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I. INTRODUCTION

This report covers the period from March 1, 1986 to August 31, 1986 and
includes the work performed in response to a proposal entitled "A SPARTAN
Payload for Spatially Resolved Spectroscopy of Extended Faint Sources in the
EUV". During the present reporting period, one rocket was launched, the
reflight of our payload to observe Halley's comet, on March 13, 1986 (21.095
UG). Most of our effort during this period was concentrated on detailed
mechanical and electronic design of a SPARTAN payload (SP-211 UG) and on the
reduction and analysis of the data from the two Halley rocket flights and from

the UVX experiment which flew on STS-61C in January 1986,

II. ROCKET EXPERIMENTS

The Faint Object Telescope payload was launched successfully on both
February 26, 1986 (21.093 UG) and March 13, 1986 (21.095 UG) to observe comet
Halley in the far ultraviolet. The latter launch was scheduled after the
postponement of the Astro-l Shuttle mission, and occurred ~ 13 hours before
the European Gio;to encounter mission with the comet. It was accomplished by
refurbishing the payload at White Sands Missile Range after recovery of
21.093 UG on February 26. Both launches provided excellent long-slit spectra
of comet Halley and an initial report of the results has been accepted for
publication in Nature. A copy of this report is attached as Appendix A. It

clearly illustrates the advantage obtained by correlating the in situ Giotto

results with remote ultraviolet observations made from the sounding rocket

experiments and with observations made by the International Ultraviolet

Explorer satellite observatory. This work was carried out by Dr. Woods, Dr.

Feldman, Mr. Dymond and Mr. Sahnow.



As a result of the excellent performance of the imaging spectrograph in
the FOT, we intend to refly the payload, which was again recovered in
excellent condition, to repeat the unsuccessful June 1985 observation of the
Io torus, probably in the autumn of 1987. In addition, we will use the
reflight of the FOT as a flight-test the intensified array detector (see
Section IV below) currently being developed for our SPARTAN payload. Although
the two-dimensional Ranicon detector used on the Halley flighté performed well
the intensified array detector has several advantages in resolution, stability‘
and dynamic range over the Ranicon and a flight version is expected to be
available early nexﬁ year. The modifications required to adapt the present
payload to this detector are minor and do not affect any of the electrical or

mechanical interfaces.

III. S?ACE SHUTTLE EXPERIMENTS

The UVX ultraviolet background experiment was flown on the GAS bridge on
the Space Shuttle Columbia on mission STS 61-C launched on January 13, 1986.
This payload, consisting of three Get—Awéy-Special cannisters, included
separate instruments from Johns Hopkins University and the University of
California, Berkeley together with a Goddard Avionics Package containing the
- flight batteries and tape recorder. The primary objective of the experiment
was the spectroscopy of various sources of cosmic ultraviolet background
radiation and to this end nine targets, in different regions of the sky, were
observed. A tota} of 4.6 hours of data was obtained. A secondary objective
was to search for the possible presence of an ultraviolet spacecraft glow and
to assess its possible impact on space astronomy missions such as Space
Telescope and Astro. A preliminary reduction of the later has been completed

by Dr. Tennyson, and no evidence of an ultraviolet "Shuttle glow" signature



was found in any of the observed targets. A report of these results,
presented at the recent COSPAR meeting, is attached as Appendix B. Work is
now beginning on the reduction of the data to physical fluxes and the
investigation of systematic contributions to the background such as airglow,
zodiacal light and stellar radiation. The UVX work was performed by Dr.
Tennyson, Dr. Feldman, Dr. Henry and Mr. ﬁurthy.

