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PREFACE

This conference publication contains the papers presented at the NASA Symposium
on Recent Experiences in Multidisciplinary Analysis and Optimization, held at NASA
Langley Research Center, Hampton, Virginia, April 24-26, 1984. The purposes of the
symposium were to exchange information about the status of the application of optim-
ization and associated analyses in industry or research laboratories to real life
problems, and to examine the directions of future developments.

Within the broad statement of the symposium's purposes, information exchange
has encompassed the following:

Examples of successful applications

"Attempt and failure" examples, particularly to describe the reasons for failure
and lessons learned

Identification of potential applications and benefits, even though no attempt
to apply optimization may have been made as yet

Synergistic effects of optimized interaction and trade-offs occurring among two
or more engineering disciplines (e.g., structural engineering and aerodynamics)
and/or subsystems in a system (e.g., propulsion and airframe in aircraft)

Traditional organization of a design process as a vehicle for or an impediment
to the progress in the design methodology

Computer technology in the context of the foregoing

This information exchange has covered aerospace and other industries as well as uni-
versities and government agencies.

The goal of the meeting was to reach a better understanding of the extent to
which optimization and the associated analyses are being used, development directions,
the future potential, and actions that ought to be taken to realize the potential
sooner. That goal was attained and the symposium showed through both the diversity
and quality of papers and the active participation of the attendees that the activi-
ties in the subject area are vigorous beyond the initial expectations. There was a
consensus that multidisciplinary analysis and optimization have an important potential
as aids to human intellect in the design process, and that cooperation of industry,
academia, and government, under NASA leadership, is needed to realize that potential.
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STRUCTURALSYNTHESISPROBLEMSTATEMENT
Almost 25 years have elapsed since it was recognized that a rather general

class of structural design optimization tasks could be posed as nonlinear mathemat-
ical programmingproblems (Ref. i). Figure 1 shows the nonlinear programming problem
statement and its geometric interpretation in terms of a hypothetical two-dimensional
design space plot. The use of inequality concepts is essential to the proper state-
ment of most design optimization problems because at the outset it is not usually
knownhow manyor which constraints will be critical at the final design. In other
words, the design drivers are not knownwith certainty in advance. In a structural
context the constraints represented by Eq. 1 usually include: (A) one behavior con-
straint for each failure modein each load condition; (B) side constraints that
introduce fabrication and analysis validity limitations as well as "rules of thumb."
Posing the structural design optimization task as a nonlinear programmingproblem
makes it possible to consider: multiple load conditions; a wide variety of failure
modes (e.g. limitations on stress, strain, displacement, buckling load, natural
frequencies, etc.); side constraints; and objective functions other than weight
minimization. During the past two decades a great deal of effort has been devoted
to learning how to solve the structural synthesis problem efficiently for systems of
practical interest. The main theme of this presentation will be to suggest that many
of the key ideas that have helped advance the state of the art in structural syn-
thesis may provide useful guidelines for the development of analysis and design tools
in other disciplines.

Given the pre-assigned parameters and the load conditions

-+

find the vector of design variables D such that

-+

gq(D) _> 0 ; qEQ (i)

and

-9-

M(D) -+ Min (2)

where

_T = LDI, D2 ... DI j (3)

\

\

Figure 1



STRUCTURAL COMPONENT SYNTHESIS (1968)

During the 1960's the structural synthesis concept was successfully applied to

structural components of a fundamental and recurring nature (e.g. stiffened plates

(see Ref. 2 and 3) and stiffened cylindrical shells (see Ref. 4 and 5)). The struc-

tural synthesis capability reported in Ref. 5 for minimum weight optimum design of

integrally stiffened clyindrical shells (see Fig. 2a) was state of the art in 1968.

In a philosophical sense, it was a precursor of the approximation concepts approach

that was to emerge during the 1970's. This problem involved seven design variables

(see Fig. 2b), multiple load conditions (Nk, Pk' &Tk')' a rather extensive set of

strength and buckling failure modes, and minimum gage and other side constraints.

The mathematical programming problem statement was transformed into a sequence of

unconstrained minimizations using the Fiacco-McCormick interior penalty function

formulation (see Eq. 4, 5 and 6). The constraint repulsion characteristic of this

penalty function formulation leads to a sequence of non-critical designs that tend

to "funnel down the middle" of the feasible region in design space (see Fig. 2c).

This observation led to the idea that approximate analyses could be used during each

unconstrained minimization stage, with good expectations that the sequence of designs

generated would remain in the actual feasible region. By doing a complete buckling

analysis at the beginning of each stage and retaining only the critical and poten-

tially critical mode shapes during each unconstrained minimization, computational

efficiency was improved by a factor of 75 while still generating a sequence of

positive margin designs with decreasing weight. Dynamically updated constraint

deletion techniques that retain only design drivers and potentially critical con-

straints have and will continue to play an important role in the development of

optimum design capabilities for structures as well as multidisciplinary systems.

l R

i

(a)

(c)

(b)

(_(D,rp) -_ Min (4)

qb(_,r ) = M(_) + r _ [i/gq(_)]
P P qEQR

r + cr ; c < i (6)
p+l p

Figure 2

(5)
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DESIGN ORIENTED STRUCTURAL ANALYSIS

Interest in developing efficient system level structural synthesis capabilities

based on finite element analysis models stimulated research on design oriented

structural analysis (DOSA) during the 1965-1975 time period (e.g. see Ref. 6-14).

This work was based on the idea that in a design context the objective of structural

analysis should be to generate with minimum effort an estimate of the critical and

potentially critical response quantities adequate to guide the design modification

process. Developments in DOSA fall into three main catagories: (I) behavior sensi-

tivity analysis; (2) reduced basis methods for structural analysis; and (3) re-

organization of finite element analysis methods to serve the special characteristics

of the design optimization task (see Fig. 3). The basic goal of behavior sensitivity

analysis is to obtain information about rates of change of response quantities with

respect to changes in design variables. The key to accomplishing this involves im-

plicit differentiation of the governing analysis equations with respect to the design

variables, as illustrated by Eqs. 7 and 8 in Fig. 3 for the case of linear static

structural analysis via the finite element (displacement) method. When sensitivity

derivatives are needed for only a small subset of displacement components, it will

be more efficient to employ adjoint methods (see Refs. 15-17). Reduced basis methods

in static structural analysis are analogous to the common practice in dynamic

analysis of using a reduced set of generalized coordinates and normal mode basis

vectors. The basic idea, illustrated by Eq_. 9-12 in Fig. 3 is to use a relatively

small number of well chosen basis vectors u n to drastically reduce the number of

unknowns in the analysis from J to N. Finite element analysis can be better matched

to the needs of the design optimization task. For example, the stiffness matrix K

can be formed using precalculated and stored invariant parts K o and K i as illus-

trated by Eq. 12 in Fig. 3. This organization also makes the _K/_D i (see Eq. 14),

needed for behavior sensitivity analysis (see Eq. 8). already available in storage.

Behavior Sensitivity K_ = P

(Static)

K ?u ?_ 3K-- = -- U
3D. 3D. SD.

1 1 1

Reduced Basis u _ uA =

(Analysis) N << J = DOF's

N
u 7r = B

n n
n= I

- i +T + _T
P _-_p = _ uA K uA - uA

i _T BT K B_ - 7T BT
_p =

r -i-
g@ = 0 + B KBr = BTp

P

I

Finite Element K = K_ + _ D.K.
U i l

i=i

_K
Analysis Organization _)D. K.1 (invariartt)

1

(7)

(8)

(9)

(i0)

(ii)

(12)

(13)

(14)

Figure 3



ANALYSISMODEL- DESIGNMODEL
Whendealing with large system level design optimization problems it is very

important to distinguish between the analysis model and the design model. W_ile Fig.
4 illustrates this idea in terms of a structural system, it should be apparent that
analogous distinctions exist in other areas (e.g. aerodynamic design, thermal design,
etc.). Generating a structural analysis model usually involves idealization and
discretization. In the context of the finite element method, idealization refers to
selecting the kinds of elements and discretization refers to deciding on the number
and distribution of finite elements and displacement degrees of freedom (DOF's)
(see Fig, 4a). Once these decisions have been made, the structural analysis problem
has a definite mathematical form. Establishing the design model involves another
important set of decisions, namely: (i) deciding on the kind, number, and distri-
bution of design variables; (2) identifying the load conditions and constraints to
be considered during the design optimization; and (3) selecting the objective
function. This process maybe viewed as somewhatanalogous to making the judgements
that lead to the analysis model. A schematic representation of three alternate
skin design models is shownin Fig. 4b. Limitations on the numberof independent
design variables are often imposed by symmetry, fabrication, and cost control
considerations. In manystructural design optimization problems the numberof finite
elements needed in the analysis model (to adequately predict behavior) is much
larger than the number of design variables required to describe the practical design
problem of interest. In someproblems involving substantial changes in configuration
it may be necessary to dynamically update the analysis model as the design evolves
(e.g. see Ref. 18). In any event, it should be recognized that analysis modeling
and design modeling involve two distinct but interrelated sets of decisions.
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KEY TO A TRACTABLE FORMULATION

Prior to 1970, the main obstacles to the development of large scale structural

synthesis capabilities were associated with the fact that the general formulation

(see Fig. I, Eqs. 1 and 2) involved: (i) large numbers of design variables; (2)

large numbers of inequality constraints; and (3) many behavior constraint functions

that are computationally burdensome implicit functions of the design variables.

During the 1970's these obstacles were overcome by replacing the initial problem

statement with a Sequence of relatively small, algebraically explicit, approximate

problems that preserve the essential features of the original design optimization

task (e.g. see Refs. 19 - 25). As indicated schematically in Fig. 5 this was

accomplished through the coordinated use of approximation concepts such as: (i)

reducing the number of independent design variables by linking and/or basis reduction;

(2) reducing the number of constraints considered at each stage by temporary deletion

of inactive or redundant constraints; and (3) constructing high quality explicit

approximations for retained constraint functions (via the use of Taylor series

expansions in terms of insightfully selected intermediate variables).

-+

Find D such that

-+

gq(D) > 0 ; qgQ

and

M(D) + MIN

Basic Problem

Linking

Basis Reduction

Constraint

Deletion

Explicit

Constraints

Approximat ion

ConcePts

Find 6 such that

h(P) (_) > 0 ; qEQ (p)
q

and

W(_) ÷ MIN

Approximate

Problem

i i

Figure 5



APPROXIMATIONCONCEPTS
In its simplest form, design variable linking fixes the relative sizes of some

preselected group of finite elements. The reduced basis concept in design space
further reduces the numberof independent design variables by expressing the _ector
of I design variables D as a linear combination of B prelinked basis vectors Tb,
where B<<I (see Eq. 15, Fig. 6). Constraint deletion techniques such as regionaliza-
tion and truncation represent computer implementation of conventional design practice.
Regionalization is a schemein which, for a specified region (e.g., all those elements
linked to a particular design variable _b), only one constraint (the most critical)
is retained for each loading condition. The truncation idea _imply involves tempo-
rary deletion of constraints for which the response ratio R_(D) (see Eq. 16, Fig.
6) is so low that the corresponding constraint will be inacfive. In Eq. 16, Fig. 6)
only those behavior constraints with response ratios greater than c are retained
in the reduced set of constraints denoted by qgQR(P) Also, in the case of linear
constraints it is often possible to identify strictly critical constraints and they
can be permanently deleted. Whenseeking high quality explicit approximations it is
important to appreciate the flexibility offered by Taylor series expansions in terms
of insightfully selected intermediate variables [xb=fb(_b) ]. Equation 17, Fig. 6
shows a general second-order Taylor series expansion for the constraint g_ in terms
of intermediate design variables _. This expression can be specialized ann in the
context of structural systems, first-order, second-order diagonal (separable), and
full second-order approximations have been used. The use of reciprocal design
variables has been notably successful in generating high quality explicit approxi-
mations for displacement constraints. Finally, it should be noted that in some
instances it maybe preferable to generate Taylor series expansions for response
quantities while preserving the explicit nonlinearity inherent to the constraint
function when it is expressed in terms of response quantities.

Linking and Basic Reduction

->

D = [L] = --
B

_b _b (15)

b=l

Constraint Deletion

gq(D)-- i- Rq(_) _> 0

f (D)
-+

q
; R (D) = > c • qgQ_P) (16)

c

q f - ,
qa

Explicit Constraints

gq(X) _ gq(X) = gq(X(P)) + (X- _(P))

2

gq
1 + +(p))T(x-x [

_Xb_X c

T

Vgq(X (p))

(x(P))] (X - _(P)) (17)

Figure 6



APPROXIMATION CONCEPTS BLOCK DIAGRAM

The approximation concepts approach to design optimization is shown in Fig. 7.

This basic approach has been and continues to be used in developing modern structural

design optimization capabilities; however it is potentially applicable to a much

wider range of engineering design optimization problems. The approach outlined in

Fig. 7 is modular and it combines the previously discussed approximation concepts

and existing nonlinear programming algorithms. The "preprocessor" computes and

stores all necessary information that is independent of the design variable values.

A typical stage in the iterative design process begins with the control block

supplying a "trial design" to the "approximate problem generator" (APG). Upon

leaving the APG block, the current approximate problem statement is passed through

"design process control" and handed off to the "optimization algorithm" block, along

with a set of trial values for the design variables. This approximate problem is

explicit and relatively small, therefore it can be solved using well-established

algorithms. Furthermore, the approximate problem often has a special algebraic

structure (e.g. convex, separable, quadratic, linear, etc.) which facilitates ef-

ficient solution via the use of special purpose techniques such as dual method

algorithms (e.g. see Refs. 26-30). Once the "optimization algorithm" block has gener-

ated an improved design, it is passed back to the "design process control" block

where it becomes the trial design for the next stage of the iterative design process

outlined in Fig. 7. The multistage process is usually terminated by a diminishing

returns criterion with respect to further improvement in the objective function.

For a significant class of minimum weight structural sizing problems, it has been

shown that practical convergence can be achieved using only 5 to i0 full finite

element analyses.

H   oo ssco T O I -G
, it i +r-J I

/I DESIGN PROBLEM PROBLEM AND DESIGN
I TRIAL DESIGN

APPROXIMATE PROBLEM GENERATOR

STRUCTURAL ANALYSIS

CONSTRAINT DELETION

SENSITIVITY ANALYSIS

CONSTRUCT EXPLICIT

CONSTRAINT APPROXIMATIONS

UPDATE MOVE LIMITS

OPTIMIZATION ALGORITHM(S)

SUMT-INTERIOR & EXTERIOR
PENALTY FUNCTIONS

FEASIBLEDIRECTIONS

SEQUENCEOF LP'S

DUAL METHODS (GOC)

ADS 1

Figure 7



SENSITIVITYANALYSISANALOGY
While the use of behavior sensitivity analysis has becomecommonpractice

during the past decade, the importance of optimum design sensitivity analysis has
only recently been recognized by the structural optimization community (see Ref. 31
and subsequent work Refs. 32-35). Figure 8 outlines a useful analogy. In the
analysis context, rates of change for behavior response quantities (e.g., dis-
placements, stresses, natural frequencies, normal modes, etc.) with respect to design
variables are obtained via implicit differentiation of the pertinent analysis
equations (see Eq. 18, Fig. 8). In the optimum design context, rates of change for
optimum design variable values (primal and dual) with respect to problem parameters
(e.g., allowable displacement, allowable stress, applied load, etc.) are obtained
via implicit differentiation of the necessary conditions characterizing the base
optimum design (see Eq. 19, Fig. 8). Behavior sensitivity derivatives represent
valuable quantitative information that can be used to: (i) help guide redesign via
man-machineinteraction; (2) construct explicit approximations for response
quantities in terms of design variables (n.b._b=I/_b). These explicit approximations
can often be used to bypass the actual analyses for alternative designs in the
neighborhood of the base design. Optimumdesign sensitivity derivatives represent
valuable quantitative information that can be used to: (i) help guide higher level
trade-off studies via man-machineinteraction; (2) construct explicit approximations
for optimum design variable values in terms of problem parameters (pk) . These
explicit approximations can be used to bypass the actual optimization for modest
changes in the problem parameters (assumingno shift in critical constraint set
Qcr, see Eq. 19, Fig. 8). The quality of the explicit approximations generated by
behavior sensitivity/optimum design sensitivity analysis can often be improved
by thoughtful selection of intermediate design variables/problem parameters. Also,
optimum design sensitivity is important in the development of multi-level methods
(see Ref. 36).

_Cb

Behavior Response
Sensitivity

rates of changeof
response quantities
w.r.t, design variables

Implicit differentiation of
pertinent analysis Eqs.

OptimumDesign
Sensitivity

rates of changeof
_Pk ' _Pk

optimumprimal and
dual variables w.r.t, problem
parameters

Implicit differentiation of
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AIRFOIL OPTIMIZATION
Manyof the ideas that have played a key role in advancing the state of the

art in structural synthesis are potentially transferable to design optimization tasks
in Other discipline areas. For example, in Refs. 37 and 38 numerical airfoil opti-
mization is carried out using reduced basis concepts and Taylor series approximations.
Various airfoil optimization tasks can be formulated as nonlinear programming
problems. For instance the objective maybe to minimize the drag coefficient CD or
maximize the lift coefficient CL Typically the constraints may include limits on
lift, drag, pitching moment, thickness, and camber. The _i_foil shape is defined
as a linear combination of basis vectors _(i), _(2), ..._(n), someor all of which
may represent other airfoils (see Fig. 9a and Eq. 20). The scalars al, a2,...a
in Eq. 20 can be thought of as participation coefficients and they are taken to n
be componentsof the vector of design variables _ (see Eq. 21). This reduced basis
approach, first used for airfoil optimization in 1976 (see Ref. 39), provides
good airfoil definition without having to use large numbers of design variables
to define the airfoil thickness distribution. In Refs. 37 and 38 an innovative
approximation concepts approachis used to reduce the number of aerodynamic analyses
needed for deSign optimization by a factor of 2 or more. The basic idea used is to
gradually develop second-order Taylor series approximations (see Eq. 22) for both
the objective function F(X) and the constraint functions Gj(_) by using existing
data or data generated earlier in the design optimization process. Each approximation
generated for the F(_) (and the G_(_)) is used to improve the design (see Fig. 9b).

J

This is followed by a full aerodynamic analysis which adds a new data point to the

currently available set of data points. Examples reported in Refs. 37 and 38, as

well as recent results (Ref. 40) using more realistic aerodynamics and spline

function representation of airfoil shape, illustrate that approximation concepts can

be successfully adapted to airfoil optimization.
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THERMALOPTIMIZATION
Thermal analysis and design is another area in which structural synthesis has

served as a catalyst. For example in Refs. 41 and 42 techniques for computing the
sensitivity of temperatures (steady state and transient) with respect to design
variables that define a thermal protection system (and associated structure) have
been developed and assessed. Also, in Ref. 43, explicit thermal response approxi-
mations based on first-order Taylor series expansions as well as constraint deletion
techniques are successfully applied to somecomponentlevel thermostructural design
optimization problems (e.g. the thermostructural panel shown in Fig. 10a). The
constraints for this problem are time parametric since the thermal behavior is trans-
ient (see Eq. 23). Instead of replacing the time parametric constraint (Eq. 23) with
a large number of regular constraints representing the response at closely spaced
time points t= (Eq. 24), the response is monitored only at the most critical points
(see Fig. 10b_ points A, B, C, and Eq. 25). As the design changes during optimizat-
ion the critical time points drift; however, it is shownin Ref. 43 that drift does
not affect the first derivatives of the critical constraints (Eq. 25) with respect
to design variables. During each stage in the approximation concepts approach
employed in Ref. 43, the critical time points are frozen and Taylor series constraint
approximations are generated only for that reduced set of constraints. The critical
time points and the constraint approximations are updated periodically. It is
reported in Ref. 43 that the combined use of these two approximation concepts pro-
duced an order of magnitude reduction in computational time required for convergence
of the design optimization process. Finally, it should be noted that the reduced-
basis method is also being applied to transient thermal analysis problems (see Ref.
44).
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OPTIMIZATIONOFCOMPRESSORVANESETTINGS
Gas turbine engines for jet aircraft must maintain high performance over a

wide range of flight conditions; therefore variable-geometry configurations and
bleed systems are built into componentssuch as the fan and the compressor. During
development manycompressors are built with all vane rows variable, even though only
a few rows maybe left variable in the final design configuration. Primary com-
pressor performance goals (M(_)) include: maximumefficiency, maximumstall margin,
maximumflow range, and maximumpressure ratio. Furthermore, there will always be
constraints g (_)_0. For instance one might want to maximize efficiency while main-
taining a minimumacceptable stall margin and also satisfying stress limitations.
In Refs. 45-47 a sequence of approximate problems approach has been applied to the
optimization of compressorvane settings. The block diagram shown in Fig. lla (taken
from Ref. 48) outlines the general approach. The basic idea is to gradually refine
the approximations generated as more experimental data is accumulated. A particu-
larly interesting part of the work reported in Ref. 45 involved optimization of a
three-stage compressorwith four rows of variable vanes. Optimization of compressor
efficiency was carried out experimentally by both the traditional approach (sequenti-
ally opening and closing each vane row) and the sequence of approximate optimization
problems approach. Vane settings were optimized for 8 different operating speeds
(see Fig. llb) and in each case the improvement in compressor efficiency achieved
via the sequenceof approximate optimization problems approach exceeds that obtained
by the traditional approach. Furthermore, 40%fewer test points were required to
obtain these superior results. The results reported in Ref. 45 support the content-
ion that the approximations concepts approach to design optimization can be used to
find better designs at significantly lower cost, even when the objective and con-
straint functions must be evaluated experimentally.
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MULTILEVELMETHODSANDDECOMPOSITION
The basic objective of multilevel methods is to break downa large unmanage-

able design optimization problem into a hierarchy of interconnected smaller problems
that are tractable. Whena large design optimization problem is naturally explicit
(e.g. see Ref. 49) or when it can be replaced by a sequenceof explicit approximations
it maybe possible to apply formal decomposition algorithms drawn from the mathemati-
cal programmingliterature. However the current limitations of formal decomposition
algorithms are such that interest has been stimulated in the generation of heuristic
decomposition techniques (e.g. see Refs. 50-54). In the structural synthesis context
multilevel methodshave been of continuing interest since the early 1970's (e.g. see
Refs. 50 and 51). Almost all of the multilevel work in structural synthesis has
focused on two-level systems such as that depicted schematically in Fig. 12. In
Refs. 52 and 53 the multilevel methodwas improved by using: (i) a nonlinear
programming formulation at both the componentand the system level; (2) approximation
concepts (linking, constraint deletion, and explicit constraint approximations) to
facilitate efficient solution of the system level problems; (3) change in stiffness
as the componentlevel objective function to be minimized. Recently a general
method for breaking large multidisciplinary problems down into several levels of
subproblems was proposed (Ref. 36). This general method was subsequently implemented
for two-level structural optimization and successfully applied to a portal frame
type structure (see Ref. 54). A key feature of this work is that it makesuse of
optimum design sensitivity analysis to convey to the system level coupling inform-
ation about how the cumulative measure of componentconstraint violation (for each
component) will react to changes in the system level design variables. Multilevel
methods and formal decomposition are areas of continuing research activity that are
likely to have significant influence on the development of multidisciplinary design
optimization.
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SUMMARY
More than twenty five years have elapsed since it was recognized that a rather

general class of structural design optimization tasks could be properly posed as an
inequality constrained minimization problem. Figure 13 summarizedseveral ideas that
have played a key role in advancing the state of the art in structural synthesis.
As indicated by the airfoil, thermal, and compressor vane examples someof these
ideas are already being transferred or extended to other discipline areas. It is
suggested that, independent of primary discipline area, it will be useful to think
about: (i) posing design problems in terms of an objective function and inequality
constraints; (2) generating design oriented approximate analysis methods (giving
special attention to behavior sensitivity analysis); (3) distinguishing between de-
cisions that lead to an analysis model and those that lead to a design model; (4)
finding ways to generate a sequence of approximate design optimization problems that
capture the essential characteristics of the primary problem, while still having an
explicit algebraic form that is matched to one or more of the established opti-
mization algorithms; (5) examining the potential of optimum design sensitivity analy-
sis to facilitate quantitative trade-off studies as well as participation in multi-
level design activities. An open-minded and imaginative quest for parallel oppor-
tunities in other disciplines offers significant potential for advancing the state
of the art in multidisciplinary analysis and design. It should be kept in mind that
multilevel methods are inherently well suited to a parallel modeof operation in
computer terms or to a division of labor between task groups in organizational
terms. Based on structural experience with multilevel methods the following general
guidelines are suggested: (i) seek to weakencoupling between levels via basic
organization, selection of intermediate level objective functions and the use of move
limits; (2) wheneverpossible try to satisfy local constraints through local design
variable changes; (3) for noncritical componentsseek a balanced design with uniform
positive margins. Multilevel methods and decomposition can be expected to play a
vital role in the development of multidisciplinary design optimiZation capabilities.

ONLP Formulation - Inequality Constraints

ODOSA : Behavior Sensitivity Analysis

Reduced Basis in Analysis

Organization of Analysis

• Analysis Model - Design Model

• Approximation Concepts

Linking and Basis Reduction

Constraint Deletion Techniques
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ABSTRACT

The objective of this paper is to look at optimization as it applies to the design

process at a large aircraft company. I hope to describe the design process at

Lockheed-Georgia, give some examples of the impact that optimization has had on that

process and then indicate some areas that must be considered if optimization is to

be successful and supportive in the total design process.

All of us here support optimization enthusiastically, and I am no exception. I in-

tend to show great improvements in our design process in my presentation. In a

following paper, my colleague, Gary Gabriele, will amplify on the same theme and

provide technical details for our activities (ref. i). However, the tone of my

presentation may come across as being somewhat cautionary. This is deliberate.

I feel that proper design of an optimization approach to design is mandatory, and

that failure to do so will result in rejection of a highly beneficial tool.

OVERVIEW

To make my case, I will proceed along the following path. I will first define the

design process at Lockheed-Georgia, and I will give examples of how optimization

fits into that process. Then I will relate the design facets affected by optimi-

zation to the total design process to outline some considerations that I feel are

important.

• DEFINE DESIGN PROCESS

• PROVIDE EXAMPLES OF IMPACT OF

OPTIMIZATION

• DISCUSS TASKS REMAINING TO

COMPLETE DESIGN PROCESS
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DESIGN PROCESS

The essential elements of the design process consist of the mission definition phase

that provides the system requirements, leading to the conceptual design, the pre-

liminary design, and finally the detail design. Mission definition is performed

largely by operations analysts in conjunction with the customer. The result of

their study is handed off to the systems engineers for documentation as the systems

requirements. The document that provides these requirements is the basis for the

further design work of the design engineers.

The design phase actually begins with conceptual design, which is generally con-

ducted by a small group of engineers using multidisciplinary design programs. Be-

cause of the complexity of the design problem, the analyses are relatively s_mple

and generally dependent on parametric analyses of the configuration. The result of

this phase is a baseline configuration from which preliminary design may be initiated.

Preliminary design is far more complicated, both because the analysis techniques are

more complex, and also because these techniques require specialized knowledge. The

objective of this step is to refine the design estimates made during conceptual de-

sign and to add additional detail to the description of the configuration. At the

conclusion of this phase, the airplane is defined well enough so that a company can

comfortably bid the cost of producing the new airplane.

Detail design is largely mechanical in nature, and normally occurs after receipt of

an order for production. This is not an area of concentration in the context of

today's subject, and I will ignore it for the remainder of the presentation.
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CONCEPTUALDESIGN - A DEFINITION

To provide a basis for amplification of the conceptual design process, look at the

figure below. The function of the conceptual design process is to conduct a

multidisciplinary analysis of an airplane to produce values of parameters that

describe an airplane. These parameters are top level descriptions that leave most

of the actual configuration details undefined. However, implicit in this process

is the trading of factors that relate to the performance of the configuration.

The trades I mean are typified by the thinness of a wing desired by an aerody-

namicist versus the thickness of a wing as desired by a structural analyst.

Typical parameters defined at this stage are fuselage length and width, wing area,
sweep, aspect ratio, and, to a limited extent, control surface.
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CURRENT CONCEPTUAL DESIGN PROCESS

In former times, conceptual design was manually directed and highly iterative. The

process consisted of guessing an initial configuration, analyzing that configuration,

and then systematically varying each of several design parameters to examine a design

space within which manual optimization could be done. Normally the number of param-

eters examined did not exceed four, because of the human limitations in absorbing more

variations than that. There were several disadvantages to the former approach. This

process was time consuming, fallible, and tedious. It was time consuming because the

answer depended on many executions of a computer code. It was fallible because the

choice of the parameter variation to be examined was entirely at the discretion of

the designer. Thus, the quality of the answers was directly dependent on the skill

of that designer. In addition, no one could be sure that a large enough design space

has been investigated to ensure that a true optimum had been found. This old pro-

cedure was also tedious. All data had to be manipulated manually. Although this

did provide useful insight to the designer, the cost was a further delay. Dozens

of computer runs had to be scanned, the results judged for correctness, and the

results plotted on carpet plots. Many hours of talented labor were consumed per-

forming menial tasks.

The former process was basically eliminated at Lockheed-Georgia several years ago, in

favor of the approach shown here, based entirely on numerical optimization. The new

process is described schematically here. The former process was usually completed in

one day. Many of the manual actions have been eliminated. Now, a given study may

consume as much time as formerly, but a much larger range of design variables has
been included.

GUESS
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PRELIMINARY DESIGN PROCESS (PARTIAL)

The next step in the design process is preliminary design. This is the process, par-

tially illustrated here, by which the conceptual design baseline is analyzed in

greater depth to confirm the design or provide foundation for changing the design.

This process is typified by the more or less simultaneous execution of many detailed

design codes in several disciplines. Obviously, the communication during the

process is difficult, and the designs proposed by each discipline are frequently in-

consistent. Iterative loops, while very common, cannot be represented because of

the _ndeterminate sequence of such iteration.

As an example of the type of analysis conducted in this phase, consider aerodynamics

for a moment. The codes frequently applied in this phase consist of full potential

subsonic or transonic codes for configuration analysis, full potential codes for di-

rect design, and Navier-Stokes codes for highly complex viscous flow analyses. As a

result of the aerodynamic analysis done during this phase of design, the wing exter-

nal contours are fully defined and more reliable estimates of the vehicle performance

are available. Similar refinements and definition are added by each of the partici-

pating disciplines.

The deficiencies of the current approach are immediately obvious. First and foremost,

the result is a suboptimal configuration. Even though optimization may be used with-

in isolated analyses, the difficulty of communication in real time and the lack of

available trade-off criteria mean that no global, rigorous optimization occurs.

r _ m m

CONCEPTUAL

DESIGN

CONTROL

SURFACE I

I SiC

I

' lI WEIGHT

I BALANCE

AERO

CONSTRAI NTS

SURFACE ENGINE

[PRESSURES1 ! LOADs

CONSTRAI NTS

m

CONTROL

PROP U LSION

NEEDS

EIFCTRONICS[

24



CURRENT USE OF OPTIMIZATION IN PRELIMINARY DESIGN

I have already alluded to the use of optimization on individual analyses in this phase.

Here are some examples of such optimizations. The aerodynamics discipline has been

very active in developing optimization techniques for the design of wings in transonic

flow, largely basedon FL0 codes. These methods provide a wing shape, starting with

a specification of a desirable pressure distribution. Using such methods, the wing

contour and twist distribution may be calculated directly.

Subsonic optimization techniques have generally been limited to the design of high

lift systems. In this case, the optimal location of a slotted trailing edge flap

can be found by optimizing on the axial force for the system and by using panelling

methods for calculating the flap system pressure distribution.

Structural optimization has been done for minimizing structural weight, given load-

ing conditions. In this case, the structure is modeled using finite element tech-

niques, with element geometries such as thicknesses or cross sectional areas taken

as design variables. Another example of structural optimization is in the design

of composite panels. The objective is to determine the ply orientation to respond

to specific loading conditions.

• WING AERODYNAMICS

- TRANSONIC

- SUBSONIC

• WING STRUCTURES

- STRUCTURALWEIGHT

- PANEL DESIGN
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CURRENTPRELIMINARYDESIGNOPTIMIZATION

If I were to summarizethe preliminary design optimization work currently being
done at Lockheed-Georgla, I would have to say that its use is relatively new,

that it has been very well accepted, and that its use is certainly increasing.

But this may eventually become a severe problem for us, since the optimization

is being applied to subprocesses within design. Worse yet, it is being applied

to old design philosophies. The result has to be suboptimal designs.

• RELATIVELY NEW

• WELL ACCEPTED

• USE IS INCREASING

BUT

e OPTIMIZATION IS BEING APPLIED
TO OLD THINKING
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PROPOSEDPRELIMINARYDESIGNPROCESS

The preliminary design process is clearly another candidate for improvementby opti-
mization. The technical challenge of this problem is much greater than that of the

conceptual design process, but the potential payoff is also much larger. The chal-

lenge comes, in part, from the large number of individuals and computer programs

normally invoked at this design state, and the current dearth of technology available

to solve the very different problems thus posed.

One possible way to apply optimization in the preliminary design process is shown

here. The fundamental idea is that candidate design parameters flow downward to the

individual analysis modules and the result of the analysis flows back up to the op-
timizer.

Obviously, such a system is far from reality. The technical challenges outweigh

those of optimization itself. The analysis methods normally used in preliminary de-

sign are state-of-the-art methods that are time consuming, user-sensitive, and modeling

sensitive. Because of this, not only will new optimization techniques be needed, but

so will entirely new operational procedures. For example, optimization now is executed

mostly as a black box program. The analysis points provided by support codes are con-

sidered to be correct and not subject to code sensitivities. In the preliminary design

process illustrated here, the former approach clearly will not work. The new process

must include a method for disciplinary engineers to examine the analysis code results

as they are being generated to ensure that the optimized results are valid. When such

an optimization method is available, however, I submit that the problem is far from

finished. This is so because people inevitably are the designers, and the design tech-

niques, whether through optimization or not, must take thehuman element into consider-
ation.

I0PTM,zER IEVALUATE
BASELINE = CONSTRAINTsW'_-l__CONFIGURATION

I II •
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SYSTEN_ ENGINEERING - A DEFINITION

To expand on this theme, let me begin by giving you my orientation. I am in the

Systems Engineering Department at Lockheed-Georgia. This slide gives a reasonable

definition of what Systems Engineering means to us. By its very definition, it is

a process of dealing with people in a large design operation. As such, our interest

is not in the internal workings of design codes, but rather in how individuals use

given design codes to produce designs, and then how those individuals transmit their

information to other designers in the organization.

A DISCIPLINE THAT COORDINATES THE

ENGINEERING ACTIVITIES WITHIN LARGE

ORGANIZATIONS TO HELP PRODUCE A

SUPERIOR,COST-EFFECTIVE, TIMELY

PRODUCT
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TASKS OF SYSTF/_S ENGINEERING

Let me illustrate these ideas by presenting the four main tasks of the Systems

Engineering operation. As illustrated, they involve the management of trade studies,

requirements, interfaces, and technical risk. Another way to express these four

tasks is Communication, Communication, Communication, Communication. I will now

pick a couple of these tasks to show you what I mean.

e TRADESTUDYMANAGEMENT

e REQUIREMENTSMANAGEMENT

• INTERFACEMANAGEMENT

• RISK MANAGEMENTAND DECISION
SUPPORT
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TRADE STUDY ROADMAP NAV EQUIPMENT

Decisions are the design process. By its very nature, design requires definition of

some configuration from an infinity of possibilities. The best design is some com-

promise of many and widely varying constraints. Many times the choices to be made

are aesthetic, or subjective, or not amenable to computer analysis. In these situ-

ations, and sometimes even in well-defined engineering choices, trade studies must

be performed that are outside the domain of the optimization process.

The illustration here is a simple representation of the decisions that might be made

to select a navigation system for an airplane. These choices are displayed as a

hierarchy, beginning with the top level vehicle considerations, and then working

downward to finer levels of detail. Systems Engineering is responsible for gener-

ating such a trade tree to illustrate the decisions to be made, defining the design

groups to be involved, coordinating the studies needed, and documenting the results.

Some of the decisions illustrated in this trade tree are supported by optimized

methods. For example, the vehicle may be initially sized with optimization and com-

ponents may also be designed with optimized methods. Nonetheless, when design de-

cisions are to be made, there is a high likelihood that not all the decisions will

have been supported through optimization. The point is, optimization methods are

imbedded in the total design process, and this must be taken into account in the

development of these optimization methods.

I VEHICLEI
!
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TRADESTUDIESWITHOPTIMIZATION

This last feature is what I am trying to illustrate here. Somedecisions of the
design process will be madewithin the optimization process. Somewill not. But
those that do not must have information available from the optimization to assist
the manual decision-making process. This is true whether the outside decision
is being madeconcurrently with the optimization or whether it lags the optimiza-
tion by days, weeks, or months.

The implication is that information that is more comprehensive than just the final
optimized configuration must be provided and stored. Possible information needs
include sensitivities around the optimal point and the optimization history. In
addition, it will be necessary to provide a way to interrupt the optimization
process as it is occurring to input new information to the optimization process and
to influence, on the fly, the outcome.

OPTIMIZER]

i 1I SYSI
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REQUIREMENTS FLOWDO_Rq

Let me provide one more example, that of requirements flowdown. This is another

example of the communication involved in the design process. In this case, the ob-

Jective is to communicate to each individual designer the importance of his design

in meeting the top level performance requirements. This is done by analyzing the

top level system requlrementsand assigning or allocating these top level require-

ments to the next lower level to determine the drivers in the system. This process

is repeated to successively lower levels until the final objective is accomplished.

That is, the question "What is each individual's contribution to the total system

performance?" is answered at the lowest logical level.

A specific performance might be maintenance manhours per flight hour, or it might

be minimum range requirements. Whatever the requirement, this process allocates it

to the lowest level of the configuration, maintains the traceability to the top

level requirement, and assures that the total system requirement will be met.

ALLOCATABIF

BTWN ELEMENTS

SYSTEM LEVEL

PERFORMANCE

REQUI REMENTS

!

IUNIQUE TO]EIFMENT

I

ALLOCATABLEBTWN COMP

1
A LLOCATABLE

BTWN SUBSYS

I
UNIQUE TO J

|

COMPONENT I

UNIQUE TO

SUBSYSTEM
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REQUIREMENTS ANALYS!S

The question is, "What is a proper allocation?" If a top levelrequirement is

rippled to the lowest level, which functional area should contribute what propor-

tion to the final performance? If we rely on an optimization process that merely

gives a final answer, we are blind. This is another case of not all functions

being included in the optimization process. For these "outside"functlons, we

have no sensitivity information upon which to base realistic allocations. The

actual situation might be as illustrated here, where the cost of attaining a given

level of performance varys greatly from one discipline to another. I have used cost

as the measure, hut I could have used any measure of merit. For the illustration

I have given, the optimal allocation of the requirement is that which simultaneously

at£ains the top level system performance and minimizes the cost. In the future,

our optimization processes must provide visibility for such data.

OPTIMIZE ALLOCATIONS

ALLOCATION ALLOCATION ALLOCAT!ON ALLOCAT!ON
1 2 3 4

$

/
PERF

$ $

/
PERF PERF PERF
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SUMMARY

I have attempted to illustrate that optimization has a role in our design process,

both today and in the future. The benefits are well known already, but I believe

that we are only seeing the proverbial tip of the iceberg.

Optimization must, however, continue to be sold and this selling is best done by

consistent good performance. For this good performance to occur, the future ap-

proaches must be clearly thought out so that the optimization methods solve the

problems that actually occur during design. The visibility of the design process

must be maintained as further developments are proposed. Careful attention must

be given to the management of data in the optimization process, both for technical

reasons and for administrative purposes. Finally, to satisfy program needs, pro-

visions must be included to give data to support program decisions, and to communi-

cate with design processes outside of the optimization process.

If we fail to adequately consider all of these needs, the future acceptance of

optimization will be impeded. We simply cannot allow that to happen. Optimization

is too important.

• OPTIMIZATION HAS A ROLE IN OUR DESIGN
PROCESS

• DEVELOPMENT OF OPTIMIZATION METHODS

MUST REFLECT NEEDS OF TOTAL DESIGN PROCESS
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ABSTRACT

This paper examines the structural design process for large transport aircraft. Practical considerations include

design criteria to satisfy certification requirements of FAR Part 25 and selected JAR requirements. Critical loads

must be determined from a large number of load cases within the flight maneuver envelope. The structural design is

also constrained by considerations of producibility, reliability, maintainability, durability, and damage tolerance, as

well as impact dynamics and multiple constraints due to flutter and aeroelasticity. Aircraft aeroelastic design con.
siderations in three distinct areas of product development (preliminary design, advanced design, and detailed

design) are presented and contrasted. The present state of the art is challenged to solve the practical difficulties
associated with design, analysis, and redesign within cost and schedule constraints. The current practice consists of

largely independent engineering disciplines operating with unorganized data interfaces. The need is then

demonstrated for a well-planned computerized aeroelastic structural design optimization system operating with a

common interdisciplinary data base. This system must incorporate automated interfaces between modular pro-

grams. In each phase of the design process, a common finite-element model for static and dynamic optimization is
required to reduce errors due to modeling discrepancies. As the design proceeds from the simple models in

preliminary design to the more complex models in advanced and detailed design, a means of retrieving design data
from the previous models must be established.
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The past 20 years have seen spectacular advances in the methodology for computer-aided design of aerospace
structures. However, the gap between theoretical and pilot program development and the practical application to
hardware development has remained significant. This paper examines the practical aspects of the aircraft structural
design process and attempts to define areas of research needed to close the gap between theory and application.
This discussion will illustrate why the gap exists and why the traditional organization oI the design process has not
led to the new technologies needed to close the gap.

The process of aircraft structural design has traditionally been one of sizing and drawing by the designer. This
is followed by analytical and test verification of the design throughout the design development process. The aircraft
structural design must, of course, sustain the aeroelastic loads throughout the flight envelope, including dynamic

landing and taxi loads, impact dynamics, and acoustics. The aircraft structural design must also be able to prevent
the aeroelastic instabilities of flutter and divergence. As shown in Figure 1, the first step in the design process is to

establish the design criteria necessary to satisfy the certification requirements for the Federal Aviation Adminis-
tration, the Joint Airworthiness Requirements, or Military Procurement Specifications. Included in these design

requirements are considerations of flutter and aeroelasticity, durability and damage tolerance, and the less tangible
requirements stemming from company experience, philosophy, and economics. The purpose of these requirements
is to ensure product safety and reliability.

(
\ ¢

FAR PART 25 CONDITIONS_

o,s,o F CRITERIA ECORDOFCOMPLIAN

( QUASI-STEADYLOADS ANALYSIS ._

DURABILITY AND _._

DAMAGE TOLERANCE]"

,,'_LUTTER AND DYNAMIC "x,

'-_[,,,,_O ADS A N A L Y S IS 9

•-I_" STRESS ANALYSIS ._

FIGURE 1. DESIGN CRITERIA-THE FIRSTSTEP

Figure 2 shows a basic breakdown of loads analyses required to satisfy the design requirements of a typical
commercial transport aircraft. These analyses include flexibility effects for bothsteady and dynamic flight loading
conditions. Loads induced by balanced maneuvers in flight, as well as dynamic landing and taxi loads and PSD gust
loads, must be investigated to ensure that worst-case design loads for a specific aircraft have been found. In addi-
tion to the loads induced by normal operation, the off-limits performance induced by possible malfunctions of
automated control systems must also be accounted for. Life-cycle loads spectra must provide design criteria for
durability and damage tolerance to ensure an adequate service life. The purpose of all of these loads predictions is to
provide structural design integrity for strength, fatigue, damage-tolerant, and fail-safe design of the aircraft struc-
ture. The "Catch-22" is that most of these loads evaluations require a structural model to predict the load redistribu-
tion that takes place due to aeroelastic effects. That is, some design cycle iteration is required between the loads
prediction and the structural design before the design loads can be established.
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l DYNAMIC LANDING I FLIGHT LOADSAND TAXI

I
I CONTROL SYSTEM ] [ PSD GUST

OSCILLATORY MALFUNCTION RESPONSE
AND HARDOVER

STRUCTURAL DESIGN [CRITERIA

t
QUASI-STEADY FLEXIBLE ACFT
DESIGN LOADS FOR

- BALANCED MANEUVERS
- ROLLING MANEUVERS
- YAWING MANEUVERS
-- PITCHING MANEUVERS
- "MASS PARAMETER" GUSTS
- GROUND LOADS
- EMERGENCY LANDING

DESIGN CASE SELECTION
AND BASIC FLIGHT LOADS

DETAILED COMPONENT
DISTRIBUTED LOADS

DURABILITY AND DAMAGE ITOLERANCE LOADS

I
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FIGURE 2. LOADS ANALYSIS SUMMARY

Figure 3 shows the primary critical load conditions established for the design of a typical commercial aircraft.
Each of these load conditions must be examined for a number of variations of flight parameters. Figure 4 shows
that, even for a relatively small number of flight parameter variations, a very large number of flight load conditions
will result. These loads must then be evaluated to select the critical design loads for structural analysis and design.
To accomplish this, most airframe manufacturers use box beam models of the aircraft for loads and dynamics
analysis.

Figure 5 shows the critical design considerations for the fuselage of a commercial aircraft. These considerations
include impact dynamics for a number of scenarios of survivable crashes. These impact dynamics studies are
nonlinear dynamic analyses of a portion of the aircraft. The purpose of these studies is to provide design criteria,
such as frame spacing, to limit the damage in these events. An entirely different type of analysis is required to
determine fuselage design criteria to limit cabin interior noise due to acoustic effects. These design considerations,
coupled with producibility, repairability, durability, damage tolerance, and other factors, make it impossible to
achieve minimum weight for fuselage flight design loads.

LATERAL GUSTS (PSD) ENGINE FAILURE

RUDDER KICKS RUDDER KICKS -

RAPID UNCOORDINATED ROLLS_ \

BALANCED MANEUVERS ----_ _

GROUNDBORNE CONDITIONS --_ - \ _ \ //"7

FLAPS-DOWNMLWL _l_l _ _ I _ '"/'v_/ ABRUPT SYMMETRIC

BALANCED MANEUVERS _ ]_ _ \ _ /'_-J-'F--- RESPONSES AND

,INNER WING, ___ _'_/_:_/STRIMMED BALANCES

PSOGUSTS I"--.\\
BALANCEDMANEUVERS ' , YfBALANCEDMANEUVER
EMERGENCY LANDING LOADS_t"'_ _/ MAX FLAP DEFLECTION

MAxSPEED
GUSTS AND / _ _-_\ r_ i. 2.5g, Mr,

ABRUPT SYMMETRIC --_ _ / _ _. :"_"':'_'- Z\ _ AILERON ROLLS

RESPONSE ..... :\/ /  RUDOERK,CKS

BALANCED MANEUVERS / BALANCED_M_A_NEUVERSJ \ /

(DOWN LOAD) / NORMAL OPERATING _'_BALANCED MANEUVERS AT MTOW

TAXI AND GROUND _ AND FAILURE CASES WITH SPOILERS DEPLOYED

HANDLING LOADS STALL SPEED AT 2.5g
(UP LOAD) PSD VERTICAL GUSTS

FIGURE 3. PRIMARY CRITICAL LOADING CONDITIONS
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OF W O R  QUALffd 

BALANCED MANEUVER DESIGN ENVELOPE 

PARAMETER 
SPEED 
MACH NO. (ALTITUDE) 
WEIGHT 
CENTER OF GRAVITY 
WING FUEL QUANTITY 

THRUST MAX/MIN 
SPEED-BRAKE SPOILER 

TYPICAL NUMBER OF VALUES USED 
5 

x 10 
x 4  
x 2  
x 2  
x 2  
x 2 = 3,200 CONDITIONS 

FLAPS DOWN BALANCED MANEUVER SURVEY = 1.600 CONDITIONS 

TOTAL 4,800 CONDITIONS 

LARGE NUMBER OF ANALYSIS CONDITIONS MADE POSSIBLE BY USE OF 
COMPUTER-BASED METHODS 

F I G U R E  4. COMPREHENSIVE SURVEY F O R  C R I T I C A L  CASE SELECTION 

‘\I IN SP ECTAB I LlTY 

PRODUCI BI LlTY 

DAMAGE TOLERANCE 
,--/ 
I , 

/ 
IMPACT DYNAMICS ,’ I \ 

:-.;>. 

WEIGHT 

?-:- 45?/< ACOUSTIC EFFECTS 

JOINTS AND SPLICES 
REPAIRABILITY 

F I G U R E  5. CRIT ICAL FUSELAGE DESIGN CONSIDERATIONS 

U 

Figure 6 shows typical service and fatigue life design criteria for a commercial aircraft. Typically, these aircraft 
are designed for a service life of 20 years or 60,000 flight hours. The fatigue life goal is typically twice the normal 
service life. 

4 A commercia! aircraft, !ike 2 combat aircraft, must tolerate a certain amount of damage without being unsafe to 
fly. Figure 7 shows some of the fail-safe and damage tolerance considerations in use a t  Douglas Aircraft Company. 
The fuselage must be able to sustain full design limit loads with a skin crack passing through two bays, including a 
break in the central longeron or crack stopper. Damage tolerance analysis of composite materials is still immature. 
There is no universal agreement on failure criteria or even what constitutes a failure in composite materials. Other 
fail-safe and damage tolerance considerations include maintaining adequate flutter margin after failures in the 
engine mounts or pylons. 
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FIGURE 6. SERVICE LIFE AND STRUCTURAL FATIGUE DESIGN CRITERIA

PRIMARYFLIGHT STRUCTURE IS DESIGNED TO BE FAIL-SAFE SO AIRCRAFT MAY BE SAFELY
OPERATEDAFTER FAILURE OF ANY PRINCIPAL STRUCTURAL MEMBER

DOUGLASCRITERIA EQUAL OR EXCEED FAR REQUIREMENTS

FUSELAGESHELL WILL SUSTAIN DESIGN LIMIT LOADS AFTER A FULL TWO-SKIN-BAY

CRACKLENGTH IN ANY DIRECTION (WITH CENTRAL CRACK STOPPER OR CENTRAL
LONGERONBROKEN)

WING WILL SUSTAIN DESIGN LIMIT LOADS AFTER A FULL TWO-BAY CRACKIN THE SKIN
WITH CENTRAL STRINGER BROKEN

ALL PRIMARY CONTROL SURFACESWILL SUSTAIN DESIGN LIMIT LOADS AFTER FAILURE OF
ANY HINGE FITTING OR SUPPORT MEMBER

DOUGLASCRITERIA(]0_--,_.....__

_ _ _ " _ • -_ /--FAR CRITERIA

(80% LIMIT)

FIGURE 7. DAMAGE TOLERANCE

Figure 8 shows some of the parameter variations that must be studied to certify that a commercial airliner will

meet FAA requirements. The basic flutter design requirements permit no flutter, buzz, or divergence below 1.2 V D
and no flutter below V D after any single mechanical failure or any combination of extremely improbable failures,
including dual hydraulic system failures. Most of these events can be certified by adequate analysis, but some must

he substantiated by testing. Flutter speeds are highly dependent on aircraft geometry as well as the distribution of
weight and stiffness. If the flutter margin is negative for any fuel weight, payload configuration, or other parameter

variation, a structural redesign is required to raise the flutter speed. About 60 percent of the weight of a commer-

cial aircraft is due to nonstructural components, and not all of the remaining 40 percent is represented in any finite-

element model of the aircraft. To account for the difference, the total weight must be estimated from semiempirical
data. The weight of material in the finite-element model may be subtracted from the total weight, and the
remainder may be distributed to the nodes and elements in the finite-element model.
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FIGURE 8. PARAMETERS INVESTIGATED FOR FLUTTER

As shown in Figure 9, aeroelastic structural design is constrained by the basic "abilities" - producibility,

reliability (fail-safe and safe-life), maintainability, durability and damage tolerance, and inspectability. It may be

argued that since the design is not optimum anyway, there is no need to optimize the aircraft structure. The

answer is that while the "abilities" constrain the design, satisfying these constraints alone does not ensure that an

optimum design has been found. The "abilities" are an important consideration in the design process, but are not the

only binding constraints. These constraints may be considered as a set of side constraints that determine upper and

lower bounds on the geometric and behavior variables.

As has been shown, the aeroelastic design process is necessarily an iterative process. For example, if analysis

shows any part of the structure to be under-strength or vastly over-strength, then design changes are required.

Following the design change, new loads are required based on the revised flexibility of the structure. Perhaps a new

structural model will be created at this time. In a large aerospace organization, these changes often involve many

groups of specialists, each of which has a detailed knowledge of a specific task but little or no knowledge of related

tasks. This traditional organization of the design process is slow and unresponsive to the rapid design changes

required in preliminary and advanced aircraft design. Furthermore, different structural models are used by dif-

ferent groups for the special needs of each group.

PRODUCIBILITY

RELIABILITY (FAIL-SAFE AND SAFE-LIFE)

MAINTAINABILITY

DURABILITY (AND DAMAGE TOLERANCE)

INSPECTABILITY

I_ Ill"FIGURE 9. AEROELASTIC STRUCTURAL DESIGN IS _,ONSTRA,N,.D BY THE BASIC "ABILITIES"
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Figure 10 shows some of the organizational constraints imposed on the aeroelastic design process by the tradi-

tional approach. These constraints include (1) the multiplicity of structural models, (2) inconsistency in data
requirements, (3) lack of interdisciplinary awareness, (4) vesting of traditional values, and (5) loss of communication

in the data flow. The use of different structural models by different groups leads to a basic difficulty that must be

dealt with in the design optimization process. The problem is in relating the results from one structural representa-

tion to the results from another structural representation. For example, the Loads group wants a beam model so
that it can find the worst load cases in a set of 4,800 load conditions. Using the beam model, the stress resultants of

shear, moment, and torque provide a quick and easy discriminant. On the other hand, the Stress or Strength group
needs a finite-element model to perform an adequate stress analysis. The Stress group needs the loads, but fre-

quently it will get the shear, moments, and torques instead. Worse yet, these stress resultants may not be self-

consistent, since they may only represent an envelope of the flight load conditions. Adding to the difficulty is the
vesting of traditional values by each group and the loss of communication in the data flow. Frequently, data re-

quirements are passed between groups by a trail of interoffice memos rather than the orderly flow of structured
data files.

MULTIPLICITY OF STRUCTURAL MODELS

INCONSISTENCY IN DATA REQUIREMENTS

LACK OF INTERDISCIPLINARY AWARENESS

VESTING OF TRADITIONAL VALUES

LOSS OF COMMUNICATION IN THE DATA FLOW

FIGURE 10. ORGANIZATIONAL CONSTRAINTS ON AEROELASTIC DESIGN

As shown in Figure 11, the aircraft design development process may proceed in several phases. The first is the

initial design phase, in which the aircraft configuration is selected. The second phase is advanced design, where

trade studies are performed on a few candidate configurations, and the primary structure is designed and analyzed.
Proposal activities are supported by trade studies in the advanced design phase. Source selection and procurement

of long-lead-time items may have to be based solely on the results from the advanced design studies. In the third
phase, we have the detail design activity. In this stage, a single aircraft configuration has been selected, and de-

tailed design and analysis leading to drawing release and tooling for manufacture are completed. In the fourth

phase, we have the growth design stage of the aircraft design cycle. In this last phase, modifications to an existing
design (fuselage stretch, re-engine, wing extensions, etc.) lead back to Phase III activities.

PHASE I

PHASE II

PHASE III

PHASE IV

CONFIGURATION DESIGN

INITIAL PRELIMINARY DESIGN EFFORT. CONFIGURATION
ANALYSES. BASIC WEIGHTS BREAKDOWN.
THREE-VIEW DRAWING.

ADVANCED DESIGN

ADDITIONAL POINT DESIGNS. TRADEOFF STUDIES.
PRIMARY STRUCTURE LAYOUT AND ANALYSIS.
PROPOSAL EFFORTS.

DETAIL DESIGN
DETAILED DESIGN AND ANALYSIS LEADING TO
DRAWING RELEASE.

GROWTH DESIGN

MODIFICATIONS OF EXISTING DESIGNS (FUSELAGE
STRETCH, RE-ENGINE, WING EXTENSION, ETC).
PROPOSALS. TRADEOFFS. FOLLOWED BY PHASE III
ACTIVITY.

FIGURE 11. BASIC AREAS OF DESIGN ACTIVITY
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In the initial or configuration design stage of the aircraft design process, weights are determined by semi- 
empirical data, and the preliminary aerodynamic design is optimized. A preliminary structural model like the box 
beam model of Figure 12 may be constructed for aeroelastic loads and flutter analysis. These models usually will in- 
volve no more than 300 to 500 degrees of freedom (DOF). Flexibility effects that result from changes in direction in 
the elastic axis and wing-fuselage or tail-fuselage intersections may be estimated or ignored. At a later stage in the 
design process, these "stick" models may be corrected using the results from finite-element models of local portions 
of the aircraft structure as shown in Figure 13. 

300 DEGREES OF FREEDOM 

EQUIRES A BOX BEAM 
NALYSIS TO DETERMINE 

F I G U R E  12. BEAM-STICK M O D E L S  M A Y  BE USED IN P R E L I M I N A R Y  DESIGN 

F I G U R E  13. W I N  G/FUSELAGE INTERSECTION F I N I T E - E L E M E N T  M O D E L  

In the advanced design phase, these stick models and local structures models may be replaced by coarse- 
grid finite-element models like that shown in Figure 14. Typically, these coarse-grid models may employ 3,000 to 
5,000 DOF. The beam stick models may still be used for loads and dynamic modal analysis of high-aspect-ratio-wing 
aircraft. For these configurations, beam models are adequate, providing allowances are made for flexibility effects 
that result from stress redistributions. These stress redistributions, which are a secondary effect in the loads and 
modal ana!yses, are of primary imprtance to  the static strength analyses. Fer this reason, the structura! model for 
static strength analyses includes structural details often omitted or only grossly represented in the dynamics and 
loads model. 

To automate the design process, one must  use common structural models at  each stage of the design process 
and provide a uniform if not consistent means of relating the results from one structural model to those of another. 
This is true for both the sequential design and the simultaneous design process. 
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FIGURE 14. FINITE-ELEMENT AIRCRAFT MODEL USED IN ADVANCED DESIGN

In the sequential design process, a suboptimization is performed to satisfy a subset of the constraints. For

example, one may perform a static strength optimization to resize the structure for a number of the most critical
load conditions. This process may be followed by a flutter optimization to increase the flutter speed for a number of

different payloads and fuel weight conditions. To avoid violating the static strength constraints during the flutter

resizing, one may use the structural sizes found by the static strength optimization as minimum gauge constraints in
the flutter optimization. However, if one is using a detailed finite-element model for static strength optimization and

a beam stick model for flutter optimization, then one is faced with the very difficult task of converting the finite-

element model into an equivalent beam representation and defining the minimum gauge constraints. Also, the joint
flexibility that results from stress redistribution at discontinuities in the elastic axis will be altered by the flutter

resizing process. These problems can be eliminated if one uses the same structural model for both static strength

and flutter optimization.

In the simultaneous design process, both strength and flutter constraints must be satisfied at the same time. It

seems apparent that simultaneous design requires common models for both strength and dynamics work. This, too,

is not without difficulty.

Figure 15 shows one of the models used in a recent Phase III design study. In the detailed design phase, struc-
tural models may use 20,000 to 60,000 DOF, which will pose great challenges for the dynamic and loads analysis.

Figure 16 shows some of the approaches to modal analysis of very large models. These approaches include direct
methods, such as subspace iteration and the Lanczos algorithm, as well as indirect methods, such as component

mode synthesis and successive mesh refinement (modal assembler solver).

Most of these techniques have been used on models as large as that shown in Figure 15. However, the cost of

these analyses continues to be a significant factor. Until these techniques are in routine use on super computers or
low-cost "super-mini's," there will be strong opposition to using these models in automated aeroelastic design.

Figure 17 summarizes some of the challenges that must be met in developing a practical aeroelastic design opti-

mization system. These challenges are as follows:

Fatigue and Damage Tolerance Desiun Criteria - To begin with, one must determine fatigue and damage
tolerance design criteria for use in the preliminary and advanced design phases of the aircraft design process.

Finite-Element Modeler (FEM) Extensions - FEM programs developed for conventional analysis do not pro-
vide details such as design vector definition and design variable linkage data, nor do they provide for broken

member element groups.
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Damage Tolerance in Design - Special analysis procedures must be developed to handle damage tolerance con- 
siderations within the design cycle. In principle, some aspects of damage tolerance analysis can be handled as a sen- 
sitivity analysis. This simple strategy is complicated by a large combination of member groups and load sets. 

Aeroelastic Tailoring with Composite Materials - The strength and stiffness of composite materials may be 
tailored to achieve desired aeroelastic characteristics. However, this advantage of composite materials will not be 
fully realized until experimentally verified failure criteria can be agreed upon. 

22 ,181  DEGREES OF FREEDOM 
8 , 1 6 1  JOINTS 
7 ,952  BARS 
3,530 PANELS 

5 1  TRIANGULAR MEMBRANES 
5 LOAD CONDITIONS 

THE CHALLENGE OF THE FUTURE IS TO COMPUTE MODES 
AND OPTIMIZE MODELS OF THIS SIZE FOR FLUTTER 

F I G U R E  15. F I N I T E - E L E M E N T  A I R C R A F T  MODEL USED IN D E T A I L E D  DESIGN STUDIES 

DIRECT METHODS 
SUBSPACE ITERATION 
LANCZOS ALGORITHM 

INDIRECT METHODS 
COMPONENT MODE SYNTHESIS 
SUCCESSIVE MESH REFINEMENT 
(MODAL ASSEMBLER SOLVER) 

F I G U R E  16. APPROACHESTO M O D A L  A N A L Y S I S  O F  V E R Y  L A R G E  M O D E L S  
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DETERMINATION OF FATIGUE ALLOWABLES AND DAMAGE
TOLERANCE CRITERIA FOR PRELIMINARY AND ADVANCED
DESIGN STRUCTURAL OPTIMIZATION

FINITE-ELEMENT MODELER EXTENSIONS

DAMAGE TOLERANCE IN DESIGN

AEROELASTIC TAILORING WITH COMPOSITE MATERIALS

DETERMINATION OF BUCKLING AND CRIPPLING ALLOWABLES

MODAL ANALYSIS OF VERY LARGE STRUCTURAL MODELS

SPECIAL FINITE ELEMENTS

DEFINITION OF CRITICAL AEROELASTIC LOAD CASES FOR
STATIC STRENGTH

SIMULTANEOUS DESIGN FOR STRENGTH AND FLUTTER

FIGURE 17. AEROELASTIC STRUC'[U_AL OPTilVIIZATION CHALLENGES

Determination of Buckling and Crippling Allowables - Compression allowables may be determined by buck-
ling stress, which is dependent on the design variables. When buckled skin models are used for static strength
analysis, a model dependency results that is inappropriate in modal analysis for dynamics and loads work.

Modal Analysis of Very Large Structural Models - If common models are to be used for static strength and
dynamics, then highly efficient means of modal analysis of very large structural models will have to be devised.

Special Finite Elements - Special finite elements are required for preliminary and advanced design as well as
for structures that use composite materials.

Critical Aeroelastic Load Cases for Static Strength - The determination of critical aeroelastic loads for static
strength involves a large number of load conditions and load cycling.

Simultaneous Design for Strength and Flutter - Sequential and simultaneous design both require common
structural models or complex means of relating modeling parameters from different models.

Added to the above technical challenges are the organizational constraints discussed earlier and the reluctance
to accept change.

The practical stituations described in this paper are changing. Comprehensive computer data bases are being
developed to formalize and speed the transfer of data between engineering disciplines. To do this requires a
dialogue between disciplines and a definition and awareness of common goals. AFFDL and NASA, among others,
are funding development of program systems for automated aeroelastic design. On the horizon loom the super com-
puters, holding out the prospect of eliminating most practical constraints on problem size and computing cost.

The challenge today is not how to solve the engineering problems as much as how to organize the solving of the
engineering problems to take full advantage of the tools that are available.
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OPTIMIZATION APPLICATIONS

The efficient design of aircraft structure involves a series of compromises
among various engineering disciplines. These compromises are necessary to ensure
the best overall design. To effectively reconcile the various technical con-
straints requires a number of design iteratlons, with the accompanying long elapsed
time. Automated procedures can reduce the elapsed time, improve productivity and
hold the promise of optimum designs which may be missed by batch processing.

This presentation includes several examples of optimization applications
including aeroelastic constraints. Particular attention is given to the success or
failure of each example and the lessons learned. The specific applications are
shown in Figure I. The final two applications were made recently.

Program

COPS

TSO

Design
Phase

Conceptual

Preliminary

Configuration

F-15 Stabilator 12

Various Configurations 345

FASTOP Preliminary NASTRAN Beam-Rod Wing 67

NASTRAN

"Sensitivity"

Detail NASTRAN Beam-Rod Stabilator

Figure 1
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COPS ANALYTICAL MODEL

Figure 2 illustrates the modeling of the stabilator in the Computerized

Optimization Procedure for Stabilators (COPS); Reference l describes the procedure.

The analytical model is a single-cell torque box idealized by eight discrete rigid

chord streamwise sections with three mass points per section. Quasi-steady aero-

dynamic forces act at user specified locations in each section. Nondimensional

geometrical design parameters may be specified for taper ratio, thickness ratios

at root and tip chords, aspect ratio, leading edge sweep angle, tip cut-off angle,

pitch axis hinge line angle, pitch axis intersection with the mean aerodynamic

chord (MAC), and spar locations.

Y (Left) Z(+ Down)

Figure 2
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COPS CONCEPTUAL FLOW DIAGRAM

A greatly simplified flow diagram is shown in Figure 3. The procedure synthe-
sizes, from the input data, a stabilator which satisfies all system constraints
except those for flutter and divergence. A systematic perturbation of design vari-
ables for I) torsional stiffness, 2) balance weight, 3) pitch restraint and 4) roll
restraint follows until the aeroelastic constraint is satisfied for minimum addi-

tional weight. The procedure may be used in its basic sequential optimization
scheme, where a new dynamic system is established after each iteration step. It
may alternately be used in its simultaneous optimization mode, where each design
variable is individually and exclusively evaluated from the same initial design
point. The basic COPS program contains a realistic representation for every signi-
ficant aspect of a believable stabilator flutter analysis and is fast enough, on
the computer, to be used as an integral part of more encompassing aircraft systems
optimization programs, as shown in the figure.

Aerodynamic I

System Module

i Satisfies Stablhty Margm and Perform-

ance Requirements and Sizes Surface

Calculates Ld_ and Drag Coefhcqents

Calculates Load Distribution

Sizes Hydraulic Aclualor

ts--K 1• Synthesizes Strength Design StaDilator

• Calculates Shffness Distrlbuhons
III

1
Weight Medule

• Calculates Weight Olstrnbuhon

• Updates Dnstrlbutions for Flutter
Moddicahons

I

|

Structural I

DyMmkcs M oduie

Calcukates Stiffness and Inerha Matrix
Calculates Aerodynamic Matrix

Assess Dynamic Status ot Stab_lator

_Yes N°

Scheme to Sahsly
Flutter

Constraint

• For Minimum

Weight S(abilator

X
'Z

:i

i: o...,.s_I
Design Re-Evaluation

Assesses Effect of Current Stabulator

on Overall System

Re-Evaluates Stabilator Status and

Re-Sizes Stabilator and Aircratl for

Specified Aircraft Performance

/%

b

_3
I

Scheme to Determine |

Overall Ophmum ]Stabilator

• Variation of S{abll_tor Conhgurahon
Parameters

the O

-- -- ator

PayoRy_s [_Ye Payoff
II • Minimum Stabilator m • Optimized Overal_System Parameter Optimized Overall System Parameter

Weight 1or Specified Nondimensionaf Geometry for Variable Geometry Stabllator

,.u,.

Fi gure 3
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COPS EXAMPLE - EARLY CONCEPTUAL DESIGN FOR F-15 STABILATOR

Using the semi-automatic "simultaneous" procedure, the COPS program was used to

calculate the ratios of the change of flutter dynamic pressure to weight change
(AQ/AW) for separate perturbations of stiffness at each of the elastic axis sta-

tions, as shown in Figure 4a. Flutter was calculated for specified levels of AQ/AW
and compared, in Figure 4b, with optimization runs based on a torsional stiffness

distribution proportional to the fourth power of the local chord and separately by
balance weights at the tip leading edge. The balance Weight of approximately 15

Ib is the minimum weight solution. Figure 4c shows the stiffness distributions
for both the C4 and sensitivity approaches.

Sensitivities for Separate
Perturbations of Stiffness

10 100

Comparison of Stiffness
Distributions tor Flutter

AQ/AW

1/in, 2

\

0.1

0.01

0
0

/i E.A, Station

\8

-'E

1 2 3

AW -Ib

(a)

L_2

6

Comparison of Weight for Flutter

10 I I I

"_1 0"I/.IJstrength ]6_ /--_Q/AW=0

8 oo,ioo,
Q 6 --_--_ ....

Ib/in.2 4
)' I I I I
0 C4 stiffness distribution

2 I _ AQ/Aw sensitivity distribution

[3 Balanceweight LE 8th section
0
420 430 440 450 460 470 480

Weight -Ib

(b)

/

Icuto,to

Distribution 1

10 8 Ib-in. 2 '__

0.1

0.01
1 3 5 7 9

E.A. Station

_32.6 Ib C4 Distribulion

Iteratio 5

_-- 20.7 Ib
AQ/AW = 0,03cutoff

(c)

Figure 4
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DETAIL DESIGN OF OPTIMUM F-15 STABILATOR

Two separate configurations were considered for the final F-15 detail design,
as shown in Figure 5a and discussed in Reference 2. The flutter model test results
are summarized in Figure 5b. The 15-1b balance weight produces an overall increase
in flutter speed with Mach number. The snag leading edge produces an overall
increase in flutter speed, similar to that for the balance weight, at low speeds.
However, the speed variation with Mach number is quite different, with the snag
showing an initial sharper drop with increasing Mach number followed by a subse-
quent sharper rise with further Mach number increase. Analyses indicated the
favorable sharper rise to be associated primarily with the aft shift in stabilator
aerodynamic center attributable to the area removed by the snag. The snag offered
a significant weight savings over the balance weight with no effect on subsonic
drag, aircraft stability or flying qualities. A small supersonic drag penalty was
offset by the attendant weight reduction.

