING LABORATORY (SEL)**

William W. Agresti***
Computer Sciences Corporation

and the SEL Staff

ABSTRACT

An experiment is in progress to measure the effectiveness of
Ada in the National Aeronautics and Space Administration/
Goddard Space Flight Center flight dynamics software devel-
opment environment. The experiment features the parallel
development of software in FORTRAN and Ada. The experiment
organization, objectives, and status are discussed. Experi-
ences with an Ada training program and data from the devel-
opment of a 5700-line Ada training exercise are reported.

INTRODUCTION

An experiment is underway to assess the effectiveness of Ada
for flight dynamics software development. This paper is an
interim report on the experiment, discussing the objectives,
organization, preliminary results, and plans for completion.

*Ada is a registered trademark of the U . S . Government (Ada
Joint Program Off ice) .

**Proceedings, Tenth Annual Software Engineering Workshop,
National Aeronautics and Space Administration, Goddard
Space Flight Center, December 1985.

***Author's Address: Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910.

W. Agresti
csc
1 of 35

The Ada experiment is planned and
ware Engineering Laboratory (SEL)

administered by the Soft-
of the National Aeronau-

tics and Space Administration's Goddard Space Flight Center
(NASA/GSFC). NASA/GSFC and Computer Sciences Corporation
(CSC) are cosponsors of the experiment. Personnel from all
three SEL participating organizations (NASA/GSFC, CSC, and
the University of Maryland) support the experiment.

TECHNOLOGY ASSESSMENT IN THE SEL

There is a great deal of optimism concerning Ada's potential
effect on software development. The SEL seeks to establish
an empirical basis for understanding Ada's effectiveness in
a particular environment--namely flight dynamics software
development at NASA/GSFC. Figure 2" shows some of the char-
acteristics of this development environment. (Reference 1
contains a more detailed description.)

As Figure 2 implies, in seeking to understand the effective-
ness of Ada, the SEL is approaching this task as it has
addressed the assessment of other software technologies.
Some methods that have been demonstrated to be effective in
other environments have not been effective in the SEL envi-
ronment. The SEL is therefore cautious about expecting that
reported experiences with Ada will obtain in the SEL envi-
ronment. Instead, the SEL seeks to conduct an assessment of
Ada in its own environment.

The assessment methods used by the SEL have included con-
trolled experiments, case studies, and analytical investiga-
tions. The Ada assessment is referred to as an experiment,
although it is clearly not a controlled experiment. Iden-
tifying this effort as an experiment follows the general use

*All figures are grouped together at the end of the paper.

W. Agresti
csc
2 of 35

of the word to denote "any action or process undertaken to
discover something" (Reference 2) . As the later discussion
will make clear, the Ada experiment is a highly instrumental
case study of an Ada implementation in parallel with a
FORTRAN implementation, with both systems developed in re-
sponse to the same requirements.

OBJECTIVES

The primary objective of the experiment (Figure 3) is to
determine the cost-effectiveness of Ada and its effect on
the flight dynamics environment. A related objective is to
assess various methodologies that are related to the use of
Ada. An initial set of such methodologies includes object-
oriented design (Reference 3) , the process abstraction method
(Reference 4) , and the composite specification model (Refer-
ence 5). Additional methodologies will be identified as the
experiment continues.

Reusability is an important tactic for cost-effective soft-
ware development, both in a general sense and in the SEL
environment. Ada was designed (in part) to facilitate re-
usability. This experiment seeks to develop approaches for
reusability when Ada is the implementation language.

The Space Station is a program of great size, complexity,
and significance to NASA. Ada has been recommended as the
language to be used for the development of new software for
the Space Station. An objective of the Ada experiment is to
develop measures that may assist in planning for the large-
scale use of Ada in the Space Station program. Examples-of
such measures are those that relate to size, productivity,
or reliability in an Ada implementation.

W. Agresti
csc
3 of 35

Because the experiment is not completed, these objectives
have not yet been met. However, experiences thus far will
contribute to addressing the objective of understanding the
effect of Ada.

EXPERIMENT PLANNING

The experiment consists of the parallel development, in
FORTRAN and Ada, of the attitude dynamics simulator for the
Gamma Ray Observatory (GRO) (Figure 5) ; which is scheduled
to be deployed in May 1988. It is worth noting that the
dynamics simulator is part of the standard complement of
ground support software planned for the GRO mission. The
simulator would routinely be developed in FORTRAN alone;
because of the experiment, it is being developed in Ada as
well .
When completed, the system is expected to comprise
40,000 source lines of (FORTRAN) code, requiring 18 to
24 months to develop on a VAX-11/780 computer. Each team
was staffed initially with seven personnel from NASA/GSFC
and CSC. Each development project is expected to require 8

to 10 staff-years of effort.

Three teams have a role in the experiment (Figure 6): the
Ada development team; the FORTRAN development team; and an
experiment study team consisting of NASA/GSFC, CSC, and
University of Maryland personnel. The study team is respon-
sible for planning the experiment, collecting data from the
development teams, and evaluating the progress and results
of the experiment. The study team will also be able to com-
pare the software products generated by each team.

The profiles of the development teams (Figure 7) reveal that
the Ada team on average is familiar with more programming
languages and is more experienced than the FORTRAN team.

W. Agresti
csc
4 of 35

However, the Ada team is less experienced with dynamics sim-
ulators, the application area of interest.

Striking differences exist in the relationships of the teams
to their development tasks (Figure 8) . The FORTRAN team is
able to reuse some design and code from related systems.
The Ada team is charged with starting fresh to design a sys-
tem that can take advantage of Ada-related design approaches.
For the Ada te.am, both the development environment and the
language are new.

Figure 9 shows the timeline for the Ada experiment with the
activities of the three teams during the expected 2-year
duration of the experiment. The timeline shows the FORTRAN
team to be slightly more than one development phase ahead of
the Ada team. The shift is due to the training in Ada re-
quired by the Ada team at the start of the project. The
FORTRAN team, by contrast, was able to start immediately
with the requirements analysis activity--the first phase in
the development process.

The study team is collecting data on both development teams.
Figure 10 shows the range of resource, project, and product
data collected. Wherever possible, routine SEL forms were
used. However, special Ada versions of two forms--the com-
ponent origination form and the change report form--were
developed. The new component form allows the identification
of an Ada component as a package, task, generic, or subpro-
gram and further recognizes that a component can be a speci-
fication or body. The new change form adds a section to
identify separately any Ada-related errors.

TRAINING APPROACHES

A major portion of the'experiment thus far has been the Ada
training program, which was planned by the study team, in

W. Agresti
csc
5 of 35

p a r t i c u l a r . b y t h e U n i v e r s i t y of Maryland pe r sonne l . The

p r i n c i p a l t r a i n i n g resources (F igu re 1 2) were a s fo l lows:

0 Ada language r e f e r e n c e manual (LRM) (Reference 6)
0 Ada tex tbook (Reference 3)
0 A d a v i d e o t a p e s (Reference 7)

The 27 v i d e o t a p e s were viewed by t h e team o v e r a 1 -week pe-
r i o d . A U n i v e r s i t y o f Maryland graduate s t u d e n t , exper ienced
i n Ada, w a s a v a i l a b l e t o direct t h e t r a i n i n g - - t h a t is, t o
p l a n t h e schedu le of t a p e viewing, answer q u e s t i o n s about
Ada material, s t o p t h e t a p e s t o c l a r i f y t h e material , l e a d
t h e d i s c u s s i o n between t a p e s , and a s s i g n r ead ing and small
coding assignments . Two sets of d i s k e t t e s f o r u s e on p e r -
sona l computers were a v a i l a b l e t o t h e team t o supplement t h e

v ideotaped i n s t r u c t i o n s . L e c t u r e s o n Ada-related d e s i g n
methods--the s ta te -machine a b s t r a c t i o n and p r o c e s s a b s t r a c -
t i o n method (Reference $)--were p r e s e n t e d t o t h e team.

A p r i n c i p a l component of t h e Ada t r a i n i n g program was t h e

d e s i g n and implementat ion i n A d a o f a practice problem. The
purpose of t h i s t r a i n i n g e x e r c i s e w a s t o e n a b l e t h e team t o
app ly what i t had been t a u g h t about Ada and t o beg in workinq
t o g e t h e r a s a team.