Following the two recent rocket launches and the UVX flight, all within
the first ten weeks of 1986, the development of our SPARTAN payload
(SP-211 UG) has become the major activity of this program. Thermal and
mechanical analyses were performed on the payload with the detailed outline
drawings completed by Research Support Instruments, Inc. in June 1986. The
thermal analysis,'done by Dr. Woods and Mr. Spigler with TRASYS and SINDA
programs at JHU, shows that the payload is thermally stable with an expected
average temperature of.about 15 °C during a typical mission. The final
documentation and data files of a 42-node and 9-node thermal model will be
ready for GSFC thermal engineers before the design review meeting to be held
in December 1986. The preliminary stress analysis, done by Mega Engineering,
showed only one mechanical problem with the current.design; the spectrometer
mounting plate is not stiff enough. This problem is expected to be solved,
along with the completed stress analysis, before the design review meeting.
Some of the invar material for the payload has already been purchased in the
anticipation of construction of the instruments after the design review

meeting.



IV. DEVELOPMENT OF INTENSIFIED ARRAY DETECTORS

The solid state array fiber-optically coupled to a microchannel plate
intensifier is the basic detector for the Spartan 211 spectrometer and slit-
jaw camera. During the previous reporting period, laboratory electronics were
received and tested with an 100 x 100 diode array. With the satisfactory
operation qf the centroiding electropics, the flight printed circuit boards
are currently being designed with fabrication to begin soon. A prototype
detector with 40 mm diameter microchannel plates, built by Galileo Electro-
Optics Corp., has been tested and is currently being modified in the
laboratory to achieve better pﬁlse height resolution necessary for photon
counting. This prototype detector, along with the flight centroiding
electronics, is also being developed also for the sounding rocket experiment
to be flown in the fall of 1987 to observe Io and its plasma torus about
Jupiter.
This work is being performed by Mr. Sahnow, Mr. Budzien, Dr. Woods, Dr. Moos

and Mr. Mackey of Spacom Electronics.

V. DATA ANALYSIS

As noted above, reduction and analysis of the data from both the UVX
experiment and the two comet Halley rocket flights was a major activity during
this period. Work is continuipg in both of these areas. In particular, Dr.
Woods and Mr. Dymond are developing detailed models of the cometary coma,
including in them new information available from the spacecraft encounter
experiments, for the interpretation of the spatial profiles of the ultraviolet
emiséions of Halley. One area of interest is the effect of energetic
electrons in producing excitation, dissociation and ionization in the inner

coma. The presence of these electrons was determined by the in situ plasma



instruments, and the rocket spectra clearly show several ultraviolet
signatures from this electron population. Thus, in the future, remote
ultraviolet observations of coﬁets (with sufficient sensitivity and
resolution) can provide a means of deducing the plasma environment in the

inner coma.

VI. PERSONNEL NOTES
Dr. M. Daniel Morrison joined the SPARTAN team in July 1986. Dr.
Morrison received his Ph.D. from the University of Texas, Dallas, in 1983 and
was a member of the Spacelab 2 SUSIM team at the Naval Research Laboratory.

His background is in EUV spectroscopy.
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The ultraviolet (UV) spectrum of a comet's coma is dominated Ey

R

emissions from the dissociation products of water, OH, H, and O, and from

. 1 ’
secondary species: C, C+, co, CO+, COZ, S, and CS . Ve report here two far

ultraviolet observation; of comet Halley made on 26 February 1986 and 13
March 1986 with a sounding rocket experiment. This is the first.time that
long-slit spéctroscopy, a stendard technique for the study of extended
objects’éuch as cométs and nebulée, has been applied to the far ultraviole;\
stuay of:a comet. The observed CO spatial profiles can be modelled by a
-radial oﬁtflow modelz for a parent molecule and suggest that>the CO is
produced directly from the nucleus of the comet. Using the observed OI

emission profile to deduce the H, O production rate, the abundance of CO

2

relative to HZO is found to be 207 = 5% for the first flight and 17% = 4%

4

for the second flight, making CO the second most abundant parent molecule in
the .coma. The derived production rate of atomic carbon is consistent with
that expected from the photodissociztion of carbon monoxide.
Atomic carbon is a common feature in the UV spectrum of many comets,

yet its origin.remains unclear. In comet West (1976 VI), the observed
CI emission was consistent with a model of carbon as a daughter of CO which

. 3 ’
is-vaporized from the nucleus as a parent molecule . However, for comet

Bradfield (1979 X) the CI brightness end spatiezl distribution were not

consistent with models of carbon either as the daughter of the observed CO
4

5 The differences may reflect intrinsic

or as the granddaughter of CO

compositional differences between comets or deficiencies in the models used
. _ -

to interpret the observations. ‘Festou has discussed this "carbon puzzle"

in the context of similiar results on other comets observed by the

-International Ultraviolet Explorer (IVE) satellite.