Alternate Configurations

Snag /"_-_-_ _ \ \
Leading / _ _ \ \

SquaredTip for 15 Ib
OutboardLeading /4" "

Edge BalanceWeight--/

(a)

1.6

1.2

Normalized
Velocity 0.8

0.4

Flutter Velocity
vs

Mach Number

BalanceWei'ght

Snags[
Unstable .. L'_,_-_ _...._

Stable ..,.-_.q-_

J__ "-Aircraft Envelope

f '_ laar°/gi_lutter
/ i l

0.2 0.4 0.6 0.8 1.0 1.2

NormalizedMach Number

(b)

.4

Figure 5
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AEROELASTICTAILORINGSTUDYCONFIGURATIONS

Studies have been conducted on the use of the directional properties of compos-
ite material to provide design improvements for fighter aircraft as discussed in
Reference 3. The TSO (Aeroelastic Tailoring and Structural Optimization) computer
program, Reference 4, which was developed by the Air Force Flight Dynamics Labora-
tory (AFFDL), was used in these investigations. The configurations evaluated,
shown in Figure 6, covered a wide spectrum of fighter aircraft aerodynamic
surfaces, including I) the F-15 composite wing, 2) a preliminary design horizontal
tail, 3) a prototype aircraft movable outer panel, and 4) a conceptual wing for a
future aircraft. The TSOprogram was validated with the F-15 composite wing which
was designed to have the samedistributed stiffness characteristics as the produc-
tion metal wing. In spite of the structural approximations required by the TSO
program, the predicted aeroelastic properties were surprisingly close to measured
val ues.

Aeroelastic

Tailoring
Studies

J

• Flutter, Strength and Loads J

odynamic Drag _

Figure 6
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AEROELASTIC TAILORING RESULTS

Aeroelastic tailoring can play a significant role in the design of aircraft in
various ways, as indicated in Figure 7. Specific detail is given for each configura-
tion in References 3 and 5.

As currently configured, the TSO computer program is appropriate for use pri-
marily in preliminary design. The restrictive structural modeling requirements of
TSO lead to converged results which are generally qualitative and which must be
liberally interpreted when converting to a design that can be built. The experi-
ence gained in the validation studies of the F-15 composite wing design, however,
indicates that skillful use of the procedure can also yield good results in final
detail design.

F-15 Composite Wing

• Drag Reduction and Increased Roll Effectiveness With No Weight Cost

Preliminary Design Horizontal Tail

• Composite Material Performs Dual Function of Strength and Flutter Balance Weight

Prototype Aircraft Movable Outer Panel

• Optimum Solution Based on Wing Root Pitch Restraint Increases

Conceptual Design Wing

• Significant Wing Twist Offering Potential Aerodynamic Benefits

Forward Swept Wing

• Zero Weight Cost for Divergence

Figure 7
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EQUIVALENT AFT SWEPT WING MODELS

The optimized forward swept wing (FSW) was compared with three equivalent aft
swept wings (ASW),shown in Figure 8,and evaluated for the same design constraints, as
discussed in Reference 5. They are I) an Equivalent Leading Edge sweep, where the
ASW leading edge sweep angle is the negative of the FSW leading edge sweep angle,
2) an Equivalent Elastic Axis sweep, and 3) a Flipped Wing. The wing geometry
applies to all four wings. The wings were shifted longitudinally to give the same
locations for the mean aerodynamic chords (MAC). The same aerodynamic and struc-
tural models were used for all four wings. One of the apparent effects of the
equivalent leading edge design is a structural bending axis that is about 20%
shorter than the axis of the FSW. The bending axis for the flipped wing design, on
the other hand, is about 12% longer.

MAC

ALE = _ 30.30 °
ATE --53.72 °
LEA= 221 in.

Equivalent
Leading Edge

ALE=30.30 °
ATE = -- 10.98 °
LEA= 176 in.

Equivalent
Elastic Axis

ALE=48.45 °
ATE= 19.31 °
LEA= 221 in.

Flipped Wing
ALE = 53.72 °
ATE = 30.30 °

LEA= 248 in.

Wing Geometry
NACA 64AOXX

Theo Area

Aspect Ratio
Taper Ratio
Span/2

CR (Theo)
CT
Mean Aero Chord

YMAC
t/c (Root)
t/c (Tip)

382.92 ft2

3.80
0.15
228.9 in.
209.5 in.
31.4 in.
142.5 in.
86.3 in.
0.052
0.050

Figure 8

55



COMPARISONOF FORWARDSWEPTWINGWITH
THREEEQUIVALENTAFT SWEPTWINGS

Each of the ASWswas optimized by TSOand the results are shown in Figure 9.
The FSWhas the highest torque box skin weight and the Equivalent LE ASW,which is
essentially a straight wing such as on the F-18, has the lowest weight. This
weight advantage of the nearly straight wing is a direct result of the reduced
structural axis length, which can be seen by comparing the bending momentnormal to
the elastic axis at the fuselage moldline. The air loading is also most favorable
for the design of the fuselage carry-through structure on the FSWand the straight
wing, as shown by considering both pitch and roll momentsat the wing root. The
ASWsare divergence free but have an active flutter constraint. The FSWhas favor-
able flutter properties, primarily because the frequency of the wing bending mode
changes very little with increasing airspeed. Coupling with the torsion modestill
occurs, but at a higher velocity than for the ASWs.

CompositeLayerOrientation
- deg(81, 82, (93 With
Respect to Bending Axis)

Torque Box Skin Weight - Ib

Wash-in Angle at Tip - deg
(Elastic)

Total Panel ]I Load

Roll Moment at Panel 11Root
About BL 60.8 - in.-IbxlO 6

Pitch Moment at Panel ]I

Root About Xo - in.-Ibx106

Bending Moment Normal to
Elastic Axis at Moldline -
in.-IbxlO 6

Divergence Velocity - kt
(Required Velocity = 912)

Flutter Velocity - kt

Aileron Roll Effectiveness=
Total RM/Rigid RM

Flexible/Rigid Panel ]1
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-80.9,
+11.1,
+14.5
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Leading

Edge
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1.19 1.01
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+45
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454

NA

76O

0.29
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Figure 9
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FASTOP APPLICATION TO NASTRAN BEAM-ROD

DYNAMIC MODEL

The FASTOP (Flutter and Strength Optimization Program) computer program (Refer-

ence 6) which was developed by the AFFDL, has been applied to a beam-rod vibration

and flutter idealization of a wing/store flutter model. The chosen configuration

for this detail design application was a wind tunnel model with two stores on an

outboard pylon and wing tip missile on,as described in Reference 7. The NASTRAN model

is shown in Figure lO. The NASTRAN beam elements are based on GJ and El stiffness

distributions, referred to an elastic axis, with similar distributions for the lead-

ing and trailing edge control surfaces and the missile. There are rigid bars to
connect the various components with the proper boundary conditions. Concentrated-

elasticity members are used to represent integral springs, e.g. actuators, wing

fold, missile/launcher/wing interfaces and wing/fuselage attachment. Structural

optimization is not feasible because FASTOP does not calculate stresses in the beam
elements. Steady air loads are not required because the starting point is an

existing strength design. It was felt that the chances for success would be excel-
lent for this simple straightforward model which has only 147 structural members.

Figure 10
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Many approximations
ing the NASTRAN model to

FASTOP ANALYTICAL CONSIDERATIONS

and computational difficulties were encountered
FASTOP, as indicated in Figure II.

in convert-

Strength Analysis

• Concentrated Elasticity Converted to Pseudo Rigid Beams

• Rigid Bars Converted to Pseudo Rigid Beams

• Grid Points Renumbered to Satisfy Bandwidth Requirement

• Trailing Edge Control Surface Actuator Beams Placed in Plane of the Wing

• Pylon and Stores Eliminated From Analysis

Vibration Analysis

• Diagonal Inertia Matrix to Satisfy Positive Definite Check

• Vibration Calculated for Only 20 Normal Modes

• Frequency Comparison Better Than Expected Considering Structural Compromises

Unsteady Aerodynamics

• Three-Dimensional Missile Model Converted to Flat Plate to Satisfy Interpolation Procedure

Flutter Analysis

• Non-Optimum Weight Factors Defined for Each Beam Element

• Resizing Permitted Only for Main Torque Box and Control Surfaces

Figure 11
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FASTOPFLUTTEROPTIMIZATIONRESULTS

The results shown in Figure 12 look promising until one examines the redesign
changes in the individual elements. The first 3 design cycles add increments of
weight to the structural elements in proportion to their flutter velocity deriva-
tives, _Vf/_Wi, provided the derivatives are larger than an arbitrary minimum.
This arbitrary minimum, which is not specified by the user, leads to an uneven span-
wise distribution with peaks and valleys. It suffers from the lack of a built-in
French Curve, which would smoothout the peaks and valleys to create a near-optimum
design that could be built. The design cycles 4-10 continue the optimization by
adjusting the weight distribution, while maintaining the desired flutter velocity.
This weight adjustment reduces the increments along the wing torque box and builds
up a large mass at the leading edge of the wing. The final design has only a large
mass at the leading edge, near mid span, much like a forward mounted engine on a
transport aircraft wing.

Normalized
Flutter
Velocity

1.0

0.9

0.8

10 _,_ _ _,_
9876 5 4

150

Weight Change - Ib

2OO 250

Figure 12
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SENSITIVITY ANALYSIS DATA PREPARATION

This approach to flutter optimization is based on a "sensitivity" technique
similar to that first explored in conjunction with the development of the COPS
program, which is described in Figure 4. The study was done in an extremely short
elapsed time using existing flutter data sets for a beam-rod stabilator idealization
based on NASTRAN and Doublet lattice. The only new data required are the GJ versus
number of 45 ° plies per skin for several elastic axis (EA) stations, as shown in
Figure 13a. With these data the change in GJ versus elastic axis station can be
calculated for various weight increments, as shown in Figure 13bo
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Figure 13
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SENSITIVITY OPTIMIZATION RESULTS

The steps in the sensitivity optimization study are given in Figure 14. Each

step of the redesign is based on batch submittals of the NASTRAN flutter routines,

followed by a conscious choice for the elements to be used in the subsequent step.

After step 4 it is possible, by the use of engineering judgment, to specify a

redesign distribution which satisfies the flutter requirement and is practical to

build. These studies are state of the art in all respects and are quicker, cheaper

and more accurate than possible with any currently available automatic optimization

procedure.

Step1 Step2 Step3
InitialDesign Redesign1 (8 Ib) Redesign2 (12 Ib)

AW= 2 Ib Increments AW= 2 IbIncrements _,W= 2 Ib Increments

Station VF* Redesign
W

13 0.864

12 0.865

11 0868

10 0.868

9 0.873

8 0.872

7 0.879 26 0.877 2

_" 5 0.881 2

_4 0.878 2

Redesign 1 8 Ib

Step4
Redesign3 (16 Ib)

_I,W=1 Ib Increments

Station VF Redesign
W

13 0.983

12 0.984

_Fll 0.986 I

t,10 0.985 1
9 0.982 2

8 0.982 2

7 0.983 2

6 0.983 2

5 0.984 4

4 0.984 4

Redesign 4 18 Ib

*vF is normalizedto Vrequlred

Station VF Redesign
W

13 0.936

12 0.937

11 0.940

!0 0.940

j-9 0.945 2
18 0.943 2

7 0939 2

6 0.939 2

5 0.943 2

4 0.944 2

Redesign 2 12 Ib

Step5
EngineeringJudgment

TestCase

Station VF Redesign
W

13

12

11 1

10 1

9 2

8 2

7 3

6 3

5 4

4 4

Redesign 5 20 Ib

MF=I.0

Station VF Redesign
W

13 0.961

12 0.963

11 0.965

10 0.965

9 0.961 2

8 0.961 2

7 0.964 2

6 0.964 2
,_ f5 0.968 4

14 0.969 4

Redesign 3 16 Ib

Step6
Verification

Redesign5 (20 Ib)
AW = 1 Ib Increments

Station VF Redesign
W

13 1 003

12 1.004

11 1.003

10 1.003

9 1.003 Step 5

8 1.002 is
OK

7 1.002

6 1.002

5 1.0O3

4 1.004

Figure 14
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CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are appropriate in the area of flutter optimization.

I) COPS, or a similar routine, is suitable for use in conceptual design for
individual lifting surfaces when the geometry is undefined.

2) TSO is suitable for use in preliminary design for individual lifting
surfaces when the geometry is defined but there is still no well-defined
structural model. Limitations in the structural model allow only limited
use in detail design.

3) FASTOP is based on a sound concept but is not general enough for use in
detail design and is too difficult to use in preliminary design.

4) NASTRAN based semi-automatic sensitivity techniques are the preferred
approach for detail designs when the structural model is well defined but
the flutter speed is deficient.

Since NASTRAN is the accepted industry standard for structural analyses it
seems appropriate to either I) incorporate flutter optimization routines in NASTRAN
or 2) ensure that any alternate program developments have a complete one.to-one rela-
tionship to NASTRAN in all respects, and are designed to include generation of input
data by graphics procedures.

Conclusions

• COPS Is Suitable for Conceptual Design

• TSO Is Suitable for Preliminary Design

• NASTRAN Sensitivity Technique Is Suitable for Detail Design

Becommendations

• Incorporate Flutter Optimization in NASTRAN

• If Alternate Procedurej Ensure Complete One-to-One
Relationship to NASTRAN Including Graphics Generation of
Bulk Data

Figure 15
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AIRCRAFT DESIGN PHASES

The complete aircraft design process can be broken into three phases of in-

creasing depth: conceptual design, preliminary design, and detail design. Con-

ceptual design consists primarily of developing general arrangements and selecting

the configuration that optimally satisfies all mission requirements. The result

of the conceptual phase is a conceptual baseline configuration that serves as the

starting point for the preliminary design phase.

The conceptual design of an aircraft involves a complex trade-off of many inde-

pendent variables that must be investigated before deciding upon the basic con-

figuration. Some of these variables are discrete (number of engines), some repre-

sent different configurations (canard vs conventional tail) and some may represent

incorporation of new technologies (aluminum vs composite materials). A particular

combination of these choices represents a concept; however there are additional

variables that further define each concept. These include such independent vari-

ables as engine size, wing size, and mission performance parameters, which must be

selected before a particular configuration can be evaluated. Generally, these

additional variables are chosen to optimize each concept before selecting a final

configuration.

Missio n _'_

equirements ,/
!
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/
• Optimization _ _
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OPTIMAL VEHICLE SELECTION BY PARAMETRIC DESIGN

The principal analysis tool used during the conceptual design phase is the

sizing program. At Lockheed-Georgia, the sizing program is known as GASP

(Generalized Aircraft Sizing Program). GASP is a large program containing

analysis modules covering the many different disciplines involved in defining

the aircraft, such as aerodynamics, structures, stability and control, mission

performance, and cost. These analysis modules provide first-level estimates

the aircraft properties that are derived from handbook, experimental, and his-

torical sources.

To make a run of the sizing program, the engineer develops a data set defin-

ing the fuselage geometry, the mission profile, a candidate propulsion system,

the general arrangement of the components, the extent of new technologies to be

incorporated into the design, and the values for the independent design variables.

The sizing program provides a complete weight breakdown of the airplane, aerody-

namic properties, mission and airport performance, center of gravity ranges,

and cost data.

Mission Inputs

M

Installed Engine I

Data I
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Input
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• Wing Loading
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OPTIMAL VEHICLE SELECTION (cont'd)

To optimize a design, the engineer must choose a selection criteria such as

minimum weight and determine design constraints that define feasible designs.

He is then faced with the classical design optimization problem: find the optimal

values of the independent design variables that minimize the selection criteria

and satisfy the design constraints. Without some automated optimization method,

this process is generally performed by plotting the results of the sizing program

obtained by parametically varying the independent variables throughout their

ranges. For a problem involving 4 design variables, this may result in as many

as 256 runs of the sizing program. This can be a very time-consuming process when

many different designs must be investigated.
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AUTOMATED CONCEPTUAL DESIGN SYSTEM

This paper describes our experiences in combining a numerical optimization

algorithm with the aircraft sizing program to obtain an automated conceptual de-

sign system. The structure of the system is shown below indicating that the

optimizer functions as a black box interacting with the sizing program, which pro-

vides the required function values. Such a structure allows substitution of any

appropriate optimization algorithm with very little impact on the sizing program,

or changes to the sizing program with very little effect on the optimizer.

In the past decade, advances in optimization methods have produced several

algorithms that have proven to be both reliable and robust in a number of engi-

neering applications. One of these is the Generalized Reduced Gradient (GRG)

method. The GRG method is an extension of the reduced gradient method for linear

constraints to the nonlinear case from which highly robust and efficient imple-

mentations (refs. I, 2, 3) have been produced. It is this method that we have

chosen for the optimizer.

Input Sizing
Data

/
Input Opt.

Data

Conceptualsystem Design l

Optimizer Sensitivity
Analysis

I Program
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THE NONLINEAR PROGRAMMING PROBLEM

The general nonlinear programming problem (NLP) can be stated as shown below.

The function f(x) is a scalar function representing the criteria to be optimized

and x is a vector of design variables. The h(x) functions represent equality

constraints that require specific combinations of the design variables, and the

g(x) functions represent inequality constraints that define feasible regions in

the design space. All functions are assumed to be nonlinear.

Minimize f(x); x = [ Xl ,x2' --- ,XN ] T

Subject To

gj(x) > 0

hk(X) = 0

j= 1,2, ...,J

k= 1,2, ...,K

Where

f(x) = Objective Function

x = A Column Vector Of Design Variables

gj(x) = Inequality Constraints

hk(X) = Equality Constraints

xO = Starting Point

x k = Candidate Point
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GENERALIZED REDUCED GRADIENT METHOD

The GRG method restates the NLP in the form shown below, where the vectors xL

and x 0 represent the lower and upper bounds on the design variables x. The inequality

constraints are included as equality constraints through the addition of slack vari-

ables. The parameter M represents the total number of constraints. The constraints

include only the functional constraints; variable bounds are accounted for separately

to allow for a more efficient handling of this special class of constraints.

The basic strategy of the GRG method is derived from trying to use each equality

constraint hm(X) to eliminate a design variable from the problem. However, for most
engineering problems, the constraints are too complex to allow this substitution.

The GRG method accomplishes this by employing the Implicit Function Theorem.

Minimize f(x), x = [Xl, X2,...,xNJT

Subject to

hm(x) =0

xL<<x<x U

m=l,2,...,M

Strategy:

Solve each hm(X) explicity for a Variable and Substitute

into f (x).

Problem: Not always Possible for Complex Engineering
Functions or Simulations.

Solution: Do It Implicity.
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DERIVATION OF THE REDUCED GRADIENT

Consider the following strategy, whose foundations can be found in the simplex

method of linear programming. Divide the design vector x into two classes, non-

basic or independent (z) variables and basic or dependent (y) variables, as shown

in the figure, where Q = N - M. The search for the optimum will occur by search-

ing in the design space of the nonbasic variables and the basic variables will be

used to satisfy the constraints. A gradient vector for this new problem can be

obtained by introducing the division of the design variables into the objective

and constraint functions and following the steps shown in equations (i) to (3).

The reduced gradient defines the rate of change of the objective function

with respect to the nonbasic variables with the basic variables adjusted to

maintain feasibility. In the presence of linear constraints, equation (3)

represents the changes necessary in the basic variables for a given change in

the nonbasic variables. Additional adjustment is necessary in the nonlinear

situation. Conceptually, the above derivation corresponds to a transformation

of the GRG problem into one having the following form:

Minimize: F(z) z = (z i' z 2''''' Zq) T

1 u
Subject to: z 5 z _ z

where the basic variables y have been eliminated from the original problem by

using the constraints h m (z,y) = 0 to solve for y in terms of z. The gradient

of F(z) is represented by the reduced gradient, and the necessary equations for

y in terms of z represented by equation (3).

Divide X into two classes, dependent and independent

x = [y,z]T

Y = [Yl, Y2 ..... YM] T Dependent Variables

Z - [z, z2 ..... zQ] T Independent Variables

Calculate the first variation of f(X) and H(x) using Z and Y

df(x) - Vzf(x)rdz + Vrf(x)rdy (1)

dH(x) = VzH(X ) dz + VyH(x) dy - 0 (Z)

Solve (2) for dy

dy - [VyH(x)]-' XTzH(X ) dz (3)

Substitute (3) for dy in (1) to arrive at the REDUCED GRADIENT

Reduced Gradient VRF(z )

V.F(z) T -- Vzf(X) T - V,f(x) T VvH(x)-' VzH(x ) (4)

The Reduced Gradient defines the gradient for the new

vedzLced problem

Minimize F(z), z - [z,, z 2, ... ,z,] T

Subject to z _•z_z U

the change in Y necessary to maintain feasibility is defined by
equation (3) for linear constraints.
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CONVERGENCE PROPERTIES

A necessary condition for the existence of a local minimum of an uncon-

strained nonlinear function is that the elements of the gradient vanish.

Similarly, a local minimum of the reduced problem shown in the previous figure

occurs when theelements of the reduced gradient satisfy the conditions shown

below.

Points that satisfy these conditions satisfy the Kuhn-Tucker conditions

for the existence of a constrained relative minimum of the original NLP prob-

lem (ref. 3). An additional benefit of this method is that the Lagrange multi-

pliers are calculated in the course of calculating the reduced gradient vector.

Convergence Conditions

'<0 ifz.=z, u
I I

I

> 0 if zt = z_

= 0 otherwise

i = 1, 2, 3, ... ,Q

When this conditon holds, the corresponding point X satisfies
the Kuhn-Tucker conditions for the existence of a iocal

constrained minimum of the original probiem.
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GENERALIZED REDUCED GRADIENT ALGORITHM

The basic steps of the GRG algorithm are given in this figure. The method

looks very much like any gradient based method, with some exceptions. The search

directions for the nonbasic variables are based on the reduced gradient vector

and initial directions for the basic variables are then calculated from equation

(3). In the calculation of the nonbasic direction any gradient-based search

method, such as conjugate gradient or variable metric, may be used.

The line search phase is also similar, except additional logic is also re-

quired to adjust the basic variables and determine when a new constraint

is encountered. The basic variable adjustment occurs in the presence of nonlinear

constraints. As we move along the search direction defined for the nonbasic vari-

ables and calculated from equation (3) for the basics, we can expect, for non-

linear constraints, that the trial points will violate the constraints. To

maintain feasibility, an adjustment of the basic variables at each trial point is

undertaken to get back to the constraint surface before evaluating the objective

function. During this adjustment the independent variables are held constant.

The line search is terminated by one of the following conditions: a relative

local minimum was located along that search direction, a new constraint was

encountered which limited the search, or adjustment of the basic variables to

maintain feasibility was not possible at some trial points.

Identify h_dependent and 1

Dependent Variables !

-_I Ca_culate Vr F(X) I

yes

Calculate Search Direction Based

on V r F(X)

Minimize Along Direction forIndependents

i
_Adjust Dependent Variables _
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DEPENDENT VARIABLE ADJUSTM/_NT

This figure depicts the adjustment of the dependent variable Yl during the

line search phase of the GRG algorithm. Here we have taken a step along the

search direction from x°. Holding the independent variable zI constant, we now

adjust Yl to get back to the constraint h(x).

Z
I

f(x)=lO00
)=900
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METHODS FOR DEPENDENT VARIABLE ADJUSTMENT

A modified Newton method is usually employed to adjust the basic vari-

ables during the line search. The iteration sequence is given below, where AO
is the initial inverse of Vy h(x) used at the start of the GRG iteration to
calculate the reduced gradient and t is an iteration of Newton's method.

The modified Newton method has been used in all current implementations

of the GRG algorithm. This is due primarily to the substantial savings in com-

putation time obtained by avoiding successive reformulations of the Jacobian

inverse. However, the major drawback of the method is that it does not possess

the convergence rate of the classical method obtained by evaluating the Jacobian

and its inverse at every Newton iteration. Poor convergence of the Newton method

can lead to insufficient progress being made during a line search, which may

hinder convergence of the algorithm to the optimal solution.

Two factors that have a major influence on the convergence are the approxima-

tions to the basic variables during the line search and the inaccuracies of using the

inverse AO. Suggestions for improving the former have appeared in Lasdon (ref. 2),

and Gabriele and Ragsdell (ref. 3), and both offer improvements in convergence.

Techniques for improving the inverse A0 have appeared in the literature
for solving nonlinear systems of equations. Broyden's method (ref. 4) is one of

these methods and is summarized below. This method is used in our implementation
of the GRG algorithm.

MODIFIED NEWTON METHOD

yt+l= yt _ Ao H(z k, yt )

z k = fixed values of independents

A o = initial inverse of V H(x) used in calculating Vrf(x )

BROYDEN'S METHOD

The inverse Jacobian matrix A is updated at each iteration by

A T TAi+ I=A_-( i+,v -pfil)piAi/(pl TAivl)

v i = H(z k, yt+1 ) _ H(z k, yt )

Pt = --AL H( zk, yt )

t+l yty = + s,p i
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CONCEPTUAL AIRCRAFT DESIGN PROBLEM i

We will now discuss two example problems that demonstrate the effectiveness

of this method for conceptual aircraft design. The first problem is typical of

the type of problem that is generally solved very early in a conceptual study.

The number of design parameters and constraints is small (ref. 5) but is large

enough to preclude the use of graphical techniques.

In this problem we are required to minimize the takeoff gross weight (TOGW)

of a transport aircraft that will be required to fly a simple climb-cruise mission.

The design variables are cruise altitude (H), wing loading (W/S), wing aspect

ratio (AR), engine cruise power setting (PS), and wing sweep (SWEEP). The con-

straints and variable bounds are shown in the figure.

This problem posesses some interesting scaling problems that must be ad-

dressed before we can be sure a numerical optimization technique can be effec-

tively applied. The variable scales range from multiples of i000 for altitude

to less than i for power setting. The constraints range from values less than

i for lift coefficient to thousands of feet for takeoff distance. The engineer

must be sensitive to these differences when establishing convergence criteria

and constraint tolerances. The algorithm should be able to provide some help

and should be as insensitive to scale as possible. This is more true of the

GRG algorithm than some other available algorithms such as the penalty function
based methods.

Minimize: TOGW(H, W/S, AR, PS, SWEEP)

Subject to:

Cruise C L __C L limit

Fuel Volume Ratio __ 1.05

Take off Distance __ 10500 ft.

Rate of Climb =>300 fpm.

Approach Speed __ 150 knots

31000 __ H __ 40000 ft

90 w/s
6 __AR __ 14

.7 __ PS __61.

10 __ Sweep __635 deg.
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PROBLEM i RESULTS

The results shown in the figure were obtained using a modified version of the

OPT program (ref. 5). All variables were scaled between 0. and i0. followed by

a scaling of the objective and constraint partials using the approach developed

by Root and Ragsdell (ref. 6). Each constraint was scaled by the engineer to avoid

trying to obtain unreasonable values when the constraints were active.

The final solution has three functional constraints active and one variable

bound active, leaving one degree of freedom. The problem terminated with the norm

of the reduced gradient below the tolerance.

The functions evaluation refers to the number of times the sizing program

was called. This is an important quantity because the time spent performing a

function evaluation using the sizing program far outweighs the time spent by the

optimizer generating trial points. This number compares favorably with that re-

quired to perform the analysis graphically. This solution required about 2-3 hours
of elapsed time.

To solve this problem using a graphical technique such as carpet plotting

would require approximately 4 calls to the sizing program for each design variable,

or 1024 aircraft sizings. Even if we were to solve this problem using only 4 de-

sign variables, we would require about 256 calls to the sizing program. In addi-

tion to this, we would have to add the time required to plot and solve for the

optimum. For a problem of this size we can expect an experienced engineer to take

1 to 2 days.

Start Pt Final

H 33000 31000

W/S 120 154.1
AR 9 7.6
PS .9 .91
SWEEP 20 25.5

TOGW 530,278 500,737

Iterations
Functions Eval.

7
73

Active Constraints: L

X t )

constraints 3,4,5
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PROBLEM i ITERATION HISTORY

As can be seen from this figure, the progress to the optimum was fairly rapid.

A review of the output produced by the optimizer would show that each 'kink' in the

curve (iterations i, 3 and 4) corresponds to one of the constraints being encoun-

tered. This points to the strength of the GRG method for engineering problems;

as it locates a constraint or the intersection of two or more constraints, it

can easily track or follow that constraint to an optimum. In aircraft design, our

optimal design points generally lie on one or more constraints.

O
O
O_

0
0
O.
0
0

0
o
0
0

0

I I
1 2

I I I

3 4 5

ITERATIONS

I I I
6 7 8
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SENSITIVITY ANALYSIS

Another important feature of the GRG algorithm is the generation of the

Lagrange multipliers. The Lagrange multipliers allow the engineer to check the

sensitivity of the objective function to changes in the active constraints.

For this problem, the lower limit on cruise altitude was set at 31000 feet, and

the resultant optimum altitude was at this limit. Using the Lagrange multiplier

printed for this constraint, the engineer can use the procedure shown below to

estimate how much the optimum objective function value would change if he were to

lower the limit to 30000 feet. We see that the estimated change from the sensi-

tivity analysis is 499,251 Ib, which compares favorably with the result (498,945

Ib) obtained by re-optimizing the problem with the new lower limit. Making the

Lagrange multipliers available to the engineer allows him to interpret the results

of his optimization more effectively and have more confidence in the results pro-

duced by the optimizer.

Change in optimal value of f(x) can be estimated by:

A f = ttj A gj

where ttj = Lagrange multiplier

Ag_ = change in active constraint

For our problem, lower bound on x, is active with a

corresponding multiplier value

tz_ = 1.47531

Change lower bound from 31000 to 30000, A gl = --1000

New optimal f(x)= 499,251 lb. from above analysis

Re-optimization produces f(x) = 498,945 lb. ( 0.06 % difference)
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CONCEPTUAL AIRCRAFT DESIGN PROBLEM 2

The second example problem demonstrates an expansion of the original problem

to allow for optimizing and balancing of the aircraft in one step. In the first

problem we presented, the balance and loadability of the aircraft were ignored.

Usually the engineer fixes values for the variables that effect the balance of

the aircraft at the start of the optimization, performs the optimization, then

checks the balance of the aircraft. If the aircraft is not balanced, changes in

the balance parameters are made and the problem is re-optimized. This continues

until he produces a balanced, optimal design. For most conventional configura-

tions, this occurs in about 2-3 cycles of this process. For unconventional con-

figurations for which there is little experience, balancing may take considerably

longer.

In this problem we have included the balance parameters, wing position, main

gear position, and horizontal and vertical tail coefficients as design variables.

We also have included eight additional constraints that will define the balance

of the aircraft. This problem will allow us to balance the aircraft at the same

time that we optimize the other system parameters. This eliminates the need to

perform the above cycle of re-optimization and provides an effective method by

which stability and control requirements and loadability requirements can be

integrated within the sizing process. The disadvantage to this approach is that

we have almost doubled the number of variables and possible active constraints

that the optimizer must handle.

Minimize: TOGW (H, W/S, AR, PS, SWEEP, WING POSITION,
MAIN GEAR POSITION, HORIZONTAL AND
VERTICAL TAIL COEFFICIENTS )

Subject to:

Cruise CL <- C L limit

Fuel Volume Ratio ___1.05

Take off Distance -< 10500 ft.

Rate of Climb _ 300 fpm.

Approach Speed __ 150 knots

Forward and Aft C.G. limits required for S&C

Minimum Vertical Tail Size for Engine Out and
Control

Minimum Nose Gear Load under Critical Loading
Conditions (5)
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PROBLEM 2 RESULTS

The results for this larger problem are shown below. (The design concept is

different from the previous example, therefore comparison of weight is meaning-

less.) Again, this problem presents a challenge in variable and constraint

scaling for the optimizer that was handled in the same manner as for problem i.

As can be seen, the number of function evaluations is still low relative to

the size of the problem. The majority (117) of the evaluations were spent cal-

culating the numerical gradients.

In addition to the lower limit on altitude and the rate of climb specifica-

tion, the active constraints for this problem were the three stability and control

constraints (6, 7 and 8) on the tail sizes, and the minimum nose gear load under

one of the 5 critical loading conditions (constraint 13). This last constraint

contributes mostly to limiting the main gear location. This solution corresponds

to within .5% of a result obtained using the old method described earlier.

Start Pt Final Pt

H 32000 31000
w/s 14o  54.t
AR 6.5 7.6
PS .9 .91
SWEEP 30 25.5
WING POS. .463 .479
M.G. POS. .697 .652
V .655 .524

H

V .090 .079
v

TOGW 1,146,220 1,108,335

Iterations
Functions Eval.

Active Constraints:

13
189

L

X 1 ,

constraints 4, 6, 7, 8, 13
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PROBLEM 2 ITERATION HISTORY

The figure below illustrates that the method made good progress toward the

optimum and was close after about seven iterations. The problem terminated again

with the norm of the reduced gradient below the selected criterion. The elapsed

time for this problem was between 3-4 hours. The advantage here is that the

final optimal design Is also an aircraft that is acceptable with respect to sta-

bility and control and loadability requirements. This provides a valuable design

tool for those new concepts or configurations that prove difficult to balance.

O
O
O

0

0
Q

0
I ' I I l

1 2 3 4
I I I I I I I I I I
5 6 7 8 9 10 II 12 13 14

ITERATIONS
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CONCLUSIONS

We have seen from these two examples that numerical optimization provides

substantial improvements in designer productivity over graphical techniques.

This allows the designer to investigate many more designs and concepts at a

very crucial time during the design process.

In our experience, the GRG algorithm provides a very reliable method for

conceptual aircraft optimization. The automated conceptual design system is used

on a daily basis at Lockheed in all conceptual design studies. The basic ability

of the method to easily locate optimum points that lie on constraint boundaries

appears to be well suited to this type of problem.

We have seen in the second design example that optimization can be used to

help solve design problems in which we have limited design experience. In fact,

we can now use optimization to formulate new design methods in areas in which it

is difficult to understand the interaction among design parameters and new tech-

nologies or concept. This is particularly true in conceptual aircraft design, in
which innovation is more or less the rule.

The automated conceptual design system is used by engineers who are not opti-

mization experts. These engineers have been trained in how the optimizer works and

how to evaluate the results. But they often still require help in the development

of new formulations or in resolving whether the optimizer has truly reached a so-

lution. For these situations our experience suggests that someone with a strong

optimization background should 5e a member of any conceptual design study.

• Numerical optimization provides substantial improvements
in designer efficiency over manual techniques.

• The GRG method is a reliable method for conceptual
aircraft optimization.

• Numerical optimization can help solve difficult design

problems where conventional wisdom is lacking.

• A team concept employing an optimization expert and

an experienced designer is essential.
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. .  

OPTIMUM PRELIMINARY DESIGN OF TRANSPORTS 

OPDOT (Optimum Pre l iminary  Design of Transpor t s )  i s  a computer program developed 
a t  NASA Langley Research Center f o r  eva lua t ing  the  impact  of new technologies  upon 
t r a n s p o r t  a i r c r a f t  (Ref. 1 ) .  For example, i t  provides  the  c a p a b i l i t y  t o  look a t  con- 
f i g u r a t i o n s  which have been r e s i zed  t o  take  advantage of a c t i v e  c o n t r o l s  and provide 
an i n d i c a t i o n  of economic s e n s i t i v i t y  t o  i t s  use. Although t h i s  t o o l  r e t u r n s  a 
conceptual design conf igura t ion  as i t s  output ,  i t  does not  have the  accuracy, i n  
abso lu t e  terms, t o  y i e l d  s a t i s f a c t o r y  point  des igns  f o r  immediate use by a i r c r a f t  

r a t i o n s  while  varying technologica l  assumptions has  been demonstrated t o  be h igh ly  
r e l i a b l e .  Hence, OPDOT i s  a use fu l  t o o l  f o r  a s c e r t a i n i n g  the  s y n e r g i s t i c  b e n e f i t s  of 
a c t i v e  c o n t r o l s ,  composite s t r u c t u r e s ,  improved engine e f f i c i e n c i e s  and o t h e r  
advanced technologica l  developments. 

L 

manufacturers.  However, the  r e l a t i v e  accuracy of comparing OPDOT-generated configu- + 
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OPTIMAL DESIGN METHODOLOGY

The approach used by OPDOT is a direct numerical optimization of an economic

performance index. A set of independent design variables is iterated, given a set of

design constants and data. The design variables include wing geometry, tail geome-

try, fuselage size, and engine size. This iteration continues until the optimum

performance index is found which satisfies all the constraint functions. The analyst

interacts with OPDOT by varying the input parameters to either the constraint func-

tions or the design constants. Note that the optimization of aircraft geometry para-

meters is equivalent to finding the ideal aircraft size, but with more degrees of

freedom than classical design procedures will allow.
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NELDER-MEAD SIMPLEX PROCEDURE

Numerical optimization logic has been the focus of research in many disciplines

for some time. For OPDOT, an algorithm was desired that would not require the

constant supervision of the designer. A variety of gradient methods applicable to

aircraft design, as well as a feasible direction/search method coupled with a

gradient method for the final stage, were considered. But studies indicated that

most methods suffered from numerical difficulties when analytical equations were not

available to provide gradients, as well as initialization problems when the number of

constraints was large with respect to the number of design variables. To overcome

these difficulties, a direct sequential search simplex algorithm (the Nelder-Mead

simplex procedure, Refs. 2 and 3) was utilized. This procedure is characterized by

its adaptive nature, which enables the simplex to either reflect, extend, contract,

or shrink to conform to the properties of the optimized function. Further, unlike

most optimization procedures, this procedure approaches the optimum by moving away

from "bad" values of the objective function, as opposed to trying to move directly

towards the optimum. The most appealing features of the procedure from the

designer's point of view are its reliability and its robust convergence (except in

regions of the design variables with low gradients of the performance index).
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f
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PERFORMANCEFUNCTIONFLOWDIAGRAM

The performance index in OPDOTis computedby having a candidate configuration
"fly" an entire mission while satisfying reserve fuel requirements. Industry statis-
tics are used for estimatinE weights and costs. The stability and control analysis
used is similar tO Datcom-type capabilities and the program computes the interference
drag in a general way, making the performance index sensitive to tail sizing consid-
erations. The flight profile is a multiple-step model of a suboptimal cruise/climb
for best fuel efficiency.
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METHODOLOGY FOR CONDUCTING SENSITIVITY STUDIES

A sensitivity study is performed by inputting a set of problem parameters and

selecting an initial set of independent design variables. OPDOT finds a solution,

and that configuration is saved for later comparison. The analyst then systematic-

ally varies a design constant or constraint function and saves each optimum design.

A locus of these optimum designs can then be plotted as a function of the parameter

in question. This plot is used to illustrate the sensitivity of a design to the

application of a new technology, with each point representing a transport design which

includes the maximum synergistic benefits available for the set of inputs specified.
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FLYING QUALITIES STUDY

One study that was made using OPDOT (Refs. 4,5) was the evaluation of the impact

of minimum acceptable flying qualities upon aircraft design. This is the prime

factor which influences aircraft design when RSSAS systems are considered. It is

assumed that an RSSAS system will augment the flying qualities up to more than

acceptable levels, but provisions must be made in the event the autopilot/augmenta-

tion system fails. Transport aircraft will generally have mechanical back-ups, so a

given configuration should have sufficient unaugmented stability to ensure that a

flight can be completed after a set of failures. Clearly the unaugmented stability

requirements, in effect, specify the inherent aerodynamic stability characteristics

of a configuration. OPDOT will give designers economic sensitivities to these

criteria, enabling a proper compromise between safety and economy. It was found that

many of the criteria being considered for unaugmented flying qualities of transports

with RSSAS were either inadequate or inappropriate for specifying airplane design

parameters.

• DEMONSTRATEDUSE OF CONSTRAINEDOPTIMIZATION IN
PRELIMINARY DESIGN

• RSSAS SHOULD YIELD ABOUT 1..5% SAVINGS IN DOC (3.5_/o
FUEL SAVINGS)

• LONGITUDINAL FLYING QUALITIES DESIGN CRITERIA FOR
UNAUGMENTEDTRANSPORTS NEEDSFURTHERRESEARCH
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IMPACT OF STATIC MARGIN

One design parameter considered in the flying qualities study was the impact of

relaxing the natural static stability requirement for transport aircraft. A locus of

optimum designs indicates that, for the configuration being considered, a savings of

2.5 percent in direct operating cost is possible when compared to a baseline configu-

ration with 5 percent static margin. This corresponds to a fuel savings of 6 per-

cent. At -7 percent static margin, reducing the static stability constraint yields

no further improvements. This is because the control constraints (typically nose

gear unstick during take-off) prevent the design from having a smaller horizontal

stabilizer, since a minimum size tail is required for control and the center-of-

gravity cannot be moved any further aft without sacrificing nose gear steering

traction.
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DOC SAVINGS VS. TIME-TO-DOUBLE

One unaugmented flying-qualities criterion of considerable interest is time-to-

double amplitude. This plot illustrates the importance of economic sensitivity to a

proposed criterion. If a designer is considering applying a constraint of 30 or 40

seconds, it is easy to see that arbitrarily relaxing the constraint from 30 to 40

seconds is of little economic consequence. However, the opposite is true when

considering an arbitrary boundary ranging between 2 and 6 seconds. Economic sensi-

tivity information should be considered before establishing the flying--qualities

criteria since they significantly impact the aircraft design.
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DESIGN STUDY

OPDOT was also used in a study (Refs. 6,7) evaluating the sensitivity of

transport aircraft design to various design constraints and technology assumptions.

During this study, the full benefits of resizing the design to take advantage of a

new technology were demonstrated. Various performance indices were used to generate

"optimal designs" in an effort to identify a robust and meaningful economic index.

FARE (defined as the income required for a fixed return-on-investment) was chosen as

the best performance index for use in this and future studies. The impacts (measured

in FARE) of various mission, economic, production, and technological specifications

upon transport design were evaluated. Sizable savings were possible with moderate

enhancements in structural efficiency, fuel consumption, load alleviation, and maximum

lift coefficient. Modest gains were observed with reductions in wing drag

coefficient, pitching moments, and static margin.

• DEMONSTRATEDTHE BENEFITS FROM SYNERGISTIC RESIZING OF A
TRANSPORT CONFIGURATION TO TAKE ADVANTAGE OF NEW TECHNOLOGIES
OR NEW OPERATING ENVIRONMENTS

• EVALUATED THE OPTIMAL DESIGN SENSITIVITY TO SELECTION OF

VARIOUS PERFORMANCE INDICES

• QUANTIFIED TRANSPORT AIRCRAFT DESIGN SENSITIVITIES TO VARIOUS
OPERATIONAL AND TECHNICAL CONSTRAINTS
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CANARD STUDY

OPDOT has also been used in studies to evaluate and compare various proposed

transport configurations. One of these studies was a comparison of a canard configu-

ration with a conventional aft-tail configuration (Ref. 8). This study was initiated

in response to the growing debate concerning the merits of canards and their impact

on design. OPDOT was used to provide the following preliminary analyses: identify-

ing critical design constraints, quantifying their impact on the design, comparing

them with critical design constraints for aft-tail transports, and comparing the

relative mission performance of canard and aft-tail transports. The canard study

identified an unusually high canard CLmax requirement and an unconventional main

gear location (out of the wing box structure) as critical design parameters for a

canard transport.

Various assumptions were made in this study which may or may not be realistic.

Further research into implementation of high lift devices on control surfaces and

into quantification of the weight and drag penalties associated with an unconven-

tional main gear location is required.

Designing for unstable static margins has been proposed to improve canard

transport designs, but it was shown that a greater incremental benefit would be

achieved by applying that technology to an aft-tail configuration.

• IDENTIFIED CANARD CLMAx AND MAIN LANDING GEAR LOCATION AS
CRITICAL DESIGN CONSTRAINTS FOR CANARD TRANSPORTS

• IF NOMINAL VALUES OF THE IDENTIFIEDCRITICAL CONSTRAINTS CAN

BE ACHIEVED WITH LITTLEPENALTY, THEN CANARD TRANSPORTS MAY

EXHI BIT BETTER ECONOMIC PERFORMANCE

• DESIGNING FOR UNSTABLE STATIC MARGINS BENEFITS CONVENTIONAL

TRANSPORT DESIGNS MORE THAN CANARD TRANSPORT DESIGNS
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TWIN-FUSELAGESTUDY

Amongthe ideas developed by NASALangley researchers for improving transport
efficiency is the proposed twin-fuselage transport configuration (Ref. 9). It is
argued that the twin-fuselage configuration offers two key advantages over a compar-
able conventional configuration: a lighter, lower-drag fuselage per passenger, and a
higher wing aspect ratio. However, twin-fuselage configurations introduce several
new design problems that must be examined.

A study of twin-fuselage configurations using OPDOTwas recently initiated, with
a focus on obtaining quantitative economic and performance comparisons of twin-
fuselage and conventional configurations as well as identifying key design parameters
for the twin-fuselage transport. The preliminary results of the twin-fuselage con-
figuration study show that a 250-passenger twin-fuselage transport is approximately 8
percent cheaper to operate than a comparable conventional transport. However, it is
uncertain whether the statistical relationships used by OPDOT(especially for wing
weight computations) remain valid for all of the twin-fuselage configurations
studied. Typically, these configurations had wing aspect ratios of 11-12. Further,
no consideration has been given to additional engineering, development, or certifica-
tion costs that might be incurred by a twin-fuselage configuration. Even so, poten-
tial wing weight reductions show _reat promise and may determine the economic viabil-
ity of typical twin-fuselage configurations. These potential wing weight reductions
require more detailed study to firmly establish the advantage of a twin--fuselage
configuration.

• A TWIN-FUSELAGETRANSPORT MAY BE MORE ECONOMICAL
THAN FUTURECONVENTIONAL TRANSPORTS

• HYPOTHESIZED WING STRUCTURALWEIGHT REDUCTIONS DUE
TO TWIN-FUSELAGECONCEPT SHOW PROMISE AND NEED
FURTHERSTUDY
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LESSONS LEARNED

During the course of the studies presented in this report, it became apparent

that it is necessary to have a reliable optimization alEorithm. Many optimizations

need to be performed for such trade studies, and they should require as little "fine-

tuning" from the designer as possible. Performing airplane design with computer

optimization techniques places a burden on the designer to properly constrain the

problem. This requires the analyst to carefully consider the fundamental factors

which determine an aircraft's configuration.

OPDOT is very effective at maximizing the synergistic economic benefits of

utilizing a new technology, since it provides an opportunity to integrate a new tech-

nology early into the design process. Because the accuracy of certain weight and

cost statistics is expected to be of the order of 10 percent, OPDOT is viewed as

being most useful in comparing various calculated designs to illustrate relative

benefits, rather than in predicting absolute cost or performance figures of point

designs. The inherent sensitivity of applyin_ new technologies, changin_ mission

constraints, or varying economic assumptions is of prime interest to the designer any-

way. Experience has shown that if a design has not been properly constrained, it

will often either diverge or conver_e to an impractical solution. Analysts using

OPDOT must skim the intermediate calculations to assure that each set of designs is

feasible. Tools like OPDOT can increase the productivity and accuracy of designers,

but experience is still needed to properly plan a study and interpret the results.

This is especially true since the region of validity of the statistical data must be

considered. OPDOT is best viewed as an interpolation tool as opposed to an extrapo-

lation tool.

• USED RELIABLE DIRECT-SEARCH OPTIMIZATION ALGORITHM

• METHODICAL USE OF CONSTRAINTS REQUIRED

• VERY EFFECTIVE AT MAXIMIZING SYNERGISTIC BENEFITS OF APPLYING
NEW TECHNOLOGIES

• PRIME USE IS FOR DETERMINING RELATIVE BENEFITS AS OPPOSED TO
DETERMINING POINT DESIGN

• INTERMEDIATE RESULTS SHOULD BE REVIEWED BY KNOWLEDGEABLE

DESIGNER FOR FEASIBILITY

• OPDOT IS MOST ACCURATE WHEN USED AS INTERPOLATION TOOL

VERSUS EXTRAPOLATION TOOL
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SIJI'_IARY

Since the synergistic benefits of a new technology are often twice (or more) the

benefits obtainable from "adding" a new technology to an existing design, the inte-

gration of new technologies or relaxed design constraints should occur early in the

design process so that the maximum advantages may be obtained. A computer program

(OPDOT) has been developed at NASA Langley which utilizes optimization techniques to

evaluate economic sensitivities of applying new technologies at the preliminary

design level for transport aircraft. In this presentation, results from studies

conducted with 0PDOT have been summarized to illustrate the benefits of this approach.

• IT IS ESSENTIAL TO INTEGRATE NEW TECHNOLOGY CONSIDERATIONS

IN THE BEGINNING OF THE DESIGN PROCESS TO REALIZE FULL

POTENTIAL BENEFITS

• DEVELOPEDRESEARCH TOOL FOR COMPARING EFFECTSOF
TECHNOLOGYAND OTHER CONSTRAINTS ON TRANSPORT SIZING AND
ECONOMICS

• CONDUCTED STUDIES TO QUANTIFY THESE EFFECTS

• CONDUCTED STUDIES TO PROVIDE PRELIMINARY ANALYSES OF
PROPOSED NEW TRANSPORT CONFIGURATIONS
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TRADITIONAL STRUCTURAL ANALYSIS/REFINEMENT CYCLE

To evaluate the role that optimization can play in structural model refinement,

it is necessary to examine the existing environment for the structural design/struc-

tural modification process. The traditional approach to design, analysis, and mod-

ification is illustrated in Figure I. Typically, a cyclical path is followed in

evaluating and refining a structural system, with parallel paths existing between the

real system and the analytical model of the system. The major failing of the exist-

ing approach is the rather weak link of communication between the cycle for the real

system and the cycle for the analytical model. Only at the expense of much human

effort can data sharing and comparative evaluation be enhanced for the two parallel

cycles. Much of the difficulty can be traced to the lack of a user-friendly, rapidly

reconfigurable engineering software environment for facilitating data and information

exchange. Until this type of software environment becomes readily available to the

majority of the engineering community, the role of optimization will not be able to

reach its full potential and engineering productivity will continue to suffer.
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Figure 1.
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INTEGRATED ANALYSIS/REFINEMENT SYSTEM

A key issue in current engineering design, analysis, and test is the definition

and development of an integrated engineering software support capability. The data

and solution flow for this type of integrated engineering analysis/refinement system

is shown in Figure 2. Such a system should be capable of providing a wide variety of

reconfigurable software tools that support the analysis/refinement cycle and allow

flexible data handling. Through careful specification of modular, plug-compatible

software interfaces, an engineering analysis system can flexibly support a wide

variety of capabilities while providing individual users with a powerful, consistent

support environment for their own privately developed software. Support tools that

allow user reconfiguration of the application interface should be provided with the

core of such a system. Within this type of integrated analysis environment, optim-

ization utilities can be readily combined with analysis tools to more effectively

support various stages of the design cycle.

Figure 2.
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ARCHITECTUREOFAN ENGINEERINGANALYSIS/REFINEMENTSYSTEM

The general architecture of an engineering analysis/refinement system is shown

in Figure 3. The system consists of three major classes of "toolkits" that can

interact through well defined interfaces. The toolkits accept input data from the

local Engineering Data System and in turn generate output data that is sent back to

the local data system. The local data system consists of an engineering data base

for permanent data as well as "data stack" handlers that accommodate temporary data.

The entire analysis system is driven by a simple but powerful interpretive program-

ming language that controls both execution and data handling.

Within this framework, optimization capability is considered as a general

purpose tool that can be used to support the analysis/refinement cycle. An isolated

optimization capability is often of limited utility in obtaining rapid problem

solutions, but becomes quite useful when it can be readily combined with powerful

modeling and analysis tools. In the current context, structural model refinement

capability is assembled from a collection of fundamental tools. This type of

capability can be made available as part of a preprogrammed (but reconfigurable)

application library.
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Figure 3.
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TOOLKIT SUPPORT FOR STRUCTURAL MODEL REFINEMENT

Support for structural model refinement requires consideration of optimization,

structural modeling, and data handling capability. A number of desired capabilities

that contribute to the refinement steps of the design cycle are given in Figure 4.

As shown in this figure, support for the refinement process is provided both by

special tools and by additional capability during the model generation phase. For

example, the model generation tools provide not only for various types of models, but

also for optimal model reduction and parameter sensitivity. Special capabilities are

needed to define measures for model observability and model error. Nonlinear signal

processing is needed to detect and quantify nonlinearities in test data before the

model identification phase. In addltion, special simulation capabilities are

required for nonlinear model evaluation.

Optimization Tools

•Robust Algorithms

• Sensitivity/Gradient Calculation

•Design Variable Linking
•Multilevel Formulations

•Adaptive Objective Functions

I \

/ \
/ \

Model Generation/Manipulation Tools

•Discrete Parameter Models

•Component Mode Models

•Damped Substructure Coupling

•Optimal Model Reduction

•Parameter Sensitivities

Special Tools

•0bservability/Refinability Measures

•Model Error Measures

•Nonlinear Signal Processing

•Advanced Differential/Algebraic
Simulation

Figure 4.
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A GENERAL MODEL FOR STRUCTURAL REFINEMENT

In order to integrate all of the tools needed to support structural model re-

finement, it is necessary to adhere to a consistent model for both formulation and

computation. The diagram of a general model for supporting structural refinement is

shown in Figure 5. The main feature of this approach is that parameter refinement is

defined in terms of a separate refinement model that isolates the parameters to be
modified from the nominal structural model. The refinement model is a function of

the physical design variables and the physical system coordinates. Update of the

refinement model is achieved by optimal selection of the physical design variables.

Output of the refinement model can be interpreted as residuals to be applied to the

nominal system model. Definition of the system model is in terms of either physical,

modal, or combined physical/modal coordinates. The system model is most often repre-

sented in state vector form, which is especially useful for damped systems.
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Figure 5.
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A GRAPHICAL MODEL BUILDER INTERFACE

Much of the effort of combining optimization and analysis capability is associ-

ated with constructing, manipulating, and interconnecting various forms of software

models. Traditionally, this process has been very time consuming and quite error

prone. A graphical model builder based on functional diagrams can provide a far

better user interface for model construction and linking. Such an approach can be

used for building both analysis and simulation models and rapidly interconnecting

them with optimization algorithms to form design and refinement packages. Functional

"superblocks" representing either analysis or optimization algorithms can be con-

structed by assembling desired functions from a catalog of predefined primary

functions. By allowing superblocks to be hierarchical, complex capabilities can be

built up by following either a "top-down" or "bottom-up" approach. Both user-

constructed and predefined functional blocks can be used. To aid in design and

refinement of models, functional blocks can automatically provide parameter sensitiv-

ities. A schematic depicting the typical construction of performance index and

constraint calculation superblocks is shown in Figure 6. By combining this type of

problem-oriented graphical interface with flexible analysis "toolkits" containing

state-of-the-art optimization tools, significant productivity advances can be

achieved in the analysis/refinement cycle.

92 ---_
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Figure 6.
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WHAT IS PIAS?

PIAS is the acronym for a Program for an Iterative Aeroelastic Solution. This

will be a modular computer program that combines the use of a finite-element struc-

tural analysis code with any linear or nonlinear aerodynamic code (fig. i). At

this point in time9 PIAS has been designed but the software has not been written.

The idea for this development originated with P. J. (Bud) Bobbitt of the NASA

Langley Research Center. There was initial interest in an aeroelastic solution for a

separation-induced leading-edge vortex. Figures 2 and 3 show some examples of the

flow patterns for a low aspect ratio wing and illustrate the need for a nonlinear

aeroelastic solution. The development of PIAS by The Boeing Commercial Airplane

Company was done under NASA contract NASI-16740. The engineering and software

specifications for PIAS are documented in NASA CR-172200 (ref. i). The Leading-Edge

Vortex Program_ which calculates pressure distributions including the effects of a

separation-induced leading-edge vortex_ uses an iterative solution method. This

led to the concept of an iteration cycle on configuration shape external to the

aerodynamic code.

• Program for an Iterative Aeroelastic Solution

• Modular computer program to combine:
• Finite-element structural analysis code
• Any linear or nonlinear aeroelastic code

• Development:
• Initiated by NASA Langley
• Designed by The Boeing Commercial Airplane Company
• Under NASA contract NAS1-16740

• Reported in NASA CR-172200

• Leading-Edge Vortex Program
• Separation-induced leading-edge vortex
• Iterative solution

Figure i

112



EFFECT OF ANGLE OF ATTACK ON FLOW PATTERN, FLAT WING, M = 0.40

The flow patterns shown in figures 2 and 3 are based on experimental data

obtained under several NASA contracts and summarized in references 2 through 4. An

extensive data base was acquired for three wings that have the same planform and

thickness distribution but different shapes B flat, twisted, and cambered-twisted.

Figure 2 shows a comparison of the flow patterns on the planform of the flat wing

at two angles of attack at a Mach number of 0.40. The flow pattern is illustrated

by lines of constant pressure with the pressure difference between adjacent lines

also being a constant. At the moderate angle of attack shown on the left side of

the figure, a vortex has developed along the entire leading edge, but attached flow

is still apparent on the aft inboard half of the wing. At the high angle of attack

shown on the right side of the figure, the vortex has moved inboard with very

little of the flow on the inboard wing still attached.

Or--8 ° = 16 °

Figure 2
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EFFECTOFWINGTWISTONFLOWPATTERN,M = 0.407 _ = 8°

In figure 3, data are shownat Machnumber = 0.40 for only one angle of
attack9 but for two wing shapes. The flow pattern on the left side of the figure --
for the flat wing -- is the samedata as shownat 8° angle of attack on the previous
figure. The flow pattern on the twisted wing on the right side of the figure is
quite different. The vortex has just started at the wing tip at this angle of
attack. There is 4.5° washout at the tip of the twisted wing and the flow pattern
shownhere closely resembles the pattern on the flat wing at an angle of attack of
4 degrees. The futility of using a linear method to predict these flow patterns is
clearly illustrated in these figures.

Flat wing Twisted wing

Figure 3
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RATIONALE FOR SELECTING AN ITERATIVE PROCEDURE

A review of the attributes of closed form and iterative solutions was made to

confirm the decision to select an iterative procedure (see fig. 4). In a closed

form solution, the structural flexibility terms are an integral part of the aero-

dynamic code. This works well when the aerodynamic solution is linear. If the

aerodynamic solution is nonlinear, it is difficult if not impossible to include

the flexibility terms in the formulation. In any case, the development would have

to be done for each aerodynamic theory. In an iterative solution, the terms for

structural flexibility are kept separate from the aerodynamic code. The approach

used to obtain aeroelastic loads at a specified design load factor is the alternate

execution of two codes: one to calculate the aerodynamic loads on a specific shape

and the other to calculate the deflected shape under load. This alternate execu-

tion is continued until the wing shape is compatible with the applied loads. The

development, applied to one nonlinear aerodynamic program, will address the logic

to obtain both convergence to a deformed shape at each angle of attack and conver-

gence to the design load factor. The data management scheme developed for one

aerodynamic module will accomodate another theory with minor changes.

• Closed form solution

• Structural flexibility terms in aerodynamic code
• Straight forward for linear aerodynamic methods
• Difficult for nonlinear aerodynamic methods

• Separate development for each nonlinear aerodynamic theory

• Iterative solution

• Structural flexibility terms separate from aerodynamic solution
• Existing structural program can be used to calculate

deflected shape under load
• Alternate execution of code to calculate:

• Aerodynamic loads on a specific shape
• Deflected shape under load

• Development for one aerodynamic theory addresses:
• Logic for solution convergence
• Data management

• Other aerodynamic theories
• Should be added easily
• Would require minor changes to data management

Figure 4
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NEED FOR A GENERAL AEROELASTIC SOLUTION

Having established that the iterative form for an aeroelastic solution was

preferred 9 a review was made to determine the general need for an iterative

aeroelastic solution (see fig. 5). Generally_ the aircraft configurations that are

currently in design exhibit nonlinear flow because of either the physical config-

uration or the flight domain_ or both. The high costs of fuel and increased

airline competition due to deregulation have made more efficient aircraft and

therefore more realistic design load prediction a necessity. In the past_ it has

been necessary to augment the use of linear theories with experimental data for

structural design. As the costs of wind tunnel testing increase_ it is not

reasonable to test the many points in the flight envelope that are necessary to

support this effort. Many computer programs are being developed that address

particular types of nonlinear flow now that computer power is increasing. Both the

speed of computations and the available in-core storage have influenced this

progress.

• Current aircraft exhibit nonlinear flow

• Physical configuration
• Flight domain

• More realistic design load prediction is required for efficient aircraft
• High fuel costs
• Airline competition due to deregulation

• Linear systems are inadequate without experimental augmentation

• Costs of wind tunnel testing are increasing

• Many theories for nonlinear aerodynamics are being developed

• More computer power is available
• Faster

• More in-core storage

Figure 5
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ITERATION LEVELS

The basic flow of the proposed interative solution is shown in figure 6. The

initial input includes the aerodynamic model9 the structural and mass models, the

flight condition description, and execution parameters for the solution. These

parameters include the maximum number of iterative cycles, the acceptable tolerance

on the change in deflection between cycles9 and the acceptable tolerance on the

design load factor. There are two levels of iteration. The outer level consists

of solutions at several angles of attack. This approach is necessary because of

the nonlinear nature of the solution. The procedure for determining the values of

successive angles of attack is shown later. The inner level of iteration continues

for each angle of attack until a wing shape is obtained that is compatible with the

calculated airload. The acceptable tolerance on deflection may be less stringent

for the initial stages of the solution than for the final solution. The

aerodynamic and structural modules shown in this cycle are separate programs and

the only requirement is that a specified minimum amount of data is written to a

file for communication with PIAS. The other calculations and the interpolations

are provided by new code that will also control the solution sequence.

• Basic definition of model
• Initial condition

AERODYNAMIC MODULE t
(3a_cu/atepressu_e Revise aero model

distribution deflections

STRUCTURAL MODULE

Calculate deflections

I
I"ev'seano'eo'a"ac I

I
no

yes

Figure 6

117



SPECIFIC PROBLEMS ADDRESSED

The major problems that need to be solved before a viable aeroelastic solution

is possible are shown in figure 7. The first of these is the difference between

the grid used in the aerodynamic module and the model for structure and mass.

Generally_ the aerodynamic grid is tailored to be densest in areas where high

pressure gradients are expected; the structural model is densest in regions of high

stress/strain gradients. Usually_ the mass model is compatable with the structural

model. The pressure values calculated by the aerodynamic code are typically

located at panel centroids. The code for structural analysis requires loads at the

structural nodes, and for a realistic analysis the summation of these loads must

represent the total load and distribution as obtained from the aerodynamic program.

The conversion of one type of data to the other type is a required function. Code

that is external to the functions already available in the aerodynamic and

structural programs is needed to make additional calculations_ to initiate execu-

tion of the existing codes as required by the algorithm_ to determine when conver-

gence within specified tolerances is achieved_ and to manage the data flow and

storage. The data management plan must allow for the changing nature of the data

during the solution_ as well as for the required checkpoint-restart capability.
The design of PIAS stressed retention of adequate data so that the solution could

be easily restarted from several points in the cycle. In addition to a continuous

execution to the desired load factor_ it is expected that the user will sometimes

wish to pause periodically to review the results at selected steps in the cycle.
There will also be times when a situation will be encountered for which a course of
action was not defined.

• Difference in aerodynamic and structural grids

• Aerodynamic grid -- dense in regions of high pressure gradients
• Structural grid -- dense in regions of high stress/strain gradients

• Code is required to provide:
• Additional calculations
• Data conversion

• Selective execution of existing codes
• Control of solution convergence

• Configuration shape within specified tolerance
• Load factor within specified tolerance

• Data management

• Checkpoint-restart procedu res
• Planned pauses during solution
• Restart after a situation is encountered for which a course

of action was not defined

Figure 7
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DESIGNOFPIAS

The elements incorporated into the design of PIAS are shown in figure 8. The

Leading-Edge Vortex (LEV) Program is used for the aerodynamic module. The output

is pressure distributions at the centroids of panels representing the configuration

surface. The LEV Program has the capability to calculate loads for either

attached flow or for a separation-induced vortex. The ATLAS Integrated Structural

Analysis and Design System is used for calculating the deformed shape of the wing

under the combined effect of airload and inertia loads. ATLAS is a system of

modules with a variety of capabilities. The ATLAS surface spline interpolation

module uses the method of Desmarais (ref. 5). A sample of the results of an

interpolation using this method is shown in figure 9. A recent development for

potential enhancement of ATLAS uses the surface spline interpolation module to

perform an exact integration of the pressure distribution over discrete areas of

the wing to obtain forces and moments. From these forces and moments9 equivalent

nodal loads are calculated that represent the total load. The Execution Control

Monitor (ECM) will direct the execution of these programs, including control of

solution convergence. The ECM will also provide a data management scheme to

transfer the data between the aerodynamic and structural modules. The few addi-

tional calculations that are required for an aeroelastic solution -- but not for the

aerodynamic and structural modules individually -- are part of the function of the

ECM. These calculations determine the vertical load factor, the revised angle of

attack, and the origin of the vortex when using the separated-flow option of the

LEV Program for the aerodynamic module.

• Combine existing codes into an aeroelastic solution
• Leading-Edge Vortex (LEV) Program

• Separation-induced leading-edge vortex
• Attached flow

• ATLAS

• Structural and mass modeling
• Calculate structural deflection due to airload and inertia loads

• Surface spline interpolation
• Calculate equivalent nodal loads

• Execution Control Monitor (ECM)
• Direct the overall aeroelastic solution process
• Control of solution convergence
• Data management

• Transfer of data

• Retention of results at each solution step for restart
• Provide additional calculations

• Load factor, nz =C L q S/W
• Revised angle of attack
• Origin of vortex for separated-flow option of LEV

Figure 8
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RESULTS OF SURFACE SPLINE INTERPOLATION

The upper left portion of figure 9 shows an isometric drawing of an experi-

mental upper surface pressure distribution on an arrow wing. The arrows show the

locations of the measured data and_ as indicated_ the orifices were arranged in

seven streamwise rows. Progressing from the inboard to the outboard section_ the

location of the peak pressure is a little farther aft at each spanwise section. In

the lower right hand portion of this figure_ an isometric drawing of the inter-

polated pressures is shown. The output points are arranged in rows that are

perpendicular to the centerline of the model. The location of the peak pressures

follows the same pattern as shown in the input distribution. In this case9 the

extrapolation in the wing tip area seems to be quite good, even though extrapo-

lation is not recommended with this method.

Figure 9
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ATLAS INTEGRATED STRUCTURAL ANALYSIS AND DESIGN SYSTEM

As shown in figure I0_ ATLAS is based on the stiffness finite-element

structural analysis method. The extensive library of structural finite elements

allows modeling of configurations from the simple to the complex for both metalic

and advanced composite structures. Capabilities are also provided for modeling

structural_ nonstructural_ fuel, and payload mass distributions with the library of

mass finite elements or by concentrated masses. Automatic grid generation from

minimum user input simplifies both structural and mass modeling. A number of other

features that are needed for the iterative process9 as well as some that will make

the process easier for the user 9 are available in ATLAS. The capability for using
a combination of local coordinate systems -- rectangular9 cylindrical9 and spherical

allows the aerodynamic and structural grids to be in different systems. The

surface spline interpolation method and calculation of equivalent nodal loads, as

previously described9 are necessary to obtain the deflection of the wing at the

structural nodes. The surface spline interpolation method will be used to

calculate the modifications to the aerodynamic grid for the next execution of the

aerodynamic code. There is the capability in ATLAS to have a control program which

can be a combination of FORTRAN code, calls to execute other modules of ATLAS_ and

calls to execute codes that are not a part of ATLAS. This capability provides a

convenient framework for developing the Execution Control Monitor (ECM).

• Stiffness finite-element structural analysis method

• Structural modeling
• Library of structural finite elements
• Simple to complex configurations
• Metallic and advanced composite structures

• Mass modeling
• Library of mass finite elements or concentrated masses
• Structural, nonstructural, fuel, and payload mass distributions

• Additional features

• Automatic grid generation - minimum input
• Capability to use a combination of local coordinate systems

• Surface spline interpolation, calculation of equivalent nodal loads
• Data management
• Execution control modules

• Perform problem-specific calculations
• Execute selected modules of ATLAS

• Execute other programs

Figure I0
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DETERMINATION OF SECOND ANGLE OF ATTACK

As stated earlier, the ECM will calculate the revised angle of attack. A

basic premise of this development is that the vertical load factor is not a linear

function of the angle of attack _. It is expected that solutions for four angles

of attack will be necessary to achieve the design load factor n z. The user

specifies the first angle of attack for each case; the load factor for this angle

of attack is then calculated from the predicted pressure distribution and is shown

in figure ii as a solid circle, labeled I. The second angle of attack may be

selected to correspond to the design load factor by temporarily assuming a linear

variation between zero and the first calculated point as shown on the left, or the

user may specify _2 directly as shown on the right. The load factor for the second

point is obtained from the pressure distribution at this angle of attack and is

shown as the solid circle labeled 2. It is clear that the assumption of linearity

is only a convenience for estimating the next angle of attack to try.

nz
D

i_ _

_ °nz

0 OL3 0

Angle of attack

2/_ 1

/j O/

3 e/

_4

Angle of attack

Third angle of attack Fourth angle of attack

Figure Ii
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DETERMINATION OF THIRD AND FOURTH ANGLES OF ATTACK

Again assuming a linear variation of load factor with angle of attack_ these

first two points are used to find the angle of attack for the design load factor by

linear interpolation (or extrapolation) as shown in the left part of figure 12.

