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I. INTRODUCTION

Modern jet engine design imposes extremely high loadings and temperatures on
hot section components. Fuel costs dictate that minimum weight components be
used wherever possible. In order to satisfy these two criteria, designers are
turning toward improved materials and innovative designs. Along with these
approaches, however, they must also have more accurate, more economical, and more
comprehensive analytical methods.

Numerous analytical methods are available which can, in principle, handle any
problem which might arise. However, the time and expense required to produce
acceptable solutions is often excessive. This program addresses this problem by
developing specialized software packages, which will provide the necessary
answers in an efficient, user-oriented, streamlined fashion. Separate
component-specific models will be created for burner liners, turbine blades, and
turbine vanes using fundamental data from many technical areas.

2. OBJECTIVE

The overall objective of this program is to develop and verify a series of

interdisciplinary modeling and analysis techniques which have been specialized to

address three specific hot section components: combustor burner liners, hollow

air-cooled turbine blades, and air-cooled turbine vanes. These techniques will

incorporate data as well as theoretical methods from many diverse areas,

including cycle and performance analysis, heat transfer analysis, linear and

nonlinear stress analysis, and mission analysis. Building on the proven

techniques already available in these fields, the new methods developed through

this contract will be integrated to predict temperature, deformation, stress, and

strain histories throughout a complete flight mission.

3. APPROACH

The work breakdown structure and tasks were discussed in detail at the Second

HOST Workshop last year, and will not be repeated here. Three major development
activities make up the Base Program. These are:

I. The Thermodynamic Engine Model,

2. The Thermomechanical Loads Model, and

243

_-I_ECEDING PAGE: ELANK NOT FILME_



3. The Three Component Specific Models:

- Combustor liner,

- Turbine blade, and

- Turbine vane.

Thermodynamic Engine Model

The Thermodynamic Engine Model provides a decomposition/synthesis approach to

compute, at any point in a mission, the engine rotor speeds and the gas path

dynamic variables (velocity, temperature, pressure, density and Mach number) at

any station along the combustor liner and high pressure turbine flow path. With

this capability it is possible to synthesize the gas path variable history at any

station of the burner liner, blade or vane for a complete mission, without

computing the complete engine cycle for all mission points.

To develop the model, the engine cycle deck was run at 148 cycle points

covering the complete engine operating range shown in Figure I. From this data

an engine performance cycle map and an interpolation scheme were developed to
compute the gas path parameters at a chosen engine station, given the engine

operating conditions specified in terms of altitude, free stream Mach number and

engine power level. This also was discussed in more detail at last year's

Workshop. Results for a typical commercial airline flight: altitude, Mach

number, thrust, core rotor speed, compressor discharge temperature and turbine

inlet temperature, are shown in Figures 2 through 7. It is not necessary to run

complete missions. Segments can be run separately and joined to synthesize
alternate missions.

Thermomechanical Loads Model

The Thermomechanical Loads Model accepts as input variables the rotor speeds

and the gas path temperatures and pressures at one or more engine stations and

computes component metal temperatures and surface pressures. Again, a

decomposition/synthesis approach is used.

A typical commercial engine combustor liner, for which the loads model was

developed, is shown in Figure 8. The correlation for the burner liner

temperature, Tline r, was developed in terms of the cooling effectiveness

factor, nc: T -
4 Tliner

nc T4 - T3
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where

T 3 = compressor discharge temperature, and

T4 = combustor exit temperature.

Using both engine test data and analytic results, a correlation of cooling
effectiveness with combustor length was developed for a single combustor panel
(Figure 9). For a realistic picture of liner temperatures, both average
temperature and the hot streak temperature associated with the fuel nozzles were
correlated. The effects of pressure and of altitude on cooling effectiveness
were examined separately. Both were small enough to be neglected. To account
for the temperature gradient through the metal thickness, an expression was
derived from cooling effectiveness, compressor discharge temperature and
pressure, and combustor exit temperature. By correlating test data against
combustor pressure, a representative expression for temperature gradient through
the metal thickness was obtained at five typical points along the length of the
combustor liner. This completed the work on the combustor liner Thermomechanical
Loads Model.

A common approach was taken for the cooled high pressure turbine blade and
vane. Cooling effectiveness was again used as the correlating factor. The
initial step was to correlate cooling effectiveness as a function of engine
operating conditions at the 50% span station. Cross sections at 50% span of the
typical blade and vane configurations are shown in Figures I0 and II. A typical
correlation of cooling effectiveness with gas path temperature and power level at
the 50% span station on the turbine vane is shown in Figure 12. Both test data
and analytical predictions are shown. The trend of the data is quite similar to
the combustor data; however, there is some disagreement between the analytical
and test values of nc. This was not unexpected because of: (I) differences
between nominal values of design variables (Tqas, Tcoolant, wall thicknesses
and thermal properties) and actual values; (27 uncertainties in calculating the
gas side and coolant side heat transfer coefficients, the radiation heat flux,
film cooling effectiveness, etc., (3) measured temperature errors due to
uncertainties in thermocouple measurements, flow checking measurements, etc. As
a result the test data was used to validate the trend lines, and the analytic
predictions were used for the correlation.

From data of the type shown in Figure 12, a correlating equation was
developed to predict cooling effectiveness at the 50% span station as a function
of operating conditions:

l-n c T3 0.04 T 0.04
_ ) ( 4.1 ,Ref )

l-nc,Re f (T3,Re f T4o I
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where nc,Ref, T3 Ref and T4.1 .Ref denote the reference values and
conditions of Figures lO and II.

To predict the metal temperatures at other points on the blades, the cooling

effectiveness factors at other spanwise stations were correlated against the

values at the 50% span station, 50%- This was done at eight chordwise

stations on both the suction and pressure surfaces. Thus, using the gas path

temperatures T3 and T4. l for any engine operating condition, the reference
data shown in Figures lO and II, and the correlating equation for nc, the

Thermomechanical Loads Model can be used to predict the metal temperatures over

the complete blade and vane surfaces.

To establish the general procedure for predicting the static gas pressure

distributions along the airfoil surfaces of the blade and vane, typical design

gas pressure distributions were collected and normalized. Figure 13 shows the

typical turbine normalized vane gas static pressure distribution.

With the completion of the Thermomechanical Loads Model, the capability

exists for synthesizing a mission, determining the hot section flow path gas

properties for the complete mission, and, from these, the metal temperature and

pressure histories for the combustor and turbine blade and vane.

Component Specific Model Development - Geometric Modeling

The approach taken to model the three components is to select typical

components, identify the key input parameters and develop master regions from

these parameters. The finite element mesh can then be overlaid on each master

region. Figure 14 shows a typical combustor nugget, some of the physical input

parameters, and the master region definition based on those parameters. Figure

15 shows representative 2D and 3D models generated from these master regions.

Modeling of the other two components, the blade and vane, is currently

progressing.

4. CONCLUSION

When completed, this program will provide a non-linear stress analysis system

for hot section engine parts that will allow the component designer to evaluate

quickly the effects of mission variations on component life. It will be easy to
use, cost effective, and make a significant contribution to assessing hot section

durability.
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