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In a typical design process major decisions are made sequentially. The

illustrated example is for an aircraft design in which the aerodynamic shape

is usually decided first, then the airframe is sized for strength and so forth.

An analogous sequence could be laid out for any other major industrial product,

for instance, a ship. The loops in the discipline boxes symbolize iterative

design improvements carried out within the confines of a single engineering

discipline, or subsystem. The loops spanning several boxes depict multidisci-

plinary design improvement iterations. Omitted for graphical simplicity is

parallelism of the disciplinary subtasks. The parallelism is important in order

to develop a broad workfront necessary to shorten the design time.

If all the intradisciplinary and interdisciplinary iterations were carried out

to convergence, the process could yield a numerically optimal design. However,

it usually stops short of that because of time and money limitations. This is

especially true for the interdisciplinary iterations.
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Sequential decision making leads to a paradoxical disparity between the volume
of information about the object of the design and the design freedom measured
by the numberof design variables and options still available to the designers.
The former ascends with time becauseof the analyses and experiments performed,
while the latter declines becauseof casting the decisions "in concrete." The
paradox is that we are gaining information but losing freedom to act on it.
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A simple example will reveal that the paradox shown in the previous chart
leads to a suboptimal design. For the example, we will look into an aircraft
design process at the time when wing planform and structural sizing have
already been accomplished to produce a combination of two design variables,
the aspect ratio and structural weight, that maximizes a measure of the
aircraft performance without violating the constraints. Simplifying the
example as much as possible, we can consider a design space formed by the
aspect ratio and the structural weight that, we assume, has already been
minimized. In that design space, sNown in this chart, the aircraft
performance can be depicted by a set of contour lines, each line corresponding
to a constant value of the performance. Superimposed on the contour lines are
the constraint curves, Cl and C2. Each constraint curve divides the design
space into the feasible (constraint satisfied ) and infeasible (constraint
violated) subspaces (domains). The cross-hatching marks the infeasible side.
It is not important for the purposes of this discussion which particular
aspect of the aircraft performance was chosen as a measure of goodness
(objective function) and what constraints were taken into account in plotting
the set of curves, P, Cl, and C2. The aircraft range for a given takeoff
gross weight and payload and the wing static strength may be thought of as
respective examples for P and C2. Inspection of the graphs shows that the
design which maximizes P without violating CI and C2 is at point 01.

CONSTRAINED MINIMUM
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Supposenow that whena flutter speed is subsequently calculated, the design
01 turns out to have too low a flutter speed - in this chart it is shownto be
on the infeasible side of the flutter constraint plotted as C3. The design has
to be modified to have its flutter speed raised. If at this point in the
design process the configuration - the aspect ratio - is frozen, the increase
of the flutter speed can be achieved by stiffening the wing structure at the
price of a weight penalty by moving from 01 to 02 at a constant aspect ratio,
The weight penalty reduces the performance from PI to P2. If the configur-
ation were not frozen, a new optimal design could be located at 03, whose per-
formance P3, although smaller than P1, exceeds P2 (P2 < P3 < PI). The difference
P3 - P2 is a performance penalty for the sequential freezing out of the design
options in a sequential design process. Wecan say that design 02 is suboptimal
relative to the design 03. Another look at this and the preceding chart, and
a little reflection, will show that although the magnitude of the performance
penalty, P3 - P2, depends on the shapeof the functions involved (P, C1, C2, C3),
its existence does not. Consequently, the example reveals that suboptimal results
can be expected in a sequential design process in which each additional stage
restricts the numberof design variables while bringing in new constraint viola-
tions that must be removed.

A NEW CONSTRAINT ADDED
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To demonstrate an alternative based on a system approach, reenter the example
at the point where the flutter deficiency of the design, labeled 01 in the
preceding chart, has been found. The essence of the system approach is
decomposition of a large problem into several smaller ones without losing the
coupling. Therefore, we recognize in this case that two engineers, or
engineering groups, must fix the flutter problem with the least penalty to the
performance, P, by cooperating and yet each doing a separate subtask. In this
chart the individuals, or groups, are labeled C - for configuration, including
aerodynamics and performance, and S - for structures.

The subtask of correcting the flutter problem with a minimumweight penalty
AWmin is carried out by S for a particular aspect ratio set constant, but
only temporarily, by C, and for aerodynamic analysis results (e.g., pressure
distribution) and their sensitivity to aspect ratio - all supplied by C. The
result produced by S is a flutter-free design at a minimumweight penalty,
along with the sensitivity of that design to aspect ratio. That sensitivity
is quantified in the form of derivatives of the weight penalty and cross-sec-
tional dimensions with respect to the aspect ratio.