F i g u r e 13 shows t he coverage of t o p i c s by t h e t r a i n i n g e le -
ments . The tex tbook and t h e t r a i n i n g e x e r c i s e covered a l l
t h r e e t r a i n i n g t o p i c s : t h e Ada language i t s e l f , software
e n g i n e e r i n g w i t h Ada, and Ada-related d e s i g n methods.

Experience w i t h A d a t r a i n i n g led t o s e v e r a l recommendations
f o r f u t u r e s e s s i o n s (F i g u r e 1 4) . C o n s i s t e n t w i t h s e v e r a l
o t h e r pub l i shed recommendations (e .g . , Reference 3) , t h e
a p p r o p r i a t e emphasis should be o n s o f t w a r e e n g i n e e r i n q w i t h
Ada and n o t s imply t h e language s y n t a x and semantics. The
methods and resources used i n t r a i n i n g t h e Ada team--
v ideo tapes , c l a s s d i s c u s s i o n , and a p r a c t i c e problem--were

W. Agresti
csc
6 of 35

effective. Additional hands-on experience with the Ada com-
piler (in addition to work on the practice problem) is also
beneficial.

Two months of full-time training are recommended for each
staff member. After this period, the staff member would be
able to join a development team and begin contributing.
Ideally, this first assignment as a developer should be
carefully chosen and closely monitored by a more senior de-
veloper. Reference 8 contains a more thorough assessment of
Ada training methods and more detailed recommendations for
the design of future Ada training programs.

DATA FROM THE ADA TRAINING EXERCISE

The training exercise (or practice problem) emerged as the
single most valuable element of Ada training. It also pro-
vided the study team with an opportunity to practice moni-
toring a small Ada project.

$he exercise was to design and develop an electronic message
system (EMS) that allows users to send and receive elec-
tronic mail and to manage groups of users (Figure 16). EMS
has been used as a student programming project at the
University of Maryland, where it was implemented in the SIMPL
language, requiring typically 1000 to 2000 lines of code.

For the Ada team, EMS was a chance to practice object-
oriented design as well as to experiment with Ada. The
study team could try out the data collection system and
begin measuring a small Ada development.

The completed EMS system in Ada comprised 5730 lines of code
(Figure 17), much larger than the student projects in SIMPL.
An analysis is currently underway to compare the functional-
ity of the Ada and SIMPL versions. It is already clear that

W. Agresti
csc
7 of 35

the Ada version has a much more extensive user interface and
help facility. Also, the 5730 source lines contained only
1402 executable statements. The drop from source lines to
executable statements is more severe than in SEL FORTRAN
systems, where reductions of only 2 to 1 are typical.

Developing EMS required 1906 staff-hours (including 570 hours
of training). A productivity/cost measure frequently used
in the SEL is the number of hours per thousand executable
statements. Figure 17 shows the cost of EMS development to
be greater than the average cost of developing FORTRAN sys-
tems. Of course, the EMS example in Ada represents only a
single data point whereas the FORTRAN cost data are taken
from hundreds of FORTRAN modules in the SEL data base.

It is wise not to rely too heavily on the EMS data as an
indicator of future Ada projects. There are several sound
reasons why the costs could be higher or lower tha'n those
experienced with EMS.

Costs could be higher in the future because of the following:

0 EMS was developed by a higHly motivated staff eager
to apply Ada. As the use of Ada becomes more routine, the
staff may not be as motivated by the novelty of using a new
language in an experimental setting.

0 EMS had no documentation requirements, unlike typi-
cal SEL projects.

0 EMS did not involve tasking.

0 The application domain of EMS (electronic 'mail) was
easier to understand than the flight dynamics area. As a
result, the EMS effort in requirements analysis and accept-
ance testing was proportionally less than it would be for
flight dynamics projects.

W. Agresti
csc
8 of 35

Costs of the Ada development may actually be lower than sug-
gested by EMS because of the following:

e The staff will be better trained. Recall that EMS

was a training exercise; teams in the future will be more
experienced in Ada.

0 The Ada team (with seven people) was too large for
the EMS assignment, The size of the team was driven by the
scope of the GRO dynamics simulator development. The cost
of EMS would likely have been less if the team were smaller
(approximately three people).

0 The Ada development environment for EMS was not
only new but also highly unstable, Only unvalidated Ada
compilers were available when coding of EMS began. The team
progressed through versions’ 1-3, 1.5, and 2.1 of the Tele-
soft compiler before the DEC Ada compiler arrived.

Figure 17 shows that the error rate for EMS was lower than
that of FORTRAN systems in the SEL data base. Once again,
this result should not necessarily be attributed to the use
of Ada on EMS. The FORTRAN systems are much more complex,
and the testing requirements in the flight dynamics area are
much more rigorous than for EMS,

Figure 18 shows the distribution of effort among design,
code, and test for EMS and typical FORTRAN systems. Whereas
the relative effort for the three activities is roughly
equivalent for FORTRAN systems, 60 percent of the EMS Ada
effort was spent on design. Of course, the use of Ada
raises the question of redefining the cutoff between design
and code activities. If Ada is used as a process design
language (P D L) , the design activity can include the delivery
of a design document of compiled specifications, Ada defini-
tions of types, and Ada PDL. In such cases, it may be

W. Agresti
csc
9 of 35

understandable that more effort is spent on "design" activ-
ity, with proportionally less effort on "code." Again, the
more substantial testing requirements for FORTRAN flight
dynamics systems may explain the difference in relative
effort devoted to testing EMS versus typical FORTRAN systems.

The profile of the EMS code in Figure 19 reveals that the
EMS Ada modules were smaller on average. The lower percent-
age of lines of EMS that are blank or comment (39 percent
versus 51 percent) may be due to the greater self-description
possible with Ada object names and types.

STATUS AND OBSERVATIONS

Figure 21 revisits the experiment timeline to show the actual
activity to date. The activity profiles of the two develop-
ment teams confirm that progress is being made according to
plan .
With the Ada experiment not yet complete, no definitive
statements can be made on the effectiveness of Ada in the
SEL environment. Nevertheless, Ada's influence is being
felt on personnel issues, software products, the development
environment, and the software development process (Fig-
ure 22).

The clearest observations relate to the activity that has
dominated the early phases of the experiment-training. The
need for effective training is real and should be included
explicitly in Ada development plans. Training will occur
whether or not it is scheduled: wise managers will plan for
it. Two months of full-time training appears to be the
right amount. The training exercise emerged as an extremely
effective method and is strongly recommended.

W. Agresti
csc
10 of 35

The use of Ada led to a larger product than the student ver-
sions of EMS in SIMPL. It is premature to state whether Ada
products will continue to be larger. EMS did demonstrate
that many more design relations are expressible in Ada. The
use of Ada will likely lead to changes in recommended inter-
mediate products, for example, at design reviews. Current
recommendations are oriented to FORTRAN implementations, so

the design products highlight the invocation structure of
the code. Ada design products can express other relations
in addition to invocation--for example, the "uses" relation,
exception handling, and the management of the name space.

The use of Ada has not degraded the performance of the de-
velopment environment. Stress test are now in progress, but
the early indications are that the use of the DEC Ada Com-
pilation System (ACS) is not adversely affecting the per-
formance of the system. Both compilation time and execution
time appear to be within acceptable limits, although more
complete testing is being performed.

The most important tool is a validated compiler. The DEC
ACS has demonstrated that it is a production-quality system.
Although other Ada support tools may be used by the team in
the future, the DEC ACS has been adequate by itself to sup-
port development. The library management facility built
into the ACS has been especially helpful.

Although such conculsions may appear less than daring, the
Ada experiment has demonstrated that Ada is learnable and
that an Ada project is measurable. The results thus far
lead the study team to be optimistic that they will be able
to meet their experimental objectives and establish an
empirical basis for understanding the effect of Ada in the
flight dynamics software development environment.

W. Agresti
csc
1 1 of 35

ACKNOWLEDGMENTS

Y.

1.

2.

3.

4.

5 .

6 .

7.

8.

The Ada experiment is managed by E'. McGarry and R. Nelson of
NASA/GSFC and actively supported by representatives from all
SEL participating organizations (NASA/GSFC, CSC, and the
University of Maryland)--especially V. Basili, E. Katz,

Benoit, G. Page, and V. Church.

