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A technique to deduce the virtual temperature from the combined use of the

equations of fluid dynamics, observed wind and observed radiances is described.

The wind information could come e.g., from ground-based sensitive very high

frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The

radiometers are also assumed to be either space-borne and/or ground-based.

From traditional radiometric techniques the vertical structure of the

temperature can be estimated only crudely. While it has been known for quite

some time (GAL-CHEN, 1978; HANE and SCOTT, 1978) that the virtual temperature

could be deduced from wind information only, such techniques had to assume the

infallibility of certain diagnostic relations. The proposed technique is an

extension of the Gal-Chen technique. It is assumed that due to modeling

uncertainties the equations of fluid dynamics are satisfied only in the least

square sense. The retrieved temperature, however, is constrained to reproduce

the observed radiances. It is shown that the combined use of the three sources

of information (wind, radiances and fluid dynamical equations) can result in a

unique determination of the vertical temperature structure with spatial and

temporal resolution comparable to that of the observed wind.

i. INTRODUCTION

A few years ago, GAL-CHEN (1978) and HANE and SCOTT (1978) noted that if

sufficiently accurate measurements of the wind and its time history could be

obtained from Doppler radars, this information would, in principle, define also

the thermodynamic structure. In essence, this is done by requiring that the

data will also satisfy the momentum equations in the least square sense. This

has reduced the problem to a classical calculus of variation problem (COURANT

and HILBERT, 1953). The form of the momentum equations assumed in these

studies is quite general and is, in principle, applicable to small meso- and

large-scale atmospheric motions. While not immediately obvious, when the

approximations appropriate to large-scale atmospheric flows are employed, the

above variational formulation is reduced to solving a classical balance

equation (HALTINER and WILLIAMS, 1980) of obtaining the geopotential from the

wind.

GAL-CHEN and KROPFLI (1984), ROUX et al. (1984) and HANE and RAY (1985)

have tested the practical utility of the above-mentioned variational formu-

lation on a variety of observed small-scale phenomena; planetary boundary layer

(PBL) convection in the Gal-Chen and Kropfli case; severe storms for the Hane

and Ray case, and a tropical squall line for the Roux et al. case. In all, the

three case studies of temperature and pressure are deduced from observed

Doppler radars wind. Satisfactory agreement with in situ thermodynamic

observations is reported in all three cases.

As GAGE and BALSLEY (1978) point out, sensitive Doppler radars can be used

to obtain mesoscale wind profiles under all weather conditions. The vertical

resolution is up to 100 m. The time resolution is about 1 hour and the

horizontal resolution is determined by the average distance between the

profilers. Comparable resolution is not obtainable from radiometric

measurements of the atmosphere either from the ground or from satellites. The

purpose of this paper is to extend and modify the GAL-CHEN (1978) technique to

satisfy the following requirements :



(a) Thehorizontalmomentum equations are satisfied in the least

square sense (to be defined further below).

(b) _The hy_os_atlc c_ns_ai_ is satisfied exactly.

(c)_The _ th_rmo_ynamic_eq_ti%_ is satisfied in the least square

sen se.

(d) The radiative transfer equation at various frequencies is

satisfied exactly.

(e) Given wind and radiances as input, virtual temperatures

should be obtained as an output. The retrieved temperature

should have horizontal and vertical resolution compared to

that of the observed wind.

In this paper only the theory is developed. The practical utility

remains to be checked. This should be done first by simulation studies and

then by examining real data. The task is vast and difficult and I hope that

the theory developed here will stimulate other researchers to check its

practical utility and to seek even better ways to estimate the virtual

temperature.

The technique discussed in this paper has some similarities to the

techniques considered by KUO and ANTHES (1985) and by BRUM_ER et al. (1984).

However, it also has some potentially important differences. These include

inter alia:

Ca)

(b)

(c)

2o

Lateral boundary conditions for the temperature are obtained

directly from the wind data rather than prescribed from a 12-

hour forecast as in Kuo and Anthes or, as in the Brummer et al.

ease, prescribed from a vertically smoothed temperature profile

obtained by pure radiometric techniques.

