
N86- 30363 ..

Oualitv Assurance Software Insoections at NASA Ames
Metrics for Feedback and Modification

Greg Wenneson, Informatics General Corporation

Software Inspections are a set of formal technical review procedures held a t
selected key points during software development for the purpose of finding defects
in software documents. Inspections are a Quality Assurance tool and a Management
tool. Their primary purposes are to improve overall software system quality while
reducing lifecycle costs and to improve management control over the software
development cycle. The Inspections process can be customized to specific project
and development type requirements and are specialized for each stage of the
development cycle.
For each type of Inspection, materials to be inspected a re prepared to predefined
levels. The Inspection team follows defined roles and procedures and uses a
specialized checklist of common problems i n reviewing the materials. The materials
and results f rom the Inspection have to meet explicit completion criteria before the
Inspection is finished and the next stage of development proceeds. Statistics,
primarily time and error data, f rom each Inspection are captured and maintained
in a historical database. These statistics provide feedback and feedforward to the
developer and manager and longer term feedback for modification and control of
the development process for most effective application of design and quality
assurance efforts.

HISTORY
Software Inspections were developed in the early mid-1970s at IBM by Dr. Mike
Fagan, who was subsequently named software innovator of the year. Fagan also
credits IBM members O.R.Kohli, R.A.Radice and R.R.Larson for their contributions
to the development of Inspections. In the IBM Svstems Journal El], Fagan described
Inspections and reported that in controlled experiments a t IBM with equivalent
systems software development efforts, significant gains in software quality and a
23% gain in development productivity were made by using Inspections based
reviews a t the end of design and end of coding (clean compile) rather than
structured walkthroughs a t the same points. Fagan reported that the Inspections
caught 82% of development cycle errors before unit test, and that the inspected
software had 38% fewer errors f rom unit test through seven months of system
testing compared to the walkthrough sample with equivalent testing. Fagan also
cites a n applications software example where a 25% productivity gain was made
through the introduction of design and code inspections. As fur ther guidelines for
using Inspections, IBM published a n Installation Management Manual [2] with
detailed instructions and guidelines for implementing Inspections.

Inspections were introduced to NASA/Ames Research Center in 1979 by
Informatics General Corporation on the Standardized Wind Tunnel System (SWTS)
and other pilot projects. The methods described by IBM were adapted to meet the
less repetitious character of Ames applications and research/development software
as compared to that of IBM’s systems software development. Though not able to
duplicate IBM’s controlled environments and. experiments, our experience a t Ames
of gains in quality and productivity through using Inspections have been similar.
From a developed Wind Tunnel software application which had been reviewed in
structured walkthroughs and then later was rewritten and reviewed using

G. Wenneson
Informatics General Corp
1 of 22

Inspections, the Inspected version had 3565% less debug and test time and about
40% fewer post-release problems. Inspections implemented prior to unit test have
been shown to detect over 90% of software’s lifetime problems. Inspection results
have been sufficiently productive in terms of increased software quality, decreased
development times, and management visibility into development progress, that
Inspections have been integrated into Informatics’ development methodology as the
primary Quality Assurance defect removal method.

When Inspections were first implemented a t Ames, only design and code Inspections
were introduced. The scope and usage has expanded so that currently, Inspections
are used to review both system level and component level Goals (requirements)
Specifications, Preliminary Design, Detailed Design, Code, Test Plans, Test Cases,
and modifications to existing software. Inspections a re used on most Informatics
staffed development tasks where the staff level and environment are appropriate.
Inspections implementation and usage a t Ames are described in NASA Contractor
Report 166521 [3]. Within Informatics contracts outside of the Ames projects,
Inspections a re also used to review Phase Zero (initial survey and inventory of
project status), Project Goals, and Requirements Specifications generated through
structured analysis.