The load factor is calculated using the pressure distribution from the third

solution and is shown as a solid circle labeled 3. A curve fit through these

three points is used to get the fourth angle of attack_ which should be the final

one. The logic in PIAS is such that as soon as the calculated load factor is

within the user-specified tolerance for the desired load factor_ the solution will

stop.

N=,
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J

2 /e'
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j o

J 9.
i

0 (X2 0

Angle of attack

2

0(2

Angle of attack

1

I
I
I
I
I
I

Default method Input _2

Figure 12
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ADDED CAPABILITIES

As the specification for PIAS was developed 9 some unexpected uses became

apparent as listed in figure 13. The initial goal was to be able to calculate

design load pressure distributions for a specific load factor. By stopping the

solution after convergence on the wing shape at the first angle of attack_ it will

be possible to analyze flexible wind tunnel models for expected test conditions.

The little-used capability to represent cases with attached flow in the LEV Program

will allow analyses of a configuration that exhibits this phenomenon through part

or all of its flight envelope. With the capabilities of ATLAS_ it will be possible

to calculate the internal stresses for the design load case. In addition_ once the

structure and mass of the aircraft are modeled_ the user can take advantage of

other ATLAS capabilities such as the vibration and flutter analyses and automated

structural resizing. In respect to adding other aerodynamic codes to PIAS9 it is

interestng to note that advances are being made in nonlinear transonic codes -- full

potential and Euler -- and in nonlinear supersonic codes.

• Loads for wing with shape converged
at a specific angle of attack

• Attached flow

• Internal stresses

• Other ATLAS capabilities
• Vibration analysis
• Flutter analysis
• Automated structural resizing

• Nonlinear transonic codes
• Full potential
• Euler

• Nonlinear supersonic codes

Figure 13
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HELICOPTER DESIGN CONSIDERATIONS

Optimization is a technique for balancing values in a system against each other

so that the overall value of the system is maximized or minimized toward a predefined

end. In helicopter design, this optimization procedure generally involves the mini-

mization of the airframe/propulsion system weight required to support a prescribed

mission payload and profile. Minimum cost is also a requirement but this is gener-

ally related to weight and hence weight is the initial objective. The airframe/

propulsion system weight is an interrelated function dependent on the requirements of

several conflicting disciplines. For example, the aerodynamically optimum rotor sys-

tem may be dynamically unstable unless advanced structural concepts such as composite

materials are applied. Changes in the rotor system then influence the overall air-

craft geometry due to clearance and internal volume requirements. Further, changes

in mission profile may result in a different optimum configuration. All these con-

siderations require a practical process of design optimization that achieves signifi-

cant precision through use of computers and application of emerging mathematical

tools.

At Hughes Helicopters, this process is currently applied at two distinct levels:

total configuration and component. In total configuration, the issues to be resolved

include sizing of various components to achieve a certain mission. In components,

detailed shapes and sizes are determined to optimize component performance. At both

levels, the process is both complicated and complex, involving the balancing of many

disciplines and technologies including aerodynamics, dynamics, structures, and

propulsion.

AERODYNAMICS

MISSION
PAYLOAD

128



METHODSOFOPTIMIZATION

In traditional design procedures, design optimization processes were inhibited
by the difficulty of performing the calculations necessary to minimize (maximize) an
objective function under constraints. Instead, typically, large systems of differen-
tial equations had to be solved in part; then experiments were performed on full or
scale models in a cycle of hypothesis, test, and modification. Since the initial
design definition was imprecise, a wide range of models had to be carried through
test and modification to ensure that a near optimum design was achieved. This proce-
dure is very costly. Evennow, extrapolating from an existing design may sometimes
be more cost effective than a complete top downanalysis. But as a general technique
of optimization, the experimental method is costly, time consuming, and imprecise.

The advent of the modern powerful digital computer madepossible a design opti-
mization process that is different in principle, the major task of which is to spec"
ify a description of the system in a mathematically precise way. Once specified, the
description is entered into a computer that models the behavior of the system under
various conditions defined according to the mission requirements. The impact of the
optimization procedure is to reduce the scope of models carried through the test and
modification stage. Early in the design phase, a large numberof designs can be stud-
ied before hardware commitmentsare made.

EXPERIMENTAL MATHEMATICAL MODELLING
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CONFIGURATION OPTIMIZATION WITH CASH

(COMPUTER AIDED SIZING OF HELICOPTERS)

In optimizing a helicopter configuration, Hughes Helicopters uses a program

called CASH (Computer Aided Sizing of Helicopters), written and updated over the past

ten years at HHI, and used as an important part of the preliminary design process of
the AH-64. First, Measures of E_fectiveness must be supplied to define the_mission

characteristics of the helicopter to be designed. Then CASH allows the designer to

rapidly and automatically develop the basic size of the helicopter (or other rotor-
craft) for the given mission. This enables the designer and management to assess the

various tradeoffs and to quickly determine the optimum configuration.

MISSION
CONSTRAINTS

DESIGN CASH
VARIABLES

YES

PERFORMANCE
ANALYSIS

TRADEOFFS

NO

I "' IDESIGN

-- 1 COST

2 RISK

3 MP&T (MANPOWER,PERSONNEL,
AND TRAINING)

4 RAM (RELIABILITY,AVAILABILITY,
MAINTAINABILITY)

5 SURVIVABILITY

6 EXTRAORDINARYLEVELSOF
PERFORMANCE
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BASIC DECISION PATH OF THE HHI CASH PROGRAM

The inputs to CASH loosely bound the helicopter design problem by defining

required mission characteristics such as payload, range, load factor, maneuver, and

gross weight. These items can be defined to any detail or allowed to float and

become essentially outputs. Given inputs, the CASH program iterates among the physi-

cal design constraints to produce the optimum helicopter (or rotorcraft).

The design constraints include rotor performance, rotor dynamic stability,

required rotor blade geometries, and engine characterisitcs. CASH searches for the

particular mission segment that dominates the aircraft design. Depending on the mis-

sion, this might be hover performance, maneuver, high speed dash capability, or a

combination. Once the key design constraints and mission segments are identified,

CASH iterates to the optimum geometry to maximize the payload/gross weight fraction.
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4,
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TYPICAL CASH OUTPUT

Gross weight and disc loading are CASH parameters that are generally varied to

achieve the minimum size helicopter capable of meeting the payload required. With

the gross weight and disc loading determined, the rotor diameter is sized, after which
the load factor subroutine sizes the solidity to meet the. critical maneuverability

. bcr

requirements. In helicopter design, rotor solidlty (_ - _ , the blade area divlded

by the disc area) is a key nondimensional parameter which defines the rotor system

performance.

Then, if an existing engine is to be used, the disc loading is adjusted (along

with diameter and solidity) to meet the performance requirements. If an arbritrary

engine is to be used, it is sized to meet the performance requirements for the input

disc loading. The resulting engine characteristics then become the inputs to an

engine development program to support the given helicopter design.
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ROTOR AIRFOIL ENVIRONMENT

Once CASH has defined the configuration, other optimization routines such as OPT,

AESOP, and ADS (NASA) can be used to optimize the various components. An example is

optimization of rotor blade airfoil profile to achieve a desired performance level.
A helicopter rotor airfoil section must satisfy three conflicting goals. First, it

must have good low speed lift capability; second, it must have good high Mach number

drag characteristics; and third, it must satisfy both the preceding requirements while

maintaining a low pitching moment. This requires a balancing of goals and a careful
definition of the airfoil contour.
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NASA AMES AIRFOIL OPTIMIZATION CODE

HHI has successfully used an airfoil optimization routine developed at NASA Ames.

In using this code, the basic airfoil contour is defined and the code optimally

changes that contour to achieve a specified design condition. An example is to main-

tain lift (CI) and drag (CD) at a certain angle of attack but minimize the section

pitching moment (Cm). The-code develops a series of influence coefficients that

represent the impact of geometry changes on the airfoil aerodynamic characteristics.

The geometry is then varied locally to meet the requirements.
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RESULTSOFAIRFOILTESTING

After the airfoil optimization was conducted, airfoils were fabricated and
tested to verify the results. Tests were conducted at the Lockheed Transonic two-
dimensional wind tunnel in August 1983. The test results indicated a significant
improvement over the current state-of-the-art boundary. The boundary was defined by
plotting the low speed lift coefficient and drag divergence Machnumber of all avail-
able two-dimensional data after normalization to remove different tunnel effects.
(For the purposes of this comparison, the low speed maximumlift coefficient is
defined at a Machnumberof 0.4, and the drag divergence Machnumber is that at which
the drag at zero lift increases sharply.)

The results of this optimization application clearly showthe potential benefits
of optimization techniques.
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ROTOROPTIMIZATION

In another current application, HHI used optimization techniques to define the
optimumblade planform and twist for maximumforward flight efficiency. The optimized
parameter was the rotor lift-to-drag ratio. A suitable forward flight performance
model was incorporated into the ADSoptimization procedure, and the baseline rotor was
the HH 500D (five rectangular planform blades with a linear 8 degrees of twist). The
optimized rotor showsa nonlinear twist increased to 12 degrees and a nonlinear blade
planform taper 5:1 over the outer 25 percent of the rotor. This blade is predicted to
have a 20 percent increase in L/D when comparedto the baseline blade. Independent of
the optimization development, HHI designed an advanced rotor blade using more conven-
tional techniques. That optimal design matches very closely this optimized design,
which was generated in a fraction of the design time. This indicates the design sched-
ule impact that optimization techniques have. The experimental verification of these
predictions will take place in late 1984 when a rotor designed using this information
will be flight tested.
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ORIGINAL P,%X IS 
OF POOR QUALITY SUMMARY 

Based on t h e  a p p l i c a t i o n s  t o  d a t e ,  the p rospec t s  f o r  op t imiz ing  t h e  des ign  of a 

Perhaps t h e  e n t i r e  h e l i c o p t e r  - conf igu ra t ion  
h e l i c o p t e r  t o  a given mission faster,  more e f f i c i e n t l y ,  less expens ive ly ,  and wi th  
g r e a t e r  p r e c i s i o n  grow ever  b r i g h t e r .  
and components t oge the r  - may b e  optimized i n  one process ,  w i th  s i g n i f i c a n t  synergis-  

'9 t i c  b e n e f i t s ,  sometime i n  the f u t u r e .  
.i 

Hughes He l i cop te r s ,  Inc .  recognizes  these  prospec ts  and has  taken t e s t e d  and 
proven s t e p s  toward them i n  i t s  CASH program, and i n  i t s  development and use  of v a r i -  

t i o n  of t h e s e  opt imiza t ion  techniques t o  the s t r u c t u r a l  op t imiza t ion  of r o t o r  b l ades  
wi th  t h e  a n t i c i p a t e d  b e n e f i t s  of improved performance and reduced v i b r a t i o n / l o a d .  
L e s s  v i b r a t i o n  w i l l  reduce crew f a t i g u e ,  i nc rease  s t r u c t u r a l  l i f e ,  and improve weapons 
systems accuracy.  

t ous component op t imiza t ion  programs. The p l ans  f o r  t h e  f u t u r e  inc lude  t h e  appl ica-  

H H I  Concept of U.S. Army LHX 
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ABSTRACT

This paper discusses the need for numerical de-
sign optimization of naval structures and illustrates
the complexity of problems that arise due to the slg-

nlflcant roles played by three major disciplines, i.e.,

structural mechanics, acoustics, and hydrodynamics. A

major computer software effort that has recently begun

at the David W. Taylor Naval Ship R&D Center to accommo-

date large multidisciplinary analyses is also described.

In addition to primarily facilitating, via the use of

data bases, interdisciplinary analyses for predicting

the response of the Navy's ships and related structures,

this software effort is expected to provide the analyst

with a convenient numerical workbench for performing

large numbers of analyses that may be necessary for op-

timizing the design performance. Finally, an example

is included that investigates several aspects of opti-

mizing a typical naval structure from the viewpoints of

strength, hydrodynamic form, and acoustic characteristics.

INTRODUCTION

The past two decades have witnessed an unprecedented growth and activity in the

field of computer-based numerical solutions to problems of physics. Amongst these,

perhaps the most promising and certainly the most popular solution procedure devel-

oped and utilized by scientists and engineers has been the method of finite elements.

This method, although originally developed for analysis of structural engineering

problems, has found applications in several other disciplines of computational phys-

ics. The usual objective when analyzing a typical problem in computational physics

is to evaluate the performance of a given system or a design, e.g., a specific

structural configuration, when subjected to certain service conditions. With the

aid of today's large computer programs such as NASTRAN, I prediction of stresses,

displacements, and frequencies for a large integral structure such as a destroyer

with all its discontinuities has become more or less a routine matter. Even though

having such computational tools available in the hands of a designer is a substan-

tial step forward, these are often not the most efficient ways of converging to a

good design. It appears that some kind of design optimization procedure would be

the key to developing an effective design tool. The considerable activity in this

field in the past decade is very gratifying and is in fact a clear indication that

effective design optimization procedures are no longer relegated to the distant
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future. The general messagethat emergesfrom the current literature on structural
design optimization is that the basic technology now exists to efficiently design
relatively small structures defined by several hundred design variables under multi-
ple loading conditions and subject to sizing, stress, displacement, buckling, fre-
quency, and flutter constralnts.2, 3 This maystill be a far cry from designing the
structure of a complete ship, but nevertheless it is a definite and encouraging
beginning. Another messagethat comesacross from the literature is the absence of
an effective technique for shape optimization of large structures, which is of
course a very important issue.

A large numberof disclplnes play an important role in ship design, viz. struc-
tural mechanics, hydrodynamics, acoustics, and electromagnetlcs. Thus an efficient
ship would be simultaneously lightest and strongest, fastest, quietest, and invis-
ible to electromagnetic sensors. Aside from the optimization problem, which would
involve multiple objective functions, even somestraight-forward analysis problems
becomenontrlvlal whenmultiple disciplines have to be considered. Often it is nec-
essary to resort to numerical iteration procedures whenan efficient coupled proce-
dure is not available. Despite all those complexities, we have madea very modest
beginning toward developing computer-baseddesign tools with limited optimization
capability. Oneof these deslgntools, ASSET(AdvancedSurface Ship Evaluation
Tool) 4 is an interactive computer program for use in the exploratory and feasibi-
lity design phases of monohull surface ships such as frigates, cruisers, and
destroyers. ASSETaddresses virtually all major technological domains of design
that are relevant to such ships, including geometric definition of hull and super-
structure, resistance, propulsion, machinery, weight, hydrostatics, seakeeplng,
cost, and manning. The program features design synthesis capability, database
managementof design data, and extensive input/output options including interactive
graphics. The other design tool, SUBSET,is a similar tool which is being developed
for submergedstructures. Both ASSETand SUBSETare interactive computer tools
which do not, however, address the optimization of detailed ship design. With the
rapid advances in individual analysis procedures, computing hardware, and sophisti-
cated software technology, DTNSRDCis becominggreatly interested in developing
and/or acquiring an optimization capability for detailed design.

The following sections will discuss the presently ongoing work at DTNSRDCin
the area of optimization of detailed design as well as in analysis procedures.

RECENTACTIVITYIN OPTIMIZATION

The recent level of activity in detailed optimization at DTNSRDChas been low.
In the area of preliminary and conceptual design of ship hulls, the ASSETprogram
previously mentioned is used. Currently, however, the majority of the optimization
effort at DTNSRDCis being performed with the COPES/CONMIN5 computer program in the
areas of hydrodynamics and structures. For example, one application involves the
minimumsurface area design of ship appendagessubject to maneuvering constraints.
The authors have been using COPES/CONMINin propeller-related design work, the expe-
riences of which will now be described in somedetail.

The purpose of our first experience with COPES/CONMINwas to demonstrate its
capability for propeller design. Specifically, our test problem was to minimize
the strain energy of a finite element model of a composite propeller subjected to
a pressure load. The five design variables were material properties, the purpose
of which was to design the effective properties of the composite material. The
four constraints involved relationships amongthe design variables _ as well as a
constraint on the deflection of the propeller tip. The finite element analysis
of each new COPES/CONMINdesign was to be performed with COSMIC/NASTRAN,hereafter
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knownas NASTRAN.This demonstration was intended to be completed within two
weeks.

The problems with our proposed test began early. COPES/CONMINworks most con-
veniently whenthe routines needed to analyze a new design can be madepart of the
COPES/CONMINprogram. Whenthat is not possible, as is the case with NASTRAN,two
options are available. (I) The first option uses approximate optimization, in which
trial designs, with their respective objective and constraint values, must be sup-
plied, after which COPES/CONMINperforms curve-fitting to calculate a new design.
Each new design then becomesan additional trial design at the next iteration.
Also, since NASTRANcannot be loaded into the computer's central memorysimulta-
neously with COPES/CONMIN,pre- and post-processors must be developed to transfer
information. For example, once a new design is created, a NASTRANpre-processor
must be written to access the COPES/CONMINdesign (which is written to a scratch
file in our modified version of COPES/CONMIN)and develop the new NASTRANfinite
element data. After NASTRANis run with the new design, a post-processor accesses
needed results, computesvalues of objective and constraints, and modifies the
COPES/CONMINdata, after which COPES/CONMINcreates another new design. This loop-
ing process through COPES/CONMIN,pre-processor, NASTRAN,and post-processor is set
up automatically within the computer's job control language and continues until the
pre-processor has determined that convergence has taken place or until a pre-defined
numberof loops have been executed. (2) The second option uses the standard optimi-
zation techniques of CONMINand sets up the data in such a way that CONMINcan be
restarted after NASTRANhas run. The problem with (2) is that gradients of the ob-
jective function, design variables, and violated constraints are required for each
design. These gradients are computedusing finite difference techniques and multi-
ple executions of the analysis routine (NASTRAN). Becausesuch differencing can be
very expensive ($6.00 per analysis for our case), we chose (i).

In order to gain confidence in using COPES/CONMIN,we first ran a sample prob-
lem from the program's users manual. The problem was to minimize the volume of a
cantilevered beamsubject to an end load. The design variables were the width B and
height H of the beamcross section, with various constraints on stresses and deflec-
tion. The correct result is B = 1.818, H = 18.179. The users manual used approxi-
mate optimization with the following four trial designs:

TRIAL
1 2 3 4

B I. 2. 4. 3.

H 15. 20. I0. 12.

COPES/CONMIN gave B = 1.818, H = 18.168 after eight iterations.

problem with the following ten trial designs:

We ran the same

TRIAL

1 2 3 4 5 6 7 8 9 I0

2. I. 3. 4. 5. 15. 5. 4. 3. 2.

5. 3. 20. II. 8. I. 6. 9. 13. 7.5

B

H

After 24 iterations, B = 3.161, H = 18.713. Changing the tenth H value from 7.5 to

18. resulted in B = 1.853, H = 18.219 after 6 iterations, and B = 1.824, H = 18.187

after 24 iterations. At least two conclusions can be drawn from this test. (1) It
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helps to know the answer before beginning the problem. (2) Too much scattered in-

formation may not be useful for approximate optimization, although the program de-

veloper has suggested using a random number generator to create the trial designs.

With this information in hand, we proceeded with our composite propeller. With

our two-week time limit fast approaching, we used ten trial designs and 50 itera-

tions, which took 12 minutes of CPU time on a CDC CYBER 170/750 computer. While

convergence was slow, there was steady improvement in the objective function which

gave us some encouragement for future work.

Approximately a year after this demonstration, we were asked to assist DTNSRDC's

Ship Performance Department in the optimization of a propeller/shaft system. Since

the various design aspects of the propeller, such as weight, thrust, torque, etc.,

affected the shaft, but the design aspects of the shaft, such as cross-sectlonal

area, bearing locations, etc., did not affect the propeller, we decided to perform

two separate optimlzations within the same computer run.

The first optimization was for the propeller. The hydrodynamic analysis rou-

tine for the propeller was small enough to include as part of COPES/CONMIN and

therefore standard optimization was used. Various objective functions used were

weight, efficiency, tip speed, and weighted normalized sums of these functions.

Design variables included propeller diameter, angular velocity, and others. Con-

straints included hub diameter, thrust, weight, efficiency, tip speed (these latter

three when not used as objective functions), and others. COPES/CONMIN gave good,

reasonable results in all cases. The number of times that the hydrodynamic analysis

routine was executed varied between 50 and 150, depending on the case run. However,

since the analysis routine used less than 0.5 CPU seconds on a CDC CYBER 176 compu-

ter, costs were small.

The second part of the task was to minimize the shaft weight using various out-

puts of the propeller optimization, including propeller weight, torque, and steady

and unsteady thrusts. The design variables were the inner and outer diameters of

the shaft. The constraints included various combinations of static stresses (one

NASTRAN run), factor of safety, natural frequendles corresponding to axial and ver-

tical modes (a second NASTRAN run), and acoustic levels computed by another program

which uses NASTRAN forced response output (a third NASTRAN run). Because of the

NASTRAN analyses required, approximate optimization was used with five trial de-

signs. The computer job control language loop for this second task began with COPES/

CONMIN and continued through three separate NASTRAN analyses and an acoustic analy-

sis interspersed with five pre- and post-processors. Ten iterations were performed

(@$25.00 per iteration) with good volume reductions and an apparent trend towards a

convergent solution. We then decided to remove from these 15 designs (the initial 5

trial designs plus the I0 computed ones) the first 5 trials and continue the itera-

tions. The subsequent designs were significantly lower in volume than any of the

first I0 computed designs and still remained feasible.

While our results for the propeller/shaft system were very good, a number of

questions remain. What are the true trade-offs between standard optimization and

approximate optimization in COPES/CONMIN? Were we saving money initially with

approximate optimization by avoiding the finite differencing required to compute

gradients, but paying later by not arriving at a better design more quickly? Is the

apparent local minimum initially computed more likely to occur with approximate op-

timizatlon than with standard optimization? Will the cost for such a multi-dlsci-

plinary design process become prohibitive for a relatively small number of design

variables? How does one convince a sponsor who is not versed in numerical optimiza-

tion that a significantly better design is worth the funds expended even if it is

not the theoretically optimum design?

Finally, we need to mention the development of the pre- and post-processors.

While the development of these processors is quite straightforward given a fixed
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geometry with a knownset of design variables, that is not usually the situation in
the preliminary ship design process. It takes sometime (and iterations) to decide
on the design variables (inner and outer diameters of the shaft, bearing locations,
bearing stiffness, a combinaton of all these), design parameters (one-section or
two-section shaft, shaft length, sand in the shaft or not), and applicable engineer-
ing theory (which acoustic analysis, addedmass due to fluid effects, etc.). Each
time a new approach was considered, the pre- and post-processors were changed (often
considerably) to reflect new data and analysis programs. Such code changes can
hopefully be minimized with an integrated, database-managedsoftware system. Such
systems are currently under development at a number of agencies. In particular,
Wright-Patterson Air Force Base is developing an integrated software system for op-
timization, while DTNSRDCis developing IDEAS(Interdisciplinary Engineering Analy-
sis for Ships), which will be discussed in the next section of the paper.

INTERDISCIPLINARYENGINEERINGANALYSISFORSHIPS

The IDEAS(Interdisciplinary Engineering Analysis for Ships) system being de-
veloped at DTNSRDCis intended to be an integrated database-managedsoftware system
which can significantly smooth the transitions between analyses in different disci-
plines. For example, suppose that a propeller is to be analyzed for its hydrodyna-
mic, structural, and acoustic characteristics. The hydrodynamic analysis, using
finite difference techniques, computes and saves loads. The structural analysis,
using finite element techniques, can be performed only after accessing the hydrody-
namic loads (the storage schemefor which will differ from program to program), in-
terpolating the loads from the finite difference model to the finite element model,
and formatting the loads into those required for the structural analysis program.
Similar considerations are required to access the structural deformations for input
to an acoustic analysis. In addition to these transformations of data, the develop-
ment of the two numerical models, finite difference and finite element, usually
emanatesfrom drawings shared by the hydrodynamicists and structural analysts, each
group separately digitizing the drawings. With an integrated software system such
as IDEAS, the data transitions between programs in the system should be very easy.
All analysts who need to numerically model a structure will be able to access a
commongeometrical/mathematical description of the structure without having to
locate and digitize drawings. Such a system will allow easy access to the perfor-
mancecharacteristics of previous designs, as is often the need in ship and pro-
peller design.

Weare planning to use as the basic architecture of IDEASthe Integrated Analy-
sis Capability (IAC)6 recently developed by NASA'sGoddardSpace Flight Center. The
architecture of the IAC was designed to support an integrated, database-managed
system of engineering software and data. It was also designed to allow easy "plug-
in" of new analysis progams. Therefore, it is our intention to use the IAC to build
an integrated system of DTNSRDCengineering software, including analysis programs
such as NASTRAN,and ABAQUS,as well as automatic numerical model generators and
other pre- and post-processors usually associated with such analyses. The initial
effort for IDEASwas begun in FY84.

OPTIMIZATIONOFANALYSISPROCEDURES

In addition to the design optimization, DTNSRDChas also been involved in other
related optimization efforts which have proven to be very useful.

Since the finite element method is essentially an approximate numerical tech-
nique for solving practical differential equations of physics, it has someinherent
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error associated with it. Knowledgeand control of this error are obviously criti-
cal to the analysts. A few years ago we begana new effort to evaluate FEARS,7 a
finite element computer program developed by Professor Ivo Babuska at the University
of Maryland and based on adaptive meshing and _ posteriori error estimation concepts.
After each successive iteration this program computes the strain energies in various

elements and, based on certain error criteria, makes a decision with regard to fur-

ther subdivision of individual elements. The computation continues until a certain

specified error bound is reached. After initial installation and debugging, the

FEARS computer program has been enhanced in several ways. A post-processor has since

been developed which computes the stresses more accurately. This post-processor is

based on fitting the data to some appropriate analytical expressions that are then

used to obtain the desired stresses which are proportional to derivatives of the

original data. 8 The program was also modified so that it can now solve some limited

plate bending problems. 9 It is now planned to develop a similar error capability

without adaptive meshing which would initially be used to compute the error in any

given NASTRAN run.
Another effort of DTNSRDC's interest has been to maintain a current version of

a post,processor, BANDIT, I0 which is used to resequence the finite element models for

minimizing the bandwidth of their stiffness matrices. This program is kept up to

date by continuously evaluating and using the newer resequencing algorithms which

from time to time keep appearing in the literature. We also maintain a set of test

problems which are used to evaluate the effectiveness of these resequencing algo-

rithms. In the near future we are planning to develop a similar resequenclng capa-

bility for ABAOUS.

At DTNSRDC, we recently developed a NASTRAN-based finite element capability to

predict the magnetostatlc fields associated with ships and submerged structures. An

interactive tool was then developed that can be used to compute the distribution of

degaussing coil currents that would minimize the magnetostatlo anomaly due to the

sh_p in the Earth's magnetic field. This procedure was based on a simple least

squares fit. There are now plans to enhance this capability to include a constrain-

ed optimization on the coil currents, taking into account cost, weight, power, capa-

city, and so forth.

SUMMARY AND CONCLUSIONS

From the foregoing description of various types of activities in the general

area of optimization, it is quite evident that DTNSRDC has a positive interest and

an urgent need for an effective computer-based capability that would contribute

toward improvements in ship design. The problem of optimizing a complete ship from

the viewpoints of all the relevant disciplines is clearly a monumental task; never-

theless, a definite beginning has beenmade in the shape of capabilities for optimi-

zing the exploratory and feasibility designs of ships. Progress is also being made

in evaluating and developing and/or modifying existing optimization programs for

detailed designs.
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ABSTRACT

This paper reviews the work that has been done in the last decade or so in the
application of optimization techniques to vehicle design. Muchof the work reviewed
here deals with the design of body or suspension (chassis) componentsfor reduced
weight. Other papers dealing with system optimization problems for improved
functional performance, such as ride or handling, are also reviewed. The paper is
organized according to the types of application rather than constraints imposed or
the objective function chosen for an optimization process.

In reviewing the work on the use of optimization techniques, one notes the
transition from the rare mention of the methods in the 70's to an increased effort
in the early 80's. Efficient and convenient optimization and analysis tools still
need to be developed so that they can be regularly applied in the early design stage
of the vehicle development cycle to be most effective. Based on the reported appli-
cations, the paper attempts to assess the potential for automotive application of
optimization techniques. The major issue involved remains the creation of quantifi-
able meansof analysis to be used in vehicle design. The conventional process of
vehicle design still contains muchexperience-based input because it has not yet
proven possible to quantify all important constraints. This restraint on the part
of the analysis will continue to be a major limiting factor in application of
optimization to vehicle design.

I. INTRODUCTION

In the past several years, significant mass reductions in the automotive fleet
have resulted from downsizing, better design of structural components, improved
configuration, and use of alternate materials. The role of optimization techniques
in aiding in one or more of the above tasks and during proper estimation or selec-
tion of optimumparameters in vehicles can be seen to be slowly increasing. This is
reflected in the numberof papers nowbeing published or submitted for publication
in the SAEor other automotive journals.

The use of the computer as a possible design tool was well understood as early
as 1965 by Dunseth (ref. I) as a meansof reducing problem-solving time. At that
time, the use of optimization techniques was at its very infancy. Only a very few
application papers employing this technique existed. The first few such potential
applications in the automotive field were in the design of suspension and vibration
isolaters. Bender (refs. 2 and 3) was one of the first who proposed the use of the
techniques for vehicle suspension design, and Wolkovitch (ref. 4) did the samefor
optimization of the mechanical system response under shock and vibration environ-
ments. However, it took several years for the optimization technique to makeany
significant debut in the structural areas relating to automotive design (refs. 5
and 6). During the early 1970's applications began to increase as the techniques
were applied to a numberof automotive structural components. Someof the suspen-
sion componentswere again the first to be studied due to previous familiarity with
them (refs. 7 and 8). Significant growth in the use of the techniques for struc-
tures has only been found in the late 1970's and the early 1980's whenquite a few
general purpose finite element analysis and design programs were madepublicly
available. References 9 to 23 outline someof the design-oriented computer programs
currently in use for structural design optimization.
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Although the topic of optimization is still new to manyworkers in the auto-
motive field, there are also expert users amongthe vehicle analysts and designers.
In the last few years, a numberof good general review papers have surfaced but none
dealing specifically with automotive design. Past reviews on optimization have
concentrated on such aspects as optimization techniques (refs. 24 to 28), con-
straints (refs. 25 to 32), elements used such as plates or beams (ref. 31) or design
approaches (refs. 4, 26, 27, and 32). Most of the applications referred to either
were standard benchmarkproblems (such as transmission towers) or were character-
istic mainly of aerospace structures.

2. REVIEWOFCURRENTAUTOMOTIVEAPPLICATIONS

In this section, various vehicle applications of optimization technology that
are reported in the literature are reviewed. The topics are covered in five
separate subheadings, namely, "Primary Structures, .... Chassis and Suspension,"
"Engine and Powertrain, .... Body Panels and Mechanisms," and "Vehicle Systems." The
last topic covers those areas which deal with the vehicle as a whole or in which
more than one vehicle subsystem is involved. The primary structures, which include
most of the thin walled beams, the body joints, and somepanels and bars, form the
"skeleton" of the vehicle body structure and function as the main load-carrylng
structures to satisfy the "global load" requirements. The structural components
included in thls subset are the upper and lower front rails, all pillars, rockers,
the roof rails and header, the floor tunnel, etc. (see fig. i). The other sub-
systems such as "Chassis and Suspensions" or "Body Panels" and the corresponding
reinforcements do not contribute significantly to meeting global load require-
ments. The design criteria for the body panels are generally governed by local or
regional structural requirements such as strength, oil canning, denting, etc.

Flg. 2 shows a breakup for massdistribution of a typical vehicle curb weight
(VCW= 2020 ib) in terms of the chosen subsystems. The total mass of the primary
structures is about 400 ib (20%of VCW). The miscellaneous items such as fuel,
battery, seats, etc. makeup the total curb weight.

2.1 Primary Structures

The primary structure or skeleton frame Is that portion of the body which is

composed of beam-like members carrying the major loads. Most of the work on PS

deals with the car body as a whole and has attempted to retain its significant

(basic) characteristics (refs. 5, 6, and 33 to 35). Some have oversimplified the

design problem by not considering the component's interactions or not including all

the important design criteria such as frequencies, stresses, displacements, and

buckling or slde constraints which result from packaging or manufacturing. A few

have estimated the total mass reduction potential for alternate materials based on

the "equal stiffness" substitution rule (refs. 36 and 37). The latter approach

ignores the fact that critical design criteria may change as new materials are

introduced and that the interaction of components may alter the expected mass
reduction.
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Others who have attempted a more advanced approach have either considered
multiple design criteria including stiffness, strength and frequency or have
included several important service loads (refs. 5, 33, and 35). The scope of model
fidelity and design variables in these studies was, however, limited. In particular,
simplified beammodels (see fig. 3) have been used which only approximately describe
the complex real vehicle structures. In addition, in all the studies reported in
references 34 and 38 only the beamgaugeswere varied; the heights, widths and
section shapes of the beamswere fixed. The sectional dimensions were relaxed in
reference 5, but the locations of the joints and their stlffnesses were fixed. In
reference 35, a more detailed beamand plate model (see fig. 3) was used for better
stiffness and massdistributions, but only the gauges of beamsand plate elements
were employed as design variables. The local design constraints for the panels
(plates) such as buckling, denting, etc. were ignored. This resulted in a design in
which most of the panels were driven to minimumgage; the gauges of the beams
remained the potent sizing variables.

2.2 Body Panels and Mechanisms

Double-layered panels are used in many car components, such as the deck lld,

hood, floor pan, fender, and quarter panel. Finite element simulation for their

analysis is not difficult since most of the outer panels can be idealized by an area

element (a plate or shell element), and the inner panels can be idealized by llne

elements. However, the use of optimization for panel design is still very rare

(refs. 39 to 48). Initial optimization attempts either did not consider all the

important design constraints or simplified the problems. For example, reference 39

only considered the weight reduction potential by material substitution or design

changes based on "equal" structural characteristics. Reference 40 used CONMIN for

optimization but limited the constraints to overall bending and torsion and design

variables to three parameters (to, ti, and b). (See fig. 4(a).)

Another study (ref. 41) of alternate materials considered eight design vari-

ables (see fig. 4) and three stiffness criteria (including edge bending) (see

fig. 5). A more complete set of design variables (13 to 16) based on inner rein-

forcements independence was considered in reference 44. (See fig. 6.) A more

practical set of constraints (dent resistance, stiffness, buckling and sprlngback)

were considered in references 43 and 46; however, the equations used were mostly

empirical and were difficult to extrapolate. Another alternate material study

similar to that of reference 39 was reported in reference 47 for metal-to-composlte

substitution. Besides the dimensions of the inner and outer panels, the locations

of the inner panels were chosen as design variables (ref. 48). (See fig. 7.) In

reference 45 the shape parameters of sheet metal structures were considered for

design against crush.

2.3 Chassis and Suspension

The design of a vehicle's suspension is generally a compromise among competing

design requirements aimed at satisfying comfortable passenger ride and good vehicle

road handling performance. Numerous optimization studies have been conducted on

suspension design (refs. 3, 7, and 49 to 64), shock and vibration isolation (refs. 4

and 65 to 73), impact absorption (refs. 72 and 74), and wheels (refs. 75 and 76).

In most studies, the main concern was that of selecting quantifiable measures of

vibration which directly affect ride or handling performance. Examples of these

measures of vibration include rms values of displacement, acceleration, rate of
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change of acceleration (jerk), and absorbed power. Other measures, such as movement
within the rattle space (without contacting bumpstops (ref. 62)), low dynamic load
between tire and road surface for good directional control and limitations on the
allowable rolling angle (ref. 53), and tire life, have also been of someconcern.
In the time domain analysis (or experiment) the rms values, for example, can be
obtained by

Ifot t_ I/p
rms (a) = ap (t) d

where "a" stands for any of the vibration parameters: displacement, velocity,
acceleration or jerk. Several such criteria have been used (refs. 60 to 63, 72, 73,
and 76) but the simulation models were often simplified for estimating "a" or llke
parameters.

Most investigators have considered the suspension design problem as an
idealized lumped sprlng-mass and dampersystem (see figs. 8 and 9 for two such
idealizations) and used multl-criterlon optimization, nonlinear programming
formulation or an optimal control theory, often with feedback capabilities. Bender
(refs. 2 and 3) and several others used a weighted sumof the quantities describing
ride comfort and subsequently minimized this single quantity. A few employedan
approach where these performance criteria were treated as independent functionals of
a multi-objective system (refs. 49 to 51). Optimal control theory was used in the
synthesis of an active suspension by Bender and others (refs. 3, 8, 53, 55 to 57,
60, and 64) and for vehicle suspension models by Haugand others (refs. 61 and 71).
Two recent publications are discussed here. Thompson(ref. 63) used a frequency
locus method to develop formulas for the optimum spring and damperrates in con-
ventional car suspensions. The analysis is based on a linear four-degree-of-freedom
model shownin fig. 8. The front and rear spring and damperrates (with a con-
straint on overall static stiffness) are obtained using the conjugate direction
method to minimize the weighted sumof the mean-squared tire forces on randomroads.

Haug (ref. 61) used an adjoint variable method to minimize the driver-absorbed
power on a nominal road, subject to bounds on absorbed power on a rough road, driver
peak acceleration over a discrete obstacle, suspension jounce and rebound travel,
wheel hop, and limits on design parameters. The analysis is based on a linear five-
degree-of-freedom model shownin fig. 9. Spring stiffness and damping coefficients
were chosen as design variables and optimal control theory was employed for
numerical optimization. There are also somestructural optimization studies on
chassis components, as opposed to the suspension system optimization discussed above
(refs. 75 and 76). Automobile wheels (refs. 75 and 76) and a rear suspension torque
arms (ref. 77) are someof the new applications wherein the importance of shape
optimization is explored for potential weight savings.

2.4 Engine and Powertrain

On the engine and powertrain side, the use of optimization started somewhat

late (1975). Engine control optimization, fuel economy and emissions received the

initial attention (refs. 78 to 84). Applications now exist in quite a few areas of

engine control and components design. A number of papers have considered deter-

mining the necessary engine mount parameters (mount locations, rates and mount rate

ratios) required to achieve a number of performance objectives (refs. 85 to 87).

Reference 85 considered the ride improvement and reference 86 considered the limits
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on vertical, pitch and fore/aft mode frequencies plus the decoupling of the modes of

vibration as their performance objectives for engine mounts. Other engine applica-

tions include design for low noise (ref. 88), unbalances (ref. 89) and engine

controls (ref. 90). The use of finite element analysis in component optimization is

considered in reference 91 for gasoline engines, in reference 92 for diesel engines

and in reference 93 for IC engine pistons. In reference 94 a continuously variable

transmission was designed to control emission for a given fuel, whereas in refer-

ence 95 the emission efficiency and power of five automotive fuels were compared in

one engine with standard transmission. Engine applications for fuel economy per-

formance and emission optimization can be envisioned as useful but none have been

reported in the literature.

2.5 Vehicle Systems

In this section we consider cases where the entire car is simulated using some

sort of mathematical model for use in optimization. In reference 96 a computer

simulation program, PROMETHEUS, developed by the National Highway Traffic Safety

Administration (NHTSA), was used. A pedestrian hazard index, which is estimated as

a function of forces and accelerations to which the pedestrian is exposed (called

EPIC), is minimized. The design variables were selected from the hood/grille/bumper

assembly, which was characterized using a skewed hyper ellipse

Y = I
7 + ml cose

where HL, HH, 8, and N were chosen as design variables.

In reference 97, some important design constraints dictated by specifications

were used; namely, the steering column displacement during crash was not to exceed

five inches (ref. 98) and the occupant injury index was kept below the specified

value (ref. 99). The weighted residual of the unsatisfied constraints was minimized

by varying sheet metal thicknesses andgeometry. Occupant injury, or the vehicle

crash severity index (VCSI), was simulated as a simple function of the passenger

compartment deceleration. In reference i00, vehicles were regarded as rigid bodies

and model equations of impact were derived from impulse/momentum balances,

equivalent coefficient of friction, and moment of restitution. The least-squares-

fit approach (ref. i00) was employed to fit experimentally determined velocity

components to the analytically derived equations of the vehicle collision model.

In reference I01, a methodology for optimizing design parameters for vehicle

safety is described. The methodology, which is based upon a limiting performance

design philosophy, characterizes changes in the structure and the restraint

system of an image vehicle which lead to progressive improvements in vehicle
crashworthiness.

Reference 102 proposes a preliminary design of front and rear body structures

by analytical and experimental evaluation of the impact strength and crash energy

capacity, followed by resizing of related members. Though the analysis may be

reasonable and the result may appear mathematically accurate, often the "design

criteria" used for the components in most of the studies (refs. 96, 97, and i00 to

102) fall short of practicality. References 103 and 104 are some of the earlier

(1970) uses of optimization to the design of front end and restraint sYstems ,

respectively.
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2.6 Other Components

In recent years, there has been noticeable interest in developing capability or

methods to attack new or more difficult problems in automotive design, especially

those relating to structural areas. References 77 and 105 to 108 outline some

typical but diverse developments. They include shape optimization (ref. 77),

general capability to obtain design sensitivity for any calculable response function

(ref. 105), procedures to optimize solid components (ref. 106) and the capability to

address multl-objectlve systems (those in which more than one design objective may

be present at one time) (ref. 107). Naturally, only a few typical examples of

automotive components, namely, rear suspension torque arm (ref. 77), composite wheel

(ref. 105), engine bearing cap (ref. 106) and connecting rod (ref. 107), are
included with each.

3. COMPLEXITY IN THE VEHICLE DESIGN PROCESS

The automotive design process is complex since it involves a number of con-

straints and design criteria which need to be considered for the design trade-off to

he meaningful. The constraints on vehicle design are many and some have not

received a quantitative underpinning (ref. 102). Cost is one of these and it is an

important attribute because it often involves elements such as alternate materials

fabrication, manufacturabillty (forming, welding, machining, casting), and assembly

procedures, none of which is easily quantifiable but may lead to significant changes

in the way the automobiles are currently built. In a second category, several

important vehicle attributes such as ride, noise, handling, vibration, etc., can be

included which do carry some analysis basis along with a vast experimental data

base. Nonetheless, most of these attributes have subjective elements (human

response is essential) and thus their design criteria are often questionable and

also appear difficult to extrapolate. A third class of vehicle attrlbutes---

appearance, style and interior arrangement, etc.---contain irreducible subjective

elements, which can only be quantified if accurate mathematical models for human

behavior are developed. This is a long-term proposal at best. In addition, some

areas relating to system behavior, such as occupant simulation in frontal and side

impact, have not yielded to reliable analysis. In these areas optimization will
remain underutilized.

On the structural side, however, there exist quite a few areas which have

yielded to sound and reasonable analytical bases (either numerical or closed form).

For such applications the design problem becomes a straightforward direct linking

process with an optimization counterpart. Many problems (such as static and dynamic

analysis for strength, stiffness, frequency and compliance) can easily be handled

through this process since they can be modeled using finite elements, for which

optimization linking may have been "generically" established. There are several

FEM-based programs which have established design optimization capability on a

general basis (refs. Ii to 13 and 18 to 20). Crashworthiness for automobiles is,

however, an exception because it has not yet received an established viable and

economical base for behavior characterization. The existing finite element theory

of shells and plates does not prove to be economical. Some authors have used

simplified system (rigid-body lumped mass) models for the simulation of a problem

such as frontal crush or side impact. They have, in many instances, coupled their

analysis models with the optimization programs for the purpose of obtaining their

new design parameters (refs. 96 and 97). The question of validity for their so-

called "optima," however, remains an issue. From the above discussion, it is
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apparent that it maynot be possible to comeup with a reasonable set of constraints
(all quantifiable) and a good set of criteria for problems such as vehicle crush
which can lead to a meaningful optimal design at the end. Developments in these
areas will be a key determinant in further progress in the utilization of optimi-
zation in vehicle design.

4. STATUS/TRENDIN OPTIMIZATIONTECHNOLOGY

4.1 Design Variables

Optimization studies in the automated design of structures can be classified

into four groups of design variables:

a. Size variables, which define the sizes (excluding lengths) of the

structural members

b. Geometrical variables, which are typically the spatial coordinates
of the intersections of the structural members

c. Materials variables, such as Young's modulus, density, etc.

d. Topological variables, which define the configuration---e.g., which

members are to be included in the structure and which ones are not

The overwhelming majority of the work in structural synthesis has involved only

sizing types of variables, and several extensive programs have been developed to

handle this general class of problem. Materials and geometrical variables have

received less attention, although a number of programs which include these variables

(refs. 13, 15, and 18 to 20) do exist. The difficulties with geometric variables

arise due to the inherent problems associated with changing geometry and the need

for looping the model generation algorithm within an optimization system. The

latter difficulties also appear common or even more pronounced with topological

variables but the topological variables differ with the rest of the above three in

one important way.

Topological variables by nature are discrete variables and, unlike continuous

variables, cannot be used with finite differencing. Therefore, one encounters

mathematical barriers while attempting to use a well-developed technique or an

optimization program based on a gradient technique with the rest of the variables.

Some nongradient techniques may prove useful. However, the literature on topo-

logical optimization within the finite element framework is sparse, and for

automotlve-related problems it is almost nonexistent. Most of the topological

optimization in real practice is performed using intuition and judgment, with

computer analyses and engineering/graphics often acting as helpful tools.

4.2 Generic Modeling

A recent technique called "generic modeling" (ref. 75) has been found to be

quite useful and suitable for this type of application. It lends itself to

incorporation as an integral part of an automated system, which is most critical

for the efficient use of optimization and design programs. The generic modeling

approach not only relieves the user of the burden of recreating the model, but also

cuts down model modification time (topology, geometry, etc.) substantially.
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Initially, generic modeling is slightly moreexpensive than the conventional
graphics system approach. However, the cumulative cost of conventional modeling
increases at a much faster rate as the numberof modeling changes increases during
the design process (fig. i0). Specific modeling cost comparisons for a wheel and
vehicle body structure are provided in reference 75. For example, after the body
structure model had been modified about ten times, the total cost of conventional
modeling was about 100%more than the corresponding cost of generic modeling.
(See fig. i0.) Although the generic modeling procedure has been applied to wheel
and simple body models, the fuel potential will only be realized by applying it to
the development of larger size models. Sucha versatile generic modeling procedure
will not be easy to develop because substantial efforts are necessary to model
complex body parts with lengthy logic and procedures. Attainment of such a pro-
cedure promises a large potential payoff, not only in reduced cost and efficient
structure, but also in providing a timely input to the vehicle design cycle.

4.3 Computer Programs

Most of the current general purpose computer programs (GPCP) either are based

on mathematical programming techniques (ref. 25) or use recursive design methods

obtained from optimality criteria (ref. 24). These methods enable the designer to

arrive directly at a solution that satisfies the provisions for strength, stiffness,

vibration, ride, handling, harshness, noise, safety and/or serviceability (as the

case may be) while making the most efficient use of materials. Much progress has

been made during the past quarter century since the direct methods of mathematical

programming were first applied to optimization problems of structural design

(refs. i and 24 to 32). The effort has led to the appearance of several textbooks

and useful developments (refs. 9 to 23) which provide a unified treatment of the

topic. These references are not complete, merely indicative. Most programs are

now equipped with schemes which may be approximate but minimize the number of calls

to the required analysis system in order to reduce the overall cost of total

optimization.

4.4 Constraint Approximations

The constraint approximation concept is one such popular scheme which is

commonly found in most present GPCP. The programs ODYSSEY (ref. 15), ACCESS

(ref. i0), PROSSS (refs. Ii and 12) and PARS (refs. 18 to 22) use a Taylor series

expansion, linear or reciprocal, in design variables (whenever appropriate) for the

constraints. A more general power form of constraint approximation is used in

EAL/PARS (ref. 22). This facilitates simulation of a number of constraints and

structural types, if present. Reference 22 also includes a new method for

collapsing a number of active constraints into a few representative equivalent

constraints without losing the essential nature of the original problem. The major

advantage of this approach is that design sensitivity vectors and constraint approx-

imations need to be calculated for only a reduced number of equivalent constraints.

For large problems, this often results in significant computational savings

(ref. _).

4.5 Optimization Algorithms

Optimization algorithms in most of the efficient computer codes are often

derived from first order methods, which require gradient information for the
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constraints and objective function. A numberof programs (ODYSSEY(ref. 15), OPUS
(ref. 13), PARS(refs. 18 to 20), and PROSSS(refs. II and 12)) use CONMIN,which
is a feasible directions algorithm (ref. 9), as an optimizer. EAL/PARS(refs. 18
to 20) has two optimizers, CONMINand a second one based on a variable penalty
method (VPM)which uses SUMT(Sequenceof Unconstrained Minimization Technique)
with a modified Newtonmethod. The required information of the second derivatives
in Newton's methodis supplied approximately but explicitly as a function of first
derivatives and their initial values (ref. 21). The method, therefore, is designed
to provide a second-order convergence rate at a cost no higher than what is usually
required for the flrst-order methods.

4.6 Design Sensitivity

Design sensitivity computations are probably the most expensive ventures of any

optimization technique. Most GPCP, therefore, tend to include this capability in

one form or the other. The efficiency, of course, depends upon their mode of

linking and the sensitivity technique used (ref. 105). It is now widely believed

that the cost of gradient computations through analytical means is the most

economical, though the procedure differs with the number of active constraints and

design variable ratios. (See ref. 105.) Finite differencing is considered to be

the most expensive method for calculating sensitivity.

5. POTENTIAL FUTURE AND PROSPECTS

From the foregoing discussion, it is indicative that progress in optimization

and sensitivity capability (especially in structural areas) has improved signif-

icantly. With the ability to handle any design variable, as specified by "generic

modelling" (ref. 75) and increased efficiency (ref. 21), the cost of optimization is

becoming a "less serious" barrier to application. Adequate "quantification" of the

associated constraints and "clear-cut" definition of the design criteria remain

major stumbling blocks for the widespread use of optimization. Until it is possible

to quantify (at least crudely) most of the important constraints that we encounter

today in automotive design, the prospects for optimization as an integral part of

the design process appear uncertain and may remain so for the foreseeable future.

Design sensitivity will perhaps remain a major mode of design iteration, with

"analysts" serving as a major input source to decision making (refs. 105 and 108).

This is because most of the important constraints are experience based (often

subjective), and adequate quantification has not been well enough established to

seek automation. An important near-term outgrowth of recent developments in optimi-

zation technology is that this process (i.e., sensitivity calculation) can now be

accomplished much more efficiently. Thus, the input of analysis to design is

becoming more timely and valuable. The capability to apply optimization to various

systems will grow at a steady pace and the CAD/CAM interfaces to design will become

more popular and automated. The availability of more efficient optimization systems

and programs will grow commercially. In addition, with the exploding computer

technology and cost of hardware declining, the computational cost for design and

optimization will continue to be a less severe barrier to medium or moderately large

size applications. Thus, we might expect more utilization of optimization with

graphics and "man-in-the-loop" modes of operation.
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Design with topological variables (such as configuration or appearance) will
continue to be done on a "one-at-a-time" basis. A topology is first selected based
on the understanding of the design requirements and packaging, and its shape,
geometry or sectional parameters are then optimized. This maynot be as efficient
as one would find in a "simultaneous" design mode, but the process is likely to stay
at least until the stage arrives when, through advances in the field of artificial
intelligence, the designer will be able to put his thoughts into a computer
language.

6. CONCLUSIONS

It has not proved possible to quantify all the important constraints, such as
ride, NVH(noise, vibration, and harshness), and manufacturabillty, that need to be
considered in the design of automotive vehicles for overall system goals. This
limitation on the part of the analytical basis will apparently continue to set the
pace for the use of optimization.

On the structural side, the trend in the use of advanced techniques in vehicle
design is away from methods tailored to specific componentsand shapes and toward
methods that can handle material and shape changes in design for a numberof com-
ponents. For modeling, this trend manifests itself with the use of generic modeling
or similar methods which reduce the time requirement or eliminate user interfaces.
For the analysis part, the trend is toward the use of finite element or similar
discretization techniques. For the design part, the trend is away from costly trial
and error modesof approach and more toward the use of design sensitivity and/or
general numerical optimization algorithms.
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Figure I •

PS

Division of vehicles into six subsystems: primary structures (PS),

body panels (BP), engine and powertrain (EP), suspension and chasis

(SC), reinforcement and fixtures (RF), and miscellaneous (fuels, seats,

battery, etc.) (MS).

Figure 2.
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(a) Typical simplified beam model. (Adapted from refs. 5 and 15.)

(b) Typical beam/plate model. (Adapted from ref. 35.)

Figure 3. Beam models for optimization.
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CROSS SECTION J-J

(a) Double-layer panel.

OFFSET
BEAM ELEMENT

E ELEMENT

(b) Finite element model (32 plate elements, 20 offset beam elements, no. of design

variables = 8) (ref. 41).

Figure 4. Mathematical models for optimization with alternate materials.
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BENDING STIFFNESS

EDGE BENDING STIFFNESS

Figure 5. Frequently used stiffness design criteria for double panel.
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Figure 6. Finite element model.
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Figure 7.

--GRID LINE FOR OUTER PANEL

--GRID LINE FOR INNER PANEL

Half model of truck decklid (38 beams, 196 plates, number of design

variables = 4) (ref. 48).
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Figure 8. Linear half vehicle model (four degrees of freedom) (ref. 63).
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Figure 9. Linear half vehicle model (five degrees of freedom) (ref. 61).

(a) Vehicle body models derived using generic approach.

Figure i0. Generic modelling approach.

170



200%

150%

PAY OFF

I00%

5O%

0

-50%

Topological
--- -- Geometrical

_.-- Sectional

Materials

..... Average

./ /
,i /

/ /
/" /

/ /

5 I0

NUMBER OF MODIFICATIONS

Conventional - Generic 1PAYOFF:I. Cost _ Cost x I00
/

L Generic Cost

(b) Payoff from using generic modelling approach.

Figure i0. Concluded.

171



N87-11729

STRUCTURAL OPTIMIZATION IN AUTOMOTIVE DESIGN

J. A. Bennett and M. E. Botkin
General Motors Research Laboratories

Warren, MI 48090

P'P,ECF.Dli_;; PAGE BLANK N(]'[ FILMED

173



TYPICAL ENGINEERING DESIGN ORGANIZATION

Although mathematical structural optimization has been an active research area for

twenty years, there has been relatively littlepenetration into the design process. Experience
indicates that often thisis due to the traditionallayout-analysis design process. In many cases,

optimization effortshave been outgrowths of analysis groups which are themselves appendages

to the traditionaldesign process. As a result,optimization isoften introduced into the design

process too late to have a significant effect because many potential design variables have

already been fixed. A series of examples (Ref. 1-6) will be given to indicate how structural

optimization has been effectivelyintegrated intothe design process (Fig.1).

DESIGN

• LAYOUT

• ENG I NEERING
FORMULAS

' iI PTIMIZATION

t

NUMERICAL

ANALYSIS

TEST

Figure 1
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TYPICAL BEAM SECTIONS AVAILABLE IN OPTIMIZATION

The examples in this paper have been obtained with a general purpose structural optimiza-

tion code developed at the General Motors Research Laboratories which allows both constraint

approximation methods and full mathematical programming methods with exact constraint

evaluation to be used as required. A feasible directions algorithm is used as the optimizer in

both cases. A design library of thin-walled beam elements (Fig. 2) and triangular plate

elements (bending and membrane) is available. Multiple load conditions and multiple boundary

conditions may be applied and frequency, displacement, and stress constraints may be used.

I l l

i I

4=,

i

LI
q'=="-'=" b , v I

i
BOX BEAM

HAT SECTION

Figure 2
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EARLY CONFIGURATION DECISIONS

There are often several competing structural configurations for a major portion of the
structure. Rarely are these competing configurations examined on a rational basis. This

example examines an optimization study of three configurations proposed for a front structure.

The structures were split into upper and lower configurations. Front structure I may be
characterized by an upper structure securely attached to the cowl bar and a lower structure

comprised of a mid-rail and triangulated lower rail. Structures IIand IIIeach have an irregular

slanted shear wall for the upper structure and a mid-rail and engine cradle comprising the lower

structure, with structure Illhaving an additional under-car longitudinal rail. Each of these

front structures was modeled on a common rear structure as shown in Fig. 3. The remaining
front structures are shown in Figs. 4 and 5. All structures were subjected to the same set of

force load conditions and frequency constraints. In the optimization, all beam cross section

dimensions, including widths and heights, were taken as design variables. In addition, beams

throughout the structure, not just in the front structure, were allowed to vary. It has been

found that relatively simple beam models with truss elements representing the stiffness of

criticalpanels have been sufficientfor preliminary design.

• In eel. ••••e •.- •• lee •

r .........." .......
I ..-"" ........

Beam Element

............... Truss Element

STRUCTURE I

Figure 3
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Beam E1ement

Truss Element

21

12

15

FRONT STRUCTURE 11

(Rear structure common with Structure I)

Figure 4

3 $

20

7

9

Beam Element

Truss Element

it

FRONT STRUCTURE 111

(Rear structure common with Structure I)

Figure 5
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LOAD CONDITIONS AND CONSTRAINTS

It is necessary to include an extensive set of load conditions so that all possible critical

load conditions are covered (Fig. 6). Typically, 10-15 loads,including static,inertiarelief,and

frequency conditions,are used.

Symmetric Load Conditions

- 3acking (statics)

- 4 g bump both front wheels (inertia relief)

- 4 g bump both rear wheels (inertia relief)

- 1 g brake (inertia relief)

- Front bumper (inertia relief)

- Rear bumper (inertia relief)

- Roof crush (statics)

- Cowl crush (statics)

- Roof bow (statics)

Asymmetric Load Conditions

- 4 g bump one front wheel (inertia relief)

- 4 g bump one rear wheel (inertia relief)

- Torsional jacking (statics)

Frequency Constraints

- Symmetric - first mode •18 H_-

- Asymmetric - first mode • ZI Hz

Figure 6
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OPTIMUM MASS SUMMARY

The total structural masses for the front end configurations considered are shown in Fig. 7.

The lower Ill/upperI configuration,with a mass of 127.4 kg, was the lightestof the structures.

It is interestingto note here that the difference in total mass between the lightestand heaviest

of the acceptable designs isonly 8.2 kg, approximately 6.5%. Given the apparent differences in

the load-carrying capabilitiesand stiffnesscharacteristicsof the various front structures, it
would seem that the structure, as a whole, must have been able to compensate for the inherent

differences in load-carrying capacity of a particular configuration, resulting in a series of

designs having virtuallythe same total mass but different mass distributions. This indicated
that nonstructural reasons could be used to make the final selection. The important

consideration here isthat alldesigns met the same load criteriasince they were all treated as

constraints in the optimization. Thus, by entering the early phase of the design process,

important design directionwas given by optimization.

,Front Structu_, ,Conflguration

1. Lower II I I Upper I 127.4

2. Lower III I Upper II 132.7

3. LoWerII I Upper II 135.2

4. Lower II I Upper I 135.6

Figure 7
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ROCKER SECTION STUDY

As the design progresses, nonstructural decisions begin to dictate the shapes of various
structural members. While the shapes of these members should be influenced by the earlier

optimization study,often the nonstructural influences prevail. This effect can be evaluated as

shown in Fig. 8. In this case, the proposed rocker section was replaced in the model and only
the thickness was allowed to vary in this section. In addition,the rest of the design variables

in the remainder of the structure were also allowed to change. The proposed irregularsection

produced a mass penalty of 4.51 g. This was deemed severe enough to attempt a redesign of

this component. Again, this information is difficult to obtain without an optimization

capability.

Conficjuration Optimized Mass(kg!

Baseline Model- Rectangular Rocker Section
(7.62cmx 11.23cm) 112.0

Revised Rocker Section - Irregular Shape 116.5

Figure 8
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HOOD STRUCTURE OPTIMIZATION MODEL

As a final example, we will take the design of a secondary structural component of a

typical construction in which the inner structure is primarily a beam structure and the outer is
a plate structure (Fig. 9). This detailed model clearly would occur later in the design process,

as opposed to the simpler models shown in the other two examples.

For this particular study, the outer structure was assumed to be of constant thickness.
Each of the inner beams was assumed to be a channel section of constant thickness and size.

The heights of allbeams were set at 2.5 cm.

Two load conditions were used for thisstudy. The firstassumed the hood was supported on

three of itsfour support points,and a deflection constraint of 2.0 cm was placed on the fourth

point under a dead weight load. This load was the estimated final mass of the hood uniformly
distributedon allnodes. The second load condition was the hood in its fullysupported condition

with a 75 kg load distributedover the center portion. Each load condition required a separate

boundary condition set.

INNER

Figure 9
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HOOD STRUCTURE INNER CONFIGURATION

Three different stiffener patterns were optimized as shown in Fig. 10. As might be

expected, the more triangulated structure required the lowest mass. In this design, the
minimum width of the beam section was allowed to be a very small number (0.15 cm). As the

width of the channel section approaches this number, the section approaches a blade type of

stiffener,typical of molded SMC structures or a hem flange or turned edge in steel. As can be

seen from Fig. 11, beams 3 and 4 reached this condition. Since beam 3 is on an edge, this
suggests a turned edge would be sufficient. In this example, more detailed information about

the finalstructure isbeing obtained.

®

Total Mass

28.9 kg

28. 2 k9

22.6kg

Nasa = 22.6 kg

Beam t wldth flange height

1 .076 1.14 .05 2.5

2 .076 1.21 .05 2.5

3 .076 .36 .05 2.5

4 .076 .33 .05 2.5

5 .076 1.31 .05 2.5

akln .076

skin mass - 17.3 kg

Beam mass = 5.3 kg

Dimensions In cm

Figure 11

Figure 10
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BOUNDARY ELEMENTS

Ultimately one would like to merely describe the function and limitationsof the structure

in some conceptually convenient terms and then allow the computer to automatically make

adjustments in some way to produce a best design. This process willrequire the implementation
of a boundary-based description of the problem as opposed to a nodal description as used in

typical finiteelement analysis programs. Since the design process willbe under the control of

an optimization program, the analysis mesh must continuallybe generated as the design changes.
In addition, it is necessary to guarantee the continuing accuracy of the analysis as the design

changes. These considerations suggest the integration of a boundary-based automatic mesh

generation scheme with adaptive mesh refinement techniques and structural optimization to
produce an effective shape optimization program.

A mesh generator for multi-connected, two-dimensional regions which requires only
boundary information was chosen. This information isinitiallya continuous description which is

then discretized. The algorithm then distributespoints uniformly throughout the region and

connects them to form triangles. An averaging form of smoothing is applied to produce
triangles of roughly uniform shape. The problem can then be described in terms of a set of

boundary design elements, each of which has associated with it a set of design variables (Fig.

12). As the design changes, the new mesh can be generated from the new boundary description.

®

F

J\

oLo.
i KeyNode

0 Boundary Element

d. Design Variable (typical)
J

Figure 12
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MESH REFINEMENT

When finiteelement analysis is used for a fixed configuration optimization, the integrityof

the model is assured at the start of the optimization and is assumed to remain acceptable

throughout the design process. However, when the design process is changing the shape of the

part and the shape and location of cutouts, this assumption is no longer valid. One way of
handling this problem is to use the concept of adaptive mesh refinement. In this concept,

information from one analysis isused to identify regions of the finiteelement mesh which need
further refinement. This refinement can take the form either of adding additional elements in

the area to be refined or of increasing the order of the existing finiteelements. The mesh

refinement approach has been chosen since it can be used with existing elements and does not

require the formulation of new finiteelements. In addition, it can be effectively integrated

with the mesh generation scheme described earliersince it merely involves the addition of more

points to be triangulated. Regions of refinement are based on strain energy density (SED)

gradient contours. Typical contours and a refined area are shown in Fig. 13.

UNREFINED

REFINEMENT AREAS

REFI NED

Figure 13
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NONPLANAR STRUCTURES

It is convenient to think of three distinctforms of nonplanar thin structures. The firstof

these structures, for example, can be described by a mathematical transformation from a

simple flat surface into a cylindricalsurface. Secondly, the surface may take the form of a

general shallow shell which may not be obtained from a simple mapping relationshipbut can be
obtained by projection. Thirdly, the structure may be made up of several segments which may

be either planar or one of the two previously mentioned forms (Fig. 14). In each of these forms,
the ideas discussed in Ref. 5 can be used in the planar form to describe the segments, generate

the mesh, and carry out the refinement.

z = R Cos 8

(a) Trans_

(b) Projection z = Q(x,y)

Q Interpolation

Description
of Surfaces

(c) Assembly of Segments

Figure 14
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FOLDED PLATE EXAMPLE

An example of a plate folded through a 90° angle isshown in Fig. 15. A staticloading of

400 N isapplied to point A normal to the plane of the triangular segment, thus causing bending
moments in the plate. After the structure has been triangulated,it isrotated as required.

Eleven design variables control the shape of the plate. The outer edge of the lower

segment is the double cubic shape design element type with four design variables. Each of the

sloping outer edges of the upper segment isa double cubic but with only two design variables

each. The size of the triangular interiorcutout iscontrolled by the location of the key nodes.
The z-coordinates of allthe nodes and the x-coordinates of the two bottom nodes are variables.

The variables are appropriately linked to yield a symmetric design. The material thickness was

also allowed to vary but remained at minimum gage throughout the design.

The stressin the structure was constrained to be everywhere less than the yield stress. In

addition,geometric behavior constraints were imposed to limit the minimum distance between

boundary segments to be lessthan 0.29 cm.

A plot of mass versus optimization step number isshown in Fig. 16. Plots of the initialand

final designs are shown in Figs. 15 and 17 with the strain energy difference contours showing
the areas which were refined in the design. The size of the triangular cutout was limited by

stress constraints. The boundaries along the folded edge, however, were controlled by the

geometric behavior constraint which limitshow close two edges may be to each other.

INITIAL DESIGN

Figure 15
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FINAL DESIGN

Figure 17
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OBSERVATIONS

.

.

.

.

.

The mathematical tools exist to develop an effective structural optimization program.

These tools may have to be developed for a particular industrialsituation.

Optimization can be most effective if it is initiatedin the preliminary design phase with

simple models when the criticalparameters of the design can be most affected. This

requires an easilyused optimization program.

An organization arrangement where optimization is introduced through an analysis group

which is appended to the traditional design and test organization will probably not be

successful because by the time optimization is applied, few design freedoms will be
available.

The finiteelement model used must be accurate and the load conditions and constraints

must be carefuny chosen. Therefore, the user must possess the same universalityof view

required of the traditionalengineering designer with the appreciation of the numerical

aspects required of the finiteelement analyst. This combination of skillsisnot evident in

either distinctgroup, and it willbe necessary to provide a thoughtful learning environment

to produce engineers who can effectivelyuse these new tools.

The approach taken in the shape optimization in which the finite element model is

generated from a design description of the part suggests a direction which will resolve
some of the concerns described above.
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This talk presents the latest results of an ongoing study of computer-
aided design of airplane control systems, which is based on satisfying
requirements on multiple objectives. Constrained minimization algorithms
are used, with the design objectives in the constraint vector [I]. We
briefly review the concept of Pareto optimality and showhow an experienced
designer can use it to find designs which are well-balanced in all objec-
tives [2,3]. Then we will discuss the problem of finding designs which are
insensitive to uncertainty in system parameters, introducing a probabil-
istic vector definition of sensitivity which is consistent with the
deterministic Pareto optimal problem [4]. Insensitivity is important in
any practical design, but it is particularly important in the design of
feedback control systems, since it is considered to be the most important
distinctive property of feedback control. Methods of tradeoff between
deterministic and stochastic-insensitive (SI) design are described, and
tradeoff design results are presented for the example of a Shuttle lateral
stabilityaugmentation system. This example is used because careful
studies have been madeof the uncertainty in Shuttle aerodynamics [5].
Finally, since accurate statistics of uncertain parameters are usually not
available, the effects of crude statistical models on SI designs are
examined.

OUTLINE

• REVIEW PARETO-OPTIMALMULTIOBJECTIVE DETERMINISTIC AND
STOCHASTIC-INSENSITIVE (SI) DESIGN.

• FORMULATEMETHODSOF TRADEOFFBETWEENDETERMINISTIC AND
STOCHASTIC-IN SENSITIVE DESIGN.

• DISCUSS TRADEOFFDESIGN RESULTSFOR SHUTTLELATERAL STABILITY
AUGMENTATIONSYSTEMEXAMPLE.

• EXAMINE EFFECTSOF INACCURATE STATISTICAL MODELSON
STOCHASTIC-INSENSITIVE DESIGN.
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MULTIOBJECTIVE DESIGN BY CONSTRAINED MINIMIZATION

The Pareto-optimal formulation of multiobjective design is not an

optimization method in the usual sense, since it does not determine a

unique solution. Pareto-optimal solutions comprise that portion of the

boundary of the achievable domain which is noninferior to all others in

the sense that every other solution must be worse in at least one

objective. In the literature on multiobjective optimization it is

generally assumed that some higher-level "decision maker's" logic exists

which can lead to an optimal solution. We assume, to the contrary, that no

optimal solution exists for practical multiobjective design problems. Our

Pareto-optimal algorithm is a valuable tool for the designer, since it

enables the computer to calculate example Pareto-optimal solutions using a

constrained minimization algorithm. However, the quality of the design

depends on critical decisions made by the designer, who must choose the

objective functions and values of associated scaling parameters which lead

to solutions which are well-balanced in the disparate objectives, control

the tradeoff iterations, and choose the final design. Rather than seeking

some undefinable optimization index for complex systems, the design process

is based on whatever computable objectives the designer considers

important, with consideration of computational cost subordinated to the

designer's judgment.

