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STRUCTURAL SYNTHESIS PROBLEM STATEMENT

Almost 25 years have elapsed since it was recognized that a rather general
class of structural design optimization tasks could be posed as nonlinear mathemat-
ical programming problems (Ref. 1). Figure 1 shows the nonlinear programming problem
statement and its geometric interpretation in terms of a hypothetical two-dimensional
design space plot. The use of inequality concepts is essential to the proper state-
ment of most design optimization problems because at the outset it is not usually
known how many or which constraints will be critical at the final design. In other
words, the design drivers are not known with certainty in advance. 1In a structural
context the constraints represented by Eq. 1 usually include: (A) one behavior con-
straint for each failure mode in each load condition; (B) side constraints that
introduce fabrication and analysis validity limitations as well as "rules of thumb."
Posing the structural design optimization task as a nonlinear programming problem
makes it possible to consider: multiple load conditions; a wide variety of failure
modes (e.g. limitations on stress, strain, displacement, buckling load, natural
frequencies, etc.); side constraints; and objective functions other than weight
minimization. During the past two decades a great deal of effort has been devoted
to learning how to solve the structural synthesis problem efficiently for systems of
practical interest. The main theme of this presentation will be to suggest that many
of the key ideas that have helped advance the state of the art in structural syn-
thesis may provide useful guidelines for the development of analysis and design tools
in other disciplines.
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STRUCTURAL COMPONENT SYNTHESIS (1968)

During the 1960's the structural synthesis concept was successfully applied to
structural components of a fundamental and recurring nature (e.g. stiffened plates
(see Ref. 2 and 3) and stiffened cylindrical shells (see Ref. 4 and 5)). The struc-
tural synthesis capability reported in Ref. 5 for minimum weight optimum design of
integrally stiffened clyindrical shells (see Fig. 2a) was state of the art in 1968.
In a philosophical sense, it was a precursor of the approximation concepts approach
that was to emerge during the 1970's. This problem involved seven design variables
(see Fig. 2b), multiple load conditions (Nk’ Pl ATk,), a rather extensive set of
strength and buckling failure modes, and minimum gage and other side constraints.
The mathematical programming problem statement was transformed into a sequence of
unconstrained minimizations using the Fiacco-McCormick interior penalty function
formulation (see Eq. 4, 5 and 6). The constraint repulsion characteristic of this
penalty function formulation leads to a sequence of non-critical designs that tend
to "funnel down the middle" of the feasible region in design space (see Fig. 2c).
This observation led to the idea that approximate analyses could be used during each
unconstrained minimization stage, with good expectations that the sequence of designs
generated would remain in the actual feasible region. By doing a complete buckling
analysis at the beginning of each stage and retaining only the critical and poten-
tially critical mode shapes during each unconstrained minimization, computational
efficiency was improved by a factor of 75 while still generating a sequence of
positive margin designs with decreasing weight. Dynamically updated constraint
deletion techniques that retain only design drivers and potentially critical con-
straints have and will continue to play an important role in the development of
optimum design capabilities for structures as well as multidisciplinary systems.
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DESIGN ORIENTED STRUCTURAL ANALYSIS

Interest in developing efficient system level structural synthesis capabilities
based on finite element analysis models stimulated research on design oriented
structural analysis (DOSA) during the 1965-1975 time period (e.g. see Ref. 6-14).
This work was based on the idea that in a design context the objective of structural
analysis should be to generate with minimum effort an estimate of the critical and
potentially critical response quantities adequate to guide the design modification
process. Developments in DOSA fall into three main catagories: (1) behavior sensi-
tivity analysis; (2) reduced basis methods for structural analysis; and (3) re-
organization of finite element analysis methods to serve the special characteristics
of the design optimization task (see Fig. 3). The basic goal of behavior sensitivity
analysis is to obtain information about rates of change of response quantities with
respect to changes in design variables. The key to accomplishing this involves im-
plicit differentiation of the governing analysis equations with respect to the design
variables, as illustrated by Eqs. 7 and 8 in Fig. 3 for the case of linear static
structural analysis via the finite element (displacement) method. When sensitivity
derivatives are needed for only a small subset of displacement components, it will
be more efficient to employ adjoint methods (see Refs. 15-17). Reduced basis methods
in static structural analysis are analogous to the common practice in dynamic
analysis of using a reduced set of generalized coordinates and normal mode basis
vectors. The basic idea, illustrated by Eqs. 9-12 in Fig. 3 is to use a relatively
small number of well chosen basis vectors Kn to drastically reduce the number of
unknowns in the analysis from J to N. Finite element analysis can be better matched
to the needs of the design optimization task. For example, the stiffness matrix K
can be formed using precalculated and stored invariant parts K, and K; as illus-
trated by Eq. 12 in Fig. 3. This organization also makes the oK/3D; (see Eq. 14),
needed for behavior sensitivity analysis (see Eq. 8). already available in storage.
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ANALYSIS MODEL - DESIGN MODEL