PARTICIPANTS
The Inspectors operate as a team and fi l l f ive different types of roles. The
Author(s1 is the primary designer, developer, or programmer who prepares the
materials to be inspected. The author is a passive Inspector, answering questions or
providing clarification as necessary. The Moderator directs the flow of the
meetings, limiting discussion to finding errors and focusing the sessions to the
subject. The moderator also records the problems uncovered during the meetings. A
Reader paraphrases the materials, to provide a translation of the materials
different f rom the authors’ viewpoint. One or more additional Inspectors complete
the active components of the team. A limited number of Observers, who are silent
non-participants, may also attend for educational or familiarizing purposes. Of the
team members, the moderator and a reader a re the absolute minimum necessary to
hold a n Inspection.

Team composition and size are important. Composition using knowledgeable
designers and implementors having similar background or f rom interfacing
software enable cross training of group members; understanding is enhanced and
startup time is lessened. However, team members must be sufficiently different so
that alternate viewpoints are present. Fagan recommends a four member team
composed of a moderator and the software’s designer, implementor, and tester. Our
experience is that the most effective team size seems to be three to f ive members,
exclusive of author and observers; more than this is a committee, less may not have
critical mass for the process. We also t ry to keep the team together for all of the
software’s Inspections.

TOOLS
Written tools are used by the participants during the Inspections process to assist in
the preparation, the actual sessions, and the completion of the Inspection.
Standards are necessary as guidelines for preparing both design and coding
products. The Entrance Criteria for inspection materials define what materials are
to be inspected a t each type of Inspection, the level of detail of preparation, and
other prerequisites for an Inspection to occur. Checklists of categories (Data Area
Usage, External Linkages, etc.) of various types of problems to look for are used
during the sessions to help locate errors and focus attention on areas of project

G . Wenneson
Informatics General C o p
2 of 22

concern. The Checklists a re also used by the author during his preparation of
materials and by the inspectors while they a re studying the materials. Exit Criteria
define what must be done before the Inspection is declared complete and the
materials can proceed to the next stage of development. Each of these tools will
have been customized for each projects type of development work, language,
review requirements, and emphasis that will be placed on each stage of the
development process.

PROCEDURES
An Inspection is a multi-step sequential process. Prior to the Inspection, the Author
prepares the materials to the level specified in the Entrance Criteria (and to
guidelines detailed in the project development or coding standards). The moderator
examines the materials and, if they are adequately prepared, selects team members
and schedules the Inspection. (IBM lists these preparations as the Planning step.)
The Inspection begins with a short educational Overview session of the materials
presented by the author to the team. Between the overview and the first Inspection
session, Preparation of each Inspector by studying the materials occurs outside of
the meetings. In the actual Inspection sessions, the Reader paraphrases while the
Inspectors review the materials for defects; the Moderator directs the flow of the
meetings, ensures the team sticks only to problem finding, and records problems on
a Problem Report form along with the problem location. Checklists of frequent
types of problems for the type of software and type of Inspection are used during
the preparation and Inspections sessions as a reminder to look f o r significant or
critical problem areas. After the Inspection sessions, the moderator labels errors as
major or minor, tabulates the Inspection time and error statistics, groups major
errors by type, estimates the rework time, prepares the summaries, and gives the
error list to the author. The author Reworks the materials to correct problems on
the problem list. Follow-uD by the moderator (or re-inspection, if necessary) of the
problems ensures that all problems have been resolved.

In certain cases, a desk Inspection or "desk check" may be a more effective use of
time than a ful l Inspection. Desk Inspections differ f rom normal Inspections in
that during the preparation period each inspector individually records errors found
and a single Inspection session is held to resolve ambiguities in the problems. The
moderator compiles all collected error reports to produce a single report. All other
Inspection steps proceed normally. Desk Inspections can be appropriate for code or
design that the team is familiar with and that has already been through previous
Inspections. Desk Inspections do not have the group synergy generated during
"normal" Inspections. The SWTS Inspections database for FORTRAN code
Inspections indicates that the desk check has an 80% error detection rate but only
takes 40% of the time required of a ful l Inspection.