• PARETO-OPTIMAL FORMULATION

• THERE IS NO OPTIMAL SOLUTION

• COMPUTER CALCULATES EXAMPLE PARETO-OPTIMAL SOLUTIONS USING

CONSTRAINED MINIMIZATION ALGORITHM

• DESIGNER INTERACTION IS ESSENTIAL

• CHOOSES AND SCALES OBJECTIVES

• CONTROLS TRADEOFF ITERATIONS

• CHOOSES FINAL DESIGN
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DETERMINISTIC PARETO-OPTIMAL ALGORITHM

In this figure we present the constrained minimization formulation

which leads to the example Pareto-optimal designs. Let z be the vector

of design variables, q a scalar dummy variable, and f(z) the vector of

objective functions, and let g(z) _ 0 represent a vector of auxilliary

constraints. Then for arbitrary vectors a and b (with bj > 0),
solution of the constrained minimization problem on the first line leads to

a design on the boundary of the achievable domain which is at least locally

Pareto optimal. It is well known that this minimization problem is equiva-

lent to the min-max problem on the second line. The particular solution

obtained depends on the choice of a and b. Suppose the designer chooses

for aj values of the objectives which he considers marginally accept-

able, and another set of very desirable objectives, aD.. Then

defining b = a - aD should yield a solution well balanced in the

objectives, since a and aD have been so chosen. This method, known

as the "Goal Attainment Method" [6], is illustrated in the sketch. The

cross-hatched curve indicates the boundary of the achievable domain in

objective space, and the part between the cross-hatched bars is the Pareto

domain. At any iteration the constraints on f are at (a + qb). As q

is minimized the constraints move toward the boundary, and the solution is

forced to the deterministic optimal, fD*, corresponding to the minimum

_D*" The line joining fD* and a plays an important role in the
tradeoff formulations.

f2_

AOHEVABLE  b

+n b

SOLUTI ONS

MINq s.t. f(z)_<a + qbAND g(z)=< 0
z,q

F,,,z,o1EQUIVALENT TO: MIN MAX b. > 0
z J i -i ' J

GOAL ATTAINMENT: b = a - aD

f!
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TRADEOFFSIN STOCHASTIC-INSENSITIVEDESIGN

Wenow formulate the SI design algorithm and two tradeoff methods.
The designer must specify a vector, y, of parameters with significant
uncertainties and their probability distributions. Then the objective
functions are f(z,y), and the stochastic sensitivity vector, s(z), is
defined by the probabilities that specified requirements will be violated;
i.e., that fj(z,y) >%, where _x is a vector of requirement values.

Since this definition is only useful when if_ > f , it is desirable toD. '
3

solve the deterministic problem first. Defining the Pareto-optimal SI
design as that which minimizes the maximumsensitivity, the constrained
minimization algorithm takes the form shown. Computational problems will
be discussed later, but it is worth noting that insensitive design does not
require accurate calculation of the probabilities.

Both tradeoff methods use a scalar parameter to vary a vector
inequality along the line of varying constraints shownon the sketch for
the deterministic design. For _x fD*, the SI designs must be very like
the deterministic. Introducing a scalar parameter, _x, and defining _)
as in Method I, _ 1 gives deterministic-like solutions, and decreasing
_x provides a sort of tradeoff procedure, with increasing emphasis on
insensitive design. Method 2 is a more precise tradeoff. Here _x is
fixed at a value giving insensitive design, and constraints on nominal
objectives, T, are varied in a similar manner giving a tradeoff between
sensitivity and nominal values of objectives.

PARETO-OPTIMAL STOCHASTIC-INSENSITIVE DESIGN (SI)

DEFINE: s(z) A PROB [f(z,y) > f'] f" > fd = a + rldb
= y '

MIN n S.T. s(z) < <= rl, g(z) = 0

z, rl

TRADEOFF METHODS IN SI DESIGN

1. VARY f WITH SCALAR _.

f(?) =a + % rlb

o VARY CONSTRAINTS ON NOMINAL f-VALUES

FIX f" AND CONSTRAIN f(z,y-)_ f(z) =a+¥< qdb
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DESCRIPTIONOFEXAMPLECASE

The example case is design of a lateral stability augmentation system
(SAS) for Shuttle entry at M = 2.5. The linearized lateral response
equations are 4th order. System states are sideslip angle (B), yaw
rate (r), roll rate (p) and bank angle (¢). Controls are aileron and
rudder. The control law has 6 feedback gains (SAS design does not require
bank angle feedback) and 2 feedforward gains from the pilot's stick input
(Sap) to the controls. The general design objective is to obtain rapid,
stable roll response to the stick input, with small sideslip. This example
was chosen because statistical uncertainties in Shuttle aerodynamics have
been carefully studied, and at M = 2.5 these uncertainties have been
found to cause unacceptable variation in lateral response using aerodynamic
controls [5]. Nevertheless, in the example we use only aerodynamic con-
trois. The design parameter vector z is comprised of the 8 gains. The
uncertain parameter vector y contains all 6 aerodynamic control effec-
tiveness coefficients and the 3 sideslip coefficients. (The @-equation is
kinematic and contains no aerodynamic effects.) Uncertainty in control
effectiveness will clearly have a strong effect on control system design,
and lateral response is sensitive to the sideslip coefficients. In
stability axes the standard deviations of the 3 types of coefficients are
fairly consistent, and approximate values are shownfor sideslip (All) ,
aileron (Bil) and rudder (Bi2) coefficients. Rudder effectiveness is
most uncertain. The y-statistics are considered gaussian and include
correlation estimates.

k = Ax + Bu, xT = (13,r, p, (p), u T = (8a, Or)

°olIc'lu Kx + C Sap, K A__[KII KI2 KI3 , C =
LK21 K22 K23 2

z-VECTOR: 8 CONTROL SYSTEM GAINS

y-VECTOR: 6 CONTROL EFFECTIVENESS

DERIVATIVES (Ail)

o -VALUES (M = 2..5):
Y o(Ail) = 14°1o,

o(B ) = 20%
i2

(Bij) AND 3

o(Bil) = 12%,

SIDESLIP (13)
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DESIGNOBJECTIVESFORSHUTTLELATERALSAS

In this study, Ii deterministic design objectives are considered.
Generally, these are based on military handling-qualities requirements for
large transports. Stability is a basic requirement, and the 4 character-
istic roots must be considered separately because the requirements in the
various modesdiffer. The bank angle achieved in 6 seconds is the speed of
response objective. Decoupling of the rolling motion from yaw-sideslip is

Iachieved by keeping the peak sideslip small and _/_d , a ratio of
coefficients in the roll transfer function, near unmty. For the Shuttle,

small sideslip is also a heat-load requirement. It is always desirable to

keep control effort small. Since the natural stability of the Shuttle is

inadequate, it is clear that saturation in control deflection must be

avoided. Rate saturation can lead to violent nonlinear instability.

Therefore, the objectives of minimizing the peak control deflections and

rates are included. Finally, the sensitivities of the 11 objectives, as

previously defined, are also included as objectives. Although the

functions f(z,y) are nonlinear in y, the stochastic sensitivities were

first calculated using a linear-gaussian assumption. These probabilities

were checked using a Monte Carlo program, and all but the peak value

probabilities were acceptably accurate. Acceptable accuracy was obtained

by replacing the probability of violation for the maximum peak by the worst

probability for any pair of peaks, using a bivariate gaussian routine.

These approximate probabilities are used as the sensitivity functions in

the tradeoff studies.

CATEGORY OBJECTIVE

DETERMINISTIC, f-j (z):

STABILITY

SPEEDOF RESPONSE

DECOUPLING

CONTROLEFFORT

CHARACTERISTIC ROOTS (4)

BANK ANGLE IN .6 SECONDS (I)

PEAK SIDESLIP AND _#
PEAK MAGNITUDES AND RATES (4)

STOCHASTIC SENSITIVITIES, sj(z):

PROBABILITIES OF VIOLATING

f-REQUIREMENTS PROB Ifj(z,y)> f'jlY (II)
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TRADEOFFVARYING/_/_)

This figure shows how the sensitivity of the control system varies for

the simpler tradeoff method, varying the value of _. The 4 solid curves

give Monte Carlo results for SI designs with _ values at _'= 0, .2, .4

and .6. The Monte Carlo method uses the nonlinear objective functions, so

that these probabilities are a more realistic estimate of the sensitivities

obtainable using the linear-gaussian approximation in the SI program.

Decreasing values of design T give designs with more emphasis on insensi-

tivity. The heavy dot on each curve shows the Monte Carlo sensitivity at

the design value of _. Since the probability of violation depends on _,

the curve shows the sensitivity variation with _, to give a more complete

picture of the sensitivity properties. Each curve can be thought of as a

sort of vector cumulative distribution function, showing how the worst

Pj increases from 0 to I as _ increases• The curves are not smooth,

b_cause different P. become worst as _ varies For comparison, thej
calculated optimal sensitivities and the Monte Carlo sensitivity values for

the deterministic design are also shown. Although the Monte Carlo sensi-

tivities for the 4 SI designs are much larger than the calculated values,

comparison with the deterministic results shows that the SI designs are an

order of magnitude less likely to have bad values of the objective

functions. The usefulness of the probability approximation appears

questionable for desi_n_< 0.4. For example, at _= 0 the Monte Carlo

sensitivity for the "T'= 0 design is somewhat larger than those for the

_"= .2 or .4 designs. Nevertheless, it is clear that the approximation is

adequate to yield very significant decreases in sensitivity for SI designs

compared to deterministic designs.
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VARIATIONOFSI DESIGNSWITH/_/_)

It is interesting to examine how important properties of the design

vary as /_ varies from near unity (deterministic-like designs) to lower

values, with increasing emphasis on insensitivity. The variation of

4 typical control system gains is shown on the left, and the nominal values

of 3 typical objectives and their standard deviations on the right. There

are clearly significant changes in design properties in the transition from

deterministic designs to those emphasizing low sensitivity. However, as

noted in the previous figure, there seems little significant change in gains

or other system properties in designs for /_< 0.4. As seen on the right,

the main tradeoff penalty in nominal objectives for decreased sensitivity

is loss of speed of response, as indicated by the bank angle at 6 seconds,

_(6). Typical of the other objectives are the oscillatory damping ratio,

[, which is relatively unchanged, and the damping in roll, I_RI, which
increases. Note that 2 of the standard deviations decrease for'the insen-

sitive designs, but o X actually increases. This is permitted because

of the large increase in ]_RI- The computer finds gains to meet the

varying probability constraints, with freedom to use whatever combinations
I . i

of f-values and o-values are required.

4

GAINS 3-

2-

1

0
I
.2

-K12

.4 .6 .8 1.0

T

2.4-

NOMINAL 1.6

VALUES
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0 .2 .4 .6 .8 1.0
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TRADEOFFVARYINGCONSTRAINTSON f

This figure presents Monte Carlo results of the more precise tradeoff
between insensitivity and nominal values of objectives. Starting with the
SI design at _= 0 as the unconstrained design emphasizing insensitivity,
increasingly stringent constraints are imposed on the nominal values by
varying _ in T(z) _ a + TqD*b. The probability of violation for
the constrained designs is shownin the solid curves. Although this method
gives more precise control of the values of _j obtained in each SI
design, this set of solutions seemssimilar to the set obtained by simply
varying _. In the tradeoff varying _, there was a significant increase
in the probability of violations at low _ between designs at _ .4
and _= .6. Here the corresponding increase in sensitivity (i.e., the
probability of bad objective values) occurs between the designs for T = .6
and T = .8. In problems where the probabilities can be calculated accu-
rately (probabilistic design rather than insensitive design), this more
precise methodmight be preferred, in spite of the added computational
burden of adding the hard constraints. Also, there is a certain logical
appeal to constraining the nominal objectives to good values while minimiz-
ing the probability that the objectives will be worse than marginally
acceptable. For our applications, however, accurate statistics are not
obtainable, and the simpler method seemspreferable.
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EFFECTS OF CRUDE STATISTICAL MODEL ON SI DESIGN

In practice, inaccuracy in f-statistics resulting from the linear

assumption is likely to be dominated by inaccuracy of the input values of

the y-statistics. The statistics for the Shuttle example are more accurate

and detailed than would usually be available for control system design. To

investigate the effects of using a cruder estimate of the y-statistics on

SI design, it was assumed that the sideslip, aileron and rudder

coefficients had standard deviations equal to 15%, 15% and 20% of their

nominal values, respectively, with no correlations. These crude statistics

were used for SI design at /_= 0.4, and this design is compared with the

original desig_ at /i_= 0.4 and the deterministic design. The figure

shows Monte Carlo probabilities based on the Shuttle statistics. The

curves are cumulative distribution functions for 4(6), the objective which

always shows a large penalty in expected value in SI designs, and peak

_r, which is always critical in the calculated probabilities for the SI

design. The simplified input statistics give an SI design which has the

same basic properties and approximately the same sensitivity as obtained

with the more accurate statistics. Although the effectiveness of the SI

design does not seem to require an accurate statistical model, accurate

calculation of the probabilities does require accuracy of the statistical

model. For both SI designs, the simplified statistics predict much larger

probabilities of violation than the accurate statistics, and it was found

that almost all the discrepancy was caused by neglecting the y-correlations.
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NOMINAL AND OFF-NOMINAL RESPONSES FOR 3 SI DESIGNS

NO CONTROL LIMITING

Although statistical distribution curves are the best way to compare

designs for sensitivity to off-nominal parameters, simulated time histories

of off-nominal responses are also useful. The Monte Carlo random set of

responses for each control system was ranked using a weighted sum of viola-

tions of desired objective values, and time histories of nominal and 5

off-nominal responses at the 99th percentile for 3 SI designs are compared

in this figure. The solid curves show the responses of the nominal system

and the broken curves are the off-nominal responses. These cases are from

the set shown in the tradeoff varying /_, in which it was noted that there is

a significant increase in the probability of bad objective values for

design at /_ 0.6. This increased sensitivity is shown here by the

increase in scatter of the off-nominal responses for the design at

/_= 0.6. The tendency for decreased nominal speed of response for the less

sensitive designs is evident in the roll rate responses, p(t), and the

tendency for large peak values of rudder and rudder rate in the off-nominal

responses is evident in the 6r(t) responses. In fact, the /_= 0.6

off-nominal responses all violate the rudder rate limit of 12°/sec. The

next figure includes the control limits in the integration routine to show

the destabilizing effect of rate limiting.
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NOMINALANDOFF-NOMINALRESPONSESFOR3 SI DESIGNS

INCLUDESCONTROLLIMITING

This figure shows the importance of using peaks in control defle_:tions
and rates as design objectives whenit is likely that control limiting may
occur. Deflection limiting is dangerouswhen the uncontrolled airplane is
unstable, but the nonlinear delays introduced by rate limiting can cause
violent instability in an inherently stable system, as shownin these
responses for _x= 0.6. Although the SI design method calculates only the
linear responses, the designer can control the probability that the peaks
will violate the control limits, as shownin the results for _x= 0
and 0.4. In this case the aj values for control peaks were chosen at
the limiting values and the aD. values were 20%below the limits.
The probabilities at _x= 0 are3the probabilities that limiting will occur
in the linear responses, and keeping these low implies that the probability
of control-limiting instability will be low.
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CONCLUDING REMARKS

The Pareto-optimal stochastic insensitive design method defines a

vector sensitivity which is related in a very natural way to a set of

objectives chosen by an experienced designer. The designer must also make

important decisions to formulate the constrained minimization algorithm for

obtaining Pareto-optimal insensitive designs which are well balanced in the

objectives and for trading off between insensitivity and nominal values.

The designer, not the computer, makes the critical decisions which deter-

mine the quality of the design. The effectiveness of the method depends on

the designer's judgment, but this makes it easy for him to interact with

the program.

The main conclusions of this study are listed on the figure. The SI

method yields control system designs with very significant decreases in

sensitivity to parameter uncertainty. The effectiveness of the method does

not depend on having an accurate statistical model. The tradeoff studies

show that there are distinct differences between designs emphasizing insen-

sitivity and deterministic designs. For example, there are large gain

changes as emphasis on insensitivity increases. The two tradeoff methods

are both effective in compromising between insensitivity and nominal values

of objectives. Although the method utilizes only linear response calcula-

tions, it produces designs which are less likely to encounter nonlinear

control-limiting instabilities. Finally, in the example case, the main

penalty for achieving insensitivity was decreased nominal speed of

response. It will be interesting to see if further study shows this

to be a general property of insensitive control system designs.

STOCHASTIC-INSENSITIVE DESIGN GIVES A SIGNIFICANT DECREASE IN

SENSITIVITY TO PARAMETER UNCERTAINTY IN SPITE OF INACCURACY OF

CALCULATED PROBABILITIES.

TRADEOFF STUDIES SHOW THAT SI DESIGNS ARE DISTINCTLY DIFFERENT

FROM DETERMINISTIC DESIGNS.

SEVERAL EFFECTIVE METHODS WERE DEVELOPED FOR OBTAINING DESIGNS

WHICH COMPROMISE BETWEEN INSENSITIVITY AND NOMINAL OBJECTIVE

VALUES.

INSENSITIVE DESIGN CAN BE ESPECIALLY EFFECTIVE WHEN CONTROL

LIMITING IS A PROBLEM.

IN THE SHUTTLE LATERAL SAS EXAMPLE, THE MAIN PENALTY FOR
ACHIEVING INSENSITIVE DESIGNS WAS REDUCED VALUE OF NOMINAL
RESPONSE SPEED.
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Structural Tailoring of Engine Blades (STAEBL)

The STAEBL program was initiated at NASA Lewis Research Center in 1980 to
introduce optimal structural tailoring into the design process for aircraft
gas turbine engine blades. As indicated in Figure I, the standard procedure
for blade design is highly iterative with the engineer directly providing most
of the decisions that control the design process. The goal of the STAEBL
program has been to develop an automated approach to generate structurally
optimal blade designs.

The program has evolved as a three-phase effort with the developmental work
being performed contractually by Pratt & Whitney Aircraft. Phase I was
intended as a "proof of concept" in which two fan blades were structurally
tailored to meet a full set of structural design constraints while minimizing
DOC+I (direct operating cost plus interest) for a representative aircraft.
This phase was successfully completed and was reported in references 1 and 2.
Phase II has recently been completed and is the basis for this discussion.
During this phase, three tasks were accomplished: (I) a nonproprietary
structural tailoring computer code was developed; (2) a dedicated approximate
finite-element analysis was developed; and (3) an approximate large-deflection
analysis was developed to assess local foreign object damage. Phase III is
just beginning and is designed to incorporate aerodynamic analyses directly
into the structural tailoring system in order to relax current geometric
constraints.

The Goal of STAEBL: Automated Engine Blade Design

0

0

0

Current Design Procedure:

The engineer performs design iterations manually

STAEBL Procedure:

Apply mathematical optimization to blade design

The Evolution of STAEBL

Phase I (Completed): Proof of Concept

Demonstrate the ability to realistically structurally tailor gas turbine
engine blades

Phase II (Completed): Develop Software System

Develop a nonproprietary structural tailoring software system with

dedicated structural analyses

Phase III (Current): Aerodynamic Analysis

Incorporate aerodynamic analyses into STAEBL to relax geometric
constraints

Figure l
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STAEBL Procedure

The overall procedure developed for STAEBL during Phase I is shown in Figure
2. The tailoring process was divided into two stages: (I) approximate
analysis; and (2) refined analysis. The first stage, outlined by the dotted
line, uses approximate analyses for vibration, flutter, stress and FOD
(foreign object damage) along with an optimizer to find a candidate optimal
design. The COPES/CONMIN optimization code developed by G. N. Vanderplaats
was selected as the optimizer for STAEBL [3, 4]. Once a candidate design is
found, it is passed to the second stage where refined analyses are performed
to evaluate the design against imposed constraints. If all constraints are
met, the design is accepted as the optimal design. Otherwise, the constraints
imposed during the approximate analyses are modified to reflect the
differences between the two levels of analysis, and the structural tailoring
procedure is repeated.

During Phase II the approximate analyses and the optimizer were incorporated
into a nonproprietary computer code. Also, specialized approximate analyses
were developed for basic structural analysis (stress and vibration) and for
local FOD analysis.

OPTIHIZATION PROGRAR

VIBRATION, FLUTTER,

, !

HODIFY

CONSTRAINTS

STRESS, DID FOD

ANALYSIS PROGRAHS

2a
.........

YES

COHFIRNAPPROXI_TE ]

ANALYSIS WITH REFINEDI

ANALYS!S I

1
e"-Z._ OPTIMIZATION

USING APPROXIMATE ANALYSIS

Figure 2
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Demonstration Cases

During Phase I and II, two shroudless fan blade designs were used to
demonstrate the effectiveness of STAEBL. These designs are a superhybrid
composite fan blade and a hollow titanium fan blade with a composite inlay,
shown in Figure 3. The starting point for these designs was a hollow,
shroudless titanium fan blade designed by Pratt & Whitney Aircraft as part of
the NASA-sponsored Energy Efficient Engine program. Also, during Phase II a
solid titanium compressor blade was optimally tailored using STAEBL.

The fan blade cases were selected because of the difficulty in designing an
acceptable shroudless blade relative to a shrouded blade. Typically, fan
blades are designed with a mid-span shroud that ties neighboring blades
together under normal operating conditions. The shroud acts as a connecting
ring which greatly stiffens the blade in torsion and bending. Without the
shroud the blade can be very susceptible to flutter due to a low torsional
natural frequency and may undergo excessively large deflections as a result of
a bird strike. However, shrouds add extra weight to the fan stage and result
in unwanted aerodynamic blockage.

The independent design variables for the blades included root chord, thickness _
to-chord ratio, material thickness, and composite fiber angle. In the case of
the hollow blade, the cavity size and location could also be varied. The
number of blades was not constant but varied inversely with the blade chord to
maintain a fixed solidity.

STAEBL WAS DEMONSTRATED ON TWO FAN BLADES OF ADVANCED CONSTRUCTION

RADIAL

DIRECTION

FIBER

ORIENTATION

$UPERHYBRIO COMPOSITE

FAN BLADE

'- (TIB) 5 -

"_----------(Tle)q

.4...-------(T/B)3--------_

.,_---------(TIB)2-----------_

-e---------(TIB)]

TITANIUH SURFACE
BOROH/ALUHINUH _ "_
FILLER (GBAPHITE/EPOXY)'_, _J

Figure 3

HOLLOH FAN BLADE

ROOT CHORD

TITANIUH SKIN
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Design Constraints

In order for the STAEBL procedure to be demonstrated as a useful approach to
design engine blades, realistic constraints were imposed on all candidate
optional designs, as listed in Figure 4. Geometric constraints consisted of
upper limits on thickness-to-chord ratio along the span, and minimum allow-
able titanium skin thickness and boundaries on the cavity for the hollow fan
blade. Engine order resonances were avoided by requiring a frequency margin
of 5% for critical engine order/mode combinations. Maintaining this margin
over the normal operating range is accepted procedure for avoiding high-cycle
fatigue failure. During Phase II an additional option was added to explicitly
calculate the forced response of a blade subjected to specified loads of
engine order frequencies. Aeroelastic stability was maintained by requiring
aerodynamic excitations to be negatively damped in the first three modes (Ist
and 2nd bending and Ist torsion modes). A critical requirement for fan blades
is that they survive a bird strike. During Phase I local damage was based on
an empirical factor. This was replaced by an approximate large-deflection
analysis during Phase II. A modal response was used in both phases for root
bending. The final constraint, stress, was evaluated from a beam analysis
during Phase Io During this phase, the beam analysiS was also used for the
modal analysis. This beam analysis was replaced by an approximate finite-
element analysis during Phase II.

Thickness-to-Chord Ratio
Titanium Skin Thickness

Cavity Boundaries

Resonance Margins
Ist Mode 2E (engine order)
2nd Mode 3E
2nd Mode 4E
3rd Mode 4E

Tip Mode I0 E (compressor)

Flutter-log Decrement
Ist Mode
2nd Mode
3rd Mode

FOD (Bird Ingestion)
Local Severe Damage
Root Bending

Stresses

Steady
Fatigue

z
jJ

ROTOR Pt|O |RE VO_UI_S P|R IdlNUI||

Figure 4
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Structural Tailorin 9 -- Phase I

The two demonstration cases run during Phase I of the STAEBL program were
compared to a hollow shroudless titanium blade. In both cases two complete
passes through the tailoring system were performed. The final results are
shown in Figure 5. The hollow blade converged to an initial optimal blade
after 13 iterations. Refined analysis showed stress and resonance constraints
to be violated. Correction factors were applied to the constraints to reflect
differences between refined and approximate analyses. After the second
tailoring, requiring ten iterations, a resonance constraint was still
violated. The cause of this violation was traced to incompatibilities between
the approximate beam analysis of the blade and the refined finite-element
analysis. No further tailoring was attempted. The near-optimal blade weighed
52% less than the reference blade and DOC+I was reduced by .45%. However, due
to the 18% reduction in chord, more blades are needed for the stage. As such,
the total blade weight per stage decreased by about 40%. The superhybrid blade
required 15 iterations to converge to the first optimal candidate design.
Refined analysis showed that one resonance and one flutter constraint were not
satisfied. Correction factors were applied and a second tailoring requiring
13 iterations was performed. This design satisfied all constraints. The
total blade weight for the stage was decreased by about 30% and DOC+I was
reduced by .36%. While the reductions in DOC+I are small in absolute terms,
engine component improvements which change DOC+I by a few tenths of a percent
are considered to be significant.

Reference Blade
(HollowTitanium)

Hollow Titanium Blade Superhybrid
With Composite Inlays Blade

Root Chord (in.) 9.12 7.46 8.32

Blade Weight (lb.) 19.2 9.3 12.1

A(DOC+I) (%)

EngineWt. -- -.33 -.23

EngineCost -- -.15 -.18

Maintenance -- +.03 +.05

Total -- -.45 -.36

Active 2nd Mode 3E Min. Blade Thickness Min. Blade Thick.
Constraints Ist Mode Flutter Cavity Location Ist Mode Flutter

Local F0D 2nd Mode 3E* Local FOD
2nd Mode Flutter

* This constraintwas not met completelywhen the tailoringwas terminated

Figure 5

210



Specialized Finite-Element Analysis

During Phase I of the STAEBL program a beam model was used for approximate
structural analyses. During Phase II a specialized coarse mesh finite-element
analysis was developed and incorporated into STAEBL. The analysis utilizes
variable thickness triangular plate elements to model the blade and Guyan
reduction to reduce the size of the assembled mass and stiffness matrices.

Lamination theory is used to model the different material layers through the
thickness of the blade including the hollow cavity which is considered to be a
layer with very small mass and stiffness. Guyan reduction is used to
eliminate selected degrees of freedom and to condense the model into three
sparse columns of nodes: one near the leading edge of the blade, one near the
trailing edge, and one at mid-chord. The accuracy of this analysis was
demonstrated on a model of the hollow titanium reference fan blade as shown in

Figure 6. The data in the figure compares the natural frequencies of an
equivalent beam model used during Phase I and a specialized plate model with a
refined plate model. The error between the beam model and the refined model
is about 9%, 3%, and 4.5% for the first, second, and third mode, respectively,
while the corresponding error for the approximate plate model is uniformly
about one-tenth as large. Also, the computer analysis time for the plate
analysis, including model generation and reduction, is about the same as the
solution time for the simpler beam analysis and only about 6% of the solution
time for the refined analysis.

E3 FAN BLADENATURALFREQUENCIES(CPS)

APPROXIMATE SPECIALIZED NASTRAN
BEAM mODE PLATE MODEL PLATE MODEL

66 DOF 2q DOF.* 12EO D_F

1ST RODE 101.0 92,9 93,0

2ND RODE 216.3 209.8 209.2

3RD RODE 288.7 27q,6 276.1

COMPUTERTIHE
(CPU SEC) 6.0 6.2"" 109

• REDUCED FROH 330 DOF
• • INCLUDES MODEL GENERATION AND DOF REDUCTION

Figure 6
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Approximate Severe FOD Analysis

One of the fundamental constraints imposed on turbine engine fan blades is the
ability to survive a bird strike. This takes the form of surviving strong
bending moments at the blade root and resisting severe local damage in the
impact zone. Modal analysis of the blade with an impulsive impact load can be
used adequately to estimate root bending. However, local damage analysis
typically requires a fully nonlinear large-deflection analysis with an
interacting impactor model. This involves too much computational effort to be
useful for design iterations and, as such, empirical parameters are usually
used as was done during Phase I of the STAEBL program. During Phase II an
approximate large-deflection finite-element analysis was developed with an
interactive representative loading model, depicted in Figure 7. The finite-
element analysis models the impact region by retaining standard linear elastic
bending in the chordwise direction but uses fully yielded large-deflection
membrane action in the spanwise direction. This results in a model with
linear mass and stiffness matrices which can be analyzed by conventional
means. The bird is modeled by a representative loading profile which
interacts with the blade to determine relative impact velocity and angle of
impact which is used to identify the loaded nodes, peak pressure, and load
duration. The approach taken is to use the first I0 natural modes to expand
the deflections and loads in the impact region. The equations are then
integrated numerically to determine structural response.

INITIAL I
IMPACT

- D"11"--

PARABOLICI z-._ILOAD AMPLITUDE CHANGES WITH
LOADING I/ \I RELATIVE IMPACT VELOCITY AND

PROFILE [ I ANGLE DURING IMPACT

LOAD _lBUILD-UP

FULL
LOAD

MOVING
LOAD

LOAD
DECAY

IMPACT
FINISHED

f

Fi_
f

f
IMPACT/

Figure 7
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Impact Analysis Demonstration Cases

The accuracy of the approximate severe FOD analysis was demonstrated by
comparison with a refined, fully nonlinear, large-deflection finite-element
analysis using a nonlinear interacting fluid impactor model. The refined
analysis was calibrated against experimental data in which a I" diameter
gelatin ball was fired at a thin titanium plate clamped on three sides [5].
Two experimental cases were run: a "light" impact with an impact velocity of
12,400 in/sec, and a "severe" impact with a velocity of 19,000 in/sec. In
both cases the angle of impact was 30 o . The plate was 6" x 3" x .067" for
the light impact and was tapered from mid-chord toward the free edge. For the
severe impact, the maximum plate thickness was .126". The results from the
approximate and refined analyses are shown in Figure 8. Note that in both
impact cases the average strains for the two levels of analysis agree very
well and the overall final deflection shapes are in good agreement.
Differences between the peak strains for the two analyses are large. However,
the approximate average strains can be scaled uniformly to agree with the
refined analysis peak strains for the two cases shown. Finally, the computer
time for the approximate analysis was only about .6% of the time required for
the refined analysis. As such, the approximate severe FOD analysis can
provide a good estimate of the degree of local damage, or possible failure,
resulting from a bird strike at the expense of very little computer time.

EXAHPLE -- IMPACT OF A SPHERE ONTO TITANIUM PLATE
(APPROXIMATED BIRD STRIKE)

LIGHT IMPACT SEVERE |ICACT

IM_ ......

I PM W AT U_I_ N

'_ ---_.-...-._ L50A_c

13}f_,c

.... •_ _,_.c

SPA_'VVISE DIEFLECTION AT L_ |OGE

t,- ++
drS-_,

_e/sEc

i_i0t_OWlSE D_qU_ION AT IMPACT CENTImUNE

]20 *_.c

OIEFLIECTION AT IMPACT C_I4TFJqLN

80 ;,eec

AVG. STRAIN ([)

STAEBL FULL N. L. STAEBL

ANALYTICAL COMPARISON

HAX. STRAIN (Z)

SCALED STABEL" FULL N. L.

COMPUTER TIME (SEc)

STAEBL FULL N.L.

LIGHT 1.02

SEVERE q,0

1.00 q.l 5.1 5.8

q.0 11.0 20.0 19.5

• AvG, STAEBL X 5.0

Figure 8
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Structural Tailoring - Phase II - Fan Blades

During Phase II of the STAEBL program, a hollow shroudless titanium fan blade

with composite inlays and a superhybrid fan blade were structurally tailored,

as was done during Phase I. The results are shown in Figure 9. Again, the

reference blade was the hollow shroudless titanium Energy Efficient Engine fan
blade designed by Pratt & Whitney Aircraft for NASA.

The initial design for the hollow blade was very similar to the reference

blade. However, no appreciable improvement could be made after three optimi-

zation iterations. A new initial design was selected similar to the optimal
hollow blade found during Phase I. A new optimal design was then found after

ten iterations. Refined analysis showed no constraints were violated but that

the design could be further improved. New calibration factors were calculated

and the blade was re-optimized. The second tailoring converged after seven

iterations. After the first pass through STAEBL, DOC+I was reduced by .53%.
The second pass resulted in a further improvement to .61%.

The initial design for the superhybrid blade was the same initial design used
during Phase I. After 15 iterations, STAEBL converged to an optimal design
which was shown by refined analysis to violate a resonance and a flutter

constraint. New approximate analysis calibration factors were calculated and

a second tailoring was performed. This design converged in 19 iterations.

It did not violate any constraints and reduced DOC+I by .48%.

Reference Blade Hollow Titanium Blade
(Hollow Titanium) with Composite Inlays

Superhybrid
Blade

Root Chord (in) 9.12 7.81 7.89

Blade Weight (Ib) 19.2 8.86 9.73

Stage Weight (Ib) 460.8 248.3 269.9

A(DOC+I) (%)
Engine Wt. --

Engine Cost --

Maintenance Cost --

TOTAL

-.16 -.35

-.38 -.19

-.07 +.06

-.61 -.48

Active
Constraints

2nd Mode 3E

Ist Mode Flutter
Local F0D

Ist Mode Flutter
Max.Blade Thickness

Cavity Location

Figure 9

Min.& Max.Blade
Thickness

Ist Mode Flutter
Local FOD
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Structural Tailoring - Phase II - Compressor Blade

During Phase II, a solid titanium sixth-stage compressor blade from the Energy
Efficient Engine was also optimally tailored. This blade had an added
constraint that the "tip" mode must avoid resonance with the 10th engine
order excitation. This mode was identified by STAEBL during the tailoring
procedure by comparing the tip deflection of leading and trailing edges of the
blade with the tip mid-chord deflection for all modes calculated. Also, for
this case the objective was changed to minimizing stage weight. A candidate
optimal design was found by STAEBL after nine iterations. Refined analysis
showed that no constraints were violated. The results are summarized in

Figure I0. The individual blade weight was reduced by 56% and total stage
weight was reduced by 28%. While the initial design had no active
constraints, a resonance constraint was active for the tailored blade.

Root Chord (in.)

Blade Weight (lb.)

Stage Weight (lb.)

Active Constraints

Reference Tailored

Blade Blade

2.807 1.710

.431 .191

If.2 8.02

None Ist Mode 2E

Figure 10
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STAEBL Computer Code

STAEBL has been prepared as a nonproprietary computer code which includes a

central executive, an optimizer, and all approximate analyses. The code has

been delivered to NASA and is being prepared for public release. The general

program architecture is shown in Figure II. The code was designed in a

modular form with separate modules for all key functions. The interfacing
module functions as the executive and provides the communication links between

the optimizer and the approximate analyses. Currently, the optimizer in

STAEBL is COPES/CONMIN. However, during Phase Ill of the STAEBL program, the

structural tailoring procedure will be augmented by adding an enhanced

optimizer, ADS (Automated Design System) [6]. Since this system allows

numerous optimization strategies and techniques to be used, part of the effort

will be directed toward finding the most intelligent path for the structural

tailoring of engine blades.

Also, during Phase Ill, the STAEBL procedure will be extended to include an

aerodynamic analysis. At the present time, geometric constraints are imposed

to maintain an aerodynamic design similar to a specified initial design. By

incorporating an aerodynamic analysis capability into STAEBL those constraints

can be relaxed and a true structurally optimal blade design can be found.

Due to the success of the STAEBL program, Pratt & Whitney Aircraft considers

optimal structural tailoring to be an accepted element of the overall

procedure to design new engine blades.

OPTIMIZER

INPUT OUTPUT

I APPROXIMATE

FLUTTER

APPROXIMATE 1 I APPROXIr_TE ANALYSIS

F.INITE ELEMENT _ VIBRATION.

STRESS ANALYSISI I ANALYSIS

APPROXIMATE

FOD

ANALYSIS

Figure II
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ORffiNAL PAGE 12 
OF P08R QUALITY INTRODUCTION 

In the development of modern turbomachinery, problems of flutter instabilities 
and excessive forced response of a cascade of blades that were encountered have 
often turned out to be extremely difficult to eliminate (refs. 1,Z). The study of 
these instabilities and the forced response is complicated.by the presence of mis- 
tuning; that is, small differences among the individual blades. 

The theory of mistuned cascade behavior (refs. 3-8) shows that mistuning can 
have a beneficial effect on the stability of the rotor. This beneficial effect is 
produced by the coupling between the more stable and less stable flutter modes 
introduced by mistuning (ref. 9). The effect of mistuning on the forced response 
can be either beneficial or adverse. Kaza and Kielb (refs. 5-8) have studied the 
effects of two types of mistuning on the flutter and forced response: 
mistuning where alternate blades are identical and random mistuning. 

alternate 

1 

The objective of the present paper is to investigate other patterns of mistun- 
ing which maximize the beneficial effects on the flutter and forced response of the 
cascade. Numerical optimization techniques are employed to obtain optimal mistun- 
ing patterns. The optimization program seeks to minimize the amount of mistuning 
required to satisfy constraints on flutter speed and forced response. 
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GEOMETRY OF A TUNED CASCADE

As shown in the figure, the blades are modeled as an infinite cascade of air-

foils in a uniform upstream flow with a velocity V where _ is the stagger angle.

Only two degrees of freedom (bending and torsion) are considered for each blade.

For the tuned cascade, the blades are assumed to be in harmonic motion with h
ar

being the bending amplitude, _ar the torsional amplitude and _r the phase angle

between adjacent blades. For an N-blade cascade, that phase angle can take only
N discrete values B = 2_r/N.

r

_ h ei(mt+Br )
ar

.... ei(_t+_ r)
_ar
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STRUCTURALANDAERODYNAMICMODELOFBLADE

The figure illustrates the structural model of the s-th blade. All the length
quantities are non-dimensional with respect to the semichord, b. The blade bending
and torsional stiffnesses are modeled through the springs Kh and K_ respectively.

S S

The effects of centrifugal stiffening due to rotation of the disk are included in

the spring constants. The elastic coupling between bending and torsion due to pre-

twist, shrouds and rotation is modeled through the offset distance (x ) of the

S

center of gravity from elastic axis which is located at a distance ba from mid-

chord. The chordwise motion of the airfoil is neglected.

The aerodynamic loads on the blade are the lift and moment per unit span LM
S

and MM due to motion and the lift and moment per unit span LW and MW due to wakes.
S S S

These aerodynamic loads are calculated using Whitehead's extension of Theodorsen's

isolated airfoil theory in the incompressible unsteady flow to account for cascade

effects (ref. i0).

Z

UNDEFLECTEDAIRFOIL CENTERLINE7
/

b . -- b- _1, //
V hb I ' -J /

.M +,W _/ K ._
's '-s-" ._ _-<.'"a,_l \

..-
M.I_ + MwJ "_- _:r,,h_ ----

_ I'__,_S

222



EQUATIONS OF MOTION

While the motion of a tuned cascade is simple harmonic with a fixed interblade

phase angle, the motion of a mistuned cascade is assumed to be a linear combination

of the tuned cascade modes. The equation of motion may be written as Eq. (i) where

{Y} is a vector of complex amplitudes of the tuned cascade modes, [E] is the modal

matrix containing all the possible inter-blade phase angle modes, {Q} is a forcing

vector that depends on the aerodynamic wake forces and w is a reference frequency.
O

When no external loads are applied the eigenvalues of the matrix [P] are cal-

culated for a range of reduced frequencies and the flutter speed is found from the

condition that the real part of the eigenvalue is zero. For the forced response

calculation, the frequency and mode of the excitation has to beassumed. In the

present work an entire range of frequencies is scanned for the most critical forced

response. The mode of excitation has its only non-zero component in the (N-l)th
harmonic.

[P] - [I] y] {Y} : -[E] -I {Q} (1)

2
co0

: (-g-)

Stabi I i ty

[P] - [I] ¥] {Y} : {0} (2)

-2N x 2N Eigenvalue problem

iwj i

- _j + ivj

Forced Response

r 7 1

{x} : -[E] [[P]- {Q} (3)
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EFFECTSOFMISTUNING

The figure illustrates the effect of alternate blade mistuning on the flutter
speed. The flutter speed increases monotonically with an increase in alternate
blade mistuning level. Alternate blade mistuning can have either a beneficial or
adverse effect on forced response, depending on the harmonic of excitation.
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DESIGN FORMULATION

The objective of the present study is to minimize the amount of mistuning

required to satisfy given constraints on the stability and forced response of a

cascade. The design variables are the amounts of mistuning in the individual

blades ei' and the objective function is the sum of the individual mistunings

raised to some integer power p. A high value of p corresponds to minimizing the

maximal blade mistuning while p=2 corresponds to minimizing the root mean square
mistuning. The flutter constraint is based on the result of ref. 9 which showed

that maximum stability is obtained when all eigenva!ues have the same real part _.

Therefore, the flutter constraint is a limit on the amount of spread of the real

part of the eigenvalues about their average value, _av' as well as a requirement

that all real parts are stable.

Design Variables:

_i : Yc_i- (Y_)av i = O, I, .... N-I

Objective Function:

n-I p

F({c}) = Z ci
i=O

Flutter Constraint:

Spread Constraint:

Stability Constraint:

Forced Response Constraint:

r1 (_J > O,

rmax
N-I
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EFFICIENT FORCED RESPONSE CONSTRAINT

The constraint on the forced response (Eq. (4) in the figure) requires the

calculation of the forced response for a range of frequencies. One way of checking

whether any violation occurs in the required range is to evaluate the response at a

grid of frequencies dense enough to preclude the possibility of substantial con-

straint violations between grid points. From the standpoint of the optimization

procedure this is very costly because a constraint on the response has to be applied

at each grid frequency. For the cases reported here a grid of i01 frequencies had

to be used in the range 0.95 < m/_ < 1.05.
-- O --

Two alternative techniques were used to reduce the cost of calculating the

response constraints and their derivatives. The first is identifying local peaks of

the response (as a function of m) and enforcing the constraints only at these

peaks. The main savings of this technique is in terms of derivative calculations.

The second technique is based on the assumption that the response is most critical

at the eigenfrequencies of the stability problem. This technique results in even

larger savings. The results in terms of number of constraints and computer time

for a full optimization are shown in the table for a seven-blade cascade.

RESPONSE AT 0.5 PERCENT ALTERNATE DESIGN (K=0.66)

2.0

1.8

1,6.

[.1_.

1.2.

$
P 1.0
0
N
5
E 0.8

0.6

Method

Dense

L/_ Grid

_{_I Critical

/I_i\ Point

_/_I_ \\ Ei gen-

__l_k Frequencies

1.01 1.02 1.03 1.0q 1.05

0.q ¸

0.2 ¸

O,O

0.95 0.95 0.97 0.98 0.99 l.OO

FREOUENCT

LEGEND: Z _ BLADE t .e--*--, BLADE 2 --BLADE 3
-- BLADE 5 _ BLADE 6 _ BLADE 7

No. of

Constraints

7O7

18-21

14

CPU Time

IBM 3081

30.8 min.

8.25 min.

3.67 min

-- BLADE q

Forced Response Constraint

ri (mJ) > 0

rma x --
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NEWSUMTOPTIMIZER

The optimization program used to obtain numerical results is the NEWSUMT
program (ref. ii). It uses the sequenceof Unconstrained Minimization Technique
(SUMT)with an extended interior penalty function (ref. 12) to represent the con-
straints. Each unconstrained minimization is performed by using Newton's method
with approximate derivatives (ref. 12). The optimization procedure is particularly
efficient when the complexity of a problem is in the constraint and the objective
function is fairly simple. For this reason the amount of mistuning is optimized
subject to a constraint on the response, rather than optimizing the response subject
to a constraint on the amount of mistuning.

Minimize F(_)

subject to gj (_) >__O, j = I, 2, ..., m

• SUMT - Sequential Unconstrained Minimization

Technique

• Extended Interior Penalty Function

• Newton's Method with Approximate Second
Derivatives
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OPTIMIZATION SUBJECT TO FLUTTER CONSTRAINT

The first set of results were obtained for a twelve blade cascade subject to a

flutter constraint of the form

_cr
0. 584 > 0

_av

where _cr is the real part of the least stable eigenvalue and Uav the average real

part. The results are summarized in the table. They show that the optimized mis-

tuning pattern is about 78.52% better than the alternate mistuning design which

satisfies the same constraint. The maximum individual blade mistuning is 0.91%

versus 1.4% for the alternate mistuning, and the optimized pattern is still alter-

nating in sign.

TABLE I

Results of Optimization with Flutter Constraint (k=0.66)

Objective Function!

Max. mistuning

_max(P ercent)

Least stable

eigenvalue

iMistuning

(percentage)

_2

E 3

¢4

E5

E6

E 7

E8

E 9

El0

ell

El2

Alternate Mis-

tuning pattern

23.52 x 10 -4

1.4000

Optimized Mis-

tuninq pattern

5.053 x 10 -4

0.9097

-0.002525

1.4000

-1.4000

1.4000

-1.4000

1.4000

-1.4000

1.4000

-1.4000

1.4000

-i._000

1.4000

-i._000

-0.002526

0.7628

-0.4768

0.9018

-0.6401

0.9097

-0.4683

0.6619

-0.6708

0.2620

-0.7796

0.1575

-0.6201
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EFFECT OF OBJECTIVE Fb_CTION FORM

The use of the sum of the squares of the individual blade mistunings as the

objective function is equivalent to minimizing the root mean square of the mistuning

pattern. Another possible objective function is the maximum individual blade mis-

tuning. This objective function has the disadvantage of having discontinuous de-

rivatives with respect to the design variables, e.. To avoid this problem the max-
1

imum-individual-blade objective function can be approximated by the sum of a high

power of the individual mistunings. To check whether the optimized design is

sensitive to the objective function the optimization was repeated with the sum of

the sixth powers of the e. being the objective function. The results are summarized
1

in the table and show the effect to be minimal for this case.

TABLE 2

Effects of change in Objective Function (k=0.66)

Objective Function

Max. mistuning

Emax(percent)

Least stable

eigenvalue

Mistuning

(percentage)

E 1

z2

g3

_4

c5

E6

z7

z8

z9

Zl0

gll

z12

Optimum I

(Exponent = 6)

1.698 x 10 -4

0.8993

-0.002525

0.7639

-0.5662

0.8927

-0.5910

0.8993

-0.5352

0.6839

-0.7201

0.2476

-0.6621

0 .... 9

-0.5837

Optimum II

(Exponent = 2)

5.053 x 10 -4

0.9097

-0.002526

0.7628

-0.4768

0.9018

-0.6401

0.9097

-0.4683

0.6619

-0.6708

0.2620

-0.7796

0 1_

-0.6201
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OPTIMIZATION SUBJECT TO FORCED RESPONSE CONSTRAINT

The optimization was repeated with a forced response constraint. The con-

straint stipulated that the maximum response amplitude of the optimized design does

not exceed the forced response of a 0.5% mistuning alternate-mistuning design. The

two designs are compared in the table. It is shown that the objective function was

reduced by 70% which corresponds to 45% reduction in the root mean square of the

mistuning.

An attempt to obtain an optimal design subject to both flutter and forced

response constraint indicated that the alternate mistuning design cannot be improved

upon in both categories. That is, improvements in stability resulted in deterior-

ation in forced response, and vice versa.

TABLE 3

Results of Optimization with Forced Response Constraint

(k=0.8)

Objective Function

Max. mistuning

ICmax(percent)

Least stable

eigenvalue

Mistuning

(percentage)

E1

E2

Initial Design

-0. 00138

Optimized Design

-0.00003

E3

E4

E5

E6

E7

E8

E9

El0

Ell

E
12

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0. 2457

-0. 4804

0.2677

-0. 3049

0.2299

-0.2620

0.2463

-0.2024

0.2419

-0. 1170

0.2474

-0. 1123

230



FORCED RESPONSE COMPARISON

The maximal blade response of the alternate and optimized designs is compared

in the figure.

RESPONSE AT ALTERNATE AND OPTIMUM DESIGNS (K=0.80)

D.B
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O. 0 _
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CONCLUDINGREMARKS

An optimization procedure for finding optimal mistuning patterns for cascades
subject to flutter and forced response constraints has been developed. The pro-
cedure is based on an extended interior penalty function algorithm and seeks to min-
imize the amountof mistuning required to satisfy the constraints. An efficient
form of the forced response constraint which reduces computation costs by an order
of magnitude has also been developed.

The optimization procedure has been applied to the design of a 12-blade
cascade and the resulting designs comparedto alternate mistuning designs. It was
found that mistuning amplitudes could be substantially reduced without hurting
either the flutter or the forced response characteristics. However, it was not
possible for the example problem to improve on the alternate design subject to both
constraints.

The designs obtained by the optimization procedure are not practical because
they require manydifferent blades. Work is under way to obtain similar results
with only 3 or 4 different blade types.

Optimization Procedure for Design Under

Flutter & Forced Response Constraints

Developed

• Efficient Forced Response Constraint

Resulted in Large Computer Time Savings

• Optimized Designs Superior to Alternate

Designs if only Flutter or only Forced

Response is Critical

• Number of Different Blades Should be

Reduced
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THE POSTOP PANEL SIZING CODE

Stiffened panels are widely used in aircraft structures such as wing covers,

fuselages, control surfaces, spar webs, bulkheads, and floors. The detailed sizing

of minimum-weight stiffened panels involves many considerations. Use of composite

materials introduces additional complexities. Many potential modes of failure exist.

Analyses for these modes are often not trivial, especially for those involving large

out-of-plane displacements. Accurate analyses of all potential failure modes are

essential. Numerous practical constraints arise from manufacturing/cost consi-

derations and from damage tolerance, durability, and stiffness requirements. The

number of design variables can be large when lamina thicknesses and stacking sequence

are being optimized. A significant burden is placed on the sizing code due to the

complex analyses, practical constraints, and number of design variables. On the

other hand, sizing weight-efficient panels without the aid of an automated procedure

is almost out of the question.

The sizing code POSTOP (Postbuckled Open-STiffener Optimum Panels) has been

developed (refs. I and 2) to aid in the design of minimum-weight panels subject to

the considerations mentioned above. Developed for postbuckled composite panels,

POSTOP may be used for buckling resistant panels and metallic panels as well. The

COPES/CONMIN (refs. 3 and 4) optimizer is used in POSTOP although other options such

as those in the ADS (ref. 5) system could be substituted with relative ease. The

basic elements of POSTOP are shown in figure I. Some of these elements and usage of

the program are described on the following pages.

MULTIPLE LYSES: MULTIPLE

LOADING STRENGTH, STA- DESIGN

CONDITIONS BILITY, STIFFNESS CRITERIA

DESIGN
MATERIAL POSTOP
ALLOWABLES VARIABLES

MATERIAL

PROPERTIES

PANEL

SIZING

CO DE
OBJECTIVE &

CO NSTRAINTS

BASIC

GEOMETRY ! OPTIMUM

DETAIL

DESIGN I COPES/

CONMIN
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PANEL GEOMETRY AND LOADS

The basic geometry and types of loads that are considered in POSTOP are shown in

figure 2. The stiffener spacing is assumed to be small compared to the panel length.

This is normally the case for stiffened panels used in transport aircraft. The

stiffeners may have any cross-sectional shape that can be derived from an I-section.

The stiffeners may be integral with the skin or separate elements bonded to or

cocured with the skin. Examples are shown in the figure.

Combined inplane shear and biaxial loads may be specified. Normal pressure and

temperature changes are also considered in the analyses. The bending effects of an

initial bow over the panel length and eccentricity of applied loads are included.

The interaction of bending due to pressure or eccentricities and inplane loads is

accounted for. The effects of stiffness reductions due to postbuckling on this

interaction are considered. This interaction can have a significant effect on the

panel design and must be considered during sizing.

Aircraft structures are subjected to a large number of independent loading

conditions. Often different design criteria are imposed for different load cases.

For example, panels may be allowed to operate in the postbuckling regime at certain

load levels and be required to be buckling resistant at lower load levels. Conditions

associated with high temperature may require different material properties and

allowables. Limit and ultimate loading conditions obviously u_e different material

allowables. Nonlinearities require that both limit and ultimate conditions be ana-

lyzed. Often many load cases may be eliminated by inspection as being noncritical.

However, several load cases usually remain that must be evaluated. The POSTOP code

and other available panel sizing codes have this multiple load-cases capability.

/

PANEL STIFFENERS

Figure 2.
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POSTBUCKLING AND STABILITY ANALYSES

Strength and stability analyses performed in POSTOP include initial buckling of

the skin and stiffener, postbuckling of the skin, torsional/flexural buckling of the

stiffener, and ply-level membrane plus bending strains in the skin and stiffener

elements. Various nonlinear effects enter into these analyses.

If the skin is not buckled, the only nonlinearity in the load-deformation

relationship results from the interaction of inplane loads and panel bending as

mentioned previously. If the skin is buckled, as shown in figure 3, several

additional nonlinearities enter into the analysis. After buckling, the compression

load in the skin is redistributed, with an increased percentage of the load being

Carried near the edges, where it is supported by the stiffeners. The secant and

tangent stiffnesses of the skin are reduced after buckling. The reduced secant

stiffness causes an increased proportion of the panel load to be carried by the

stiffener. This increase affects the local and torsional/flexural buckling of the

stiffener. The reduced tangent stiffness of the skin also affects the stability of

the stiffener since it offers less restraint to incremental deformation. The reduced

tangent stiffness increases the interaction of inplane loads and panel bending.

Since the skin and individual stiffener plate elements do not typically buckle

at the same load level or in the same wavelengths, the restraint of adjacent elements

is considered when computing the skin and stiffener local buckling loads. Likewise,

the restraining effects of the skin at the edges of the stiffener attached flanges
are included in the torsional/flexural buckling analysis. Local and torsional/flex-

ural buckling analyses are performed for a series of admissible buckling wavelengths

and the lowest buckling load level is sought.

Local bending strains are significant in a postbuckled skin. While the membrane

strain in the center of the plate may be small, as shown in the figure, the total

compressive strain on the concave surface at the buckle crest may exceed the edge

strain. On the other hand, the total strain on the convex surface may actually be

tensile. Ply-level stresses and strains are computed at critical locations in the

skin and stiffener elements and margins of safety are computed based on the maximum

strain or the Tsai-Hill criterion.

SKIN BUCKLINGf POSTBUCKLING INITIAL BUCKLING

N X

=ex

REDUCED

STIFFNESS

_x

LOAD

REDISTRIBUTION
TO RSIO NAL/F LEXURAL
BUCKLING

Figure 3.
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SKIN/STIFFENER INTERFACE STRESSES

Separation of the skin and stiffener is one of the most commonly occurring

failure modes in postbuckled and pressure-loaded composite panels. A self-contained

analysis procedure has been developed and incorporated in POSTOP to evaluate the

normal and shear stresses in the interface between the stiffener attachment flange

and the skin. Typical deformations and the structural model are shown in figure 4.

The flange and skin are modeled as plates connected by an elastic interface layer.

The length of the buckling half-wave defines the length of the model. Sinusoidally

distributed moments and shears computed from the postbuckled plate analysis are

treated as applied loads in the skin plate near the free edge of the attached flange.

The effects of the longitudinal compression loads in the plates are included and have

been found to be significant. Interface stresses may be computed at any point along

the half-wavelength and across the flange width. Normal and short transverse shear

stresses are maximum at the buckle wave peak. The long transverse shear stresses are

maximum along the buckle node line, where failure involving shear crippling has been

observed.

Parametric studies performed with this analysis have shown that the interface

stresses may be minimized by proper detail design techniques. For example, the

addition of a pad in the skin under the stiffener reduces all interface stresses

significantly. The effect of a skin pad on the shear stresses is shown in the

figure. Other design variables including flange width and stacking sequence are also
available to control the interface stresses. The success or failure of an optimum

postbuckled panel design may depend on attention to design details such as these.
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Figure 4.
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OPTIMIZATION PROBLEM FORMULATION

The design variables in POSTOP are shown in figure 5. They are the five element

widths of the I-section stiffener, the stiffener spacing and the lamina thicknesses

in the skin and the stiffener elements. All design variables are considered to be

continuous. Any width except the stiffener height may be set equal to zero to produce

stiffeners with cross sections other than the 1-shape. Currently up to 20 width and

thickness variables may be specified. Any design parameter may be linked to a design

variable with a constant multiplier. Using linking to achieve practical designs al-

lows the total number of independent design variables to be in the range of I0 to 15

for most stiffened composite panels. The requirement for lamina thicknesses to be

integer multiples of available ply thicknesses and treatment of stacking sequences are
discussed later.

The most common objective function in aircraft panel sizing is minimum panel

weight. Maximum stiffness or maximum margin of safety in a particular failure mode

could be specified as objective functions in certain instances.

Constraints may be placed on the magnitude of the design variables, ratios of

selected design Variables, panel stiffnesses, and individual margins of safety. When

minimum weight is not the objective function, panel weight should be constrained.

Proper specification of these constraints allows practical optimum designs to be

determined. Added safety may be ensured in certain major failure modes, such as

panel instability, by specifying a higher lower bound for the margin of safety in
that mode.

The CONMIN program used in POSTOP is a widely used optimizer based on the method

of feasible directions. POSTOP uses CONMIN with finite-difference gradients due to

the nonlinear nature of the optimization problem and of the structural response.

DESIGN VARIABLES

w (5)

• LINKING

• STACKING SEQUENCE

OBJECTIVE

• MIN.WEIGHT

• MAX. STIFFNESS

• MAX. MARGIN

CO NSTRAI NTS

• DESIGN VARIABLES

• DESIGN VAR. RATIOS

• STIFFNESSES

• MARGINS

• WEIGHT

Figure 5.
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INTEGERNUMBERSOFPLIES

Considering lamina thicknesses as continuous variables is a requirement for the
CONMINoptimizer used in POSTOP. Optimumdesigns generally contain laminae having
fractional numbers of available plies. In thick laminates, simply rounding the
optimum lamina thicknesses up or downto the nearest integer numberof plies may have
a negligible effect on panel weight. Such rounding of lamina thicknesses becomes
more significant whenthe total laminate thickness is small or when preplied laminae
are used to lower fabrication cost. Whenoff-axis material, such as _45 degree
plies, is used it must be supplied in multiples of four to maintain a balanced
symmetric laminate. Here the rounding effect is multiplied by four.

The negative aspects of this rounding procedure are generally lessened in
importance by several factors. Often if one lamina is rounded up, another can be
rounded down, cancelling to some extent the weight penalty. If truly continuous
design variables such as spacing and widths are available, a second optimization on
only the continuous variables may be performed after lamina thickness rounding. This
currently suggested approach to be used with POSTOPis outlined in figure 6.
Experience has shown that after rounding and reoptimizing, the weight penal%y is
usually less than three or four percent comparedto absolute optimum fuselage panel
designs. This penalty can decrease further when thicknesses vary along the structure
length, and plies may be dropped at any point along the length whenever a smaller
integer numberof plies is required.

There are cases, however, when the current approach leads to the wrong solution.

For example, if a [_45 /0 /545 ] plate is to remain buckling resistant in pure
m _ . . .

compression, an optimum _eslgn mlght requlre n = 1.15 and m = 0.0, slnce a lamlnate

with only 45-degree plies is optimum for this case. The rounding procedure would

[_45_/$45p] laminate resulting in a 74-percent penalty. If optimization onrequire a
+

integer numbeFs oC plies were used, a [-45/0/+45] laminate might prove optimum

resulting in only a 9-percent penalty. Although this example exaggerates the

problem, a method of Optimizing on continuous and discrete value design variables

simultaneously would be of value in composite panel sizing.

CURRENT APPROACH

OPTIMIZE ON

CONTINUOUS

VARIABLES

t
ROUND UP OR DOWN AND FIX
SOME OR ALL PLY THICKNESSES I

IDEAL APPROACH OPTIMIZE ON CONTINUOUS WIDTHS AND

DISCRETE THICKNESSES SIMULTANEOUSLY

Figure 6.
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STACKINGSEQUENCEOPTIMIZATION

The stacking sequence of the plies in a laminate can have marked effects on
buckling loads, postbuckling response, local bending stresses and stiffnesses, free
edge interlaminar stresses, skin/stiffener interface stresses, and delamination
growth. Provided an accurate analysis is available to evaluate such effects,

optimization on lamina thicknesses can be used directly to determine the optimum

stacking sequence as well as the total amount of material required in the various ply
orientations.

The approach that can be used in POSTOP to determine optimum stacking sequence
is summarized in figure 7. If 0-, 90- and ±45-degree orientations are to be used in a

laminate, the laminate specified to start the optimization process should have

approximately equal numbers of plies in the three directions. More importantly,

material with each orientation should be repeated at least once and the thickness

variables should not be linked. Optimization will reduce the thickness of laminae

with undesirable orientations to relatively small values, as shown in the figure.

These reduced thicknesses are then rounded out of the laminate and the optimum

stacking sequence remains. Reoptimization should be performed after rounding.

START OPTIMUM ROUNDED

o6/9o--

-+45 =

 6/0 _=

__j
+45m

oe/9o-- 

 ojo
-+45

I

 e/O -

@ PROVIDE CHOICE OF LOCATIONS FOR EACH ORIENTATION

• OBSERVE RELATIVE THICKNESS TRENDS

• ELIMINATE LAMINAE WITH RELATIVELY SMALL THICKNESSES

• REOPTIMIZE

Figure 7.
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BENEFITS OF POSTBUCKLED DESIGN

The weight savings of postbuckled panel design relative to buckling resistant

design have been recognized in metallic fuselage construction for many years.

Reluctance to use postbuckling composite panels exists due to the low out-of-plane

strength and stiffness of composites. Recently, design details such as the

padded-skin concept and attachment methods such as stitching have been shown to be

effective in preventing skin/stiffener separation failures in postbuckled composite

panels. Questions still remain as to the durability of such panels in fatigue
loading, particularly if interlaminar damage or defects are present. Other failure

modes such as shear crippling may become critical when separation is suppressed.

Assuming these questions can be answered with new analytical/experimental develop-

ments, postbuckling design will become widely used in composite fuselage structures.
POSTOP has been used to determine the benefits of postbuckled design for composites

as compared to a buckling resistant design approach.

The potential weight savings of postbuckled composite fuselage panels as

compared to panels that are required to remain buckling resistant is shown in figure

8(a). Here the mass index (panel weight per unit surface area, W, divided by panel

length, L ) is plotted as a function of the load index (compressive stress resultant,

N , divided by panel length) for both buckling resistant and postbuckled designs.
X

Weight savings ranging from 25 percent at the lower load levels to 15 percent at

the higher load levels are possible with postbuckled design.

Another advantage of postbuckled design is illustrated in figure 8(b). The

effect of stiffener spacing on panel weight is shown for stiffened panels designed

for a given load level. Again, postbuckled designs and buckling resistant designs

are compared. For the buckling resistant panels, there is a significant weight

penalty to increase the stiffener spacing. For the postbuckled panels, on the other

hand, there is almost no weight penalty associated with an increase in stiffener

spacing. Since increasing the stiffener spacing translates into fewer parts, cost

savings may be realized with postbuckled design in addition to weight savings.
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MULTI-STATIONSIZING PROCEDURE

The feasibility of obtaining optimum designs for stiffened wing, empennage, or

fuselage surface panels has, to date, been constrained by the required point-by-point

application of most panel sizing codes. Optimum designs obtained at each point

satisfy all the design requirements but are not necessarily geometrically compatible

with adjacent designs. The panel sizing code, POSTOP, has been extended to allow

determination of designs at a number of adjacent stations that are compatible and

that minimize the weight of the total surface panel. This improved sizing code

increases the structural efficiency, the computational efficiency, and the designer

efficiency over that obtained using previous sizing procedures.

Suppose, for example, that a wing surface is to be designed. Point optimum

designs may indicate stiffener spacings of 8, 6, 7, and 4 inches at adjacent

stations. If a constant stiffener spacing is required, the designer must select an

intermediate spacing, weighted in some way to reflect the wider surface dimensions

nearer the wing root, and reoptimize the panels. If similar geometric requirements

dictate the relationship of stiffener heights, widths, and lamina thicknesses as well

as stacking sequences from station to station along the wing, the number of arbitrary

decisions required by the designer may soon become overwhelming. Numerous

modifications of these decisions and subsequent reoptimizations may be required in

attempting to minimize the total weight of the wing surface. A true minimum weight

design may never be obtained, even after extensive effort by the designer.

The improved sizing code eliminates the difficulties and inaccuracies described

above. Lamina thicknesses, stiffener dimensions, and stiffener spacing are assumed

to vary smoothly from station to station. Up to a second-order longitudinal

variation of any dimension or thickness is currently allowed, as shown in figure 9.

Here X., a., and b. are the design variables for the ith design parameter X.(x)1 If
Ol 1

optimum values for _ design parameters are to be determined at each station on the

structure, no more than a total of 3n design variables must be optimized regardless

of the number of stations specified. In this way, the size of the optimization

problem remains relatively small, the required computer time is decreased, and the

likelihood of determining a successful optimum design is increased.

ffff

X|(x) = Xol (1 + aix + bix2)

S |=l,...n

Figure 9.
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EXAMPLE OF MULTI-STATION SIZING

In the optimization procedure, the minimum total weight of the structure is the

objective function. The width of the structure may be specified at each station so

that the weight of structures with tapering planform, such as wing covers, may be

accurately determined. As an example of the application of this procedure, consider

a wing surface subject to the ultimate loads listed in figure 10. The wing chord

widths and minimum shear stiffness requirements are also shown in the figure. For

simplicity, assume that the surface panel is to be aluminum with integral stiffeners,

as shown in the figure. The allowable effective stress is 53 ksi. Local buckling is

not allowed. The station-to-station geometric constraints are (I) constant stiffener

spacing; (2) linearly varying stiffener height, flange width, and web thickness; and

(3) second-order variations in the skin and flange thicknesses. The six design

parameters and the 13 associated design variables are listed in figure 10.
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COMPARISON OF RESULTS

The results of the sequential application of the point-by-point optimization

procedure to the same wing surface panel are shown in figures 11(a) through (g). In

each design cycle, optimum designs were obtained at each of the six stations with six

independent computer runs. In Cycle I, all six design parameters were allowed to

vary freely. The resulting designs, shown in figure 11(a), violate all of the

station-to-station constraints. Using the optimum stiffener spacings from Cycle I, a

constant spacing of 6.22 inches was computed with the panel weight per unit length at

each station as weighting factors. Using this constant value for stiffener spacing,

a second optimization cycle was performed with the remaining five parameters as

design variables. The resulting designs are presented in figure 11(b) with the

constrained stiffener spacing shown as a short dash line. Next, the stiffener height

constraint was applied. A third optimization cycle was performed using the remaining

four parameters as design variables. The resulting designs are presented in figure

11(c) with the newly constrained parameter, h, shown as a short dash line and the

previously constrained parameter, b, shown as a long dash line. This process was

continued until all station-to-station constraints were imposed. The resulting final

design is shown in figure 11(g). The total weight of the optimum surface panel is

1912 pounds, only 2 percent heavier than the multi-station optimum. However, 42

separate computer runs were required by the point-by-point procedure, and 1400

computing units were used.

The dimensions of the optimum design obtained with the new sizing code are shown

in figure 11(h). The total weight of this surface panel is 1881 pounds. This design

was obtained in one computer run that used 1000 computing time units.

This simple example shows the benefits of multi-station optimization. Compared

with point-by-point optimization, a small reduction in structural weight and a 30

percent reduction in computer time were achieved. The designer time was greatly

reduced by eliminating the cycle-to-cycle decision concerning practical constraint

should be applied next and how it should be applied. Reduction of the number of data

setups and computer runs from 42 to I results in the most dramatic improvements in ef-

efficiencies in-ficiency. Improvements in structural, computational, and designer

crease as the number of design variables increases.
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POSTBUCKLEDFUSELAGEINTERNALLOADREDISTRIBUTION

A fuselage subjected to multi-axis bending, shear, and torsion will experience
panel-to-panel as well as skin-to-stiffener load redistribution after skin

buckling. This circumferential redistribution is due to the effect of reduced skin

stiffnesses on the overall bending and torsional stiffness of the fuselage. An

iterative procedure has been developed to compute this redistribution and the reduced

global bending and torsional stiffnesses associated with skin buckling. Reduced

global stiffnesses may, in turn, affect the computation of external loads on the
fuselage.

As an example of the internal load redistribution, consider a circular fuselage

subject to a vertical shear V , a torsion M , and a bending moment M . Figure 12

shows the shear flow and axia_ load distribution as a function of loa_ level. The

neutral-axis shift toward the upper tension-loaded portion of the fuselage is clear.

As a result, the tension loads increase at an increasing rate after buckling.

Likewise, an increasing proportion of the compression loads is carried by the panels

close to the sides of the fuselage after buckling. In this single-cell example, no

redistribution of shear load occurs as it does in the case of a multi-cell fuselage.

However, even in this example, consideration of combined shear and biaxial loads is

important due to their interactive effect on postbuckled plate stiffnesses.

APPLIED } { M = 100 V
X Z F -

LOADS My 1000 V z

ACTUAL LOAD APPLIED

LOAD AT INITIAL BUCKLING

F=4

SHEAR FLOW, N
xy

AXIAL LOAD, N
X

Figure 12.
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MULTI-LEVELSTRUCTURAL DESIGN INTERACTION

Aircraft structural design is carried out on several levels of detail.

