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ORffiNAL PAGE 12 
OF P08R QUALITY INTRODUCTION 

In the development of modern turbomachinery, problems of flutter instabilities 
and excessive forced response of a cascade of blades that were encountered have 
often turned out to be extremely difficult to eliminate (refs. 1,Z). The study of 
these instabilities and the forced response is complicated.by the presence of mis- 
tuning; that is, small differences among the individual blades. 

The theory of mistuned cascade behavior (refs. 3-8) shows that mistuning can 
have a beneficial effect on the stability of the rotor. This beneficial effect is 
produced by the coupling between the more stable and less stable flutter modes 
introduced by mistuning (ref. 9). The effect of mistuning on the forced response 
can be either beneficial or adverse. Kaza and Kielb (refs. 5-8) have studied the 
effects of two types of mistuning on the flutter and forced response: 
mistuning where alternate blades are identical and random mistuning. 

alternate 

1 

The objective of the present paper is to investigate other patterns of mistun- 
ing which maximize the beneficial effects on the flutter and forced response of the 
cascade. Numerical optimization techniques are employed to obtain optimal mistun- 
ing patterns. The optimization program seeks to minimize the amount of mistuning 
required to satisfy constraints on flutter speed and forced response. 
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GEOMETRY OF A TUNED CASCADE

As shown in the figure, the blades are modeled as an infinite cascade of air-

foils in a uniform upstream flow with a velocity V where _ is the stagger angle.

Only two degrees of freedom (bending and torsion) are considered for each blade.

For the tuned cascade, the blades are assumed to be in harmonic motion with h
ar

being the bending amplitude, _ar the torsional amplitude and _r the phase angle

between adjacent blades. For an N-blade cascade, that phase angle can take only
N discrete values B = 2_r/N.

r

_ h ei(mt+Br )
ar

.... ei(_t+_ r)
_ar
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STRUCTURALANDAERODYNAMICMODELOFBLADE

The figure illustrates the structural model of the s-th blade. All the length
quantities are non-dimensional with respect to the semichord, b. The blade bending
and torsional stiffnesses are modeled through the springs Kh and K_ respectively.

S S

The effects of centrifugal stiffening due to rotation of the disk are included in

the spring constants. The elastic coupling between bending and torsion due to pre-

twist, shrouds and rotation is modeled through the offset distance (x ) of the

S

center of gravity from elastic axis which is located at a distance ba from mid-

chord. The chordwise motion of the airfoil is neglected.

The aerodynamic loads on the blade are the lift and moment per unit span LM
S

and MM due to motion and the lift and moment per unit span LW and MW due to wakes.
S S S

These aerodynamic loads are calculated using Whitehead's extension of Theodorsen's

isolated airfoil theory in the incompressible unsteady flow to account for cascade

effects (ref. i0).
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EQUATIONS OF MOTION

While the motion of a tuned cascade is simple harmonic with a fixed interblade

phase angle, the motion of a mistuned cascade is assumed to be a linear combination

of the tuned cascade modes. The equation of motion may be written as Eq. (i) where

{Y} is a vector of complex amplitudes of the tuned cascade modes, [E] is the modal

matrix containing all the possible inter-blade phase angle modes, {Q} is a forcing

vector that depends on the aerodynamic wake forces and w is a reference frequency.
O

When no external loads are applied the eigenvalues of the matrix [P] are cal-

culated for a range of reduced frequencies and the flutter speed is found from the

condition that the real part of the eigenvalue is zero. For the forced response

calculation, the frequency and mode of the excitation has to beassumed. In the

present work an entire range of frequencies is scanned for the most critical forced

response. The mode of excitation has its only non-zero component in the (N-l)th
harmonic.

[P] - [I] y] {Y} : -[E] -I {Q} (1)

2
co0

: (-g-)

Stabi I i ty

[P] - [I] ¥] {Y} : {0} (2)

-2N x 2N Eigenvalue problem

iwj i

- _j + ivj

Forced Response

r 7 1

{x} : -[E] [[P]- {Q} (3)
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EFFECTSOFMISTUNING

The figure illustrates the effect of alternate blade mistuning on the flutter
speed. The flutter speed increases monotonically with an increase in alternate
blade mistuning level. Alternate blade mistuning can have either a beneficial or
adverse effect on forced response, depending on the harmonic of excitation.

3.0 m

o
--===2..5
>.

g i.5

_ 1.0
0
z

f

WITH DAMPING--q 1 t

_as 0._2.