In both the Kuo and Anthes and Brummer et al. techniques, the

horizontal divergence equation is used; as a weak constraint

in the Brummer case and as a diagnostic equation for the geo-

potential in the Kuo and Anthes case. In our case, attempt

is made to satisfy, albeit in the least square sense, all the

prognostic equations relevant to describing mesoscale motions.

The Kuo and Anthes approach does not utilize the information

contained in the radiances. It is assumed that in nature the

divergence equation is satisfied exactly. This is not true even

if the wind measurements are error free. In the Brummer

technique, a temperature profile is sought that will, on the

one hand, satisfy the divergence equation as close as possible,

and on the other hand, is also not too far from the smooth

temperature profile retrieved from radiometric data. Our

technique, however, demands that the retrieved temperature satisfy

the radiative transfer equation, augmented by additional dynamical

constraints. Unlike the pure radiometric techniques, the above

set is mathematically well posed and no a priori smoothing or

statistical constraints need to be imposed on the retrieved

temperature.

MODELING ASSUMPTIONS

Governin_ equations. The governing hydrostatic primitive equations in

Cartesian x, y, z coordinates may be written as :

Continuity equation,

Dp/Dt + pV-u = 0 (1)



Horizontal momentum equations,

DulDt = -(ll0)_pl_x + F 1 + fv

DvlDt = -(ll0)_pl_y + E 2 - fu

Here D/Dt is a symbol for total derivative

(2)

(3)

D/Dr = _/_t + u_/_x + v_/_y + w_/_z (4)

f is the Coriolis paraneter (f = 2_sin_; _ is the earth angular velocity and

is the latitude). For convenience we are displaying the equations using

Cartesian coordinates. Nevertheless, the extension of our ideas to spherical

coordinates is obvious and all our subsequent discussions (conclusions) are

valid for spherical geometry. The hydrostatic equation is given vis.,

ap/az = -0g (5)

An approximate form of the thermodynamic equation neglecting the contribution

of moisture to the density p and to the heat capacity (under constant pressure)

C is
P

Cp DT/Dt - (I/0)Dp/Dt = Sh (6)

The heat capacity under constant pressure is given vis. C = (7/2)R with R

the gas constant for dry air. The equation for conservation of water vapor is

(7)
Dq/Dt = Sv

The equation of state is

p = pRT (8)
v

Here u is the three-dimensional wind vector _ = (u, v, w). u is the horizontal

velocity in the x direction; v is the velocity in the y direction and w is the

velocity in the vertical direction, z. The density of dry air is denoted by

P; p is the pressure; g is the acceleration of gravity; F I and F 2 are

symbols for turbulent friction forces (of dimension Newton/kg) which in this

study we assume that they can be either measured directly or parameterized

based on wind observations. T is a symbol for temperature; p is the pressure.

T is the virtual temperature defined vis.v

T - T = 0.61 qT (9)
v

Here q is the water vapor mixing ratio (expr_sed in 10-3g/(kg of dry air)).

The symbol S, is for sources (or sinks) of heat energy. Since in this study
•

we are llmitlng ourselves to relatively short time scales (0-12 hours),

radiative processes are presumed to be of secondary importance (SMAGORINSKY,

1974) and the major source of heating in the free atmosphere is due to

precipitation. The major heating source in the planetary boundary layer (PBL)

is assumed to be fluxes of sensible heat. S is a symbol for sources or

sinks of water vapor and in accordance with _ur previous presumption that the

maj or contributor to S in the free atmosphere is the removal of vapor by

precipitation. In theVpBL, the major source is evaporation from the ground.

The nature of the data and/or the parameterizations. Our maj or

assumptions about the nature of the observed data or the parameterizations

employed are as follows:



(a) Horizontal motions can be measured by means of powerful Doppler radars

(frequency range is 50-900 MHz). The measurements have accuracy of
+1 ms-l; are such that all motions with time scales with less

than 1 hour have been filtered and are possible under all weather

conditions (LITTLE, 1982).

