
*

N86-30361

PANEL #4

EXPERIMENTS WITH ADA

D. Roy, Century Computing Inc.
M. McClimens, Mitre Corporation
W. Agresti, Computer Sciences Corporation

SEL Workshop 86 paper

Daniel M Roy
Century Computing, Inc.

Abstract

A 1200 l ine Ada source code p r o j e c t simulating t h e
most b a s i c functions of a n opera t ions c o n t r o l center
w a s developed f o r code 511. W e s e l ec t ed George
Cherry's Process Abstraction Methodology f o r Embedded
Large Applications (PAMELA) and DEC's Ada Compilation
System (ACS) under VAX/VMS t o bu i ld the software from
requirements t o acceptance test. The system runs
f a s t e r than i ts FORTRAN implementation and was
produced on schedule and under budget with an o v e r a l l
p roduc t iv i ty i n excess of 30 l i n e s of Ada source code
pe r day.

Author c u r r e n t address:
Century Computing Incorporated,
8101 Sandy Spring Rd.
Laure l , Md. 20707
(301) 953 3330

Trademarks :
ALS is a trademark of Softech Corp.
Ada is a trademark of t h e Department of Defense.
PAMELA and PAM are trademarks of George W.
ACS, VAX, VMS are trademarks of D i g i t a l Equipment Corp.

Cherry.

D. Roy
Century Computing, Inc .
1 of 41

SEL Workshop 86 paper
BACKGROUND

1 BACKGROUND

The Mul t i - sa te l l i t e Operations Control Center branch (MSOCC), code
511, has embarked on a n e f f o r t t o improve productivity i n the
development and maintenance of Operations Control Center (OCC)
systems. This productivity e f f o r t is addressing a range of i s sues
from equipment and facil i t ies improvements t o the development and
acquis i t ion of too ls and the t ra in ing of personnel.

Century Computing's previous work on MSOCC's productivity improvement
program, ident i f ied the Ada language a s a promising technology, and
recommended evaluating Ada on a small "pi lot project" re la ted t o MSOCC
appl icat ions [Century-84].

2 PURPOSE OF THE STUDY

The object ive of t he s tudy w a s t o evaluate the app l i cab i l i t y of Ada
and its development environment f o r MSOCC. Metrics w e r e i den t i f i ed
f o r t h i s evaluation, along with an approach t o co l lec t ing the da ta
required f o r these metrics. The evaluation was based on using Ada t o
re-develop from scratch a small scale, real-time project re la ted t o
MSOCC appl icat ions: an Application Processor (AP) benchmark system.

3 DESCRIPTION OF THE AP BENCHMARK SYSTEM

An AP is a computer t h a t performs the functions required by a
satel l i te operations cont ro l center. The AP Benchmark system w a s
previously developed t o simulate the charac te r i s t ics of a typ ica l
MSOCC's AP software system [CSC/SD-831. Like most AP software, t h e
Benchmark w a s developed i n FORTRAN with some supporting assembly
language.

The AP Benchmark software simulates the following AP functions:

Reads a telemetry data stream from tape - meters the
frequency of tape reads t o simulate various data rates.

Decommutates t h e telemetry data.

Performs some l i m i t checking on the data.

Displays some of the telemetry data on CRT screens.

Simulates t he h i s t o r y and a t t i t u d e data recording processes.

Simulates s t r i p char t recorders and associated functions.

Gathers statistics on the above process and generates
reports .

D. Roy
Centurj, Computing, Inc.
2 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

4 DESCRIPTION OF THE ADA PILOT PROJECT

The p i lo t project began wi th a reverse engineering phase t o construct
requirements from the ex i s t ing FORTRAN code. Then, a staged approach
w a s used t o develop the software, using Ada f o r a l l project phases:

o We used Ada as a Data Definit ion Language t o produce a data
dictionary during the requirements analysis phase. A spec ia l
package, the "TBD" package (f ig . 1) helped i n t h e top down
design of the d a t a s t ructure .

o We used Ada as a Program Specification Language very ea r ly i n
the project and eas i ly prototyped the data flow. The Process
Abstraction Methodology too l s [Cherry841 (see appendix B)
produced a tasking model t h a t worked a t f i r s t t r y (f ig . 2a
and b). The preliminary and detai led design templates w e
created (f ig . 3a and b) proved t o be very usefu l f o r
enforcing good prac t ices .

o We used Ada as a Program Design Language [IEEE-9901 (f ig . 4)
and ref ined t h e PDL i n t o detai led Ada code i n t h e usual
staged manner. The DCL too ls and templates f o r Ada
construct, developed a t the onset of the pro jec t , had a
dramatic impact on productivity and code consistency.