REFERENCES

Software Engineering Laboratory, SEL-81-104, The Soft -
ware Enqineerinq Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

Webster's New World Dictionary, World Publishing Go.,
New York

G. Booch, Software Engineering With Ada. Menlo Park,
California: Benjamin/Cummings Publishing Co., Inc., 1983

G. W. Cherry, "Advanced Software Engineerinq With Ada--
Process Abstraction Method for Embedded Large Applica-
tions," Language Automation Associates, Reston, Virginia,
1485

Y. Agresti, "An Approach to Developing Specification
Measures," Proceedings, Ninth Annual Software Engineer-
ing Workshop, NASA/GSFC, November 1984

American National Standards Institute, Inc.,
ANSIJMIL-STD-1815A-1983, Reference Manual for the Ada
Lanquaqe, February 17, 1983

Alsys, Inc., Waltham, Mass., "Ichbiah, Barnes, and Firth
on Ada," videotape series, 1983

R. Murphy and M, Stark, Ada Training Evaluation and Rec-
ommendations, SEL-85-002, NASA/GSFC, October 1985

W. Agresti
csc
12 of 35

THE VIEWGRAPH RlATERLALS

for the

W, AGRESTI PRESENTATION FOLLOW

W. Agresti
csc
13 of 35

W W

2 s
I
LL

n

0
v)
u 0

P, 0
0
1 E

0
0

a - c
v)

a 0
4 2

z
P
!I
2
n
8
0 z

v)

E w

>
v)

$

rl I w
P;
3 c?
H
Fr
0 * a

2
W
I

W v)
(3
2

a
W
I=
3

0
I

i
PI
0
_I

pc

v) W a
W >

Lu n
u
u

W . Agresti csc
14 of 35

4 w cn
w
3=
I-

u
W. Agresti
csc
15 of 35

W. Agresti
csc
16 of 35

en
2
0
i=

W. Agresti
csc
17 of 35

n
a
a

2

2

U c
U
0
U

2
c
2

e
0
I
W >
W

I
W
1
I

-
i

n

s a an ea
a

u a n
I

0
00
I\
\
F
F

x
>
G
2

2
0
U

2

I

~

5
W

W
I e
0
W e
I\

u
2
LL
U

)I cn
I

B M

a

cn
2
~

a
L i
U

c cn
0

0 c

r;:
U
0
U
LL
W

F

00

I

W. Agresti
csc
18 of 35

2
0

N

i= a
(I

2
C
i
I
:
g
E
E

C

C c

w
cI1
a w
i3
3

0
0
3

W. Agresti
csc
19 of 35

i
II

2 : Q

E a

a n a

W c

E a r
2 a a c a
0
LL

0

v)

W

F=
a

b a
a

-

cr:
I
0

h w cs
00

0 M
00
d

v)
W u
3
a

a 5 -'n

a" w z

32
Z Y

gz

t ;g

E O

2
C
i
4

P

t;

t
E
fl
P
E

k
i;
2
C
t;

t;

R
0:
t;

u1 u
W. Agresti
csc
20 of 35

v)
W
0
2
W

E a

a
W c

2

E a
E
a a
a

2

c
0
LL

0
c
v)

.I

II a
E
2
2
I
0 -

e e
2
c3

a

5
;
3 w
2

U
W
4
I

P
0
0

B w
2

P w c
v)
>I
v)

c
v)

e
0 c
U
4

a

a
f

a
E
c
w
I

5
?=

(1
u

5
fi

2
C
i
a
a
a

d

C

C
L

L
[I

E
i

E
6
2
C
C

0
P
P

W. Agresti
csc
21 of 35

is

8

.-----

ti

B

i

Q

5i
a

?
c)

2
C
c
0
C
0
C
L

C

c

4

a

z
5 c

C
U
f
E
!
i
c
0

I

W. Agresti
CSC
22 of 35

0 . 0 0

0 0 e 0

c
0
LL
LL w

a

*
C
>
F
0 a * m
I

.I

s

I
w
2
0

0
0 * m

I

w
c3
v)
a
a
a
W c
3
P,
5
0
0

0 0 u
W. Agresti
CSC
23 of 35

rt
rt

w !x
3
W
H
Frc

u
2

2
E
a
I n
IC
2
W
E
92:
W n
X
W

m

U
IC

v) z
0
I=

>
U
W
v)

O

2

cn
3
I=
IC cn

m

a

m

n
a

a

W. Agresti
csc
24 of 35

U

d
Y

$
a
E

3
2

W
0 z
W
ET
W
LL
W
U
W
c3
3
c3 z

a

a
4
a n a

b

a n a

I
Y
0
0
c
X
m

ut'

a
*
VI
4

I
I I

VI E z
VI
E

9
i
z
W
VI
>.
U
U
W
I
0
w
c3
0
c3

a
W

0 . 0 . e 111
W. Agresti
csc
25 of 35

v)
Lu

0
r

0
U e e

0 . o

0 0

0 0 0

0

c c
d

t
!
il
i
i

P

c

c

11
P
li
€ r
ii
f
C c

m u
W. Agresti
csc
26 of 35

d'
rl

I c
5

0

4

v)
W

c
0
W

4
n
5
I

v)

0
I
n

i

0
E

I
n
0 z
W e

cv

r"
F=
a

0
u2
0

W. Agresti
csc
27 of 35

z
E!
G
5
n

>

U

E
4 n
E
U

I)
-
). n

W. Agresti
CSC
28 of 35

cn-

I I

W. Agresti
csc
29 of 35

aa

E c

E
P
C
0

t

I
i
E
C
0
5
E

e

*

!
I
c

i

i
c

I

W. Agresti
csc
30 of 35

a3
r(

w
p:
3
W
H
Ei

W e
)I
I=
). c
3
F:
0

f
a a

I I I i I I I 0

W. Agresti
csc
31 of 35

UJ n
0
0

W

a

W
I c
0
e

8
ua
W
2
3
e e ua w

2
3

CT
0

e e

a
ij
n w

e

w

4 c
3
0

w
e

i
J e
a

9
(1

5

2
C

0
C P

c

t
2
b

U
P
b

i
4

!
1

i

!
i;
i
c

c

W . Agresti
csc
32 of 35

0
n n
E

-
? -
a

4
CI

5

2
C
4
P
C
P

E

E
2
Fi

i

!
E

5
k
i;
5
C
L

c

0
Ei

W. Agresti
csc
33 of 35

W. Agresti
csc
34 of 35

a n a
t;: W

W
2 z
0
v)

W
IL

oc a n
a 0
1L

W. Agresti
csc
35 of 35

RESULTS OF THE

WORKSHOP

QUESTIONNAIRE

RESULTS OF THE WORKSHOP QUESTIONNAIRE

W. W. Agresti

Computer Sciences Corporation

To help mark the tenth anniversary of the Software Engineer-
ing Workshop, the planning committee distributed a question-
naire to everyone on the workshop mailing list (approximately
1000 people). The purpose of the questionnaire was to ob-
tain information from the respondents concerning their

0 Role in software development

0 Data collection activity

0 Perception of changes in the quality of software

0 Opinions regarding the progress (or lack thereof)
in various areas of software engineering

Figure 1 shows the questionnaire that was distributed; 195
were completed and returned. The results are summarized in
Figures 2 through 4 .

Figure 2 shows the answers to the first five questions. Ap-
proximately 69 percent of the respondents collect some data
on software development, and a similar percentage have been
able to use Software Engineering Laboratory (SEL) documents
or workshop results. The quality of software h a s improved
both nationally and in the respondents' own organizations.

Figure 3 summarizes the results of questions 6 and 7 on
areas of software engineering that have experienced the
greatest improvement and the most disappointing progress.
Tools and methods have provided the greatest improvements
over the past 5 to 10 years. Metrics and management are
cited as areas of greatest improvement by only 8 percent

of the respondents, while 5 2 percent list these areas as the
biggest disappointments. These results may be related to
the experiences of the SEL over the past decade as recounted
by V. Basili elsewhere in the proceedings of this workshop.
His conclusion is that collecting data and administering a
program aimed at software technology improvement is a diffi-
cult undertaking. It is v e r y easy for an organization to
make mistakes and thus not obtain the benefits anticipated.
Perhaps the reported disappointment with metrics and manage-
ment is due to high expectations that have been unmet
because the metrics and management programs have been diffi-
cult to implement successfully.