Optimization at any level causes interaction with the others. Nonlinearities due to

postbuckling stiffness reductions cause external and internal load redistribution and

additional interaction between design levels. Figure 13 illustrates potential

interaction between five levels of analysis and design detail. Dashed lines between

major components and subcomponents, and between stiffened panels and laminates

indicate that the two adjacent items are sometimes not treated separately.

For a fixed aircraft configuration, approximate external loads (rigid loads) are

computed. Based on these loads, initial component designs are determined. Refined

external loads (flexible loads) are determined iteratively, accounting for the effects

of structural deformations. Optimization to minimize undesirable deformations may be

performed. If significant response changes (A) occur, the flexible loads must be re-

computed. Otherwise, refined analyses at the subcomponent level begins. Internal

loads on panels are computed. If any panels are buckled, stiffness reductions occur

and the loads must be redistributed in an iterative procedure such as the fuselage load

redistribution described previously. If postbuckling stiffness reductions cause sig-

nificant overall stiffness changes (A: buckle), it is necessary to return to the

major component analysis to recompute the flexible external loads. If optimization

at the subcomponent level (e.g., the multi-station approach discussed previously)

causes significant changes (A: opt. ), it may be necessary to recompute the flexible

external loads and/or to restart the subcomponent analysis.

Once interaction at the three upper levels is complete, panel loads are defined

and detail panel sizing begins (e.g., with POSTOP or equivalent). Postbuckling

requires an iterative redistribution analysis for the skin and stiffener loads.

Detailed stress, stiffness, and stability analyses are then performed. If panel

sizing causes significant panel stiffness changes, it may again be necessary to

return to the subcomponent or major component level. This multi-level interaction,

along with complex analyses and iterative nonlinear procedures required at each

level, provides a challenging problem. Interaction with nonstructural disciplines

provides additional challenges. Multi-level optimization approaches (refs. 6 and 7)

appear to be promising solutions to the problem.

| MAJOR I ! | [ STIFFENED'D_,,SKIN & I I

I CON/:IG. I | COMPONENTS Ii SUBCOMPONENTSI | | PANELS ISTIFFENER I /

'___ll__l / ] LAMINATES,

Figure 13.
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PROJECTTASKS

The purpose of this project was to investigate the use of optimization tech-
niques to improve the flutter margins of the HARMAGM-88Awing. The missile has
four cruciform wings, located near mid-fuselage, that are actuated in pairs symme-
trically and antisymmetrically to provide pitch, yaw, and roll control. The wings
have a solid stainless steel forward section and a stainless steel crushed-honeycomb
aft section. The wing restraint stiffness is dependent upon wing pitch amplitude
and varies from a low value near neutral pitch attitude to a muchhigher value at
off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the
control system. The most critical condition for flutter is the low-stiffness condi-
tion in which the wings are movedsymmetrically. Although a tendency toward limit-
cycle flutter is controlled in the current design by controller logic, wing redesign
to improve this situation is attractive because it can be accomplished as a retro-
fit.

Project tasks are listed in figure I. In view of the exploratory nature of the
study, it was decided to apply the optimization to a wlng-only model, validated by
comparison with results obtained by Texas Instruments (TI). Any wing designs that
looked promising were to be evaluated at TI with more complicated models, including
body modes. The optimization work was performed by Mclntosh Structural Dynamics,
Inc. (MSD)under a contract from TI.

i.

.

.

.

Develop simplified wing-only models and match TI frequen-

cies and mode shapes for four root restraints--symmetrlc

low and high stiffness, antlsymmetric low and high stiff-

ness.

Perform flutter analyses at M = 0.8, 1.2, 1.5, 2.5.

Compare results with those computed by TI.

Optimize for improved flutter margins; concentrate on

critical configuration (symmetric, low stiffness).

Assess optimized wing designs in cooperation with TI;

perform additional analyses, optimizatlons, and assess-

ments as time, funding permit.

5. Submit a Final Report.

Figure I
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FLOWDIAGRAMOFANALYSISANDOPTIMIZATIONTASKS

The various computer codes used in this project and their functions are illus-
trated in figure 2. The tasks on the left side of the figure represent the tradi-
tional flutter-analysis cycle, with the exception of the design-variable linking
capability in DVLINK. This code permits arbitrary combinations of design variables
to be linked together, or slaved, so that a numberof different optimization models
can be created from a single output file of the finite-element code SAMGEN.DVLINK
also includes a scaling capability, so that discrete finite-element models of any
new design can be created without recourse to SAMGEN.Design variables for either
bending or in-plane elements can be used.

Program PARMATmakesuse of the system's natural modesfrom VIBE and the dis-
crete mass and stiffness matrices from DVLINKassociated with each design variable
to create the corresponding generalized massand stiffness matrices. Program WEIGHT
makesuse of the input data for SAMGENto compute weight coefficients for each
design variable to be used in determining the objective function (weight). All
this information is passed to the optimization executive routine FLTOPT,which is
coupled to the general-purpose optimization code CONMIN(ref. i). The development
of the original versions of the analysis codes is described in refs. 2 and 3.

All of the MSDcomputations were performed on a DECVAX 11/780 minicomputer.

SAMGEN WEIGHT

DVLINK

COLAPS PARMAT

VIBE

AERO

MAKFIT FLTOPT

i FLUTER I CONMIN I

Program

SAMGEN

DVLINK

COLAPS

VIBE

AERO

MAKFIT

FLUTER

WEIGHT

PARMAT

FLTOPT

CONMIN

Purpose

Generate finite-element model,

discrete derivative matrices

Generate linked, scaled finite-

element model

Collapse mass, stiffness matrices

Compute natural modes, frequencies

Compute generalized aerodynamic

forces--doublet lattice (sub-

sonic), Mach box (supersonic)

Compute polynomial fits of gener-

alized aerodynamic forces in Mach

number, reduced frequency

Perform flutter analyses

Compute weight coefficients for

objective function

Compute generalized derivative

matrices

Control optimization; evaluate con-

straints and constraint gradients

Optimization driver (feasible

directions)

Figure 2
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WING FINITE-ELEMENT MODEL

The wing node-point layout and original design-variable numbering are illus-

trated in figure 3. The node-point layout on the wing and the element thicknesses

were identical with those used at TI. The solid forward section was represented by

solid triangular bending elements and the sandwich aft section by sandwich triangu-

lar bending elements. The TI wing model incorporated quadrilateral elements and

sandwich elements with shear flexibility, which the MSD sandwich elements did not

have. The MSD wing model was therefore somewhat stiffer than the TI model, and this

resulted in MSD-computed natural frequencies that were greater than those computed

at TI, particularly for the higher mode numbers. Mode shapes and frequencies for

the lower mode numbers (say, the first three) were in very good agreement, however,

for both cantilever and free-free test cases.

7

8

9

10

11

19 28 36 44 50 56

20 29 37 45 51 57 62 67

21 30 38 46 52 58 63 68

Figure 3
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FREQUENCY COMPARISONS

The wing model to be optimized had linear springs at the root to represent

restraint stiffnesses in the pitch (control) and flap (transverse) directions. Four

separate configurations had been analyzed by Tl--low and high stiffness values for

both symmetric and antisymmetric control motions. These four configurations were

also analyzed by MSD. Nominal equivalent linear spring rates supplied by TI were

used initially for the root restraints and were then varied to provide the best

possible match with Tl-computed frequencies, where these were available. The results

of this matching effort are given in figure 4. For the two low-stiffness configur-

ations, the first two frequencies were matched virtually exactly, with relatively

minor variations from the nominal stiffness values. For the one high-stiffness

configuration for which Tl-computed frequencies were available, it was not possible

to match the frequencies very well. In this case, the simple two-spring model was

not adequate to represent the root restraint given by the actual hardware. A more

representative simplified model was not developed for this configuration, since the

two low-stiffness configurations were more critical for flutter.

TI

MSD

TI

MSD

SYMMETRIC ANTISYMMETRIC

K 8 Kf fl f2 K 8 Kf fl f2

Low Stiffness Low Stiffness

209.0 7,880 42.78 96.00 3,279 8,640 78.29 150.8

294.6 6,458 41.53 96.72 1,679 18,550 77.84 150.9

High Stiffness High Stiffness

1,016 16,000 80.5 128 2,962 28,410 - -

1,930 16,000 78.8 156 2,962 28,410 87.5 183

K 8 = pitch stiffness, in-lb/deg

Kf = flap stiffness, in-lb/deg

fl = first mode frequency, Hz

f2 = second mode frequency, Hz

Figure 4
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ENFORCEMENTOFFLUTTER-SPEEDCONSTRAINT

Flutter analyses of the isolated wing with the four root-restralnt conditions
discussed previously confirmed that the symmetric low-stiffness condition was the
critical one, with the flutter margin in the low supersonic Machnumberrange most
in need of improvement. Redesign to improve the flutter speed at Mach 1.5 was
therefore selected as the principal goal. Improvement in the flutter speed was
sought by posing the usual optimization problem with weight as the objective
function, but with an initial flutter-related constraint that was violated. The
flutter constraint was imposedby requiring that the damping parameter g be less
than or equal to a critical value of 0.03 (in other words, flutter was defined for
3%structural damping). The altitude, Machnumber, and airspeed were fixed.
Figure 5 illustrates this concept. An initially infeasible point on the critical
flutter branch in V-g space was to be driven to g = 0.03 or less along a
constant-V llne. The optimization algorithm was thus confronted with two tasks--
first, to bring the flutter constraint function g = 0.03 to an acceptable value, and
second, to reduce the wing weight, if possible, without violating this constraint.

During constraint evaluation, the value of the reduced frequency was varied to
keep the airspeed associated with the critical root equal to the desired airspeed.
Generalized coordinates defined by the natural modesof the initial design were
retained throughout the optimization.
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Figure 5
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OPTIMIZATIONMODELNO. I

In all of the optimization models, the design variables were scale factors on
the initial element thicknesses. Hence, the initial values of the design variables
were always 1.0. In addition to the primary flutter constraint, upper and lower
bounds were also imposed on the design variables.

The first optimization model had six design variables, three in the solid
section and three in the sandwich section. An improvementof 300 fps was sought in
the flutter speed, with the Machnumberand altitude fixed, respectively, at 1.5 and
22,000 ft. Upper and lower bounds of 3.0 and 0.5, respectively, were imposed on the
design variables. Convergencewas obtained in 14 iterations, and it was found that
almost two ib had to be added to achieve the desired increase in flutter speed.
Only one design varlable--T(1)--was not at an upper or lower bound. Most of the
weight increase camefrom the 30%or so increase in thickness called for by T(1),
which governed the inboard leadlng-edge portion of the wing. These results are
illustrated in figure 6.

A complete flutter analysis of the final design with the original generalized
coordinates (nine in all) confirmed that the flrst-mode branch was still the
critical flutter branch. It was therefore not necessary to select other points in
V-g space to be constrained; this was the case for all the optimization problems
considered.

OPTIMIZATIONRESULTS
Optimization Model No. i - 6 DV's

Initial Weight:
Initial Flutter Speed, M = 1.5:

Final Weight:
Final Flutter Speed, M = 1.5:

Optimal Design:
I I 2 3 4

T(1) 1.308 0.5 0.5 0.5

8.707 Ib
1540 fps
10.57 ib
1842 fps

5 6
3.0 3.0

Figure 6
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OPTIMIZATIONMODELNO. 2

For the next optimization model, ii design variables were chosen, as illus-
trated in figure 7. To allow in a very approximate manner for strength considera-
tions, design variable no. i was selected to govern a spanwise portion of the solid
section just forward of the juncture between the solid and sandwich sections.
Stress analyses at TI has indicated that stresses were highest in this area for the
design loading conditions for strength. A more restrictive lower bound, 0.9, was
selected for this design variable, and the same300-fps increase in flutter speed
was sought. Convergencewas again obtained after 14 iterations, with the desired
flutter speed obtained and a weight reduction of over two lb. All design vari-
ables except T(6) were at their lower bounds, and T(6) was almost at its upper
bound. These results suggest very strongly that much lighter construction--perhaps
sandwich--could be used for most of the leading-edge wing portions as well, with a
strong spar to carry wing loads into the root. The increase for T(6), which is at
the tip, canbe interpreted as calling primarily for mass balance, since the
increased stiffness there will have little effect.

With such a drastic change in the design, it could be anticipated that the use
of fixed modeswould result in someinaccuracies. To test this, the optimal design
was re-analyzed for flutter with normal modes. The flutter speed calculated for
this model was an astonishing 2442 fps--some 600 fps more than the desired flutter
speed and 900 fps more than the flutter speed of the initial design. This of course
illustrates even more strongly the value of the redesign. In other cases, it is
likely that the improvementwould not be as great as estimated with fixed modes, and
in general it must be expected that the modeswould have to be updated and the
optimization repeated in order to obtain satisfactory accuracy.

2 7

OPTIMIZATIONRESULTS
Optimization Model No. 2 - Ii DV's

Initial Weight:
Initial Flutter Speed, M = 1.5:

Final Weight:
Final Flutter Speed, M = 1.5:

8.707 ib
1540 fps
6.430 ib
1842 fps

Optimal Design:
I i 2 3 4 5 6

T(1) 0.9 0.5 0.5 0.5 0.5 2.796
I 7 8 9 i0 Ii

T(1) 0.5 0.5 0.5 0.5 3.0

Flutter speed, M = 1.5, optimal design
with normal modes- 2442 fps!

Figure 7
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OPTIMIZATIONMODELNO. 3

This model resembled model no. 2, but more chordwise divisions were chosen, and
the numberof design variables was increased to 15. The optimal design was obtained
in 13 iterations and is almost the sameas that found for the II-DV case, as can be
seen in figure 8.

4 I 10

15

14

13

12

11

OPTIMIZATION RESULTS

Optimization Model No. 3 - 15 DV's

Initial Weight:

Initial Flutter Speed, M = 1.5:

Final Weight:

Final Flutter Speed, M = 1.5:

Optimal Design:
I

T(I)

T(I)

I

T(I)

1 2 3 4

0.9 0.9 0.9 0.5

7 8 9 I0

0.5 0.5 2.754 0.5

13 14 15

0.5 0.8260 3.0

8.707 ib

1540 fps

6.466 Ib

1842 fps

5 6

0.5 0.5

ii 12

0.5 0.5

Figure 8
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OPTIMIZATIONMODELNO. 4

For this model, additional spanwise cuts were selected in order to see if more
design flexibility in the chordwise direction would produce different results.
However, the optimal design for this 14-DV case was not substantially different from
the two previous optimal designs; see figure 9 for details.

_ 13 14

9 10 11

OPTIMIZATION RESULTS

Optimization Model No. 4 - 14 DV's

Initial Weight:

Initial Flutter Speed, M = 1.5:

Final Weight:

Final Flutter Speed, M = 1.5:

Optimal Design:
I i 2

r(1) 0.9 0.5

I 7 8

T(1) 3.0 0.5

I 13 14

T(I) 3.0 3.0

8.707 ib

1540 fps

6.755 ib

1842 fps

3 4 5 6

0.5 0.5 0.5 0.5

9 i0 ii 12

0.5 0.5 0.5 0.8066

Figure 9
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COMPARISONOFNATURALFREQUENCIES

The optimal wing-only design from optimization model no. 2 was modelled at TI
and incorporated in a model of the complete missile which includes wings, tail fins,
missile body, and shafts, actuators, and linkage. Figure i0 presents comparisons
of the isolated-wing natural frequencies, the optimized complete-model natural fre-
quencies, and those for the baseline complete model. Frequencies computedat TI for
the wing model are in excellent agreementwith those computedat MSD. Whenthis
wing model was coupled with the rest of the missile, only the first wing bending
modewas affected. The interaction of the optimized wing with the internal struc-
ture and the missile body has resulted in a much lower frequency.

ModeDescription

Damper(pitch)

Actuator (pitch)

First Body Bending

First Wing Bending

SecondBody Bending

SecondWing Bending

Frequency (HZ)

Optimized Wing Model Complete Model

MSD TI Optimized Baseline

- - 9.0 8.7

40.3 39.6 40.5 42.4

- - 45.8 45.5

92.9 89.1 73.6 96.3

- - 141 141

175 170 171 204

Figure I0
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FLUTTER BOUNDARY OF COMPLETE MODEL

The optimized complete model was then analyzed for flutter at TI, at Mach num-

bers of 1.2, 1.5, and 2.0. These flutter points are compared with the flutter

boundary of the baseline model in figure ii. Although the improvement in the flut-

ter boundary at Mach 1.5 is not as great as is indicated by the wing-only analysis,

it is nevertheless very significant. This improvement carried over to Mach 2.0, but

there was virtually no change in the flutter boundary at Mach 1.2. This indicates

that a somewhat different flutter mechanism was involved at Mach 1.2, and an addi-

tional flutter constraint at that Mach number would have to be included to obtain

improvement there.

--BASELINE DESIGN

OPTIMIZED WING

v

0
0

>

F_
Z

>
I--I

3000 _ SL

2OOO

i000

i0000 FT

20000 FT

3000OFT

0
! T

0 0.5 1.0 1.5

MACH NUMBER

Figure ii

!

5.0
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CONCLUDING REMARKS

Although the results obtained here cannot be translated directly to a new

design, they do indicate strongly how a redesign could proceed, with both reduced

weight and substantially improved flutter margins. It is also worth noting that

sensitivity studies from the initial design would not necessarily suggest modifica-

tions such as were finally determined by optimization. For example, the weight

histories in all of the cases studied above showed an initial increase in weight,

sometimes of three ib or more, just to satisfy the constraint before any weight

reduction was attempted. Optimization can thus be viewed as an organized and effec-
tive way of arriving at an often counterintuitive result.
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OPTIMIZATION THEORY

The field of optimization is as broad and interrelated as the problems it
attempts to solve. However, there appear to be two general categories:

(1) The indirect or classical methods, based on the calculus of variations,
which are often said to involve"parachuting" to the optimum

(2) The direct or programming methods, which involve searching or climbing
to the optimum

To list individual methods in the categories is difficult because many
that involve indirect methods actually "search for places to parachute". For
example, two Lagrangian methods that involve searching are: (i) the Sequential
Gradient Restoration Algorithm (ref. I); and (2) the Projected Lagrangian. The
NICO program (Nonlinear Inequality Constrained Optimization) is definitely a
Gradient Search Method.

Indirect or classical, based on calculus of variations (parachuting)

• Lagrangian methods

• Optimal control e.g, LQR

• Etc.

Direct or programming (searchlng or climbing)

• Simplex algorithm

• Dynamic programming

• Integer programming

• Etc,

• Gradient methods

• Projected gradient algorithm

• Method of constrained derivatives

• NICO

• Etc.
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NICO - GENERAL NONLINEAR PROGRAMMINGALGORITHM

Nonlinear Programming is perhaps the most powerful category in the field of
optimization. With it, engineering problems can be solved directly; i.e., the
problem does not have to be fit into a canonical form, wherein it can lose some
of its features. The general nonlinear programming problem is to determine values
for n variables, which satisfy m nonlinear constraints:

Gi(X I, ..., Xn)[<, =,>]B i i = I,..., m

and, in addition, maximize (or minimize) a nonlinear objective function

Z = f (X I, ..., Xn)

All engineering problems fit this formulation, though many times the G's and f
are only in the engineer's mind as he solves the problem by trial and error. The
field of nonlinear programming contains systematic ways to solve the problem if
it can be quantified. In most cases, it can be.

NICO can be further classified as a Parameter Optimization method; i.e., it
finds the best values for variables whose "first guess" values are input by the
user.

Determine xn values that satisfy nonlinear constraints

and maximize (minimize) nonlinear objective function

z : ,×.)

Note: n not related to m
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NICO ITERATIVELY FORMS AND SOLVES
THE FOLLOWING PROBLEM

The fundamental principle in NICO is to iterate to the final solution by
solving a succession of linear programming problems.

NICO has two distinctive features: (1) the "first guess" does not have
to satisfy any of the constraints (in most real engineering problems, the
"first guess" is seldom feasible); and (2) it can converge to local interior as
well as exterior optima.

In NICO, the objective is not as important as the constraints. But in
most, if not all, engineering problems, the solution is dominated by the con-
straints. In fact, the optimum is constrained; i.e., constraints literally
define the best values of the objective.

Matrix of constraint equations

Bo

L

Where z_)<. = X.- X. and k_--X_-.
J J ,Jo

is computed via finite difference

Objective function to be maximized

Yl

j:l o

Variable constraints
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ACADEMIC OPTIMIZATION EXAMPLE

This figure shows the application of NICO to an academic problem. It shows
how NICO iterated to the solution from three different nonfeasible "first guesseS'.
It also shows another distinctive feature of NICO; i.e., it concentrates on the
constraints. Run 2 shows how the objective function decreases during the first
few iterations in order to reach a feasible solution. NICO moves in a "deflected
gradient" direction; i.e., the objective function gradient is deflected by the
constraints. Often this is exactly what the engineer does as he optimizes, since
most real engineering problems are dominated by the constraints, with the objec-
tive function providing only a general direction.

RUN #3

FIRST GUESSl
XlO - 1.6

X20 - 3.0 /

1.0'

.8

X2

.6

0

RUN #l
FIRST GUESS

CONSTRAINT

MI

RUN #2
FIRST GUESS

I'.5 .0
XI

Academic Optimization Example

i

1.5

Z- x,
@

$./,,/ec ÷
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ACADEMIC OPTIMIZATION EXAMPLE (continued)

The academic example of the previous figure has an unusual situation at
the point Xl = X2 = O. As shown on this figure, the two "feasible regions" of
this example are connected by this single point. NICO had no difficulty passing
through this point, because it uses a "hunting" technique and operates much like
an engineer as he iterates via a succession of trail points.

4

X2 -2

-4

-6

-8

Run #4 First Guess

Nll-

A
, ;. . : • • "

-10 -8 -6 -4 -2 0

X].

Academic Optimization Example
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NICO APPLICATIONS

(1) NICO was first applied to launch vehicle autopilot design and produced
gains and filters for several (at least two) vehicles that flew. It
has also been applied to a so-called Variable Payload Vehicle where it
also produced results that were installed in software that actually
flew. The latest successful application is on a Variable Trajectory
Vehicle, where its design of the roll-yaw autopilot falls in the
category of multivariable design.

(2) NICO was also applied to the control effector "trim" or static moment
balance problem on an early space shuttle proposal.

(3) Another application included handling quality transient response
criteria in the design of a reentry vehicle control system.

(4) Waterjet propulsion and lift system components were "sized" on a
large Surface Effect Ship.

(5) NICO was used in an iceberg transportation study to select candidate
icebergs, propulsion system size, and the best route.

Launch vehicle autopllot design

• Launch vehicle autopllot commend •
mixer deslgn

• Reentry vehlcle autopllot deslgn •

• Surface Effect Ship Sizing

• Iceberg transportation .

Frequency response

Transient response

Static moment balance

Handllng qualities

Propulsion and lift system for
payload/range

Candidate Icebergs, propulsion
system, route
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NICO LINKED TO LINEAR ANALYSIS PROGRAM

NICO is currently linked as a subroutine to a program that computes frequency
responses. Previously, the engineer ran the linear analysis program iteratively,
by trial and error selection of control system gains and filters, until the

desired stability margins were achieved. NICO replaces the engineer, who now only
inputs a "first guess". The engineer can now concentrate on the most important

job; i.e., math modelling. NICO does the technically unchallenging job of
iterating.

The interface program searches the system response and passes to NICO the

array of current values of each of the constraints. It also passes the value of
the objective function. NICO passes back new values for the variables that are

to be used in computing the next frequency response.

Engineer ]Problem Definition

1 Math MOdel i Objectlve I" First guess varlables
+ Data Function (z) J (Xno)

_. Constraint requirements

Simulation Program

(e.g. MDELTA

Linear Ana]Ysls
Program)

Variables

Response (e.g,

Frequency

Response)

Interface

Varlables

Constraints (G_

Objective (z)

NICO

"The Gopher"
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NICO RESULTS THAT HAVE BEEN IMPLEMENTED

NICO was used to design an autopilot for a "so-called" variable payload
vehicle. The gains and filters that were computed by NICO were programmed in
the software of this vehicle on a mission that actually flew. The top figure
shows that the initial user defined (first guess) values for the gains and
filters resulted in an unstable bending mode. After six iterations, NICO
produced values that stabilized this mode and exceeded all required stability
margins. The final iteration resulted in a better system than had been previously
designed by manual techniques, and it is felt that NICO required less engineering
and computer time.

O

UNSTABLEBENDING

-360 -180

PHASE(DEG)

• FIRST GUESS RESULTED IN

UNSTABLE BENDING MODE

/-- BENDINGMODE
/GAIN & PHASE

/ STABILIZED

_ 0

PHASE MAIIt61N
(EXCEEDS

SPEC)

-360 -180

PHASE(DEG)

• 6 ITERATIONS LATER, STABILIZED
WITH ALL MARGINS MET
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NICO MULTI-INPUT MULTI-OUTPUT CONTROL SYSTEM DESIGN

Therehavealways been discussions about the shortcomings of classical fre-
quency response design methods when dealing with multi-input multi-output (MIMO)
control system design. The difficulties with MIMO systems arise from interactive
effects; i.e., the action of one feedback loop affects the actions of the others.
The standard practice used successfully by the "classical" engineer is simply to
design all loops simultaneously. This iterative design approach includes an
extensive tolerance analysis and yields optimum systems. NICO automates this
classical approach.

This figure is a remarkable example of NICO applied to MIMO.
design of a roll-yaw autopilot on a variable trajectory vehicle.
NICO simultaneously considered:

This was the
On every step,

(1) Stability margins of the roll loop with the yaw loop closed
(2) Stability margins of the yaw loop with the roll loop closed
(3) Shape of the frequency response of roll due to command with all loops

closed

(4) Shape of the frequency response of sideslip due to command with all
loops closed

Disturbance rejection could also have been simultaneously considered by
reducing the peak value of the frequency response of roll, sideslip, and all fin
angles due to a disturbance like the wind.

I /r_ ROLL DUE TO COMMAND_TIME

FINAL

SIDESLIP DUE TO COMMAND_TIME

RESPONSE, ALL LOOPS CLOSED

/

PHASE MARGIN (DEGREES)

INITIAL FINAL

ROLL OPEN, YAW CLOSED 22. 60.

FREQUENCY RESPONSE, PEAK RESONANCE (dB),
ALL LOOPS CLOSED

INITIAL FINAL

ROLL DUE TO COMMAND 9. O.

SIDESLIP DUE TO COMMAND 5. O.
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SURFACE EFFECT SHIP SIZING

At one point in its development, NICO was linked to a program that computed
the range/speed/payload performance of a Surface Effect Ship. NICO was used to
establish: (1) the pump diameter, inlet area, and nozzle area of the waterjet
propulsion system; (2) the lift system air flow rate; and (3) the vehicle speed
that would maximize the payload for a given range. The constraints were: (I)
maximum pump diameter, inlet area, nozzle area, horsepower, and air flow rate;
(2) minimum speed; and (3) maximum speed possible while avoiding pump cavitation.

Poyload (short tons)

Cruise Speed (knots)

Travel Time (hours)

RESULTS

Engineer NICO Chon_e

3760 4000 +6.4%

43 46 +6.5%

(cavItotlng) (No cov|t.)

60 56.7 +5.4%

• Foster Response

ADVANTAGES

Englneer NICO

Over two weeks of 1 day

engineeringmanhours

• Lower Cost Over 40 runs varying 1 run K $20)

major parometers (,$100)

• Improved Results Feaslble ship found, True Optimum

but not true optimum

REFERENCE
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tial Gradient Restoration Algorithm for Mathematical Programming Problems with
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OUTLINE

This paper describes the design of a candidate flutter suppression (FS) control

law for the symmetric degrees of freedom for the DAST ARW-2 aircraft. The results

shown here illustrate the application of several currently employed control law

design techniques. Subsequent designs, obtained as the mathematical model of the

ARW-2 is updated, are expected to employ similar methods and to provide a control law

whose performance will be flight tested. This study represents one of the steps

necessary to provide an assessment of the validity of applying current control law

synthesis and analysis techniques in the design of actively controlled aircraft.

Mathematical models employed in the control law design and evaluation phases are

described. The control problem is specified by presenting the flutter boundary pre-

dicted for the uncontrolled aircraft and by defining objectives and constraints that

the controller should satisfy. A full-order controller is obtained by using Linear

Ouadratic Gaussian (LQG) techniques (Refs. i-4). The process of obtaining an imple-

mentable reduced-order controller is described (Refs. 5,6). One example is also

shown in which constrained optimization techniques (Refs. 7-11) are utilized to

explicitly include robustness criteria within the design algorithm.

e MATHEMATICAL MODELING

e ARW-2 FLUTTER CHARACTERISTICS

e CONTROLLER DESIGN OB3ECTIVES AND CONSTRAINTS

e FULL-ORDER CONTROLLER DESIGN

e REDUCED-ORDER CONTROLLER DEFINITION

e MAXIMIZATION OF ROBUSTNESS OF REDUCED-ORDER CONTROLLER
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SENSOR SIGNAL INPUTS TO SYMMETRIC FLUTTER SUPPRESSION CONTROL LAW

The symmetric FS control law described here receives a feedback signal obtained

by differencin_ the output of two vertical accelerometers located as shown on the

outboard portion of the wing. Antisymmetric contributions are removed by summing

signals from each wing semispan. The signal, properly compensated, is fed to each

outboard aileron actuator. The objective of the FS design is to determine the

compensation required to suppress flutter while satisfying other design criteria such

as control power and robustness constraints.

Note that the control law is single-input/single-output (SISO). Furthermore,

the sensor signal accentuates the observability of predominantly torsional modes at

the expense of predominantly bending modes. It is planned, in a subsequent study, to

investigate the benefit of including the sum of the accelerometer outputs as an

additional feedback signal.

ACCELEROMETERS

2 PER SEMISPAN
1

2

AILERON

RIGHT ___WING gl

LEFT
WING

+

J
J SYMMETRICCONTROLLAW

COMMAND TO

AILERON ACTUATOR
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MATHEMATICALMODELING

Mathematical models were developed using the ISAC (Interaction of Structures,
Aerodynamics and Controls, Ref. 12) program. A modal characterization of the air-
craft was employedwhich resulted from performin_ a free-free vibration analysis with
symmetric constraints. Twelve symmetric modeswere retained for the modeling: mean-
body vertical translation and pitch plus i0 symmetric elastic modes.

Unsteady aerodynamic forces were computed for oscillatory motion by usin_ a
doublet lattice technique (Refs. 13,14) for several Mach numbers (M) and, at each
Machnumber, for a range of reduced frequencies (k). Reduced frequency satisfies the
relationship k = m b/U where b is a reference length (chosen here to be one half
the meanaerodynamic chord of the wing), U is airspeed and m is frequency in rad/sec.

A third-order transfer function representation of the actuator was employed
which provided a good fit to its experimentally determined frequency response below a
frequency of 300 rad/sec.

Approximate unsteady aerodynamic forces for arbitrary motion were _enerated in
order to obtain a linear, time invariant (LTI) state space model. A least squares
curve fit was made, at each Machnumber, of the complex matrix of frequency dependent
aerodynamic force coefficients, using a matrix function (Refs. 15-19). Constraints
were imposed upon the rigid body and gust columns of AO, AI and the CI matrices
which required that the curve fit match the tabular data and its slope at k=O
(Ref. 20). In addition, the column of A2, corresponding to forces due to gust
inputs, was constrained to be zero.

The resultin_ LTI state space evaluation modelwas 77th order. (Four lag terms
were employed in the s-plane fit and a second-order Dryden representation (Ref. 21)
of the gust spectrum was used.)

0 MODAL CHARACTERIZATION OF STRUCTURE (2 RIGID BODY AND 10

FREE-FREE ELASTIC MODES)

0 DOUBLET LATTICE COMPUTATION OF UNSTEADY AERODYNAMIC FORCES

o 3RD ORDER REPRESENTATION OF ACTUATOR

o S-PLANE APPROXIMATION OF UNSTEADY AERODYNAMICS (q LAG TERMS)

q SC
2 _ I

Q=A *AS*AS *
0 ! 2 _ (S*B)

I=I I

0 77 STATE EVALUATION MODEL
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DESIGN MODEL

A reduced-order model of the plant was developed in order to lower the cost of

the control law design. Only two la_ terms were used in the s-plane approximation.

Modes with natural frequencies below or near the open-loop flutter frequency which

were observed to have little effect upon the flutter characteristics were truncated.

Modal residualization (Refs. 3,10,22,23) was employed to retain the static effects of

the highest frequency modes. Five modes were retained in the design model, which had

a 25th order state space representation (i0 vehicle, I0 aerodynamic, 3 actuator, 2
_ust).

| TRUNCATE NONCRITICAL MODES IN FLUTTER FREOUENCY RANGE

OR BELOW

| REMOVE HIGH-FREQUENCY MODES BY MODAL RESIDUALIZATION

e TWO LAG S-PLANE AERODYNAMIC FORCE APPROXIMATION

| 25 STATE DESIGN MODEL
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AMPLITUDE OF SENSOR OUTPUT/CONTROL INPUT TRANSFER FIJNCTION

Bode plots of the symmetric signal sent to the controller per unit commanded

control input were generated for the analysis and design models. The design model

sensor signal amplitude is in good agreement with that of the full-order evaluation

model. Phase angle comparisons, not shown, also exhibit excellent agreement at

frequencies below 500 rad/sec.

The evaluation model Bode plot was actually generated using the second-order

form of the equations of motion. The unsteady aerodynamic forces computed using

the doublet lattice technique are in the proper form for this frequency domain

analysis. Therefore, no s-plane approximation is needed.

AMPLITUDE,

G/DEGREE

10 o

10 -2

--EVALUATION MODEL

DESIGNMODEL

FREQUENCY ('r ad/sec)

\\

I I
4 8

,.I
8 1

10_
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FLUTTER BOUNDARY, FS-OFF; NOMINAL STABILITY MARGIN BOUNDARY

AND FLUTTER BOUNDARY, FS-ON

The predicted flutter boundary (FS-off) is shown as the solid line. Flutter

occurs, for the uncontrolled aircraft, to the right of this line. The dashed line

identifies a boundary to the left of which the FS control law should provide

stability with ± 6 dB gain margins and ± 45 ° phase margins. In addition, to the left

of this dashed boundary, the root mean square (rms) control deflection should be less

than 15 ° and the rms control rate should be less than 740°/sec in the presence of

random turbulence (Dryden spectrum with rms velocity of 12 ft/sec). The remaining

curve defines a boundary to the left of which the FS control law should provide

stability.

This paper presents results that show control law performance at the two points

noted. Reference 24 gives more details about the FS design discussed here and also

defines the performance over a range of flight conditions of a control law for which

the overall gain is scheduled as a function of dynamic pressure.

The nominal design point, identified with a square, is at M=0.86 and an altitude

of 15,000 ft. Note that the uncontrolled plant is unstable at this condition, which

is at a dynamic pressure 16.5 percent above the open loop flutter point.

The point identified with a circle defines the flight condition at which

constrained minimization techniques are employed to maximize control law robustness.

6

25,000

20,000

15,000
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I i
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/
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i i I
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CONTROLIERDESIGN

Two control law design approaches were employed. In the first of these, optimal
regulator theory was employed to determine a full-state feedback gain matrix. In
this phase of the design the state weighting matrix was set to zero and the control
weighting matrix was set to the identity. This choice of weighting matrices, plus
the constraint that the closed-loop system be stable, results in the minimumcontrol
effort solution which stabilizes the system (Ref. 5). The controller also reflects
unstable poles about the imaginary axis while leaving stable poles fixed. The next
step in the design was to construct a steady-state Kalman estimator based upon the 12
ft/sec rms gust input and a nominal set of measurementerror statistics. The robust-
ness of the resulting LQGdesign was then improved by using the robustness recovery
technique of adding fictitious noise at the input (Ref. 4). The ORACLS(Ref. I)
software was utilized to obtain the LQGdesigns. The 25th order controllers found
were reduced to implementable sizes. The order reduction was accomplished by trans-
forming the controller state space representation to block diagonal form and examin-
ing the poles, zeros, and residues of the full-order controller. Modal truncation
was performed in the transformed domain to obtain candidate reduced-order control-
lers. It was found (Ref. 24) that the controller could be reduced from 25tb order to
9th order with minimal degradation in controller performance.

The second design approach, which will be discussed after some specific LOG
results are presented, made use of a nongradient-based, nonlinear programming
algorithm (Refs. 25,26) to maximize robustness properties.

t MINIMUM CONTROL EFFORT LQ SOLUTION (ZERO STATE WEIGHTING)

I STEADY-STATE KALMAN ESTIMATOR

I DOYLE-STEIN ROBUSTNESS RECOVERY

e SELECTION OF REDUCED-ORDER CONTROLLER (9TH ORDER CHOSEN)

I ROBUSTNESS MAXIMIZATION

286



CLOSED-LOOP BLOCK DIAGRAM

This block diagram defines parameters that will be shown in subsequent figures

to demonstrate controller performance. The output, y, is the FS sensor signal. G is

the uncontrolled plant transfer function, y/u. The full model in frequency domain

form (no s-plane approximation) was employed to perform a "one time" computation of G

(im) at a discrete set of frequencies. H, here and in the results to follow, is a

reduced-order controller. The white-noise inputs included in the design process are

gust (WG), measurement (WM) and control (Wu). Controllers were designed for a

range of controller input noise intensities in order to determine an acceptable

trade-off between robustness recovery, control power requirements and controller band-

width. Results will be shown for two input noise intensity levels; zero and a "nomi-

nal" level selected as resulting in an acceptable design. The controller performance

results are presented in terms of Nyquist plots which are polar plots of HG with the

loop broken as indicated and with frequency as the independent variable.

W G

WU _/ WM

I NPUT "_"
PLANT

LOOP
BREAKING
POINT uFS HCONTROLLER

Y

OUTPUT
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NY0111ST PLOT OF HG TRANSFER FUNCTION

(ZERO INPUT NOISE DESIGN)

This Nyquist plot is for a controller designed by applying LQG techniques with

zero process noise intensity at the control input followed by controller order reduc-

tion (from 25th to 9th order). Since the uncontrolled plant is unstable with a com-

plex conjuKate pair of unstable poles, the Nyquist plot must, for closed--loop

stability, encircle the -1 point once in a counterclockwise direction as m varies

from 0 to _. The arrow indicates the direction of increasing frequency. Gain mar-

gins of ± 6 dB are achieved. However, the 45 ° phase margin constraint is violated.

Reference 24 contains additional data, such as the control power requirements and the

frequencies corresponding to the gain margin and phase margin points.

A I
-2

Imaginary

2-

\
\

!
|

-2-

288



NYOUIST PLOT OF HG TRANFER FIINCTION

(NOMINAL INPUT NOISE DESIGN)

Additional full-order LQG controller designs were obtained with process noise

intensity as a variable. Nyquist plots and controller Bode plots were examined for

each of the resulting full-order controllers. A "nominal input noise" design was

chosen which met the performance specifications, and order reduction techniques were

employed to obtain an implementable controller (9th order). The Nyquist plot shown

here, which is constructed by using the frequency domain evaluation model and the

"nominal noise intensity" reduced-order controller, meets the gain margin and phase

margin specifications. Both gain margins and phase margins are better than those

achieved by using the "zero input noise intensity" controller of the previous figure.

The rms control deflection and rate requirements of both controllers were within the

constraints.

Imaglnary

2-

289



AMPLITUDEOFCONTROLLERTRANSFERFUNCTIONVERSUSFREOUENCY

The phase margin and gain margin improvements that were obtained by increasing
process noise at the input were not achieved without cost. A Bode plot of the "zero"
and "nominal" input process noise controllers reveals that increasing the noise has
degraded the controller high-frequency rolloff characteristics.
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ROBUSTNESS MAXIMIZATION

An alternate design approach which allows explicit consideration of design

criteria will now be described. The approach, which requires that the form of the

control law be specified, is particularly applicable in modifying an existing control

law when small changes occur in the plant or in satisfying criteria not fully consid-

ered in a previous design. Nongradient-based constrained minimization techniques are

employed to maximize the minimum singular value of the return difference transfer

function subject to explicit constraints on stability, gain margins, phase margins

and control power requirements. A similar approach (Ref. 11), which employs a

gradient-based optimizer, has been applied to improve the robustness of a lateral

stability augmentation control law.

The method is applied to determine a controller for a flight condition having a

Mach number of 0.91 and an altitude of 15,000 feet. The reduced-order controller

found for the M = 0.86, 15,000-foot altitude flight condition was chosen to define

the control law form and the initial values for the design variables. Nine of the

controller coefficients were selected as design variables. Fixed-controller elements

were lumped into a filter T(s). Stability was determined by computing the number of

counterclockwise encirclements of the -1 point as m varied from 0 to =. The phase

margin requirements for this condition were relaxed to ± 40 ° .

In performing the constrained optimization, it was observed that control power

requirements never reached their available limits. Control power constraints were,

therefore, removed from the computations. This allowed the remaining constraints to

be evaluated based solely upon the computations required for generation of Nyquist

plots.

FIND VALUES FOR THE DESIGN VARIABLES, D I , WHERE

( u /Y) = D
FS I

2
(S+D)(S+D ) (S +D S+D )

2 3 6 7

2 2
(S +D S+D ) (S ÷D S+D )

4 5 8 9

T(S)

AND T(S) IS A FIXED FILTER

SUCH THAT

0

0

0

0

MINIMUM SINGULAR VALUE IS MAXIMIZED

CONTROL POWER CONSTRAINTS ARE SATISFIED

+6DB _ GAIN MARGIN _ -6DB

40" _ PHASE MARGIN _ -40"
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NYOUIST PLOTS OF HG TRANSFER FUNCTION

(M = 0.91, H = 15,000 FEET)

The initial controller stabilized the system but gain margin constraints

(± 6 dB) and phase margin constraints (± 40 ° ) were violated. The minimum singular

value is indicated by the heavy line. The constrained optimization solution has a 26

percent larger minimum singular value; gain margin and phase margin constraints are

satisfied to within a 2.5 percent tolerance. Control power requirements (rms

requirements) are also reduced with the optimized controller.
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SUMMARY

Coupling the ISAC program (for definition of plant design and evaluation models)

with the ORACLS LOG methodology provided an effective tool for design of full-order

controllers. Addition of process noise at the input allowed stability margin cri-

teria to be met. The rms control deflection and rate requirements were also within

their constraints. Controller order reduction from 25th to 9th was successfully

accomplished with minimal sacrifice in controller performance.

Robustness maximization using nongradient-based constrained optimization tech-

niques substantially increased the minimum singular value of the return difference

transfer function for an off-nominal flight condition. Stability was determined at

each iteration by computing the number of counterclockwise encirclements of the -i

point as m varied from 0 to =.

New FS control laws will be designed for both symmetric and antisymmetric

degrees of freedom when the mathematical model of the ARW-2 is updated.

|

|

9TH ORDER CONTROLLER DEVELOPED USING LQG TECHNIQUES AND ORDER

REDUCTION ACHIEVED DESIGN OB3ECTIVES

ROBUSTNESS MAXIMIZATION USING NONGRADIENT-BASED CONSTRAINED

OPTIMIZATION TECHNIQUES INCREASED MINIMUM SINGULAR VALUE

SUBSTANTIALLY

DESIGN WILL BE REPEATED FOR BOTH SYMMETRIC AND ANTISYMMETRIC

FLUTTER WHEN UPDATED STRUCTURAL MODEL IS COMPLETED
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AERODYNAMIC ANALYSIS OF SLENDER WINGS

Slender wings on supersonic cruise configurations are expected to be thin and

highly swept. As a result, edge-separated vortex flow is inevitable and must be

accounted for in aerodynamic analysis and design. The present method is based on

the method of suction analogy (ref. i) to calculate the total aerodynamic

characteristics. The method requires the solution of the attached flow problem,

the latter being solved by a low-order panel method in subsonic and supersonic

flow (ref. 2). In essence, the lifting pressure is calculated by using a pressure-

doublet distribution satisfying the Prandtl-Glauert equation. From the pressure

distribution, the leading-edge suction is calculated. The latter is assumed

to be the vortex lift through the method of suction analogy. For a cambered wing,

the location of vortex-lift action point is important in predicting the aerodynamic

characteristics (ref. 2). It is also seen that the effect of camber shape

appears nonlinearly in all aerodynamic expressions. (See fig. i.)

aZ_ aZ_ aZ_
Prand]t-Glauert Equation: (1 -/4 z) _-_ + _-_yZ+ _ = 0

,fazc a}Boundary Condition: [A] {ACp} = L-_ COS C{- sin

(azc/
Lifting Pressure: AC_)=ACp cos a-2Tx sin a sin _-_y/

Leading-Edge Suction: %=ct

Sectional Characteristics:

j,pZc:+Gfl + l_[dr

azc+ ÷(_L_ dY azc )2]_
+ _ tan A

+ (dz,f
_i tanzA +_dy /

C_,p= "c x_
sin a+cosa)/_/1 (azc/z (azc_Z+_ax / +_E_)

azc a)/_/l+ +_-_y/1 l-Xte AC; (- -_ cos a + sin (a---Zc/Z (azc/Z
Cd,p = _- Xjt,e \ ax /

_/1 (azc/z :azc_Z(azc a)/ +,_, +_)c_,,v_= Csk ax sin cI + cos

dx

dx

Cd,vJt.e= Cs (-azc I:I)/_/] +, _-_-_ (_--_)-_ cos a + sin (azc_Z + z

Action Point of Vortex Lift: r = csc
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DESIGNPROBLEMS

To design the camber shape, the camber slope is represented by a cosine
Fourier series at each of several spanwise stations. The Fourier coefficients
are the design variables. To design a leading-edge flap in the vortex flow
(i.e. a vortex flap), the coordinates of corner points and the deflection angle
are the design variables. The process of wing design is to determine the camber
shape and twist distribution such that an objective function, typically the drag,
is minimized, subject to various constraints (fig. 2). The latter may include the
lift, the magnitude of maximumgeometric twist and the magnitude of vortex lift.
Other types of constraint are possible (ref. 3). The design of a vortex flap can
be described in a similar manner.

Camber Representation for Each Spanwise Station:

N

('_/kazc_ = j _=1 Oj COS (j - 1) Ok

(2k - 1) _"

ek = 2N

Design Variables: aj

Optimization Problem:

CL
Minimize F=

C_+ CD_

Subject to Constraints (Gj) of

(1) A Given Lift Coefflclent

(2) A Given Ratio of Vortex Lift to Total Lift

(3) Magnitude of Local Angles of Attack (Twist)

Figure 2
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WING DESIGN OPTIMIZATION BY "CONMIN"

To achieve the wing design optimization, the aerodynamic analysis method

is coupled with CONMIN - Constrained Function Minimization Program (refs. 4 and 5).

In a typical wing design problem, as many as 70 design variables may be employed.

The solution is determined iteratively.

The process starts with the calculation of values of objective and constraint

functions for the input design variables. Gradients of these functions are then

calculated and CONMIN will determine the best way of changing the design variables

to achieve the minimum drag design without violating constraints. (See fig. 3.)

I
I AerodynemtcAno]Ys|s

I Aerodynamic Analysis J

l
Caiculate lnttlal Objective and Constraint

Functions, Fo, Goj, J = 1 ....

l
_Perturb Deslgn Vertabies I

1
IColculote _, _7Fi, Gtj, VGij, j=l .... I

I
Calculate Seorch IDtrections

Yes

I Steepest Descent I method of Feastble IConjugate Grodient Direction

I I

Figure 3
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RESULTS OF VORTEX FLOW AND ATTACHED-FLOW DESIGN FROM AN INITIAL FLAT SURFACE

CLdes = 0.3, M = 0, TWIST $ 8 DEG

Design results very much depend on the imposed constraints. For simplicity,

only the constraint of having the lift coefficient, twist and vortex lift be greater

than 5% of total lift in the case of the vortex flow design will be imposed in the

present study. Results show that starting from an initial flat surface, the

final camber shape designed with the vortex flow concept (called the VF design)

is similar to that designed with the attached-flow concept (called the AF

design) except near the root and the tip. In the mid-semispan region, the surface

has large aft camber. Note that if the effect of _Ze/_y is ignored and the
twist constraint is not imposed, as is usually done in a conventional method, the

resulting shapes would involve larger forward camber and unrealistically large

twist (ref. 3 and 6). (See fig. 4.)
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Figure 4
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VORTEXFLOWDESIGNFROMDIFFERENTSTARTINGSHAPES
CL = 0.3, M = 0, TWIST_ 8 DEG

des

In the present nonlinear optimization problem with a large number of design
variables, the final solution depends on the initial input. In other words,
there are manyrelative minima in the design space. To show this, the vortex
flow design with the sameconstraints is calculated from three input shapes - a
flat surface, the camber shape of the attached-flow design in figure 4 reduced
by 10%,and the original camber shape of the attached-flow design. As shown
in figure 5, the results are all different. To determine a solution close to
a global minimum, Vanderplaats et al. (ref. 7) suggested beginning the optimization
from several different initial designs.

©-0.I0

_/b = ._

I I I0

0,i0

0.05 mlmmmmmmmm mm_

2y/b = O. 17257

I I m0 I

0,I0 [
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= O. 42884

0 0.2 0.4 0.6 0.8 1.0 0

X/C
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I I I I _1

-..---From Flat Plate (VF)

----- From Attached-Flow Design

.... From 90% Camber of

Attached-Flow Design

_Ylb = 0.97975

0.2 0.4 0.6 0.8 1.0

X/C

Figure 5
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DESIGNFROMA FLATSURFACEFORA DESIGNLIFT
COEFFICIENTOF0.6, M = 0, and TWIST$ 8 DEG

By increasing the design lift coefficient to 0.6, the attached-flow concept
did not produce a feasible design under the specified twist constraint. However,
a converged feasible design was easily obtained under the vortex flow concept.
It is seen from figure 6 that at high lift forward camber is needed to provide
more forward-facing surface to produce a thrust force.

75°

0.I0 .... "_ I \ 0.16

:/ _1 _ 0,12
0.05

<Y/b = 0"02025 _ 0.08
0 I i m J
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Figure 6
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PARTIAL VORTEX FLOW DESIGN

CL = 0.3, TWIST $ 8 DEG
des

In applications, there are always some other practical constraints, such as

some inboard portion being specified. The present method allows a certain

portion of the planform to be unchanged during the optimization process. For

example, in figure 7 three types of vortex flow design are presented, one

started from a flat surface, the other from the attached-flow design, and the

last one (called the VPA design) also from the attached-flow design, but with the

inboard one-third fixed. The results show that in the VPA design more forward-

facing surface exists in the outboard portion to take advantage of the vortex-

induced thrust.

5o

Ol I I I I "_I I I I I I _I
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PERFORMANCECOMPARISONOFDIFFERENTDESIGNCONCEPTS

CLdes= 0.3, M = 0, TWIST$ 8 DEG

At the design lift coefficient of 0.3, all three design configurations
have about the sameCD., reaching the planar minimumvalue of C_/nA. At off-
design conditions, thelattached-flow design (AF) would be superior if the flow
could remain attached. Whenthe flow is separated, the AF design (not shown)
will have approximately the sameperformance as the VF design. On the other
hand, the partial vortex flow design (VPA) seemsto be superior throughout the
off-design CL. (See fig. 8.)
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VORTEXFLAPDESIGN
CL = 0.3, M = 0

des

A vortex flap is a leading-edge flap which takes advantage of vortex-
induced thrust to reduce the drag. The present method is capable of determining
the size and deflection angle of the flap in such a way that the drag is minimized,
subject to the lift constraint. As presented in figure 9, by assuming an initial

of 5 deg. and _ = 0 deg., an optimum size of the flap is determined with a
final _ of 7.7 de_. and _ = -15.1 deg.n

Input: a=5"

_n = 0"

Ftna] : a = 7,7"

6n = -15.1"

Shape

na] Shape

Figure 9
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SYMBOLSANDABBREVIATIONS

A
[A]
AF
a.
]

b

c

CD.
I

CD
o

CL

CLde s

AC
P

c
s

c t

F

G

M

VF

VPA

x,y,z

Z
C

z£

n

Yx

A

aspect ratio

aerodynamic influence coefficient matrix

attached-flow design with a flat surface as the starting solution

Fourier coefficients for the camber slope

wing span
local chord

induced drag coefficient

minimum drag coefficient

lift coefficient

design lift coefficient

lifting pressure coefficient

sectional suction coefficient

sectional thrust coefficient

objective function

constraint function

Mach number

vortex flow design with a flat surface as the starting solution

vortex flow design with the attached-flow design as the starting

solution and inboard one-third portion remaining unchanged

a rectangular coordinate system

camber ordinate

camber ordinate along the leading edge

angle of attack

leading-edge flap angle measured normal to hinge line, negative downward

streamwise vortex density

leading-edge sweep angle

perturbation velocity potential
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INTRODUCTION

The recent dedication of the National Transonic Facility (NTF) marked the
beginning of a new era of research in transonic wind tunnels. Soon tests will
be performed on models of complete aircraft configurations at full-scale
Reynolds and Mach numbers. This capability will also provide an excellent
opportunity to evaluate the transonic aerodynamic computer codes that utilize
boundary layer theory to model viscous effects. While the cryogenic operating
temperatures of the NTF are responsible for some of the increased Reynolds
number range, it will be necessary to utilize high tunnel pressures to fully
exploit the high Reynolds number capability of this facility (see ref. 1).
Because of the range of dynamic pressures to which a model may be subjected
(up to about 7000 psf), it is highly desirable to account for model aero-
elastic deformation when making calculations using the transonic computer
codes.

This report describes a computational method which has been developed that
includes the effects of static aeroelastic wing deflections in steady tran-
sonic aerodynamic calculations. This method, known as the Transonic Aero-
elastic Program System (TAPS), interacts a 3D transonic computer code with
boundary layer and a linear finite element structural analysis code to calcu-
late wing pressures and deflections. The nonlinear nature of the transonic
flow makes it necessary to couple the aerodynamic and structures codes in an
iterative manner.

TAPS has been arranged in a modular fashion so that different aerodynamic or
structures programs may be used with a minimum of coding changes required. A
complete description of the development of TAPS is given in reference 2; this
paper will present results obtained using two different aerodynamic codes in
TAPS and correlate those results with experimental data.
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DESCRIPTIONOFTRANSONICAEROELASTICPROGRAMSYSTEM(TAPS)

A flow chart illustrating the method of analysis used in TAPSis shownin
figure I. An aerodynamic model and a structural wing model are first
developed for the test configuration. The structural wing model is then run
through the structures code to obtain an influence coefficient matrix, which
is saved for later use in calculating wing deflections. An initial, uncon-
verged run is madewith the aerodynamics code to obtain wing pressures; these
pressures are then interpolated from the aerodynamic grid to the structural
grid and converted to the input format of the structures code by the first
translator module. The structures code then solves for the wing deflections
using the influence coefficient matrix and nodal forces determined from the
calculated wing pressures. These deflections are interpolated back to the
aerodynamics grid and arranged as an input file to update the configuration
shape in the next aerodynamic calculation. This aerodynamic/structural cycle
is automated and may be continued until both the wing pressures and deflec-
tions have converged to the satisfaction of the user. The convergence cri-
teria used in this study were negligible shock movementor change in pressure
levels between successive iteration cycles based on comparison of pressure
distribution plots and wing tip deflection changes of less than 2 percent.

TAPShas been arranged in a modular fashion so that it would be relatively
easy to use different aerodynamic or structural codes. For this study, two
aerodynamic codes were used: WIBCO,an extended small-disturbance wing/body
code with a 2D strip boundary layer (ref. 3); and TAWFIVE,a full-potential
wing/body code coupled with a 3D integral boundary layer (ref. 4). The SPAR
structural analysis program (ref. 5) wasused to makethe wing deflection
calculations for all cases.

Including the aeroelastic deflections did not appear to have any adverse
effect on the convergence of the aerodynamic calculations; no underrelaxation
of the deflections was required. The boundary layer effects seemedto be a
more important factor affecting the rate of convergence. The calculation of
wing deflections was also relatively inexpensive, being less than I0 percent
of the cost of an aerodynamic/structural cycle (which includes 30-50 aero-
dynamic iterations) and less than the cost of the boundary layer calculations.

IORIGINAL AERODYNAMIC MODEL I I STRUCTURAL WING MODEL I

3-D TRANSONIC CODE _ _FINITE ELEMENT STRUCTURES CODE
-- __WI.T_HBOUNDARY LAYER | m_U_ C-diF_ITN_ M-ATmX
WING PRESSURE COEFFICIENTS

#

INII_ ELEMENT STRUCTURES COOE_,WING DEFLECTIONS

I STRUCTURES-TO-AERODYNAMICSTRANSLATOR I

CONVERDEO
AM,CANDSTROCTURA  >

Figure 1
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ADVANCED TECHNOLOGY TRANSPORT (ATT) MODEL DESCRIPTION

The first configuration used to evaluate TAPS was the Advanced Technology
Transport (ATT) model (refs. 6 and 7). A top view of the right wing panel is
shown in figure 2. The wing had a span of 45.0 in., a quarter-chord sweep of
33 ° , an aspect ratio of 7.498, and a taper ratio of 0.418. The airfoil
sections were NASA supercritical designs with maximum thickness-to-chord
ratios of 0.114 near the fuselage and 0.082 near the tip. A highly swept
leading-edge glove extended from the fuselage to about n = 0.35 and there were
four trailing-edge control surfaces (three inboard, one outboard). The wing
was constructed of solid aluminum with channels for the pressure tubing
machined into the upper and lower surfaces. Four main channels were cut into
the wing approximately along lines of constant chord with smaller channels
branching out to the individual orifice locations.

LOWER SURFACE

CHANNELS_

UPPER SURFACE
CHANNELS

NBOARD

FLAPS L_OUTBOARD F

22.5 in. _1

Figure 2
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SPAR MODEL OF ATT WING

The ATT wing was modeled in SPAR using plate elements as shown in figure 3.
This element type has been shown to give accurate predictions of deflections

for metal wings with small internal or surface channels (see refs. 2, 8, and

9). In addition, using plate elements rather than beam elements permits the

calculation of wing camber changes due to aerodynamic loading. The close

chordwise spacing of the nodes in the mid-chord region was required in order

to define the instrumentation channels. The number of nodes in the spanwise
direction was determined from a convergence study in which the number of nodes

was increased until there was no change in the calculated deflections. The

control surfaces were modeled using unconnected coincident points at the sides

of the segments to allow them to deform independently of the other segments

and the main wing. The flap attachment tab was represented by short, thin

elements. A cantilever constraint was applied at the outboard edge of the

first row of elements, corresponding to the side of the fuselage.

Figure 3
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CROSSSECTIONOFATT WINGAS MODELEDIN SPAR

A representative cross section of the finite-element model, along with the
actual cross section of the wing, is illustrated in figure 4. As can be seen,
the four main channels removea substantial amount of metal in an area that is
important to the bending stiffness of the wing. The plate thicknesses were
determined by averaging the thicknesses at the four nodes defining the plate.
The thickness at a node at the leading edge was increased from zero to one-
third the thickness at the next streamwise node to give a more accurate repre-
sentation of that region of the wing. The vertical location of a node was
midwaybetween the upper and lower surface of the wing (or the bottom of a
channel) at that location. The flap attachment tab was not offset vertically
but was set to the actual tab thickness. No attempt was madeto model the
small channels leading from the main channels to the orifice locations.

lEAD NG EDGE

Figure 4
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ATT MID-SEMISPAN WING PRESSURE DISTRIBUTIONS CALCULATED USING WIBCO

In the wind tunnel tests of the ATT model (ref. 6), several runs were made at
a Mach number of 0.90 but at different total pressures in an attempt to
examine Reynolds number effects. The wing pressure distributions from these
runs indicated that the anticipated rearward shock movement with increasing
Reynolds number did not occur; instead, the shock moved forward and weakened.
This is what would happen if the increase in dynamic pressure (resulting from
the increase in total pressure to obtain the higher Reynolds number) caused a
significant increase in the aeroelastic washout of the wing. Two of the test
conditions were run in TAPS to see if these changes could be accurately
predicted.

The tunnel Mach number of 0.90, Reynolds numbers (based on mean aerodynamic
chord) of 1.58 and 4.87 million, and dynamic pressures of 536 and 1613 psf
were used as input for TAPS. When comparing pressure distributions calculated
with transonic potential flow codes it is often necessary to analyze the
configuration at an angle of attack that differs from the experimental angle
to improve the correlation between theory and experiment. Since the primary
interest in this example was predicting pressure changes due to aeroelastic
and Reynolds number effects, the angle of attack was increased by 1.14 degrees
in the calculations to give better agreement with the experimental upper
surface pressures at the lower dynamic pressure condition. This increment was
then maintained in the calculations for the higher dynamic pressure case. The
change in angle of attack is larger than normally required, but this would be
expected since previous correlations did not account for the reduction in wing
loading caused by model deformations.

The axisymmetric fuselage option in WIBCO was used for these calculations.
The computational wing plane was originally located to match the low wing of
the wind tunnel model, but this resulted in instabilities in the calulations,
so the wing plane was shifted toward mid-fuselage. Boundary layer transition
locations were set to correspond to the transition strip locations given in
reference 7.

The calculated pressure distributions at n = 0.54 for the two cases are shown
in figure 5 along with the corresponding experimental results. The changes in
pressure levels between the two cases caused by changing Reynolds number and
dynamic pressure were predicted reasonably accurately on the upper surface
ahead of the shock, but the shock locations and the pressure changes aft of
the shock did not correlate well at all. This is probably related to the non-
conservative finite-difference scheme used in WIBCO, which tends to calculate
shock locations that are too far forward. The lower surface pressure incre-
ments were predicted fairly well.
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ATT OUTBOARD WING PRESSURE DISTRIBUTIONS CALCULATED USING WIBCO

Figure 6 shows the theoretical and experimental pressure distributions for the
ATT at about n : 0.72. The pressure changes ahead of the shock are again
predicted fairly well, but the shock near mid-chord is calculated to be much
too far forward for the lower dynamic pressure case, resulting in poor corre-
lation between theoretical and measured pressure increments over the last half
of the airfoil. The good prediction of the upper surface pressure distri-
bution for the higher pressure case with its weaker, more forward shock can
be attributed to the aeroelastic twist reducing the angle of attack and thus
presenting an easier case for the aerodynamic code to solve. The calculated
aeroelastic twist increments at this wing station were about -0.9 ° and -2.5 °
for the low and high dynamic pressure cases, respectively.

Even with the poor correlation between theory and experiment in some areas, it
is obvious that the large changes in the experimental pressure distribution
were at least qualitatively predicted using TAPS, emphasizing the importance
of including aeroelastic effects in transonic calculations. The correlation
should improve as more accurate aerodynamic codes are incorporated into TAPS.
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CALCULATEDEFFECTSOF INDEPENDENTVARIATIONOFREYNOLDSNUMBER
ANDDYNAMICPRESSURE

The TAPSanalysis method can be used to predict what changes would have been
seen in the ATTpressure distributions if the Reynolds numbercould have been
increased without changing the dynamic pressure. This is shownin figure 7
along with the effects of changing dynamic pressure while maintaining a
constant Reynolds number. As can be seen, there is not muchof an effect on
the pressure distribution caused by increasing just Reynolds number. The
thinner boundary layer at the higher Reynolds numberdoes not reduce the
effective trailing edge camber as much, causing the second shock to be
slightly farther aft than in the lower Reynolds numbercase. Changing the
dynamic pressure had a muchgreater effect at these conditions for this
configuation. The shock near mid-chord movedforward and weakened
considerably while the second shock movedslightly aft in the higher dynamic
pressure case. The lower surface pressure coefficients becamemore negative,
as expected, from the aeroelastic washout.
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ATTMID-SEMISPANPRESSUREDISTRIBUTIONSCALCULATEDUSINGTAWFIVE

Recently, the fully conservative full-potential TAWFIVEcode was substituted
for WIBCOas the aerodynamic module in TAPS. The two test conditions for the
ATTconfiguration were run in this newversion of TAPSto see if the predicted
pressure distributions could be improved, especially with regard to shock
location. The TAWFIVEcode was somewhatmore difficult to run than WIBCO
in that both the inviscid and boundary layer componentsshowedsomeinstabi-
lities initially. The aerodynamic model had to be changed to a mid-wing
configuration and the sweepof the leading-edge glove had to be reduced near
the side of the fuselage in order to eliminate these instabilities. The input
flow conditions were the sameas those used for the WIBCOruns, including the
angle-of-attack increment of 1.14° added to the experimental angles.

Figure 8 shows the resulting pressure distributions for the ATTcases at
about n : 0.55. Overall, the correlation is very good. The shock location is
predicted very well for the low dynamic pressure case, but is slightly too far
aft in the high dynamic pressure calculations. The upper surface pressure
coefficient level for the latter case is also slightly too negative, indi-
cating that the angle of attack for this wing station is too high. The
predicted lower surface pressure coefficients are too positive, but are in
closer agreement with the data than were the WIBCOpredictions (see figure
5). In general, the pressure increments and shock movementcalculated using
TAPSwith TAWFIVEcorrelated reasonably well with the experimental results at
this wing station.

-I.2 -

-.8 -

-.4 -

C
p O-

.4-

.8-

a q q,psf R x I0-6

THEORY 4.O0 O.56 536 1.58
---- THEORY 3.77 0.56 1613 4.87

0 EXPERIMENT2.86 0.55 536 1.58
[] EXPERIMENT2.63 0.55 1613 4.87

tCO---..<-,_,., (FLAGGEDSYMBOLS DENOTELOWER SURFACE)

M= 0.90

1.2 - I I 1 I I I
0 .2 .4 .6 .8 1.0

x/c

319



ATT OUTBOARD PRESSURE DISTRIBUTIONS CALCULATED USING TAWFIVE

Figure 9 shows the calculated and experimental pressure distributions for the
ATT configuration at about n = 0.72. As at the mid-semispan station, the
correlation between theoretical and experimental shock location and pressure
levels is good for the low dynamic pressure case. For the high dynamic
pressure condition, the upper surface pressure coefficients ahead of the shock
are too negative, again indicating that the local angle of attack is too high.
This would also cause the calculated shock location to be too far aft, since
the supercritical airfoil section used is very sensitive to angle of attack.
It appears that the theoretical model of the wing may be too stiff, possibly
because it does not account for the effects of the small channels to the
pressure orifice locations. It is interesting to note, however, that the
twist increments calculated using TAWFIVE were within two percent of the
values predicted using WIBCO, and the pressures calculated by WIBCO showed
good agreement with the experimental pressures for the high dynamic pressure
case. It is also possible that the pressures near the wing tip, which have a
large effect on the wing deflections, may not be calculated correctly, but no
data were available for comparison outboard of n = 0.71. A third possible
source of the discrepancy is that the theory-to-experiment angle increment of
1.14 ° determined using WIBCO is larger than that required for TAWFIVE. The
pressure increments due to changing dynamic pressure and Reynolds number were
predicted qualitatively on the lower surface, with the predicted increment
being slightly too large.
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TF-8A GEOMETRY AND SPAR MODEL DESCRIPTION

The second configuration used as a test case in TAPS was the TF-8A model
described in reference 10. A top view of the SPAR model of the wing is shown
in figure I0. The wing had a span of 32.34 in., a quarter-chord sweep of
42.24 ° , an aspect ratio of 6.8, and a taper ratio of 0.36. The NASA super-
critical airfoil sections varied in maximum thickness-to-chord ratio from
0.114 near the fuselage to 0.071 near the tip. This configuration also had a
highly swept leading-edge glove that extended to approximately n : 0.35.

The TF-8A wing was fabricated from solid aluminum with surface channels for
the pressure instrumentation. No attempt was made to include these channels
in the SPAR model since their geometry was not defined in the available refer-
ences. A 12 x 50 node grid was generated, extending from the wing symmetry
plane to the tip. Plate element thicknesses and the vertical location of the
nodes were determined as described for the ATT model. A cantilever constraint
condition was enforced at the wing symmetry plane.

Figure 10
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TF-8A MID-SEMISPAN WING PRESSURE DISTRIBUTIONS CALCULATED USING WIBCO

Two test conditions for the TF-8A were run in TAPS using the tunnel Mach
number of 0.95, dynamic pressures of 425 and 850 psf, and Reynolds numbers
(based on the mean aerodynamic chord) of about 1.0 and 2.0 million. The

experimental angle of attack was increased from 4.0 ° to 4.6 ° to try to improve
the theory-experiment correlation at the lower dynamic pressure condition. A
mid-wing location on an axisymmetric fuselage was used in WIBCO. The theore-
tical boundary layer transition locations were matched to the transition strip
locations on the wind tunnel model.