STATISTICS
The statistics captured f rom the Inspection and tabulated by the moderator consist
of time and error values. The time statistics are average per person preparation
time (excluding the author) and Inspections sessions meeting time, both normalized
to a thousand lines of code (KLOC). The error statistics a re the numbers of major
and minor errors detected, also normalized to a KLOC. As part of the tabulating
and summarizing process, error distributions of major errors by Checklist headings
are recorded and summarized for the Inspection as a whole. The tabulated statistics
are entered into a database as weighted averages by size in lines of design or code
and keyed by expected implementation language and type of Inspection. The SWTS
Inspections database currently contains almost 250 entries of data f o r FORTRAN
and Assembler languages for the Goals (Functional Requirements), Preliminary

G. Wenneson
Informatics General Corp
3 of 22

Design, Detailed Design, and Code (desk and non-desk check) types’ of Inspections
held on developed Wind Tunnel System software f rom 1980 through 1985. Over
half of the entries a re for code Inspections. Figure 1 contains summary figures
f rom the database. The database summaries provide guidelines f rom which general
conclusions and assumptions can be drawn. The database was generated as a
development and management tool f rom several related SWTS project’s Inspections
and not f rom tightly controlled experiments. As such, when comparing individual
Inspections figures to the database figures, variances f rom one-half to twice the
average amounts summarized from the database are not considered extraordinary.

STATISTICS USE
The Inspections statistics in their raw and weighted forms can be used by the
author, the design team and manager, the project manager, and Software
Engineering as feedback, feedforward, and control mechanisms f o r individual,
team, project and Inspections process behavior modification for fu ture work to
achieve better results. In addition, the statistics can be used in the current project
and for future work and projects for tracking, estimating, planning, and
scheduling of development and QA work.

The author uses the statistics to determine immediately what is deficient in
inspected design or code and, over the longer term, patterns and general problem
areas on which to focus attention for future work. The problem list, besides
providing a working list of detected problems, includes locations of what needs to
be fixed before the next development stage can proceed. Additionally, a
distribution of major errors by checklist category across each module provides
warning signals of error prone modules and high or higher density error rates by
error type. A history of high error rates of certain error types also provides a
pointer to design areas which need more work or training to develop or better
understand.

The programming team and manager use error distribution by type and module
from individual Inspections and Inspections of related software to locate common
problem areas and thus focus future work and communication to diminish these.
Error rates higher than normal for the group as a whole or error distributions in
particular areas may indicate a group misunderstanding or a misstatement of the
requirements. Higher error densities in modules interfacing to existing (or new)
software, for example, can alert and direct effor t to understanding the interface or
provide warning to another group to clarify or improve that interface. For the
designer and the team manager, lines of design (or lines of code, depending on
development stage) and complexity per module give immediate feedback for design
considerations of module size, cohesion, and coupling; this additionally provides a n
opportunity to ensure that modules a re not proliferating f rom one design stage to
the next. The completion of any individual Inspection along with module quantity
and sizing gives quantitative and qualitative feedback for validity of component
estimating, scheduling, and tracking information.

The Project Manager utilizes the statistics to help locate trends in various problem
categories and help the team improve performance through group meetings or
education. The statistics provide a quantitative evaluation of software correctness
and allow prediction, based on Inspections held, of error prone sections of design
or code, in order to concentrate development, QA, and testing resources on the most
important areas. Additionally, each Inspection’s results can be “validated” to ensure
proper procedures were followed and the results are legitimate as compared to the
project database. As a n example, for a FORTRAN detailed design inspection, time

G . Wenneson
Informatics General Corp
4 of 22

SUMMARY O F INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS ..

