
N86 - 30369
IN THE SOFTWARE ENGINEERING LABORATORY (SEL)**

William W. Agresti***
Computer Sciences Corporation

and the SEL Staff

ABSTRACT

An experiment is in progress to measure the effectiveness of
Ada in the National Aeronautics and Space Administration/
Goddard Space Flight Center flight dynamics software devel-
opment environment. The experiment features the parallel
development of software in FORTRAN and Ada. The experiment
organization, objectives, and status are discussed. Experi-
ences with an Ada training program and data from the devel-
opment of a 5700-line Ada training exercise are reported.

INTRODUCTION

An experiment is underway to assess the effectiveness of Ada
for flight dynamics software development. This paper is an
interim report on the experiment, discussing the objectives,
organization, preliminary results, and plans for completion.

*Ada is a registered trademark of the U . S . Government (Ada
Joint Program Off ice) .

**Proceedings, Tenth Annual Software Engineering Workshop,
National Aeronautics and Space Administration, Goddard
Space Flight Center, December 1985.

***Author's Address: Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910.

W. Agresti
csc
1 of 35

The Ada experiment is planned and
ware Engineering Laboratory (SEL)

administered by the Soft-
of the National Aeronau-

tics and Space Administration's Goddard Space Flight Center
(NASA/GSFC). NASA/GSFC and Computer Sciences Corporation
(CSC) are cosponsors of the experiment. Personnel from all
three SEL participating organizations (NASA/GSFC, CSC, and
the University of Maryland) support the experiment.

TECHNOLOGY ASSESSMENT IN THE SEL

There is a great deal of optimism concerning Ada's potential
effect on software development. The SEL seeks to establish
an empirical basis for understanding Ada's effectiveness in
a particular environment--namely flight dynamics software
development at NASA/GSFC. Figure 2" shows some of the char-
acteristics of this development environment. (Reference 1
contains a more detailed description.)

As Figure 2 implies, in seeking to understand the effective-
ness of Ada, the SEL is approaching this task as it has
addressed the assessment of other software technologies.
Some methods that have been demonstrated to be effective in
other environments have not been effective in the SEL envi-
ronment. The SEL is therefore cautious about expecting that
reported experiences with Ada will obtain in the SEL envi-
ronment. Instead, the SEL seeks to conduct an assessment of
Ada in its own environment.

The assessment methods used by the SEL have included con-
trolled experiments, case studies, and analytical investiga-
tions. The Ada assessment is referred to as an experiment,
although it is clearly not a controlled experiment. Iden-
tifying this effort as an experiment follows the general use

*All figures are grouped together at the end of the paper.

W. Agresti
csc
2 of 35

of the word to denote "any action or process undertaken to
discover something" (Reference 2) . As the later discussion
will make clear, the Ada experiment is a highly instrumental
case study of an Ada implementation in parallel with a
FORTRAN implementation, with both systems developed in re-
sponse to the same requirements.

OBJECTIVES

The primary objective of the experiment (Figure 3) is to
determine the cost-effectiveness of Ada and its effect on
the flight dynamics environment. A related objective is to
assess various methodologies that are related to the use of
Ada. An initial set of such methodologies includes object-
oriented design (Reference 3) , the process abstraction method
(Reference 4) , and the composite specification model (Refer-
ence 5). Additional methodologies will be identified as the
experiment continues.

Reusability is an important tactic for cost-effective soft-
ware development, both in a general sense and in the SEL
environment. Ada was designed (in part) to facilitate re-
usability. This experiment seeks to develop approaches for
reusability when Ada is the implementation language.

The Space Station is a program of great size, complexity,
and significance to NASA. Ada has been recommended as the
language to be used for the development of new software for
the Space Station. An objective of the Ada experiment is to
develop measures that may assist in planning for the large-
scale use of Ada in the Space Station program. Examples-of
such measures are those that relate to size, productivity,
or reliability in an Ada implementation.

