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AERODYNAMIC ANALYSIS OF SLENDER WINGS

Slender wings on supersonic cruise configurations are expected to be thin and

highly swept. As a result, edge-separated vortex flow is inevitable and must be

accounted for in aerodynamic analysis and design. The present method is based on

the method of suction analogy (ref. i) to calculate the total aerodynamic

characteristics. The method requires the solution of the attached flow problem,

the latter being solved by a low-order panel method in subsonic and supersonic

flow (ref. 2). In essence, the lifting pressure is calculated by using a pressure-

doublet distribution satisfying the Prandtl-Glauert equation. From the pressure

distribution, the leading-edge suction is calculated. The latter is assumed

to be the vortex lift through the method of suction analogy. For a cambered wing,

the location of vortex-lift action point is important in predicting the aerodynamic

characteristics (ref. 2). It is also seen that the effect of camber shape

appears nonlinearly in all aerodynamic expressions. (See fig. i.)
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DESIGNPROBLEMS

To design the camber shape, the camber slope is represented by a cosine
Fourier series at each of several spanwise stations. The Fourier coefficients
are the design variables. To design a leading-edge flap in the vortex flow
(i.e. a vortex flap), the coordinates of corner points and the deflection angle
are the design variables. The process of wing design is to determine the camber
shape and twist distribution such that an objective function, typically the drag,
is minimized, subject to various constraints (fig. 2). The latter may include the
lift, the magnitude of maximumgeometric twist and the magnitude of vortex lift.
Other types of constraint are possible (ref. 3). The design of a vortex flap can
be described in a similar manner.

Camber Representation for Each Spanwise Station:

N

('_/kazc_ = j _=1 Oj COS (j - 1) Ok

(2k - 1) _"

ek = 2N

Design Variables: aj

Optimization Problem:

CL
Minimize F=

C_+ CD_

Subject to Constraints (Gj) of

(1) A Given Lift Coefflclent

(2) A Given Ratio of Vortex Lift to Total Lift

(3) Magnitude of Local Angles of Attack (Twist)

Figure 2
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WING DESIGN OPTIMIZATION BY "CONMIN"

To achieve the wing design optimization, the aerodynamic analysis method

is coupled with CONMIN - Constrained Function Minimization Program (refs. 4 and 5).

In a typical wing design problem, as many as 70 design variables may be employed.

The solution is determined iteratively.

The process starts with the calculation of values of objective and constraint

functions for the input design variables. Gradients of these functions are then

calculated and CONMIN will determine the best way of changing the design variables

to achieve the minimum drag design without violating constraints. (See fig. 3.)
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RESULTS OF VORTEX FLOW AND ATTACHED-FLOW DESIGN FROM AN INITIAL FLAT SURFACE

CLdes = 0.3, M = 0, TWIST $ 8 DEG

Design results very much depend on the imposed constraints. For simplicity,

only the constraint of having the lift coefficient, twist and vortex lift be greater

than 5% of total lift in the case of the vortex flow design will be imposed in the

present study. Results show that starting from an initial flat surface, the

final camber shape designed with the vortex flow concept (called the VF design)

is similar to that designed with the attached-flow concept (called the AF

design) except near the root and the tip. In the mid-semispan region, the surface

has large aft camber. Note that if the effect of _Ze/_y is ignored and the
twist constraint is not imposed, as is usually done in a conventional method, the

resulting shapes would involve larger forward camber and unrealistically large

twist (ref. 3 and 6). (See fig. 4.)
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VORTEXFLOWDESIGNFROMDIFFERENTSTARTINGSHAPES
CL = 0.3, M = 0, TWIST_ 8 DEG

des

In the present nonlinear optimization problem with a large number of design
variables, the final solution depends on the initial input. In other words,
there are manyrelative minima in the design space. To show this, the vortex
flow design with the sameconstraints is calculated from three input shapes - a
flat surface, the camber shape of the attached-flow design in figure 4 reduced
by 10%,and the original camber shape of the attached-flow design. As shown
in figure 5, the results are all different. To determine a solution close to
a global minimum, Vanderplaats et al. (ref. 7) suggested beginning the optimization
from several different initial designs.
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DESIGNFROMA FLATSURFACEFORA DESIGNLIFT
COEFFICIENTOF0.6, M = 0, and TWIST$ 8 DEG

By increasing the design lift coefficient to 0.6, the attached-flow concept
did not produce a feasible design under the specified twist constraint. However,
a converged feasible design was easily obtained under the vortex flow concept.
It is seen from figure 6 that at high lift forward camber is needed to provide
more forward-facing surface to produce a thrust force.
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PARTIAL VORTEX FLOW DESIGN

CL = 0.3, TWIST $ 8 DEG
des

In applications, there are always some other practical constraints, such as

some inboard portion being specified. The present method allows a certain

portion of the planform to be unchanged during the optimization process. For

example, in figure 7 three types of vortex flow design are presented, one

started from a flat surface, the other from the attached-flow design, and the

last one (called the VPA design) also from the attached-flow design, but with the

inboard one-third fixed. The results show that in the VPA design more forward-

facing surface exists in the outboard portion to take advantage of the vortex-

induced thrust.
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PERFORMANCECOMPARISONOFDIFFERENTDESIGNCONCEPTS

CLdes= 0.3, M = 0, TWIST$ 8 DEG

At the design lift coefficient of 0.3, all three design configurations
have about the sameCD., reaching the planar minimumvalue of C_/nA. At off-
design conditions, thelattached-flow design (AF) would be superior if the flow
could remain attached. Whenthe flow is separated, the AF design (not shown)
will have approximately the sameperformance as the VF design. On the other
hand, the partial vortex flow design (VPA) seemsto be superior throughout the
off-design CL. (See fig. 8.)
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VORTEXFLAPDESIGN
CL = 0.3, M = 0

des

A vortex flap is a leading-edge flap which takes advantage of vortex-
induced thrust to reduce the drag. The present method is capable of determining
the size and deflection angle of the flap in such a way that the drag is minimized,
subject to the lift constraint. As presented in figure 9, by assuming an initial

of 5 deg. and _ = 0 deg., an optimum size of the flap is determined with a
final _ of 7.7 de_. and _ = -15.1 deg.n

Input: a=5"

_n = 0"

Ftna] : a = 7,7"

6n = -15.1"

Shape

na] Shape

Figure 9
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SYMBOLSANDABBREVIATIONS

A
[A]
AF
a.
]

b

c

CD.
I

CD
o

CL

CLde s

AC
P

c
s

c t

F

G

M

VF

VPA

x,y,z

Z
C

z£

n

Yx

A

aspect ratio

aerodynamic influence coefficient matrix

attached-flow design with a flat surface as the starting solution

Fourier coefficients for the camber slope

wing span
local chord

induced drag coefficient

minimum drag coefficient

lift coefficient

design lift coefficient

lifting pressure coefficient

sectional suction coefficient

sectional thrust coefficient

objective function

constraint function

Mach number

vortex flow design with a flat surface as the starting solution

vortex flow design with the attached-flow design as the starting

solution and inboard one-third portion remaining unchanged

a rectangular coordinate system

camber ordinate

camber ordinate along the leading edge

angle of attack

leading-edge flap angle measured normal to hinge line, negative downward

streamwise vortex density

leading-edge sweep angle

perturbation velocity potential
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