-- _I,.I DAMPED
7

STABLE

.5 J
0 1 2 3 4 5

ALTERNATING FREQUENCY MISTUNING, %

224



DESIGN FORMULATION

The objective of the present study is to minimize the amount of mistuning

required to satisfy given constraints on the stability and forced response of a

cascade. The design variables are the amounts of mistuning in the individual

blades ei' and the objective function is the sum of the individual mistunings

raised to some integer power p. A high value of p corresponds to minimizing the

maximal blade mistuning while p=2 corresponds to minimizing the root mean square
mistuning. The flutter constraint is based on the result of ref. 9 which showed

that maximum stability is obtained when all eigenva!ues have the same real part _.

Therefore, the flutter constraint is a limit on the amount of spread of the real

part of the eigenvalues about their average value, _av' as well as a requirement

that all real parts are stable.

Design Variables:

_i : Yc_i- (Y_)av i = O, I, .... N-I

Objective Function:

n-I p

F({c}) = Z ci
i=O

Flutter Constraint:

Spread Constraint:

Stability Constraint:

Forced Response Constraint:

r1 (_J > O,

rmax
N-I
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EFFICIENT FORCED RESPONSE CONSTRAINT

The constraint on the forced response (Eq. (4) in the figure) requires the

calculation of the forced response for a range of frequencies. One way of checking

whether any violation occurs in the required range is to evaluate the response at a

grid of frequencies dense enough to preclude the possibility of substantial con-

straint violations between grid points. From the standpoint of the optimization

procedure this is very costly because a constraint on the response has to be applied

at each grid frequency. For the cases reported here a grid of i01 frequencies had

to be used in the range 0.95 < m/_ < 1.05.
-- O --

Two alternative techniques were used to reduce the cost of calculating the

response constraints and their derivatives. The first is identifying local peaks of

the response (as a function of m) and enforcing the constraints only at these

peaks. The main savings of this technique is in terms of derivative calculations.

The second technique is based on the assumption that the response is most critical

at the eigenfrequencies of the stability problem. This technique results in even

larger savings. The results in terms of number of constraints and computer time

for a full optimization are shown in the table for a seven-blade cascade.

RESPONSE AT 0.5 PERCENT ALTERNATE DESIGN (K=0.66)

2.0

1.8

1,6.

[.1_.

1.2.

$
P 1.0
0
N
5
E 0.8

0.6

Method

Dense

L/_ Grid

_{_I Critical

/I_i\ Point

_/_I_ \\ Ei gen-

__l_k Frequencies

1.01 1.02 1.03 1.0q 1.05

0.q ¸

0.2 ¸

O,O

0.95 0.95 0.97 0.98 0.99 l.OO

FREOUENCT

LEGEND: Z _ BLADE t .e--*--, BLADE 2 --BLADE 3
-- BLADE 5 _ BLADE 6 _ BLADE 7

No. of

Constraints

7O7

18-21

14

CPU Time

IBM 3081

30.8 min.

8.25 min.

3.67 min

-- BLADE q

Forced Response Constraint

ri (mJ) > 0

rma x --
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NEWSUMTOPTIMIZER

The optimization program used to obtain numerical results is the NEWSUMT
program (ref. ii). It uses the sequenceof Unconstrained Minimization Technique
(SUMT)with an extended interior penalty function (ref. 12) to represent the con-
straints. Each unconstrained minimization is performed by using Newton's method
with approximate derivatives (ref. 12). The optimization procedure is particularly
efficient when the complexity of a problem is in the constraint and the objective
function is fairly simple. For this reason the amount of mistuning is optimized
subject to a constraint on the response, rather than optimizing the response subject
to a constraint on the amount of mistuning.

Minimize F(_)

subject to gj (_) >__O, j = I, 2, ..., m

• SUMT - Sequential Unconstrained Minimization

Technique

• Extended Interior Penalty Function

• Newton's Method with Approximate Second
Derivatives
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OPTIMIZATION SUBJECT TO FLUTTER CONSTRAINT

The first set of results were obtained for a twelve blade cascade subject to a

flutter constraint of the form

_cr
0. 584 > 0

_av

where _cr is the real part of the least stable eigenvalue and Uav the average real

part. The results are summarized in the table. They show that the optimized mis-

tuning pattern is about 78.52% better than the alternate mistuning design which

satisfies the same constraint. The maximum individual blade mistuning is 0.91%

versus 1.4% for the alternate mistuning, and the optimized pattern is still alter-

nating in sign.

TABLE I

Results of Optimization with Flutter Constraint (k=0.66)

Objective Function!