Type Total Total No DENSITY-OF-PROBS. TIME-PER-PERSON
of Number "Lines" Per 1000 Lines

Inspect'n Lang. Held Inspected Major Minor Total
-- ---
CODE - ALL Lang 94 51186 22.0 59.9 81.9

Only FORTRAN 90 49389 22.4 60.4 82.8
NON-DESK

ASSEMBLY 4 1797 10.1 44.5 54.6

CODE - ALL Lang 47 23206 21.0 51.3 72.3

FORTRAN 43 21308 19.1 48.1 67.2
DESK

ASSEMBLY 4 1898 42.6 87.6 130.3

DETAILED
DESIGN ALL Lang 44 10349 76.74 144.6 221.3

FORTRAN 40 9205 83.1 143.4 226.5

ASSEMBLY 4 1144 25.3 153.9 179.2

PRELIMINARY
DESIGN ALL Lang 43 13268 68.1 107.5 175.7

FORTRAN 41 12570 54.3 89.8 144.1

ASSEMBLY 2 698 316.6 426.8 743.4

Per 1000 Lines
Meet'g Prep'n Total

4.6

4.6

5.0

3.9

3.7

6.3

14.5

14.5

14.3

10.8

9.1

39.8

- -
4.0 8.7

4.1 8.7

2.6 7.7

- 3.9

- 3.7

- 6.3

9.8 24.3

9.2 23.7

14.4 28.7

5.4 16.1

5.5 14.6

3.7 43.6

This chart summarizes the statistics f rom Informatics inspections on the
NASA Ames SWTS project. The statistics a re weighted averages, each
inspection being weighted by its size, in lines of design or code.

Figure 1
SWTS Inspections Database Summaries

G. Wenneson
Informatics General Corp
5 of 22

guidelines a re 23 hrs/KLQD (Thousand Lines of Design) per person for
preparation plus meeting time and the team can expect to f ind 83 major and 143
minor problems per KLOD. Meeting times and error rates sipnificantlv different
should be examined to determine their cause. A trend toward increasing error rates
may mean that not enough attention is being directed to proper design. A
decreasing error rate may mean design is becoming more effective or, when
accompanied by decreasing preparation and meeting times, may mean Inspections
are becoming less effective.

The statistics a re also used to modify the Inspection process itself or its
application. At the beginning of the project, the entrance and exit criteria, the
checklists, and the methodology and standards a re specialized to the project's
particular development environment, languages, and review requirements. As
statistics are compiled, evaluations of the data may lead to modifications to the
entrance criteria to change the level of materials preparation, to the checklists to
alter the attention given to certain design or code areas, and to the project
standards to remove ambiguity or set new standards as necessary. Removing
software components f rom a n Inspection requirement or adding or deleting a n
Inspection as a quality gate a t a particular design stage to more optimally use
available time are options made more apparent by the statistics.

DATABASE ANALYSIS
Examination and analysis of the SWTS Inspection database indicate correlations
between preparation time, meeting time, inspection rate, and errors detected. These
correlations and others allow the overall Inspections procedures to be modified and
guidelines established for the optimal conduct of Inspections within a project.

For FORTRAN code Inspections, errors detected a re related to inspection rate
(LOC inspected per hour), f igure 2. Most sessions inspected code a t the rate of 100
to 300 LOC per hour and detected between 10 and 80 major errors/KLQC. When
the Inspection rate is too rapid, the error detection rate falls gradually. When the
Inspection rate is excessively slow, there is a wide range of error densities. For
excessively slow Inspection rates, we believe this wide range of error densities
results f rom Inspecting two types of materials: "Difficult Materials" where the
materials a re complex and require a slower Inspection rate to evaluate but result in
a normal to above normal error density; and "Poorly Prepared Materials" which
were not ready for Inspection, but were still inspected and thus generated a large
number of errors, were difficult to understand, and slow to inspect. The inspection
of "Poorly Prepared Materials" represent abnormal situations which the moderator
is supposed to prevent prior to scheduling or holding a n Inspection. To this end,
there a re also cut-off limits before and within the Inspection, if the Inspected
materials a re too hard to understand and/or are producing too many errors, that is,
they a re probably not ready to be Inspected, the Inspection is stopped and the
materials a re returned to the author to be properly prepared.

There is a linear correlation between inspection rate and preparation rate
(LOC/hr), f igure 3. Materials requiring a slower preparation rate also experience a
slower Inspection rate, and vice versa. We believe the correlating factor is
complexity of materials, more "difficult" code takes more inspector preparation
time and more inspection time (lower inspection rate).