Figure 4 shows a sample of the write-in selections for areas
of improvement and disappointment. Tables 1 through 7 pro-
vide the complete numerical results and show how respondents
in different categories (manager, developer, etc.) answered
each question.

Overall, the questionnaire succeeded in obtaining a sample
of opinions on issues in software engineering.

ACKNOWLEDGMENT

John Cook of NASA/GSFC maintained the questionnaire data and
results.

C,UCSTIOlJNAIRE
TEIITII A1W.J AL SOFTI!RRE Et iG I NE EIl I I!G ~!Ol?i<SIIOP

For each question, please check one option.

1. IIhat is your role in softriarc development? - manager - teacher - developer - researcher - product assurance - student

2. Does your organization collect internal data (e.g., on effort,
errors, changes) on software development projects?

Yes - no
3. Has your organization been able to use information from past
NASA/SEL workshops or NASA/SEL documents? - Yes - no - never attended SEL workshops; don't have SEL documents
4. Tlhat has happened to the quality of software in your
organization over the past 5-10 years? - greatly improved - improved somewhat - stayed about the same - quality has declined
5 . What, in your opinion, has happened to the quality of software
nationally over the past 5-10 years? - greatly improved - improved somewhat - stayed about the same - quality has declined
6. In what area of software engineering has there been the
greatest improvement in the state-of-the-art over the past 5-10
years? - standards - software tools - methods or practices - languages - met r ics - management - quality of people - other -- please specify:

7. What area of software engineering has had the most
disappointing progress over the past 5-10 years? - standards - software tools - methods or practices - languages - netrics - management - other -- please specify:

Please return to 1Ir. Frank llcCarry, Code 552, NASA/Goddard Space

Results will be sumrnarizeci at the Tenth Annual Softvare
Flight Center,Greenbelt, 11D 20771

Engineering 110 rkshop.

F i g u r e 1. Q u e s t i o n n a i r e - T e n t h Annual S o f t w a r e E n g i n e e r i n g
Workshop

N

w
0
m

G
0

a
c,
(d

"WRITE-IN" VOTES

AREAS OF SOFIWARE ENGINEERING...

0 GREATEST IMPROVEMENT

- PCs/MlCROS - SOFTWARE PACKAGES
- "USER FRlENDLINESS'/HUMAN FACTORS
- JAPANESE SOFIWARE FACTORIES
- " N ON E"

0 BIGGEST DISAPPOINTMENT

- SOFiWARE SIZE ESTIMATING
- DESIGN PROCESS
- TECHNOLOGY TRANSFER
- "ALL AREAS"

BJ1-AGR-HlOl

F i g u r e 4 . "Wr i t e - in" Votes

Table 1. Question 1: What Is Your Role in Software
Development?

ROLE CATEGORY

TOTAL QUESTIONNAIRES RECEIVED

MANAGER

DEVELOPER

RESEARCHER

PRODUCT ASSURANCE

TEACHER

STUDENT

RESPONDENTS.

195

96

40

44

26

12

0

‘THE SUM OF THE QUESTIONNAIRES RECEIVED BY CATEGORY
IS GREATER THAN 195 BECAUSE SOME PEOPLE CHECKED
MORE THAN ONE CATEGORY.

RESPONSE

YES NO

TOTAL RESPONSES 134 60

MANAGER 73 22

DEVELOPER 2a 12

RESEARCHER 23 21

PRODUCT ASSURANCE 19 7

TEACHER a 4

ROLE CATEGORY

-

Table 2. Question 2: Does Your Organization Collect Inter-
nal Data (e.g., on effort, errors, changes) on
Software Development Projects?

P -
- - - %

g
0

Table 3 . Q u e s t i o n 3: Has Your Organiza t ion Been A b l e
T o Use Informat ion From P a s t NASA/SEL Work-
shops or NASA/SEL Documents?

ROLE CATEGORY

TOTAL RESPONSES

MANAGER

DEVELOPER

RESEARCHER

PRODUCT ASSURANCE

TEACHER

RESPONSE

YES NO N I A

132 16 46

68 7 21

22 2 16

33 3 a
14 4 7

10 0 2

Table 4 . Q u e s t i o n 4 : What H a s Happened t o t h e Q u a l i t y
of Software i n Your Organiza t ion Over the
P a s t 5-10 Years?

ROLE CATEGORY

TOTAL RESPONSES

MANAGER

DEVELOPER

RES EAR CH ER

PRODUCT ASSURANCE

TEACHER

RESPONSE

GREATLY SOMEWHAT STAYED QUALITY
IMPROVED IMPROVED SAME DECLINED

52 105 22 4

27 49 10 3

12 25 2 0

10 23 a 1

a 17 2 0

4 6 1 0

f
h - - -
E
0

Table 5. Ques t ion 5: What H a s Happened t o t h e Q u a l i t y
of Software Na t iona l ly Over t h e P a s t
5-10 Years?

ROLE CATEGORY

TOTAL RESPONSES

MANAGER

DEVELOPER

RESEARCHER

PRODUCT ASSURANCE

TEACHER

RESPONSE

GREATLY SOMEWHAT STAYED QUALITY
IMPROVED IMPROVED SAME DECLINED

32 134 26 4

16 62 17 2

5 30 4 1

5 33 5 1

4 18 3 1

2 8 1 1

4
rr - - -
9
5

a
r
a
a
2 a

w

V

w

-

5
s
E

a

w

P

yz r- N m

ADAIRt Bt

AGRESTIt Ut

AICHEOEt D +
ANDREWt Et
ARNOLD? R *
ARTHURt S ,
ASTILLt P t
ATZINGERt E +
AYERSt E
BAESTt T +
B A C A t J +
BALTERt Lt
BARRETTt C +
BASILI? u,
BAUMER T t J +
BAYNESt P +
BELLARD? B +
EENOITt Y +
E : E R G t R +
BIGWOOD t 11 +
BISHOPt Jt
BITAHt It
BOEHM--KIAU IS t D
BOLANDt If+
B O N D t J +
BONDt R .
BOONEt D +
BORGESt C +
BQROCWOFFt R +
kIUYERt R +
ERASLAU1 R +
BREDESON t R +
BREUESON t M +
BRENNEHAN t D *
BRETT, Ei +
BRINKERt E +
BROWN9 n +
BUELLt J +
C A R D t D e
CARMODYt C +
CASHOURt J +
CEPHASP A +
CtiEEKr A +
CHENOWETHt Hc
CHRISTELLERt He
CHUt
CHUNGt A i
CHUHCHt V I

CISNEYt Lt

C L A Y t w .

NASA/MSFC
COMPUTER SCIENCES GORP
NASA/MSFC

MITRE GORP
VIRGINIA POLYTECH
SIGMA IIATA SERVICES
ABERDEEN PROVING GROUNDS
ARINC INC
HARRIS CQHP
KIRKLAND AIR FORCE BASE

NASA/GSFC
UNIVERSITY OF MARYLAND
SPACE TELESCOPE SCIENCE INSTITUTE
VITRO
F C C
UNIVERSITY OF MARYLAND
COMPUTER SCIENCES GORP

N A S A HE A D QUA R ' i E R S
T R W
GEORGE MASON UNIVERSITY
INTERNAL REVENUE SERVICE
N S A
ARINC INC
COMPUTER SCIENCES CORP

U S D A

DEPT, OF JUSTICE
NASA/HSFC
T R W
0 A CI
SPACE TELESCOPE SCIENCE INSTITUTE
INTERNAL REVENUE SERVICE
L 0 CK HE E D
NASA/GSFC
WASHINGTON NAVY Y A R D
COMPUTER SCIENCES cow
CoMPwrER SCIENCES CORP
PLANNING RESEARCH c o w
N S A
NASA/ G S F C
NASA/GSFC
WESTINGHOUSE