_Instrumentation and Flight. The spectral range for the sounding rocket
observations, 1200 to 1750 A at 12.5 A resolution} is well suited‘for
studying the carbon'chem§stry of the coma as it includes CI 71657, CI‘k156i,
CII 21335, and the CO fourth positive system whose strongest bands are at
1478 and 1510 A. While these observations augment the many UV osservations
of comet Halley made with Eggs, the scunding rocket payload is especially
designed for the study of the emission profiles in the coma since the
spéégrog}aph provides 10 arc-second spatial resolution along the 7.7 arc-
minute siit. In addition, a higher sensitivity, needed because of the short
obéerving time (- 300 seconds) available with a sounding rocket experiment,
is achieved with the use of a pﬁoton—counting detector.

The Faint Object Telescope (FOT) payload flown previously7 was modified
for longééiit spgctroscqpy qf extended emission objects. The basic
structure of thelFOT is a Dall—Kirkham telescope, a Rowland c;rcle
spect;ograph, and a slit-jaw camera., The spectrograph ﬁodifications
included the use of an ellipsoidal grating to reduce astigmatism at the
focal plangﬂand a two-dimensional resistive anode detector. The first
launch of'the experiment, NASA 21.093UG, was on 26 Feﬁruary 1986 at 12{02
UI;'17 days after perihelion, when the heliocentric distance, r, was 0.%0 AU
and the ge&centric distance,AA, was 1.32 AU. The paylozd was recovered,
refurbished, and flo&n'again on 13 March 1986 at 11:20 UT when r was 0.90 AU
and A‘was 0.98 AU. This flight, NASA 21.095UG, preceded the Giotto
encounter_ﬁy ~ 13 hours. Both léuncges were from the White Sands Missile
Range, New Mexico (106.3° W, 32.4° N);

During both flights a céhtral exposure wes tzken with.the entrance slit

(16 arc~sec wide by 7.7 arc-min long) of the spectrogréph centered on the



trightest part of the coma and with the long axis of the slit oriented along
the sun-comet line. The first flight also included a tail exposure that was

obtained with the slit centered 8 arc-minutes away from the comet in the

anti-sunward direction, again with the slit along the sun-comet line.

Spectra and Brightness. A spectrogram of the-central exposure taken during
the first flight is'represented as a two dimensional photographic image in .
Figure.l; The verti;al_axis depicts the spatial distribution of the
’eﬁissions from the coma. The ;xtended and brighter features in the
spectrogram are HI N1216, OI A1304, CI A1561, and CI A1657, which have been
.observed in almost all_comets studied in the far ultraviolet regionl. The
spectra of the central coma.(léa k 72: centered on the nucleus) are showa in
Figure 2 for both flights. Other features identified in the spectra include
the-eﬁissions ffoﬁ CII 21335 and the CO fourth positive system. At‘least
eleven bands of CO are clearly identified by comparison with é syntheti;

. ]
spectrum based on CO fluorescence of UV solar radiation . VWhile a few of

these bands are seen in the IUE spectra of comet Halley‘, the poor signal-
to-noise ratio in the IUE spectra makes it difficult ﬁo extract reliable
baﬁd intensity ratios from those data.