G. Wenneson
Informatics General Corp
6 of 22

0
' R

t?

5 0 0 - 3

400-
A
I
I
0

8 300-
\
c
w 200-
!

f -
la, - I"

O*

0 I
3
0 0

O B

0

U

1 3 , , ::

Inspection Rate vs. heparation Rate
Mmnoticssmshspstid~

01) 'I

0.7 i
1 0.6

0
0

0
0

" I I I I I I I 1

0 0.2 0.4 0.6

wwy -A
O C o d O

Figure 3

3

Of any Inspection, we believe the Preliminary Design Inspection is the most
critical Inspection to hold, as i t helps f ind modularization errors, data definition
errors, and can help to emphasize software re-usability before unit development
begins. Based upon major error detection rate and translating preliminary and
detailed design lines of design (LOD) to implemented lines of code (LOC), the
preliminary design Inspection detects (and removes) a greater number of errors.
The translation from lines of design to lines of code is based on a development
methodology that requires a preliminary design modularization with logic
development where 1 LOD can eventually be coded by 15 to 20 LOC; detailed
design logic development is where 1 LOD can be coded by 3 to 10 LOC. Using
major errors normalized to estimated implemented LOC, the preliminary design
Inspection finds and fixes about 1000 errors per KLOC, the detailed design
Inspection locates about 600 errors per KLOC, while the code Inspection is least
effective by detecting a mere 20 errors per KLOC. Using the generally accepted
cost to repair of an order of magnitude for errors between successive development
steps fur ther emphasizes these figures for cost savings purposes: a few ounces of
prevention are worth pounds of cure. The SWTS environment uses walkthroughs
for reviewing functional requirements specifications; for environments that
uniformly use Structured Analysis to generate specifications, the Requirements
Specification Inspection would undoubtedly supercede the Preliminary Design
Inspection in importance.

Experience in performing Inspections is cumulative and if applied can have an
effect on the Inspections process. Over the first two years on the SWTS project,
the error rates were widely scattered. In the second year, a n examination of the
Inspections process resulted in changes in error definition, Inspections procedures,
and staff education. Consequently error rates dropped significantly and today
remain in a much smaller range.

CONCLUSION
Inspections a re not a panacea for Quality Assurance defect removal. They are
technical review procedures and may not be appropriate for some situations such

G. Wenneson
Informatics General Gorp
7 of 22

as those needing heavy user interaction (such as user interface definition). They
should be used in conjunction with (but probably not as a substitute for) military
PDR/CDR large reviews. In appropriate situations, they have been proven to be
effective and efficient error detection methods which have extremely important
and beneficial "side effects" of accurate planning, scheduling, a n d tracking for
project management and control. The primary effect of Inspections is to move
error detection and correction to the earlier (and less costly) development stages. As
such, this front-loads the project schedule, but the time is more than recovered
during the coding and implementation phases. Consequently, Inspections usage on a
project requires proper education, scheduling, and implementation and should not
be used on schedule driven projects where the customer understands only two
development phases: c'ode and test.

At NASA Ames, based on experience gained using the original IBM model on pilot
projects, Inspections have been modified and specialized for numerous projects,
development phases, and environments. At Ames, Inspections are expected to play
an increasingly major role as a Quality Assurance tool in software development.
Some of the directions this can be expected to take are expansion to cover new
software languages, incorporation of new structured development methodologies,
and modification of the methodologies for the Ames environment based on
information gained during Inspections of software developed using those
methodologies. Inspections a re a significant Quality Assurance tool in their own
right and flexible enough to be integrated and implemented with other tools,
especially defect prevention, to provide a comprehensive Quality Assurance
environment to approach zero defect products.