Max. mistuning

_max(P ercent)

Least stable

eigenvalue

iMistuning

(percentage)

_2

E 3

¢4

E5

E6

E 7

E8

E 9

El0

ell

El2

Alternate Mis-

tuning pattern

23.52 x 10 -4

1.4000

Optimized Mis-

tuninq pattern

5.053 x 10 -4

0.9097

-0.002525

1.4000

-1.4000

1.4000

-1.4000

1.4000

-1.4000

1.4000

-1.4000

1.4000

-i._000

1.4000

-i._000

-0.002526

0.7628

-0.4768

0.9018

-0.6401

0.9097

-0.4683

0.6619

-0.6708

0.2620

-0.7796

0.1575

-0.6201
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EFFECT OF OBJECTIVE Fb_CTION FORM

The use of the sum of the squares of the individual blade mistunings as the

objective function is equivalent to minimizing the root mean square of the mistuning

pattern. Another possible objective function is the maximum individual blade mis-

tuning. This objective function has the disadvantage of having discontinuous de-

rivatives with respect to the design variables, e.. To avoid this problem the max-
1

imum-individual-blade objective function can be approximated by the sum of a high

power of the individual mistunings. To check whether the optimized design is

sensitive to the objective function the optimization was repeated with the sum of

the sixth powers of the e. being the objective function. The results are summarized
1

in the table and show the effect to be minimal for this case.

TABLE 2

Effects of change in Objective Function (k=0.66)

Objective Function

Max. mistuning

Emax(percent)

Least stable

eigenvalue

Mistuning

(percentage)

E 1

z2

g3

_4

c5

E6

z7

z8

z9

Zl0

gll

z12

Optimum I

(Exponent = 6)

1.698 x 10 -4

0.8993

-0.002525

0.7639

-0.5662

0.8927

-0.5910

0.8993

-0.5352

0.6839

-0.7201

0.2476

-0.6621

0 .... 9

-0.5837

Optimum II

(Exponent = 2)

5.053 x 10 -4

0.9097

-0.002526

0.7628

-0.4768

0.9018

-0.6401

0.9097

-0.4683

0.6619

-0.6708

0.2620

-0.7796

0 1_

-0.6201
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OPTIMIZATION SUBJECT TO FORCED RESPONSE CONSTRAINT

The optimization was repeated with a forced response constraint. The con-

straint stipulated that the maximum response amplitude of the optimized design does

not exceed the forced response of a 0.5% mistuning alternate-mistuning design. The

two designs are compared in the table. It is shown that the objective function was

reduced by 70% which corresponds to 45% reduction in the root mean square of the

mistuning.

An attempt to obtain an optimal design subject to both flutter and forced

response constraint indicated that the alternate mistuning design cannot be improved

upon in both categories. That is, improvements in stability resulted in deterior-

ation in forced response, and vice versa.

TABLE 3

Results of Optimization with Forced Response Constraint

(k=0.8)

Objective Function

Max. mistuning

ICmax(percent)

Least stable

eigenvalue

Mistuning

(percentage)

E1

E2

Initial Design

-0. 00138

Optimized Design

-0.00003

E3

E4

E5

E6

E7

E8

E9

El0

Ell

E
12

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0. 2457

-0. 4804

0.2677

-0. 3049

0.2299

-0.2620

0.2463

-0.2024

0.2419

-0. 1170

0.2474

-0. 1123
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FORCED RESPONSE COMPARISON

The maximal blade response of the alternate and optimized designs is compared

in the figure.

RESPONSE AT ALTERNATE AND OPTIMUM DESIGNS (K=0.80)

D.B

0.6_

X

R 0.¼-'

E
S
P
O"
N
S
E

0.2-

t

l'
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CONCLUDINGREMARKS

An optimization procedure for finding optimal mistuning patterns for cascades
subject to flutter and forced response constraints has been developed. The pro-
cedure is based on an extended interior penalty function algorithm and seeks to min-
imize the amountof mistuning required to satisfy the constraints. An efficient
form of the forced response constraint which reduces computation costs by an order
of magnitude has also been developed.

The optimization procedure has been applied to the design of a 12-blade
cascade and the resulting designs comparedto alternate mistuning designs. It was
found that mistuning amplitudes could be substantially reduced without hurting
either the flutter or the forced response characteristics. However, it was not
possible for the example problem to improve on the alternate design subject to both
constraints.

The designs obtained by the optimization procedure are not practical because
they require manydifferent blades. Work is under way to obtain similar results
with only 3 or 4 different blade types.

Optimization Procedure for Design Under

Flutter & Forced Response Constraints

Developed

• Efficient Forced Response Constraint

Resulted in Large Computer Time Savings

• Optimized Designs Superior to Alternate

Designs if only Flutter or only Forced

Response is Critical

• Number of Different Blades Should be

Reduced
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