W. Agresti
csc
3 of 35

Because the experiment is not completed, these objectives
have not yet been met. However, experiences thus far will
contribute to addressing the objective of understanding the
effect of Ada.

EXPERIMENT PLANNING

The experiment consists of the parallel development, in
FORTRAN and Ada, of the attitude dynamics simulator for the
Gamma Ray Observatory (GRO) (Figure 5) ; which is scheduled
to be deployed in May 1988. It is worth noting that the
dynamics simulator is part of the standard complement of
ground support software planned for the GRO mission. The
simulator would routinely be developed in FORTRAN alone;
because of the experiment, it is being developed in Ada as
well .
When completed, the system is expected to comprise
40,000 source lines of (FORTRAN) code, requiring 18 to
24 months to develop on a VAX-11/780 computer. Each team
was staffed initially with seven personnel from NASA/GSFC
and CSC. Each development project is expected to require 8

to 10 staff-years of effort.

Three teams have a role in the experiment (Figure 6): the
Ada development team; the FORTRAN development team; and an
experiment study team consisting of NASA/GSFC, CSC, and
University of Maryland personnel. The study team is respon-
sible for planning the experiment, collecting data from the
development teams, and evaluating the progress and results
of the experiment. The study team will also be able to com-
pare the software products generated by each team.

The profiles of the development teams (Figure 7) reveal that
the Ada team on average is familiar with more programming
languages and is more experienced than the FORTRAN team.

W. Agresti
csc
4 of 35

However, the Ada team is less experienced with dynamics sim-
ulators, the application area of interest.

Striking differences exist in the relationships of the teams
to their development tasks (Figure 8) . The FORTRAN team is
able to reuse some design and code from related systems.
The Ada team is charged with starting fresh to design a sys-
tem that can take advantage of Ada-related design approaches.
For the Ada te.am, both the development environment and the
language are new.

Figure 9 shows the timeline for the Ada experiment with the
activities of the three teams during the expected 2-year
duration of the experiment. The timeline shows the FORTRAN
team to be slightly more than one development phase ahead of
the Ada team. The shift is due to the training in Ada re-
quired by the Ada team at the start of the project. The
FORTRAN team, by contrast, was able to start immediately
with the requirements analysis activity--the first phase in
the development process.

The study team is collecting data on both development teams.
Figure 10 shows the range of resource, project, and product
data collected. Wherever possible, routine SEL forms were
used. However, special Ada versions of two forms--the com-
ponent origination form and the change report form--were
developed. The new component form allows the identification
of an Ada component as a package, task, generic, or subpro-
gram and further recognizes that a component can be a speci-
fication or body. The new change form adds a section to
identify separately any Ada-related errors.

TRAINING APPROACHES

A major portion of the'experiment thus far has been the Ada
training program, which was planned by the study team, in

W. Agresti
csc
5 of 35

p a r t i c u l a r . b y t h e U n i v e r s i t y of Maryland pe r sonne l . The

p r i n c i p a l t r a i n i n g resources (F igu re 1 2) were a s fo l lows:

0 Ada language r e f e r e n c e manual (LRM) (Reference 6)
0 Ada tex tbook (Reference 3)
0 A d a v i d e o t a p e s (Reference 7)

The 27 v i d e o t a p e s were viewed by t h e team o v e r a 1 -week pe-
r i o d . A U n i v e r s i t y o f Maryland graduate s t u d e n t , exper ienced
i n Ada, w a s a v a i l a b l e t o direct t h e t r a i n i n g - - t h a t is, t o
p l a n t h e schedu le of t a p e viewing, answer q u e s t i o n s about
Ada material, s t o p t h e t a p e s t o c l a r i f y t h e material , l e a d
t h e d i s c u s s i o n between t a p e s , and a s s i g n r ead ing and small
coding assignments . Two sets of d i s k e t t e s f o r u s e on p e r -
sona l computers were a v a i l a b l e t o t h e team t o supplement t h e

v ideotaped i n s t r u c t i o n s . L e c t u r e s o n Ada-related d e s i g n
methods--the s ta te -machine a b s t r a c t i o n and p r o c e s s a b s t r a c -
t i o n method (Reference $)--were p r e s e n t e d t o t h e team.