REFERENCES
1. M.E.Fagan, "Design and Code Inspections to Reduce Errors in Program

Development", IBM Systems Journal, Vol.15 No.3, 1976
(This article can be ordered as a reprint, order no. G321-5033)

Guidelines", Installation Management Manual GC20-2000-0, IBM Corporation,
1977

3. "Guidelines for Software Inspections", NASA Contractor Report 166521, August
1983, NASA Ames Research Center, Moffett Field, Calif. 94035

2. "Inspections in Application Development - Introduction and Implementation

G. Wenneson
Informatics General Corp
8 of 22

THE VIEWGRAPH MATERIALS

for the

G. WENNESON PRESENTATION FOLLOW

6. Wenneson
Informatics General Corp
9 of 22

SOFTWARE INSPECTIONS A T NASA AMES

METRICS FOR

FEEDBACK

AND

MODIFICATION

GREG WENNESON

INFORMATICS GENERAL CORPORATION

G . Wenneson
Informatics General Corp
10 of 22

WHAT THEY ARE (AND ARE NOT)

INSPECTIONS :

FORMAL REVIEW PROCEDURES

FOR ERROR DETECTION ONLY

DEFINED TEAM MEMBER ROLES

SPECIFICALLY DEFINED TOOLS

HELD AT SELECTED POINTS IN DEVELOPMENT CYCLE

DEFINED INPUT

DEFINED OUTPUT

INSPECTIONS ARE NOT :

DESIGN SESSIONS
WALKTHROUGHS
EVALUATIONS OF THE AUTHOR

RUBBER STAMP PROCEDURES

G . Wenneson
Informatics General Corp
11 of 22

HISTORY

AT IBM

MIKE FAGIN, PUBLISHED - 1976
ALSO - O.R.KOHL1, R.R.LARSON, R.A.RADICE

FORMAL GUIDELINES - 1977, 1978

PRODUCTIVITY GAIN 23%

ERROR DETECTION 82%

ERROR REDUCTION 38%

AT NASA AMES

PILOT PROJECTS BY INFORMATICS - 1979
(ALSO COMMERCIAL PILOT PROJECTS)

STANDARDIZED WIND TUNNEL SYSTEM (SWTS)

PRODUCTIVITY GAIN 40%*

ERROR DETECTION 90%*

ERROR REDUCTION 40%*
(* - INCLUDES MAJOR METHODOLOGY CHANGES)

NOW USED ON MOST INFORMATICS AMES PROJECTS

G. Wenneson
Informatics General Corp
12 of 22

INSPECTION COMPONENTS

DEFINED TOOLS

STANDARDS
CRITERIA FOR MATERIALS PREPARATION

CHECKLISTS FOR ERRORS

EXIT CRITERIA
WRITTEN RECORDS AND STATISTICS

TEAM MEMBERS
MODERATOR

READER

INSPECTORS

AUTHOR

INSPECTION PROCESS
TEAM SELECTION (PLANNING)