FINDING NEW CONSTRAINED MINIMUM

BY ALTERNATING BETWEEN TWO ENGINEERING DISCIPLINES
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Completion of the above task moves the design from 01 to 02 in this chart,

exactly as in the previous discussion. However, group C will now recover a

part of the performance penalty by changing the aspect ratio and the weight
penalty simultaneously. In this operation, the weight penalty is not an

independent variable but is tied to the aspect ratio variation by the

sensitivity derivative which tells how much the weight penalty must change per
unit of aspect ratio variation to keep the flutter constraint satisfied. Such

dependence of weight penalty on aspect ratio is only a linear approximation of

a true nonlinear relation and can be depicted by the tangent to C3 at 02 shown
in this chart. The configuration improvement produced by C calls now for a

move along that tangent toward the increasing performance; that is, toward 03.

The move should stop when the tangent veers off too far from C3 in order to

let group S repeat its subtask to recover from the linearization error by
regenerating the minimum weight penalty and its sensitivity derivative at

the new value of the aspect ratio. Thus, by alternating subtasks performed

by C and S we can improve the design by moving toward the theoretical optimum

at 03 in a staircase fashion: 02 to 02A, to 02B, to 02C, and so on, as long

as we see that the performance improvement is worth the effort.
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Having introduced the idea of decomposition by means of a simple example we
will now generalize the four objectives shown in the chart as guidelines. The
first three are self evident. The last one deals with the disparity between
the large volume of information that is being processed within a subtask and a
relatively small volume of information that couples the subtask (subsystem) to
other subtasks (subsystems). For example, contrast the mass of data being
manipulated in a finite element analysis of an airframe with the input data of
loads, mechanical properties, and geometry, and with the structural weight and
critical constraint data which is all that is fed back to the aircraft

performance analysis. The decomposition scheme should exploit that
disparity. Lack of such disparity indicates that either the decomposition
scheme is improper or the problem is not decomposable.

DECOMPOSITION OBJECTIVES

am'

• BREAK LARGE TASK INTO A NUMBER OF SMALLER ONES

• PRESERVETHE COUPLINGS AMONG THE SUBTASKS

• EXPLOIT PARALLELISM TO DEVELOPA BROAD WORKFRONT
OF PEOPLEAND COMPUTERS

• EXPLOIT THE DIFFERENCEOF VOLUME BETWEENA RELATIVELY
LARGE AMOUNT OF INFORMATION PROCESSED INTERNALLY
IN A SUBTASK AND A RELATIVELY SMALL VOLUME OF THE
COUPLING INFORMATION
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There are several decomposition procedures in the literature (ref. I). How-
ever, a literature survey failed to reveal a method that would be capable of
accounting for the couplings among the system andsubsystems without having
to reoptimize the subsystems for every variation of the parent system design
variables and that would apply to nonlinear programing problems. Since such
repeated reoptimizations would be cost prohibitive in most large-scale engi-
neering applications, a new approach that accounts for the system-subsystem
couplings without the repetitive subsystem reoptimizations has been developed
at Langley Research Center and is now at a stage of testing and verification.
The approach is called "a linear decomposition" for reasons that will become
apparent soon.

SEVERAL WAYS TO HANDLE THE COUPLINGS
IN A DECOMPOSED .SYSTEM

• BODY OF LITERATURE

• THE PROPOSEDAPPROACH: A LINEAR DECOMPOSITION
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For generality, the chart shows a generic system decomposed into subsystems
that form a hierarchical, three-level tree. If the system were a structure,

the top level would represent the assembled structure, each subsystem at the

middle level would correspond to a substructure, and the bottom level

subsystems would simulate individual structural components (e.g., stiffened
panels. Thus, three levels is the minimum we need to have each level

qualitatively different for generality of the discussion. We assume that the

system has been initialized so that physical characteristics are completely

defined at each level. It is not necessary for the initialized system to be

feasible. The analysis proceeds from top to bottom so that output from
analysis of a parent subsystem becomes input for analysis of the subordinated

subsystems. For an example, consider a structure assembled of substructures

and loaded by forces applied at the substructure boundary nodes. The

substructure boundary forces from the assembled structure analysis are fed

into the substructure analysis as loads, and the internal forces from

substructure analysis enter into the individual structural component analysis.