A p r i n c i p a l component of t h e Ada t r a i n i n g program was t h e

d e s i g n and implementat ion i n A d a o f a practice problem. The
purpose of t h i s t r a i n i n g e x e r c i s e w a s t o e n a b l e t h e team t o
app ly what i t had been t a u g h t about Ada and t o beg in workinq
t o g e t h e r a s a team.

F i g u r e 13 shows t he coverage of t o p i c s by t h e t r a i n i n g e le -
ments . The tex tbook and t h e t r a i n i n g e x e r c i s e covered a l l
t h r e e t r a i n i n g t o p i c s : t h e Ada language i t s e l f , software
e n g i n e e r i n g w i t h Ada, and Ada-related d e s i g n methods.

Experience w i t h A d a t r a i n i n g led t o s e v e r a l recommendations
f o r f u t u r e s e s s i o n s (F i g u r e 1 4) . C o n s i s t e n t w i t h s e v e r a l
o t h e r pub l i shed recommendations (e .g . , Reference 3) , t h e
a p p r o p r i a t e emphasis should be o n s o f t w a r e e n g i n e e r i n q w i t h
Ada and n o t s imply t h e language s y n t a x and semantics. The
methods and resources used i n t r a i n i n g t h e Ada team--
v ideo tapes , c l a s s d i s c u s s i o n , and a p r a c t i c e problem--were

W. Agresti
csc
6 of 35

effective. Additional hands-on experience with the Ada com-
piler (in addition to work on the practice problem) is also
beneficial.

Two months of full-time training are recommended for each
staff member. After this period, the staff member would be
able to join a development team and begin contributing.
Ideally, this first assignment as a developer should be
carefully chosen and closely monitored by a more senior de-
veloper. Reference 8 contains a more thorough assessment of
Ada training methods and more detailed recommendations for
the design of future Ada training programs.

DATA FROM THE ADA TRAINING EXERCISE

The training exercise (or practice problem) emerged as the
single most valuable element of Ada training. It also pro-
vided the study team with an opportunity to practice moni-
toring a small Ada project.

$he exercise was to design and develop an electronic message
system (EMS) that allows users to send and receive elec-
tronic mail and to manage groups of users (Figure 16). EMS
has been used as a student programming project at the
University of Maryland, where it was implemented in the SIMPL
language, requiring typically 1000 to 2000 lines of code.

For the Ada team, EMS was a chance to practice object-
oriented design as well as to experiment with Ada. The
study team could try out the data collection system and
begin measuring a small Ada development.

The completed EMS system in Ada comprised 5730 lines of code
(Figure 17), much larger than the student projects in SIMPL.
An analysis is currently underway to compare the functional-
ity of the Ada and SIMPL versions. It is already clear that

W. Agresti
csc
7 of 35

the Ada version has a much more extensive user interface and
help facility. Also, the 5730 source lines contained only
1402 executable statements. The drop from source lines to
executable statements is more severe than in SEL FORTRAN
systems, where reductions of only 2 to 1 are typical.

Developing EMS required 1906 staff-hours (including 570 hours
of training). A productivity/cost measure frequently used
in the SEL is the number of hours per thousand executable
statements. Figure 17 shows the cost of EMS development to
be greater than the average cost of developing FORTRAN sys-
tems. Of course, the EMS example in Ada represents only a
single data point whereas the FORTRAN cost data are taken
from hundreds of FORTRAN modules in the SEL data base.

It is wise not to rely too heavily on the EMS data as an
indicator of future Ada projects. There are several sound
reasons why the costs could be higher or lower tha'n those
experienced with EMS.

