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SHAPE DESIGN OF A FILLET

Selection of the best shape of a fillet in a tension bar such that no

yielding occurs has long attracted the attention of engineers. Dimensions and

notations for the bar and fillet are shown in figure I. Wit_ symmetry, only the

upper half of the bar is considered. The boundary segment r- is to be varied,

but with fixed points at A and B. The segment F is the central line of the
fillet and r- and F- are uniformly loaded edges.

The optimal design problem is to find a boundary shape F 1 to minimize the

total area of the fillet such that no yielding occurs. Constraints are placed

on von Mises yield stress, averaged over small regions or finite elements _ on

which m_ is a characteristic function with value I/(area of _) and _(o(z))mis

normali_ed von Mises yield stress.

The classical boundary value problem is reduced to a variational or energy

related problem which not only has excellent properties of existence and

uniqueness but also provides the mathematical foundation for finite element

analysis. The variational formulation may be viewed as the principle of virtual

work and the finite element method as an application of the Galerkin method to

the variational equation for approximate solution of the boundary value problem.
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Design Variable: Shape of F 1

Cost: $0 = fffl dfl

Constraint: _k = ff_ _(°(z))mk dfl _ 0 ,

Virtual Work Equation:

k = 1,2,...,NE

a(z,_) _ ff_

2 2

[oiJ(z)eiJ(z)]d_ = fr 2 i[ 1 Tiz i dr
i,j=l =

for all kinematically admissible virtual displacements z

Figure i
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MATERIAL DERIVATIVE AND ADJOINT VARIABLE METHOD

Since shape of the domain is treated as the design variable, it is

convenient to think of _ as a continuous medium and utilize the material

derivative idea from continuum mechanics. The process of deforming _ to a new

domain _ may be viewed as a dynamic process as shown in figure 2. One can
T

define a transformation as x = x + TV(x) where • plays the role of time and x is

a point in initial domain _ _hat moves to point x in the deformed domain _ •

Note that the "shape design velocity" V(x) of point x can be considered as

perturbation of design variable. A detailed discussion of this method can be
found in references I and 2.

The adjolnt variable method of design sensitivity analysis (refs. I, 2, and

3_ is applied by defining an adjoint equation for an adjolnt displacement field

X to obtain the variation _ where _ is the small region or the finite element

considered, mk is a characteristic function for the corresponding _, and _ is the
normalized yon Mises yield stress.

Note that onl_ boundary integrals appear in the expression for _. The
normal movement (Vin) plays the role of shape design perturbation and-can be

expressed in terms of shape design parameters.

(vTn)

r _ / FT dx T

V(x) ffidT

Material derivative of cost: _0 = fr (vTn)dr

Material derivative of constraint ===_Adjoint equation

2

a(xk,x) = ff_ Y

i,j=l
[O_--_ij(z)oiJ(x)]mk dfl

, 2

*k =- fri[ Y
i,jffil

oiJ(z)_ij(_k)] (vTn)dr- frk mk(_k - _)(vTn)dr

Figure 2
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PARAMETRIZATIONOF BOUNDARYP

In order to computedesign sensitivity _, the variable boundary should be
parameterized in terms of a design variable vector b (refs. 2 and 3). Presume
that points on the boundary F are specified by a vector x (e;b) from the origin

T
of the coordinate system to t_e point S on the boundary, as shown in figure 3,

where _ is a parameter vector.

When the vector b of design variables, b = [bl,. ,b_] T, has been defined,
the domain optimization problem reduces to selection of the finite dimensional

vector b to minimize a cost function, subject to the constraints. By defining

xT(a;b) m x(_;b + T6b), one can define the velocity field at the boundary by
taking the derivative of x with respect to T. Taking the scalar product of V

T
with the unit outward normal to the boundary F and substituting the result into

the analytical expressions for _ and _ yields numerically computable
sensitivity formulas.

x 2

O
×I

d _x

V - dT [x(_;b + T_b)] = _--__b

(vTn) = in T _x(_;b) ]6b
_b

n T _x dF] _b: [fr

_k : [/r G(z %k) (nT _x )dr] 6b'

Figure 3
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COMPARISONOFFINITE ELEMENTMETHODS

Since shape design sensitivity information is given as a boundary integral,
one has to check the accuracy of the numerical analysis results on the boundary.
For comparison of accuracy, constant stress triangular (CST), linear stress
triangular (LST), and 8-noded isoparametric (ISP) elements with optimal stress
(refs. 4 and 5) are used to calculate design sensitivity. That is, stress values
are evaluated at Gausspoints and linearly extrapolated to obtain boundary
stresses and strains.

For boundary parameterization, piecewise linear and cubic spline
representations are used. In order to compareaccuracy of results obtained with
different finite elements, the samesmall region should be used to average
stress. The small regions selected are shownin figure 4, located next to the
variable boundary where it is most difficult to obtain accurate design
sensitivity results (ref. 2).