In many engineering applications, the decomposition must account for the fact

that inputs to analysis of a given subsystem may be coming not only from its
parent but from any other subsystem at the same or even a different level,

including inputs from the subordinated subsystems to their parent. An example

of the latter can be drawn from the substructuring analysis in the case where
the loads applied to a substructure interior nodes are reduced to the loads

applied at the substructure boundary nodes, by performing analysis at the

substructure level before commencing the assembled structure analysis. In
other words, a system decomposition may lead to a network rather than the

"top-down" graph shown in the chart. However, we will limit this discussion

to the case depicted in the chart in order to keep it as simple as possible

for a clear introduction of the basic approach. Extension of the approach

necessary to handle the network systems is presented in ref. 2. It is

important that analyses at each level include sensitivity analysis to

produce derivatives of the output quantities with respect to the input

quantities. These derivatives measure sensitivity of behavior (response).

Obviously, if there are several subsystems at a given level, they can be
analyzed concurrently.
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This chart introduces a cumulative constraint that will be needed in further

discussion. The cumulative constraint is a single number that measures the

degree of satisfaction, or violation, of an entire set of constraints. There

are several ways to formulate the cumulative constraint as a function of the

constraints in the set, for instance, the well known quadratic exterior
penalty function is a cumulative constraint. The particular formulation

adopted here is a function shown by the equation below and referred to as the

Kresselmeier-Steinhauser function. The function is continuous and differentiable,

in contrast to the envelope of the constraint functions, which is slope discon-

tinuous at the constraint function intersections, and; as seen in the graph,

follows the constraint envelope at a distance that is user-controlled by the

factor p. Increase of the factor draws the function closer to the envelope.
The factor ought to be set so that the cumulative constraint function does not

loose numerical differentiability by forming sharp "knees" at the constraint
intersections.

CUMULATIVE CONSTRAINT

• A SINGLE NUMBER MEASURE OF THE DEGREE OF SATISFACTION, OR

VIOLATION, FOR A SET OF CONSTRAINTS

DEMAND -I < 0
= f(gi) i= I ---_m; gi= CAPACITY -

• AN APPROXIMATE ENVELOPE FUNCTION

gi

VIOLATION
It jCII

0

SATI SFACTION

II -- II

//'/ PARTICULARLY

\\ // / THE KRESSELMEIER-

_ /_/__gz__ STEINHAUSER FUNCTION
%" ,__ _ g3 _ = 1__ LN (T. (e Pgi/'_

_ J P = USER CONTROLLED

"- gl _ g2 FACTOR

353



Having completed the analysis and introduced the cumulative constraint, we
now begin the optimization which will proceed from the bottom up. Each

subsytem optimization at the bottom level is characterized as follows:

1. design variables: physical quantities local to the subsystem, e.g.,
detailed cross-sectional dimensions of a panel

2. objective function: the cumulative constraint of the subsystem

constraints such as local buckling, stress, etc

3. inequality constraints: upper and lower limits on the design
variables

4. constant parameters: inputs received from the parent subsystem

5. equality constraints: these constraints may be required in order to

preserve the constancy of the parameters (for example, if a parameter
is a total cross-sectional area of a panel, an equality constraint on

the detailed cross-sectional dimension variables is needed)

The use of a cumulative constraint as the subsystem objective is a logical
choice because it is a non-dimensional quantity and therefore comparable among

the subsystems regardless of their physical nature, which may vary from one

to another. The subsystem optimization is followed by sensitivity analysis of

the minimum of the objective with respect to the subsystem input quantities

(equal to the output from the parent subsystem). This analysis is called

optimum sensitivity analysis to distinguish it from the behavior sensitivity

analysis and is carried out not by finite difference but by a special

algorithm described in ref. 3. Thus, the results from each subsystem

optimization are the minimum of the cumulative constraint and its sensitivity

to the output from the parent subsystem. These results are now carried upward

to the parent subsystem. If there are several subsystems at a given level,

their optimizations can be executed concurrently.

OPTIMIZATION: BOTTOM LEVEL
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Now, moving up one level to the middle level, we perform a subsystem
optimization for each subsystem at that level. The optimization is formu-
lated as follows:

(1) Design variables: physical quantities local to the subsystem,
e.g., membrane stiffness of the wing box at several locations over
the wing

(2) Objective function: cumulative constraint for a set of constraints

that includes the constraints intrinsic to the subsystem itself (e.g.,
limit on the wing tip deflection) and the minimum values of the cumula-
tive constraints transmitted from the subordinated lower level subsys-
tems (These minimum values are estimated by linear extrapolation (see
equation) as a function of the middle level subsystem design variables
by means of the optimum sensitivity derivatives taken with respect to
the subsystem output quantities which, in turn, are governed by the
subsystem design variables. This linear extrapolation eliminates
the need to reoptimize the subordinated subsystems for each design
variable variation introduced in the parent subsystem and gives the
method its name of the linear decomposition.)