(b) Vertical motions with scales described in (a) can be either deduced

from the horizontal motions (using the mass continuity equation) or

else can be measured directly by Doppler radars (NASTROM et al.,

1985). To be useful for predictions of synoptic scale motions, the

accuracy of the deduced (or measured) vertical motions must be of the

order of + 1 cms-1 (HALTINER and WILLIAMS, 1980).

(c) Remote sensing of temperature and moisture profiles using ground-

based and/or space platforms renders some useful information under

almost all weather conditions (WESTWATER et al., 1985). (This is true

only if the infrared channels are augmented by additional channels

from the microwave. Otherwise, contamination from clouds may be

severe. Furthermore, microwave measurements are contaminated under

the presence of heavy rain.) The temperature and moisture retrieved

from these measurements typically have poor vertical resolution. As

a result, the retrieved profiles have an accuracy of no better than

+ 3°C for temperature and + 5 g/kg for the moisture.

(d) At the minimum, it is assumed that the measurements described in (a)-

(c) are available in at least three spatial locations to be able to

define a triangle. The satisfaction of this requirement would enable

calculations of horizontal gradients. It must be borne in mind that

the distance between the stations also determine the smallest scales

that can be resolved by such a network. Thus, even though the

horizontal wind measurements described e.g., in (a) may contain

spatial scales of motions smaller than the distance between the

stations, the computed horizontal gradients cannot properly resolve
this information.

(e) As is customary in numerical weather prediction (_P) models

(HALTINER and WILLIAMS, 1980), we assume that all motions and

processes with spatial and temporal scales that cannot be resolved

by the network can either be "parameterized" in terms of what is

observed or measured directly. For instance, F 1 and F 2 (in (2)
and (3)) which are turbulent friction terms may he estlmated from

single Doppler radar data (KROPFLI, 1984). Alternatively, one may

attempt to parameterize it in terms of the larger scale winds. (The

simplest parameterization is to set F. = F^ = 0 ) Another example1 z "
is the precipitation rate and the vertical distribution of latent heat

release which may be evaluated using conventional radars (DOVIAK,

1981) or from satellite data (ATLAS and THIELE, 1981) or par_eterized

(e.g., ignored).

3. ALGORITHM DEVELOPMENTS

Deduction of horizontal virtual temperature _radients. Taking into

account our assumption (a) and (b) in the previous section, we may write the

horizontal momentum equations (2) and (3) as:

(1/_)VHP= (i0)

Here, G E (GI,G,) is a given two-dimensional vector function (G =

-Du/Dt + fv $ FI; G 9 = -Dv/Dt - fu + F2) whlch, in prlnclple, can be

computed from t_e observed wind; VH is the two-dimensional gradient

operator. Differentiating (I0) wit5 respect to z and using hydrostatic (5),

and the equation of state (8) one gets

(I/O) VHP_InTv/_z + gVHInT v = _GI_z.



Taking it into account (10)

G_InTv/gZ + gVHInT V = 8G/_z (ii)

(11) can be considered as a generalization of the thermal wind relation in z

coordinates. In fact, for G = (fvl-fu) the thermal wind is reproduced.

Equation (11) expresses horizontal and vertical temperature gradients in

terms of observed quantities (i.e., winds and its derivatives). Together with

other relations to be used further below, it can be used to infer the vertical

structure. Nevertheless, it is also useful to consider several approximations

of (11). First consider the ratio (denoted by R ) of gV. inT to
.... a

GBln.Tv/BZ.Tradltlonalscaleanalys_sconslders(e.g.._DL_Y. 1979.pp.
_-10) dictates that the order of magnitude of the above-mentioned ratio is

given by

R = g6hT/L

a O(G)F

Here, _hT is a typical horizontal temperature difference over a typical

length scale L and r is the lapse rate (F ----_T./_z). We shall now try to

obtain for baroclinic weather systems a lower bVound of R . We know that F

can hardly exceed the dry adiabatic lapse (g/Cp). Furtharmore,

MaxlGl = Max(U/T, U2/L, fU)