o We enjoyed the elegance of Ada as an implementation language
and used most of its features (a t t r ibu tes , generics,
exception handlers, etc.)

o Full assessment of the DEC ACS tools was beyond the scope of
t h i s study, but w e appreciated the built- in configuration
control t oo l , t h e automatic recompilation system and the
symbolic debugger [DEC-851-

The t o t a l re-development approach we followed (from requirements t o
f i n a l t e s t s) l ed us t o believe t h a t w e could produce a s t i l l more
e f f i c i en t design. Actually, the PAMELA methodology design ru l e s
detected several extraneous tasks i n the cu r ren t AP benchmark model,
but w e decided t o respect t h e ex i s t ing global s t ructure as the model
w a s b u i l t t o represent t h e typ ica l CPU load of an ac tua l OCC.

D. Roy
Century Computing, Inc.
3 of 41

SEL Workshop 86 paper
DESCRIPTION OF TEE ADA PILOT PROJECT

-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -
--

e

Raises :

Overview: -- 1 Purpose:

Effects : -I Description:

None

This i s an improvement over Intermetrics' TBD package and IEEE 990
recommendations about dec is ion de fe r r a l techniques.

The d is t inc t ion i s c l a r i f i e d between types, variables and values.
The naming is more consis tent (enum-i, component i ...) and more

readable (scalar var iable intead of scalFrValue)
There are more d e f i n i t i o n s (enurn-type, record type)
Better compatibil i ty with BYRON (or search u t y l i t y processing)

Please only "WITH" t h i s package. By systematically specif ying
"TBD.x" i t e m s , it is easier t o assess the s tage of development of
a compilation uni t .

Requires : -1 Assumptions :

Notes :

Daniel Roy 9-AUG-1985 B a s e l i n e
Change log:

--

type access-type is access in teger ;
access - variable : access-type;

type record type is record
component-1 : in teger := 0;
component-;! : in teger := 0;
component-i : in teger := 0;
componentg : in teger := 0;
component-n : in teger := 0;

end record;
record - variable : record-type;

-c Inspired by IBM PDL s tu f f
Condition,CD : Boolean := t rue ;

-- Queues services
type queue type is a r r ay (array-index-type) of integer;
type queuegtr-type i s access queue - type; -

end TBD; -1 --*
Fig. 1: Excerpt from the TBD package

-------------_-------________________I___------------------

-- -I
--I -

D. Roy
Century Computing, Inc.
4 of 41

PAtlLevel 1

Figure 2 ~ : PAM decomposition l eve l I

D. Roy
Century Computing, Inc.
5 of 41

extractor

PAM level 2

I

switch
load

Decommu tator

Figure 2b: PAM decomposition level 2

D. ROY
Centuj Computing, Inc.
6 of 41

SEL Workshop 86 paper
DESCRIPTION OF TEE ADA PILOT PROJECT

procedure P (-1 synopsis --*
param-1 : IN some-type := some-constant ; -1 descr ipt ion --*
param-n : OUT some - type --I descr ipt ion --*
1 ; -1 --*

separate ()
procedure body P (--I -- &trt synopsis. Must be the same as i n body. -*

param-1 : IN some-type := some-constant ; --I descr ipt ion -*
param-n : OUT some - type --I description -*
1 is -1 --*

-- I - ****** Cut and p a s t e from specif icat ion.

- Packages

Use Gold D f o r rest of DOC. ****** --

-- types

- subtypes

- records

- variables

- functions

- procedures

- separate clauses

begin -1 --*
end P ; --I --* null;

Fig. 3b: Detailed design template f o r a procedure (proc body) ..

D. ROY
Centurj Computing, Inc.
7 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

...
package body user i n t e r f ace i s

function inquire i n t (

--I Isolate user in te r face -*
--I Emulate DCL verb f o r in tegers -*
--I --*

- --
prompt : s t r i n g --I --*
) re turn inquired var-type is
inquired var : inquired var type ; --* The var iable w e ' l l r e turn - - - --

begin --I inquire i n t --*
--* Displays "prompt (min. .max) : It
f o r t r y i n I.. max-nr-errors loop -* u n t i l good value or else --

begin --* <<exception block>>
-* G e t unconstrained vzlue
-* Validate and t r a n s l a t e unconstrained value
re turn inquired var ; -1 --* - -

exception --* recoverable exception when inva l id input
when da ta e r ro r 1 constraint-error => --* --* dTsplay II t r y again" message

-1 end exception --*
end ; --* <<exception block>>
--

end loop;

except ion

--* u n t i l good qalue or else

--* catch a l l handler
--

-
when others => --*

r a i se ; --*
end inquire - i n t ; --I --*

Fig. 4: PDL extracted from code by PDL t o o l ...