OVERVIEW
PREPARATION

INSPECTIONS SESSIONS DESK INSPECTION

REWORK

FOLLOW-UP

G. Wenneson
Informatics General Corp
13 of 22

PROBLEM AND STATISTICS RECORDING

PROBLEM RECORDING

MODULE INSPECTION PROBLEM REPORT
"GENERAL" PROBLEMS REPORT

PROBLEM STATISTICS
MODULE PROBLEM SUMMARY

MODULE TIME AND DISPOSITION REPORT

INSPECTION STATISTICS
INSPECTOR TIME REPORT

INSPECTION GENERAL SUMMARY

OUTLINE OF REWORK SCHEDULE

G. Wenneson
Informatics General Corp
14 of 22

INSPECTIONS DATA BASE FOR SWTS

- SUMMARIES -

Inspect'n Lang. Held Inspected Major Minor Total

CODE - ALL Lang 94 51186 22.0 59.9 81.9

Only FORTRAN 90 49389 22.4 60.4 82.8

NON-DESK

ASSEMBLY 4 1797 10.1 44.5 54.6

CODE - ALL Lang 47 23206 21.0 51.3 72.3

FORTRAN 43 21308 19.1 48.1 67.2
DESK

ASSEMBLY 4 1898 42.6 87.6 130.3

DETAILED
DESIGN ALL Lang 44 10349 76.74 144.6 221.3

FORTRAN 40 9205 83.1 143.4 226.5

ASSEMBLY 4 1144 25.3 153.9 179.2

PRELIMINARY
DESIGN ALL Lang 43 13268 68.1 107.5 175.7

FORTRAN 41 12570 54.3 89.8 144.1

ASSEMBLY 2 698 316.6 426.8 743.4

Per Thousand Lines
Meet'g Prep'n Total
-
4.6

4.6

5.0

3.9

3.7

6.3

14.5

14.5

14.3

10.8

9.1

39.8

- -
4.0 8.7

4.1 8.7

2.6 7.7

0.0 3.9

0.0 3.7

0.0 6.3

9.8 24.3

9.2 23.7

14.4 28.7

5.4 16.1

5.5 14.6

3.7 43.6

This chart summarizes the statistics f rom Informatics inspections on the
NASA Ames SWTS project. The statistics a re weighted averages, each
inspection being weighted by its size, in lines of design or code.

G . Wenneson
Informatics General Corp
15 of 22

STATISTICS USE

AUTHOR

PROBLEM REPORTS

MODULE PROBLEM SUMMARY

PREVIOUS INSPECTION STATISTICS

DESIGN TEAM AND MANAGER

PROBLEM REPORTS

MODULE PROBLEM SUMMARY

OUTLINE OF REWORK SCHEDULE

MODULE TIME AND DISPOSITION

INSPECTION GENERAL SUMMARY

PREVIOUS INSPECTION STATISTICS

PROJECT MANAGER; TEST GROUP; QA GROUP

MODULE PROBLEM SUMMARY

INSPECTION GENERAL SUMMARY

PREVIOUS INSPECTION STATISTICS

SOFTWARE ENGINEERING

MODULE PROBLEM SUMMARY

INSPECTION GENERAL SUMMARY

PREVIOUS INSPECTION STATISTICS

G. Wenneson
Informatics General C o p
16 of 22

CODE 1NSPECTlON SUMMARIES

NEW FORTRAN CODE, MODIFICATIONS, AND BOTH

SUMMARY O F INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS

Type Total Total No DENSITY-OF-PROBLEMS TIME-PER-PERSON
of Number “Lines“ Per Thousand Lines Per Thousand Lines

Inspect’n Lang. Held Inspected Major Minor Total Meet’g Prep’n Total

CODE - NON-DESKCHECK
FORTRAN 90

/New 46

/Mods 13

/Both 31

CODE - DESK CHECK

FORTRAN 43

/New 8

/Both 25

/Mods 10

49389

25981

7019

16389

21308

4121

14453

2734

-

22.4

26.3

17.2

18.5

19.1

26.3

18.6

10.6

--

60.4

68.3

42.4

55.6

48.1

51.7

50.1

32.2

82.8 4.6

94.6 5.5

59.6 3.0

74.1 3.9

67.2 3.7

7 8.0 4.9

68.7 3.4

42.8 3.8

-

4.1

4.9

3.2

3.3

0.0

0.0

0.0

0.0

-

8.7

10.3

6.2

7.2

3.7

4.9

3.4

3.8

This char t summarizes the statistics f rom Informatics inspections on the
NASA Ames SWTS projcct. The statistics are weighted averages, each
inspection being weighted by its size, i n lines of design or code.

G. Wenneson
Informatics General Corp
17 of 22

INSPECTIONS DATA BASE

"MAJOR" PROBLEM DISTRIBUTION, BY PERCENT

PRELIMINARY DESIGN

Category FORTRAN ASSEMBLER
SPECIFICATION 10% 13%
CLARIFICATION 17 1
DATA 18 21
LOGIC 21 21
I/F 5 20
LINKAGES 20
PERFORMANCE 4 3