When dealing with large system level design optimization problems it is very
important to distinguish between the analysis model and the design model. While Fig.
4 illustrates this idea in terms of a structural system, it should be apparent that
analogous distinctions exist in other areas (e.g. aerodynamic design, thermal design,
etc.). Generating a structural analysis model usually involves idealization and
discretization. 1In the context of the finite element method, idealization refers to
selecting the kinds of elements and discretization refers to deciding on the number
and distribution of finite elements and displacement degrees of freedom (DOF's)

(see Fig. 4a). Once these decisions have been made, the structural analysis problem
has a definite mathematical form. Establishing the design model involves another
important set of decisions, namely: (1) deciding on the kind, number, and distri-

bution of design variables; (2) identifying the load conditions and constraints to

be considered during the design optimization; and (3) selecting the objective
function. This process may be viewed as somewhat analogous to making the judgements
that lead to the analysis model. A schematic representation of three alternate

skin design models is shown in Fig. 4b. Limitations on the number of independent
design variables are often imposed by symmetry, fabrication, and cost control
considerations. In many structural design optimization problems the number of finite
elements needed in the analysis model (to adequately predict behavior) is much

larger than the number of design variables required to describe the practical design
problem of interest. In some problems involving substantial changes in configuration
it may be necessary to dynamically update the analysis model as the design evolves
(e.g. see Ref. 18). 1In any event, it should be recognized that analysis modeling

and design modeling involve two distinct but interrelated sets of decisions.
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KEY TO A TRACTABLE FORMULATION

Prior to 1970, the main obstacles to the development of large scale structural
synthesis capabilities were associated with the fact that the general formulation
(see Fig. 1, Eqs. 1 and 2) involved: (1) large numbers of design variables; (2)
large numbers of inequality constraints; and (3) many behavior constraint functions
that are computationally burdensome implicit functions of the design variables.
During the 1970's these obstacles were overcome by replacing the initial problem
statement with a sequence of relatively small, algebraically explicit, approximate
problems that preserve the essential features of the original design optimization
task (e.g. see Refs. 19 - 25). As indicated schematically in Fig. 5 this was
accomplished through the coordinated use of approximation concepts such as: (1)
reducing the number of independent design variables by linking and/or basis reduction;
(2) reducing the number of constraints considered at each stage by temporary deletion
of inactive or redundant constraints; and (3) constructing high quality explicit
approximations for retained constraint functions (via the use of Taylor series
expansions in terms of insightfully selected intermediate variables).

Find B such that Linking Find g such that
gq(g) 2 0 ; qeq Basis Reduction ﬁép) (g) >0 ; quép)
and Constraint and
M(D) ~ MIN ™|  Deletion > w@) > MmN
Basic Problem Explicit Approximate
Constraints Problem
Approximation
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Figure 5




APPROXIMATION CONCEPTS

In its simplest form, design variable linking fixes the relative sizes of some
preselected group of finite elements. The reduced basis concept in design space
further reduces the number of independent design variables by expressing the yector
of I design variables D as a linear combination of B prelinked basis vectors Ty,
where B<<I (see Eq. 15, Fig. 6). Constraint deletion techniques such as regionaliza-
tion and truncation represent computer implementation of conventional design practice.
Regionalization is a scheme in which, for a specified region (e.g., all those elements
linked to a particular design variable Sb), only one constraint (the most critical)
is retained for each loading condition. The truncation idea §imp1y involves tempo-
rary deletion of constraints for which the response ratio R,(D) (see Eg. 16, Fig.
6) is so low that the corvesponding constraint will be inactive. In Eq. 16, Fig. 6)
only those behavior constraints with response ratios greater than c are retained
in the veduced set of constraints denoted by qEQR(P), Also, in the case of linear
constraints it is often possible to identify strictly critical constraints and they
can be permanently deleted. When seeking hizh quality explicit approximations it is
important to appreciate the flexibility offered by Taylor series expancions in terms
of insightfully selected intermediate variables [xy=f,(8y)]. Equation 17, Fig. 6
shows a general second-order Taylor series expansicn for the constraint g, in terms
of intermediate design variables X. This expression can be specialized ang in the
context of structural systems, first—-order, second-order diagonal (separable), and
full second-order approximations have been used. The use of reciprocal design
variables has been notably successiul in generating high quality explicit approxi-
mations for displacement constraints. Finally, it shoulid be noted that in some
instances it may be preferable to generate Taylor series expansions for response
quantities while preserving the explicit nonlinearity inherent to the constraint
function when it is expressed in terms of response quantities.