Here, U is a typical velocity associated with the scale L, f is the Coriolis

parameter, and T is a typical time scale. Thus, overall

(6hT/L) Cp

Min (Ra) = max(U/T ,U2/L, fU)

For large-scale flows in the middle latitudes, L _ 106 m, U _ 10 ms-l,

f _ 10-4 s-l, O(G) _ fU. Also, a modest estimate of the large scale

temperature gra_en_ in a baroclinic flow is 3 deg/1000 km; in addition,

C = 1004 Jdeg-_ _kg-, thus Min(R ) = 0(3) This means that in the
p a "

1.h.s. of (11), the contribution of the terms associated with the horizontal

temperature gradient typically dominate that associated with the vertical

temperature gradient. The net result is

gVHln% -- _G/_z (n)'

For the geostrophic case, G = (fv,-fu) and (ii)' is recognized as an approxi-

mate form of the thermal wind relation (e.g., HESS, 1959, p. 191). As long as

significant baroclinicity exists, the approximation (11)' continues to be valid

for mesoscale flows with L _ 105 m, U % i0 ms-l, I G _ U2/L and 6hT/L =
0.3 deg/100 km.

Another useful form of (II) can be utilized if one recognizes that the

l.h.s, of (ii) is actually gVHlnTv),. Here the operator Vw)" is the

horizontal gradient in x, y, p, t s_ace (p is held constant) r. To see why this

is SO, note (HESS, 1959, pp. 260-264) that

VHT) z = VHT) p + (_T/SP)VHP

Using hydrostatic (5) and the chain rule, we obtain

T/_ P = -(i/0g) ST/Bz



i0

Wealso knowfrom (i0) that, (I/P) VHP = G thus, overall,

gVHTv)z : gVHTv)p - GBT/_

The net result is

gVHlnT)p = B_/_z (ii)''

(II)" is an exact expression to calculate horizontal temperature gra-

dients; nevertheless, to utilize it, its r.h.s, must be known at selected p

levels. This requires knowledge of the pressure as a function of z. Typically,

in the absence of rawinsonde, this is accomplished by utilizing a crude first

guess of temperature from the radiometers, together with hydrostatic (5) and

the equation of state (8). This results in a crude first guess of the pressure

(typically + I0 mb). Equipped with this information, one can interpolate

_G/_ which _s observed in x, y, z, t space to an x, y, p, t coordinate. In
ru ......

practlce, thls is aecompllshed by interpolatlng to those z which correspond to

constant p levels. Setting aside for the purpose of this discussion the

standard errors associated with interpolations, there is an error associated

with the fact that the pressure is inaccurately known; consequently, the z's

associated with the constant p levels are inaccurately known.

We will now proceed to evaluate the above-mentioned errors. From

hydrostatic we know that

z/Bin p = -RTv/g

Integrating from sea level to some specified height (assuming for convenience

p (sea level) % i000 rob) we get

z = (RTv/g)in(p/1000)

Here T is some vertically averaged temperature in the interval (o,z) and p

is theVpressure at level z. In the lower troposphere in(p/1000) = 0(i) and

RTv/g = 0(8 kin) (see e.g., HESS, 1959, pp. 75-77). Assuming a worst case

scenario that the errors in estimating TV and T v strictly from radiometric
data are the same, we obtain for 6z (the error in z) that,

_z = (R6Tvlg)O(1)

3°K we obtain _z % I00 m.Taking _T
V

6(3G/3z) % 6z_G/Bz 2

Furthermore, for Rossby number not too large from unity (essentially

corresponding to large and mesoscale motion) _ = O(fU) thus,

_2G/_z2 = O(fU/D 2)

Now from (ii)" and Taylor expansion

(12)

(13)

