
N86-30362 m

AN EXPERIMENTAL EVALUATION OF ERROR SEEDING

AS A PROGRAM VALIDATION TECHNIQUE

John C. Knight Paul E. Ammann
Department of Computer Science

University of Virginia
Charlottesville, Virginia.

A Summary

Submitted To The Tenth Annual Software Engineering Workshop
Goddard Space Flight Center

Greenbelt, Maryland.

J . Knight
Univekity of Virginia
1 o f 4

The error seeding technique was originally proposed by Mills 111 as a method

for determining when a program has been adequately tested using functional or

random testing. The procedure resulted from a desire to apply statistical methods to

the problem of predicting the number of errors in a program in the hope that the

number of errors discovered during testing could be used to estimate the number of

remaining undetected errors. The method involves deliberately introducing or seeding

artificial errors into a program and subsequently testing that program.

Error seeding has the desirable property that i t is apparently simple to employ

and it provides a stopping condition for testing. Unfortunately. it has the major

drawback that, in order to work effectively and for the existing statistical model to

apply, it relies upon the following three assumptions:

(1) Indigenous errors, those introduced by the programmer, are all approximately

equally difficult to locate.

(2) Seeded errors are approximately as difficult to locate as indigenous errors.

(3) Errors, whether indigenous or seeded, do not interfere with one another.

A priori there is no reason to believe that any of these assumptions hold. The

first and third seem reasonable. However, error seeding has been criticized on the

basis of the second assumption. It seems unlikely that realistic seeded errors can be

generated but no definitive, empirical evidence for any of the assumptions has been

gathered previously. We have performed an experiment designed to check the

validity of each of the underlying assumptions. In particular, we were interested in

evaluating very simple, syntax-based algorithms for generating seeded errors.

J. Knight
University of Virginia
2 0 f 4

Briefly, as part of a separate experiment 12. 31. twenty-seven Pascal programs

have been written independently by diflerent programmers to a single specification.

Thus all twenty-seven are intended to perform the same function, the processing of

radar data in a simple antimissile system. As part of the other experiment, the

programs have been subjected to one million tests. and a great deal is known about

the indigenous errors present in the programs. These programs represent an excellent

starting point for an experiment with error seeding. Any results obtained can be

averaged thereby eliminating any bias attributable to individual programmers.

In the error seeding experiment, seventeen of the twenty-seven programs were

selected at random, errors were seeded into all seventeen, and the resulting programs

were tested. The algorithms used for seeding errors were very simple: two

algorithms modified the bounds on for statements, three algorithms modified the

Boolean expression in if statments, and one algorithm deleted assignment statements.

Each of these algorithms was applied four times to each of the 17 programs for a

total of 408 modified programs, each of which contained one seeded error. The

programs were tested using 25.000 of the 1,000.000 test cases from the previous

experiment.

The metric used for evaluating the seeded errors was the mean time to failure

(MTF). The MTF for a particular program containing a seeded error is defined as

the average number of test cases executed between detected failures. The MTF’s for

the seeded errors had a wide range. Some seeded errors caused a failure on every

test case; some had a very small number of failures in 25,000 test cases; and others

caused no failures af all in 25,000 test cases. We conclude that it is possible to

generate seeded errors that are arbitrarily difficult to locate, albeit at the expense of

creating others that are easy to locate. These results suggest, surprisingly, that it is

possible to comply with the second assumption listed above.

J . Knight
University of Virginia
3 o f4

An examination of the MTF’s of the indigenous errors revealed a similar wide

range of failure rates. In fact, there was a very strong resemblance in mean time

to failure between the resilient seeded errors and the indigenous errors. However, in

neither case were errors equally likely to be discovered, in conflict with the first

assumption cited above.

Finally it was discovered during the experiment that in two cases a seeded

error corrected, or partially corrected, an indigenous error. Clearly, the implication

is that assumption three above was violated. We conclude that the first and third

assumptions, those that seem most believable, are in fact violated, and that the

second, the one that seems totally unreasonable, can be complied with. Using the

data from this experiment, the underlying model of error seeding can be modified

and error seeding made a useful, practical technique.

REFERENCES

(1) Mills, H.D., “On The Statistical Validation of Computer Programs”. in Software

Productivity. Little Brown, Toronto.

(2) Knight, J.C.. and N.G. Leveson, “A Large-Scale Experiment In N-Version

Programming”, Proceedings of the Ninth Annual Software Engineering Workshop.

NASA Goddard Space Flight Center, November 1984. Greenbelt, MD.

(3) Knight J.C.. and N.G. Leveson, “A Large Scale Experiment In N-Version

Programming” Digest of Papers FTCS-15: Fifteenth Annual Symposium on Fa&-

Tolerant Computing, June 1985. Ann Arbor, MI.

J. Knight
University of Virginia
4 o f 4