A tentative identification of OI Al1356 at é-lével of 60 R in the
26 February spectrum is made. This intercombination line is not excited by
solar fluorescence as ﬁhe other emiésions are, and suggests the presence of
. a regipp qf electron excitation_within the inner coma. Other indications
for a collisional destruction'mechaniSm within - lO4 km ofAthe nucleu;
"bésidés solar photodissociation and photoionization are given by the IUE

’ during an outburst =zand by the unexpectedly high C+

observations of CO2



. 10 .
abundance measured by Giotto . An enhanced flux of keV electrons at

s 11
15,000 km measured by Vega 1 and Vega 2 and a maximum in the total ion

12 -
current at 12,000 km as measured by Giotto indicate that it is plausible

that a regioh in the inner coma exists where collisional excitation or
desfruction mechanisms are significant. Additional modelling is‘needed to
verify this identification of OI A1356. |

The brightnesses of the strongest emission features for both flights
aré-lisfed in Table !, and are given for an area of 103 by 16: centered on

the nucleus of comet Halley. Table 1 also gives the derived column

densities and the fluorescence efficiencies used to derive them. The IUE

data in Table l; given for comparison with NASA 21.095UG, are the averaée of
‘observatiops made on 12 and 13 March 1986 at 22 UT on eaqh day. The IUE
data are reduced to an effective aperture of 103 by 15;. These brightnesses
are consistent within the uncertainty in the two measurements, which results
from a combiﬁation of calibration errors and the different spatial
resolution and tracking stability of the two instruments. Although the
viéual brightness of the comet varied by a factor of two over a period of a
day 'during many of the IUE observationss, the 0I and CI emissions should not
vary as raéidly since their parents' lifetimes are longer than a day. éince
the visual:brightness was reasonably constant from 12 to 13 March, only a

small effect due to the intrinsic variability is expected in comparing the

two data sets.

Production Rates. Since the composition of the cemet's nucleus cannot be
. Girectly inferred from the given brightnesses, modelling of the coma to fit

the observed radial distributions of the emissions is performed to determine



the production rates of the molecular species. A radial outflow model of CO

1029 -1

with a production rate of 2.4 x s for the first flight and

029 -1

1.0 x 1 s for the second £light yields a good fit to the observéd Cco

distributions as shown in Figure 3a. This strongly suggests that the CO is
vaporized directly from the nucleus, but cannot exclude the possibility of a -
parent species which has a lifetime shorter than 1000 seconds. A possible

parent for CO is H, CO, but it is improbable since a radial outflow model of

2

HZCO'thiﬁ reproduced the observed CO profile would require a production rate

.larger than the water production rate and would produce a detectable level

of H2 fluorescence in our spectral range. 3By fitting an outflow model with

H,O and CO parents to the observed oxygen distributions in Figure 3b, a

2
lo30 !

production rate for water of 1.2 x s is derived for the first flight

and 6 x 1029 s_l for the second flight. The average water production rate

derijved from the OH (0,0) band brightness measured by IUE, using a vectorial

2 -
model , is 5 x lO29 s ! for comet Halley on 12 and 13 March 1986. The water
. ’ ) ’ : 12
production rate derived from the Giotto neutral mass spectrometer data is
29 -1 . . .
5.5 x 10 s with an estimated 50% uncertainty. Because of the

uncertainties in the parameters (lifetime and velocity of each species) used

0 production rates derived from a coma model have at

in ‘the model, the H2

least a 30% uncertainty: Therefore, theée water production rates are
consistent within the uﬁcertainties in the models, instrumental
calibfations, and the solar fluxes ﬁsed in deriving the fluorescence
efficiency for 0OI XlBOh{s. Note that since CO appears to be a parent
molecule and.is modelled with fewer pérameters, the uncertainty in the
’defived CO production rate is less than the uncertainty in tﬁe HZO

-

production rate.