Here D is a typical vertical scale over which significant variation of

82u/Bz2 are occurring. For the troposphere, D _ 5 km, f _ 10 -4 s-I,

U % i0 ms -I , T _ 273°K. Also as discussed above, 6z % I00 m. Substituting

the above results in (12) and (13) and also taking into account (II)" we obtain

6VHT)p _ O(10-2deg/100 km) (14)

6V..T) in (14) is an estimate of the error in the evaluation of the

horizon_alPtemperature gradient in p coordinates due to interpolation errors

from x, y, z, t space to x, y, p, t space. As discussed above, these errors



ii

are the result of our inaccurate knowledge of p. The error appears to be quite

acceptable. Nevertheless, it should be remembered that our error estimate is

quite sensitive to the choice of D, the vertical scale. At any rate, the

algorithm to be described further utilizes (ii) which is the exact form in x,

y, z, t space rather than the approximate form (11)' or the form (ii)" which is

exact but requires interpolation to x, y, pp t space.

Deduction of vertical virtual temperature _radients. So far we have

shown how to find horizontal virtual temperature gradients. To find the

vertmcal temperature gradients we will have to use the thermodynamic equation

(6). A difficulty arises because while T -_T to within 1_ (HESS, 1959, p.

44) the contribution of the moisture to t_e horizontal virtual temperature

gradient at the lower troposphere could be comparable to that of the horizontal

temperature gradients. To overcome this difficulty we will now derive an

alternative form of (6) containing only gradients of the virtual temperature.

We start by noting that the continuity equation (1) and the equation of state

(8) imply that

-(1/0)Dp/Dt = -RDTv/Dt + RTvdiv.u

This enables us to rewrite (6) as

CpDT/Dt - RDTv/Dt + RTvdiv.u _ = Sh

From the definition of virtual temperature (9) we obtain

(15)

_/_t(gVHlnTv) + _/_tC_inTv/_z) = (gVH + G_/_z)_inTv/_t

DT/Dt = DTv/Dt - 0.61 qDT/Dt - 0.61 (Dq/Dt)T (16)

New, under all meteorological conditions q _ 10 -2 and less. Thus, the second

term ot the r.h.s, of (16) is always negligible compared to the first term.

Under conditions of strong moisture gradient (e.g., dry lines) the third term

may be important and is therefore retained. However, in the third term, we may

substitute T for T. Utilizing the above approximations we may substitute

(16) in (15)Vtaking also into account the moisture equation (7) and the fact

-- =
that Cp Cv R to obtain

CDTv/Dt - RTvdiv.u _ - 0.61 CpSvT v = Sh (17)

We next substitute (11) in (17) replacing the horizontal temperature gradient

in (17) by (Tv/g)_G/_z - (G/g)_Tv/_z. The net result is

+ $@inTvl_z) = F - Sh/T v (18)

Here F is a symbol for presumably observed quantities, i.e.,

- (19)
F = I/g(_H._G/_z) + Rdiv'_ 0.61CpS v

w is the modified vertical velocity given by

(_ _) / (20)w = w + H" g

The horizontal velocity vector is denoted by _ [_B = (u,v)].

The next step is to obtain explicit expressions for _inT /_z which do
• ° , V °

not contain temperature tendencies. This is accompllshed by applying the

vector operator g V_ + _/%z on both sides of (18). The result using (II) and

calculus rules of t_e s6rt f'g = (gf)' - g'f are terms like
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gw_/_ZCVHlnT v) + g( HW)_lnTv/_z = gVH(w_lnTv)/_z

G_I _z ( _lnTl _z) + G(_I _z)_lnTvl _z = G_I _z (_inTvl _z)

Furthermore, from calculus

Thus,

Gal_t(_inTvl_z)= _lat(G_in_/_z) - (_G/_t)(_in_/_z)