D. Roy
Century Computing, ~nc .
8 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5 RESULTS SUMMARY

Some of t h e objectives of t h e eva lua t ion were t o determine what is
requi red t o t r a i n software engineers t o use Ada, t o def ine adequate
metrics t o measure productivity and q u a l i t y g a i n s and t o assess the
cu r ren t Ada developuent environment.

5.1 Tra in ing

We found t h a t Ada i s s u f f i c i e n t l y complex t h a t w e kept learning
throughout t h e p i l o t p r o j e c t , and even beyond. We a l s o found t h a t
none of t h e standard t r a i n i n g devices (seminars, books, computer aided
i n s t r u c t i o n) could alone address t h e broad range of i s sues t h a t r e a l l y
are a t t h e h e a r t of the problem:

In the Ada era, a comprehensive educa t ion i n the software engineering
p r i n c i p l e s that form t h e b a s i s of t h e Ada c u l t u r e aast rep lace ad-hoc
t r a i n i n g in t h e syntactic r ec ipes of a language.

That i s why w e recommend a v a r i e t y of continuous education measures i n
our r e p o r t : Assuming adequate f a m i l i a r i z a t i o n w i t h modern software
engineering p rac t i ces , a t least 4 person-week is t h e minimum minimorum
t r a i n i n g t i m e . This t i m e inc ludes teaching a methodology adapted t o
Ada and 50% hands on experiments under the superv is ion of a n expert.

5.2 Metrics And Data Collection Approach

After a review of es tab l i shed r e sea rch i n t h e areas of metrics and
d a t a c o l l e c t i o n , a b r i e f paper ou t l in ing t h e metrics approach w a s
i s sued . The metrics work of t h e NASA Software Engineering Laboratory
w a s t h e key input [McGarry-82]*

Simple DCL too l s were b u i l t t o ga ther the metrics da ta and
comprehensZve logs of e r r o r s , problems and i n t e r e s t i n g so lu t ions were
maintained on-line and are p a r t of t h e de l iverables .

5.3 Product iv i ty

Our produc t iv i ty during t h e seven weeks coding period averaged 32
l i n e s of Ada source code (LOC) pe r day and nea r ly 130 l i n e s of text
(LOT) per day (includes embedded documentation, comments and blank
l i n e s) , W e experienced a low po in t of 10 LOC pe r day a t t h e beginning
of the coding phase, and reached a peak of 90 LOC and 370 LOT per day
during t h e f i n a l week (f ig . 5) . Averaged over t h e whole 18 weeks of
development (including reverse engineering wi th DeMarco before PAM,
t o o l s development, two seminars, compilers i n s t a l l a t i o n , etc.)
p roduc t iv i ty still remains above 13 LOC and 50 LOT per day.

D. Roy
Century Computing, Inc.
9 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

Although formal verification techniques were not employed, intense
validation testing discovered two errors, both due to subtle
differences between our implementation and its FORTRAN precursor. A
detailed log of all the problems we had at various phases of the
implementation was kept on-line .
Those productivity and quality results are interesting data points,
but they must be taken with the following caveat:

o We were re-implementing a working system.

o Our deliverables did not include all standard documentation.

o We did not produce a performance prediction study.

o We did not perform a deadlock avoidance study.

o Unit testing was not up to the standards we would have
applied to an operational system.

o We sometimes abandoned early our search for better solutions.

o When a problem arose we did not always research why.

o More than 90% of the code was written by a single individual.

On the other hand, we wrote much more scaffolding and experimental
("throw away") software than a normal project would require.

D. Roy
Century Computing, Inc.
10 of 41

w
CI
0 u
W u a a
8
v)
W I
d
t u

.I

3 P

D. Roy
Century Computing, Inc.
12 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5.4 Compilers Experience

We first used Century's NYU Courant Institute Ada interpreter on our
VAX 11/750 for training and tools development. We quickly became
frustrated with this system.

Thanks to NASA's cooperation, we got some exposure to the Telesoft
compilers and the DEC Ada Compilation System (ACS).

We then installed Softech's Ada Language System (ALS) on another
VAX.
ALS made it unsuitable in light of our schedule constraints.

NASA
Our conclusion was that the current performance problems of the

In the end we were granted access to code 520's test version of DEC's
Ada Compilation System (ACS) under VMS 4.1 which we used to develop
most of the pilot project. It is clear to us that the ACS made the
timely completion of our project possible and that, in general, the
quality of the development environment significantly impacts software
development productivity.

As delivered, the Ada pilot project features about the same number of
statements as its FORTRAN precursor (about 1200) but is larger in the
number of lines of text (4,500 vs 2,000). Image sizes are comparable
(about 170 kbytes for Ada vs about 200 kbytes for FORTRAN).

