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INTRODUCTION

Hot-sectlon gas-turblne components typically require some form of coating
for oxidation and corrosion protection. These coatings are generally either

alumlnlde coatings or MCrAIY overlay coatings where M represents nickel,

cobalt, or a combination of these two elements. Both types of coating are
protective as a result of the selective oxidation of aluminum to form an ex-

ternal, continuous Al203 scale. The coatings act as a reservoir of alumi-

num since the aluminum content of the coating is always greater than that of
the substrate. In service environments, coatings degrade by several mechanisms

including oxidation and hot corrosion, Interdlffuslon of the coating and sub-

strate, foreign object damage, and erosion (ref. l). Coatlng/substrate inter-

diffusion involves not only the loss of the aluminum from the coating into the

substrate but also the diffusion of less-deslrable elements to the coating sur-

face where they may oxidize and hinder or prohibit formation of the Al203 scale.
In addition, cycling of a coated component results in cracking and spalllng of
the Al203 oxide scale, which further accelerates coating degradation.

Efficient use of coatings requires reliable and accurate predictions of
the protective llfe of the coating. Currently, engine inspections and com-

ponent replacements are often made on a conservative basis. As a result, there

is a constant need to improve and develop the llfe-predlctlon capability of

metallic coatings for use in various service environments. The purpose of the

present work is aimed at development of an improved methodology for predicting
metallic coating lives in an oxidizing environment and in a corrosive
environment.

APPROACH

The present study combines both experimental studies and numerical model-

ing to predict coating life in an oxidizing environment. The experimental
work provides both input to the numerical models and verification of the model

predictions. The coatings being examined are an alumlnlde coating on Udlmet

700 (U-700), a low-pressure plasma spray (LPPS) NlCoCrAIY overlay coating also

on U-70O, and bulk deposits of the LPPS NlCoCrAIY coating. The approach taken
in this study is shown schematically in figure I.

Experimental Testing

The experimental testing involves isothermal and cyclic furnace oxidation

at I050, llO0, and I150 °C. In addition, Mach 0.3, cyclic burner rig testing

of the alumlnlde and LPPS NICoCrAIY coatings (125 and 625 _m thicknesses) on
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U-700 is also being undertaken at II00 °C. Isothermal oxidation of the coated
U-700 and bulk coating yields the growth rate of the Al203/NIAl204 scales which
form on these coatings. At the conclusion of the test it is often possible to
measure the weight of oxide which spalls on cooling. The fraction of oxide
that spalls is used as in input to the cyclic oxldatlon/spalllng model dis-
cussed below. Cyclic furnace and burner rig oxidation yield the weight changes
of the coated specimens reflecting the oxide growth and spallatlon which occurs
during thermal cycling. Analysis of the coating after an oxidation exposure
includes x-ray diffraction and polarized light metallography of the retained
surface oxides, observation of mlcrostructural changes, scanning electron
microscopy, and electron microprobe analysis to measure concentratlon/dlstance
profiles across the coating and substrate.

Numerical Modeling

Two computer models are being used to predict the oxldatlon-llmlted llfe
of the metallic coatings. A cyclic oxldatlon/spalllng model (ref. 2) predicts
the oxide growth and amount of oxide spallatlon that occurs during cyclic oxi-
dation. The isothermal oxide growth rate and spall fraction (the ratio of the
oxide which spalls on cooling to the total oxide present before cooling) are
input to the spalllng model. The spalllng model predicts the weight change of
a coated specimenundergoing cyclic oxidation, the rate of metal consumption,
and the total weight of metal consumption during cyclic oxidation. A diffusion
model (ref. 3) simulates the dlffuslonal transport associated with both coating
oxidation and coatlng/substrate Interdlffuslon. Diffusion coefficients and the
rate of metal consumption predicted by the spalllng model are input to the dif-
fusion model. The diffusion model predicts aluminum and chromiumconcentration/
distance profiles in the coating and substrate and the time for which the
coating is able to supply sufficient aluminum to continue forming an Al2O3
scale. The diffusion model therefore predicts coating failure whenthere is
insufficient transport of aluminum to the oxide scale.

CURRENTSTATUSANDRESULTS

Isothermal and cyclic furnace oxidation testing is nearly complete.
Cyclic furnace testing of the coated U-700 specimens are being carried out to
failure of the coatings for the three test temperatures of 1050, llO0, and
llSO °C. For the purpose of this study, coating failure has been defined as
the occurrence of one or more of the following: accelerated weight loss during
cyclic oxidation; the presence of less-protectlve oxides (as NiO, Cr203, or
NICr204) on the coating surface; the massive spallatlon of the coating; or the
internal oxidation of aluminum in the coating, indicating the presence of less,
protective oxides on the surface.

Degradation of the alumlnlde coating has previously been discussed and is
reviewed in figure 2. Generally, total depletion of the y' and B phases
occurs before coating failure.

The cyclic oxidation lives of the LPPSNICoCrAIYcoated specimenswere
less than expected. Figure 3 shows a comparison of the weight change of LPPS--
coated specimensand the bulk LPPScoating. The coated U-700 specimens exhibit
a significant weight loss after 500 l-hr cycles at llO0 °C. Visual examination
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of the cylindrical specimens after cyclic oxidation revealed considerable oxi-

dation and spallatlon of the coating, especially near the ends of the cylinders

(fig. 4). The coating failure which occurred after cyclic oxidation can be

compared with a fully intact, protectlve coating that has undergone isothermal

oxidation (also shown in fig. 4). Mlcrostructural examination of coating and

substrate cross sections before cyclic oxidation exposure revealed very little

porosity at the coatlng/Interface (fig. 5, as-sprayed plus 4-hr argon anneal

at 1080 °C); whereas examination of specimens after cyclic oxidation showed

extensive porosity formation at the coatlng/substrate interface (fig. 5 to 7).