MARTIN MARIETTA
F A A
COMPUTER SCIENCES GORP
NASA/GSFC
ABERIIEEN PROVING GROUNDS

A-1

CLAYTON? J+ LOCK HE ED
CLEMENTSF F + NAVAL RESEARCH LABS
C L I F T O N t C, INTERNAL REUENUE SERVICE
C L I N E D I N S T t W + COMPUTER SCIENCES GORP
CLUBBr K * I I T R I
CQHENT JI T R W
CQHENt 'J+ E F ' A
GOCIK t J t NASAIGSFC
COOK9 L t G S C
COPPI P I F A A
COUCHOUISt C + SOCIAL SECURITY ADMIN
COYNET Ct BURROUGHS
CRAFT? H, NASA/MSFC
CRUICHSHANKt R + I B M CORP
CYF'RYCHt G + I B H GORP
C Z Y S C O N t ct ROME A I R OEUELOPMENT CTR
I l A N I E L E t C + NASA/LERC
D A S H I E L L t Ct I B M CORP
DASKALANTONAKISY M t
IIECKER t W t
DELQNGP S+
IlICKSQNt Ct
DIECKHANSt R t
DILriY? c t

D O L B E R G t S +
XSOUBLEIJAY t D +
ISUNHAM Y J t
DUNIHOr PI+
EBEHHARTt He
E L L I S P Jt
ELLIS? W t
E N G t Et
E S F A N D I A R I t Me
FABISZAKr c t
FANG9 A,
F I S H K I N D t S +
FUERTSCti t D t
FORSYTHEt R +
FRANKEL? St
F'RANKSir C +
FRYER? f i t
GANNETTt M I
GARHER? O +
E j n R Y t 3 t
G I E S E P Ct
EjXLLt c t
GINTNERt M I
GOBFREYt St
GOLUBERG t A t
EIULDEN t J +
G O R K f O N t D +

n O I r w N t

COMPUTER SCIENCES CORP
COMPUTER SCIENCES GORP
U S D A
F c c
F C C
I X T R I
WEST I NGHOU SE
UNIVERSITY OF MARYLAND
RESEARCH TRIANGLE I N S T
N S A
I I T R I
T R W
I B M CORP
NASA/GSFC
NASA/GSFC
L O C KHEE I1
NASA HEADQUARTERS

D I G I T A L EQUIPMENT CORP
NASA/WALLOPS
NAT 'L BUREAU OF STANIIARIIS

G T E
N S A

NASAIGSFC
STARS

V I R G I N I A POLYTECH
NASAIGSFC
MARTIN MARIETTA

JET PROPULSION LAB

BOEING COMPUTER CORPI

EASTMAN KODAK

A-2

CjRAHAMt XI+
GREEN? IIt
GREEN9 S t
GREENGRASS? E +
GRIEF9 S t
GRIENY S t
G R I M Y c +
GRIMESt G t
GROUER t J +
tiALTERMAN t K +
HRNNAN 9 J +
tlkWKXNS1 R *
HEASTYt R +
MENNINGt HI
HENRYt S+
HEHSLENt T t
HERRINGt E +
H I (3GINSt L.r

H I L L I ARK1 Y

MOflGEt U t
H O G G A N I S t J t
HOGUEt M t
H Q L M E S ~ B e
HUL.Tt R *
HOUT t J +
tiOUSTONY R +
l i#WLETT Y A t
tlUGHES 9 A t
HUNTERt t i t

HIISETH, 5,
tiYE.:ERTSON Y 11 t

1: DELSUN f N t
ISSACSF Jt
JAMIESONY L +
,JhbJORStif t A t
J E L E T I G t Jt
JENtiINS9 XI+
JENNlNGSY W t
I J E S S E N t w *
JONES9 C t
JUNES I J t
,JOOt H I

,.IClRDAN 9 L t
KAFURAf D t
KARDATZKE t Q t
KATZY B +
K A T Z t S +
KAUSCHY C t
KELLY? A t
KESTERt R +
K I R K , D,
K L I T S C H t G t

J t

El AS A /G S F C
PEN T A GO N
N A S A / G S F C
N S A
A P L
I I T R I
I B M CORP
PLANNING RESEARCH CORP
GEORGIA TECH
O A O

F A A
COMPUTER SCIENCES CORP
LO C ti HE E D
V I R G I N I A POLYTECti
I I T H I
NASA/GSFC
L OC ti H E E D
NASA/MSFC

F C C
MCCABE I I ASSOC
G S C
GEORGE MASON UNIVERSITY
FORK1 AEROSPACE
I I T R I
I I T R l
GENERAL RESEARCH GORP
CUMPUTER SCIENCES CORP

ABERICIEEN PROVING GROUNDS

L 0 CKHE E D
AFL.
T R W
NASA / GS F C
FORfD AEROSPACE
NASA/GSFC
F A A
HARRIS CORP
R A Y 'I' HE ON
IXTRJ
I I T R I

COMPUTER SCIENCES CORP
COMPUTER SCIENCES CORP
NASA/GSFC
UNIVERSITY OF MARYLAND
U I A
NASA/GSFC
NASA/GSFC
GENERAL ELECTRIC
NASA/GSFC
COMPUTER SCIENCES CORP

A-3

KNABLEINt Re
KNIGHTP J +
KC1EFirNER Y K *
KOLACKIt R +
KOUORIK? V I
KRAMERt L +
K R A M E R t P I
K R A M E R t H I

KUHNir R r
KURIHARAt TI
K Y N A R D t M +
L A B A W l B +
LAWASt M I
LAMONTAGNEP G I

1-PINGDON ? N +
LEADERt ti+
LEBAIRt B +
L.Ei:BERt R t
LEWISP J4

L I N ? M I

LINP R +
LIUt J+
LO? 8 ,
L . O N G t I!+
L.UHDI Y t
L O VE? E +
LOVE9 Ki+
1-UCZAKP
LUPTONP G 4

LYTTONt V +
MACK, M I

M A K f I l O X t B +
M A U H I t J I

~ A Y B U R Y F F +
MCCALLt J +
f lCCAKRONr SI
MCCLIMENS? Pi+
MCCUEYt P +
MCCOY t W I
MCGAKRYt F +
M C G A R R Y ? r l+
PfCUARRYt P +
MCFOUERN 9 Kl +
MCtiEENt C +
MCKENNA? J +
MCLEODI J ,
MCPHEEY JI
MERWARTHF P I
n1 DDLETON I M +
MILLERI w +
WILLICANt J+
MILLNEKr 11,

T R W
UNIVERSITY OF VIRGINIA
COMPUTER SCIENCES CORP
SPACE 8 NAVAL SYSTEMS CMII
HARRIS GORP
PLANNING RESEARCH CORP
PLANNING RESEARCH GORP
PRC/GIS
NAT'L E{UREAU OF S'TANDARDS
DEPT, OF TRANSPORTATION
NASA/MSFC
NAVAL RESEARCH LABS

G T E
COMPUTER SCIENCES CORP
IITRZ
NASA/GSFC
GENERAL ELECTRIC
CENSUS BUREAU
L O C KHE E 11
LOCKHEEW

CQMPUTER SCIENCES COHP
COMF'UI'ER SCIENCES COKP

WESTINGHOUSE
NASA/GSFC
L UCk H E E D
COMPUTER SCIENCES CORP
SIIGITAL EQUIPf4ENT CORP
U S U A
NASA/GSFC
GENERAL DYNAMICS
GRUMMAN
T R W
SCIENCE APPLICATIONS
NASA/GSFC
MITRE CURP

NAVAL SURFACE WEAPONS CTR
NASA/GSFC
I I T R I
GENERAL ELECTRIC
F A A
MAR7 IN flARIET'TA
N S A
JET PROPULSION LAB
DEPTt OF COhMERCE
NASA/ USFC
F C C
CUMYUTEH SCIENCES CORP
SOCIAL SECURITY ADMIN
IITRX