Define g_. E _k(b + 6b) - _(b_. The ratio of _' and g_ times I00 is used
as a measure o_ accuracy; i.e., TO0% means that the predicted change _' is

exactly the same as actual change. Numerical results with 6b = 0.001b are shown

in figure 4.
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68.3

70.1

79.3
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99.1

99.1

98.3

87.0

102.8

I01.8

I00.0

98.4

105.2

102.8
L

102.6

101.7

100.4

97.4

104.9

104.1

Figure 4
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OPTIMIZATION OF FILLET

The cubic spline function, which has two continuous derivatives everywhere

and possesses minimum mean curvature, is employed here to define the moving

boundary and 8-noded isoparametric finite elements shown in figure 5 are used for

analysis. The finite element model contains 131 elements, 458 nodal points, and

846 degrees of freedom.

Heights of nodes that define the varied boundary are chosen as the design

variables, as shown in figure 5. The fillet is optimized using the

Linearization Method (ref. 6). Convergence criteria require the L-2 norm of

direction vector p to be zero at the optimum point, where p is obtained by solving

a quadratic programming problem. For numerical data, Young's modulus, Poisson's

ratio, and allowable yield stresses are 30 x 106 psi, 0.293, and 120 psi

respectively.

_he initial design is b = [5.55, 5.1, 4.65, 4.2, 3.75, 3.3, 2.85, 2.4 A

1.95] I. _nitially, cost, maximum stress violation, and IIP[I are 145.1 in z,
X m

2.1 I0^ , and 2.0 ;espectively. After optimization, they are reduced to

133.4 in z, 6.0 x I0 TM, and 8.8 x i0 TM, respectively. The final design is shown

in figure 5 with design variable b = [2.64, 2.13, 1.90, 1.74, 1.61, 1.55, 1.5,

1.5, 1.5].

i i I

i -iliIIIillII 

(a) initial design

_0 = 145.1 in. 2 ÷ 133.4 in. 2

(b) final design

max @k = 2.1 x i0 -I ÷ 6.0 × 10 -4

Figure 5
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DESIGNOFANENGINECONNECTINGROD

An engine connecting rod connects the crankshaft and piston pin of an
engine, transmitting axial compressive load during firing and axial tensile load
during the suction cycle of the exhaust stroke. The geometry of the connecting
rod considered is shownin figure 6. Considering that the loads acting on the
rod are in a plane and that the rod is nearly symmetric about this plane, one
can reasonably assumethat the rod is in a plane stress state. With the main
interest in the shank and neck regions, the shape of the shank and neck regions
of the rod are to be determined through the optimization process. The optimum
thickness distribution, which varies independently from the domainvariation, is
to be determined in the optimization process. To satisfy the condition that the
distance between the piston pin and the crankshaft is prescribed, it is required
that the length of the rod not be changed.

__ CONNECTINGROD
ENGINE

"il _1
244 p

283.5

Design variables: Thickness h and shape of shank area

Figure 6
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DESIGN SENSITIVITY ANALYSIS OF CONNECTING ROD

The optimal design problem is to find a boundary shape and shank thickness

to minimize total volume of the rod, with stress constraints. For stress con-

straints, lower and upper bounds are imposed on averaged principal stresses of

inertia and firing loads.

As in the fillet design problem, one can use the principle of virtual work

to derive a variational equation of elasticity. One can then employ the material

derivative idea from continuum mechanics and an adjoint variable technique to

calculate the shape design sensitivity formulas (ref. 7). The sensitivity expres-

sion resulting from thickness variation can also be found using the same adjoint

variable method (ref. 2).

To use the sensitivity formulas computationally, the thickness function h is

selected to be piecewise constant over strips of finite elements that run along

the shank. Also, a cubic spline function is used to parameterize the boundary.

(See fig. 7.)

Cos t :

Constraint: _k = ff ¢(°(z))mk d_ _ 0 ,

_0 = fF h(VTn)dF + ff_ 6h d_

!

_k = f_ F1 (z'%k)6h aft + fF F2 (z'%k)(Vrn)dF

k = 1,2,-..,2NE

Figure 7
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OPTIMIZATIONOFCONNECTINGROD

With the sensitivity coefficient obtained, one can apply the Linearlzatlon
Method (ref. 6) to obtain the optlmum shape and thickness distribution. An 8-
noded isoparametrlc element is used for analysis. A finite element model
including 422 elements, 1493 nodal points, and 2983 degrees of freedom is
employed.B For numerical data, Young's modulus and Polsson's ratio are
2.07 × 10-MPa and 0.298 respectively. Upper and lower bounds of principal
stresses of inertia are 136 MPaand -80 MPa,whereas they are 37 MPaand -279 MPa
for the firing case.