Linking and Basic Reduction
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APPROXIMATION CONCEPTS BLOCK DIAGRAM

The approximation concepts approach to design optimization is shown in Fig. 7.
This basic approach has been and continues to be used in developing modern structural
design optimization capabilities; however it is potentially applicable to a much
wider range of engineering design optimization problems. The approach outlined in
Fig. 7 is modular and it combines the previously discussed approximation concepts
and existing nonlinear programming algorithms. The '"preprocessor" computes and
stores all necessary information that is independent of the design variable values.
A typical stage in the iterative design process begins with the control block
supplying a "trial design" to the "approximate problem generator" (APG). Upon
leaving the APG block, the current approximate problem statement is passed through
"design process control" and handed off to the "optimization algorithm" block, along
with a set of trial values for the design variables. This approximate problem is
explicit and relatively small, therefore it can be solved using well-established
algorithms. Furthermore, the approximate problem often has a special algebraic
structure (e.g. convex, separable, quadratic, linear, etc.) which facilitates ef-
ficient solution via the use of special purpose techniques such as dual method
algorithms (e.g. see Refs. 26-30). Once the "optimization algorithm" block has gener-
ated an improved design, it is passed back to the "design process control" block
where it becomes the trial design for the next stage of the iterative design process
outlined in Fig. 7. The multistage process is usually terminated by a diminishing
returns criterion with respect to further improvement in the objective function.
For a significant class of minimum weight structural sizing problems, it has been

shown that practical convergence can be achieved using only 5 to 10 full finite
element analyses.
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SENSITIVITY ANALYSIS ANALOGY

While the use of behavior sensitivity analysis has become common practice
during the past decade, the importance of optimum design sensitivity analysis has
only recently been recognized by the structural optimization community (see Ref. 31
and subsequent work Refs. 32-35). Figure 8 outlines a useful analogy. In the
analysis context, rates of change for behavior response quantities (e.g., dis-
placements, stresses, natural frequencies, normal modes, etc.) with respect to design
variables are obtained via implicit differentiation of the pertinent analysis
equations (see Eq. 18, Fig. 8). 1In the optimum design context, rates of change for
optimum design variable values (primal and dual) with respect to problem parameters
(e.g., allowable displacement, allowable stress, applied load, etc.) are obtained
via implicit differentiation of the necessary conditions characterizing the base
optimum design (see Eq. 19, Fig. 8). Behavior sensitivity derivatives represent
valuable quantitative information that can be used to: (1) help guide redesign via
man-machine interaction; (2) construct explicit approximations for response
quantities in terms of design variables (n.b.ap=1/8y). These explicit approximations
can often be used to bypass the actual analyses for alternative designs in the
neighborhood of the base design. Optimum design sensitivity derivatives represent
valuable quantitative information that can be used to: (1) help guide higher level
trade-off studies via man-machine interaction; (2) construct explicit approximations
for optimum design variable values in terms of problem parameters (px). These
explicit approximations can be used to bypass the actual optimization for modest
changes in the problem parameters (assuming no shift in critical constraint set
Qcys see Eq. 19, Fig. 8). The quality of the explicit approximations generated by
behavior sensitivity/optimum design sensitivity analysis can often be improved
by thoughtful selection of intermediate design variables/problem parameters. Also,
optimum design sensitivity is important in the development of multi-level methods

(see Ref. 36).
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AIRFOIL OPTIMIZATION