Even though it is difficult to compare run time performance on the
very different computer environments we used, our preliminary results
seem to Indicate that the Ada code runs faster than its FORTRAN
counterpart. We suspect that our good results may be due to the fact
that some data elements could be directly addressed in Ada and not in
FORTRAN. Nevertheless, this is a completely unexpected result that is
even contrary to popular belief. We think if speaks for the high
quality DEC's ACS and the adequacy of the chosen methodology (the
Process Abstraction Methodology for Embedded Large Applications).

of

6 CONCLUSIONS

Ada is clearly a step forward in the software industry's search for a
better programming language for real-time and embedded systems. Ada
also represents significant advancements in the field of practical
programing language development.

Furthermore, the Ada Programming Support Environment (APSE) and the
Software Technology for Adaptable Reliable Systems (STARS) initiative
will support the language with an impressive set of evolving tools.

But even with these features, it is possible to develop poor software
in Ada. In fact, packaging, generics, multitasking and, above all,
representation clauses (that allow direct access to the hardware!)
will have to be closely controlled by competent project managers
because these features are powerful, hence dangerous. Moreover, those
powerful features provide another dimension of design decision. We

D. Roy
Century Computing, Inc.
13 of 41

SEL Workshop 86 paper
CONCLUSIONS

f e e l t h a t a methodology t h a t he lps t h e software engineer a l l o c a t e
func t ion and d a t a s t r u c t u r e s t o packages and t a sks is necessary.

A& should prove t o be a n exce l l en t t o o l i n t h e hands of competent and
proper ly t r a ined software developers. It w i l l not be a panacea,
compensating f o r inadequate methods o r t r a i n i n g , but i t w i l l be
b e n e f i c i a l i f p roper ly applied.

I n t h a t context, w e make t h e following predic t ions r e l a t i v e t o t h e
f u t u r e of A&:

1.

2.

3 .

4.

5.

6 .

The momentum of t h e Department of Defense w i l l make Ada a
r e a l i t y . The last t i m e t h a t DoD backed a language (COBOL),
t h e language became, and s t i l l i s , t h e most popular i n the
world.

There w i l l be major false starts in the use of Ma,
especially when the aerospace contractors tackle large
projects with newly trained programmers. Ada i t s e l f w i l l
become t h e focus of these p ro jec t s , leaving t h e t a r g e t
app l i ca t ion i n second place.

The " rea l i t y" of Ada w i l l be delayed due t o t h e immaturity of
the compiler technology, expense of computer resources, and
the t r a i n i n g problem.

There w i l l be major d i f f i c u l t i e s at - both ends of t h e
programmer competency scale. Many of t h e b r igh te s t
programmers w i l l tend t o produce overly complex designs,
using every poss ib le f e a t u r e of t h e language; t h e appl ica t ion
i t s e l f becoming a s i d e i s s u e . Many of t h e less competent
programmers w i l l never r e a l l y understand the Ada technology.

Programmer product iv i ty w i l l decrease (r e l a t i v e t o
conventional languages) before i t eventually increases.

Un ive r s i t i e s w i l l eventua l ly produce p ro f i c i en t Ada software
ehgineers, using t h e language as a bas i s f o r teaching a l l t he
t r a d i t i o n a l computer s c i ence courses. (This day i s g e t t i n g
near. W e r ecen t ly po l l ed area u n i v e r s i t i e s and found Ada
present i n every computer sc ience curriculum.)

7 A FINAL NOTE

I n Ju ly 1985, following t h e recommendation of the APSE Beta T e s t S i t e
Team headed by D r . McKay (Universigy of Houston a t Clear Lake), NASA
o f f i c i a l l y adopted Ada as t h e language of choice f o r a l l f l i g h t
software of t h e space s t a t i o n program.

D. Rov
Centujr Computing, Inc.
14 of 41

APPENDIX A

BIBLIOGRAPHY

[Century-841 Century Computing Inc ., %of tware Tools and Methodology
Study f o r NASA MSOCC", Laurel, Md., June 1984.

[Cherry-841 George W. Cherry, "Advanced Software Engineering wi th
Ada", Seminar notes , 1984.

[Cherry851 George W. Cherry, "The PAMELA (TM) Methodology, A
Process-oriented Software Development Method f o r Ada.", To be
published.

[CSC/SD-831 Computer Science Corporation, "Gamma Ray Observatory E r a
Appl ica t ion Processor Benchmark User's Guide", Update 1, Doc. No.
CSC/SD-83/6101UDI, January 1984.

[DEC-85] D i g i t a l Equipment Corporation, "Developing Ada Programs On
VAX VMS", February 1985.

[IEEE-9901 IEEE working group on Ada PDL (990), ''Ada PDL d r a f t
recommended prac t ice" , 5 March 1985.