A-4

M I Y A Y E *
MOUFCEt J +
MOOREHEAD? J +
MOORtHEAD? It+
M O W D A Y ? E +
MUCKEL? J +
MURPHY? B e

MURPHYI R +
MYERS? r +
NELSON? R +
NICHOLASt D +
N O O N A N ? R *
NCIRCIOI A *
NUMKPN? L,
O ' N E I L ? L +
OHLMACHERt J +
OLSON? L +
OSBOURNE? W ,
OVERDECK? B ,
OWlNGSt J +
P A C I I A R D ? C +
PAGE? G +
P A N L I L I O - Y A P ? N +
PARKERt K +
PARKER? E l *
PASSALACRUAt T +
F'AUNICA? F'+
PAYTON? I *
PENNEY? L a
FETERP M +
PETERS? tc*
PETERSEN? B +
POPE? ,I+
t"f2'S'I ON ? B *
PURINTON? S+
FUTNEY? E +
RUANNI E +
QUANNt J+
RFIHSEY P J +
RAlYlSEYt C +
R A T T E ? G +
t?EEDY? A +
R E I F E R ? It+
R I C E 9 B +
RICHARDSONI C +
R I N N t Y *
R I Z Z A R D I P G +
ROBBINSF
ROBERTS? R +
RUBERTS? R +
ROBER'I'St M +
ROHLEDER? Pi+

NASA/ARC
V I I 'RO
T R W
INTERMETHICS
GENERAL EIYNAMICS
COMPUTER SCIENCES CORP

NASA/USFC
COdPUTER SCIENCES COkP
NASA/OSFC
JET PROPULSION LAB
W P L L I A M Y MARY
NAVAL RESEARCH LABS
L CJC ti H E E D

SOCIAL SECURITY AUMIN
F C C

INTERNAL REVENUE S t R V l C E
NASA/GSFC
NASR/GSFC
C O n P U T t R SCIENCES COKP
UNIUERSITY O F MARYLAND
G T E
NASA/GSFC
CENSUS BUREAU

Cmwu'rEt i r TECHNOLOGY ASSOC

A r t r BELL LABS

NA r I BUREAU UF STANDARDS

5 OF T WAR E 11 E VEL OP M E N'r C 0 K P
PENNY ASSOCIArES
GENERAL SERUICES AKtMIN
NASA/GSFC
AUTOME-IRIC

I I T R I
NASA/MSFC
ElASAfGSFC

NASA/GSFC
U N I V E R S I T Y UF PtARYLANlJ
UNIVERSITY OF MARYLFIND
U S B A
PLANNLNG RESEARCH GORP
REIFER CUNSULTANTS
UISI NAVY
PLANNING RESEARCH CURP
F C C
PEFlTAGCiN
N S A
U S L I A
FLANNINO RESEARCH CURP
F'ORCf AEROSPACE
I B M CORY

COMPUTER ScIENctS cmr

A-5

rwm J t

w . w ri,

l iusst K ,
H(SSS1Nr R +

S A G A 1 f u t

S h H I I ? M I
SANBURNt J +
SAUULAINEI G I

S C A L l S t t G I

S C H R A D E t T +
SCWU1.TZ t A t
SCHWARTL: I M +
SEILkEtJITZt E+
S E N N , E t
SERAFINr F'+
SHANKLTN? Re
SHEN9 U +
SHEPPARD 9 S +
SHMICONICAf Y t

SIMON, R +
SIMOSP M,
SMITH7 K t +
S M I T H Y G +
SMITH, ti+
S H I T H ? N +
SNYDER, G +
ljNYDER, P t
SOLDERITSCHt J *
SULOHUN? fit
SONTI, V I
S O R ~ O W I T Z I A t
SF'EIZER9 H +
SF'ENCE, C,
SPIEGEL, It+
STAMENl'f A +
s ' r m L E Y t r .
STARK9 M +
STEINBACHER? J *
STEUENSP B +
STEVENS? W +
STEWAR'ft I+
STONE, f c +
S ~ R A E ~ E R P T +
SUK~KII TH f S e

SUtCRf 1 J+
S U L L I V A N ? s t
SZULEWSKI I P I

T A L C O T f t G +
'IAURHINA? L +
' I 'AR'IfFr M I

'IhStiY? Il+
TAUSWURTHE H

JET F'KOF'ULSION LAB
I NTERMETR I CS
GENERAL ELECTRIC
CENTURY COMPUTINO
I B M CORP
COHPUTEW SCIENCES CORP
NASA/OSFC
ATZT B E L L L A B S
UEP?'. OF TRANSPORTATION

GEORGE N A S 0 N U N X V k R S I l Y
I T T R I
N A S A I G S F C
NASA/LARC
EG 8 G
INTERNAL KEUENUE SERVICE
M C C
COMPUTER 7'IiCHNULOLiY ASSOC

FORU A t R O S P A C E
NASA/GSFC
NASA/LARG
NASA/GSFC
COMPUTER SCIENCES GORP
MITRE CORF'
BURROUGHS
COMPUTER SCIENCES CORP
BENDlX

CENSUS BUREAU
COMPUTtR SCIENCES CORP
NASA/GSFC
PLANNING RESEARCH CORP
GEORGE MASON U N I U E R S I T Y
NASA/USFC
JET PROPULSION L A B
NASA/MSFE:
MITRE CORP
COMPUTER TECHNULOY ASSUC:
PLANNING RESEARCH CClKP
GENERAL D Y N A M l C S
G S C
UNIUEHSl I Y OF MAR'YLANII

B t P T + UF H u l l

CIS, DRAPER LABS

NASA/HSFC
NASA/GSFC
CENSUS BURECIU
JET PRUPULSION LAB

A-6

L 0 CktiE E D
CiENkRAL t4€SECIRCH CUKP
F O R D AEROSPACE
U S D A
TEK I ' R U N I X
i#4TERMETRlCS
CINCOM
CENSUS BUREAU
A K I N C I N G
l&M CURP

U S D A
NASA/GSF f;
NASA/LARC
CUMPUTtR SiC1ENL;ES CURP

MASA/MYFC
I N T E R N A L R t W k N U t SERVICE

NkSA/kSFC
BURfcUUGHb
SOHAR
U E I l U t k S l I Y UF MARYLAND
C O M S A T
G 7 E
U N I V E R S I Tu' 0). HARYLANKf
NAki6/ljSFC
INFORtIATICS
NASA/OSFC
NASA/MSFI:

N A T ' L BUREAU OF s r A m A R i i s

UN1VEF.rS'I. 1 Y i l F V l ~ b I r - 4 1 ~

PLANNING RESEARCH CURP
I b M CUkP
GRUMMAN
FIA f ' L BUREAU UI- ST AMLlARLJS
SOFTECH

NASA/GSFC
CUMPUTtR LiCltNCkS CORP

C m r u i t R sciENcEs GORP

i r r t u
P17K.k
L 0 C K ti t E D
PLANNlNli RESEARCH GORP
WESTINGHOUSE
PLANNINli KESEAHCH GORP
SPEKtCY COKP

MCCABE Zi ASSOC
JET PROPULSION LAB

A-7

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The t e c h n i c a l p a p e r s , memorandums, and documents l i s ted i n
t h i s b i b l i o g r a p h y are o r g a n i z e d i n t o two g roups . The f i r s t
g roup is composed o f documents issued by t h e S o f t w a r e Engi-

neer ing L a b o r a t o r y (SEL) d u r i n g its r e s e a r c h and development
a c t i v i t i e s . The second g r o u p i n c l u d e s materials t h a t were
p u b l i s h e d e l s e w h e r e b u t p e r t a i n t o SEL a c t i v i t i e s .