Many of the ideas that have played a key role in advancing the state of the
art in structural synthesis are potentially transferable to design optimization tasks
in other discipline areas. For example, in Refs. 37 and 38 numerical airfoil opti-
mization is carried out using reduced basis concepts and Taylor series approximations.
Various airfoil optimization tasks can be formulated as nonlinear programming
problems. For instance the objective may be to minimize the drag coefficient Cp or
maximize the lift coefficient C; . Typically the constraints may include limits on
lift, drag, pitching moment, thickness, and camber. The %igfoil shape is defined
as a linear combination of basis vectors ?(1), §(2), R AL some or all of which
may represent other airfoils (see Fig. 9a and Eq. 20). The scalars a_, agse.ed
in Eq. 20 can be thought of as participation coefficients and they are taken to
be components of the vector of design variables X (see Eq. 21). This reduced basis
approach, first used for airfoil optimization in 1976 (see Ref. 39), provides
good airfoil definition without having to use large numbers of design variables
to define the airfoil thickness distribution. In Refs. 37 and 38 an innovative
approximation concepts approach is used to reduce the number of aerodynamic analyses
needed for design optimization by a factor of 2 or more. The basic idea used is to
gradually develop second-order Taylor series approximations (see Eq. 22) for both
the objective function F(X) and the constraint functions G.(X) by using existing
data or data generated earlier in the design optimization pTrocess. Each approximation

> >

generated for the F(X) (and the G.(X)) is used to improve the design (see Fig. 9b).
This is followed by a full aerodyhamic analysis which adds a new data point to the
currently available set of data points. Examples reported in Refs. 37 and 38, as
well as recent results (Ref. 40) using more realistic aerodynamics and spline
function representation of airfoil shape, illustrate that approximation concepts can

be successfully adapted to airfoil optimization.
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THERMAL OPTIMIZATION

Thermal analysis and design is another area in which structural synthesis has
served as a catalyst. For example in Refs. 41 and 42 techniques for computing the
sensitivity of temperatures (steady state and transient) with respect to design
variables that define a thermal protection system (and associated structure) have
been developed and assessed. Also, in Ref. 43, explicit thermal response approxi-
mations based on first-order Taylor series expansions as well as constraint deletion
techniques are successfully applied to some component level thermostructural design
optimization problems (e.g. the thermostructural panel shown in Fig. 10a). The
constraints for this problem are time parametric since the thermal behavior is trans-
ient (see Eq. 23). Instead of replacing the time parametric constraint (Eq. 23) with
a large number of regular constraints representing the response at closely spaced
time points t: (Eq. 24), the response is monitored only at the most critical points
(see Fig. 10b, points A, B, C, and Eq. 25). As the design changes during optimizat-
ion the critical time points drift; however, it is shown in Ref. 43 that drift does
not affect the first derivatives of the critical constraints (Eq. 25) with respect
to design variables. During each stage in the approximation concepts approach
employed in Ref. 43, the critical time points are frozen and Taylor series constraint
approximations are generated only for that reduced set of constraints. The critical
time points and the constraint approximations are updated periodically. It is
reported in Ref. 43 that the combined use of these two approximation concepts pro-
duced an order of magnitude reduction in computational time required for convergence
of the design optimization process. Finally, it should be noted that the reduced-

basis method is also being applied to transient thermal analysis problems (see Ref.
44) .,
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OPTIMIZATION OF COMPRESSOR VANE SETTINGS
Gas turbine engines for jet aircraft must maintain high performance over a
~wide range of flight conditions; therefore variable-geometry configurations and
bleed systems are built into components such as the fan and the compressor. During
development many compressors are built with all vane rows variable, even though only
a few rows may be left variable in the final design configuration. Primary com-
pressor performance goals (M(B)) include: maximum efficiency, maximum stall margin,
maximum flow range, and maximum pressure ratio. Furthermore, there will always be
constraints g (3)20. For instance one might want to maximize efficiency while main-
taining a minimum acceptable stall margin and also satisfying stress limitations.
In Refs. 45-47 a sequence of approximate problems approach has been applied to the
optimization of compressor vane settings. The block diagram shown in Fig. lla (taken
from Ref. 48) outlines the general approach. The basic idea is to gradually refine
the approximations generated as more experimental data is accumulated. A particu-
larly interesting part of the work reported in Ref. 45 involved optimization of a
three-stage compressor with four rows of variable vanes. Optimization of compressor
efficiency was carried out experimentally by both the traditional approach (sequenti-
ally opening and closing each vane row) and the sequence of approximate optimization
problems approach. Vane settings were optimized for 8 different operating speeds
(see Fig. 11b) and in each case the improvement in compressor efficiency achieved
via the sequence of approximate optimization problems approach exceeds that obtained
by the traditional approach. Furthermore, 407 fewer test points were required to
obtain these superior results. The results reported in Ref. 45 support the content-
ion that the approximations concepts approach to design optimization can be used to
find better designs at significantly lower cost, even when the objective and con-
straint functions must be evaluated experimentally.