(3) Constant parameters

(4) Inequality constraints

(5) Equality constraints are analogous to those defined for the bottom
level

The results are a minimum of the cumulative constraint and its derivatives
with respect to the system output. They are now carried to the top level.
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DEFINITIONS: DESIGN VARIABLES=X M

INPUT= IM RECEIVED FROMABOVE

IM - 0T

TOP_ OBJECTIVEFUNCTION:

T I 5YSILM I CUMULATIVE CONSTRAINT

k--_g T Q (gM' C_Bmin)

/ _ gM= CONSTRAINTS IMPOSED

MIDDLErDDLE_/___._ _ AT THIS LEVEL

MI I I su_.. J gBmin IS APPROXIMATED BY

_it_ LINEAR APPROXIMATION: .

/ / _ _ min/e-CZ-[_ b _L_ Mi

/ / Yx OPTIMIZATION PROBI_EM:

.8.1 1.... {M} L_<xM_<u
l J J J _ OPTIMUM SENSITIVITY ANALYSIS:

0 _ _in / C/eTi

355



Optimization at the top level involves:

1. design variables that govern the entire system, for an aircraft example:
configuration geometry, structural weight prescribed for the airframe, etc.

2. objective function as a measureof the system performance, e.g., fuel
consumption or Direct Operating Cost

3. inequality constraints on the system performance, e.g., take-off field
length, the upper and lower limits on the design variables, and the cumulative
constraints from each subsystem linearly extrapolated by meansof the optimum
sensitivity derivatives (These constraints also include the side constraints
and move limits to control the linear extrapolation error.)

Thus, the top level optimization deals with the system performance directly,
and has embeddedin it the approximation to all the subsystemconstraints in
the form of the linear extrapolation based on the subsystem optimum
sensitivity derivatives. These derivatives quantify the design trade-offs
amongthe subsystemand account for their couplings.

The top-down analysis and the bottom-up optimizations constitute one cycle of
the iterative procedure which continues until the extremumof the system
objective is found and all the system constraints and the subsystemcumulative
constraints are satisfied. For more algorithmic detail, one mayconsult
ref. 2.
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While the procedure described in the previous five charts is generic, the
decomposition of the system is problem dependent. It can be done by a common
sense inspection and judgment. It can also be done formally by a matrix of
the design variables listed along the top and the objective and constraint
functions listed vertically. A dot at the row_columnintersection meansthat
the variable corresponding to the column appears in the equation corresponding
to the row, and a blank meansthat the variable does not appear in that
equation. The three examples showtypical patterns.

MANY WAYS TO DECOMPOSE A SYSTEM

• HEURISTIC: BY EXAMINATION OF THE SYSTEM PHYSICAL MAKE-UP.

[ AIRCRAFTI
@ @ I AIRFRAME I IPROPULSION]

• FORMAL: BY INSPECTION OF THE FUNCTIONAL RELATIONSTHAT GOVERNTHE
PROBLEM

0 BJECTIVE
AND

CONSTRAINT
FUNCTIONS

VARIABLES
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WITH

PARTIAL COUPLING

[
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Oncethe decomposition tree is established, it can be grown with respect to
the numberof subsystems and the depth and detail of analysis. This
adaptability permits maintaining the sameoverall logic of approach at various
stages of design, while changing the modules in that logic - a desirable
feature from the standpoint of the process integration.

DECOMPOSITION ADAPTS TO DESIGN STAGE

SYSTEM

VARIABLES
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The multilevel procedure described here is still being developed toward a
state of maturity required for industrial applications. To achieve that

state, research continues to investigate the issues listed below.

ISSUES TO BE INVESTIGATED

• CONVERGENCE: OVERALL,LOCAL

• COMPUTATIONAL COST

• LATERALAND REVERSE

• ACCURACY OF LINEAR
SENSITIVITY

• SUBTASK SYNCHRONIZATION

CONSISTENCY
SUBTASKS

JUDGMENTAL
AND HUMAN

COUPLINGS

EXTRAPOLATIONS

OF THEANALYSI S LEVELS

DECISIONS,
CONTROL

INCLUDING

BASEDON

IN VAR IOUS

DI SCRETEDECISIONS,
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The development toward maturity involves a literature survey, numeroustests
of several variations of the algorithm using very simple test cases, and a
fairly large structural test case. A multidisciplinary test is under way for
reconfiguration of a transport aircraft wing treated as a part of an aircraft
system and, also, a wing separated from the aircraft. The issues of
computational parallelism and synchronization amongthe subtasks are being
explored using a network of microcomputers connected to a central hard disk.