D. ROY
Centuiy Computing, Inc.
15 of 41

BIBLIOGRAPHY

[McGarry-821 Frank McGarry et al, , "Guide t o Data Collection",
SEL-81-101, NASA GSFC, August 1982.

[Methodman-82] Peter Freeman, Anthony Wasserman, "Software Development
Xethodologies and Ada", National Technical Information Service, ADA
123-710, November 1982.

D. Roy
Century Computing, Inc.
16 of 41

APPENDIX B

THE PROCESS ABSTRACTION METHODOLOGY

"The Process Abstraction Methodology f o r Embedded Large Applications
(PAMELA or PAM f o r s h o r t) is a real-time software development method
which takes f u l l advantage of Ada's features of type abstract ion,
process abstract ion, exception handling, top-down separa te
compilation, and bottom-up separate compilation.

Because the PAMELA method recognizes tha t abs t rac t processes as w e l l
as abs t rac t data types are i d e a l modules fo r programming i n the la rge ,
the method is process-oriented as w e l l as object-oriented.

The method i s primarily a top-down, outside-in method; but i t allows
and encourages the bottom-up generation or incorporation of software
components (l i b ra ry un i t s) .

The PAMELA method contains guidel ines t o ensure t h a t program u n i t s are
reusable It a l s o contains
guidelines t o ensure super ior real-time performance (for example,
guidelines t o ensure t h a t t h e minimum number of necessary tasks are
defined) .It [Cherry-85]

or portable or both reusable and portable.

"The process abs t rac t ion methodology (PAM) is based on the concept of
a hierarchical s t ruc tu re of processes. The process as a da ta
transforming element and da ta flow as a connection l i nk between
processes are cen t r a l concepts i n t h i s method." [Cherry-841

A t f i r s t glance, the PAMELA methodology "process graphs" (f ig . 2a and
2b) look very much l i k e DeMarco's Data Flow Diagrams. The major
difference however, i s t h a t i n any da ta driven methodology, there i s
no apparent synchronization between the processes nor any e x p l i c i t
representation of t h e synchronization between the flow of data and the
processes. I n a process graph, t he processes communicate by the Ada
rendez-vous mechanism. Because the concepts of data flow and task t o
task synchronization are p a r t of t he semantics of the Ada rendezvous,
PAM'S process graphs overcome one of the major l imi ta t ions of data
flow diagrams f o r real-time applications. This makes PAMELA
applicable t o the requirements analysis phase. Most importantly,
PAMELA defines a l imited number of "process idioms" and provides r u l e s
f o r t h e i r use. These r u l e s guide the analyst i n a very smooth
t rans i t ion between requirements analysis and preliminary design. It
is t h i s author's personal s t y l e t o indicate the applied ru l e s by t h e i r

D. Roy
Centuiy Computing, Inc.
17 of 41

THE PROCESS ABSTRACTION METHODOLOGY

number on the process graph. For in s t ance , t h e symbols [1,6 I S] at
t h e bottom of t h e T L M stream multibuf box i n f i g . 2a, i nd ica t e t h a t
t h i s Single thread 'i;rocess-(S), r e s u l t s from a user's requirement t o
provide an asynchronous i n t e r f a c e (rule 1) of an app l i ca t ion
independent and hardware dependent na tu re (rule 6). The '*?" and " 1 "
show which process requested or or ig ina ted t h e da t a flow, a con t ro l
information v i t a l t o real-time app l i ca t ions (but s p e c i f i c a l l y
forbidden on DeMarco 's DFDs) .
During t h e preliminary des ign phase, t h e h ie rarchy of process graphs
is mapped t o Ada cons t ruc t s such as a b s t r a c t da ta types (type
d e f i n i t i o n , procedures and func t ions) , packages and t a s k s
s p e c i f i c a t i o n ob jec t s by a small set of simple rules. These r u l e s
encourage the re-use of l i b r a r y un i t s . To s impl i fy , multiple th read
processes are mapped t o packages. These packages encapsulate t h e
s i n g l e thread processes mapped t o Ada tasks. "The leaves of t h e tree
of t h i s h i e r a r c h i c a l s t r u c t u r e are t h e procedures and func t ions
invoked by the s i n g l e thread processes." [Cherry-85]

I n t h e de t a i l ed design phase, Ada PDL is entered i n the preliminary
design object bodies. T h i s PDL is then r e f i n e d i n t o Ada code.