Apparently, the porosity formed and grew with increasing coatlng/substrate

Interdiffuslon and is probably the result of a vacancy flux imbalance (ref. 4)

caused by unequal atomic transport across the coatlng/substrate interface.

The coatings eventually delamlnated and spalled near the cylinder ends, most
probably due to a lack of contact with the substrate. Extensive oxidation then

occurred at the coatlng/substrate interface via the interconnected porosity
(fig. 5 to 7) causing rapid coating degradation and massive coating spallatlon.

As expected, the higher the temperature, the more rapid the formation of the

porosity and the shorter the time to coating failure.

There was poor agreement between the observed weight change and that pre-
dicted by the cyclic oxidatlon/spalllng model for the LPPS NICoCrAIY coated

U-700. Two causes for this poor agreement were evident. First, the fraction

of spalled oxide measured after the isothermal test (i.e., approximately 0.Ol

at ll00 °C) and input to the spalllng model was an order of magnitude larger
than expected for Al203 scales (ref. 2). The discrepancy between the spall

fractions has not been completely resolved due to the difficulty in measuring
the extremely small amount of Al203 that spalls after oxidation at I050 to

llS0 °C. Second,the spalllng model assumes only external formation of Al203.
Significant oxide formation within the porosity at the coatlng/substrate inter-

face, massive coating spallatlon (especially at the coating ends), and forma-

tion of less-protectlve oxides were observed experimentally. To estimate the
oxidation-llmlted coating llfe using the diffusion model, the spall fraction

input to the spalllng model was estimated so that the predicted weight change

was similar to that for the LPPS coating on U-700 (fig. 8). The spalllng model
was then used to predict the weight of aluminum consumed (fig. 9) and the rate

of aluminum consumption (fig. 10), the latter being input to the diffusion
model.

The aluminum concentration measured after 300 1-hr cycles at ll00 °C and

the aluminum profiles predicted by the diffusion model are shown in figure II.

The diffusion model does not predict the y' or 8 phases remaining in the

coating. The predicted concentration profile contains less aluminum in the

coating and more in the substrate than measured in the test specimen. The

rate of aluminum consumption predicted by the spalllng model was probably too

high due to the poor spalllng resistance of the coated specimens. In addition,

the diffusion coefficients input to the diffusion model (ref. 4) were measured

on slngle-phase NI-Cr-Al alloys and may not be appropriate for the complex,

multiphase superalloys. Based on the cyclic oxidation behavior of the LPPS

coating on U-700 at shorter times, the diffusion model predicts the llfe of the

coating to be in excess of 1500 hr at ll00 °C. Experimentally, massive coating

spallation was observed between 500 to 1000 l-hr cycles at llO0 °C. Obviously,

the formation of the porosity and the oxidation within the pores significantly
decreased coating llfe.
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FUTUREWORK

Measurementof concentratlon/dlstance profiles in several of the coated

specimens after various cyclic oxidation exposures will permit a more extensive

verification of the predictive capability of the diffusion model. Continued

burner rig testing should provide oxidized specimens which, although containing

porosity at the coatlng/substrate interface, may eliminate oxide formation
within the porosity and the resultant massive coating spallatlon. Premature

coating failure may therefore be eliminated and permit an accurate test of the

llfe-predlctlve ability of the diffusion model. A computer model is also under

development to simulate §' and B depletion during degradation of alumlnlde

coatings. This aluminlde diffusion model should be capable of predicting coat-

ing llfe. Measured concentratlon/dlstance profiles after cyclic oxidation of

the alumlnlde coated U-700 will be compared with those predicted by the diffu-

sion model to determine the accuracy and usefulness of the model. Predicted

and measured coating lives will also be compared. It is anticipated that the
conclusion of this work will result in an improve methodology for predicting

the oxidation llfe of both overlay and alumlnlde coatings.

DUAL CYCLE ATTACK

An experimental study has recently been initiated to investigate the

effect of aging in a corrosive environment (900 °C, 0.5 ppm Na) on the oxida-

tion llfe of the two coatings discussed above in this paper. An attempt will

be made to develop an empirical model to relate coating life to combined

oxldatlon/hot corrosion cyclic exposure. The approach this study will take is

schematically shown in figure 12. Burner rig testing in the oxidizing environ-
ment has been initiated.
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OXIDATION-LIMITEDCOATINGLIFE PREDICTION

OBJECTIVE: TO DEVELOP AN IMPROVED METHODOLOGY FOR PREDICTING THE OXIDATION LIFE
OF METALLIC COATINGS
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Figure 1
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CYCLICFURNACEOXIDATIONOFALUMINIDE COATEDU-700
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CYCLICFURNACEOXIDATIONOF LPPSNiCoCrAIYCOATINGON U-700
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DUALCYCLEATTACK

OBJECTIVE: TO CHARACTERIZE THE EFFECTOF COMBINED OXIDATION AND HOT
CORROSION CYCLIC EXPOSURE ON COATING LiFE
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Figure 12
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