DETAILED DESIGN

DETAIL 9
LOGIC 29
DATA 20
LINKAGES 22
RETURN CODES 5

CODE

FUNCTIONALITY 9
DATA 19
CONTROL 18
LINKAGES 24
READABILITY 17
REG. USE

29
66
1
1

4
37
22
23
2

12

G. Wenneson
Informatics General Corp
18 of 22

PREVIOUS INSPECTIONS EFFECT ON MAJOR ERROR RATES

STAGE OF
DEVELOPMENT

CODE NON-DESK

CODE DESK

DETAIL DESIGN

PRELIM. DESIGN

NUMBER OF PREVIOUS INSPECTIONS
0 1 2 3

17.7 30 32.6 38

15.1 27 30 21

95 79 54 -
58 45.6 - -

Major Errors Per KLOC

AND ON PREPARATION AND MEETING TIME

STAGE OF
DEVELOPMENT

NUMBER OF PREVIOUS INSPECTIONS
0 1 2 3

CODE NON-DESK 8.2 9.2 9.1 10

CODE DESK 4 3.2 3.5 2.5

DETAIL DESIGN 27.7 23.0 9.5

PRELIM. DESIGN 14.7 14.4 - -
HOURS of Preparation plus Meeting time Per KLOC

G. Wenneson
Informatics General Corp
19 of 22

INSPECTIONS RATE AND PREPARATION TIME RELATIONSHIP

An importont area of consideration is the amount of preparation time
required in order to allow the participants to proceed at a reasonable
ra te in .the inspection meeting. The graph below, based on the individual
inspections to date, suggests that preparation times of 4-7 hours per I,OOO
lines m y allow the team to proceed at an optimum rate in the meetings.
Less preparation time will cause the meeting to slow down because of
poor wnderstonding and rmny questions, More preparation time m y hove
a negative impact on the rate because of over-emphasizing minor problems
or discussing the functionality or goals during code or design inspections.

UPPER AND LOWER RANGES OF RATES ACHIEVED
I N INSPECTIONS WITH VARIOUS

PREPARATION TIMES

1 2 3 4 5 6 7 0 9

Preparation Time
(Hours Per Person Per Thousand Lines)

G. Wenneson
Informatics General Corp
20 of 22

INSPECTIONS AS A PROJECT COORDINATION TOOL

INSPECTIONS CAN INTEGRATE THE FOUR MAJOR PROJECT FACTORS

PROJECT MANAGEMENT

METHODOLOGY

QUALITY ASSURANCE

STAFF PERFORMANCE

THRU:

REINFORCEMENT O F METHODOLOGY AND STANDARDS

MAJOR MILESTONE TRACKING INFORMATION MATCHING WBS

DETAILED TRACKING AND ESTIMATING INFORMATION MATCHING WBS

DETAILED ERROR AND DESIGN NEEDS AT EACH DEVELOPMENT STAGE

EASY EXTRACTION OF TECHNICAL INFORMATION ABOUT COMPONENTS

INDICATIONS OF TRAINING AREAS NEEDING ATTENTION ACROSS THE

PROJECT

INDICATIONS DIRECTLY T O INDIVIDUAL STAFF MEMBERS OF THEIR

TRAINING NEEDS

G. Wenneson
Informatics General Corp
21 of 22

ALMOST THE END

CAUTIONS

DOESN’T SUBSTITUTE FOR THINKING

MUST BE SCHEDULED AT BEGINNING - CAN’T BE “TACKED” ON

PARTICIPANTS MUST BE PROPERLY TRAINED

NEED CUSTOMER UNDERSTANDING AND SUPPORT

MANAGEMENT DIRECTION AND SUPPORT CRUCIAL

STATISTICS ARE FOR BETTER SOFTWARE AND MANAGEMENT,

NOT A NUMBERS EXERCISE

WHERE TO GO FROM HERE

EXPAND TO NEW LANGUAGES AND DESIGN TECHNIQUES

EXPAND TO NEW METHODOLOGIES AND SUPPORT TOOLS

FEEDBACK T O CURRENT METHODOLOGIES

EXPAND TO OTHER APPLICABLE COMPANY/CONTRACT AREAS

G. Wenneson
Informatics General Corp
22 of 22