Costs could be higher in the future because of the following:

0 EMS was developed by a higHly motivated staff eager
to apply Ada. As the use of Ada becomes more routine, the
staff may not be as motivated by the novelty of using a new
language in an experimental setting.

0 EMS had no documentation requirements, unlike typi-
cal SEL projects.

0 EMS did not involve tasking.

0 The application domain of EMS (electronic 'mail) was
easier to understand than the flight dynamics area. As a
result, the EMS effort in requirements analysis and accept-
ance testing was proportionally less than it would be for
flight dynamics projects.

W. Agresti
csc
8 of 35

Costs of the Ada development may actually be lower than sug-
gested by EMS because of the following:

e The staff will be better trained. Recall that EMS

was a training exercise; teams in the future will be more
experienced in Ada.

0 The Ada team (with seven people) was too large for
the EMS assignment, The size of the team was driven by the
scope of the GRO dynamics simulator development. The cost
of EMS would likely have been less if the team were smaller
(approximately three people).

0 The Ada development environment for EMS was not
only new but also highly unstable, Only unvalidated Ada
compilers were available when coding of EMS began. The team
progressed through versions’ 1-3, 1.5, and 2.1 of the Tele-
soft compiler before the DEC Ada compiler arrived.

Figure 17 shows that the error rate for EMS was lower than
that of FORTRAN systems in the SEL data base. Once again,
this result should not necessarily be attributed to the use
of Ada on EMS. The FORTRAN systems are much more complex,
and the testing requirements in the flight dynamics area are
much more rigorous than for EMS,

Figure 18 shows the distribution of effort among design,
code, and test for EMS and typical FORTRAN systems. Whereas
the relative effort for the three activities is roughly
equivalent for FORTRAN systems, 60 percent of the EMS Ada
effort was spent on design. Of course, the use of Ada
raises the question of redefining the cutoff between design
and code activities. If Ada is used as a process design
language (P D L) , the design activity can include the delivery
of a design document of compiled specifications, Ada defini-
tions of types, and Ada PDL. In such cases, it may be

W. Agresti
csc
9 of 35

understandable that more effort is spent on "design" activ-
ity, with proportionally less effort on "code." Again, the
more substantial testing requirements for FORTRAN flight
dynamics systems may explain the difference in relative
effort devoted to testing EMS versus typical FORTRAN systems.

The profile of the EMS code in Figure 19 reveals that the
EMS Ada modules were smaller on average. The lower percent-
age of lines of EMS that are blank or comment (39 percent
versus 51 percent) may be due to the greater self-description
possible with Ada object names and types.

STATUS AND OBSERVATIONS

Figure 21 revisits the experiment timeline to show the actual
activity to date. The activity profiles of the two develop-
ment teams confirm that progress is being made according to
plan .
With the Ada experiment not yet complete, no definitive
statements can be made on the effectiveness of Ada in the
SEL environment. Nevertheless, Ada's influence is being
felt on personnel issues, software products, the development
environment, and the software development process (Fig-
ure 22).

The clearest observations relate to the activity that has
dominated the early phases of the experiment-training. The
need for effective training is real and should be included
explicitly in Ada development plans. Training will occur
whether or not it is scheduled: wise managers will plan for
it. Two months of full-time training appears to be the
right amount. The training exercise emerged as an extremely
effective method and is strongly recommended.

W. Agresti
csc
10 of 35

The use of Ada led to a larger product than the student ver-
sions of EMS in SIMPL. It is premature to state whether Ada
products will continue to be larger. EMS did demonstrate
that many more design relations are expressible in Ada. The
use of Ada will likely lead to changes in recommended inter-
mediate products, for example, at design reviews. Current
recommendations are oriented to FORTRAN implementations, so

the design products highlight the invocation structure of
the code. Ada design products can express other relations
in addition to invocation--for example, the "uses" relation,
exception handling, and the management of the name space.