The resulting pressure distributions are presented along with the experimental
results in figures II and 12. As can be seen in figure 11, the correlation
between theory (with the angle-of-attack adjustment) and experiment is good at
about the mid-semispan station. The shock which occurs experimentally around
x/c = 0.3 on the upper surface is not predicted by the theory, which instead
calculates an isentropic compression of about the same pressure increase in
that region. Also, the predicted lower surface pressure coefficients are
somewhat more positive than the experimental values. Except for a small
region near the leading edge and the area just aft of the shock, the incre-
ments in the experimental pressures caused by changing Reynolds number and
dynamic pressure, though small, were predicted reasonably well.
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TF-8A OUTBOARD WING PRESSURE DISTRIBUTIONS CALCULATED USING WIBCO

The correlation between theoretical and experimental pressure distributions
for the TF-8A deteriorates at n = 0.80 (figure 12). The predicted shock
location is much too far forward and is followed by a re-expansion of the flow
and a second shock that is not present in the data. Pressure coefficients on
the upper surface near the leading edge were calculated to be more negative
than the experimental values and lower surface pressure levels did not
correlate well anywhere. The poor correlation in shock location and leading-
edge pressures can probably be attributed to the non-conservative differencing
and the small-disturbance approximation, respectively, used in WIBCO. It is
likely that the correlation for this case could also be improved by using the
TAWFIVE version of TAPS. It should be noted that the changes in pressure
levels at this wing station resulting from the change in Reynolds number and
dynamic pressure were predicted fairly accurately except near the shock. This
would indicate that the integrated effect of the loads on the wing resulted
in approximately the correct change in wing shape.
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STATICAEROELASTICTWISTDISTRIBUTIONSFORTHETF-8A MODEL

The spanwise distributions of aeroelastic twist corresponding to the pressure
distributions shownin figures II and 12 are given in figure 13. The experi-
mental values were obtained during the wind tunnel test of the model using
stereophotogrammetry as described in reference I0. The calculated values
agree very well with the experimental data for both the low and high dynamic
pressure cases; the twist increment at the tip for the high dynamic pressure
case is overpredicted by about 0.2° which according to reference 9 is within
the accuracy of the data. While the agreement is good, it should be noted
that this is partly due to the offsetting effect of someerrors. The pressure
distributions shownin figures 11 and 12 indicate that the calculated lift is
greater and the pitching momentmore negative than the experimental values,
which would result in the predicted twist being too large. However, since the
wing channels were not modeled, the theoretical model is stiffer than the
actual wing, thereby compensating to someextent for the higher calculated
loads.
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CONCLUSIONS

A simple method of including aeroelastic effects in 3D transonic calculations
has been developed. Known as the Transonic Aeroelastic Program System, or
TAPS, the method couples a transonic computer code with a finite element
structural analysis program in an iterative fashion. The calculations for
this study were made using the SPAR structural analysis code with either the
small-disturbance WIBCO code or the full-potential TAWFIVE code as the
aerodynamic module. Both aerodynamic codes used interactive boundary layer
calculations to model viscous effects. Calculated results from TAPS were

compared with data for two test cases. The following conclusions were drawn
from this study (see figure 14):

le TAPS gave fairly good predictions of pressure increments due to
changes in Reynolds number and dynamic pressure, except near
shocks.

e The TAWFIVE version of TAPS generally gave more accurate

predictions of the pressure distributions (especially shock

locations) than did the WIBCO version for the configuration and

conditions used in this study. WIBCO did give better

correlation at the outboard station for the high dynamic

pressure case.

3. Wing deflections calculated using TAPS correlated well with

deflections optically measured in a wind tunnel.

• TAPS PROVIDES A SIMPLE METHOD OF INCLUDING

AEROELASTIC EFFECTS IN TRANSONIC CALCULATIONS.

• TAPS GAVE FAIRLY GOOD PREDICTIONS OF PRESSURE

INCREMENTS DUE TO CHANGES IN REYNOLDS NUMBER

AND DYNAMIC PRESSURE, EXCEPT NEAR SHOCKS.

• TAPS/TAWFIVE GENERALLY GAVE MORE ACCURATE PREDICTIONS

OF PRESSURE DISTRIBUTIONS (ESPECIALLY SHOCK LOCATIONS)

THAN TAPS/WI BCO.

• WING DEFLECTIONS CALCULATED USING TAPS CORRELATED

WELL WITH DEFLECTIONS OPTICALLY MEASURED IN A WIND

TUNNEL.

Figure 14
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"_ BACKGROUND

Manypractical structural design problems that can truly benefit from a formal
optimization procedure typically involve very large numberof degrees of freedom,
design variables, and behavioral constraints which are computationally burdensome.
While this large dimensionality of the analysis-design models presents no significant
computational difficulties from the point of view of achieving an optimum design, it
places real limitations on the economic advantages of using optimization methods as
routine design tools.

As a meansof accommodatingthe minimumweight design of large problems within
reasonable costs, it has been an accepted practice in most structural optimization
computer programs to employ a number of approximations that lead to reducing the
problem dimensions during various phases in the optimization process. Thus, in addi-
tion to reductions in the number of degrees of freedom implied in selecting a particu-
lar finite element analysis model, dimensionality during the design phase may be
reduced further by imposing certain preselected relationships between the design
variables (linking and/or basis reduction), and by temporary deletion of constraints
that are not potentially critical.

In this paper, we examine the results of numerical experiments designed to
illustrate how the minimumweight design, accuracy, and cost can be influenced by
(a) refinement of the finite element analysis model and associated load path problems
and (b) refinement of the design variable linking model. The numerical experiments
range from simple structures where the modelling decisions are relatively obvious and
less costly to the more complex structures where such decisions are less obvious and
more costly. All numerical experiments used in this paper employ the dual formulation
in ACCESS-3computer program (1,2).

Guidelines are suggested for creating analysis and design models that predict a
minimumweight structure with greater accuracy and less cost. These guidelines can be
useful in an interactive optimization environment and in the design of heuristic
rules for the development of knowledge-based expert optimization systems.
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EXPERIMENT i

UNIFORMLY LOADED CANTILEVER BEAM

In the first numerical experiment, we consider the optimum weight dependence on

the number of design variables (D.V.) and degrees of freedom (D.O.F.) for the

cantilever beam of figure i. The properties are: elastic modulus = i0 x 106 ib/in 2,

Poissons's ratio = 0.3, and weight density 0. i Ib/in 3. In the successively refined

design and analysis models shown, the design variables are taken as the bar areas

and shear panel thicknesses.

The design constraints are:

Displacement upper/lower bound = ± 0.3 in. at the free end

Upper and lower bound2on the conbined Von Mises stresses = ± 25000 ib/in 2

Minimum gage = 0. i in for bar area, and 0.01 in. for panel thickness

The bottom model shows the 24-D.V. and 48-D.O.F. combination

20 Ib/in.

BAR SHEAR PANEL

_---- +

BENDING
SHEAR

I I

Figure 1
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DEFORMATION-CRITICAL CANTILEVER BEAM

In figure 2 below, the optimum weight (Wopt.) is displayed in figure 2a against

changes in the number of D.V., with the number of D.O.F. held constant, and against

changes in the number of D.O.F. in figure 2b while holding the D.V. constant.

These results suggest the following observations.

. A segment of the bar elements of length _ from the free end was designed

by minimum gage. The distance _ increased with refined D.V. and D.O.F.

models. Stresses were well below their limits throughout.

. A greater number of D°O.F. results in higher optimum weight (more flexible

structure), while a greater number of D.V. results in lower optimum weight.

. In an evolving optimization process, it is expedient to start with the

practically most crude design and analysis models, then refine both models

simultaneously along the dotted line paths (figure 2b), limited by

manufacturability constraints and computational cost. This is much less

expensive than the analysis-driven alternative of starting with a highly

refined analysis model and a crude D.V. model that may be successively

refined.
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STRESS-CRITICAL CANTILEVER BEAM

Stress criticality was enforced by removing the bound on the free end deforma-

tion. From figure 3 below, only the shaded shear panel region of length _ was

stress-critical, with the bar in that region stressed up to %88% of its capacity.

The portion _ from free end was designed by minimum gage. The sizes of the regions

designated by _ and _ were D.V. and D.O.F. dependent. Of course, had the panel been

able to carry only shear, the bar would have been stressed to its fullest.

The same observations (2) and (3) made for the deformation-critical design apply

as well in the stress-critical case to a greater extent. Comparison of figures 2

and 3 reveals greater sensitivity of the stress-critical design (over the deformation-

critical design) to variations in D.V. and D.O.F. model refinements. This is because

stress constraints must be satisfied locally by the linked group, while tip deforma-

tion is satisfied globally by contributions of all D.V. groups.
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OPTIMIZATION COST FOR STRESS-CRITICAL CANTILEVER

The two figures below display the relative cost of optimizing the cantilever

beam as a function of the number of D.V. while holding the number of D.O.F. constant

(figure 4a) and as a function of D.O.F. while holding the number of D.V. constant

(figure 4b). The cost values are normalized to the smallest (2.2 CPU seconds used

for 6 D.O.F. 6 D.V.), and include both analysis and optimization costs. All curves

are for i0 analysis/optimization stages that start with the same initial uniform

design. Thus figure 4 does not reflect any convergence related costs. The following

comments can be made.

lo The relative costs below confirm observation (3) made in connection with

figure 2.

. The total optimization cost includes the analysis cost, which depends upon

the number of D.O.F. in the model, and the optimization cost, which depends

on the number of potentially active constraints and D.V. Gradient computa-

tions, in the present case by the pseudo load method, constitute a large

percentage of the optimization costs. This explains the relative insensi-

tivity of cost for a fixed number of D.V. and variable D.O.F., figure 4b,

over the cost of a fixed number of D.O.F. and variable D.V., figure 4a.
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EXPERIMENT2

LOADINTRODUCTIONIN A FIXED-FIXEDBEAM

In complex geometries it is not always possible nor desirable to use spatially
uniform analysis and/or design models for optimization. Further, the relative degree
of refinement necessary in various regions of the samemodel is frequently not obvious.
Unintended model refinement inaccuracies lead to unbalanced internal loads and
incorrect optimum design. This is illustrated here by the symmetric fixed-flxed beam
carrying a single load at the center. Thus, the obviously correct symmetric analysis
and design models are replaced in the present experiment by the incorrect models of
figure 5.

The initially symmetric analysis and design model is successively refined in the
number of D.O.F. in the right hand region only, while keeping the design model
constant (always with 8-D.V.). The beamproperties are the sameas in the previous
cases.
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FIXED-FIXED BEAM

The results of figure 6 show how the optimum weight prediction is influenced by

incorrect load distribution borne by unbalanced analysis model refinement. Figure 6
suggests the following conclusions.

I. An unbalanced model causes the load to shift toward the stiffer (less

refined) region. Consequently larger model imbalance results in a larger

increase in weight of the less refined region over the more refined one.

In fact, the displacement-critical design exhibited a weight decrease of

the refined region with greater D.O.F. refinements, while the weight of

the less refined region continued to increase. Reactions computed for
the 34-D.O.F. model were:

Displacement-critical; left = 2530. lb., right = 1470. lb.

Stress-critical; left = 2470. lb., right = 1550. lb.

. AS in the previous example, the stress-critical design is more sensitive to

D.O.F. refinement than the displacement-critical design.
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EXPERIMENT 3

4-POINT SUPPORTED RECTANGULAR PLATE

Optimization of the i0 x 12 in., 4-point supported plate of figure 7a is

investigated by varying the number of D.O.F. in the model. Some aspects of the same

plate problem have been addressed in refs. 2 and 3. The external load and material

properties are those of ref. 2. In figure 7b, two models are shown for the symmetric

1/4 plate; a 64-node model (solid lines) with 175 unrestrained D.O.F., and a 225-

node model (broken lines) with 644 unrestrained D.O.F. In both cases, the imposed

constraints include: minimum plate thickness = .02 in., upper and lower bounds on

the out-of-plane displacement = ± .02 in. at the center node and at the exterior

corner node, and maximum allowable Von Mises stress _v = 25,000. psi for all elements.

All elements are triangular plate bending elements linked in 32-D.V. groups as

indicated by underlined numbers in the table in figure 8.
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OPTIMIZATION RESULTS FOR PLATE EXAMPLE

Optimization started with the same initial design of 0.71 in uniform thickness

and 5.282 ib weight for both the 64-node and the 225-node models. After 12

analysis/design stages, the 64-node model converged relatively smoothly to 2.386 ib,

figure 8a, with the displacement at the exterior corner node about 90% critical

and the stresses either below critical or up to 0.3% infeasihle in the "starred"

groups 3, 28, and 30, figure 8b. Optimization for the refined 225-node model proved

to be more difficult. Although the corner node displacement near criticality is

reduced to only 60%, all designs produced by stages 3 through 15 oscillated in stress

infeasibility from a high of _120% to a low of 18.5% at the 15th stage. The move limit

used was 100%. Further iteration stages with 10% move limit did not result in

reducing the infeasible stresses. This indicates that the infeasibility is more

likely to be due to errors in the refined model stress calculations rather than being

due to errors in generation of the approximate dual optimization problem. In such

cases, it may be desirable to use D.V. values of the least infeasible design after

scaling by the infeasibility. In figure 8b, the quantities given in parentheses are

the thicknesses produced by the 15th stage (refined model) after scaling by /_.185.

The corresponding weight is 2.81 lb.
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EXPERIMENT 4

ANTENNA STRUCTURE

The optimization of the antenna structure of figure 9 has been addressed in

refs. 2 and 4. However, attention is focused here on exploring design model re-

finement in an interactive environment. The optimization begins with a 60-D.V.

model, then continues with a 90-D.V. model and finally a 125-D.V. model. All three

models consist of 340 nodes connected by 1149 axial members for the symmetric

half of the antenna under symmetric wind loading of ref. 2. The structures consist

of radial rib trusses RI, R2, ..., R4 and interconnecting hoop trusses CO, CI, ...,

C9. The design constraints are: 33 displacement constraints limiting the Z-deform-

ation at the outer circumference C9 to ±i.0 in., 18 slope constraints along the

rib truss coinciding with the X-axis to limit the slope in the XZ plane to ±.0075,

stress constraints on all members (not to exceed ±25,000. psi), and minimum gage =

0.2 in. 2 on the area of all D.V. groups.
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SUCCESSIVEOPTIMIZATIONOFANTENNA

Several strategies maybe used for a systematic D.V. model refinement of a
complex problem. For example, one may concentrate on refining only those D.V. with
values larger than a certain threshold; i.e., where weight reduction has the highest
potential. Alternatively, one may consider refining all D.V. that are near critical
with respect to either all behavior and side constraints or only a selected set of
these constraints. Of course, any strategy used mayhave to include other problem-
peculiar possibilities, and should be tempered with practical manufacturing varia-
bility limitations. In the present antenna example, refinement from the 60-D.V.
model to the 90-D.V. model is achieved by breaking down all D.V. not at the minimum
gage while keeping the top and bottom membersidentical. The rib horizontals are
excepted. Further refinement from the 90-D.V. model to the 125-D.V. model is accom-
plished by breaking the linking between the top and bottom members. Table 1 gives
the D.V. values resulting from the three successive optimizations. As can be seen,
the refinements allowed for a redistribution of internal loads, and consequently for
redistribution of the structural weight. This is also evident from figure 10a which
shows that the total weight is reduced from 9250. lb. (at the end of the 60-D.V. opti-
mization) to 6614. lb. (at the end of the 125-D.V. optimization). In figure 10b, the
cumulative optimization cost is displayed.
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OPTIMUM (in 2)

Designation 60 D.V. 90 D.V. 125 D.V.

Rib Horizontal Type l

C0-C4 .200 .200 .200

.200

C4-C5 .636 .452 .238

.270

C5-C6 .552 .476 .384

.200

C6-C7 .774 .652 .200

.490

C7-C8 .542 .447 .327

.409

C8-C9 .396 .338 .469

.200

Rib Horizontals Type 2

C6-C7 .483 .483 .483

C7-C8 .486 .485 .483

C8-C9 .514 .500 .536

Rib Horizontals Type 3

C3-C4 .495 .387 .200

.200

C4-C5 .852 .582 .200

.240

C5-C6 .664 .676 .325

.231

C6-C7 .983 .825 ,204

.863

C7-C8 .753 .637 .515

.484

C8-C9 .468 .430 .560

.200

Rib Horizontals Type 4

C0-C4 .532 .2]3 1,761

.2O0

.389 1.892
.200

.452 1.934

.200

.771 2.117

.200

C4-C5 2.352 3,221 .672

3.674

C5-C6 1,245 1.665 .253

1.501

C6-C7 1.321 1.353 .200

1.440

TABLE 1

OPTIMAL CROSS SECTIONAL AREAS FOR ANTENNA

OPTIMUM (in 2) OPTIMUM (in 2)

Designation 60 D.V. 90 D.V. 125 D.V. Designation 60 D.V, 90 D.V. 125 D.V.

Rib Horizontals Type 4 (Cont'd)

C7-C8 .958 .926 .534

.823

C8-C9 .519 .495 .567

.200

Horizontal Diagonals

C3-C4 .623 .495 .200

.200

C5-C6 .410 .534 .359

Rib Diagonals

CO-C] .200 .200 .200

.200 .200

CI-C2 ,200 .200 .200

.252 .200

C2-C3 .300 .200 .200

.498 .200

C3-C4 .252 .200 .200

.200 .200

.548 .200

C4-C5 1.142 .200 .377

.200 .200

2.887 3.292

C5-C6 1.817 .641 .859

1.207 _'_

3.473 2.735

C6-C7 .200 .200 .200

.200 .200

.200 .200

C7-C8 .367 .200 .200

.259 .330

,649 .609

C8-C9 .200 .200 .200

.200 .200

.200 .200

Verticals

CO .200 .200 .200

C1 .200 .200 .200

C2 .200 .200 .200

C3 .200 .200 .200

C4 (R1) 2.575 .200 .200

(R3) .200 .200

(R4) 4.112 3.578

C5 (R1) 2.146 .445 .354

(R3) 1.344 1.087

(R4) 5.200 4.836

Verticals (Cont'd)

C6 .200 .200 .200

C7 (R1) .350 .200 .200

(R3) .246 .275

(R4) .486 .432

C8 .200 .200 .200

C9 .200 .200 .200

Hoop Horizontals

C1 .200 .200 .200

.200

C2 .200 ,200 .200

.200

.200 .219

.200

C3 .500 .583 .200

.306

.200 .200

.200

C4 .507 .337 .200

.200

C5 .200 .284 .200

.434

C6 3.323 2.163 .200

.334

3.296 4.346

4_4!7

C7 .200 .200 .200

.200

C8 .235 ,200 .481

.200

C9 4.348 4.306 5.268

5,348

4,047 .490

.28O

Hoop Diagonals

C1 .200 .200 .200

C2 .200 .200 .200

C3 .200 .200 .200

C4 1,256 .200 ,200

,808 ,300

C5 .326 .200 .200

.977 1.275

C6 .200 .200 .200

C7 .200 .200 .200

C8 .200 .200 .200

C9 .289 .283 .200
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CONCLUSIONS

In the optimization of complex structures, selection of the most suitable analysis
and design models is frequently not obvious. Accuracy and cost are always limiting
and competing factors. Further, design optimization usually is not a one-time process,
but is one that evolves with evolution of the design details.

In the preceding pages, results of numerical experiments were discussed to show
trends that maybe employed in devising cost effective optimization procedures consis-
tent with an evolutionary optimization philosophy, whether it is carried out in the
context of a man-machineinteractive environment or in the context of an automated
expert system. Specifically, the results deal with (i) optimumweight accuracy and
associated cost advantages of starting the optimization process with the practically
most crude D.V. and D.O.F. models, then simultaneously refining both models in subse-
quent optimizations; (2) effect of model imbalance on the resulting optimal weight;
(3) design infeasibility as a typical difficulty in large problems optimization, and
how it maybe dealt with; (4) a criterion for selection of successive D.V. model
refinements.
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_F

In a typical design process major decisions are made sequentially. The

illustrated example is for an aircraft design in which the aerodynamic shape

is usually decided first, then the airframe is sized for strength and so forth.

An analogous sequence could be laid out for any other major industrial product,

for instance, a ship. The loops in the discipline boxes symbolize iterative

design improvements carried out within the confines of a single engineering

discipline, or subsystem. The loops spanning several boxes depict multidisci-

plinary design improvement iterations. Omitted for graphical simplicity is

parallelism of the disciplinary subtasks. The parallelism is important in order

to develop a broad workfront necessary to shorten the design time.

If all the intradisciplinary and interdisciplinary iterations were carried out

to convergence, the process could yield a numerically optimal design. However,

it usually stops short of that because of time and money limitations. This is

especially true for the interdisciplinary iterations.

SEQUENTIAL DECISION-MAKING IN DESIGN PROCESS

INITIAL ICONCEPT

/

SHAPE

INTERDISCIPLINARY ITERATIONS

INTRAD ISCIPLINARY

ITERATI?NS

SIZING ] RESIZING
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Sequential decision making leads to a paradoxical disparity between the volume
of information about the object of the design and the design freedom measured
by the numberof design variables and options still available to the designers.
The former ascends with time becauseof the analyses and experiments performed,
while the latter declines becauseof casting the decisions "in concrete." The
paradox is that we are gaining information but losing freedom to act on it.

PARADOX OF THE CONVENTIONAL
SEQUENTIAL DECISION MAKING IN DESIGN

100"/o

KNOWLEDGEABOUT
THE OBJECTOF DESIGN

DESIGN
FREEDOM

0%

TIME INTODESIGN PROCESS
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A simple example will reveal that the paradox shown in the previous chart
leads to a suboptimal design. For the example, we will look into an aircraft
design process at the time when wing planform and structural sizing have
already been accomplished to produce a combination of two design variables,
the aspect ratio and structural weight, that maximizes a measure of the
aircraft performance without violating the constraints. Simplifying the
example as much as possible, we can consider a design space formed by the
aspect ratio and the structural weight that, we assume, has already been
minimized. In that design space, sNown in this chart, the aircraft
performance can be depicted by a set of contour lines, each line corresponding
to a constant value of the performance. Superimposed on the contour lines are
the constraint curves, Cl and C2. Each constraint curve divides the design
space into the feasible (constraint satisfied ) and infeasible (constraint
violated) subspaces (domains). The cross-hatching marks the infeasible side.
It is not important for the purposes of this discussion which particular
aspect of the aircraft performance was chosen as a measure of goodness
(objective function) and what constraints were taken into account in plotting
the set of curves, P, Cl, and C2. The aircraft range for a given takeoff
gross weight and payload and the wing static strength may be thought of as
respective examples for P and C2. Inspection of the graphs shows that the
design which maximizes P without violating CI and C2 is at point 01.

CONSTRAINED MINIMUM

FOR TWO CONSTRAINTS AND TWO DESIGN VARIABLES

WING MINIMUM
STRUCTURAL

WEIGHT,
W

min

Ol

C2

PI

ASPECT RATIO,_R
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Supposenow that whena flutter speed is subsequently calculated, the design
01 turns out to have too low a flutter speed - in this chart it is shownto be
on the infeasible side of the flutter constraint plotted as C3. The design has
to be modified to have its flutter speed raised. If at this point in the
design process the configuration - the aspect ratio - is frozen, the increase
of the flutter speed can be achieved by stiffening the wing structure at the
price of a weight penalty by moving from 01 to 02 at a constant aspect ratio,
The weight penalty reduces the performance from PI to P2. If the configur-
ation were not frozen, a new optimal design could be located at 03, whose per-
formance P3, although smaller than P1, exceeds P2 (P2 < P3 < PI). The difference
P3 - P2 is a performance penalty for the sequential freezing out of the design
options in a sequential design process. Wecan say that design 02 is suboptimal
relative to the design 03. Another look at this and the preceding chart, and
a little reflection, will show that although the magnitude of the performance
penalty, P3 - P2, depends on the shapeof the functions involved (P, C1, C2, C3),
its existence does not. Consequently, the example reveals that suboptimal results
can be expected in a sequential design process in which each additional stage
restricts the numberof design variables while bringing in new constraint viola-
tions that must be removed.

A NEW CONSTRAINT ADDED

WING MINIMUM
STRUCTURAL

WEIGHT,
W

min

C3

P2
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01
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To demonstrate an alternative based on a system approach, reenter the example
at the point where the flutter deficiency of the design, labeled 01 in the
preceding chart, has been found. The essence of the system approach is
decomposition of a large problem into several smaller ones without losing the
coupling. Therefore, we recognize in this case that two engineers, or
engineering groups, must fix the flutter problem with the least penalty to the
performance, P, by cooperating and yet each doing a separate subtask. In this
chart the individuals, or groups, are labeled C - for configuration, including
aerodynamics and performance, and S - for structures.

The subtask of correcting the flutter problem with a minimumweight penalty
AWmin is carried out by S for a particular aspect ratio set constant, but
only temporarily, by C, and for aerodynamic analysis results (e.g., pressure
distribution) and their sensitivity to aspect ratio - all supplied by C. The
result produced by S is a flutter-free design at a minimumweight penalty,
along with the sensitivity of that design to aspect ratio. That sensitivity
is quantified in the form of derivatives of the weight penalty and cross-sec-
tional dimensions with respect to the aspect ratio.

FINDING NEW CONSTRAINED MINIMUM

BY ALTERNATING BETWEEN TWO ENGINEERING DISCIPLINES

CONFIGURATION GROUP
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Completion of the above task moves the design from 01 to 02 in this chart,

exactly as in the previous discussion. However, group C will now recover a

part of the performance penalty by changing the aspect ratio and the weight
penalty simultaneously. In this operation, the weight penalty is not an

independent variable but is tied to the aspect ratio variation by the

sensitivity derivative which tells how much the weight penalty must change per
unit of aspect ratio variation to keep the flutter constraint satisfied. Such

dependence of weight penalty on aspect ratio is only a linear approximation of

a true nonlinear relation and can be depicted by the tangent to C3 at 02 shown
in this chart. The configuration improvement produced by C calls now for a

move along that tangent toward the increasing performance; that is, toward 03.

The move should stop when the tangent veers off too far from C3 in order to

let group S repeat its subtask to recover from the linearization error by
regenerating the minimum weight penalty and its sensitivity derivative at

the new value of the aspect ratio. Thus, by alternating subtasks performed

by C and S we can improve the design by moving toward the theoretical optimum

at 03 in a staircase fashion: 02 to 02A, to 02B, to 02C, and so on, as long

as we see that the performance improvement is worth the effort.

A PATH TOWARD NEW CONSTRAINED MINIMUM
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Having introduced the idea of decomposition by means of a simple example we
will now generalize the four objectives shown in the chart as guidelines. The
first three are self evident. The last one deals with the disparity between
the large volume of information that is being processed within a subtask and a
relatively small volume of information that couples the subtask (subsystem) to
other subtasks (subsystems). For example, contrast the mass of data being
manipulated in a finite element analysis of an airframe with the input data of
loads, mechanical properties, and geometry, and with the structural weight and
critical constraint data which is all that is fed back to the aircraft

performance analysis. The decomposition scheme should exploit that
disparity. Lack of such disparity indicates that either the decomposition
scheme is improper or the problem is not decomposable.

DECOMPOSITION OBJECTIVES

am'

• BREAK LARGE TASK INTO A NUMBER OF SMALLER ONES

• PRESERVETHE COUPLINGS AMONG THE SUBTASKS

• EXPLOIT PARALLELISM TO DEVELOPA BROAD WORKFRONT
OF PEOPLEAND COMPUTERS

• EXPLOIT THE DIFFERENCEOF VOLUME BETWEENA RELATIVELY
LARGE AMOUNT OF INFORMATION PROCESSED INTERNALLY
IN A SUBTASK AND A RELATIVELY SMALL VOLUME OF THE
COUPLING INFORMATION
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There are several decomposition procedures in the literature (ref. I). How-
ever, a literature survey failed to reveal a method that would be capable of
accounting for the couplings among the system andsubsystems without having
to reoptimize the subsystems for every variation of the parent system design
variables and that would apply to nonlinear programing problems. Since such
repeated reoptimizations would be cost prohibitive in most large-scale engi-
neering applications, a new approach that accounts for the system-subsystem
couplings without the repetitive subsystem reoptimizations has been developed
at Langley Research Center and is now at a stage of testing and verification.
The approach is called "a linear decomposition" for reasons that will become
apparent soon.

SEVERAL WAYS TO HANDLE THE COUPLINGS
IN A DECOMPOSED .SYSTEM

• BODY OF LITERATURE

• THE PROPOSEDAPPROACH: A LINEAR DECOMPOSITION
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For generality, the chart shows a generic system decomposed into subsystems
that form a hierarchical, three-level tree. If the system were a structure,

the top level would represent the assembled structure, each subsystem at the

middle level would correspond to a substructure, and the bottom level

subsystems would simulate individual structural components (e.g., stiffened
panels. Thus, three levels is the minimum we need to have each level

qualitatively different for generality of the discussion. We assume that the

system has been initialized so that physical characteristics are completely

defined at each level. It is not necessary for the initialized system to be

feasible. The analysis proceeds from top to bottom so that output from
analysis of a parent subsystem becomes input for analysis of the subordinated

subsystems. For an example, consider a structure assembled of substructures

and loaded by forces applied at the substructure boundary nodes. The

substructure boundary forces from the assembled structure analysis are fed

into the substructure analysis as loads, and the internal forces from

substructure analysis enter into the individual structural component analysis.

In many engineering applications, the decomposition must account for the fact

that inputs to analysis of a given subsystem may be coming not only from its
parent but from any other subsystem at the same or even a different level,

including inputs from the subordinated subsystems to their parent. An example

of the latter can be drawn from the substructuring analysis in the case where
the loads applied to a substructure interior nodes are reduced to the loads

applied at the substructure boundary nodes, by performing analysis at the

substructure level before commencing the assembled structure analysis. In
other words, a system decomposition may lead to a network rather than the

"top-down" graph shown in the chart. However, we will limit this discussion

to the case depicted in the chart in order to keep it as simple as possible

for a clear introduction of the basic approach. Extension of the approach

necessary to handle the network systems is presented in ref. 2. It is

important that analyses at each level include sensitivity analysis to

produce derivatives of the output quantities with respect to the input

quantities. These derivatives measure sensitivity of behavior (response).

Obviously, if there are several subsystems at a given level, they can be
analyzed concurrently.

ANALYSIS

BOTTOM /

I r

__UTPUT gT
MIDDLE "_ INPUT I M

I SUB-

M I SYSTEM

_ _OUTPUT 0 M

'_ INPUT I B

I"l ..
SYSTEM

• INITIALIZATION

• TOP-DOWN ANALYS I S

EACH SUBSYSTEM RECEIVES
INPUTS FROM ITS PARENT,
UNDERGOESANALYSIS AND
SENDS OUTPUT TO SUB-
SYSTEMS BELOW
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This chart introduces a cumulative constraint that will be needed in further

discussion. The cumulative constraint is a single number that measures the

degree of satisfaction, or violation, of an entire set of constraints. There

are several ways to formulate the cumulative constraint as a function of the

constraints in the set, for instance, the well known quadratic exterior
penalty function is a cumulative constraint. The particular formulation

adopted here is a function shown by the equation below and referred to as the

Kresselmeier-Steinhauser function. The function is continuous and differentiable,

in contrast to the envelope of the constraint functions, which is slope discon-

tinuous at the constraint function intersections, and; as seen in the graph,

follows the constraint envelope at a distance that is user-controlled by the

factor p. Increase of the factor draws the function closer to the envelope.
The factor ought to be set so that the cumulative constraint function does not

loose numerical differentiability by forming sharp "knees" at the constraint
intersections.

CUMULATIVE CONSTRAINT

• A SINGLE NUMBER MEASURE OF THE DEGREE OF SATISFACTION, OR

VIOLATION, FOR A SET OF CONSTRAINTS

DEMAND -I < 0
= f(gi) i= I ---_m; gi= CAPACITY -

• AN APPROXIMATE ENVELOPE FUNCTION

gi

VIOLATION
It jCII

0

SATI SFACTION

II -- II

//'/ PARTICULARLY

\\ // / THE KRESSELMEIER-
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Having completed the analysis and introduced the cumulative constraint, we
now begin the optimization which will proceed from the bottom up. Each

subsytem optimization at the bottom level is characterized as follows:

1. design variables: physical quantities local to the subsystem, e.g.,
detailed cross-sectional dimensions of a panel

2. objective function: the cumulative constraint of the subsystem

constraints such as local buckling, stress, etc

3. inequality constraints: upper and lower limits on the design
variables

4. constant parameters: inputs received from the parent subsystem

5. equality constraints: these constraints may be required in order to

preserve the constancy of the parameters (for example, if a parameter
is a total cross-sectional area of a panel, an equality constraint on

the detailed cross-sectional dimension variables is needed)

The use of a cumulative constraint as the subsystem objective is a logical
choice because it is a non-dimensional quantity and therefore comparable among

the subsystems regardless of their physical nature, which may vary from one

to another. The subsystem optimization is followed by sensitivity analysis of

the minimum of the objective with respect to the subsystem input quantities

(equal to the output from the parent subsystem). This analysis is called

optimum sensitivity analysis to distinguish it from the behavior sensitivity

analysis and is carried out not by finite difference but by a special

algorithm described in ref. 3. Thus, the results from each subsystem

optimization are the minimum of the cumulative constraint and its sensitivity

to the output from the parent subsystem. These results are now carried upward

to the parent subsystem. If there are several subsystems at a given level,

their optimizations can be executed concurrently.

OPTIMIZATION: BOTTOM LEVEL

BOTTOM

B

TOPIIT SYSTEM DEFINITIONS:

0_ IB

•. ..

DESIGN VARIABLES= XB

INPUT= I B RECEIVEDFROM ABOVE

IB-O M

OBJECTIVEFUNCTION:
CUMULATIVECONSTRAINT

C_B

OPTIMIZATION PROBLEM:

MINC2B (X B, 0 M)

{XB}
L<XB<-U

OPTIMUM SENSITIVITY ANALYSIS:

0 _B lao
rain Mi
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Now, moving up one level to the middle level, we perform a subsystem
optimization for each subsystem at that level. The optimization is formu-
lated as follows:

(1) Design variables: physical quantities local to the subsystem,
e.g., membrane stiffness of the wing box at several locations over
the wing

(2) Objective function: cumulative constraint for a set of constraints

that includes the constraints intrinsic to the subsystem itself (e.g.,
limit on the wing tip deflection) and the minimum values of the cumula-
tive constraints transmitted from the subordinated lower level subsys-
tems (These minimum values are estimated by linear extrapolation (see
equation) as a function of the middle level subsystem design variables
by means of the optimum sensitivity derivatives taken with respect to
the subsystem output quantities which, in turn, are governed by the
subsystem design variables. This linear extrapolation eliminates
the need to reoptimize the subordinated subsystems for each design
variable variation introduced in the parent subsystem and gives the
method its name of the linear decomposition.)

(3) Constant parameters

(4) Inequality constraints

(5) Equality constraints are analogous to those defined for the bottom
level

The results are a minimum of the cumulative constraint and its derivatives
with respect to the system output. They are now carried to the top level.

OPTIMIZATION: MIDDLE LEVEL

DEFINITIONS: DESIGN VARIABLES=X M

INPUT= IM RECEIVED FROMABOVE

IM - 0T

TOP_ OBJECTIVEFUNCTION:

T I 5YSILM I CUMULATIVE CONSTRAINT

k--_g T Q (gM' C_Bmin)
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/ / Yx OPTIMIZATION PROBI_EM:
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Optimization at the top level involves:

1. design variables that govern the entire system, for an aircraft example:
configuration geometry, structural weight prescribed for the airframe, etc.

2. objective function as a measureof the system performance, e.g., fuel
consumption or Direct Operating Cost

3. inequality constraints on the system performance, e.g., take-off field
length, the upper and lower limits on the design variables, and the cumulative
constraints from each subsystem linearly extrapolated by meansof the optimum
sensitivity derivatives (These constraints also include the side constraints
and move limits to control the linear extrapolation error.)

Thus, the top level optimization deals with the system performance directly,
and has embeddedin it the approximation to all the subsystemconstraints in
the form of the linear extrapolation based on the subsystem optimum
sensitivity derivatives. These derivatives quantify the design trade-offs
amongthe subsystemand account for their couplings.

The top-down analysis and the bottom-up optimizations constitute one cycle of
the iterative procedure which continues until the extremumof the system
objective is found and all the system constraints and the subsystemcumulative
constraints are satisfied. For more algorithmic detail, one mayconsult
ref. 2.

OPTIMIZATION: TOP LEVEL

T SYSTEM

BOrrOM/B"

•-I I-

DEFINITIONS: DESIGN VARIABLES=X T

OBJECTIVE FUNCTION: A MEASURE

F(XT)OF THE SYSTEM PERFORMANCE

CONSTRAINTS:

gT= SYSTEM PERFORMANCE

CONSTRAINTS

C2Mmin <0 FOR EACH M-LEVEL

\ SUBSYSTEM. _ OPTIMIZATION PROBLEM:

I M IN F(XT'

I/ _ _ {XT} gT_<O

/ _ ''_ (Q Mmin)e< 0

/ , \ ,.......r_\_<-X,<-U
.... I WHERE:\ . _ wI I I coM.

I I I \ m_n/e mm i a(aTi

356



While the procedure described in the previous five charts is generic, the
decomposition of the system is problem dependent. It can be done by a common
sense inspection and judgment. It can also be done formally by a matrix of
the design variables listed along the top and the objective and constraint
functions listed vertically. A dot at the row_columnintersection meansthat
the variable corresponding to the column appears in the equation corresponding
to the row, and a blank meansthat the variable does not appear in that
equation. The three examples showtypical patterns.

MANY WAYS TO DECOMPOSE A SYSTEM

• HEURISTIC: BY EXAMINATION OF THE SYSTEM PHYSICAL MAKE-UP.

[ AIRCRAFTI
@ @ I AIRFRAME I IPROPULSION]

• FORMAL: BY INSPECTION OF THE FUNCTIONAL RELATIONSTHAT GOVERNTHE
PROBLEM

0 BJECTIVE
AND

CONSTRAINT
FUNCTIONS

VARIABLES

NON-DECOMPOSABLE DECOMPOSABLE
WITH

PARTIAL COUPLING

[

II
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Oncethe decomposition tree is established, it can be grown with respect to
the numberof subsystems and the depth and detail of analysis. This
adaptability permits maintaining the sameoverall logic of approach at various
stages of design, while changing the modules in that logic - a desirable
feature from the standpoint of the process integration.

DECOMPOSITION ADAPTS TO DESIGN STAGE

SYSTEM

VARIABLES
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The multilevel procedure described here is still being developed toward a
state of maturity required for industrial applications. To achieve that

state, research continues to investigate the issues listed below.

ISSUES TO BE INVESTIGATED

• CONVERGENCE: OVERALL,LOCAL

• COMPUTATIONAL COST

• LATERALAND REVERSE

• ACCURACY OF LINEAR
SENSITIVITY

• SUBTASK SYNCHRONIZATION

CONSISTENCY
SUBTASKS

JUDGMENTAL
AND HUMAN

COUPLINGS

EXTRAPOLATIONS

OF THEANALYSI S LEVELS

DECISIONS,
CONTROL

INCLUDING

BASEDON

IN VAR IOUS

DI SCRETEDECISIONS,
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The development toward maturity involves a literature survey, numeroustests
of several variations of the algorithm using very simple test cases, and a
fairly large structural test case. A multidisciplinary test is under way for
reconfiguration of a transport aircraft wing treated as a part of an aircraft
system and, also, a wing separated from the aircraft. The issues of
computational parallelism and synchronization amongthe subtasks are being
explored using a network of microcomputers connected to a central hard disk.

RESEARCH

INTO THE MATHEMATICS OF MULTILEVEL DECOMPOSITION

• GOAL: A LEVEL OF MATURITY REQUIRED FOR INDUSTRIAL
APPLICATIONS

• LINES OF RESEARCH:

• SURVEY OF LITERATURE

• SMALL TEST CASE- A SIMULATOR -TO TEST
VARIOUS ALGORITHMS

• APPLICATION TEST CASES: STRUCTURES

LOCKHEED PROJECT

ISOLATED WING CASE

PARALLEL COMPUTI NG

(A NETWORK OF APPLES)

• GRANT ACTIVITIES TO BE REPORTED IN THIS SESSION
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A two-level structural optimization of a framework has been successfully
carried out and reported in ref. 4. The decomposition in this case exploits
the fact that the end forces acting on each I-beam in the framework can be
calculated using A and I for the beams without directly using the beam
cross-section design variables. Furthermore, the local constraints in a beam
can be calculated using the beam's detailed cross-sectional dimensions and the
end forces. Thus, the A's and I's are the system design variables and the
detailed dimensions are the subsystem design variables. The beam is optimized
by reducing the cumulative constraint to a minimum (maximizing the safety
margin). In the process, the beam cross-section is reproportioned while
preserving the A and I prescribed for the beam at the system level.

MULTILEVEL OPTIMIZATION:

A

3

A FRAMEWORK TEST STRUCTURE

(TWO LEVELS)

M = 20 x 106 N-cm

P = 50000N

ASSEMBLED
FRAMEWORK

I

FIND A's, l's TO MINIMIZE STRUCTURAL
WEIGHT SUBJECT TO CONSTRAINTS ON

DEFLECTION AND THE BEAM CONSTRAINTS

CUMULATIVE CONTRAI NT

_AND ITS DERIVATIVES

BEAM

BEAM

N

BEAM

A-A

NOT TO SCALE

h x

blab2

t 1 3 t2

FIND DIMENSIONS

OF THE BEAM CROSS-
SECTION TO IMPROVE
THE CONSTRAINT
SAIlSFACTION AS MUCH

I AS POSSIBLE WITHIN

THE GIVEN PARAMETERS.
THE CONSTRAINTS

INCLUDE: STRESS, LOCAL
BUCKLING, ETC.
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The two-level framework structure has been extended to three levels by
replacing the I-beams with the box beams made up of stringer-reinforced
panels. The panels add the third, bottom level of subsystems. This makes
the test more general because it now contains all three level categories:
top, middle, and bottom. At the time of this writing the tests are still in
progress.

MULTILEVEL OPTIMIZATION: A FRAMEWORK STRUCTURE
(THREE LEVELS)

_ lO00cm _ = 20 x 106 N-cm

-- - _, P = 50000 N
500 - 2
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This is a summary of multilevel structural optimization development and
testing. The method was also applied in a test case of a high-performance

sailplane wing design (ref. 5). The results obtained to date are encouraging.

TEST APPLICATIONS IN STRUCTURES

TWO LEVELS: GOOD CORRELATION WITH A SINGLE LEVEL TEST CASE

• MINIMUM WEIGHT AGREED WITHIN 2%

• QUITE LARGE DIFFERENCES IN OPTIMUM DESIGN
VARIABLES = A "SHALLOW' OPTIMUM

(ref. 4)

SAILPLANE WING (ref..5)

THREE LEVELS: REFERENCESINGLE LEVEL TEST CASE ESTABLISHED

THREE-LEVEL PROCEDURE IMPLEMENTED AND DEBUGGED

RESULTS BEING GENERATEDFOR WORK-IN-PROGRESS

(ref. 4)
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The wing of a transport aircraft (Lockheed L-1011) is to be reconfigured to
minimize fuel consumption for a given mission. The design variables are

selected from the geometrical configuration dimensions noted in the drawing
and the detailed structural dimensions (not shown) of the wing cover panels
reinforced by stringers. A long list of constraints includes the local

effects, such as local buckling, and the system performance constraints, such

as takeoff field length. The testing is being done jointly with

Lockheed-California which supplies the mathematical model (e.g., a finite

element model) and the mission and load data, and reconfigures the wing by
means of parametric studies using the state-of-the-art tools in each

discipline. The Langley team is using the linear decomposition. Comparison

of the results will allow assessment of the relative merits of the proposed
method. Further details of the test are provided in reference 6.

MULTILEVEL OPTIMIZATION APPLICATION

A COOPERATIVE VENTURE WITH LOCKHEED-CALIFORNIA

(LOCKHEED-GEORGIA INVOLVED)

NEW OBJECTIVE
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CONCLUSIONS

• THEORYOF ONE PARTICULAR APPROACH TO DECOMPOSITION
DOCUMENTED(ref. 2)

• TESTS ON STRUCTURES: FRAMEWORK, SAILPLANE WING

• TEST ON AN AIRCRAFT CONFIGURATION UNDER WAY

• RESEARCHAND DEVELOPMENTCONTINUE TOWARD MATURITY

REQUIRED FOR INDUSTRIAL APPLICATIONS
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INTRODUCTION

The field of sensitivity derivative analysis is emerging as one of the more
fruitful areas of engineering research. The reason for this is the recognition
of the many practical uses for sensitivity derivatives. Beyond the historical
use of derivatives in connection with formal mathematical optimization
techniques, recent work has been reported in using sensitivity derivatives in
approximate analysis, assessing design trends, analytical model improvement, and
determining effects of parameter uncertainties (refs. i through 7).

Work supported by the NASA Langley Research Center, under a grant in sensitivity
analysis, has been focused on derivatives of thermal response of structures
(refs. 8 and 9). Most recently, in-house implementations of generalized struc-
tural sensitivity capability in the SPAR and EAL computer programs (refs. I0
and 11) have been completed. Work in the sensitivity area is being expanded,
and recent developments both in and outside the structures area have been sur-
veyed to guide the future effort. This paper reviews some innovative techniques
applicable to sensitivity analysis of discretized structural systems. These
techniques include a finite-difference step-size selection algorithm, a method
for derivatives of iterative solutions, a Green's function technique for deriva-
tives of transient response, a simultaneous calculation of temperatures and
their derivatives, derivatives with respect to shape, and derivatives of optimum
designs with respect to problem parameters. Computerized implementations of
sensitivity analysis and applications of sensitivity derivatives are also dis-
cussed. Finally, some of the critical needs in the structural sensitivity area
are indicated along with Langley plans for dealing with some of these needs.
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DISCIPLINESCONTRIBUTINGTOSENSITIVITYANALYSISDEVELOPMENT

Sensitivity methodology has been and continues to be an important research area
for manydisciplines. Appreciation for the uses of sensitivity analysis by a
broad spectrum of researchers outside the structures area is very evident. Some
of those disciplines are indicated in figure I. For the most part, the
motivation in these other disciplines is the need to quantify the effect of
uncertainties in parameters of a system model on the predictions of the model.
Examplesfrom physical chemistry are described in references 7 and 12 through 18.
A specific use is given in figure 2. Electronics and control theory represented
the origin of this type of sensitivity work (refs. 19 and 20) in addition to
the use of derivatives to synthesize systems. Recent work in physiology with
both humanand bacteriological system models is described in reference 21. In
the thermodynamics area, reference 22 describes the calculations and use of
derivatives of the chemical composition with respect to thermodynamic properties
in the mathematical modeling of a coal gasification process. Finally, analytical
techniques are beginning to emergeto calculate derivatives of aerodynamic quan-
tities with respect to flow parameters (refs. 23 and 24) as described by Bristow
(ref. 25). This paper focuses on contributions to sensitivity methodology ori-
ginating in or applicable to the structural analysis field.

• CHEMICAL KINETICS

• ELECTRONICS AND CONTROL

• PHYSIOLOGY

• THERMODYNAMICS

• AERODYNAMICS

• STRUCTURALANALYSI S

Figure 1

369



APPLICATION OF SENSITIVITY DERIVATIVES TO ATMOSPHERIC POLLUTION MODEL

Sensitivity analysis has been used to assess the effects of uncertainties in
emission and meteorological parameters on the predictions from a mathematical
model for photochemical air pollution (ref. 7). The atmospheric diffusion
equation which governs the degree of pollution of a volume of air (an air
parcel) contains several parameters: (I) mixing depth - the vertical height of
the air parcel containing pollutants; (2) initial concentration of pollutant;
(3) photolysis intensity - the rate of photochemical activity; (4) emission
rate - the rate at which the pollutant is emitted into the air parcel; and (5)
ambient temperature of the air. The calculation of derivatives of concentrations
of various pollutants with respect to the aforementioned parameters is described
in reference 7. The derivatives were used to rank the importance of the parameters.
The calculations were carried out for the example of an "oxidant episode" which
occurred in Southern California in 1974. The mathematical simulation of the

event began in downtown Los Angeles at 5 a.m. and terminated in San Bernardino
County at 8 p.m. The graph in figure 2 shows the sensitivity of the concentration
of the pollutant nitric oxide (NO) with respect to each parameter as a function
of time, Results indicate that early in the episode the initial concentration
and mixing depth are the most important parameters. Midway through, emission
rate and ambient temperature were most important, and late in the calculation,
ambient temperature and photolysis intensity were most critical. These types
of data indicated the need for more exact measurements of the key parameters to
improve the air quality mathematical model.
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(REF.7)

Figure 2
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OPTIMUM STEP SIZE FOR FINITE-DIFFERENCE DERIVATIVES

The most straightforward method of calculating derivatives is to use a finite-
difference approximation. One of the most serious shortcomings of the finite-
difference method is the uncertainty in the choice of a perturbation step size.
If the step size is too large, truncation errors may occur. These can be
thought of as errors due to retention of only the lowest order terms of a Taylor
series representation of a perturbed function. If the step size is too small,
condition errors may occur (ref. 26). These errors are due to subtraction of
nearly equal numbers. In a recent paper (ref. 27), an algorithm was developed
to determine the optimum finite-difference step-size, i.e., one that balances
the truncation and condition errors. The algorithm is based on approximating
the truncation error as a linear function of step size h and the condition
error as a linear function of I/h. The optimum step size is obtained by equating
the condition and truncation errors (fig. 3). This technique has been tested
on functions which could be differentiated analytically (ref. 27) and was found
to be very effective. A logical extension of this work would be to apply it to
matrix equations.

• WANT BEST ESTIMATE OF r3._[f
_v "-- --1 (f(v + h) - f(v))h

THE
PROBLEM

THE
SOLUTION

IF h TOO LARGE- TRUNCATION ERROR =- T(h)

IF h TOO SMALL- CONDITION ERROR - C(h)

I EXPRESS T(h)AND C(h)AS SIMPLE COMPUTABLE FUNCTIONSCHOOSE "OPTIMUM" STEP SIZE h SO THAT

Clh) = Tlh)

• RESULT- FORMULA FOR h

• FORMULA VERIFIED BY TESTS ON ANALYTICAL FUNCTIONS

m NEEDTO IMPLEMENT FOR MATRIX EQUATIONS

(REF. 26)

Figure 3
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DERIVATIVESOF ITERATIVESOLUTIONS

In manystructural design problems, the response U is the solution of an
algebraic system f(U, v) = O, where v is a design parameter (fig. 4). When
the system is solved iteratively, the iterative process is terminated when the
solution error is reduced below a certain tolerance. To obtain the derivative
of U with respect to a design parameter by finite differences, the parameter is
perturbed and the solution process is repeated to obtain Uh. The derivative is
then approximated by a finite-difference ratio. The error Tnherent in this pro-
cess is due to the termination of the iterative solution process before an exact
solution is obtained. Thus U and Uh, obtained by iteration, are only approxi-
mations to the corresponding exact solutions U and Uh, resEectivel_. Because
of noise in the solution process, the difference between U and Uh can be
finite, even for very small values of the perturbation h. In fact, the error
is most severe whensmall values of h are required to avoid large truncation
errors in the derivative. A remedy, which is being developed by the second author
of this paper, is to define a modified perturbed solution U_ which satisfies a
modified equation whoseright-hand side is not zero but is the residual of the
approximate unperturbed equation. _ this construction, U_ approaches U as h
approaches zero. Then U_ replaces Uh in the derivative formula. Finally,
serves as the first approximation in the iteration process for U_.

• U IS SOLUTIONTOf(U v)= 0 I

J• o,  o,o Io o

--t/h(On- 0)

APPROXIMATE

0 AND Oh

OBTAINED BY ITERATION

O ERRORMAY BE LARGE DESPITE SMALL h

• SOLUTION- DEFINE Uh SUCH THAT

f(Uh,V+ h) = f(U,v)

RESIDUAL

THEN _U/av= 1/h (U_-U)

• WHY IT
WORKS

INITIAL GUESS FOR U_ IS 0
h

APPROACHES U FOR SMALL hU h

Figure 4
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GREEN'S FUNCTION METHOD FOR DERIVATIVES OF TRANSIENT RESPONSE

This method, which is well known in applications to solutions of nonhomogeneous
differential equations, has been used extensively by physical chemistry
researchers (refs. 12 through 18) for calculation of derivatives of response
quantities governed by systems of first-order nonlinear ordinary differential
equations such as equation (1) shown in figure 5. Numerous applications have
been performed for chemical kinetics problems related to air pollution studies.
As indicated in this figure, the derivative of the response vector Y with
respect to a parameter _ satisfies equation (2). The derivative may be repre-
sented by an integral expression (eq. 3) involving a kernel K which is the
Green's function. The Green's function is the solution to the initial value
problem given by equation (4). Comparison of the effort needed to solve equation
(2) versus (4) indicates that the Green's function technique is advantageous if
the number of design variables m exceeds the number of equations n in the
system. One approach to obtaining K is to solve equation (4) directly using
an implicit numerical integration technique (ref. 12). An alternate solution
for the Green's function is to use the Magnus method (ref. 17) whereby K is
expressed as an exponential function of a matrix which is the time integral of
the Jacobian matrix J. Because the equation of transient heat transfer is a
special case of equation (I), the Green's function method is directly applicable
to sensitivity of transient temperatures. It is planned to pursue this line of
research at Langley as part of our sensitivity development.

• IMPLEMENTED BY PHYSICAL CHEMISTRY RESEARCHERS

• GENERAL

PROBLEM

"dY
_-T= f(Y,a,t) n EQUATIONS (I)

dYQ
_ = JYa + f mn EQUATIONS (2)a

j -- Bf/By Ya = 6Y16a

• SOLUTION BY

GREEN' S

FUNCTION

t

Ya = fK (t,T)fad'[

o

dK
dT (t,'[)- JK(t,T) = 0

• APPLICABLE TO TRANSIENT HEAT TRANSFER

Figure 5

n2 EQUATIONS

(3)

(4)
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CONCURRENTCALCULATIONSOFTRANSIENTTEMPERATURESANDDERIVATIVES

Derivatives of transient response such as structural displacements and tem-
peratures have been computed following the calculation of the response itself
using analytical techniques (refs. 9, 28, 29) and by the Green's function
technique (ref. 12). Recently an algorithm for concurrent calculation of
transient temperatures and their finite-difference derivatives has been
developed (ref. 9). Figure 6 depicts an application to the transient thermal
response of an insulated cylindrical shell. Temperatures throughout the shell
are computed using an implicit numerical integration technique• Along with
temperatures at each time step, finite-difference sensitivity derivatives are
calculated with respect to design variables representing insulation thicknesses
at 10 locations on the shell surface. The key to the success of the method
is that during each time step, when a nonlinear algebraic equation is solved by
iteration for the current temperature and the perturbed temperature, the same
time step is used for both solutions. Further, the unperturbed temperature
serves as the initial guess in the iteration for the perturbed temperature. The
numbers in the table are solution times in seconds. The results indicate that
the timesaving from the concurrent calculation is substantial, and nearly a
factor of 4 advantage is obtained.

ERROR
TOLERANCE

ON
TEMPERATURE

•001

•003

•010

SEQUENTIAL

CPU TI ME

FOR TEMPERATURE

CALCULATION

113

78

46

CPU TIME

FOR EACH

DERIVATI VE

113

78

46

CONCURRENT

CPU TIME

FOR TEMPERATURE

PLUS TEN DERIVATIVES

500

296

168

CPU TIME

FOR EACH

DERIVATIVE

39

22

12

REGION OF

APPLIED HEATING_

INSULATED

CYLI NDER MODEL

TYPICAL DERIVATIVE

c3T

at.
iris

T - TEMPERATURE

t = INSULATION THICKNESS
ins

Figure 6



SENSITIVITY DERIVATIVES FOR SHAPE DESIGN VARIABLES

A relatively new topic in structural sensitivity analysis is the calculation of
derivatives with respect to shape design variables. Examples are derivatives of
displacements or stresses with respect to a beam length or a membrane area
(fig. 7). Two approaches have been used. One approach is to differentiate the
discretized equations resulting from a finite-element representation. A draw-
back to this technique is that when shape design variables change, the finite-
element mesh is modified. The resulting mesh distortion changes the discretization
error and leads to inaccurate derivatives. The second approach, which avoids mesh
distortion errors, is to reverse the order of differentiation and discretization
(refs. 30 through 32). The procedure is to differentiate the conLinuum equations
of equilibrium and discretize the resulting integral equations. This method uses
the concept of a material derivative from continuum mechanics which is composed
of two parts: a derivative corresponding to a fixed shape, and a contribution
from the change of the boundary. The preferred choice between the two methods
is not yet clear. The second approach avoids mesh distortion by its formulation
but does not permit shape differentiation of a discretized set of equations.
The first method, although suffering frommesh distortion errors, could benefit
from a built-in adaptive mesh generation capability which would reduce the mesh
distortion.

• EXAMPLES -- DERIVATIVE OF

• DI SPLACEMENTS WITH
RESPECT

• STRESSES TO

LENGTH OF BEAM

AREA OF MEMBRANE

• FIRST METHOD -- DISCRETIZE FIRST THEN DIFFERENTIATE

eNUMERICAL ERRORS DUE TO MESH DISTORTION

• REDUCE ERRORS BY ADAPTIVE MESH GENERATION

• SECOND METHOD- BASED ON MATERIAL DERIVATIVE

• DIFFERENTIATE CONTINUUM EQUATIONS THEN DI SCRETIZE

• AVOIDS MESH DISTORTION ERRORS

Figure 7
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SENSITIVITY OF OPTIMUMDESIGNS TO PROBLEMPARAMETERS

The problem addressed by this technique (refs. 33, 34)is to obtain derivatives
of an objective function F and design variables V from an optimized solution
with respect to parameters P which were held constant during the optimization.
The most obvious and thus most useful application of the technique is extra-
polation of an optimum design for variations of a problem parameter. For example,
the effect of varying the height H of the truss in figure 8 is assessed by using
optimum sensitivity derivatives. Extrapolated values of the mass F and one
of the cross-sectional areas AI, based on derivative with respect to H, are
compared with those obtained by reoptimization with different values of H. As
shown in the lower right portion of figure 8, the results agree very closely for
up to a 20-percent change in H. Other applications of these types of derivatives
include optimization for multiple-objective functions, assessing the effects of
adding or deleting constraints, and most recently using the derivatives as links
between subsystems during multilevel optimization (ref. 35).

GIVEN AN OPTIMUM DESIGN:

F = OBJECTIVE FUNCTION V = DESIGN VARIABLES

P = PROBLEM PARAMETERS

ANALYSIS GIVES
c_F c_V

.AND A-- EXTRA POLAT ION
c_P _P

1.0(

F

H
A1 .9

• EXAMPLE -- EFFECT OF TRUSS HEIGHT

ON OPTIMUM DESIGN .8

(REF. 33 )

0 REOPTIM IZAT ION

- F

-
_x

I I I I

0 .5 10 15 20

AH/H, percent

Figure 8
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COMPUTER IMPLEMENTATION

t

f

Some progress has occurred in providing general-purpose software for sensitivity
analysis (fig. 9). The Green's function technique described earlier has been imple-
mented in a computer program denoted AIM (ref. 18). Use of this program requires
supplying subroutines to define the system of equations - specifically, the
vector f and the matrix J in figure 5. The capability for computing deriva-
tives of static displacements, stresses, and vibration and buckling eigenvalues
and eigenvectors has been implemented in the SPAR finite-element program
(ref. I0) and EAL (refs. 11, 36). The EAL (Engineering Analysis Language) sys-
tem contains the SPAR finite-element modules, but additionally EAL provides
FORTRAN-like commands which permit branching, testing data, looping, and calling
the SPAR modules (similar to calling FORTRAN subroutines). A recent level of
a proprietary version of the NASTRAN computer program also has capability for
static displacement, stress, and eigenvalue derivatives (ref. 37).

OAIM (GREEN'S FUNCTION TECHNIQUE)

• GENERAL FIRST-ORDER EQUATIONS

• DERIVATIVES WRT PARAMETERS IN EQUATIONS

• SPAR (COSMIC) AND EAL (PROPRIETARY)

• DERIVATIVES OF --
• DISPLACEMENTS

•STRESSES
"EIGENVALUES

• ElGENVECTORS

• NASTRAN ( PROPRIETARY)

• DERIVATIVES OF --

• DI SPLACEMENTS
• STRESSES
• EIGENVALUES

Figure 9
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APPLICATION OF STRUCTURAL SENSITIVITY ANALYSIS TO SPACE ANTENNA

An application of sensitivity analysis to reveal structural design trends is
illustrated in figure 10. The structure is an Earth-orbiting antenna
reflector subjected to nonuniform heating leading to thermal distortions which
can degrade antenna performance (ref. II). The structure is modeled using only
rod elements. There are three design variables representing, respectively, the
cross-sectional areas of the elements in the upper surface (AI), the elements
joining the upper and lower surfaces (A2), and the elements in the lower
surface (A3). Derivatives of the center deflection with respect to each
design variable were calculated and are shown in the figure. A positive
derivative indicates that increasing the design variable increases the
response. A negative derivative indicates that increasing the design variable
decreases the response. The seemingly contradictory result that increasing a
design variable can increase a response stems from the fact that the thermal
loads are proportional to the rod cross-sectional areas. From the table in
figure I0, we see that increasing AI has the largest effect on reducing deflection
but at the cost of a weight increase. On the other hand, decreasing either Ap or
A3 would reduce the deflection and at the same time reduce weight. It is at the
discretion of the designer as to which of the alternatives is a better choice.
The sensitivity derivatives provide the data for that judgment.

ANTENNA MODEL

w = CENTER DEFLECTION
o

DESIGN VARIABLE-

ELEMENT AREA, A i
aWo/aA i

UPPER SURFACE -2.4 x 10-4

DIAGONALS

LOWER SURFACE

8.3 x I0 -5

1.8 x 10-4

DERIVATIVES OF CENTER DEFLECTION

Figure 10
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APPLICATION OF SENSITIVITY ANALYSIS TO SHUTTLE PAYLOAD

Sensitivity analysis has been used to redesign the Airborne Support Equipment

(ASE) assembly on the Space Shuttle orbiter (ref. 5). The ASE supports the

inertial upper stage (IUS) vehicle in the payload bay. The purpose of the IUS

vehicle is to transport payloads further into space once the orbiter has

established low-Earth orbit. The shell of the ASE is subjected to large launch

loads and is designed for an ultimate load of 3000 Ib/in. An initial sculptured

skin design met the design load but was too heavy. A sensitivity analysis was

performed to determine which skin gages had the largest effect on loads and to

determine which type of modified construction would give the largest weight

reduction (among isogrid, waffle, and stiffened skin). The structure was
modeled and divided into zones as shown on the right side of figure 11.

Derivatives of compressive loads and weight with respect to longitudinal,

circumferential, and shear stiffening were computed for each zone. As an

example, consider derivatives with respect to the longitudinal stiffness design

variable ta. The numbers in the zones are ratios of derivatives of load to
derivatives of weight for the sculptured skin design. Negative values indicate

that increasing a design variable decreases the load, and positive values

indicate that increasing a design variable increases the load. The analysis

revealed that derivatives with respect to longitudinal and shear stiffness were

the largest, derivatives with respect to circumferential stiffness were

negligible, and derivatives with respect to shear stiffness were nearly all

positive. Based on these results, the shell was redesigned as a

longitudinally stiffened machined skin. (The isogrid was rejected because of

high shear stiffness; the waffle construction was rejected due to unneeded high
circumferential stiffness.) The resulting design satisfies the ultimate load

constraint with a large margin of safety and an acceptably low weight.

FORWARD FR_

BASELINE ASE CONFIGURATION

• STUDY RESULTS

• LARGE DERIVATIVES WRT
LONGITUDINAL AND SHEAR
STIFFNESS

• SMALL DERIVATIVES WRT
CIRCUMFERENTIAL STIFFNESS

-AFT RING

i-o.17 _.lJ

O.Ol
0.43 0.16 _ 1.93

•-0.24 _.I_

"-0.01 I-'0"03 -0"07 -0.0"_
0.0 0.01 0,01

- FORWARD
FRAME

PEAK LINE

LOAD LOCATION

DISTRIBUTION OF DERIVATIVE RATIOS

ONlOt a

t a = LONGITUDINAL STIFFNESS

• OUTCOME-- REDESIGNED SHELL AS LONGITUDINALLY STIFFENED MACHINED PANEL

SATISFIED DESIGN REQUIREMENTS WITH LOW WEIGHT

(REF. 5)

Figure 11
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STRUCTURAL SENSITIVITY ANALYSIS NEEDS

As a result of surveying methods applicable to computing structural sensitivity
derivatives, a list of needs has emerged (fig. 12). First, continued development
of methods for derivatives of transient response and derivatives with respect to
shape design variables and material properties should have high priority.
Further, techniques developed for sensitivity derivatives in nonstructural
disciplines such as physical chemistry have much to offer and should be
evaluated for their adaptability to structural areas. It appears that
structural designers have made insufficient use of the power and utility of
sensitivity derivatives to guide design modifications and to assess
uncertainties in their models. Their use can be accelerated by demonstrations
of practical applications of sensitivity analysis and careful documentation (by
optimization and sensitivity specialists) to guide structural analysts and
designers not experienced in formal optimization and sensitivity analysis.
Finally, sensitivity analysis needs to be routinely included as a standard
feature in general-purpose structural analysis software packages. Near-term
plans at Langley include evaluation of the Green's function method for
derivatives of transient thermal response, methods for derivatives of spacecraft
thermal response with respect to material properties, and implementation of the
optimum finite-difference step-size technique for finite-element sensitivity
analysis. Concurrent with this effort, demonstration problems will be selected
and solved.

• TRANSIENT RESPONSE

• MATERIAL PROPERTIESAND SHAPE

• PRACTICAL APPLICATIONS

• ROUTINE INCLUSION IN GENERAL-PURPOSECOMPUTERPROGRAMS

LANGLEY PLANS

• EVALUATEGREEN'S FUNCTION METHOD FOR TRANSIENT TEMPERATURES

• DERIVATIVES WRT MATERIAL PROPERTIES

• IMPLEMENTFINITE-DI FFERENCESTEP-SIZE ALGORITHM

• SENSITIVITY DEMONSTRATIONPROBLEMS

Figure 12
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SUMMARY

This paper was based on a recently conducted survey of methods for sensitivity

analysis of structural response (fig. 13). The survey was not limited to

research in the structural area alone and revealed that a broad range of dis-

ciplines are using sensitivity analysis and contributing to the methodology.

In almost every instance, methods from the nonstructural disciplines are dir-

ectly applicable to the structures area. An example application from chemical
kinetics was described in which sensitivity analysis was used to assess the

impact of parameter uncertainties in a mathematical model used in air pollution
studies.

The bulk of the paper has focused on a selected set of innovative methods

applicable to sensitivity analysis of structural systems. The analysis

techniques include a finite-difference step-size selection algorithm, a method

for derivatives of iterative solutions, a Green's function technique for

derivatives of transient response, concurrent calculation of temperatures and

their derivatives, derivatives with respect to shape, and derivatives of optimum
designs with respect to problem parameters. Two applications were described

wherein derivatives were used to guide structural design changes to improve an

engineering design without recourse to formal mathematical optimization. Plans

at Langley for contributing to identified critical needs were cited. Among the

needs were implementation of methods for derivatives of transient response,
derivatives with respect to shape and material properties, solution and

documentation of sensitivity analysis demonstration problems, and routine

inclusion of sensitivity analysis as a feature in general-purpose structural

analysis computer programs. Langley near-term plans in the sensitivity area
include evaluating the Green's function method for derivatives of transient

thermal response, developing methods for derivatives with respect to material
properties, implementation of the finite-difference step-size algorithm, and

solution of sensitivity demonstration problems.

• LANGLEY CONDUCTING SURVEY OF METHODSFOR SENSITIVITY DERIVATIVES

• PAPER REVIEWEDRECENTLY DEVELOPEDTECHNIQUES

• OPTIMUM FINITE-DIFFERENCESEP-SIZE ALGORITHM

• METHOD FOR DERIVATIVES OF ITERATIVE SOLUTIONS

• GREEN'S FUNCTION METHOD FORTRANSIENT RESPONSE

• SIMULTANEOUS CALCULATION OF EMPERATURES AND DERIVATIVES

• DERIVATIVES WITH RESPECTTO SHAPE

• DERIVATIVES OF OPTIMUM DESIGNS WITH RESPECTTO PROBLEM
PARAMETERS

• REVIEWED USES OF DERIVATIVES AND CITED APPLICATIONS

• CITED NEEDSAND OUTLINED LANGLEY PLANS

Figure 13
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PERTURBATION
ANALYSIS METHOD

Perturbed Geometry
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VARIATION OF FLOW PROPERTIES WITH THICKNESS
ELLIPTICAL CYLINDER AT 0 ° INCIDENCE
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Procedure for Calculating
Perturbation Matrix

1. Conventional Panel Method Calculations
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2. First.Order Expansion
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APPLICATIONSOF INVISCIDSENSITIVITYMATRIX

• EFFICIENTANALYSISOF MULTIPLEGEOMETRYPERTURBATIONS

• PRESCRIBEDPRESSUREWINGDESIGN

• UNSTEADYAERODYNAMICS

• AERODYNAMIC-STRUCTURALDESIGNOPTIMIZATION

• STRONGVISCOUS-INVlSCIDINTERACTIONS

TWO-DIMENSIONALAIRFOILVISCOUSAERODYNAMICS

(LOWSPEED)

GIVEN

• SOLID GEOMETRY
• REYNOLOS NUMBER

fTURBULENT ZONE
TRANSITION / _SEPARATION POINT

LAMINAR ZONE '''_-TURBULENT ZONE

SOLUTION . GENERAL CASE

• PRESSURE DISTRIBUTION

• LIFT, DRAG, AND PITCHING MOMENT
• SEPARATION POINT
• TRANSITION POINT
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MATCHING PROCEDURE FOR VISCOUS - INVISCID INTERACTION
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EFFECTOF REYNOLDSNUMBERON AIRFOILPERFORMANCE
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FLIGHT OPTIMIZATION SYSTEM

The Flight Optimization System (FLOPS) is an aircraft configuration
optimization program developed for use in conceptual design of new aircraft
and in the assessment of the impact of advanced technology. Figure I shows
the modular makeup of the program. It contains modules for preliminary
weights estimation, preliminary aerodynamics, detailed mission performance,
takeoff and landing, and execution control. An optimization module is used to
drive the overall design and in defining optimized flight profiles in the
mission performance. Propulsion data, usually received from engine
manufacturers, are used in both the mission performance and the takeoff and
landing analyses. Although executed as a single in-core program, the modules
are stored separately so that the user may select the appropriate modules
(e.g., fighter weights versus transport weights) or leave out modules that are
not needed.