While data from the Giotto ion mass spectrometer gave an upper limit of

10

20% for the ratio of CO to H20 abundance , and a rough estimate from the

c :
IUE observations in March for this ratio is 10~20% , the result from the

rocket data give a relative abundance of CO to H,O0 as 20% % 5% for the first

3

flight and 17% & 4% for the second flight. The uncertainty in these ratios
includes the errors from the absolute calibration of the instrument and the
fit of the models to the observed radial profiles. Xrankowsky et al

consider C02, NH3, and CH4 to be the second most abundant molecules in the
12 .
coma ; however, our results indicate that CO is the second most abundant

parent molecule with a mixing ratio of about 18% relative to K,O. For

3

comparison, a 27Z% abundance of CO to HZO was derived for Comet West , and 1%

2

for Comet Bradfield‘.

Whilé these data sprongly suggest that the CO is vaporized directly
ffom the nucleus; there remains an unresolved difference between the
observed radial distribution of carbon shown in Figure 3c and the
predictioﬁs of the CO outflow model. The data appear to require an
additionaIJSOurce of carbon. However, the inclusion pf a CO2 source fails
to provide the extra carbon, and since there is no pronounced tailward
asfmmetry in the obsérved carbon emissions, dissociative recombination of

+° + . 3 . . s
either CO or CO, to produce atomic carbon cannot be significant. &n

2
outflow model with a small additional source of carbon from the nucleus, at

about 2% of the H

20 production rate, 'improves the fit to the observed carbon

profile, but it is not adegquate to firmly identify a direct source of carbon
from the nucleus. An alternative evaluation of the atomic carbon production
 rate can be obtained if the total flux ' in a CI emission multiplet is known.

Although the present experiment did not mezsure the total flux, a reliable



estimate can be obtained from the observed radial profiles since the

s

" measurements in the tailward exposure on the first flight extend to

7 x 105 km. Circular symmetry of the carbon emission, necessary for this

derivation, is a safe assumption since the observed carbon emissions are

symmetrical on the sunward and anti-sunward sides of the nucleus. The

28 -1

derived carbon production rate, Q is 4.3 x 10 s for the first flight.

c’
. 6 :
Since the carbon scale length is ~ 2.5 x 10 km at 0.70 AU, this production

rate is bnly a lower limit. Extrapolating the observed carbon radisl

028 ~1

distribution to 3 x 106 km yields QC = 6.4 x 1 s , vhile extrapolation

to 1.5 x 107 km gives QC = 6.6 x 1028 s~1.. Thus, & reasonable estimate for

the to;al carbon production rate for the first flight is 7 x 1028'sf1, which
gives a ratio of QCO)QC of‘3.4 + 1.2. Since our derived carbon production
rate is a lower -limit, we consider this ratio to be consistent with the
expeéted ratio of 2.1, assuming that C is produced only through the
i . .

photodissociation of CO

The apparent contradiction betwegn the need for an additional carboz
source and the result that‘the QCO/Qc ratio'is consistent with
photodissociation of CO may be resoclved by the inclusion of an elgctron
impact source in the models. Evidence for such a source, including the-
OI \1356 emission seen in Figure 2, heas alreadylbeen cited above. If
~electron impact enhanced the dissociation of CO in the inner coma, without
destroying a significant fraction of the total CO, then the radial
_distribution‘of C would exhibit a steeper slope in agreement with the
obsérvations; while the radia} distribution of CO and the QCO/QC ratio would
. not be significantly altered. Quantitative modelling using the in situ

) 10 11
plasma measurements '’ is needed to evaluate the possible importance ocf



this mechanism. In addition, improved coma models, such as the vectorial

2

model , or models based on the in situ measured abundances of CO,, CH and

2) 4)
other carbon-bearing molecules may also provide better agreement with the

observed radial distributions of the carbon emissions.

We thank J. van Overeem and the staff of the NASA Sounding Rocket
Division, P. Meredith and C. Jenkins of the Aerojet Techsystems Company, _R.s
Peiion 6f Johns Hopkins Univ., and the research rocket group at White Sands
Mis;ilevﬁange for their invaluable ‘support and assistaence in the field. We
aré‘grateful to G. Rottman and B, Knapp of the University of Colorado for

providing us with unpublished SME solar flux data. This work was supported

by NASA grant NAG 5-619.
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FIGURE CAPTIONS

~
< e

Figure 1. A photographic representation of the raw counts from the
spectrograph on NASA 21.093UG is shown for a 72.2 second exposure of comet
Halley centeréd in the entrance slit of the spectrograph. The hérizontal
axis i; the wavelength dispersion from about 1150 to 1800 A, and the
vertical axis is along the 7.7 arc-minute slit with the sunward direction
pointing down. The th;ee brightest lines are OI A1304, CI>k1561, and .