The use of Ada has not degraded the performance of the de-
velopment environment. Stress test are now in progress, but
the early indications are that the use of the DEC Ada Com-
pilation System (ACS) is not adversely affecting the per-
formance of the system. Both compilation time and execution
time appear to be within acceptable limits, although more
complete testing is being performed.

The most important tool is a validated compiler. The DEC
ACS has demonstrated that it is a production-quality system.
Although other Ada support tools may be used by the team in
the future, the DEC ACS has been adequate by itself to sup-
port development. The library management facility built
into the ACS has been especially helpful.

Although such conculsions may appear less than daring, the
Ada experiment has demonstrated that Ada is learnable and
that an Ada project is measurable. The results thus far
lead the study team to be optimistic that they will be able
to meet their experimental objectives and establish an
empirical basis for understanding the effect of Ada in the
flight dynamics software development environment.

W. Agresti
csc
1 1 of 35

ACKNOWLEDGMENTS

Y.

1.

2.

3.

4.

5 .

6 .

7.

8.

The Ada experiment is managed by E'. McGarry and R. Nelson of
NASA/GSFC and actively supported by representatives from all
SEL participating organizations (NASA/GSFC, CSC, and the
University of Maryland)--especially V. Basili, E. Katz,

Benoit, G. Page, and V. Church.

REFERENCES

Software Engineering Laboratory, SEL-81-104, The Soft -
ware Enqineerinq Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

Webster's New World Dictionary, World Publishing Go.,
New York

G. Booch, Software Engineering With Ada. Menlo Park,
California: Benjamin/Cummings Publishing Co., Inc., 1983

G. W. Cherry, "Advanced Software Engineerinq With Ada--
Process Abstraction Method for Embedded Large Applica-
tions," Language Automation Associates, Reston, Virginia,
1485

Y. Agresti, "An Approach to Developing Specification
Measures," Proceedings, Ninth Annual Software Engineer-
ing Workshop, NASA/GSFC, November 1984

American National Standards Institute, Inc.,
ANSIJMIL-STD-1815A-1983, Reference Manual for the Ada
Lanquaqe, February 17, 1983

Alsys, Inc., Waltham, Mass., "Ichbiah, Barnes, and Firth
on Ada," videotape series, 1983

R. Murphy and M, Stark, Ada Training Evaluation and Rec-
ommendations, SEL-85-002, NASA/GSFC, October 1985

W. Agresti
csc
12 of 35

THE VIEWGRAPH RlATERLALS

for the

W, AGRESTI PRESENTATION FOLLOW

W. Agresti
csc
13 of 35

W W

2 s
I
LL

n

0
v)
u 0

P, 0
0
1 E

0
0

a - c
v)

a 0
4 2

z
P
!I
2
n
8
0 z

v)

E w

>
v)

$

rl I w
P;
3 c?
H
Fr
0 * a

2
W
I

W v)
(3
2

a
W
I=
3

0
I

i
PI
0
_I

pc

v) W a
W >

Lu n
u
u

W . Agresti csc
14 of 35

4 w cn
w
3=
I-

u
W. Agresti
csc
15 of 35

W. Agresti
csc
16 of 35

en
2
0
i=

W. Agresti
csc
17 of 35

n
a
a

2

2

U c
U
0
U

2
c
2

e
0
I
W >
W

I
W
1
I

-
i

n

s a an ea
a

u a n
I

0
00
I\
\
F
F

x
>
G
2

2
0
U

2

I

~

5
W

W
I e
0
W e
I\

u
2
LL
U

)I cn
I

B M

a

cn
2
~

a
L i
U

c cn
0

0 c

r;:
U
0
U
LL
W

F

00

I

W. Agresti
csc
18 of 35

2
0

N

i= a
(I

2
C
i
I
:
g
E
E

C

C c

w
cI1
a w
i3
3

0
0
3

W. Agresti
csc
19 of 35

i
II

2 : Q

E a

a n a

W c

E a r
2 a a c a
0
LL

0

v)