SEL-ORIGINATED DOCUMENTS

SEL-76-001, P r o c e e d i n g s From t h e F i r s t Summer S o f t w a r e Engi-
n e e r i n g Workshop, August 1976

SEL-77-001, The S o f t w a r e E n g i n e e r i n g Laboratory-,
V. R. B a s i l i , M a V. Zelkowitz , F. E. McGarry, e t a l . , May
1977

SEL-77-002, P r o c e e d i n q s From t h e Second Summer S o f t w a r e En-
g i n e e r i n g Workshop, September 1977

SEL-77-003, S t r u c t u r e d FORTRAN P r e p r o c e s s o r (SFORT) , B. Chu
and D. S. Wilson , September 1977

SEL-77-004, GSFC NAVPAK Des ign S p e c i f i c a t i o n s Languages
S tudy , P. A. S c h e f f e r and C. E. Velez, Oc tobe r 1977

SEL-78-001, FORTRAN Sta t ic S o u r c e Code Analyzer (SAP) Design
and Module Descr ipt ions, E. M. O ' N e i l l , S . R. Wal igo ra , and
C. Ea Goorevich , Februa ry 1 9 7 8

SEL-78-003, E v a l u a t i o n of Draper NAVPAK S o f t w a r e Design,
K. T a s a k i and F, E. McGarry, June 1978

SEL-78-004, S t r u c t u r e d FORTRAN P r e p r o c e s s o r (SFORT)
PDP-11/70 User's G u i d e , D. S. W i l s o n and B. Chu, September
1978

SEL-78-005, P r o c e e d i n g s From t h e T h i r d Summer S o f t w a r e Engi-
n e e r i n g Workshop, September 1978

SEL-78-006, GSFC S o f t w a r e E n g i n e e r i n g Resea rch Requ i remen t s
Analys is Study, P. A. S c h e f f e r and C. E. Velez , November 1978

SEL-78-007, A p p l i c a b i l i t y of t h e R a y l e i g h Curve t o t h e SEL
Environment, T. E. Mapp, December 1978

B -1

SEL-78-202, FORTRAN S t a t i c Source Code Analyzer Program
(SAP) User's Guide (R e v i s i o n 2) , W. J. D e c k e r and

W. A. T a y l o r , A p r i l 1985

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Z e l k o w i t z , J u l y 1979

SEL-79-002, The S o f t w a r e Eng inee r ing Labora to ry : R e l a t i o n -
s h i p E q u a t i o n s , K. F r e b u r g e r and V. R. B a s i l i , May 1979

SEL-79-003, Common S o f t w a r e Module Repository (CSMR) System
D e s c r i p t i o n and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, A u g u s t 1979

SEL-79-004, E v a l u a t i o n o f t h e C a i n e , F a r b e r , and Gordon Pro-
gram Design Language (PDL) i n t h e Goddard Space F l i g h t Cen-
ter (GSFC) Code 580 S o f t w a r e Design Environment,
C. E. Goorevich , A. L. Green, and W. J. D e c k e r , September
1979

' a r b e r , and Gordon Pro-
gram Design Language (PDL) i n t h e Goddard Space F l i g h t Cen-
ter (GSFC) Code 580 S o f t w a r e Design Environment,
C. E. Goorevich , A. L. Green, and W. J. D e c k e r , September

SEL-79-005, P r o c e e d i n g s From t h e F o u r t h Summer S o f t w a r e En-
g i n e e r i n g Workshop, November 1979

SEL-80-001, F u n c t i o n a l Requi rements /Spec i f i ca t ions f o r
Code 580 C o n f i g u r a t i o n Analys is Tool (CAT) , F. K. B a n k s ,
A. L. Green, and C. E. Goorevich , Februa ry 1980

SEL-80-002, M u l t i - L e v e l E x p r e s s i o n Des ign Language-
Requ i remen t Level (MEDL-R) System E v a l u a t i o n , W. J. Decker
and C. E. Goorevich , May 1980

SEL-80-003, Mult imission Modular S p a c e c r a f t Ground S u p p o r t
S o f t w a r e System (MMS/GSSS) S t a t e - o f - t h e - A r t Computer Systems/
C o m p a t i b i l i t y S t u d y , T. Welden, M. McClel lan, and
P. L i e b e r t z , May 1980

SEL-80- 00
S o f t w a r e
Compat i b i
P. L i e b e r

3, Mult imission M
System (MMS/GSSS)
l i t y S t u d y , T. W e
t z , May 1980

.odul
S t a

lden

I -
ar S p a c e c r a f t
t e - o f - t h e - A r t
, M. McClella

Ground
Comput

n , and

Suppor
er S y s t

t
e m
- -

SEL-80-005, A S tudy of t h e Musa R e l i a b i l i t y Model,
A. M. Miller, November 1980

SEL-80-006, P r o c e e d i n g s From t h e F i f t h Annual S o f t w a r e Engi-
nee r ing Workshoe, November 1980

SEL-80-007, An A p p r a i s a l of S e l e c t e d Cost /Resource E s t i m a -
t i o n Models f o r S o f t w a r e Sys tems, J. F. Cook and
F. E. McGarry, December 1980

SEL-80-104, C o n f i g u r a t i o n Analys is Tool (CAT) System D e -
s c r i p t i o n and User's G u i d e (Revis ion l) , w. D e c k e r and
W. Taylor, December 1982

B-2

SEL-81-008, Cost and R e l i a b i l i t y E s t i m a t i o n Models (CAREM)
User's Guide , J. F. Cook and E. Edwards, February 1981

SEL-81-009, S o f t w a r e Eng inee r ing Labora to ry Programmer Work-
bench Phase 1 E v a l u a t i o n , W. J. D e c k e r and F. E. McGarry,
March 1 9 8 1

SEL-81-011, E v a l u a t i n g Sof tware Development by A n a l y s i s of
Change Data, D. M. Weiss, November 1981

SEL-81-013, P roceed ings From t h e S i x t h Annual So f tware Engi-
n e e r i n g Workshop, December 1981

SEL-81-101, Guide t o Data C o l l e c t i o n , V. E. Church,
D. N. Card, F. E. McGarry, e t a l . , August 1982

SEL-81-102, S o f t w a r e Eng inee r ing Labora to ry (SEL) Data Base
O r g a n i z a t i o n and User's Guide Rev i s ion 1, P. Lo and
D. Wyckoff, J u l y 1983

SEL-81-104, The Sof tware Eng inee r ing Labora to ry , D. N. Card,
F. E. McGarry, G. Page, e t a l . , February 1 9 8 2

SEL-81-106, S o f t w a r e Enqineer inq Labora to ry (SEL) Document
L i b r a r y (DOCLIB) System D e s c r i p t i o n and User's Guide,
W. Tay lo r and W. J. D e c k e r , May 1985

SEL-81-107, S o f t w a r e Eng inee r ing Labora to ry (SEL) Compendium
o f Tools, W. J. Decker, W. A. T a y l o r , and E. J. Smith,
February 1982

SEL-81-110, E v a l u a t i o n of a n Independent V e r i f i c a t i o n and
Val ida t ion (I V & V) Methodoloqy f o r F l i g h t Dynamics, G. Page,
F. E. McGarry, and D. N o Card, J u n e 1985

SEL-81-203, S o f t w a r e Eng inee r ing Labora to ry (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Desc r ip -
-' t i o n P. Lo, June 1984

SEL-81-205, Recommended Approach t o S o f t w a r e Development,
F. E. McGarry, G, Page, S. E s l i n g e r , e t a l . , A p r i l 1983

€3-3

SEL-82-001, Eva lua t ion of Management Measures of Sof tware
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vo ls . 1 and 2

SEL-82-003, Software Eng inee r ing Laboratory (SEL) Data Base
Reporting S o f t w a r e User's Guide and System D e s c r i p t i o n ,
P. Lo, September 1982

SEL-82-004, Collected Sof tware Eng inee r ing Papers : V o l -
ume 1, J u l y 1982

SEL-82-007, P roceed ings From t h e Seven th Annual S o f t w a r e
Eng inee r ing Workshop, December 1982

SEL-82-008, E v a l u a t i n g Sof tware Development by A n a l y s i s of
Cnanges: The Data From t h e Sof tware Eng inee r ing Labora to ry ,
V. R. B a s i l i and D. M. Weiss, December 1982

SEL-82-102, FORTRAN S t a t i c Source Code Analyzer Program
(SAP) System D e s c r i p t i o n (R e v i s i o n l), W. A. Tay lo r and

W. J. D e c k e r , A p r i l 1985

SEL-82-105, G lossa ry of Sof tware Eng inee r ing Labora to ry
-' Terms T. A. Babs t , F. E. McGarry, and M. G. Rohleder ,
Octo be r 1 9 8 3

SEL-82-306, Annotated B i b l i o g r a p h y of Sof tware E n g i n e e r i n q
Labora to ry Literature, D. N. Card, Q. L, Jordan, and
F. E. McGarry, November 1985

SEL-83-001, An Approach t o S o f t w a r e Cos t Est imat ion,
F. E. McGarry, G. Page, D. N. Card, e t al., February 1984

SEL-83-002, Measures and Metrics €or Sof tware Development,
D. N. Card, F. E. McGarry, G. Page, e t a l . , March 1984