.CI N1657. HI Al216 appears as a weak feature due to the heavy attenuation

below 1230 & by a Can filter in front of the entrance slit.

Figure 2. The central coma spectrum from (a) the first flight on

26 February 1986 and (b) the second flight on 13 March 1986. The synthetic
CO spectrum (diamonds), convolved'to our instrument resolution, is based on
the g-factors of CO fluorescence of UV solar radiation given by Durrances

The feature at 1356 A in (a) has been tentatively identified as OI A1356

excited by electron collisions in the inner coma.

Figure 3. The observed radial distribution of (a) the 1478 & CO bénd, (b)
'OI 21304, and (e¢) CI 21657 for both‘f}ights with the data from the first
flight being the upper curve in each panel. The dashed lines, for
Vcompgrisbn with,the data from tﬂe first f£light, are emission profiles,.
Acoﬁvolved to our instrument résolution,_from a radial outflow model with the
| 9' -1 30 -1

production rate of 2.4 x 102 s.” for CO and 1.2 x 10 s for HZO' The
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dot-dash lines, for comparison with the data from the second flight, are

29 -1
s

emission profiles from a model with the production rate of 1.0 x 10
29 -1

for CO and 6 x 10 s for HZO.
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Search for Ultraviolet Shuttle Glow
P. D. Tennyson, P. D. Feldman and R. C. Henry

Department of Physics and Astronomy
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ABSTRACT

The Space Shuttle Columbia flown in January 1986 carried two ultraviolet experiments (UVX)
designed to observe very weak diffuse emission from various astronomical sources at wavelengths below
. 3200 A with moderate spectral resolution. Such observations are extremely sensitive to the presence of
any shuttle induced ultraviolet glow, since the wavelength range, 1200-3200 A, includes strong emis-
sion lines or bands of species such as O, NOQ, and OH which are predicted to radiate strongly by
inodels of the shuttle glow. The UVX spectrometers are sensitive to emission features as faint as 0.1
Rayleighs. Emissions from O O and NO are detected and shown to be consistent with an atmospheric
origin.

INTRODUCTION

The phenomenon of shuttle glow is of great concern to astronomers who will be flving instruments on -
the space shuttle and on spacecraft in low earth orbit. The presence of a visible shuttle glow has been
known since the flight of STS-3 /1/ and its spectral shape has been measured at moderate resolution
/2-4/. The intensity of the shuttle glow seems to vary strongly with shuttle altitude /5,6/. The
measured spectral shape shows a decrease in intensity towards shorter wavelengths, verifving the ear-
lier spacecraft glow results from the Atmosphere Explorer series of satellites /7/, and has led to vari-
ous theoretical analyses of the spacecraft glow. Several species of molecules have been suggested to
explain the glow (OH, NO, NO O N,_) /8-14/. These theories also attempted to explain the enhance-
mwent of the shuttle glow in the onentatlons where surfaces were normal to the shuttle velocity direc-
tion by utilizing a surface to catalyze the excitation reactions. Some of the suggested emitting species
have transitions in the ultraviolet. spectral region observ ed by the present. experiment, so these uv emis-
sions are searched for in the data.