RESEARCH

INTO THE MATHEMATICS OF MULTILEVEL DECOMPOSITION

• GOAL: A LEVEL OF MATURITY REQUIRED FOR INDUSTRIAL
APPLICATIONS

• LINES OF RESEARCH:

• SURVEY OF LITERATURE

• SMALL TEST CASE- A SIMULATOR -TO TEST
VARIOUS ALGORITHMS

• APPLICATION TEST CASES: STRUCTURES

LOCKHEED PROJECT

ISOLATED WING CASE

PARALLEL COMPUTI NG

(A NETWORK OF APPLES)

• GRANT ACTIVITIES TO BE REPORTED IN THIS SESSION
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A two-level structural optimization of a framework has been successfully
carried out and reported in ref. 4. The decomposition in this case exploits
the fact that the end forces acting on each I-beam in the framework can be
calculated using A and I for the beams without directly using the beam
cross-section design variables. Furthermore, the local constraints in a beam
can be calculated using the beam's detailed cross-sectional dimensions and the
end forces. Thus, the A's and I's are the system design variables and the
detailed dimensions are the subsystem design variables. The beam is optimized
by reducing the cumulative constraint to a minimum (maximizing the safety
margin). In the process, the beam cross-section is reproportioned while
preserving the A and I prescribed for the beam at the system level.

MULTILEVEL OPTIMIZATION:

A

3

A FRAMEWORK TEST STRUCTURE

(TWO LEVELS)
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The two-level framework structure has been extended to three levels by
replacing the I-beams with the box beams made up of stringer-reinforced
panels. The panels add the third, bottom level of subsystems. This makes
the test more general because it now contains all three level categories:
top, middle, and bottom. At the time of this writing the tests are still in
progress.

MULTILEVEL OPTIMIZATION: A FRAMEWORK STRUCTURE
(THREE LEVELS)
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This is a summary of multilevel structural optimization development and
testing. The method was also applied in a test case of a high-performance

sailplane wing design (ref. 5). The results obtained to date are encouraging.

TEST APPLICATIONS IN STRUCTURES

TWO LEVELS: GOOD CORRELATION WITH A SINGLE LEVEL TEST CASE

• MINIMUM WEIGHT AGREED WITHIN 2%

• QUITE LARGE DIFFERENCES IN OPTIMUM DESIGN
VARIABLES = A "SHALLOW' OPTIMUM

(ref. 4)

SAILPLANE WING (ref..5)

THREE LEVELS: REFERENCESINGLE LEVEL TEST CASE ESTABLISHED

THREE-LEVEL PROCEDURE IMPLEMENTED AND DEBUGGED

RESULTS BEING GENERATEDFOR WORK-IN-PROGRESS

(ref. 4)

363



The wing of a transport aircraft (Lockheed L-1011) is to be reconfigured to
minimize fuel consumption for a given mission. The design variables are

selected from the geometrical configuration dimensions noted in the drawing
and the detailed structural dimensions (not shown) of the wing cover panels
reinforced by stringers. A long list of constraints includes the local

effects, such as local buckling, and the system performance constraints, such

as takeoff field length. The testing is being done jointly with

Lockheed-California which supplies the mathematical model (e.g., a finite

element model) and the mission and load data, and reconfigures the wing by
means of parametric studies using the state-of-the-art tools in each

discipline. The Langley team is using the linear decomposition. Comparison

of the results will allow assessment of the relative merits of the proposed
method. Further details of the test are provided in reference 6.

MULTILEVEL OPTIMIZATION APPLICATION

A COOPERATIVE VENTURE WITH LOCKHEED-CALIFORNIA

(LOCKHEED-GEORGIA INVOLVED)
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CONCLUSIONS

• THEORYOF ONE PARTICULAR APPROACH TO DECOMPOSITION
DOCUMENTED(ref. 2)

• TESTS ON STRUCTURES: FRAMEWORK, SAILPLANE WING

• TEST ON AN AIRCRAFT CONFIGURATION UNDER WAY

• RESEARCHAND DEVELOPMENTCONTINUE TOWARD MATURITY

REQUIRED FOR INDUSTRIAL APPLICATIONS
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