(gVH = G_laz)_inTvl_t= _l_tCgVH + G_l_z)lnTv

- (_l_t)_ln%laz

Using (11),

(gvH

Similarly,

+ G_/_z)_inTvl_t = _2G/Cgz_t) - (_G/3t)_inTv/_z

_inT % _inT v __ _inT _inT
v g(VHw)____ - + _aw v + %_2G - _(_/_z) v

(gVH_ 3z)-+C_ _ _z _z "--_-'-z _ _z

Also utilizing (II)

(gVH+_l_Z)T S-hh = _(gVH+_l_z)S h - (SHITv)_I_z

V V

Overall, the net results are two separate estimates for the vertical

temperature gradient, namely

31nT

Cv(gVH_+_l_z - _l_t - _(_l_z)-gz v = H (21)

where H is given by

H = (gVH+G_/_z)F_ - (Sh/Tv) _G/_z + (I/T v) (gVH+G_/_z)S h (22)

Here F is given by (19). Since we have assumed that a first guess of Tv is
available from the radiometers and is accurate to within + 3°K it is

permissible to substitute this first guess in the r.h.s, of (22). The net

result is that H is an observed vector function.

It is now useful to put together the forms of the horizontal and vertical

virtual temperature gradients and their dependence on the observed winds. They

are:

The generalized thermal wind relation (II) rewritten here as

(g ?H+G 3/_z) lnT v = _G/__z (23)

Equations for vertical temperature gradient (21) rewritten as

A_inTvl _z = H_ (241

Here _ are the horizontal accelerations (with a minus sign), namely

G_ = (-Du/Dt+fV+Fl; -Dv/Dt-fu+F 2 (25)

The term H is given by (22) and from (21)

= Cv(gVHW+G_w/_z-_G/_t-w(8_/_z) (26)
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Weclosethis section by noting that considerable simplifications of the

expressions for A, H, and E may be realized if either the approximation (II)'
• % % • . •

is used or pressure coordlnates are utllxzed. In that latter case (Ii)" may be

employed. While we have shown that the above approximations are for tile most

part reasonable, we prefer the use of the more exact forms because the

numerical solution of (23) and (24) does not become easier when (23) is

replaced by (11)' or (11)" and approximate forms for A and H are utilized.
% %

Retrieval of the virtual temperature from the wind and radiances.

Relations (23) and (24) contain information about spatial gradients of the

virtual temperature. From this, as is discussed e.g., in GAL-CHEN (1978), a

second-order three-dimensional Poisson-like partial differential equation for

T may be obtained. To be solved in a limited domain, the boundary
V . .

condxtzons (BC) need to be prescribed. GAL-CHEN (1978) has shown that

Neumann-type boundary conditions (i.e., conditions on the virtual temperature

gradient in the direction of the normal to the boundary) may be obtained from

the observed wind (essentially from the components of _ and _ in the direction

of the normal). Such a procedure appears to be better than using

Dirichlet-type BC which require the specification of the virtual temperature

itself on the boundaries. In the absence of radiosonde information,

Dirichlet-type BC are usually known very crudely (either from radiometric data

or from a guess from a larger scale model).

Regardless of what type of BC are used, the use of (23) and (24) may not

be optimal because it does not utilize the radiances from the infrared and

microwave channels. Also, retrieval techniques based solely on (23) and (24)

tacitly assume that the formulation of the dynamical equation (1)-(7) are

infallible, i.e., that the retrieval errors of the virtual temperature would

be attributed solely to observational uncertainties about the wind.

We shall now proceed to develop a formulation which incorporates the

observed radiances into the retrieval procedure. We start by noting that the

radiative transfer equation may be reduced often to a Fredholm intergral

equation of the first kind (e.g., WESTWATER and STRAND, 1972), namely,

B_(T)K(_,z)dz = I_ (27)