" INSTRUMENT AND OBSERVATION

The ultraviolet experiment (UVX) is 2 joint project of the Johns Hopkins University (JHU) Depart-
ment of Physies and Astronomy, University of California, Berkeley (UCB) Space Sciences Laboratory
and the Goddard Space Flight Center (GSFC) Applied Engineering Directorate whose aim is to study
the intensity and spectral distribution of the diffuse cosmic ultraviolet background. The experiment
demonstrated the feasibility of low cost astronomy from the space shuttle using Get Away Special
(GAS) canisters. The experimental package utilized three of the GAS cans, one from each of the parti-
cipating organizations. The scientific instruments were contained in two GAS cans with motorized
door assemblies. The UCB package consisted of a single spectrometer covering the spectral range from
600 to 1900 A with a gap from 1150 to 1300 A to exclude HI Ly-& /15/. The GSFC avionics package
{GAP) was mounted in a sealed canister to protect the tape recorder and telemetry formatter. The
third GAS can contained the JHU UVX experimnent.

The JHU experiment package used two Ebert monochromators to cover the spectral region from 1200
to 3200 A. Each of the instruments observed the same 0.°26 by 4." 0 area on the sky to within the co-
alignment error of less than 30 arc - seconds. The JHU package was co-aligned to the UCB instru-
ments to within 0. 1. The spectral resolutions of the monochromators were 17 A between 1200 and
1700 A and 29 A between 1600 and 3200 A. Strong atmospheric emission and second-order radiation
were rejected by use of filters (CaF_ and BaF ) placed behind the enbrance slits. The sensitivity of the
instruments was cosmic ray dark count hrmted to ~ 80 photons cm’ sr ' A s for continuum emis-
sion and 0.05 Rayleighs for line emission.



The UVX experiment was flown on mission STS-61C {aunched on 12 January 1986 aboard the Space
Shuttle Columbia. The three GAS cans were mounted on the GAS bridge in the aft portion of the
cargo bay shielded from the cabin lights by a satellite thermal shroud. The GAS cans were open to
space 12 hours after launch to allow for instrumental outgassing. At 36 hours into the mission, the
observational sequence was started.

UVX observed nine regions of the sky which were selected to enhance components of the diffuse cosmic
ultraviolet background. These targets were observed on days two, three and four of the shuttle’s mis-
sion. The ninth target, a slow spatial scan, (@ = 13", § = +15°) was selected as the candidate in
which to look for shuttle glow as the look direction of the spectromelers was along the velocity vector
of the shuttle. This target was a region at high galactic latitude where the presence of line emission of
the galactic halo had been reported /16/. This target was not above the horizon until the latter por-
tion.of a night pass but the orbiter was positioned so that the target would be visible by the ipstru-
ments when it rose above the horizon. The target was observed in the northern hemisphere at lati-
tudes greater than 10° N and thus avoided the tropical arcs regions. Since the orbit of the shuttle for
this mission was circular at 320 km, the ram direction was at a zenith angle of 90°. The design of the
“instruments was such that no surfaces of the shuttle were in the field of view and in order to look at
any surfaces exposed to the ram the look direction must be along the ram and then the telescope mir-
ror provides a surface on which the glow might form. Thus, we examined the data for enhanced emis-
sion from expected shuttle glow species when the observation was in the ram direction.

DATA

The large scale features of the spectrum are obvious in figure 1. The extended bright region is the
eithanced emission at the earth’s limb due to atmospheric species. The narrow horizontal bands are
due to stars crossing through the instruments' fields of view. Also present in these data is zodiacal
light which is indicated by the two faint diffuse vertical bands in the long wavelength data.
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Figure 1: Contour plot of the spectrometer data. The data is arbitrarily scaled raw count rates.
Time is counted from instrument turn-on. Both spectrometers are displayed in the horizontal
direction. Hydrogen Ly-a emission is present at wavelength 1216 A. OI 1356 A and OI 1304 A
emissions are also present. Nitric oxide 6 and ~ band emission Jies in in wavelength range from
1900 A to 2700 A. 02 Herzberg emission dominates the long wavelength data at around time
306.5 Ksee. Several star crossings are present in the data, for example, at 307 IKsec. The zodiacal
light signal, present in long wavelength instrument, increases with time as the look direction
approaches the sun. ‘