W e found t h a t PAMELA bui lds on proven modern software engineering
techniques (DeMarco, Parnas, Hoare, Myers) t o provide a very smooth
t r a n s i t i o n between a l l software development phases; a q u a l i t y deemed
fundamental i n t h e methodman document [Methodman-82]. Furthermore,
"PAMELA uses a l l of Ada's advanced f e a t u r e s (generics, packages,
t a s k s , exceptions, and both forms of s e p a r a t e compilation) wisely and
e f f ec t ive ly . PAM adds a welcome l i m i t a t i o n , form, and r a t i o n a l e t o
t h e use of Ada's many f e a t u r e s which, without a su i t ab le design and
programming d i s c i p l i n e , can and l i k e l y w i l l be used i n b izar re ,
i n e f f e c t i v e , and i n e f f i c i e n t ways." [Cherry-84]

D. Rov
CentuG Computing, Inc.
18 of 41

THEVIEWGRAPH MATERIALS

of the

D. ROY PRESENTATION FOLLOW

0 M
M
M
I
M
VI
QI

D. Roy
Century Computing, Inc.
19 of 41

w

a

0
A
0

0
I
I-
W z
a
2
m
A
0
0
I-

>
W
0
2
0 z
I u
W
I-

%!
m
m
z
0
QL e

m

4
v)
4

W
n
U

LL

I-
I
W

u

n
M

s
4

u u
0
v) z
OL
0
LL

e a
4
W
I-
4
=) s
W

0
I-
a
W
W z

0 0 ' 0

W
W

W z
s
4
E5 e

v)
v)

v)
4
kk!

I I

D. Roy
Centuiy Computing, Inc.
20 of 41

D. Roy
Century Computing, Inc.
21 of 41

v)
W
t-

e r
W
t-

5

CIL
0
t-
U a
W

i<
W
i-

I

n

W
b

rr

rr
I u
QI e
W
v)
U

v)

0
0
l-

W
I
U

t-
v)

x
W

U

I

a
W u
3
c1
0
QL
e
W
3

v)
J
0
0
I-
w
I
I-

rr

CI)

v,
3

0

v) z
0
t-
U

=s
U

2 e e
4
W r
+
W
QL

I
t-
3

n

;;2

n

w
I

0

D. Roy
Centuiy Computing, Inc.
22 of 41

OPCQN Is the benchmark software’s operator interface
(>QPCON-val-op-int). It also con t ro l s t h e l n l t i a l ac t iva t ion and the
shutdown of t h e system’s o ther tasks.

SPECIPfCATIOEl

Level-l-slngle-tasks Is (EVEPBT, - Events pr in te r
TIMLOD) -- CPU t i m e loader

Begin

1. Prompt operator f o r Run-params

2. Activate OGC simulator - >OPCON-ver-OCC-act

3. f o r t a s k In Level-l-slngle-tasks

1. Activate task - >QPCON-ver-st-act

4. end loop

5. f o r I - 1 to IDLE-number-tasks

1. Activate IDLE-i - XPCOM-ver-ldle-act

6 . end loop

7. delay req-run-time - XPCON-ver-run-time

8. Shutdown all ac t iva ted t a sks

9. delay 1 second -- See note 2 >OPCON-ver-shut-time

10. Pr in t s ta t - report (PRTRPT) - MPCON-val-stat-rep

end

Fig 4-3: Minispec example b u i l t with the tools -- ------------- _I------

D. Roy
Century Computing, Inc.
23 of 41

cr:
0

D. Roy
Century Computing, Inc .
24 of 41

D. Roy
Centuiy Computing, Inc.
25 of 41

D. Roy
Century Computing, Inc.
26 of 41

D. Rov
Centu;Y Computing, Inc.
27 of 41

DEVELOPMENT EFPORT DESCRIPTION

GOLB B => BARON TBD package GOLD C e> --I (doc), -* (PDL)
GOLD D => Bring i n DOC template GOLD E => Task en t ry
GOLD F => Function GOLD H => This text
GOLD P => Package GOLD S => Procedure
GOLD T => Task GOLD W e> Bring WITHSEBP f i l e i n
GOLD X => Exception

GOLD > => half t a b ad jus t r ight (*)
GOLD TAB => half t a b

GOLD < => half t a b adjust l e f t (*)
GOLD DEL => d e l e t e half t a b (**)

(*) Must select range f i r s t l i ke you would fo r tab adjust (control T)
(**) Careful, r e a l l y does "delete" 4 t i m e s .

BE SHORT I N PRELIMINARY DESIGN DOCUMENTATION

Algorithm:

,Effects : -- I mini-spec :

Errors:

Modifies : --I Side effects:

Notes :

Can be ref t o textbook and other biblio.

Describes module functional requirements (more de ta i led than overview).

Describes e r r o r messages issued by module.

L i s t s non-local var iables modified (x.all I Access values, Global var).

User or iented descr ipt ion of dependencies, l imi ta t ions , version
number, s t a t u s (p r e l des, code, etc.). L i m i t change log t o
package level.

Describes module usage i n very general terms.

L i s t s the exceptions tha t can be raised and not handled by module.