Optimization Weights
Module Estimation

Mission Analysis Preliminary
Performance Control Aerodynamics

Figure 1
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WEIGHTEQUATIONDEVELOPMENT

The weight equations in the preliminary weights estimation modules were
developed by curve fitting statistical data from existing aircraft using an
optimization program. A form which madesense physically was selected for
each equation and all constants (coefficients, exponents, factors, etc.) were
optimized using nonlinear programmingtechniques. The objective was to
minimize the sumof the squares of the percentage errors between the actual
and predicted weights. A nonlinear programmingtechnique is superior to
traditional curve fitting techniques in that the form of the equation and the
variables are arbitrary. Fighter weight equations were developed using a data
base of 22 recent fighter and attack aircraft. The transport data base
included aircraft from the T-39 Sabreliner to the Boeing 747. Figure 2 shows
the correlation for the fighter fuselage weight equation.
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WING WEIGHT EQUATION DATA

The FLOPS program was developed for the evaluation and optimization of

advanced aircraft concepts which usually have unconventional wings.

Insufficient statistical data existed to accurately predict the effects on

wing weight of composite aeroelastic tailoring, forward sweep, and strut

bracing and the relationship between sweep angle and flutter and divergence

weight penalties for very high aspect ratio wings. The Aeroelastic Tailoring

and Structural Optimization program (ATSO, ref. 1) was used to generate a

series of optimum wing designs to predict these effects. Trend data from

these studies, some of which are shown in figure 3, were used with data from

existing aircraft to generate a multi-term equation that accurately predicts

weights for existing wings and provides reasonable trend data for

unconventional wings.
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AERODYNAMICS MODULE

Preliminary aerodynamics data are generated using the Empirical Drag
Estimation Technique (EDET, ref. 2). Modifications have been made to improve
the accuracy of the calculations, such as implementation of the Sommer and
Short T' Method for skin friction drag (ref. 3). In addition, modifications
have been made to extend the range of the program to forward swept wings and
higher aspect ratios, as indicated in figure 4, and to more accurately account
for taper ratio. FLOPS also has the capability to use input aerodynamic data
and scale it with changes in wing area and engine size. Typically, this op-
tion is used for supersonic cruise aircraft concepts, and EDET is used for
subsonic aircraft.

0

0

0

EDET-Empirical Drag Estimation Technique

Modifications "

Forward Swept Wings

Sommer and Short T' Method

Efficiency Variation with Aspect Ratio

and Taper Ratio

ALL or Part of Aerodynamics

Input and Scaled

Data May Be

Figure 4
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TAKEOFFANDLANDINGANALYSIS

FLOPShas the capability to perform detailed takeoff and landing
analyses, as shownin figure 5, including evaluation of constraints on
approach speed, missed approach climb gradient, second segment climb gradient,
landing field length, and takeoff field length (or balanced field length for
multi-engine aircraft) including ground effects. FLOPSalso has a series of
handbook-type formulas which predict these quantities. These formulas have
been correlated against the detailed analyses and are normally used during
optimization with the detailed analysis used for a point design evaluation.

---0

Start

TAKEOFF

_xGear_

A_ Obstacle

Rotate "_'_- Liftoff

St_ Approach LANDING

O_ Flare

I _ l I To_ Brake
O.=--m

Stop

Figure 5
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MAINMISSIONANALYSIS

Mission performance is calculated for all segments using a step
integration technique to provide precise values for fuel burned, elapsed time,
distance covered, and changes in speed and altitude. The primary mission can
be composedof any reasonable combination of climbs, cruises, refuelings,
payload releases, accelerations, turns, holds, and descents. A typical
military attack mission is shownin figure 6. Speedand altitude continuity
may be maintained or ignored at the analyst's option.

j /-_,,.  Turo

Star "__Takeoff _'-'t_ _- Taxi-out Cruise_- Release

Figure 6
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RESERVE MISSION ANALYSIS

The reserves may be specified as a percentage of the total fuel or as the
fuel required to fly an alternate mission or as a combination of the two. A
typical reserve mission is shown in figure 7 consisting of fuel for a missed
approach, flight to an alternate airport, and a specified hold. Each type of
segment for the main and reserve missions is specified independently and the
segments are linked together to fly the mission.

_ Cruise

Climb Descent

Figure 7
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CLIMBPROFILEOPTIMIZATION

The climb profiles may be specified by the user or they maybe optimized
by the program. For optimization, the climb is divided into a series of
energy steps, and the combination of speed and altitude that maximizes the
objective is determined for each energy level. The objective may be minimum
time to climb, minimumfuel to climb, minimumtime to distance (interceptor
mission), or minimumfuel to distance (the most economical). Figure 8 shows a
minimumfuel to climb profile superimposedon a contour plot of the objective
function used for this case.
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MINIMUM TIME TO CLIMB PROFILE

A minimum time to climb profile is shown on figure 9 superimposed on
contours of its objective function, specific excess power. The program tracks
the maximum rate of climb until it reaches the specified cruise conditions.
These plots were for a small, high thrust-weight ratio fighter. A variety of
constraints, such as obeying FAA rules or not diving through Mach I, may be
placed on the climb segment. In addition, a suboptimization may be performed
on engine power setting for minimum fuel options. This is normally used for
engines with afterburners.
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IMPACT OF CRUISE OBJECTIVE

There are ten options for specifying each cruise segment: optimum
altitude, optimum Mach number, or both for either maximum specific range or
minimum fuel flow (endurance segment); fixed Mach number and altitude; fixed
altitude and constant lift coefficient; and maximum Mach number for either
fixed altitude or optimum altitude. In addition, a suboptimization may be
performed on feathering engines. This is particularly useful in endurance
missions. Figure I0 shows the differences in altitude and speed for a very
long range turboprop transport flown to achieve maximum range and maximum
endurance.
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DESCENT PROFILE

The descent segment may be flown along a specified profile, at a constant
lift coefficient, or at the maximum lift-drag ratio. An optimized profile is
shown in figure ii superimposed on a contour plot of an objective function
based on lift-drag ratio.
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DESIGN VARIABLES AND CONSTRAINTS

The nine available design variables for parametric variation or
optimization as well as the six available constraints are shown in figure 12.
Usually the altitude and Mach number are determined during flight profile
optimization and are not used as design variables. Also, there are two modes
of operation of the program. If the gross weight is specified (or an active
design variable), the range (or endurance time) is calculated and should be a
constraint in an optimization. A more effective way to use the program is to
fix the range and iterate to find the gross weight. In this way the range
constraint is always satisfied and the gross weight is a fall out, not a
variable, leaving only six active design variables and five constraints for a
normal problem.

DESIGN VARIABLES CONSTRAINTS

o Wing Area o Range

o Wing Aspect Rotio o Takeoff Field Length

o Wing Thickness-Chord Ratio o Landing Field Length

o Wing Taper Ratio o Approach Speed

o Wing Sweep Angle o Second Segment

o Thrust (Engine Size) Climb Gradient

o Gross Weight o Missed Approach
o Maximum Altitude Climb Gradient

o Maximum Mach Number

Figure 12
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PARAMETRIC VARIATION

A matrix of point designs may be created by parametrically varying one or
more design variables. If two variables are used, contour plots such as the
one shown in figure 13 can be obtained. Contours of supersonic cruise range
are plotted for variations in wing loading (which can be used instead of wing
area) and thrust-weight ratio (instead of thrust). Using this option,
sensitivities to the design variables can be determined.
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OPTIMIZATION

As shown in figure 14, the objective function for the configuration
optimization is a function of gross weight, total fuel, and range. This
provides the capability to minimize the gross weight or fuel for a specified
range or to maximize the range for a given gross weight. Figure 14 also
indicates some of the optimization techniques used. Programs containing
simplex and feasible directions algorithms were also used for optimization.
The results, however, were inferior to those obtained using the DFP and BFGS
algorithms.
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Objective = Fl.Weight + F2. Fuel + F3. Range

Davidon - Fletcher - Powell ( DFP ) or

Broyden - Fletcher- Goidfarb - Shano ( BFGS ) Algorithm

Quadratic Extended Interior Penalty Function

One-Dimensional Search Uses Quadratic

Interpolation to a Minimum

Figure 14
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OPTIMIZATIONPATH

Figure 15 shows the path taken by the program for the unconstrained
optimization of range on a fixed gross weight supersonic cruise fighter. The
starting point thrust-weight ratio was 1.4 for high maneuverability, and the
wing loading was 40 psf for a low approach speed. The figure shows that if
both of these constraints are relaxed, the range maybe increased by over 35
percent. All contour plots shown in this presentation were madeusing the
FLOPScontour plot options.
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WEIGHT VARIATION WITH OBJECTIVE FUNCTION

Figure 16 shows the variation of operating weight empty (OWE), gross
weight, and mission fuel with aspect ratio for a series of optimum designs.
Wing sweep, thickness-chord ratio, and wing area were also active design
variables. Delta weights shown are from values for the minimum gross weight
design at an aspect ratio of 9.3. The minimum OWE design at an aspect ratio
of less than six saves about 12,000 pounds in OWE but uses over 40,000 pounds
more fuel. The minimum fuel design at an aspect ratio of about 17 saves
nearly 20,000 pounds of fuel but has an OWE penalty of nearly I00,000 pounds
which is off the scale in the figure.
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PROBLEM AREAS

There are several problem areas, as shown in figure 17, which can make

convergence to an optimum design more difficult. The degree of design

variable interdependence necessitates the use of at least an approximate

second order algorithm. For example, in order to increase the thickness-chord
ratio, it is usually necessary to increase the wing sweep or decrease the Mach

number. Design variable scaling, when dealing with variables several orders

of magnitude apart, is as important as the optimization algorithm. The

initial value to the two-thirds power seems to work well as a scaling factor.

In a program with multiple nested iterations, analytical convergence is

crucial to accurate gradients and smooth convergence of the optimization

process. In addition, the objective function is not always well defined.

In conclusion, optimization techniques and programs exist which can be

used routinely to help solve engineering problems. They should be used

not necessarily to define the optimum piece of hardware to be built, but
as essential tools in the design process.
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THE GENERAL OPTIMIZATION TASK

The mathematical statement of the general nonlinear optimization problem is

given in Figure i. The vector of design variables, X, includes all those variables

which may be changed by the ADS program in order to arrive at the optimum design.

The objective function F(X) to be minimized may be weight, cost or some other

performance measure. If the objective is to be maximized, this is accomplished by

minimizing -F(X). The inequality constraints gj(X) include limits on stress,
deformation, aeroelastic response or controilabllity , as examples, and may be

nonlinear implicit functions of the design variables, X. The equality constraints

hk(X) represent conditions that must be satisfied precisely for the design to be

acceptable. Equality constraints are not fully operational in version 1.0 of the

ADS program (ref. i) although they are available in the Augmented Lagrange

Multiplier method. The side constraints given by the last equation are used to

directly limit the region of search for the optimum. The ADS program will never

consider a design which is not within these limits.

The ADS program was developed under NASA Research Grant 57910.

FIND THE VECTOR OF DESIGN VARIABLES_ X_ THAT WILL

MINIMIZE F(X)

SUBJECT TO

Gj(X) -<0 J=I,M

HK(X) = 0 K=I,L

xL<xI<X U I=I.,N

Figure i
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ADS PROGRAM STRUCTURE

Figure 2 shows the overall design program structure with the particular

structure of the ADS program on the right. The main program is provided by the

user, as well as the routines to evaluate the objective and constraint functions

(analysis) and their gradients (if available). If gradient information cannot be

supplied by the user, an option is included in ADS to calculate this information by

finite difference. The ADS program is itself a subroutine which controls the flow

of the optimization process. When function or gradient evaluations are required,

control is returned to the calling program. After the information is evaluated, ADS

is called again and the optimization proceeds. This program organization provides

the flexibility for the user to terminate the program any time control is returned

to the main program and then re-start from this point at a later time. This also

provides a convenient means of performing multi-level and multi-discipline

optimization where several modules in the main program call ADS independently. Also,

if during analysis a sub-optimlzation task is performed, this may call ADS, even

though the results become input to a higher level in the overall optimization

process. Within the ADS program a three level structure exists, with the control

routine directing the flow of information. The Strategy level is used if the problem

is to be solved by conversion to a sequence of unconstrained minimizatlons,

sequential linear programming, or other technique whereby the optimization task is

converted to a sequence of problems. The Optimizer performs the actual optimization

task either directly, as in the method of feasible directions, or as a sub-problem

within a Strategy. Finally, the One-Dimensional Search portion performs a line

search to minimize the objective in a direction specified by the Optimizer. The

particular techniques used at each of these three levels are described in the

figures to follow.

USER-SUPPLIED AI)S SYSTEM

Figure 2

415



OPTIMIZATIONSTRATEGIES

Figure 3 lists the Strategies available in version 1.0 of the ADSprogram. The
parameter ISTRATis used to designate the strategy to be used. ISTRAT=0would be
used if optimization is to be performed by a direct method such as the method of
feasible directions or if the problem is unconstrained. Options 1-5 are various
forms of Sequential Unconstrained Minimization Techniques. Option 6 is classical
Sequential Linear Programming with move limits to insure stability. Option 7 is
also a form of sequential linear programming, but instead of producing a sequence of
infeasible designs as the optimum is approached, this method produces a sequence of
improving feasible designs. Option 8 is a relatively new algorithm whereby the
Lagrangian function is approximated as a quadratic and the constraints are
llnearlzed. This approach retains the essential nonlinearity of the problem, even
for linear objective functions. Theoretically, a Quadratic Programmingsub-problem
is solved in this method. However, by using a direct method for optimization as
opposed to a special purpose QPoptimizer, someof the theoretical difficulties with
the method are overcome. Early experience with the ADS program has shown that
Sequential Linear Programming is more effective than is usually thought and that
Sequential Quadratic Programmingas coded here is a particularly powerful strategy.
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SEQUENTIAL LINEAR PROGRAMMING
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SEQUENTIAL QUADRATIC PROGRAMMING

Figure 3
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OPTIMIZERS

The optimization algorithms available in the ADSprogram are listed in Figure
4. The parameter IOPT is used to indicate the optimizer to be used. Options 2, 4
and 5 are used for solving unconstrained problems or for the unconstrained
minimization sub-problem in a Sequential Unconstrained Minimization strategy. When
an unconstrained optimization method is used, the design is still limited by the
side constraints. This insures that, for example, minimum gage constraints are
never violated, even whenusing a Sequential Unconstrained Minimization Technique at
the Strategy level. Two feasible directions algorithms are available for
constrained optimization. These are used for direct optimization of constrained
problems as well as for solving the linear or quadratic programming sub-problem of
strategies 6-8. The Method of Feasible Directions algorithm is essentially the same
as that contained in the earlier program, CONMIN(ref. 2). The Modified Method of
Feasible Directions (ref. 3) is similar to the Generalized ReducedGradient Method,
but is more storage efficient. Also, in the one-dimensional search, this method
uses a least squares technique rather than Newton's method for maintaining
feasibility.

UNCONSTRAINED

IOPT METHOD
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4

5

FLETCHER-REEVES CONJUGATE DIRECTION METHOD

DAVIDON-FLETCHER-POWELL VARIABLE METRIC METHOD

BROYDON-FLETCHER-GOLDFARB-SHANNO VARIABLE METRIC METHOD

CONSTRAINED

IOPT METHOD

1

3

METHOD OF FEASIBLE DIRECTIONS

MODIFIED METHOD OF FEASIBLE DIRECTIONS

Figure 4
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ONE-DIMENSIONALSEARCH

Figure 5 lists the One-Dimensional Search routines available in ADS.Five
algorithms are available for both constrained and unconstrained problems. The
parameter IONEDis used to identify the algorithm to be used. Options i and 6 are
usually not useful except for special purpose applications. The remaining methods
are different combinations of the Golden Section method and Polynomial
Interpolation. The Golden Section method is normally only useful if function
evaluations are very cheap and if high precision of the one-dimensional search is
desired. While this method is usually applied only to unconstrained problems, it has
been modified to find the constrained minimum for use in ADS. Normally options 4
and 9 are the most efficient and reliable, where the solution is first bounded and
then refined by polynomial interpolation. Oneunique feature of the ADSprogram is
that, if no feasible solution can be found, a design is sought which minimizes the
constraint violations. Thus, on termination, the constraints which must be relaxed
to produce a realistic design are easily identified.
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ADSPROGRAMOPTIONS

Not all combinations of Strategy, Optimizer and One-Dimensional search are
appropriate. For example, an unconstrained minimization method would not be a valid
optimization technique for use with Sequential Linear Programming. Figure 6 shows
the acceptable combinations of modules, where the numbers correspond to the control
parameters ISTRAT, IOPT and IONED. In this table, an X is used to denote a valid
combination of methods. First, a Strategy is chosen appropriate to the problem at
hand. Next, moving across the row, the Optimizer is chosen from among the valid
options, and finally, moving downthe column, the One-Dimensional search routine to
be used is chosen. An example is shown by the solid line beginning at Strategy
number 5 (the AugmentedLagrange Multiplier Method). The Broydon-Fletcher-Goldfarb-
Shanno optimizer (IOPT=5) is used to solve the unconstrained minimization sub-
problem and the One-Dimensional search is to be performed using polynomial
interpolation after first bounding the solution (IONED=4). It is clear from this
table that a large number of independent combinations of methods are available. It
maybe expected that, as experience is gained with the program, many of the options
will prove not to be useful for practical design and that a few will survive as
preferred options. One of the unique features of the program organization is that
one-to-one comparisons may be madebetween methods by changing only four input
parameters to ADS. No other coding modifications are needed.

OPTIMIZER
STRATEGYl 2 3 4 5

X X X X X
0 X 0 X X
0 X 0 X X
,n X 0 X X

0 X 0 X X

m

ONE-DIM,

SEARCH

1

2

3

4

5

6

7

8

9

10

O--X --9

X 0 X

X 0 X

× 0 X
°li0

0

0 0 0 0 0

0 X 0 X X

0 X 0 X X

0 X 0 X (_)

0 X 0 X X

0 0 0 0 0

X 0 X 0 0

X 0 X 0 0

X 0 X 0 0

X 0 X 0 0

Figure 6
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BLOCKDIAGRAMFORUSINGADS

Figure 7 shows the program organization for using ADS. The user must begin by
allocating array storage for the vector of design variables, constraints, and de-
sign variable bounds, as well as work arrays for use in ADS. Also at this point the
basic control parameters such as the numberof design variables, the options ISTRAT,
IOPT and IONEDand similar parameters are defined. The basic program flow control
parameter INFOis initialized here to -2. Then the ADSsubroutine is called to
initialize all internal parameters to their default values. These include
convergence criteria, finite difference steps and the like. Control is then
returned to the calling program and the user is free to over-ride the default values
of the internal parameters if desired. ADS is then called again and the
optimization process proceeds from here. Whenever function or gradient information
is needed, control is returned to the calling program with INFO=I or 2 respectively.
The user evaluates the needed information and calls ADSagain. This iterative
process continues until the optimization task is complete, at which point ADS
returns a value of INFO=0. All information is transferred to and from ADSvia a
single parameter list. No additional commonblocks or data transfer mechanismsare
required. Any time that control is returned to the calling program, the user may
store the contents of the parameter list on mass storage and terminate the program.
The program may be restarted from here by reading the information back and
continuing the program flow. In the event that the user wishes to use all default
options in ADS, the first call to ADS may be omitted. In this case INFO is
initialized to zero and the optimization proceeds without the first initialization
step.

BEGIN
ALLOCATEARRAYSTORAGE
DEFINEBASICVARIABLES

INFO.,I---2
CALLADS(INFO,ISTRAT,IOPT,IONED,. . )

OVER-RIDEDEFAULTPARAMETERS
WHICHARENOWCONTAINEDIN

ARRAYSWK'ANDIWKIFDESIRED

CALLADS(INFO,ISTRAT,IOPLIONED,. . )

YES

YES _ N O

EVALUATE EVALUATE

OBJECTIVE GRADIENTOF

AND OBJECTIVE
CONSTRAINT AND SPECIFIED

FUNCTIONS CONSTRAINTS

EXIT

OPTIMIZATION
IS COMPLETE

Figure 7
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DESIGNEXAMPLE

Figure 8 gives an example of the ADSprogram for solution of the lO-bar truss
commonly found in the literature. Here no special effort has been madeto formulate
the problem for efficient optimization. The design variables are the membercross-
sectional areas (as opposed to reciprocal variables which would be much more
efficient). The structure is stress constrained, subject to the single loading case
shown. The table gives the optimization results for various combinations of ISTRAT,
IOPT and IONED. The numberof function and gradient evaluations is also given. In
this example, all default parameters in ADSare used and no attempt was made to
"fine tune" the program to this problem. Also, it should be noted that as
experience is gained with the program, these defaults will be modified to improve
efficiency of the general design task. As may be expected, Sequential Unconstrained
Minimization methods required a relatively high number of function and gradient
evalutions. Also, the use of the Golden Section algorithm in the One-Dimensional
search dramatically increases the numberof function evaluations without noticable
improvement in the result. Direct methodsappear to be relatively efficient and the
Sequential Quadratic Programming method is seen to be a particularly powerful
Strategy. Assuming early experience with this method is indicative of its
efficiency for general design problems, this appears to offer an impressive
capability for engineering design. As experience is gained with the program,
further refinements can be expected. The over-all motivation in the development of
the ADS program has been to provide a user-friendly, general, and efficient
tool for a wide variety of engineering design problems of practical interest.

DESIGN EXAMPLE_ THE IO-BAR TRUSS

I00K 100K

ISTRAT IOPT IONED OPTIMUM ANALYSES GRADIENTS

0 1 7 1516,8 305 39

0 1 9 1519,7 120 30

0 3 8 1497.8 489 8

0 3 9 1497,3 114 6

1 2 4 1648,4 114 27

1 4 2 1534,2 384 37

1 4 5 1549,4 109 33

2 4 5 1522.7 133 41

2 5 2 1505,2 528 51

3 4 4 1511.3 211 51

4 5 4 1500,8 209 52

5 4 4 1504,0 210 47

5 5 4 1496,3 235 54

6 3 9 1510.3 20 20

7 3 10 1509.5 47 47

8 1 9 1498,0 28 6

CONMIN 1500.9 104 31

Figure 8
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SHAPE DESIGN OF A FILLET

Selection of the best shape of a fillet in a tension bar such that no

yielding occurs has long attracted the attention of engineers. Dimensions and

notations for the bar and fillet are shown in figure I. Wit_ symmetry, only the

upper half of the bar is considered. The boundary segment r- is to be varied,

but with fixed points at A and B. The segment F is the central line of the
fillet and r- and F- are uniformly loaded edges.

The optimal design problem is to find a boundary shape F 1 to minimize the

total area of the fillet such that no yielding occurs. Constraints are placed

on von Mises yield stress, averaged over small regions or finite elements _ on

which m_ is a characteristic function with value I/(area of _) and _(o(z))mis

normali_ed von Mises yield stress.

The classical boundary value problem is reduced to a variational or energy

related problem which not only has excellent properties of existence and

uniqueness but also provides the mathematical foundation for finite element

analysis. The variational formulation may be viewed as the principle of virtual

work and the finite element method as an application of the Galerkin method to

the variational equation for approximate solution of the boundary value problem.

×2

9"

A FILLET

r"

F 3

Design Variable: Shape of F 1

Cost: $0 = fffl dfl

Constraint: _k = ff_ _(°(z))mk dfl _ 0 ,

Virtual Work Equation:

k = 1,2,...,NE

a(z,_) _ ff_

2 2

[oiJ(z)eiJ(z)]d_ = fr 2 i[ 1 Tiz i dr
i,j=l =

for all kinematically admissible virtual displacements z

Figure i
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MATERIAL DERIVATIVE AND ADJOINT VARIABLE METHOD

Since shape of the domain is treated as the design variable, it is

convenient to think of _ as a continuous medium and utilize the material

derivative idea from continuum mechanics. The process of deforming _ to a new

domain _ may be viewed as a dynamic process as shown in figure 2. One can
T

define a transformation as x = x + TV(x) where • plays the role of time and x is

a point in initial domain _ _hat moves to point x in the deformed domain _ •

Note that the "shape design velocity" V(x) of point x can be considered as

perturbation of design variable. A detailed discussion of this method can be
found in references I and 2.

The adjolnt variable method of design sensitivity analysis (refs. I, 2, and

3_ is applied by defining an adjoint equation for an adjolnt displacement field

X to obtain the variation _ where _ is the small region or the finite element

considered, mk is a characteristic function for the corresponding _, and _ is the
normalized yon Mises yield stress.

Note that onl_ boundary integrals appear in the expression for _. The
normal movement (Vin) plays the role of shape design perturbation and-can be

expressed in terms of shape design parameters.

(vTn)

r _ / FT dx T

V(x) ffidT

Material derivative of cost: _0 = fr (vTn)dr

Material derivative of constraint ===_Adjoint equation

2

a(xk,x) = ff_ Y

i,j=l
[O_--_ij(z)oiJ(x)]mk dfl

, 2

*k =- fri[ Y
i,jffil

oiJ(z)_ij(_k)] (vTn)dr- frk mk(_k - _)(vTn)dr

Figure 2
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PARAMETRIZATIONOF BOUNDARYP

In order to computedesign sensitivity _, the variable boundary should be
parameterized in terms of a design variable vector b (refs. 2 and 3). Presume
that points on the boundary F are specified by a vector x (e;b) from the origin

T
of the coordinate system to t_e point S on the boundary, as shown in figure 3,

where _ is a parameter vector.

When the vector b of design variables, b = [bl,. ,b_] T, has been defined,
the domain optimization problem reduces to selection of the finite dimensional

vector b to minimize a cost function, subject to the constraints. By defining

xT(a;b) m x(_;b + T6b), one can define the velocity field at the boundary by
taking the derivative of x with respect to T. Taking the scalar product of V

T
with the unit outward normal to the boundary F and substituting the result into

the analytical expressions for _ and _ yields numerically computable
sensitivity formulas.

x 2

O
×I

d _x

V - dT [x(_;b + T_b)] = _--__b

(vTn) = in T _x(_;b) ]6b
_b

n T _x dF] _b: [fr

_k : [/r G(z %k) (nT _x )dr] 6b'

Figure 3
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COMPARISONOFFINITE ELEMENTMETHODS

Since shape design sensitivity information is given as a boundary integral,
one has to check the accuracy of the numerical analysis results on the boundary.
For comparison of accuracy, constant stress triangular (CST), linear stress
triangular (LST), and 8-noded isoparametric (ISP) elements with optimal stress
(refs. 4 and 5) are used to calculate design sensitivity. That is, stress values
are evaluated at Gausspoints and linearly extrapolated to obtain boundary
stresses and strains.

For boundary parameterization, piecewise linear and cubic spline
representations are used. In order to compareaccuracy of results obtained with
different finite elements, the samesmall region should be used to average
stress. The small regions selected are shownin figure 4, located next to the
variable boundary where it is most difficult to obtain accurate design
sensitivity results (ref. 2).

Define g_. E _k(b + 6b) - _(b_. The ratio of _' and g_ times I00 is used
as a measure o_ accuracy; i.e., TO0% means that the predicted change _' is

exactly the same as actual change. Numerical results with 6b = 0.001b are shown

in figure 4.

\\

1

4"
III I III II I  r-I

Sensitivity Check (_'IA_ × 100)%

Region No.

5

6

7

8

9

I0
I

Piecewise Linear Cubic Spline

CST LST ISP ISP

67.5

68.6

68.3

70.1

79.3

183.6

99.2

99.2

99.1

99.1

98.3

87.0

102.8

I01.8

I00.0

98.4

105.2

102.8
L

102.6

101.7

100.4

97.4

104.9

104.1

Figure 4
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OPTIMIZATION OF FILLET

The cubic spline function, which has two continuous derivatives everywhere

and possesses minimum mean curvature, is employed here to define the moving

boundary and 8-noded isoparametric finite elements shown in figure 5 are used for

analysis. The finite element model contains 131 elements, 458 nodal points, and

846 degrees of freedom.

Heights of nodes that define the varied boundary are chosen as the design

variables, as shown in figure 5. The fillet is optimized using the

Linearization Method (ref. 6). Convergence criteria require the L-2 norm of

direction vector p to be zero at the optimum point, where p is obtained by solving

a quadratic programming problem. For numerical data, Young's modulus, Poisson's

ratio, and allowable yield stresses are 30 x 106 psi, 0.293, and 120 psi

respectively.

_he initial design is b = [5.55, 5.1, 4.65, 4.2, 3.75, 3.3, 2.85, 2.4 A

1.95] I. _nitially, cost, maximum stress violation, and IIP[I are 145.1 in z,
X m

2.1 I0^ , and 2.0 ;espectively. After optimization, they are reduced to

133.4 in z, 6.0 x I0 TM, and 8.8 x i0 TM, respectively. The final design is shown

in figure 5 with design variable b = [2.64, 2.13, 1.90, 1.74, 1.61, 1.55, 1.5,

1.5, 1.5].

i i I

i -iliIIIillII 

(a) initial design

_0 = 145.1 in. 2 ÷ 133.4 in. 2

(b) final design

max @k = 2.1 x i0 -I ÷ 6.0 × 10 -4

Figure 5
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DESIGNOFANENGINECONNECTINGROD

An engine connecting rod connects the crankshaft and piston pin of an
engine, transmitting axial compressive load during firing and axial tensile load
during the suction cycle of the exhaust stroke. The geometry of the connecting
rod considered is shownin figure 6. Considering that the loads acting on the
rod are in a plane and that the rod is nearly symmetric about this plane, one
can reasonably assumethat the rod is in a plane stress state. With the main
interest in the shank and neck regions, the shape of the shank and neck regions
of the rod are to be determined through the optimization process. The optimum
thickness distribution, which varies independently from the domainvariation, is
to be determined in the optimization process. To satisfy the condition that the
distance between the piston pin and the crankshaft is prescribed, it is required
that the length of the rod not be changed.

__ CONNECTINGROD
ENGINE

"il _1
244 p

283.5

Design variables: Thickness h and shape of shank area

Figure 6
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DESIGN SENSITIVITY ANALYSIS OF CONNECTING ROD

The optimal design problem is to find a boundary shape and shank thickness

to minimize total volume of the rod, with stress constraints. For stress con-

straints, lower and upper bounds are imposed on averaged principal stresses of

inertia and firing loads.

As in the fillet design problem, one can use the principle of virtual work

to derive a variational equation of elasticity. One can then employ the material

derivative idea from continuum mechanics and an adjoint variable technique to

calculate the shape design sensitivity formulas (ref. 7). The sensitivity expres-

sion resulting from thickness variation can also be found using the same adjoint

variable method (ref. 2).

To use the sensitivity formulas computationally, the thickness function h is

selected to be piecewise constant over strips of finite elements that run along

the shank. Also, a cubic spline function is used to parameterize the boundary.

(See fig. 7.)

Cos t :

Constraint: _k = ff ¢(°(z))mk d_ _ 0 ,

_0 = fF h(VTn)dF + ff_ 6h d_

!

_k = f_ F1 (z'%k)6h aft + fF F2 (z'%k)(Vrn)dF

k = 1,2,-..,2NE

Figure 7
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OPTIMIZATIONOFCONNECTINGROD

With the sensitivity coefficient obtained, one can apply the Linearlzatlon
Method (ref. 6) to obtain the optlmum shape and thickness distribution. An 8-
noded isoparametrlc element is used for analysis. A finite element model
including 422 elements, 1493 nodal points, and 2983 degrees of freedom is
employed.B For numerical data, Young's modulus and Polsson's ratio are
2.07 × 10-MPa and 0.298 respectively. Upper and lower bounds of principal
stresses of inertia are 136 MPaand -80 MPa,whereas they are 37 MPaand -279 MPa
for the firing case.

The manufacturer's design is taken as an initial design, where the cost_
functlona_, maximumconstraint violation, and IlPll were initially 726050mmS,
2.7 × i0 , and 5.9, respectively, and two constraints were active or violated
around th_ neck area _near section a-_). After optimization, they are reduced to
697182mm, 1.0 × I0-_, and 6.5 × i0--, respectively, with 50 stress constraints
active. The shape of the initial and final designs and several cross sections
are illustrated in figure 8.

o d
b c

b d

..... finol design

Section 0-0 Section b-b Section C-C Sectiond-d

_0 = 726050 mm3 + 6971R2 rnm3 max "_k = 2.7 × l0 -I + !.0 × IO-3

Figure 8
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DESIGN OF A BEAM-PLATE-TRUSS

Figure 9 shows a truss-beam-plate built-up structure in which thin flat

plates, stiffened by longitudinal and transverse beams, are supported by four 4-

bar trusses. A uniformly distributed load is applied to the plates. The points

supported by trusses are at the intersection of two crossing beams nearest the

free edges of the structure. The plates and beams are assumed to be welded

together. The design variable in this problem is the combination of plate

thickness, width and height of the rectangular cross sections of beams, and

positions of beams. The design problem is to minimize the volume of the built-up

structure, subject to constraints on displacement, stress, natural frequency, and

bounds on design variables.

The state variable for this built-up structure consists of the plate

displacements, beam displacements and torsion angles, and nodal displacements of

the trusses, which satisfy kinematic interface conditions (kinematically

admissible displacement fields). Hamilton's principle results in a variational

formulation of the governing structural equilibrium and eigenvalue (free

vibration) equations.

1 I I I I

I I I I I
% f % f

% l' \.J

//% ..,_,

/ % I' _,

% •

BEAM-PLATE-TRU S S

s • •

/, _,% /' :%.

(a) Top View

(b) Side View

Figure 9

Design Variables:

Beam cross-sectional area

Plate thickness

Positions of Beams

Constraints:

Displacement

Compliance

Eigenvalue

Stress on beams and plates

432



DESIGN SENSITIVITY ANALYSIS OF BEAM-PLATE-TRUSS

Design sensitivity analysis with respect to conventional design variable and

shape using material derivative and adjolnt variable method may be extended

directly to the built-up structure problems. For conventional design variation,

the general sensitivity formula contains contributions from each structural

component directly. For shape variation, contributions from each component

appear as integrals over common boundaries, using interface conditions on the
common boundaries.

In figure I0, comparison between actual changes and predictions for

constraints with 5% changes in all conventional design variable are presented. A

finite element model of I00 plate elements, 80 beam elements, and 16 truss

elements is used, with 363 degrees of freedom for total structure. For numerical

data, Young's modulus, Polsson's ratio, and material density are 3.0 x 107 psi,
0.3, and 0.I ib/in respectively. Results shown in figure I0 indicate that

sensitivity accuracy is very good for conventional design.

' = _ ff FlCZ %k)dh dR + _ f F2Cz,%k)(vTn)dr
_k i,j nij ' i,j rij

SENSITIVITY CHECK FOR CONVENTIONAL DESIGN

Cons trai nt

]Displace-

ment

Stress

on

beam

element

Eigenvalue

El.

No.

C

1

3

5

II

13

15

¢'/ACxlO0

112.7

108.8

109.7

109.6

106.8

110.0

109.2

91.3

Cons traint

stress

on

plate

element

El.

No.

I

3

5

12

14

23

25

35

45

_'/A_xI00

95.1

I11.3

109.5

109.7

109.5

109.1

109.8

115.1

113.9

Figure i0
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SHAPE DESIGN SENSITIVITY CHECK FOR BEAM-TRUSS-PLATE

It is well known (ref. 8) that finite element results on interface

boundaries, where abrupt changes in the boundary conditions occur (interface

conditions), are far from being satisfactory. Based on this fact, a finer grid is

used for shape design sensitivity calculations. Only one quarter of the entire

structure is used for calculation, due to symmetry. A nonconforming 12 degrees-

of-freedom finite element is used for plates. A finite element model of 400

rectangular plate elements, 80 beam elements, and 4 truss element is used, with

total of 1281 degrees of freedom. The same numerical data that are used in

conventional design sensitivity calculations are used.

In figure II, sensitivity accuracy results are given for 5% uniform changes

in all shape design variables (positions of beams). Results in figure II show

reasonably good agreement between sensitivity predictions _ and actual changes

A_k for all except some stress constraints on plate elements. That is, the
sensitivity results for the stress constraints on plate elements adjacent to the

interface (marked by *) are poor, even with finer grid.

Cons traint

Displace-

ment

Compliance

Eigenvalue

Stress

on

beam

element

I
E1 _'/A_xI00

1

21

3O

45

55

77

C 97.5

92.3

95.5

99.6

99.7

i00.0

98.3

103.1

103.9

Constraint

Stress

on

plate

element

El.

NO.

1

19

44

58

85

128

149

175

198

237

259

296

317

358

400

_'/A_xIO0

100.7

103.6

109.9"

98.7

188.3"

97.8

98.7

91.8

109.6

449.0*

138.8"

95.9*

87.8

105.3

111.3

Figure ii
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DESIGNOFA SIMPLEBOXBUILT-UPSTRUCTURE

A simple box built-up structure, in which five plane elastic solid plates
are welded together, attached to a wall is shown in figure 12. A uniformly
distributed llne load is applied on top of the two side plates and the end
plate. The shape design variable in this problem is the length d, width b, and
height h of the box.

As in the beam-plate-truss case, the principle of virtual work results in a
variational formulation of the governing structural equations. Then, one can use
the material derivative idea and an adjolnt variable method to obtain the shape
sensitivity formula.

In view of beam-plate-truss shape sensitivity results, an equivalent but
alternate form of shape sensitivity formula is used for this problem. Since
finite element results are accurate on the domain and not on the boundary, the
shape sensitivity formula_is expressed in terms of domain integral (refs. 1 and
2). Hence, instead of (VTn), one has terms V and (div V) in the gensitlvity
formula.

J_

Design Variables: d, b, and h

Constraints:
*k = fffl ¢(°(z))mk d_ _ 0 , k = 1,2,..*,NE

!

_?k = _ ffi_i [g(_'z)T V + F(_,z)div V]d_

Figure 12
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SHAPE DESIGN SENSITIVITY FOR SIMPLE BOX

Since shape design variables are given as d, b, and h, one can assume the

velocity field to be linear on each plate and thus (div V) is constant. An 8-

noded isoparametric element is used for analysis. A finite element model of 320

elements, 993 nodes, and 1886 degrees of freedom7is used. For numerical data,

Young's modulus and Poisson's ratio are 1.0 x i0 psi and 0.316 respectively.

The dimension of the structure is b = d = h = 8 in. and the thickness of the plates

is 0.i in. Uniform external load is 4.77 ib/in.

In figure 13, the sensitivity accuracy result is given separately for 3%

change in d and h. Results given in figure 13 show excellent agreement between

predictions _ and actual changes A_k. The boundary method that is applied to

the beam-plate-truss built-up structure is tested to the same box problem with

unacceptable results. The domain method of shape design sensitivity for built-up

structure has a promising future. Work continues in evaluating the method on

larger scale examples.

Regt on

Top

Bottom

El.

No.

1

15

29
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57
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114

128

_'/A_ × !00
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I00.9
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End

El.
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264
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i

_'/A_. × 100

6d = 0.03d

96.2

98.1
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95.6

100.4

99.9

114.1

95.1

120.3

99.9

_'/A_ x !00
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103.4

103.0

102.6

103.0
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103.7
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Figure 13
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INTRODUCTION

Decomposition of a large optimization problem into several smaller subproblems
has been proposed as an approach to making large-scale optimization problems
tractable. To date, the characteristics of this approach have been tested on
problems of limited complexity (e.g., reference i). The objective of the
effort described in this paper is to demonstrate the application of this
multilevel optimization method on a large-scale design study using analytical
models comparable to those currently being used in the aircraft industry. The
purpose of the design study which is underway to provide this demonstration is
to generate a wing design for a transport aircraft which will perform a
specified mission with minimum block fuel. This paper includes (i) a
definition of the problem, (2) a discussion of the multilevel decomposition
which is used for an aircraft wing, (3) descriptions of analysis and
optimization procedures used at each level, and (4) numerical results obtained
to date. Computational times required to perform various steps in the process
are also given. Finally, a summary of the current status and plans for
continuation of this development effort are given (fig. I).

OBJECTIVE: TO DEMONSTRATE THE APPLI CATION OF MULTILEVEL

OPTIMIZATION METHOD iN A LARGE SCALE DESIGN
STUDY.

APPLICATION: TO GENERATE A WING DESIGN FOR A TRANSPORT AIRCRAFT
TO PERFORM A SPECIFIED MISSION WITH MINIMUM BLOCK
FUEL.

PRESENTATION

OUTLINE: • PROBLEM DEFINITION

• MULTILEVEL DECOMPOSITION

• ANALYSIS AND OPTIMIZATION PROCEDURES

• NUMERICAL RESULTS

• OBSERVATIONS

Figure 1
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MULTILEVEL OPTIMIZATION APPLICATION

The multilevel optimization procedure is being applied to an L-1011 derivative

transport aircraft which is being studied by the Lockheed-California Company

as discussed in reference 2. The focus of this particular study is to design

a new wing to give minimum fuel consumption for a specified flight profile.

Design variables include overall wing geometric shape defined by aspect ratio,
sweep, total area, taper ratio and thickness ratio. In addition, variables

describing the wing structure within that shape are determined down to the

level of cross-sectional dimensions of stiffened-skin wing cover panels. As

overall wing geometry changes are made, the structure is reoptimized and the

static aeroelastic effects on aerodynamics are calculated but no aerodynamic

optimization of wing airfoil shape is performed. (See fig. 2.)

NEW
Wl Ni

(L-1011 DERIVATIVE)

OBJECTIVE

MINIMUM OF
BLOCKFUEL

CONSUMPTION
SMALL
TAI L

STRETCHED

BODY_

S sq. m, /R, hlc

NEWFLIGHT
STATION

CONSTRA INTS ON

PERFORMANCE

AERODYNAMI CS

STRUCTURE

NEW
PROPULSION

SYSTEM

Figure 2

DESIGN VARIABLES:

h/c, A, S, /R, Ct/Cr
AND

STRUCTURALCROSS SECTIONS
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COOPERATIVE VENTURE WITH LOCKHEED

The study of the transport aircraft wing is being performed as a joint venture
with the Lockheed-California Company. Lockheed is using their integrated
structural design system which computerizes their conventional design methods
to perform such studies (reference 2). Parametric studies are used to
calibrate weight equations to perform overall configuration trade studies.
Structural sizing for this calibration is based on fully stressed design with
stiffened wing cover panels selected from design charts representing
predesigned cross sections. Aeroelastic considerations such as flutter and
gust are included in the Lockheed procedures. Multilevel optimization is
being applied at NASA Langley, initially to get the procedure implemented at
all levels for strength design and subsequently to include aeroelastic
considerations. Lockheed is under contract to provide sufficient design data
from their studies to allow NASA personnel to study the same configuration at
the same level of detail, (See fig. 3.)

LOCKHEED - CALIF.

CONVENTIONAL PARAMETRI C
STUDIES

• STRUCTURES:

INTEGRATED ANALYS I S

FULLY STRESSED DESIGN

PREDESIGNED CROSS SECTIONS

• AEROELASTIC CONSIDERATIONS

Figure 3

NASA LANGLEY

SYSTEMATI C MATHEMATI CAL

OPTIMIZATION

• MULTILEVEL APPROACH FROM
CONFIGURATION LEVEL DOWN

TO STRUCTURAL SIZING
LEVEL

• DI SCIPLINARY ANALYSES
COMPARABLE TO LOCKHEED'S

AS TO THEIR DEGREE OF
DETAI L
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FINITE-ELEMENT STRUCTURAL MODEL

The finite-element representation of the structure was developed by Lockheed

personnel for analysis by the NASTRAN program used in their PADS system
(reference 3). Since the focus was on wing design, a fairly detailed model is

used for the wing structure and the regions of the fuselage necessary to get

proper representation of the wing-body intersection. The wing and wing-body

intersection structure is modeled primarily with rod and membrane panel

elements. The remainder of the structure (fore and aft fuselage, empennage,
engine, and landing gear) is modeled using beam elements. This NASTRAN model

was converted to be compatible with the Engineering Analysis Language (EAL)
system (reference 4) for analysis at NASA Langley. The resulting model has

641 joints for a symmetric half model. During design studies, only the cover

panels in the upper and lower surfaces of the main wing box (216 elements)
were resized (fig. 4).

641 JOINTS

1539 ELEMENTS (216 RESIZED)

Figure 4
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THREE-LEVEL DECOMPOSITION

The decomposition for wing design is a particular case of the general

multilevel decomposition methodology described in reference 5. The wing

design process is decomposed into three separate optimization problems, as

shown in figure 5. At the top level, design variables such as wing
structural weight, aspect ratio, and sweep are used to minimize fuel

consumption subject to performance constraints. The optimum values of these

variables are then passed to the middle level as fixed parameters where the

distribution of wing box cover skin material is determined which will give a

minimum measure of constraint violation. Next, these optimum distributions
are passed to the bottom level where the optimum cross-sectional dimensions of

each of the stiffened panels are calculated. The optimization procedures at

the middle and bottom levels are used to minimize a single cumulative
constraint violation associated with that level. This cumulative constraint

is a differentiable envelope function of all individual constraints. The

particular envelope function used is the Kresselmeir-Steinhauser function

(reference 6). The cumulative constraints and their derivatives are passed

upward between levels. Iteration between the three levels is performed until

all constraints are satisfied. Analysis and optimization procedures used at
each level are discussed next.

t1, t2 ...

AIRCRAFT ]PERFORMANCE

A.... Qm, ,3 _mlc _ W
s

COVER SKIN

I STIFFENED II STIFFENEDPANEL 1 PANEL 2

MINIMIZE FUEL CONSUMPTION

SUBJECT TO PERFORMANCE
CONSTRAINTS

MINIMIZE CONSTRAINT VIOLATION
FOR WING STRUCTURE

MINIMIZE CONSTRAINT VIOLATION

FOR EACH PANEL

- CUMULATIVE CONSTRAINT,
KRESSELMEIR-STEINHAUSER FUNCTION USED

Figure 5
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TOP LEVEL PROCEDURES

The Flight Optimization System (FLOPS) (reference 7) is used to perform overall
optimization at the top level. The objective is to determine the aircraft
wing configuration which minimizes block fuel consumption for a specified
mission. Performance constraints include limits on approach speed, field
length, and climb gradient thrust. Cumulative constraints from the lower
levels must also be satisfied. The standard version of FLOPS uses statistical
equations to calculate wing weight as a function of wing geometry. Modifi-
cations have been made so that the program can be implemented in the
multilevel optimization procedure by including wing structural weight as a
design variable and adding the cumulative constraint from the lower levels.
(See fig. 6.)

• FLOPS MISSION PERFORMANCE PROGRAM USED (REF 7)

• MODIFICATIONS TO FLOPS NECESSARY FOR MULTILEVEL IMPLEMENTATION

• WEIGHT OF WING STRUCTURE INCLUDED AS A DESIGN VARIABLE

• ADD A CONSTRAINT: CUMULATIVE CONSTRAINT FROM BoI-rOM
AND MIDDLE LEVELS

Figure 6
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MIDDLELEVELPROCEDURES

The optimum distribution of material in the wing box cover skins is calculated
by the middle-level procedures. Displacements and stresses are calculated
using the model in figure 4 as input to the EALsystem. Analytical
derivatives of these quantities are calculated using the procedures described
in reference 8 which are implemented as sequences of input statements to EAL.
The design variables used in optimization are coefficients in a polynomial
expression for the cover thickness distribution. The distribution currently
being used is illustrated in figure 7. As indicated on figure 5, the
objective function is a cumulative constraint from the middle and bottom
levels with a fixed weight of the wing box covers from the top level specified
as a constraint. Optimization is performed using CONMIN(reference 9) in a
sequence of steps in which the results from the structural analysis are
approximated by linear extrapolation.

• EAL USED FOR STATIC ANALYSIS AND DERIVATIVES

ANALYTICAL DERIVATIVES USED FOR THICKNESS VARIABLES

• DESIGN VARIABLES COEFFICIENTS IN EXPRESSION FOR COVER
THICKNESS DISTRIBUTION

TSKIN = C0 + C1 II-_) + C2 11-13) 2

• OBJECTIVE FUNCTION MINIMUM CUMULATIVE CONSTRAINT FROM:

MIDDLE LEVEL - WING TIP DISPLACEMENT
BOFrOM LEVEL - PANEL CUMULATIVE CONSTRAINTS

• CONSTRAINT = FIXED WEIGHT OF WING BOX COVERS

• PIECEWISE LINEAR OPTIMIZATION PROCEDUREUSING CONMIN

Figure 7
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INITIAL SKIN PANEL DESIGN VARIABLE LINKING

The thickness properties of the finite elements representing the wing box
cover skins are described in the spanwise direction by the quadratic
expression in terms of the nondimensional parameter "B" (B=O at the wing root
and B=I at the tip) shown on figure 8. Two quadratic segments are used, one
inboard of the engine pylon and the other outboard. A constant thickness is
specified in the chordwise direction. The upper and lower wing box cover skin
properties are taken to be symmetric with respect to the wing middle surface.
The six coefficients of the two quadratic expressions are the design variables
used during optimization. This linking scheme is used to reduce the number of
design variables during initial testing of the multilevel optimization
procedure. It is recognized that this simplified linking restricts the
possible distributions available for optimization and these restrictions will
have to be removed after the initial testing phase.

TSKIN : CO + C1 (1 - 13)+ C2 (1 - 13)2-_ _____....j_ _
\

_CONSTANT

/ • sYMMErR,cUPPER
/ ANDLOWERWiNG

"-._/ BOX COVER SKINS

Figure 8
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BOTTOM LEVEL PROCEDURES

Each of the 216 wing box cover panels is optimized by the bottom level
procedures. Although properties of corresponding panels on the upper and
lower surfaces are taken to be the same, the panel loads are not the same.
Therefore, each pair of panels is optimized in order to assure consideration of
the panels with the critical loadings. The design variables are the cross-
sectional dimensions of a stiffened panel, as shown in figure 9. The
objective function is a cumulative constraint composed of contributions from
five stress constraints and eight buckling constraints that are considered.
The CONMIN program is used for optimization. After each panel is optimized,
an optimum sensitivity analysis is performed to get derivatives of the
cumulative constraint with respect to parameters such as panel length, width
and stress resultants which are passed down from the middle level. The
algorithm described in reference i0 is used for these calculations. Finally,
these optimum sensitivity derivatives are combined wih structural response
derivatives from the middle level to form cumulative constraint derivatives
which are subsequently used in the middle-level optimization process.

PANEL OPTIMIZATION OPTIMUM SENSITIVITY ANALYSIS

• DESIGN VARIABLES • PARAMETERS

T

_-bf-_ tf Nx

• FAILURE MODES aO 6g_
STRESS (5) c_N ' 6 N
BUCKLING (8) x y

• CONMIN USED CUMULATIVE CONSTRAINT CALCULATION

X
-- _!. • • •

c_tI c_Nx 0t I

Figure 9
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MULTILEVEL OPTIMIZATION IMPLEMENTATION FOR L-1011 DERIVATIVE WING

The general characteristics of the computer programs used in each of the three
levels have been described in the previous discussions of the levels. The
original intent was to transfer all data between levels via the Relational
Information Management (RIM) system (reference 11). Since theprocedures in
the middle level are all related to the EAL structural analysis system, its
data base was used for all data communication within the middle level. It was
found that the bottom level was tightly coupled to the middle level in terms
of types and quantities of data that had to be shared. Consequently, the
bottom level was implemented as an EAL processor and utilities described in
reference 12 were used to provide data communication to the EAL data base.
The relatively small amount of data communication required between the mid-
dle level and top level is handled using the RIM system. (See fig. I0.)
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MINIMUM WEIGHT SIZING BY INDIRECT METHOD

To assess the results being produced by the bottom two levels, an indirect
method of calculating a minimum weight design was employed. The middle and
bottom levels were used to calculate minimum values of the middle-level
cumulative constraint for four values of wing box cover weight. These
optimized designs are indicated by the circular symbols on figure II. The
point above the horizontal axis is infeasible since the cumulative constraint
has a positive value and the three points below the axis satisfy all
constraints but are overdesigned. The minimum weight design is located where
a line through these points intersects the horizontal axis as shown on the
figure. This design is heavier than the minimum weight design produced in the
Lockheed studies. The difference is attributed to the restrictions imposed by
the initial design variable linking scheme, figure 8, that is being used for
testing purposes.
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TYPICAL SUMMARY OF COMPUTATIONAL ACTIVITY

A summary of the computational activity for the major tasks involved in the
operation of the middle and bottom levels is shown in figure 12. Both
normalized CPU time and I/0 count are given. Performing a static structural
analysis and calculating derivatives of the response quantities involve
considerable computational activity. A large portion of CPU time is required
for panel optimization at the bottom level where 216 separate optimization
runs are made. Only a small amount of I/0 activity is required in these
calculations. The CPU time required for optimization at the middle level is
an order of magnitude less than that required for the structural analysis and
derivatives that are used for linear approximation during optimization. Total
CPU time, I/0 count, and cost are shown at the bottom of the figure for five
piecewise linear optimization cycles on a CDC Cyber 175 computer.

NORMALIZED NORMALIZED
TASK CPU TIME I/O COUNT

INITIALIZE

STATI C STRUCTURAL
ANALYSIS

STATIC DERIVATIVES

PANEL OPTIMIZATION &
SENSITI VITY ANALYSI S
(= 35 ITERATIONS/PANEL)

LINEAR OPTIMIZATION
CYCLE FOR
(10 ITERATIONS)

•O52

•174

• 137

• 613

•024

.134

• 277

•243

•025

•321

1.000 1.000

-'--216 PANELS

FOR 5 PIECEWISE
LINEAR CYCLES
ON CYBER 175

CPU TIME 650 sec

I/O COUNT 34O0O
COST $350

Figure 12
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CONCLUDING REMARKS

The current status of the implementation of the multilevel optimization
procedure is summarized on figure 13. The aircraft wing design process has
been decomposed into three levels. The bottom two levels have been
implemented using the EAL system and have been successfully tested. This
initial testing resulted in the demonstration of an indirect method for
minimum weight design which may prove to be an attractive alternative to
conventional methods that have been used in the past. The three-level system
can be tested when the FLOPS program is incorporated at the top level and
efforts to demonstrate the application of the multilevel optimization method
on a large-scale design study are continuing.

• AIRCRAFT WING DESIGN DECOMPOSED INTO THREE LEVELS

• INTEGRATION AND TESTING OF BOTTOM TWO LEVELS SUCCESSFULLY COMPLETED

• MINIMUM WEIGHT SIZING BY INDIRECT METHOD DEMONSTRATED

• FLOPS PROGRAM TO BE INCORPORATED AT TOP LEVEL

• STUDY CONTINUING

Figure 13
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ABSTRACT

Preliminary design for an optimal aircraft configuration requires the integration
of aeroelastic analysis into the configuration selection process. Configurations of
aircraft in the early design stage are usually based on analytical and statistical
weight methods from past experience, and approximate loads and stress analyses. This
often leads to the freezing of external geometry before strength and flutter analyses
are complete, thereby decoupling the powerful but time-consuming process of struc-
tural design to minimumweight from the configuration optimization process. If the
lengths of time could be shortened to perform accurate loads, structural design, and
flutter optimization analyses, then structural optimization could proceed in concert
with the overall configuration optimization. Better aircraft of advanced types could
then be designed.

A methodology was developed to upgrade current capabilities in ASSET(Automated
System Synthesis and Evaluation Technique) for including results from aeroelastic
considerations. ASSETprovides the traditional rapid and cost-effective solution to
configuration selection for any aircraft mission, within the limitation that the
structural weight is based on statistical data. PADS(Preliminary Aeroelastic Design
of Structures) is being developed to generate structural weight data that include
aeroelastic considerations which in turn could be used to update ASSET'sdata base

tr_u_-uL_ _u_1=_. Aeroelastic inputs to _^cc_ will lead toduring configuration ..... == .... _'--
significant improvements in the configuration selection process especially when
advanced designs combinecomposite structures with unusual planform geometry and
operating conditions.

The paper discusses the design experience associated with a benchmarkaeroelastic
design of an out of production transport aircraft, and reports on current work being
performed on a high aspect ratio wing design. The PADSsystem will be briefly sum-
marized and someoperational aspects of generating the design in an automated aero-
elastic design environment will be discussed.
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INTRODUCTION

Preliminary design for an optimal aircraft configuration may require the inte-
gration of aeroelastic considerations into the configuration selection and design
process. Aeroelastic design incorporates the effects of aircraft structural flexi-
bility on static and dynamic loads, control effectiveness, and aeroelastic stability
into the sizing of the structure. Configurations of aircraft in the early design
stage are usually based on statistical and analytical weight methods computedfrom
approximate loads and stress analyses. This often leads to the freezing of external
geometry before strength and flutter analyses are sufficiently advanced, thereby
decoupling the powerful but time-consuming process of structural design to minimum
weight from the configuration optimization process. If the elapsed time to perform
more accurate loads, structural design, and flutter optimization analyses is short-
ened, then structural optimization can proceed in concert with the overall configur-
ation optimization, and more efficient advanced types of aircraft can be designed.

ACRONYMS& DEFINITIONS

ACS
ASSET
CADAMo
CBUS
CPP
DBM
DMS
DOF
FAMAS
FINDEX
FSD

- active control system
- AdvancedSystems Synthesis and Evaluation Technique
- Lockheed's computer aided design system
- Continuous Batch User Specification
- commandprocessor program in CBUS
- data base management
- data base managementsystem
- degree of freedom
- Lockheed's matrix data based computing system for aeroelastic analysis
- Lockheed's DMSfor matrices and NASTRANtables
- fully stressed design algorithm

Lockheed - Lockheed-California Company
MLC - maneuver load control
NASA - National Aeronautics and SpaceAdministration
NASTRAN- structural finite element program developed by NASA
PADS
PSASA
RAP
RDMS
SIC
SMG

- Preliminary Aeroelastic Design of Structures
- panel sizing and stress allowables
- resource allocator program in CBUS
- run data managementsystem
- structural influence coefficients
- structural model generator, a finite element model generator which

represents a family of aircraft designs.

o Registered trademark of CADAM,Inc.
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PROBLEM DEFINITION

Aeroelastic analysis of an _ircraft structure is a substantial undertaking

involving many disciplines and complex data paths. A short time ago, preliminary

aeroelastic analysis was reserved for projects on the verge of achieving go-ahead

status while preliminary aeroelastic design was not even attempted.

In the past, the level of effort required for an accurate aeroelastic design was

not justifiable relative to the answers provided by statistical methods which were

supported by historical data bases. Today, however, there are many combinations of

advanced technologies and configurations, such as supercritical airfoils, high aspect

ratio wings, forward swept wings, active controls, aeroelastic tailoring, and new

materials, that have no historical data base from which to derive the statistical or

parametric weight equations. Two questions (Figure i) regarding the role of aero_

elastic design in preliminary design are:

i) How to integrate aeroelastic design in P.D.?

2) How to make aeroelastic design timely?

• HOW TO INTEGRATE AEROELASTIC DESIGN
PROCESS INTO AIRCRAFT CONFIGURATION
SELECTION?

• HOW TO REDUCE ELAPSED TIME FOR
AEROELASTIC DESIGN?

Figure 1
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APPROACH

There are two options available for acquiring a rapid aeroelastic analysis and

design capability: generate or acquire special programs tailored to rapid analysis

procedures; or adapt existing engineering methodology and the associated computer

tools to requirements of rapid analyses. Software maintenance is a major part of any

proposed computer-aided design system. Lockheed-California Company (Lockheed) has an

extensive library of computer programs which support airplane design through final and

production design phases. It would be convenient to extend the application of that

software into the preliminary design phase instead of creating specialized software

and to update statistical based weight equations used in the design process (Figure 2). _

Airplane design involves complex interactions between the conceptual designer,

the customer with design specifications, and the engineers with final design and

manufacturing requirements. Since many facets of the engineering process defy quan-

tification, the computer methodology used to improve the flow of design information

must be: I) flexible and 2) highly modular. Flexibility will permit inputs into the

design process from many sources, and modularity will deter obsolescence when new en-

gineering design processes become available.

Against the background of existing data management systems, existing computing

systems of great sophistication, and high-level languages oriented to the user-

friendly atmosphere, the company decided to use the production design computing tools

and to attack directly their known deficiencies with respect to preliminary design

applications. A computer system was postulated which would act as a bare tree from

which existing computer programs could be hung as needed in a user-friendly and highly

modular environment.

• UPDATE STATISTICAL BASED WEIGHT EQUATION
USED IN CONFIGURATION SELECTION PROCESS

• USE EXISTING DESIGN AND ANALYSIS PROGRAMS
-- STATIC AND DYNAMICS LOADS

-- FINITE ELEMENT METHODS FOR STRUCTURE

-- FULL STRESS REPRESENTATION

-- WEIGHT DISTRIBUTION

--STRUCTURAL SIZING FOR LOADS

-- FLUTTER

-- STRUCTURAL SIZING FOR FLUTTER AND DEFLECTION

-- ACTIVE CONTROLS

• AGGRESSIVE USE OF PRE- AND POSTPROCESSORS

• UNINTERRUPTED COMPUTING CAPABILITY

Figure 2
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GOAL

The goal of Preliminary Aeroelastic Design of Structures (PADS)is to develop
computer operating system architecture and design methodology to be used to generate
an accurate aeroelastic design within the conceptual and early preliminary design
phases. This aeroelastic design data base will permit more accurate weights to be
established during the configuration trade-off studies. The long term goal is to de-
fine an accurate aeroelastic design within an elapsed time which is measured in weeks
and to perform a design perturbation within elapsed time which is measured in days
(Figure 3). Design perturbations include changes to any variable which does not
require significant data preparation. For the wing, these variables will include
sweep, planform definition, taper, airfoil sections, t/c, and aspect ratio.

The work to achieve these goals is in progress. PADScapabilities currently
include a structural finite element model generator, weight distribution, grid trans-
formations, steady maneuver loads for symmetric conditions, dynamic gust loads, land-
ing loads, brake loads, flutter analysis, and structural sizing.

This paper will address four areas:

i. The formulation of computer operating system technology and data management
techniques which will permit the definition and execution of engineering pro-
cesses in a continuous, user-friendly computing environment

2. The definition of engineering processes for preliminary aeroelastic design of
structures which maybe used to derive an accurate structural weight for a
wing in the elapsed time normally available for a conceptual design phase

3. The presentation of results from the PADSvalidation effort, computer
software as well as engineering processes, using a known airplane design data
base

4. The presentation of results from a high aspect ratio wing design

AEROELASTIC CONSIDERATIONS
FOR ADVANCED DESIGN

BEFORE PADS

• ELAPSED TIME 2 TO 6 MONTHS

• COSTS MODEL COMPLEXITY

MUST COVER ALL
POSSIBLE ANALYSIS
REQUIREMENTS --
NO QUICK LOOK

CAPABILITY

4 TO 10 MAN MONTHS

AFTER PADS (GOAL)

• 5 DAYS SETUP

• 1 DAY DESIGN

PERTURBATIONS

MODEL COMPLEXITY
MATCHES ANALYSIS
REQUIREMENTS --

2 MAN WEEKS

Figure 3
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PADS/ASSETINTERFACE

Lockheed's AdvancedSystems Synthesis and Evaluation Technique (ASSET)computer
program provides a rapid and cost-effective solution to configuration selection for
any aircraft mission, but only within the limitation that the structural weight must
be based on semianalytical and statistical data. An ASSETstudy usually requires
that a baseline aircraft model be created and exercised in ASSETto represent an ac-
tual known aircraft data base. This model then is modified through adjustments to
parametric coefficients to simulate changes to baseline aircraft systems, structural
arrangement, material usage, design parameters, and mission requirements. Once com-
plete, the model is passed into the ASSETdesign cycle for sizing, configuration
trade-off analysis, and performance evaluation.

The PADSgoal is to update the weight data base during configuration trade-off
studies as well as to perform general aeroelastic analysis and design in a highly
computerized environment. Figure 4 showsthe interaction between PADSand ASSETdur-
ing a typical configuration trade-off study. Aeroelastic inputs to ASSETwill lead
to significant improvements in the configuration selection process, especially when
advanced designs combine advanced structural materials, such as composites, with un-
usual geometry.

PADSdevelopment consists of two distinct efforts:

• The development of the computer operating system which will permit continuous

computing capability in a user-friendly and engineering-defined environment.

• The definition and mechanization of basic engineering processes for use in

aeroelastic design and analysis.

The computer operating system will have applications outside of PADS whenever a

requirement exists to integrate diverse computing programs under one operating system.

REQUIREMENTS

I J UPPER LEVEL CONFIGURATION

DISCIPLINE REPRESENTATIONS PERFORMANCE SELECTION
(PARAMETRIC/STATISTICAL/ MISSION

SIMPLE MODELS

I AERODYNAMICS

PROPULSION

SUBSYSTEMS

STRUCTURAL
WEIGHT EQ.

I

i WEIGHT

FUEL
ASSET CONF,GSiZE

DOC

(LOOSELY COUPLED m/
/

/

STRUCTURAL
SIZINGS -_ PADS _- ....

AEROELASTiC

REQUIREMENTS
LOADS,

FLUTTER,
STRESS, ETC

/

_/

/

/
/

LOWER LEVEL AEROELASTIC
DESIGNS

Figure 4
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THECONCEPTOFA SOFTWAREBUS

The design specifications of the operating system for PADSmirror the
specifications of a computer hardware bus. The specifications of the computer hard-
ware bus define an interfacing system for use in interconnecting data processing,
data storage, and peripheral data control devices in a closely coupled configuration.
Two objectives of a hardware bus are I) to provide communication between two devices
on the bus without disturbing the internal activities of the other devices interfaced
to the bus, 2) to specify protocols that precisely define the interaction between the
bus and devices interfaced to it.

If the word "devices" is replaced by "load modules/programs", the above
specifications for a hardware bus comeclose to defining the specifications for a
computer operating system in terms of a software bus. Oneof the reasons the oper-
ating system wasnamedContinous Batch User Specification was to carry over the bus
concept into the operating system acronym, namely CBUS.

The user normally accesses the computer through areas designated as "TARGET
PROGRAMS"and Data Basesas shownin the Figure 5. While this level gives the user
most of the flexibility, the user usually must address a lot of detailed work just
to execute a simple task. CBUSprovides the interface between target programs and
data bases and commandsthat define a computing function or process. The user under
this architecture executes processes which may contain hundreds of target programs
executions and data base references.

Figure 5
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CBUSOPERATINGSYSTEMSPECIFICATIONS

The CBUSoperating system (Figure 6) will i) access and makeuse of any existing
data base, 2) be able to use any existing or independently developed program, 3) im-
pose no requirements on programs to be integrated into the operating system, 4) in-
terface with the user with high-level, user-friendly language, 5) allow the command
language names/keywordsand computing processes to be definable outside of the oper-
ating system, 6) use existing data base managementsystems for storage of permanent
data, 7) enable the computing process to be uninterrupted, and 8) permit the execu-
tion of an unlimited number of equivalent batch jobs in one computer run, in one un-
interrupted computing segment.

• ACCESS AND USE ANY EXISTING DATABASE SYSTEM

• IMPOSE NO REQUIREMENTS ON EXISTING
PROGRAMS FOR INTEGRATION

• INTERFACE WITH HIGH-LEVEL, USER-FRIENDLY
LANGUAGE

• ALLOW USER DEFINED NAMES AND KEYWORDS

• USE EXISTING DBMS FOR STORAGE OF PERMANENT
DATA

• ALLOW THE COMPUTING PROCESS TO BE
UNINTERRUPTED

• PERMIT THE EXECUTION OF UNLIMITED NUMBER
OF EQUIVALENT BATCH JOBS

Figure 6
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CBUSGENERALCHARACTERISTICS

The CBUSoperating system consists of four players: i) the monitor, 2) the
resource allocator, 3) the commandprocessor, and 4) the target (Figure 7). Each
player is a separate executable load module in its own right, with the monitor,
commandprocessor, and resource allocator having a special interrelationship.

The monitor is the upper level program which loads other executable load modules
into core for execution. The resource allocator is a program which allocates and re-
defines computer resources as required by the next target. The target is any execu-
table load module (program) which the monitor will attach and execute during the con-
tinuous computing sequence.

The commandprocessor program (CPP) interprets user supplied information and
builds a stream of data which instructs the resource allocator on how to arrange the
resources of the computer to satisfy the needs of the next program to be executed,
while under the umbrella of the monitor. The commandprocessor data source is a
library of macros/commands,including the namesof the macros/commands,which are
user-generated. Figure 7 illustrates the essential features of the operating system.

USER K"I COMMAND
c "_ _PROCESSOR

INPUT DEC (CPP)

SYMBOLS

[] LOADMODULE
FLOWOFCONTROL

(_ DATA

0

t
ENTRY I

!
MONITOR

RAP
CONTROL

DATA

RESOURCE
ALLOCATOR
(RAP)

TARGET
PROGRAMS

Figure 7
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USERINTERFACE

The user interfaces with the CBUSoperating system through commandsand through
the commandprocessor language. A commandspecifies a process in a language which is
interpretable by the CBUScommandprocessor at the user input level. A process is a
particular method of doing something, generally involving a number of computer pro-
grams and/or operations. A commandcontains all the defaults necessary for executing
a process. The commandprocessor recognizes four levels of macro configured data
structures; namely, macro, subcommand,command,and supercommand. The different
levels of macros, as illustrated in Figure 8, makepossible the definition of primi-
tive processes which can be used as building blocks for any number of higher level
processes. The macro and subcommandare building blocks for commandswhile com-
mandsare building blocks for supercommands.

A subcommandis a self-contained instruction set which defines a process to be
performed and is accessible in the CBUSoperating system by the samenaming conven-
tion as is available for a macro.

A commandcontains, in a fixed sequence, a collection of references to subcom-
mandsas well as all defaults for attributes associated with subcommandsand macros.