As atomic oxygen is the predominaut constituent of the atmosphere at shuttle altitudes, its emissions
should be present in the shuttle glow. Emissions. from three identified oxyvgen multiplets (3P~SS° (1356
A), *P-38° (1304 A), and °P-'s (2672 A)) are present in these data but they do not show enhancement
in the ram direction. It may also be argued that these emissions cannot be shuttle related because of
optical depth considerations. The 1304 A emission is extremely optically thick in the Earth's atmo-
sphere, while the 1356 A emission is optically thin. The 1304 A emission shows very little change at
the Earth's limb while the 1356 A emission is greatly enhanced; thus this emission must be atmos-
pherie in origin. The 2972 A emission must also be atmospheric in origin since it has a long lifetime
{approximately 1 sec.) and any excited atoms would move out of the spectrometers’ field of view before
radiating. The time traces from the oxygen emissions are shown in fgure 2.
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Figure 2 (left): Time traces for 17 A wide bandpass centered on the brightest OI emission lines in
the data.: The 1356 A emission shows limb brightening around scan 43, while the 1304 An emis-
sion does not. Star crossings are the 3 scan wide increases in brightness. The 1304 A emission
shows intensity variation with solar zenith angle and a large increase in brightness as solar
illuminated atmosphere is observed.

Figure 3 (right): Upper panel: The observed 1600 to 3200 A in the ram direction. The
wavelengths of the NO & and v bands are identified. The solar spectrum /18/ is overplotted to
show the level of zodiacal light. Lower panel: The limb spectrum in the same spectral region show-
ing the presence of NO and 0O, emission bands.

The presence of nitric oxide emission is also seen in the limb data. Emissions in the nitric oxide band
progressions to the ground state have been suggested as a likely source for shuttle glow /17/ and an
observation of 2n enhancement at the NO (1,0} 7 band has been reported/2/. The signature of this
emission would be an enhanced signal in the NO f# (B—X) transitions due o a surface reaction that
excites the incoming N(*S) into N('D). Emission in the NO § (C—X) bands and NO « (A—X) bands
would also be present. The NO emissions observed in this experiment are consistent with an atmos-
pheric origin from the radiative recombination of N(‘S) with O(SP) without a resonance fluorescence
component whichs indicates that the observed atmosphere was not illuminated by sunlight. Nitric
oxide emission is present in the Jimb data, disappears before the zenith angle of the ram direction is
reached and is not detectable above the zodiacal light background in the ram direction.

Emission from the OH Meinel bands were originally postulated as the source of the vehicle glow
detected by the Atmospheric Explorer satellites /10/ but now seems implausible on the basis of radia-
tive lifetime of the vibrational levels /11/. Two of the OH electronic (A—X) bands, the (0,0) band at
3064 A and.'the {1,0) band at 2811 A, lie within the UVX spectral range. Neither of these bands are
seen-above the zodiacal light background. The long wavelength spectrum of the ram direction is shown
. in Figure 3 along with the wavelengths of expected NO emissions identified and with the solar spec-
trum /18/ overplotted to indicate the zodiacal light.

‘I'he bright emission from the O_ Herzberg bands is seen in figures 1 and 3 between 2400 and 3200 A.
‘I'his emission is due to the three body recombination of O and oceurs at zn altitude of about 95 km in
the atmosphere. Again, as with the nitric oxide, all traces of the O emissions disappear before the
zenith angle of 90° is reached. The relative intensities of each of the bands agrees quite well with the
intensities predicted from previous nightglow observations of O2 /19/.

r



CONCLUSION

‘The success of the UVX experiment in measuring the extremely low light levels is evidence that the
shuttle glow in ultraviolet does not adversely affect UV astronomy. UVX, although not optimized for
- ¢low observation, failed to detect an enhanced signal in the ram direction st wavelengths associated
with candidate shuttle glow species. 1t would thus appear that a properly baflled UV astronomy pay-
lond observing during the night portion of the shuttle orbit has nothing to fear from shuttle glow.
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