SEL-83-003, C o l l e c t e d S o f t w a r e Eng inee r ing Papers : V o l -
ume 11, November 1983

SEL-83-006, Moni tor ing Sof tware Development Through Dynamic
Variables, C. W. D o e r f l i n g e r , November 1983

SEL-83-007, P roceed ings From t h e E igh th Annual S o f t w a r e En-
g i n e e r i n g Workshop, November 1983

SEL-83-104, Software Eng inee r ing Labora to ry (SEL) Data Base
R e t r i e v a l System (DARES) User's Guide, T. A. Babs t ,
W. J. D e c k e r , P. Lo, and W. Miller, A u g u s t 1984

B-4

SEL-83-105, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) System Description, P. Lo,
W. J. Decker, and W. Miller, August 1984

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Configuration Management and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collectea Software Engineering Papers:
Volume 111, November 1985

SEL-85-004, Evaluations of Software Technologies: Testinq,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics
Software Development, R. Wood and E. Edwards, March 1986

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Enqineerinq.
New York: Computer Societies Press, 1981

B-5

Basill, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
o randum, October 19 79

3Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering, " ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R. , Tutorial on Models and Metrics for Software
Management and Engineerinq. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

lBasili, V. R. , "Quantitative Evaluation of Software
Methodology," Proceedings of the First Pan-Pacific Computer
Conference, September 1985

3Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vo l . 2, no. 1

IBasili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceeaings of the International Computer Software and Applica-
tions Conference, October 1985

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity:
the ACM, January 1984, vol. 27, no. 1

A n Empirical Investigation, " Communications of

3Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

lBasili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceeaings of the IEEE/MXTRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development,'' Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineerinq, November 1983

B-6

' B a s i l i , V. R., and R. W. S e l b y , Jr., " C a l c u l a t i o n and Use
of a n Env i ronmen t s ' s Characteristic Software Metric S e t , "
P roceed ings of t h e E i g h t h I n t e r n a t i o n a l Conference on Soft-
ware Eng inee r ing , August 1985

Bas i l i , V. R e , and R. W. Se lby , Jr., Comparing t h e E f f e c t i v e -
n e s s of S o f t w a r e T e s t i n g Strategies , U n i v e r s i t y o f Maryland
T e c h n i c a l Repor t , TR-1501, May 1985

I

' B a s i l i , V. R., and D. M. Weiss, "A Methodology f o r C o l l e c t -
i ng V a l i d S o f t w a r e Eng inee r ing Data," IEEE T r a n s a c t i o n s on
Sof tware Eng inee r ing , November 1 9 8 4

3 B a s i l i , V. R., and M. V. Ze lkowi tz , "The Sof tware Engi-
n e e r i n g Labora to ry : O b j e c t i v e s , " P roceed ings of t h e
F i f t e e n t h Annual Conference on Computer P e r s o n n e l Research,
A u g u s t 1977

B a s i l i , V. R., and M. V. Ze lkowi tz , "Designing a Sof tware
Measurement Experiment ," P roceed ings o f the Sof tware L i f e
Cyc le Management Workshop, September 1 9 7 7

3 B a s i l i , V. R., and M. V. Ze lkowi tz , "Opera t ion of t h e S o f t -
ware Eng inee r ing L a b o r a t o r y r A Proceedings of t h e Second S o f t -
ware L i f e Cycle Management Workshop, A u g u s t 1978

3 B a s i l i , V. R., and M. V. Ze lkowi tz , "Measuring Software
Development Characterist ics i n t h e Local Environment ," Com-
puters and S t r u c t u r e s , August 1978, v o l e 1 0

B a s i l i , V. R e , and M. V. Ze lkowi tz , "Analyzing Medium Scale
Sof tware Development, 'I Proceed ings of t h e T h i r d I n t e r n a -
t i o n a l Conference on Sof tware Eng inee r ing . N e w York: Com-
p u t e r Societies Press, 1978

k a r d , D. N., "A So f tware Technology E v a l u a t i o n Program,"
Annais do X V I I I Congresso Nac iona l de In fo r rna t i ca , October
1985

k a r d , D. N. , G. T. Page, and F. E. McGarry, "Cri ter ia f o r
Software M o d u l a r i z a t i o n , I' Proceed inqs of t h e E i g h t h I n t e r n a -
t i o n a l Conference on Sof tware Eng inee r ing , August 1985

3Chen, E , , and M. V, Ze lkowi tz , " U s e of C l u s t e r A n a l y s i s
To E v a l u a t e Software Eng inee r ing Methodologies, ' ' Proceed-
i n g s of t h e F i f t h I n t e r n a t i o n a l Conference on S o f t w a r e
Engineer ing . N e w York: Computer S o c i e t i e s Press, 1981

B-7

2Doer f l inge r , C. W., and V. R. B a s i l i , "Monitor ing Software
Development Through Dynamic Variables, I' Proceed ings of t h e
Seventh I n t e r n a t i o n a l Computer Software and A p p l i c a t i o n s
Conference. N e w York: Computer Societies Press, 1983

Higher Order Software, Inc . , TR-9, A Demonst ra t ion o f AXES
for NAVPAK, M, Hamil ton and S. Zeld in , September 1977 (also
d e s i g n a t e d SEL- 77 -0 05)

lMcGarry, F. E., J. V a l e t t , and D, H a l l , "Measuring t h e
Impact of Computer Resource Q u a l i t y on t h e Software Develop-
ment P r o c e s s and P roduc t , " P roceed ings of t h e Hawaiian I n t e r -
n a t i o n a l Conference on System S c i e n c e s , J anua ry 1985

lPage, G o t F. E. McGarry, and D. N. Card, "A Practical Ex-
p e r i e n c e With Independent V e r i f i c a t i o n and V a l i d a t i o n , "
P roceed ings o f t h e E i g h t h I n t e r n a t i o n a l Computer Sof tware
and A p p l i c a t i o n s Conference, November 1984

IRamsey, J., and V. R. Bas i l i , "Analyzing t h e T e s t Process
Using S t r u c t u r a l Coverage," P roceed ings of t h e E i g h t h I n t e r -
n a t i o n a l Conference on Sof tware Eng inee r ing , August 1985

Turne r , C., and G. Caron, A Comparison of RADC and NASA/SEL
Sof tware Development Data, Data and A n a l y s i s Center for
Software, S p e c i a l P u b l i c a t i o n , May 1 9 8 1

Turner , C., G. Caron, and G. Brement, NASA/SEL Data Compen- - d ium, Data and A n a l y s i s Cen te r for Sof tware , S p e c i a l P u b l i -
c a t i o n , A p r i l 1981

lWeiss, D. M., and V. R. B a s i l i , "Eva lua t inq Software D e -
velopment by A n a l y s i s of Changes: Some Data From t h e Sof t -
ware Eng inee r ing Labora to ry , " IEEE T r a n s a c t i o n s on Sof tware
Eng inee r ing , Februa ry 1985

3Zelkowitz , M. V. , "Resource E s t i m a t i o n for Medium Scale
Sof tware Projects , 'I Proceed ings of t h e T w e l f t h Conference on
t h e I n t e r f a c e of S t a t i s t i c s and Computer Sc ience .
New Y o r k : Computer Societies Press, 1979

2ZelKowitz, M. V., "Data C o l l e c t i o n and E v a l u a t i o n f o r Ex-
p e r i m e n t a l Computer S c i e n c e Research,'' Empirical Foundat ions
f o r Computer and I n f o r m a t i o n S c i e n c e (p roceed ings) ,
November 1982

B-8

Z e l k o w i t z , M. V., and V. R. B a s i l i , " O p e r a t i o n a l Aspects of
a Sof tware Measurement F a c i l i t y , " P roceed ings of t h e S o f t -
ware L i f e Cycle Management Workshop, September 1977

'This a r t ic le a l so a p p e a r s i n SEL-85-003, C o l l e c t e d S o f t -

2This art icle also appears i n SEL-83-003, C o l l e c t e d S o f t -

ware Eng inee r inq Papers: Volume 111, November 1985.

ware Eng inee r ing Papers: Volume 11, November 1983.

3This a r t ic le also a p p e a r s i n SEL-82-004, C o l l e c t e d S o f t -
'ware E n g i n e e r i n g Papers: Volume I, July 1982.

B-9