Here, _ is the frequency, B_(T) is the flanck function, K are the weights and

_ are observed radiances. The surface temperature contributions are included

in the r.h.s, of (27). These contributions can be determined from the '_indow

channel" measurements for space-borne radiometers and from the "big bang"

cosmic background of 2.9°K for ground-based observations. For a well mixed

gas, the function K(_,z) is known except perhaps for a small temperature

dependence. Traditional methods of determination of vertical temperature

profile rely on solving (27) for various channels (frequencies) having

different weights K(_,z). Thus, the contributions from different height layers

can be varied and a degree of height resolution can be achieved. Extensive

research (e.g., CHESTERS et al., 1982) have demonstrated the limitations of

such inversion techniques. In essence, the kernel K(v,z) acts as a vertical

smoother (low pass filter). As a result, the retrieved temperature profile has

a poor vertical resolution (at least in the troposphere). However, if (27) is

combined with (23) and (24) the problem of vertical resolution is eliminated.

In essence, the large vertical scales may be determined from (27) and the

smaller vertical scales, which cannot be resolved by (27) would be determined

from (23) and (24).

Before we proceed with further mathematical developments of the idea

outlined above, we note that (27) has been formulated for temperatures while

(23) and (24) are valid for virtual temperature gradients. Furthermore, as has

been noted before, the moisture contributions to the gradient may be



14

important.Toexpress(27) in termsof the virtual temperature, observe that a

Taylor expansion of B_(Tv) around T_ taking into account (9) and the

smallness of the virtual temperature correction would result in

B_(T) = B_(T) + (_B_/_T)0.61 qT (28)

Now, the second term in the r.h.s, of (28) while small compared to the first,

may not be neglected if we desire at least + I°K accuracy for temperature

retrievals; nevertheless, we may substitute--the radiometers first guess about

the moisture and temperature in the second term. To justify this approxi-

mation, let us denote by _ () the first guess retrieval errors. We may recall

that _q = + 6 gkg and 6T = + 3°K. We _so know that, T _ 300°K and
(for the l_wer troposphere) q--_ I0 gkg- . Therefore, substituting the

radiometers first guess in the second term of the r.h.s, of (28) would result

in virtual temperature error _T of the order
V

6T v = 0.61 q_T + 061 T_q

Taking into account the order of magnitude of the various terms, the error is

a_ most + I°K. Furthermore, the contribution of this error to the radiances

[I_ in (27)] is further reduced due to the averaging implied. Overall, we may

substitute (28) in (27) approximating the second term in the r.h.s, of (28) by

the radiometers first guess with the net result

co

oB_(Tv)K(v,z) = I_ (29)

where the moisture correction to the radiances I_ have been absorbed in the

term I_.

The general retrieval algorithm may now be formulated as follows: Find

a T such that
V

fff[(gV.+G_/_z)inT -_G/_z] 2 + (A_inTv/3Z-H) 2 = Min (30a)M _ v

subject to the constraint that

co

fob 9(T)K (_,z)dz = (30b)

This is a familiar calculus of variation problem (COURANT and HILBERT, 1953,

Vol. I, pp. 164-274) whose solution will not be discussed here. We note,

however, that (30-a,b) attempts to satisfy the dynamical equations in the least

square sense while enforcing the retrieved virtual temperature to satisfy

everywhere the radiative transfer equation.

A potential weakness of the retrieval algorithm is that the terms A and H
• • . 0_

involves calculating higher order derlvatlve terms in both space and tlme. The

estimate of such terms from the observed wind and its time history may be

"noisy". To alleviate this problem one may use the Kalman filter approach

(GHIL et al., 1980) where observations at more than two (or three) time levels

are used to improve the estimate obtained from the solution of (30-a,b).

Detailed examinations of the terms involved in (30-a,b) reveal that for the

most part only two time levels are required. The calculation of A (equation

26) requires knowledge of _G/_t. Since G is accele=ation, this requires
• "b .

knowledge of the wlnd at three tlme levels. Nevertheless, _/_t would be
dropped out if we utilize pressure coordinates and relation (II)" or use the

approximate form (ii)'. As noted earlier (II)" is exact but the use of pressure

as a vertical coordinate requires some a'priori knowledge of the pressure

distribution.
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