W

F=
a

b a
a

-

cr:
I
0

h w cs
00

0 M
00
d

v)
W u
3
a

a 5 -'n

a" w z

32
Z Y

gz

t ;g

E O

2
C
i
4

P

t;

t
E
fl
P
E

k
i;
2
C
t;

t;

R
0:
t;

u1 u
W. Agresti
csc
20 of 35

v)
W
0
2
W

E a

a
W c

2

E a
E
a a
a

2

c
0
LL

0
c
v)

.I

II a
E
2
2
I
0 -

e e
2
c3

a

5
;
3 w
2

U
W
4
I

P
0
0

B w
2

P w c
v)
>I
v)

c
v)

e
0 c
U
4

a

a
f

a
E
c
w
I

5
?=

(1
u

5
fi

2
C
i
a
a
a

d

C

C
L

L
[I

E
i

E
6
2
C
C

0
P
P

W. Agresti
csc
21 of 35

is

8

.-----

ti

B

i

Q

5i
a

?
c)

2
C
c
0
C
0
C
L

C

c

4

a

z
5 c

C
U
f
E
!
i
c
0

I

W. Agresti
CSC
22 of 35

0 . 0 0

0 0 e 0

c
0
LL
LL w

a

*
C
>
F
0 a * m
I

.I

s

I
w
2
0

0
0 * m

I

w
c3
v)
a
a
a
W c
3
P,
5
0
0

0 0 u
W. Agresti
CSC
23 of 35

rt
rt

w !x
3
W
H
Frc

u
2

2
E
a
I n
IC
2
W
E
92:
W n
X
W

m

U
IC

v) z
0
I=

>
U
W
v)

O

2

cn
3
I=
IC cn

m

a

m

n
a

a

W. Agresti
csc
24 of 35

U

d
Y

$
a
E

3
2

W
0 z
W
ET
W
LL
W
U
W
c3
3
c3 z

a

a
4
a n a

b

a n a

I
Y
0
0
c
X
m

ut'

a
*
VI
4

I
I I

VI E z
VI
E

9
i
z
W
VI
>.
U
U
W
I
0
w
c3
0
c3

a
W

0 . 0 . e 111
W. Agresti
csc
25 of 35

v)
Lu

0
r

0
U e e

0 . o

0 0

0 0 0

0

c c
d

t
!
il
i
i

P

c

c

11
P
li
€ r
ii
f
C c

m u
W. Agresti
csc
26 of 35

d'
rl

I c
5

0

4

v)
W

c
0
W

4
n
5
I

v)

0
I
n

i

0
E

I
n
0 z
W e

cv

r"
F=
a

0
u2
0

W. Agresti
csc
27 of 35

z
E!
G
5
n

>

U

E
4 n
E
U

I)
-
). n

W. Agresti
CSC
28 of 35

cn-

I I

W. Agresti
csc
29 of 35

aa

E c

E
P
C
0

t

I
i
E
C
0
5
E

e

*

!
I
c

i

i
c

I

W. Agresti
csc
30 of 35

a3
r(

w
p:
3
W
H
Ei

W e
)I
I=
). c
3
F:
0

f
a a

I I I i I I I 0

W. Agresti
csc
31 of 35

UJ n
0
0

W

a

W
I c
0
e

8
ua
W
2
3
e e ua w

2
3

CT
0

e e

a
ij
n w

e

w

4 c
3
0

w
e

i
J e
a

9
(1

5

2
C

0
C P

c

t
2
b

U
P
b

i
4

!
1

i

!
i;
i
c

c

W . Agresti
csc
32 of 35

0
n n
E

-
? -
a

4
CI

5

2
C
4
P
C
P

E

E
2
Fi

i

!
E

5
k
i;
5
C
L

c

0
Ei

W. Agresti
csc
33 of 35

W. Agresti
csc
34 of 35

a n a
t;: W

W
2 z
0
v)

W
IL

oc a n
a 0
1L

W. Agresti
csc
35 of 35