A supercommandcontains references to commandsand supercommands,and includes
all defaults necessary to perform its function. Supercommands,therefore, permit
recursive operations because a supercommandcan reference itself.

SUPER /__..COMMAND ENO

/° /

MACRO

STRUCTURE I .EXAMPLES CD.MA,D

JSUER  COMMAND COMMAND
A

Av COMMAND
8

=I I q \

SAMEFORMAS SUBCOMMAND
, DONPCRUTNOTA ...... SS

Figure 8

END

END
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ALTERCAPABILITY

A commandincludes all instructions and attribute default assignments necessary
for execution. The functionality concept requires that the user be able to alter the
command'sdefault attributes. Attributes which could be candidates for change are
namesof data sets to be incorporated into the process, constants to be used in the
computations, and naming of output data sets associated with the process. The alter
capability also permits the complete definition of the function with all defaults,
while retaining the flexibility to generate a radically new version of the function
without creating and storing a new version of an existing command/macrocode.

As shownin Figure 9, an alter capability is madeavailable at every level
of the command/macrotier by providing an alter commandcard after the data line
which is to be altered. The alter commandline executes the prescribed alter function
when the user supplies an altercard with the identical keyword which is also imbedded
in the alter commandline.

The altercards can be grouped into four categories: global, commanduser-
supplied, subcommanddefault, and altermacro. Global altercards are those that the
user can specify to apply to the entire run. Altercards supplied by the user under
the commanddefinition have the highest priority, and will override the global alter-
cards The _i_........ 1_..... _ ___^_ • 7_ uLt_• _,,,_v, _=_ _,,,_=_ in a macro, is p±au_u below _- g±uua±-_'
altercards and above the default cards supplied in the subcommand.

@ COMMAND

A=5FLUTTER

TITLE WT IS 5000 LB

FORTRAN STATEMENTS

DATA DECKS

COMMANDS

SUBCOMMANDS

ALMOST ANYTHING

Figure 9
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COMMANDPROCESSORLANGUAGE

The user commandlanguage is a high level language which permits the typical user
to define complex computing functions through commandsand branch capabilities. Some
of the essential features will be demonstrated by example.

Figure i0 shows the format for invoking a (super) command,executing an
unconditional branch, a conditional branch, and a call to an internal procedure, and
computing scalars, as well as a three level altercard capability. Each qualifier may
contain up to eight characters. The altercard maybe as simple as a nameABC.

@ NAME; INVOKES (SUPER) COMMAND

@ GO TO

@ IF (A*B -- 3.0. GT.R) THEN

@ CALL ; CALL TO INTERNAL PROCEDURE

A < 3.4 * 30 -- B; CALCULATOR MODE

ABC_ DEF__ GHI___ JKL = ; ALTERCARD

(THREE LEVELS)

Figure i0
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THEDESIGNPROCESS

The first step in the design process is to define the objectives of the task
and the necessary level of design detail required to satisfy those objectives. The
design team must then review the requirements, cost out the project, and define a
schedule. This is an iterative process between the customer and the design team as
with any project with a specific amount of available resources. This phase is
labelled "DESIGNOBJECTIVES"in Figure 11.

The next step is the generation of the structural finite element model, initial
weight distributions, and initial entries into the various modules to generate geo-
metry tables for each grid system to be used in the design.

The initial internal loads intensities are generated from static loads for a
rigid airplane and uniform properties for those structural finite elements to be
sized. A panel sizing and stress allowable (PSASA)process then generates from the
load intensities the initial sizing for the specified margins of safety.

The computations for static loads and internal loads intensities are repeated
using the sizing derived from rigid airplane loads.

The first flex sizing data provides a basis for updating the weight A_ and

for generating dynamic loads input (gust, taxi, landing) along with the flutter

minimum sizing constraints.

PRELIMINARIES

DESIGNOBJECTIVESI

l J w,,oH.S
SIZING

R,G,0AIP LJ F,RST_JF,RSTFLEXI--.J F,RSTFLEX1--..STATICLOADSI -[ SIZING I -I sTATIC LOADSl -I SIZING I-

SECONDFLEXL_._IFLUTTERS'Z'NGI
STATICLOADS| |CONSTRAINTS I

SECOND I _
FLEXSIZINGI

f
SECONDFLEXL_dSECOND FLEXTAXI
GUST LOADS | |AND LANDINGLOADS

---P,-__U PDATEwEIGHT I
•, • REPEATTO THIRDFLEXSIZINGORFINALLOADS,ETC.

Figure ii
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GRIDTRANSFORMATIONS

The underlying premise to the development of PADScapability is the use of
production tools and proven procedures to formulate the necessary analytical processes
to be used in weight, flutter, loads, etc. This approach results in a general proli-
feration of grid/coordinate systems. A methodwas devised to generate systematically
the transformations between the manygrid systems without sacrificing flexibility
(Figure 12).

The grid transformation process requires location and type-of-displacement
labeling of the degrees of freedom (DOF) for the two grids involved in the transforma-
tion. However, certain sections of the airplane have special requirements concerning
the transformation process; for example, aileron control surface mass elements should
be beamedto flexibility degrees of freedom on the aileron and not to the degrees of
freedom on the outer wing. So in addition to location and DOFinformation, the geo-
metry table includes group identifications, such as inner wing, outer wing, aileron,
pylon, and fuselage. The transformation between grids therefore is limited to bound-
aries defined by the airplane groups. The responsibility of generating geometry
tables resides with the discipline which defines the grid.

--THE KEY TO COMMUNICATION BETWEEN DISCIPLINES--

AERODYNAMICS

STRUCTURES (MODELLING AND STRESS)

WEIGHT

STATIC LOADS

DYNAMIC LOADS

FLUTTER

Figure 12
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MODELINGCRITERIA

Eachengineering discipline will define the modeling requirements according to
its functions and responsibilities. There will be no outside constraints except
where more than one discipline will be affected.

There are practical limits to reducing the elapsed time required to generate
and checkout a 3-D finite element model. Experience gained with the use of user
coded programs which generate, correct, and manipulate computer files led to the
engineering development and coding of computer programs for rapid generation of
principal parts of the finite element model using relatively few input variables.

A finite element model generator (Figure 13) will be assembled from this tech-
nology. Data for the model generator will be defined to represent a specific family
of aircraft designs which maybe generated using relatively simple inputs. The collec-
tion of model generator programs and the input data required to represent a particular
family of aircraft designs will be referred to as a structural model generator (SMG).

Wing geometric data for input to the finite element model generator will consist
of certain key variables that define the wing planform together with a 3-D parametric
representation of the wing section shapes. The section shape representation is avail-
able _rom the aerodynamicsdepartment and serves as the input data for ASSET. This
arrangement will permit variations in aspect ratio, t/c, planform, taper, sweep, and
dihedral with relatively simple inputs.

NASTRAN MODEL GENERATOR

Figure 13
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FINITE ELEMENTMODELING

There are two forms of finite element modeling: I) that which is required for
stress considerations, and 2) that which is required for structural flexibility/
stiffness considerations. The task here is to generate a finite element structural
model computer data deck which will serve the objectives of both. Critical to the
quick design concept as shownin Figure 14 is a structural model generator (SMG)
which would generate a family of finite element models using relatively simple
inputs. These inputs would primarily be a function of the airplane external geo-
metry and generally not a function of model configuration arrangements.

The 3-D modeling of the structure begins with a "bones" drawing of critical geo-
metric control points to be used in the programs which generate and assemble finite
element program input decks. The 3-D description for the wing is derived from a data
base which Aerodynamics generates as part of their aerodynamic configurations studies.
Control surfaces, flaps, and the associated actuation systems are modeled as necessary.
Leading and trailing edge surfaces are modeled for load carrying requirements and not
stress sizing.

STRUCTURAL MODEL GENERATOR

--THE KEY TO QUICK DESIGN CONCEPT--

GENERATES A FAMILY OF 3-D FINITE ELEMENT STRUCTURAL MODELS
USING RELATIVELY SIMPLE INPUTS

• AERODYNAMICS PARAMETRIC REPRESENTATION OF THE WING

• "BONES" DRAWING OF CRITICAL GEOMETRIC CONTROL POINTS

THE OBJECTIVE IS TO HAVE A STRUCTURAL MODEL GENERATOR
FOR EACH CLASS OF AIRPLANES

• JET TRANSPORT/ASW AIRPLANE (AVAILABLE)

• PROP DRIVEN TRANSPORTATION/ASW AIRPLANE (NOT AVAILABLE)

• FIGHTER (DELTA PLANFORM) (NOT AVAILABLE)

Figure 14
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STRUCTURALFINITE ELEMENTMODELDEFINITION

The finite element model consists of three parts: i) the wing, which is a full 3-D
model (Figure 15) with a mediumdegree of detail, inculding control surfaces, flaps,
gears, and leading and trailing edge structure; 2) the fuselage over the wing box, which
is a full 3-D barrel section; and 3) the forward fuselage, aft fuselage, and the empen-
nage, which are modeled with beamelements. There are 3,741 degrees of freedom in the
NASTRANF-set, 228 degrees of freedom for the definition of the structural influence
coefficients, and 161 for the A-set stiffness matrix. The wing contour data base was
obtained from the aerodynamics representation used in drag and lift studies. The ribs
were modeled one model rib to two airplane ribs.

I

Figure 15
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FINITE ELEMENT_ODELGENERATOR

Generation of NASTRANbulk data decks for families of high aspect ratio wing
designs, in order to modify model parameters such as thickness ratio, sweepangle,
aspect ratio, taper ratio, or wing area, has been automated and integrated into PADS.
From the relatively simple inputs, key planform coordinates and cross-section defi-
nition datasets are created. Figure 16 showsan example of the program interfaces
in the NASTRANmodel generator for a typical high aspect ratio wing airplane design.

REWINGgenerates the initial datasets which contain geometric keypoints and
airfoil definition for a desired planform layout. From the datasets produced by
REWING,a program called WBONESdefines locations/orientations, such as spar and
aileron layout, locations for planar grid points, and initial identification number-
ing for the production of NASTRANgrid cards. SLICEprovides the airfoil definition
for the three-dimensional finite element model. Input to SLICEconsists of airfoil
definition in the streamwise direction as well as outputs from REWINGand WBONES.
SLICEinterpolates from the input airfoil definition to obtain the airfoil definition
for the desired cuts.

Additional grid locations and connectivity necessary for structural elements
between the fuselage and wing are created by a program called QUILT. PROCARDoutputs
a deck of wing grid cards which is in final form.

Program SICTABgenerates additional NASTRANbulk data cards such as ASETS,LDREF,
FORCE,MOMENT,LMAT,and someof the MPCcards.

NASTRAN MODEL GENERATORPROGRAMINTERFACE

INPUTS

' REWING

]
INPUTS

[ W/BONES I REWING W_

I
] s.,oE]

L

INPUTS _Qt

INPUTS PR_OI

SICTAB 1

I
NASTRAN

BULK DATA

iNPUTS

Figure 16
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PLANFORMDEFINITION

In the PADSsystem, the geometry of a wing is described by data files which
contain the coordinates of the planform outline, the airfoil contour, and keypoints
for major structural elements. With use of similarity transforms, the geometry
description of newwings can be formed from existing wings. The layout of a new
wing is defined by values of selected geometric parameters, such as aspect ratio,
sweep, span, and thickness ratio. REWINGcreates the data files necessary for
geometric description of wings. REWINGallows creation of new planforms by
variation of one or more geometric parameters.

Figure 17 displays creation of new planforms from existing planforms for sub-
sonic and supersonic designs, respectively. The figure represents the creation of
an aspect ratio 12wing planform from an aspect ratio 7.64 wing planform. In this
example, additional input to REWINGincluded specifications to locate the i/4 chord
point of the MACat the samefuselage location on the new planform as it was on the
original. The location of this reference point is shownas an x for the original
planform and as a + for the new planform. The figure shows a combined variation of
sweepand taper angle for an arrow wing planform.
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Figure 17
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STRUCTURAL MODEL GENERATOR CAPABILITIES

A summary of the NASTRAN model generator capabilities is shown in Figure 18.

The quick response capability is derived from a flow of data and program executions

that represents a family of aircraft configurations.

• REPOSITIONS THE WING DUE TO ASPECT RATIO, SWEEP,
AND AREA CHANGES

• FORMS THE EXTERNAL GEOMETRY FROM PARAMETRIC
WING GEOMETRY SUPPLIED BY AERODYNAMICS

• GENERATES COMPLETE NASTRAN BULK DATA DECK
WITHIN 2 DAYS FOR ASPECT RATIO, SWEEP, AND AREA
CHANGES

Figure 18
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ARI2 SWEEP35NASTRANMODEL- TOPVIEW

The procedures described above were used in the formulation of a NASTRANmodel
for aspect ratio 12wing. Figure 19 shows location of the wing and fuselage barrel
section along with the stick model grid points for the fore and aft fuselage.

Figure 19
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ARI2 SWEEP 35 NASTRAN MODEL WITHOUT WING

Figure 20 shows the NASTRAN model without wing. Fuselage attachments are more

clearly seen in this figure. Gear up/down attachment points exist on the fuselage

as well as on the wing.

GEAR UP/DOWN

HORIZONTAL FIN

Z

Figure 20
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NASTRANMODELBARRELSECTIONDETAIL

Figure 21 showsbarrel section detail. The fuselage stick model and the barrel
section interfaces are defined by multipoint constraint equations. The wing carry-
through structure fits in the barrel section cavity.

AR12SWEEP35

Z

Figure 21
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GRID LOAD DISTRIBUTION

Complex aircraft such as the high aspect ratio wing design require a structural

grid corresponding to a large number of degrees of freedom for the structural repre-

sentation. Loads analyses, on the other hand, usually require a somewhat smaller

grid. For this reason, application of external loads to a finite element model is

normally performed through a load transformation process from a small to a large

grid (Figure 22). In the PADS operation, the LDREF-LGROUP method is used. The LDREF

cards contain load reference application information and the LGROUP cards contain

information as to which grid points receive loads for a loaded reference point and how

they are distributed. For changing planforms, the bulk data cards, for the LDREF-

LGROUP method, are subject to change. For this reason, certain PADS modules were

developed for purposes of automating the production of these cards.

IS MAPPED INTO

SMALL
DOF LARGE

DOF

Figure 22
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FUELTANKLOADINGPROCEDURE

With capabilities for changing planform and airfoil definitions in an automated
procedure, a requirement surfaced to quickly form fuel tank weight distributions for
changed planforms in an automated manner. Issues to be addressed were i) what will
the newvolume capacity be? 2) how can distributions for varying flight conditions be
formed? 3) how can fuel tank weight distributions be entered into the model?
A program called TANK was developed to automate computation of fuel tank loading
distributions for preliminary design.

TANKreceives inputs from other PADSmodules as well as inputs defining desired
flight orientations and fuel loadings, and constructs a lumped fuel distribution
which reflects the flight configurations considered in the design. TANKcomputes
definition of the tank boundaries from airfoil definition contained in the grid cards
for the finite element model and corner point inputs. With tank boundaries known,
the fuel tank total volume can be computed. Basic data input such as fuel density,
attitude angles, and desired total fuel weight allow TANKto form elementary fuel
boxes and distribute the fuel weight as lumped fuel masses to the finite element grid
locations. Balance and center-of-gravity computation data, as well as the fuel
distribution, are then supplied as output.

TANK, in the PADSenvironment, is called upon several times for aircraft with
multiple tanks. Then, a postprocessor combines the various fuel tank weight distri-
butions and performs a transformation to other desired grids. Typical plot output
from the PADSfuel tank lumping procedure is shownin Figure 23.

An automated fuel tank weight distribution program was needed to complementthe
capabilities for quickly changing planform and airfoil contours.

• FUEL VOLUME COMPUTED FROM FEM GEOMETRY DATA

• TANK BOUNDARIES DEFINED BY CORNER POINTS l
/

• ACCEPTS LESS THAN FULL VOLUMES _.[ ,

• ACCEPTS TANK ORIENTATIONS RELATIVE TO GRAVITY
p. ?1_1_1, y'T't '1 =/=

• BATCH ENTRY PROGRAM

TYPICAL FUEL DISTRIBUTION

Figure 23

480



INTERLOP GUST PROGRAM

INTERLOP (INTERnal LOad Procedure) computes the internal loads combinations

directly in the gust analysis. This requires the input of all internal loads of

interest due to all unit loads at each structural grid point separately. Figure 24
shows the various elements of INTERLOP.

The advantages of the use of INTERLOP are substantial. Not only is the costly
and time-consuming process of matching conditions avoided, but the internal vs.

external loads matrix is used for other loads analyses besides gusts. Furthermore,

since the internal loads are computed directly, no additional conservatisms need to be

introduced, which is next to unavoidable if matching conditions are used.

Two new computer programs are created for this purpose: a preprocessor and a

modified gust analysis program. The preprocessor forms the input to the gust analy-

sis program defining the flexibility and the inertia properties (weights and moments

of inertia of concentrated masses.) The new gust analysis program is a modified ver-

sion of a standard gust loads program. The modifications include accepting as input

the aerodynamic influence coefficients (AIC) which are also used in the flutter analy-

sis. (These include AIC's at several reduced frequencies.) The program is extended

to compute the 8 corners of the octagons of equal probability, and includes the bias

formed by the l-g steady loads. The latter is obtained using the l-g (external)

structural grid point loads computed by STATICS. The dimensions of the octagon are

determined by an input value, which is the predicted gust intensity factor in feet/

second. This is based on the use of the design envelope approach rather than a mis-

sion profile analysis. The former, because of its simplicity, is considered to be

more appropriate for a preliminary design effort, in particular because the missions

may not yet be completely defined.

if SiC _'_

1-g LOADS

(.A,c GOS"LOADSAE ODY A ,CSJ I P"°GRA _ INTERNAL LOADS
FROM UNIT J

EXTERNAL LOADS J

FREQUENCIES _- _ (DISPLACEMENTS,

AND MODE SHAPESJ _ VELOCITIES AND J
ACCELERATIONS)//

CTAGONS OF
QUAL PROBABILITY
TERNAL LOADS

OMB!NAT!ONS j

Figure 24
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TYPICALOCTAGONSOFEQUALPROBABILITY- STRUCTURALELEMENTNO. 171 ANDNO. 172
UPPERANDLOWERWINGSURFACE

For a preliminary design, or in the absence of defined missions, the responses
can be computedfor a numberof points of the design speed-altitude envelope, much
in the sameway that static gust analysis is done.

The design envelope contains the critical values of weight distribution, flight
speed, and altitude. In this case the responses are found by multiplying the r.m.s.
values of responses due to i ft/sec, gust by the gust intensity factor. This gust
intensity factor is a function of altitude, comparable to specified gust velocities
used in static analyses. In order to properly account for the phasing between the
various responses, correlation coefficients between these responses are also computed.
From these correlation coefficients and using the r.m.s, values of the responses,
ellipses of equal probability of selected response combinations are formed. These
are biased by the response due to l-g steady flight for the pertinent design envelope
point. In order to limit the numberof conditions to be analyzed for stress, the
ellipses are circumscribed by octagons. Thus each load combination results in 8
points of an octagon of equal probability.

Figure 25 showsa typical result of this new analysis approach. It consists of
two equal probability ellipses and their circumscribing octagons. These are for one
element of the upper wing surface and the corresponding element on the lower wing
surface.

_oo

oo

oo

o

SO00 10000
i I

Figure 25
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SIZINGPROCEDURES

There were two requirements associated with structural sizing procedures
(Figure 26) as applied to preliminary design: i) the sizing must be based on
project sizing procedures, and 2) the adoption of the production sizing pro-
cedures must accommodatethe cost constraints of preliminary design.

A panel sizing and stress allowable process used internal load intensities from
the finite element model to select the sizing necessary to satisfy strength, fatigue,
and manyother design criteria. This inhouse procedure is used to compute margins
of safety for production designs. The process also makesuse of a special data
base to reduce the computer run times, an important factor in an iterative procedure.
The data base is keyed to two configurations, namely Z-stringers for the upper sur-
face and J-stringers for the lower surface. Materials for both configurations were
7075-T7651plate for the skin and 7075-T6511extrusion for the stringers.

The reference airplane production minimummargins of safety were taken from the
stress reports. The grid in the stress report did not coincide with the panel layout.
A linear interpolation was performed on the production margins of safety without
regard to loading conditions compatibility. The margins of safety for the wing box,
however, did not exist. The wing box margins of safety were therefore set to zero.

SIZING PROCEDURES

Figure 26
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STRESSSIZING FUNCTION

Two tools are available at Lockheed to size structural elements based on strength
criteria: the fully stressed design (FSD) program and the panel sizing and stress
allowable (PSASA)program. Figure 27 shows the possible paths to structural sizing,
i) PSASAfor stress allowables and FSDfor sizing, and 2) PSASAfor sizing.

PSASAgenerates the stress allowables and new sizings for use in the fully
stressed design (FSD) program. PSASAis a complex array of programs which permit pro-
duction level computations of stress interactions for a variety of conditions including
panel buckling and several local buckling modes. If the design involves only panels,
then sizing is possible using PSASA. PSASAis currently limited to combineduniaxial
and shear loadings. However, PSASAdoes accept as input, margins of safety for each
element being sized.

FSDrequires a stress allowable for each element to be sized. The stress allow-
ables remain constant within NASTR_Nas the elements are sized to the internal loads.
The internal loads are computedfrom the updated sizings and the external loads.
Two to four iterations are necessary for the process to converge.

PANEL

DESIGN

LIBRARY

I r 1
MARGINS LOADS
OF SAFETY

GENERATE INTERNAL LOADS

FROM EXTERNAL LOADS

STACK INTERNAL LOADS IF

AVAILABLE FROM OTHER

SOURCES (GUST, TAXI, ETC)

__ (PSASA)

SIZE ELEMENTS FOR GIVEN
INTERNAL LOADS AND

FORM ALLOWABLES

T
(SIZING A)

(STRESS

ALLOWABLES)

FSD

(COMPARE WHERE

APPLICABLE)
(SIZING B)

Figure 27
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VALIDATIONEFFORT

There are two phases to the process by which PADSis being evaluated: i) the
validation of CBUSoperating system and the analysis programs, and 2) the validation
of the design process for the objectives of preliminary design. Both phases require
an existing production airplane design which has an extensive data base for weight,
design loads, sizing, etc., for comparisons. These quantities are required not only
for reasonableness checks but also to quantify the areas of design that may not be
properly represented in the design process (Figure 28).

All major computing programs (FAMAS,NASTRAN,etc.) except the weight distribu-
tion program, the panel sizing and allowable program, the fully stressed design sizing
program, and the program for structural resizing for flutter were used in the produc-
tion design of the basic L-1011 and its derivatives.

The validation process reduces to the following tasks: I) to verify that the
existing computer programs and systems operate properly in the CBUSenvironment,
2) to verify that the manypre- and post-processor modules do what they were designed
to do, 3) to verify that the CBUSdata managementsystems properly function in their
storing and retrieving modes, and 4) to generate comparative data for programs not
extensively used.

The panel sizing and stress allowable procedure was checked against knownallow-
able and sizing data for certain internal load conditions and the fully stressed
design procedure was comparedto the panel sizing procedure. The weight distribution
program has internal checks for massand momentsof inertia quantities. The struc-
tural resizing for flutter programs also will contain internal checks in terms of
reconciling the modules and sizing changeswith the flutter results using the resized
structural properties.

• CBUS

• NEW PROGRAMS

• DESIGN PROCESS

Figure 28
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REFERENCEAIRPLANE

The airplane selected as a reference design is the L-1011-500 ACS. The airplane
3-view is shownin Figure 29. This configuration has a maximumgross weight of
504,000 pounds and a payload of 40,000 pounds at a range of 5200 nautical miles. The
cruise Machnumberis 0.83 and the cruise altitude is 37,000 feet. This version is a
long-range derivative of the L-1011-1. Active control technology was used to minimize
structural wing changeswhen the -500 wing span was extended to improve fuel economy.
The maximumdesign zero fuel weight is 338,000 pounds. The typical operating empty
weight is 252,000 pounds.

THREEViEW

'

15.97M) _

I 164 FT-4 IN. 164 FT-2 IN.
(50.09 M) (50.04 M)

Figure 29
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WINGUPPERSURFACEPANELS

The NASTRANstructural representation had 3741 degrees of freedom (DOF). The
load reference or SIC locations numbered228. The weight distribution module gener-
ated 500 panel weights and the static loads grid was defined with 289 load points.
Weight and maneuverconditions were chosento be a basis for the baseline design
(Figure 30).
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STATIC LOADS

Flight conditions were selected on the basis of a subset of the critical loads for

the production airplane wing box. Both active controls on and active controls off con-

ditions were used for symmetric manuevers. Ground handling (brake roll, etc.), and a

pseudo taxi condition were also included. The airplane was trimmed for each flight con-

dition, thereby producing net balanced airplane loads. The 25 load conditions are

listed in Figure 31.

LOADCOND. A B C D E F G H

FLIGHT COND, NO.

WEIGHT- 1000 LB

C.G, - % MAC

FLIGHT COND.

MACH NO.

VE - KEAS

ALTITUDE-1000 FT.

MANEUVER CONDITION

1101 1102 1103 1104 1105 LANDING TAXI BRAKE ROLL

350.3 504.0 504.0 504.0 504.0 368.0 506.0 506.0

12.5 17,13 17.13 17.13 17.13 26,9 14.1 26.9

MID-CRUISE VA VC VD FLAP - - -

0.8 .48 .82 .88 .33 .28 - -

360.0 316.0 356.0 418.0 220.0 182.0 - -

20.0 0,0 21.3 17.3 0.0 0 - -

LOAD CONDITIONACTIVE CONTROL (MLC)

1G LEVEL FLIGHT- (BASIC)

POSITIVE STEADY MANEUVER - (PSM)

NEGATIVE STEADY MANEUVER - (NSM)

POSITIVE STEADY MANEUVER - (PSM)

NEGATIVE STEADY MANEUVER - (NSM)

LANDING

LANDING

TA X I

BRAKE ROLL

Figure 31

ON A

ON A THRU E

ON A THRU E

OFF A THRU E

OFF A THRU E

ON F

OFF F

- G

- H
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SUMMARY OF NUMERICAL RESULTS FOR VALIDATION DESIGN

There are many design details which can not practically be included in a

preliminary design effort. However_ if these details add significantly to weight and

strength, then some accountability must be made in the design process. One objective of

this numerical exercise is to quantify some of the detail design effects in terms of two

approximate processes. The first process, model design factors, will account for model

sizing increases required to accommodate design details which currently do not have any

design criteria. Two PADS sizings will be presented in the study of the model design

factors: i) structure sized to zero margins of safety, and 2) structure sized to produc-

tion margins of safety. The second process, model to hardware weight adjustments, will

account for the differences between model weight derived from a finite element model

representation of structural components and hardware weight derived from actual weighing
of structural components.

Another objective of the design exercise is the evaluation of FSD in conjunction

with the panel sizing (PSASA) program, which also produces stress allowables. Finally,

the results of each engineering process will be checked for accuracy using the data

base available for the reference airplane, namely the L-1011-500 ACS which is described

in the validation section. The reference airplane has an active control system for

maneuver load control (MLC). As part of exercising the PADS system, a wing panel

sizing will be performed on the reference airplane with and without MLC for zero margins

of safety. The results of the numerical study are summarized in Figure 32.

PADS SIZINGS: NORMALIZED SURFACE WEIGHTS

REFERENCE
AIRPLANE

ZERO MARGINS

UPPER LOWER BOTH
SURFACE SURFACE SURFACES

PSASA SIZING .83 .764 .792
W/M LC

FSD SIZING .845 .781 .808
W/M LC

PSASA SIZING .89 .85 .868
W/O M LC

PRODUCTION MARGINS

UPPER LOWER BOTH
SURFACE SURFACE SURFACES

1 1 1

.89 .88 .89

WEIGHT FACTORS: HARDWARE WEIGHT/PRODUCTION
MODEL WEIGHT = 1.2

Figure 32
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LOAD CONDITIONS YIELDING MINIMAL MARGINS OF SAFETY FOR STATIC

AND DYNAMIC LOADS FOR REFERENCE AIRPLANE

New methodology development during 1983 made possible structural sizing for

continuous turbulence in preliminary design. With techniques for computing panel octa-

gons of equal probability for responses due to gust, static and dynamic loading condi--

tions could be combined for purposes of determining aircraft sizing. In 1983, a sizing

validation exercise, using combined gust and static loads, was performed on the PADS

baseline design.

The design regions include the ist through 4th rows of surface panels for both

upper and lower surfaces. These panels were represented by a CALAC developed quad-

rilateral finite element (CMEMQ) in the structural model. Internal loads for the wing

were computed in a NASTRAN static solution run. The Panel Sizing and Stress Allowable

(PSASA) module was used for sizing of the surface panels. Optimized dimensions in

PSASA are skin thickness, stringer web thickness, stringer flange thickness, and

stringer height.

The loads applied to the structure for sizing include 21 static loads maneuver

conditions, 4 ground handling conditions, and the 8 loads of equal probability which

make up the octagons for the gust loads. Figure 33 shows the load condition_ which

have the minimal margin of safety for each panel for upper and lower surfaces. The

margin of safety is the ratio of internal load which the panel can withstand over

the applied internal load for an external load condition. Normally, this value is

an input margin for the design. In cases when fail safe or fatigue conditions are

imposed, the minimal margin may be somewhat greater. Gust conditions were found to

be the designing factor for sections near the root rib and wing tip for both upper

and lower surfaces. These areas are marked with Gs. Braking conditions determined

the sizing around the main gear. Wing mid-section panels were designed by a 2.5g

maneuver and these panels are indentified by the symbol x.

SYM COND# g's MACH ACTIVE CONTROLS

G 1 8 GUST LOADS ON

124 +2,0 478 OFF

X 132 • 2 5 82 ON

133 1 0 82 ON

• 142 * 2 5 88 ON

- 143 0 0 8B ON

B 411 BRAKE

T 451 TAXI

UPPER SURFACE

_ c FOR BASELINE DESIGN

o o
oo

o e c

FOR BASELINE DESIGNe c c

_" e e

o oO o°

Figure 33
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HIGH ASPECT RATIO WING DESIGN

A major portion of the work in 1982 dealt with the validation of the PADS modules

by exercising them and making comparisons against a known database (baseline design).

This exercise proved to be very fruitful for proposes of tuning the PADS system. In

1983 the PADS system was used to formulate an aeroelastic model of an aspect ratio 12

wing design (ARI2) (Figure 34). With the incorporation of the new capabilities for the

finite element generation, the grid load distribution scheme, and the fuel tank loading

procedures, PADS built the necessary database and processed the high aspect ratio design

through sizing for various MLC gains on the outboard aileron.

ASPECT RATIO 12

SWEEP 35 o

(NO GUST OR FLUTTEREFFECTS)

Figure 34
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ARI2 MIDDLE i/3 SECTION OF WING INTERNAL LOADS

=.

The sizing procedure for the ARI2 incorporated the methodology for computing the

design element internal loads for applied unit external loads at the load reference

points. The initial internal loads were formed for an arbitrary unit sizing. Internal

loads due to the constructed 25 load conditions were formed by multiplying the load

condition matrix and the internal load matrix for unit external loads. Figure 35

shows the intensity of the internal loads for the panels in the middle 1/3 section

of the wingspan. Each square represents a combined normal (N) and shear (Q) internal

load (ib/in) formed by one of the 25 load conditions in the middle 1/3 section of

the wing.

15.0 ..103 VARIOUSLOADSFORPANELS 11103TO 11510.

10.0-

5.0"

.......:.:iii:: i:..ii :!J '

................... 1:71i

.L L..:

.................... 1 .... ,

. , ] .........

i [ , ]
.... i

!

O.O'

-5.0,

-lO.0

/ " rn _ ' -
I

. I_:_'. EI_] [] .. ! .... ' ..... ]

'_ .I I. ..

;0.0 -60.0 -40.0 -20.0 0.0

N (LB/IN)

I
i

!t 1:

20.0

I

• | ...... ]
I

_ . .

1 i

- i, i iiiii 
I . . . I
l _ i: ' ; , "1,°9

4o.o 60.0 80.0

Figure 35

492



AR12 SWEEP 35 SIZING UPPER SURFACE 3RD FROM FRONT ROW

COMPARISON OF WEIGHT

Sizing for the internal loads was accomplished with the sized panel database

approach for selection of optimal panel dimensions. The database approach consists of

forming a database which contains families of optimized panels for various loading com-

binations. Each of the panel definitions in the database has a weight per unit area

associated with it. From the database, the sizing routine selects two panels as a

starting point for optimization of each panel in the design region of the airplane.

The first panel is the lightest panel in the database which is sufficient to withstand

all applied loads for that panel and the second is the next lightest panel in the data-

base. These two panels are used to set the bounds on panel dimensions in the sizing

procedure. The final optimized panel for each element in the design region is then

computed. Variables for optimization are skin thickness, stringer web thickness,

stringer flange thickness, and stringer overall height.

Figure 36 shows a comparison of the weight per unit area for upper surface panels

in the third bay for rigid, first flex and second flex A/P loads.

.10 --

SYMBOL I.D.

= AR12 RIGID A/P LOADS SIZING

.08 _ = AR12 1ST FLEX A/P LOADS SIZING

=

z .0s

Z

W

.o4

.02

O--
I I I I I

100.0 105.0 110.0 115,0 120.0 125.0

3 DIGIT PROP ID

Figure 36
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ARI2 SWEEP 35 SIZING LOWER SURFACE 3RD FROM FRONT ROW

COMPARISON OF WEIGHT

Figure 37 shows the lower surface. The 3-Digit Prop ID refers to the panel sta-

tion on the wing. The layout of the panels is the same for both models with Figure 35

showing the baseline surface panel numbering convention. The first 3 digits of the

numbers along the Ist row represent the 3 Digit Prop ID.

ID i00 r_fers to panels on the wing tip while ID 125 refers to panels on the

wing box.

L_

SYMBOL I.D.

.15 _ _ AR12 RIGID A/P LOADS SIZING

A AR12 1ST FLEX A/P LOADS SIZING /A._.--_,

G AR12 2ND FLEX A/P LOADS SIZING

/.10 --

/

0 --

1 1 I I I
100.0 105.0 110.0 115.0 120.0 125.0

3 DIGIT PROP ID

Figure 37
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STRUCTURALSIZINGITERATIONS

Wing cover weights vs. numberof structural sizing iterations is shownin
Figure 38 for both upper and lower surfaces. This rapid convergence on wing cover
weights has been the norm for both the baseline and the high aspect ratio designs.

A

m 30000

w

20000

>
0

Z

N 10000

_L LOWER SURFACE

_) UPPER SURFACE

1

RIGID
A/P LOADS

2 3 4

FIRST SECOND
FLEX FLEX

NUMBER OF STRUCTURAL SIZINGS

Figure 38
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NET LOADS CASE 132 (X) 2ND FLEX A/P LOADS

Distribution for net loads, case 132 (X), are shown on Figure 39.

Load case 132 condition is defined by the following: GW/524354, CG/17.3, M/.82,

V/356 KEAS, ALT/21300 ft., G/2.5, ACT/ON, FLAPS/0 ° . This case and the case shown in

Figure 40 contribute to the design shown in Figure 41. The case shown in Figure 39

designs the upper and lower surface panels represented by (X) in Figure 41.

Figure 39
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NET LOADS CASE 124 (+) 2ND FLEX A/P LOADS

Distribution for net loads, case 124 (+), are shown in Figure 40. Load case 124

condition is defined by the following: GW/524354, CG/17.3, M/.478, V/316 KEAS, ALT/O

FT, G/25, FLAPS/0 °. This case designs the upper and lower surface panels represented

by (+) in Figure 41.

Figure 40
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LOAD CONDITIONS YIELDING MINIMUM MARGINS ON UPPER SURFACE

PANELS ARI2 SWEEP 35 2ND FLEX SIZING

Load cases which yield the minimal margin of safety after considerations in the

optimization process for effects such as fatigue and fail safe conditions are shown

in Figure 41. Each symbol corresponds to a load condition in the key. The symbol

defines the load condition yielding the minimal margin for the corresponding panel.

SYMBOL COND# _l'S MACH

# 122 2.5 .473

+ 124 2.0 .473

UPP RSURFACE ;
• 142 2.5 188

ACTIVE

CONTROLS

ON

OFF

ON

ON

ON

ON

Figure 41
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COVER WEIGHTS FOR DIFFERENT MLC AILERON GAINS

Different aileron-degree-per-g gains were used to generate the wing cover weights

and indicate that a bucket exists for a gain of 20 degrees/g. If 20 degrees/g were

selected, then the area around the aileronwould have to be increased by almost a factor

of 2 to reduce the gain around the I0 degrees/g. Eighty-six percent of the weight

reduction takes place within 50 percent of the optimum gain factor (Figure 42). These

results were produced for fixed spar web sizings.
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LOWER
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40,0 ;0.0

AILERON DEGREES PER G

Figure 42
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WINGWEIGHTPERCENTREDUCTIONVS. LIMIT MANEUVERFACTOR

For an MLCgain of 11.33 degrees per g on the outboard aileron, wing weight
percent reductions were computedfor designs with and without _[LCand for changing
the limit maneuver load factor from 2.5 to 2.0 g's (Figure 43). The MLCincrement is
the percentage reduction of wing weight whenMLCis added to the wing cover design.
The maneuver limit increment is the percentage reduction of wing weight when the
maneuver limit factor is reduced from 2.5 g to 2.0 g. Both columns are additive.
For the ARI2 SWEEP35 design, the wing weight would be 16.8%less for a design
incorporating both MLCand 2.0 g maneuver limit load factor than for a design with a
maneuver limit factor of 2.5 g and no MLC.

AIRCRAFT

REFERENCE
AIRCRAFT

AR 7.63
SWEEP 35

AR12
SWEEP 35

MLC
INCREMENT

4.5

5.1

MANEUVER LIMIT = 2 G
INCREMENT FROM 2.5 G

11.7

Figure 43
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PADS DESIGN ACTIVITY IN PROCESS

This Lockheed inhouse work is being coordinated with the NASA Langley Research

Center multilevel design research activity under a cooperative effort to design an

aircraft wing for fuel efficiency. The primary objective of this effort is to study

and evaluate the multilevel and the PADS/ASSET approaches to aircraft wing design.

Lockheed is providing a common design data base for this effort to NASA under the

contract NASI-16794. The contract technical monitor is Dr. J. Sobieski. The first

phase of this study is projected for completion in December 1984 (Figure 44).

• ASPECT RATIO 12 SWEEP 35

• VERTICAL GUST LOADS

• FLUTTER

• ASPECT RATIO 12 SWEEP 25

• MANEUVER, BRAKE, LANDING LOADS

• VERTICAL GUST LOADS

• FLUTTER

Figure 44
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SUMMARY AND CONCLUSIONS

The following observations are provided as a summary review in support of the

conclusions (Figure 45):

CBUS Operating System

• An operating system has been defined and coded which provides the user with a

continuous computing option without interfering with the standalone function

of any participating program or system.

• The concept of a command has been developed as a driver for the data flow

control and program execution requirements of an engineering process.

• The concept of altercards provides data paths into the command to change

default attributes and/or to invoke other options.

• A command processor language has been developed which provides logical

branching capabilities but leaves the naming of the commands/macros to the

user.

• The concept of a supercommand provides the grouping of commands and other

supercommands and includes all the command processor language capabilities.

Data Management System

• All existing data management systems are available to provide retrieval and

storage of permanent data blocks and communication with these systems is

achieved by means of commands and subcommands.

• An internal data management system has been defined which supports the

retrieval and storage of data by simple qualifiers so as to retain the simple

functionality of a command.

Design and Engineering Processes

• An aeroelastic design process has been defined in terms of production design

computing tools and without violating the conceptual and early preliminary

design phase elapsed time constraints.

• The design process has been modularized into specific engineering processes

that closely followed the production design definitions.

• The concept of a finite element model generator for a family of aircrsft

structures has been formulated to satisfy the elapsed time constraints.

Validation Using a Known Design Data Base

• The model to hardware weight ratios showed greater than expected variations

with span.

• The engineering processes defined as the panel sizing and stress allowable

generator, fully stressed design, weight, static loads, gust loads, and flut-

ter were exercised and checked using a known aircraft design data base.

• The PADS wing panel sizing of a reference airplane design produced panel model

weights that were 21 percent below the reference airplane values for zero

structural margins of safety. The difference was reduced to ii percent when

production structural margins were used in sizing the panels.
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SUMMARY AND CONCLUSIONS

Hig h Aspect Ratio Wing Designs

• Aspect ratio 12,

• Aspect ratio 12,

(Continued)

sweep 35 design is almost complete.

sweep 25 design has been started.

• ACQUIRED A RAPID AEROELASTIC ANALYSIS AND
DESIGN CAPABILITY

• DEMONSTRATED PADS CONCEPT OF USING EXISTING
COMPUTER TOOLS TO GENERATE AEROELASTIC
DESIGNS

• SATISFIED REQUIREMENTS OF FLEXIBILITY AND
MODULARITY WITH CBUS

• VALIDATED CBUS OPERATION AND RUN DATA BASE
MANAGEMENT SYSTEM

• VALIDATED SOME OF THE ENGINEERING PROCESSES;
NOT COMPLETED

• DEMONSTRATED THE NEED FOR ADEQUATE DESIGN
VISIBILITY AND CONTROL

Figure 45

BIBLIOGRAPHY

Radovcich, N.A., "Preliminary Design of Structures [PADS], Methods Development and

Application," AGARDpaper, Conference Proceedings No. 354, presented at the 56th Struc-

tures and Materials Panel Meeting, London, United Kingdom, April 1983.

5O3



Ns -l  4s

DESIGN ENHANCEMENT TOOLS

IN MSC/NASTRAN

D. V. Wallerstein

The MacNeal-Schwendler Corporation

Los Angeles, California

PRECEDLNG PAGE Bt.ANK NOX FJt,,,ME_

505



DESIGNSENSITIVITYIN OPTIMIZATION

Design sensitivity (ref. i) is the calculation of derivatives of constraint
functions with respect to design variables. While a knowledge of these derivatives
is useful in its own right, the derivatives are required in many efficient
optimization methods. Constraint derivatives are also required in somereanalysis
methods. Figure i shows where the sensitivity coefficients fit into the schemeof a
basic organization of an optimization procedure (ref. 2). In the context of this
paper the analyzer is to be taken as MSC/NASTRAN.The terminator program monitors
the termination criteria and ends the optimization procedure when the criteria are
satisfied. This program can reside in several places: in the optimzer itself, in
a user written code, or as part of the MSC/EOS(E_ngineering Operating System)
currently under development. Since several excellent optimization codes exist
and since they require such very specialized technical knowledge, the optimizer
under the new MSC/EOSis considered to be selected and supplied by the user to meet
his specific needs and preferences. The one exception to this will be a fully
stressed design (FSD) based on simple scaling. The gradients are currently supplied
by various design sensitivity options now exisiting in MSC/NASTRAN'sdesign
sensitivity analysis (DSA).

ANALYZER

DSA /

L

PROGRAM

BLOCK OF DATA

Figure i
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DESIGNCONSIDERATIONS- USERISSUES

Figure 2 outlines several implementation issues that were considered for the
current MSC/DSAand are still valid for _uture enhancements. From a user stand-
point_ th= computations of the gradients should be a natural extension of the finite
element analysis (FEM). At the sametime, the user should not be constrained by the
FEMto the degree that he or she is forced to makeunwanted adaptations of design
requirements. To this end, MSC/DSAhas been designed to have generality in modeling
complex designs and to allow for design variables which are not explicitly defined
in terms of standard finite element properties such as area, second momentsof area,
and thickness. By the same token, MSC/DSAmust not and does not impose any size
restrictions on the analysis. On the other hand, through its ability to link many
finite element property cards and material cards into a single design variable,
MSC/DSAallows for computational efficiency by reducing the number of design
variables needed for analysis. The output is in two forms. A matrix is generated
with both the current value of the constraint and the values of the gradients output to
the data base and to a general FORTRANfile. To aid the user in interpreting the
results, this same information is output in table form with both numeric and user
supplied BCDidentifiers.

• EASE OF USE

• GENERALITY TO MODEL COMPLEX DESIGNS

• CAPACITY TO SOLVE LARGE PROBLEMS

• OUTPUT EASY TO COMPREHEND

Figure 2
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DESIGNCONSIDERATIONS- ANALYSISISSUES

Figure 3 gives the three prime issues considered in selecting the approach used
for MSC/DSA. The general philosophy followed was that MSC/DSAbe considered a post-
processor to a standard MSC/NASTRANanalysis. This requirement was easily met
through use of data-baslng. Through the data base the LU decomposition of the
stiffness matrix is recovered so that only backward operations are used to recover
the solution vector needed to compute gradient terms. An important feature of the
implementation is the table driven nature of MSC/DSA. Final recovery of all
information needed to form gradients is handled by standard MSC/NASTRANstress,
force, displacement, or modal recovery modules. This means that the only new
features added to MSC/NASTRANare those which form the necessary correlation tables
between constraints and their derivatives and the needed code to form the right hand
side needed for solution vector recovery. The net result is ease and reliability in
system maintenance.

• RESTARTFROMPRIMARYANALYSIS

• ONLYBACKWARDOPERATIONSUSEDTO RECOVERSOLUTIONVECTOR

• DATAORGANIZATION, ASSEMBLY AND RECOVERY

Figure 3
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DEFINITIONOFTERMS

Figure 4 lists the meaning of someterms used in the following discussion. It
is appropriate, however, to mention two things at this point. First, MSC/DSAdoes
not impose any constraint equations. It merely returns the value of the constraint
at the current point in design space. Second, the approach is the design space
approach and not the adjolnt method. The adjoint method is discussed only for
comparison purposes. The two methods arise from the technique used to determine the
value of the second term in the expression for _i"

{b} - Vector of Design Variables

{u} - Vector of Displacements

{P} - Vector of Loads

[K] - Structural Stiffness

{_i} - Vector of Adjoint Variables

• i(b, u) _ 0 - Constraint Equation

6_ i = _--_--_ {6b} + _-_--_ {6u} - Sensitivity Coefficient

B = b/b o - Normalized Design Variable

Aij - Sensitivity Coefficient for ith Constraint and jth Design Variable

Figure 4
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SENSITIVITYMETHODS

As mentioned in the previous figure, the difference between the adjoint method -
sometimes called behavior space or state space and the design space method is how
the {_u} term is replaced by {_b} in the expression for _i" These two methods are
depicted in figure 5. Notice that both require LU decompositions and formation of
the [H] matrix. The effect of the right hand sides is discussed in the next figure.

{6u} _ {6b}

ADJOINT METHOD

5_iI

DESIGN SPACE METHOD

[K

Figure 5
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THEORYCOMPARISONSOFTWOAPPROACHES

Figure 6 gives a direct comparison of the two methods. The adjolnt method uses
the {_i/_u} vector to generate the right hand side. Only active constraits are
used to generate this vector; hence, the number of unknownequations at any given
point in design space is equal to the numberof active constraints. In the design
space method the right hand side is represented by the matrix [H]. This matrix is a
true pertubation of the load vector for a change in each design variable and
represents the perturbed equilibrium state of the structure. There is a column for
each load vector perturbed by a design variable.

Approach Adjoint Method Design Space

Unknowns {_i} 5[._]

Set of equations to be solved

Number of unknown vectors

to be determined

Number of active

constraints

Number of design variables

times

Number of load conditions

Figure 6
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IMPLEMENTATIONCOMPARISONOF TWOMETHODS

Figure 7 comparesthe two methods from a different point of view. Generally,
discussion of which method to use stems from the number of right hand side
vectors. But such discussion rarely takes into consideration the efficiency of
modern equation solvers. When this efficiency is taken into consideration the
number of unknowns to solve for takes on less signlflcances than other consider-
ations. Two major advantages of the design space approach have already been
alluded to. First, the [H] matrix represents a perturbation of equilibrium and
its formulation fits neatly into an existing finite element code (also it must be
formed in the adjoint method) and forms a natural load vector. Second, the formula-
tion of the gradients fits in naturally with existing general purpose finite element
code data recovery operations. Finally, a major expense in either method is the
forming of the necessary correlation tables between constraints and design variables
and the forming of the correlation between design variables and individual element
properties.

Item

Fewactive constraints

Adjoint Method

Small advantage

Design Space

Many active constraints

Few design variables

Small advantage

Forming right hand side using

existing code structure

Major advantage

Forming gradients using existing

code structure

Major advantage

Forming necessary correlation

tables relating element variables

to design variables and response

variables to constraints

Major expense Major expense

Figure 7
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THEDESIGNSPACEINCREMENTALAPPROACH

Figure 8 shows the necessary incremental equations required for the design
space approach. Notice that perturbation to nodal equilibrium occurs from two
sources, a change in stiffness arising from design variable perturbation of the
element stiffness matrices and a change in the actual load vector arising from the
same source. Also note that for accuracy and conslstancy a total solution vector
not an incremental one is formed.

[K°]{AUB} = {APB} - [£KB]{U° }

{u}- {u°} ÷ {AUB}

Figure 8
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SOMEMOREDEFINITIONS

Figure 9 contains some definitions unique to this paper.
are mostly self explanatory.

Q - MSC/NASTRANOUTPUTSUCHAS:

These definitions

• Displacement

• Stress

• Force

QB _ OUTPUT VALUE USING NEW PROPERTY ORIGINAL SOLUTION VECTOR

QU _ OUTPUT VALUE USING ORIGINAL PROPERTY NEW SOLUTION VECTOR

Q0 _ OUTPUT VALUE USING BASE LINE RUN

Figure 9
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ACTUALGRADIENTCOMPUTATION

Figure I0 gives the actual gradient computation as used by the design space
approach. The top equation is used for "element" type constraints (meaning element
stress or force) with self terms. Self terms arise whena specific element is used
as a constraint and one or more of its physical properties (such as area, second
moment of area, etc,) is included in a design variable and the derivative of the
constraint with respect to that specific design variable is required. The bottom
equation is used for "element" type constraint without self terms and displacement
type constraints. The incremental change in design variable is represented by ABj
and QLimi are user supplied limit values used in constraint evaluations. The upper
signs are associated with maximumtype constraints and the lower signs are associated
with minimumtype constraints. The various values of Q comedirectly from stress,
force, or displacement output files standard to MSC/NASTRAN.

B. uj
Qi3 o oQi Qi Qi

or

uj o
Qi Qi

Aij = +-I QLimliABj $I QLimliABJ

Figure i0
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CURRENTUSERINTERFACE

Figure II gives the current user interface scheme. MSC/DSAis currently
designed to run as a post-processor to the standard MSC/NASTRANstatic solution
sequence (SOL 61), modal solution sequence (SOL 63), and buckling solution sequence
(SOL 65). The MSC/DSAsolution sequence numbers correspond to each of the basic
solution sequences. To aid in relating specific constraints to specific design
variables two new case control cards have been defined. Constraints are defined via
the DSC@NScards and design variables are defined via the DVAR-DVSETcards.

SOL51I
SOL53

SOL55

EXECUTIVE

SENSITY 1

SET2 I

CASE CONTROL

DSCONS

DVAR

DVSET

BULK DATA

Figure ii
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RELATINGCONSTRAINTSTO DESIGNVARIABLES

The user may be interested in the derivatives of every constraint with respect
to every design variable. If this is so, just set SENSITIVITY= ALL. On the other
hand, it may be more reasonable in analysis to relate specific constraints to
specific design variables as depicted in figure 12. In this figure, structure
located at A is considered far enough removed from structure located at B that
derivatives of constraints at A with respect to design variables at B (or vice
versa) would be meaningless. The SET, SET2,SENSITIVITYcombination allows the user
to define specific constraint design variable relationships. This combination shown
relates in section A constraints I through 4 to design variables 70, 80, and 90. In
section B the relationships are constraint 300 related to design variables 1 and
3; and constraints I00, 200, and 500 related to design variables I, 3, and 4.

A B

F---I Constraints

Design Variables

SET i = I THRU 4

SET 2 = 300

SET 5 = i00, 200, 500

SET 30 = 70, 80, 90
SET 31 = 4 Defines sets of DVAR cards

Then the following SET2 card may be defined:

SET2 = 18 (1,30), (2,33), ((5), (31,33))

and the following SENSITIVITY card is specified as:

SENSITIVITY - 18

Defines sets of DSCONS cards

Figure 12
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CONSTRAINTDEFINITION

Figure 13 shows how constraints are defined with the DSCCNSbulk data card.
Each constraint must have a unique DSCIDfor internal and external identification.
The LABELis for user convenience in identification of output. TYPEis any one of
the following: DISP, FCRCE,STRESS,LAMDA,or FREQ. ID identifies the actual grid
element. CCMPidentifies the specific displacement component or stress or force
component. LIMIT and CPTdefine the equations used for the constraint. If LIMIT =
0., then plus or minus the constraint value is returned depending on the value of
CPT.

i 2 3 4 5 6 7 8 9 I0

ID COMP LIMITDSCONS

DSCONS

DSCID

21

LABEL

DOOR

TYPE

DISP 4 1 .06

OPT

MAX

IConstralnt Value_ °

(Upper Limit) _i = [_i_ T...... 1.0" Sign (Limit)

or

(Lower Limit) _i = 1.0" Sign (Limit)
(Constraint Value) °

Figure 13
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DESIGNVARIABLEDEFINITION

Figure 14 shows the DVAR-DVSETcards needed for design variable definition.
Each BID must be unique and define a design variable. Again, LABEL is a user
convenience. DELTAB defines the incremental change in normalized design
variables. VID points to a DVSETcard or cards. The VID on the DVSETcard need not
be unique. TYPEdefines the property being modified and FIELD defines the specific
field on the property card being modified. PREFand ALPHAalong with DELTABdefine
the actual change in property value. PIDI etc. define the specific property cards
modified.

I 2 3 4 5 6 7 8 9 I0

DVAR BID LABEL DELTAB VID VID VID VID VID ABCI

DVAR I0 DOOR .01 2 3 6 60 i00

I DV DVSET

I DVAR => Bi i

l DVSET _ Property Card Field l

p = p
o o

I

+ _ Pref[Ii + AB)_-I] ,' I
! MATcard i

cards

Figure 14
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OUTPUT

Output in MSC/DSAis of two types• Printed output gives the current constraint
values and their derivatives along with all the user identifying labels and matrix
output for use in optimization programs• The user will find the printed output so
clean and self-explanatory that there is no need to discuss it. Figure 15 shows the
form of the matrix output• The matrix is design constrained DC wide and its rows
are grouped by design variables• The number of rows in each group is the total
number of loads• The very first block gives the current constraint values•

T
LD

I
T
LD

T
LD

DV 1

DVj

_' DC "-y

_i) ,.(I)• • " _i • " °

_(2) ,.(2)
i " " " _i " • "

_°_ . . . _.°, . . .

A(1) A(1)
ii " " " il " " "

A(LD) (LD)
ii " " " All " " "

A(1) (LD)

lj " " " Ail

A(LD) (LD)
I] " " " Aij

Figure 15
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SENSITIVITYCOEFFICIENTS

The primary use of sensitivity coefficients is in optimization. However, it is
often useful to look at them in their own right as tools that begin to give the

analyst a "feel" of the structure. Figure 16 summarizes their meaning. For

example, a positive sensitivity coefficient means that for an increase in design

variable the value of the constraint will increase. This will move the design

closer to a MAX constraint or further from a MIN constraint. Similar statements

hold for a negative sensitivity coefficient.

A-c-'>+ B INCREASE
AB

A_ < 0 + B DECREASE

AB

Figure 16
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EXTENSIONTO SUPERELEMENTANALYSIS

Currently MSC/DSAdoes not allow for substructuring or, as it is called in
MSC/NASTRAN,superelement analysis. The inclusion of MSC/DSAinto superelement analy-
sis requires the establishment of ground rules as listed in figure 17. To this end,
design variables are considered global in nature. This meansthe design variable must
have a unique definition across all superelements. This requirement is necessary be-
cause design variables linking can extend across superelement boundaries. DSC_NS
cards are local to superelements since they can define local quantities. DVSETcards
are local to superelements since they point to property cards which (under current
superelement development) are local to superelements. SENSITY cards are by super-
element case control. _BJF (structural weight) is accumulated for all superelements
and its derivatives computedfor all design variables.

• DVAR CARDS ARE GLOBAL

• DSCONS CARDS ARE LOCAL TO SUPERELEMENT

• DVSET CARDS ARE LOCAL TO SE

• SENSITY CARDS ARE BY SE CASE CONTROL

• OBJF CARD ABOVE SUBCASE LEVEL

Figure 17
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USERDEFINEDCONSTRAINTRELATIONSHIPS

Currently, constraints are restricted to displacements, or specific stress or
force output. It would be advantageous to define response values such as those
depicted in figure 18. Here it is assumedthat the constraint is related to the
panel stress, either through the distortion energy relationship or through the
utilization relationship.

RESPONSEVALUE-- MAX(_, B2 ]

(TENSION)

B2:I- + °LI2 + 4
2 Y

(COMPRESSION)

aL = MIN(o, _, Cy)

Figure 18
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EXTENSIONOFCONSTRAINTRELATIONSHIPS

Figure 19 demonstrates the proposed extension of the constraint card to include
user defined relationships. Here the constraint points to a user defined equation
rather than a specific stress component. Other than the first two fields, the EQN
card is free field. The equations are written using standard FORTANtype
nomenclature and include standard type functions such as M_D, MAX,MIN, S_RTetc.
The Fi expressions are key word type expressions defined via the FUN1card. The
FUN1card returns a value to Fi based on either the specified stress component
directly or a table look-up relating the stress value to some functional relation-
ship such as a current value of an allowable.

i 2 3 4 5 6 7 8 9 I0

DSCONS DSCID

DSCONS 17

LABEL TYPE

SX123 STRESS

ID COMP LIMIT OPT EQUID

MAX 34417

EQN EQID -- FREE FIELD ........

EQN 34 MAX (SQRT( FI** 2+F2" *2- FI*F 3), ABC

+BC (F4+ SQRT( F4** 2+4 .* F5** 2)))

VALUE = EQN (FI, F2, ... FII)

VALUE = MAX (/FI 2 + F22 - FI * F3

FUN1 NAME A COMP TID ALPHA BETA B

FUN1 F7 2 32

F i -- [A(y) a+ B]B

Y = Function (Value of COMP)

Response Value = EQN (FI, F2, ... FN)

Figure 19
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MSC/E@S

Figure 20 is a schematic of the MSC/E@S(Engineering Operating System)
currently under development. The keys to this system are the MSCData Base and the
new (currently under code development) MSC/NDDLexecutive. The NDDL(N__astranData
Definltion L__anguage)provides the foundation for the development of a compl--ete
engineering data managementsystem to support the various MSCanalytical modules
shown on the various spokes of figure 20. Since the NDDLprovides a means of
specifying a logical data structure definition it provides for the unique
identification and addressabillty of the data and provides for the definition of the
interdependencies of the data. Data Base managing will include such items as
automatic storage and retrieval of data for ease of use; data recovery, integrity,
and security procedures to insure data validity; and all current GIN@(general
purpose input/output routines) calling sequences. Notice that the axle of the
figure represents an extension of GIN@to include direct user interface between a
user defined programming system (where for example the actual optimization programs
will lie) and the NNDL and hence the Data Base. Through this interface new entry
points into functional modules are provided so that the user's optimization routines
can for example initiate new MSC/NASTRANanalysisor MSC/DSAanalysis, or query the
Data Base. Although the user is expected to supply his own optimization, note that
one spoke includes a MSC/FSD(Fully Stressed Design) option. As envisioned, the
user will have, through the interface module and the NNDL,access to any spoke or
the rim or both.

Figure 20
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INTRODUCTION

This paper describes an ongoing program whose goal is to develop an auto-
mated procedure that can assist in the preliminary design of aircraft and space
structures. As Figure I indicates, the program is sponsored by the Air Force
Wright Aeronautical Laboratories with Northrop Corporation, Aircraft Division,
as the prime contractor and Universal Analytics, Inc., a subcontractor.

The paper is entitled a "Progress Report" because it reports on an ongoing
effort. The presentation will be limited to a discussion of the approach and
capabilities that are to be included in the final procedures. An exception
is that the Executive System is defined and tested to an extent sufficient
to permit specific results to be included in the presentation.

CONTRACTNUMBER: F33615-83-C-3232

SPONSOR: AIR FORCEWRIGHTAERONAUTICALLABORATORIES

PROGRAMMONITOR: DR. V. B. VENKAYYA

CONTRACTOR: NORTHROP CORPORATION,AIRCRAFT DIVISION

SUBCONTRACTOR: UNIVERSALANALYTICS, INC.

PERFORMANCEPERIOD: JULY 1983 - MARCH 1988

Figure i
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MOTIVATION

The motivation for this program comesfrom a number of sources (Figure 2).
First, there is a need for a procedure of this type that integrates the dis-
ciplines which drive structural design concepts with powerful optimization
techniques. Existing procedures that approach this capability are deficient
in their analysis techniques and their optimization methods and/or are not in
the public domain. Additional motivating factors are to exploit the rapid
advances that have been madein automated design algorithms, computer hard-
ware and computer software. For instance, in the automated design area,
recent research has shownthe similarity of optimum criterion methods and
mathematical programming approaches and has shownhow approximate analyses
can replace most of the detailed analyses formerly required in a design task
(Ref. i). It is hardly necessary to mention the revolutionary progress being
madein computer hardware and, with moderndata base concepts and structured
programming, in software techniques.

e EXISTINGPROCEDURESARE CONSIDEREDOUTDATEDAND INADEQUATE

e IMPROVEDUNDERSTANDINGOF AUTOMATEDDESIGN

e IMPROVEDHARDWARE

e IMPROVEDDATA HANDLING

e IMPROVEDLANGUAGE- FORTRAN77

Figure 2
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REQUIREMENTS

In developing the procedure, a numberof basic requirements must be kept
in mind (Figure 3). For instance, for the program to be useful, it must in-
clude analysis techniques from the technical disciplines that impact the pre-
liminary design of aerospace structures. The procedure must also be efficient
in its use of computer resources in order that its stated capabilities be
affordable. It must also be recognized that a large array of related analysis
procedures already exists in the environment this new procedure will enter.
This program should, to the extent practicable, be compatible with these
existing procedures. Finally, difficulties associated with the introduction
of a new procedure must be minimized by providing well written and ample docu-
mentation.

e INTERDISCIPLINARY

e EFFICIENT

• COMPATIBLE

e UNDERSTANDABLE

Figure 3
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PROGRAMTASKS

The program is divided into six interrelated tasks (Figure 4). In the
recently completed Design SystemDefinition task, architecture of the procedure
was defined and basic design issues were resolved. The current effort is
focused on the development of the unique executive system and data base
manager that will be used. The Module Development task, which is also under way,
will integrate the engineering analysis techniques into the procedure. A
"Pilot System," which will contain the key features of the final system, will
be delivered in late 1985. Design studies will refine the procedure and
apply it to practical design problems drawn from ongoing development activities.
Under the User Guidelines task, comprehensivedocumentation of the procedure's
structure, capabilities and input requirements will be developed. Results
from applying the procedure and recommendationsfor its use will also be given.

PHASE

I

II

Ill

DESIGNSYSTEM DEFINITION

EXECUTIVE/DATABASE CODING

MODULE DEVELOPMENT

IV PILOT SYSTEM

V DESIGN STUDIES

VI USER GUIDELINES

Figure 4
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SYSTEMARCHITECTURE

The basic componentsof the system are identified in Figure 5. The
Executive Systemis the heart of the software and directs program execution,
data base control and system input and output. A new programminglanguage
entitled MAPOL(Matrix Analysis Problem Oriented Language) has been developed
to drive the procedure. The Data Base System is a combination of a relational
data base system (Ref. 2) which handles basic engineering data and a separate
matrix handler to efficiently store and retrieve the matrix information using
sophisticated packed formats. The functional modules perform the engineering
tasks and are literally modularized for ease of program enhancementand modi-
fication. A utilities library will contain all basic matrix manipulation pro-
cedures and assorted miscellaneous operations such as search and sort routines.
This will serve to eliminate redundant coding and help ensure its reliability.

EXECUTIVE

SYSTEM

IONAL FUNCTIONAL FUNCTIOI'IAL

)ULE MODULE _ MODULE
.__.___ L

Figure 5
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EXECUTIVESYSTEM

The Executive System is the heart of the software and performs four
primary functions, as shownin Figure 6. Module sequence control is facili-
tated by a problem-oriented language called MAPOL. The actual execution of
modules within the system will be performed by a "pseudo-machine," similar
to the execution monitor concept of NASTRAN.This model is extremely flexi-
ble and powerful. Data managementis a critical part of a large-scale anal-
ysis system both in terms of function and performance. The need to locally
modify data while performing design optimization is ideally addressed by a
relational data base system such as the RLM(Ref. 3) system. However, the
need for the efficient manipulation of very large matrices requires that
sophisticated packed formats, along with appropriate algorithms, be avail-
able. Therefore, the concept of a "partitioned data base" has been defined
to satisfy both needs. The User-Interface includes simple, easy-to-use input
data entry. Accurate, informative and user-friendly messageswill be issued
by the software instead of the often obscure programmer-oriented jargon often
encountered. Solution results will be user-selectable and will be printed in
a clear, easy to read manner. The allocation of computer resources and inter-
faces with the operating system of the procedure's host computer are also
handled by the executive.

e MODULESEQUENCECONTROL

e DATA MANAGEMENTCONTROL

e USER-INTERFACECONTROL

e COMPUTERRESOURCEALLOCATION

Figure 6
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THEMAPOLLANGUAGE

The execution of the procedure is directed by a sophisticated control
language which can be most readily described as being an updating of the DMAP
language used in NASTRAN(Ref. 4). Figure 7 provides a list of features of
the language. The language recognizes scalars, vectors, matrices and relations
and has a numberof intrinsic procedures to deal with each. A user can also
construct special purpose procedures and structured programming features such
as IF-THEN-ELSE,DO-WHILEand DO-UNTILare available. With these features,
the user has considerable flexibility and power in directing the sequence
of the program's execution. The language also simplifies the coding task by
substituting the higher level capability of MAPOLfor detailed FORTRANprogram-
ming.

e SPECIALDATA TYPESFOR MATRICESAND RELATIONS

• PERMITSUSERWRITTENPROCEDURES

• CONTAINSSTRUCTUREDPROGRAMMINGFEATURES

• INCLUDESA UTILITYLIBRARY

. CAN OPERATEDIRECTLYON THE DATABASE

Figure 7
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MAPOLEXAMPLE

Figure 8 provides a simple application of the MAPOLlanguage in order to
clearly illustrate someof its features. The program reads in three matrices
and operates on them in one of three different ways depending on whether the
parameter ALPHAis negative, zero or positive. The input matrices are printed
after they are input while the output matrix and two scalar parameters are
printed at the completion of the task.

PROGRAMMATRIX

MATRIX A, B, Cj X;

REAL ALPHA, BETA;

CALL INPUT;

CALL PRINT (A, B, C);

IF (ALPHA< 0) THEN

X : : A * B + C;

ELSE o

IF (ALPHA: 0) THEN

X : = TRANS(BETA * A + B);

ELSE

X : : A* A* INV (C);

ENDIF

ENDIF

CALL PRINT (ALPHA, BETA, X);

END;

Figure 8

535



ENGINEERINGMODULES

The scope of the engineering capabilities of the procedure is indicated
by Figure 9, which lists the six distinct disciplines that are to be included
to provide comprehensivepreliminary design. In most cases, proven engineer-
ing software can serve as a resource for the various technologies. Candidate
engineering analysis tools include NASTRAN,USSAERO(Ref. 5), Doublet Lattice
(Ref. 6), and ADS(Ref. 7). The sensitivity module, which will provide
gradient information, requires significant new coding while the other modules
will be significantly altered to interact with the data base and the utilities
library. The controls response analysis module is included in recognition of
the increasingly important interactions between the control system and the
structural response in the design of aerospace structures.

• STRUCTURALANALYSIS

e AERODYNAMICLOADS

• AEROELASTICSTAFILITY

• SENSITIVITYANALYSIS

• OPTIMIZATIONTECHNIQUES

• CONTROL RESPONSEANALYSIS

Figure 9
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MILESTONES

An indication of the scope of the project is given in Figure i0. The
entire project is slated to last for almost five years. As the figure indicates,
muchof this time is to be spent in testing and debugging the procedure,
the rationale being that the eventual success of the procedure rests heavily
on making it as reliable and fully tested as practicable. Other milestones
include the recently completed design of the system architecture and the
implementation of this architecture by early next year. A pilot system,
which will incorporate the major design capabilities of the procedure, will
be delivered in early 1986. The final system delivery is scheduled for September
1987 with a training workshop for interested government and industry personnel
slated for early 1988.

PROGRAMGO-AHEAD JULY 1983

SYSTEM ARCHITECTUREDESIGNED JANUARY1984

DATABASE AND EXECUTIVESYSTEM CODED JANUARY1985

PILOT SYSTEM DELIVERY JANUARY1986

FINAL SYSTEM DELIVERY SEPTEMBER1987

TRAINING WORKSHOP JANUARY1988

Figure I0
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CONCLUSIONS

Becausethis presentation is a progress report, it is not possible to
present conclusions in the usual sense. Instead, somesummarizing comments
on how the various attributes of the system will meet the goals set for the
project will be offered. Firstly, by using Proven engineering software as
a basis for the project, a reliable and interdisciplinary procedure will be
developed. The use of a control language for module sequencing and execution
permits efficient development of the procedure and gives the user significant
flexibility in altering or enhancing the procedure. The data base system will
provide reliable and efficient access to the large amounts of interrelated
data required in an enterprise of this sort. In addition, the data base
will allow interfacing with existing pre- and post-processors in an almost
trivial manner. Altogether, the procedure promises to be of considerable
utility to preliminary structural design teams.
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