Warns designer and user about l imi ta t ions of implementation.

Describes synchronization requirements, tasks termination conditions,
rendezvous time-outs, deadlocks prevention and other tasking reqs.

Specify timing and performance requirements.
i s sues that user can control.

Overview : - 1 Purpose:

Raises :

Requires : --I Assumptions:

Synchronization:

Tuning : -1 Performances :
Addresses performance

D. Rov
Centuj Computing, Inc.
28 of 41

C .kage TBD is --I Decision deferral package -*
Raises :

Overview: - I Purpose :

Effects : -- 1 Description:

None

This is an improvement over Intermetrics' TBD package and IEEE 990
recommendations about decision deferral techniques.

The distinction is clarified between types, variables and values.
The naming is more consistent (enum-i, component-i ...) and more
There are more def initio% (enum-type, record type)
Better compatibility with BYRON (or search utrlity processing) - I Assumptions :
Please only "WITH" this package. By systematically specifying
"TBD.x" items, it is easier to assess the stage of development of
a compilation unit.

readable (scalar variable intead of scalarvalue)

Requires :

Notes :

Daniel Roy 9-AUG-1985 Baseline
Change log:

-- 1 -- Constants
some-constant : constant := 1;
positive-constant : constant := 10;
negative-constant : constant := -10;
real constant : constant := 1.0; -

-- -- Defer decision about type (real),(discrete(enum,integer)), subtype
(natura1,defined subtypes), range etc... that belong to detail design

subtype sail& type is integer range integer'first a . integer'last; -- --I subtype some type is integer range integer'first .. integer'last;
-

-- --
-- Should be Enumeration ... all over for consistency. --

Distinguishes between type, variable and value (enum 1).
By convention (consistent with math notation) n is last,

But this is so much more comfortable.
type enum-type is (enum-1, enum-2, enum-i, enumj, enum-n);
enum - variable : enum-type := enum-1;

-- Keep consistency with enum-type
type record-type is record

component-1 : integer := 0;
component-2 : hteger := 0 ;
component-i : integer := 0;
componentg : integer := 0;
component-n : integer := 0;

end record;
record - variable : record - type;

-- Inspired by IBM PDL stuff
Condition,CD : Boolean := true;

-- Queues services
type queue type is array (array-index-type) of integer;
type queuegtr-type is access queue-type; --

end TBD; --I --*

-- --I
--I --

D. Roy
Century Computing, Inc.
29 of 41

D. Roy
Centuiy Computing, I ~ C .
30 of 41

procedure P (-1 synopsis -*
param-1 : I N OUT some type := some-constant ;
param-n : IN OUT sometype -

--I descr ipt ion -*
--I descr ipt ion -* --* 1 ;

separate ()
procedure body P (--I -- i i rops i s . Must be the same as i n body. --*

param-1 : I N OUT some type := some-constant ;
param-n : I N OUT some-type -

--I descr ipt ion -*
--] descr ipt ion --* --* 1 is -- 1 - ****** Cut and pas te from specification.

-- Packages

Use Gold D for rest of DOC. ****** --

- types

- subtypes

- constants

- records

- variables

- functions

- procedures

- separate clauses

Fig. 4-8: D e t a i l e d design template f o r a procedure (proc body) ...

D. Roy
Century Computing, Inc .
31 of 41

separate (mbuf) 0- 0-*

task body P is - I processing task -*
-I

procedure process block (0-1 Do something useful --*
i n p g t r : IN Zata-ptr type: - fo r Input blocks -*

f o r output block -* o u t p g t r : IN d a t a g t F - type --I - -*

-I -1 H f

1 : -
Dump block queue -*

-0 Where a l l output blocks are queued -* Queue : 13 out t t y p e
procedure put blocks (

1 ; -
begin - 1 P-*

<<except ion block>> -*
-

-
begin -* fo r recoverable exceptions

<< till EOF >> --I loop u n t i l a11 Input task6 are termlnated 4
w h i l e TBD.CD loop -4 Verlflccrtloa:
<< build out Q >> -1 loop u n t i l LOP or output queue f u l l -*

wMl? TBg.condition loop -* Verification:
-* g e t l n g t r (RV vith I t8sk8)

--f build queue
A* build - 0ut-q

process-block (l n g t r , outgtr); -*
end loop;

put-blocks (out-queue) ;
end loop; -

exception - 1 --*

-* watch EOF case
"* till EOF -

when others => - J ,*
-0

- 1 end exception; -*
end :

exception --I --*
--* <<exception - block>> -

when others -> 0 - 1 -* -
- 1 end exception; --* -
end P ; -1 -*

D. Roy
Century Computing, Inc.
32 of 41

D. Roy
Centu j Computing, Inc.
33 of 41

DEVELOPMENT WFORT DESCRIPTION

Gold A Access type
Gold B Block statement (range ,rename)
Gold C Case statement
Gold D Bring i n doc template
Gold E Entry statement
Gold F Function (declarat ion and code)
Gold G Generics (overloading)
Gold H This BELP menu
Gold I IF-TEEN-ELSE statement
Gold L Loop statements