Given Ek s k=1,2,...K ; K> 2 pe——— START
>
M(Dk) ; k=1,2,...K
(B k=1,2
gq k) 4 - 4 ’..‘K ’ qu O Design Vane Settings

Non-Computer Optimum (No Prewhirt)
8 [_A Non-Computer Optimum (15 deg Prewhirl)
[J Computer vane Ogtimization Program

Form Explicit Approximations and

'

>
Given DK+1 conduct experiment to

Optimize

Adiabatic Efficiency Improvement, Percent

) + 0 OO0
flnd M(DK+1) and Configuration 74A-2
> . | I 1 1 J
gq (DK+1) 3 9eQ s 60 70 80 90 100
Percent Design Speed
(b)
K « K+ 1 Converged? STOP
(a)
Figure 11

12




MULTILEVEL METHODS AND DECOMPOSITION

The basic objective of multilevel methods is to break down a large unmanage-
able design optimization problem into a hierarchy of interconnected smaller problems
that are tractable. When a large design optimization problem is naturally explicit
(e.g. see Ref. 49) or when it can be replaced by a sequence of explicit approximations
it may be possible to apply formal decomposition algorithms drawn from the mathemati-
cal programming literature. However the current limitations of formal decomposition
algorithms are such that interest has been stimulated in the generation of heuristic
decomposition techniques (e.g. see Refs. 50-54). In the structural synthesis context
multilevel methods have been of continuing interest since the early 1970's (e.g. see
Refs. 50 and 51). Almost all of the multilevel work in structural synthesis has
focused on two-level systems such as that depicted schematically in Fig. 12. 1In
Refs. 52 and 53 the multilevel method was improved by using: (1) a nonlinear
programming formulation at both the component and the system level; (2) approximation
concepts (linking, constraint deletion, and explicit constraint approximations) to
facilitate efficient solution of the system level problems; (3) change in stiffness
as the component level objective function to be minimized. Recently a general
method for breaking large multidisciplinary problems down into several levels of
subproblems was proposed (Ref.36). This general method was subsequently implemented
for two-level structural optimization and successfully applied to a portal frame
type structure (see Ref. 54). A key feature of this work is that it makes use of
optimum design sensitivity analysis to convey to the system level coupling inform-
ation about how the cumulative measure of component constraint violation (for each
component) will react to changes in the system level design variables. Multilevel
methods and formal decomposition are areas of continuing research activity that are
likely to have significant influence on the development of multidisciplinary design
optimization.
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SUMMARY

More than twenty five years have elapsed since it was recognized that a rather
general class of structural design optimization tasks could be properly posed as an
inequality constrained minimization problem. Figure 13 summarized several ideas that
have played a key role in advancing the state of the art in structural synthesis.
As indicated by the airfoil, thermal, and compressor vane examples some of these
ideas are already being transferred or extended to other discipline areas. It is
suggested that, independent of primary discipline area, it will be useful to think
about: (1) posing design problems in terms of an objective function and inequality
constraints; (2) generating design oriented approximate analysis methods (giving
special attention to behavior sensitivity analysis); (3) distinguishing between de-
cisions that lead to an analysis model and those that lead to a design model; (4)
finding ways to generate a sequence of approximate design optimization problems that
capture the essential characteristics of the primary problem, while still having an
explicit algebraic form that is matched to one or more of the established opti-
mization algorithms; (5) examining the potential of optimum design sensitivity analy-
sis to facilitate quantitative trade-off studies as well as participation in multi-
level design activities. An open-minded and imaginative quest for parallel oppor-
tunities in other disciplines offers significant potential for advancing the state
of the art in multidisciplinary analysis and design. It should be kept in mind that
multilevel methods are inherently well suited to a parallel mode of operation in
computer terms or to a division of labor between task groups in organizational
terms. Based on structural experience with multilevel methods the following general
guidelines are suggested: (1) seek to weaken coupling between levels via basic
organization, selection of intermediate level objective functions and the use of move
limits; (2) whenever possible try to satisfy local constraints through local design
variable changes; (3) for noncritical components seek a balanced design with uniform
positive margins. Multilevel methods and decomposition can be expected to play a
vital role in the development of multidisciplinary design optimization capabilities.

ONLP Formulation - Inequality Constraints
®DOSA : Behavior Sensitivity Analysis
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