Gold M Modulo statement
Gold N & (iastantiations/aecess/tasks)
Gold P Package use examples
Gold R Record (variable clause)
Gold S Procedure (declarat ion and code)
Gold T Tasks (select,terminate)
Gold U Predefined a t t r i b u t e s
Gold W ?
Gold X Exception (raise)

GOLD > => half t ab ad jus t r i g h t (*)
GOLD TAB => half t ab

GOLD < -> half tab adjust l e f t (*)
GOLD DEL => dele te half t ab (**)

(*) Must select range f i r s t l i k e you would for tab adjust (control T)
(**) Careful, r e a l l y does "delete" 4 t i m e s .

D. Roy
Century Computing, Inc .
34 of 41

Selective entry call (no more that 2 alternatives I)
<<TLM-in>> --*

select --*
else --*

calls TLM stream-multibuf.dogou - have -- a block 1

TLM - stream - multibuf.dogou-have -- a block (nascom - block-Xbuff);
--* increment TLM strem-multibuf overrun
TLM stream - mu1tiGf stat .increment (overrun);

end selzct; --* <cIw - iz>>
Selective WAIT (any number of alternatives)
<<scr loop>> --* Accept and send block

lCop --*
select --*

accept here - is -- a block (-1 Accept NASCOM block -*
nascom block-Xbuff : IN nascom block Xbuff - type --I -*
local-block :- nascom - block - Xbuff ;

--* calls strip chart-multibuf.hete - is -- a set 1
put - line ("SCR - zata - extractor saw a block");

or
terminate;

end select; -*

- - - --I --f) do

end her e-is-a-bl ock ; --I --*

--*
-- could be delay for time-out

end loop; --* scr-loop

D. Rov
Centujr Computing, Inc.
35 of 41

D. Roy
Century Computing, Inc .
36 of 41

v) u
e
I-
W r:

L(n
e
W
-J
c-.l.

2
0 u 5s

0

n
W
W e
3
W

J
3

I- -
0
LL
LL
W

V
0
J

%
0

u,
0

cy:
W
W
W
0
2
U

w z z
0 u

3L cr:
0
3

to
W e
==,
t-
4
W
LL

W z > cr:
0
I-

0
m
s!
5

A u ca W
V z

v)
J
0
0
I-

W
J e z
v)

ca
W e
0

U

U

W
2

u,
m

CI

z
v)
m =

U

W v)
I- cr:
0
e
W cr:

W z s
4

J

W >
W
v)

W
I

s CI
W z

m ..
v)
E:
W
J

0
aL e

m

cr:
W
W z

m

LL
W cr:
<
CI
W e
0
-I
W >
W
CI

I
0

I I I A w
3,
W ca

l- e
W
4L

0 0 0 0

D. Rov
CentuG computing, Inc.
37 of 41

D. Roy
Centuiy Computing, Inc.
38 of 41

DEVELOPMENT EFFORT DESCRIPTION

------------------I--------

I Hours I x I . I
Training 253 22.9

Design 93 8.4
Code/ test 335 30.3
Tools dev 319 28.9

Requirements 105 9.5

D. Roy
Century Computing, Inc.
39 of 41

W
W

0
v)

a a

n

4
0
0
VI
P

0
J
0
0
N

&

u"

c
Y

4 ; I I I I I I I I I I I I I
I

t
I

I
i

I
I

M N

04
(v

c
(v

QI
c

40
c

CI
c

4 0
c

D. Roy
Century Computing, Inc.
40 of 41

n
u)
A
0
0
t
0
2 e
* co
0
A
0
0
0
3:
t
W
z
<
a!
0
CL

c)
W
W
3:

r
t
%
W
a

Y

U

am
X
0
0

U
CI <

n
0
L:
0
0
W
v)

*
0 e
t

LT
CL

W
H

*

Y

Y

=.
0
t

0
;L
Y

0 a
0
t
* e
Ir
W
I
t
u,

t u
W
3
0

Q

t
0

CL

w

a

U

n
L
c3
n
W
0

)I.
L
W

u
L c
W

Q
W

U

M

Y

u s
Q
0
CL
Q

Y)
3

Y

0
0
IL

W
S <
p.

0 0 0 0 0 0

a,
w
Q s

e

a

m

v)
V
4:

u
W
0

0

D. Roy
Century Computing, Inc.
41 of 41