The manufacturer's design is taken as an initial design, where the cost_
functlona_, maximumconstraint violation, and IlPll were initially 726050mmS,
2.7 × i0 , and 5.9, respectively, and two constraints were active or violated
around th_ neck area _near section a-_). After optimization, they are reduced to
697182mm, 1.0 × I0-_, and 6.5 × i0--, respectively, with 50 stress constraints
active. The shape of the initial and final designs and several cross sections
are illustrated in figure 8.

o d
b c

b d

..... finol design

Section 0-0 Section b-b Section C-C Sectiond-d

_0 = 726050 mm3 + 6971R2 rnm3 max "_k = 2.7 × l0 -I + !.0 × IO-3

Figure 8
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DESIGN OF A BEAM-PLATE-TRUSS

Figure 9 shows a truss-beam-plate built-up structure in which thin flat

plates, stiffened by longitudinal and transverse beams, are supported by four 4-

bar trusses. A uniformly distributed load is applied to the plates. The points

supported by trusses are at the intersection of two crossing beams nearest the

free edges of the structure. The plates and beams are assumed to be welded

together. The design variable in this problem is the combination of plate

thickness, width and height of the rectangular cross sections of beams, and

positions of beams. The design problem is to minimize the volume of the built-up

structure, subject to constraints on displacement, stress, natural frequency, and

bounds on design variables.

The state variable for this built-up structure consists of the plate

displacements, beam displacements and torsion angles, and nodal displacements of

the trusses, which satisfy kinematic interface conditions (kinematically

admissible displacement fields). Hamilton's principle results in a variational

formulation of the governing structural equilibrium and eigenvalue (free

vibration) equations.

1 I I I I

I I I I I
% f % f

% l' \.J

//% ..,_,

/ % I' _,

% •

BEAM-PLATE-TRU S S

s • •

/, _,% /' :%.

(a) Top View

(b) Side View

Figure 9

Design Variables:

Beam cross-sectional area

Plate thickness

Positions of Beams

Constraints:

Displacement

Compliance

Eigenvalue

Stress on beams and plates
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DESIGN SENSITIVITY ANALYSIS OF BEAM-PLATE-TRUSS

Design sensitivity analysis with respect to conventional design variable and

shape using material derivative and adjolnt variable method may be extended

directly to the built-up structure problems. For conventional design variation,

the general sensitivity formula contains contributions from each structural

component directly. For shape variation, contributions from each component

appear as integrals over common boundaries, using interface conditions on the
common boundaries.

In figure I0, comparison between actual changes and predictions for

constraints with 5% changes in all conventional design variable are presented. A

finite element model of I00 plate elements, 80 beam elements, and 16 truss

elements is used, with 363 degrees of freedom for total structure. For numerical

data, Young's modulus, Polsson's ratio, and material density are 3.0 x 107 psi,
0.3, and 0.I ib/in respectively. Results shown in figure I0 indicate that

sensitivity accuracy is very good for conventional design.

' = _ ff FlCZ %k)dh dR + _ f F2Cz,%k)(vTn)dr
_k i,j nij ' i,j rij

SENSITIVITY CHECK FOR CONVENTIONAL DESIGN

Cons trai nt

]Displace-
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Stress

on

beam

element

Eigenvalue

El.

No.
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1

3

5
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15

¢'/ACxlO0

112.7

108.8

109.7

109.6

106.8

110.0

109.2

91.3

Cons traint

stress

on

plate

element

El.

No.

I

3

5

12
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23

25

35
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_'/A_xI00

95.1

I11.3

109.5

109.7

109.5

109.1

109.8

115.1

113.9

Figure i0
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SHAPE DESIGN SENSITIVITY CHECK FOR BEAM-TRUSS-PLATE

It is well known (ref. 8) that finite element results on interface

boundaries, where abrupt changes in the boundary conditions occur (interface

conditions), are far from being satisfactory. Based on this fact, a finer grid is

used for shape design sensitivity calculations. Only one quarter of the entire

structure is used for calculation, due to symmetry. A nonconforming 12 degrees-

of-freedom finite element is used for plates. A finite element model of 400

rectangular plate elements, 80 beam elements, and 4 truss element is used, with

total of 1281 degrees of freedom. The same numerical data that are used in

conventional design sensitivity calculations are used.

In figure II, sensitivity accuracy results are given for 5% uniform changes

in all shape design variables (positions of beams). Results in figure II show

reasonably good agreement between sensitivity predictions _ and actual changes

A_k for all except some stress constraints on plate elements. That is, the
sensitivity results for the stress constraints on plate elements adjacent to the

interface (marked by *) are poor, even with finer grid.

Cons traint

Displace-

ment
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Eigenvalue
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element
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E1 _'/A_xI00
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Stress

on

plate

element

El.

NO.

1

19
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_'/A_xIO0

100.7

103.6
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138.8"
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87.8

105.3
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Figure ii
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DESIGNOFA SIMPLEBOXBUILT-UPSTRUCTURE

A simple box built-up structure, in which five plane elastic solid plates
are welded together, attached to a wall is shown in figure 12. A uniformly
distributed llne load is applied on top of the two side plates and the end
plate. The shape design variable in this problem is the length d, width b, and
height h of the box.

As in the beam-plate-truss case, the principle of virtual work results in a
variational formulation of the governing structural equations. Then, one can use
the material derivative idea and an adjolnt variable method to obtain the shape
sensitivity formula.

In view of beam-plate-truss shape sensitivity results, an equivalent but
alternate form of shape sensitivity formula is used for this problem. Since
finite element results are accurate on the domain and not on the boundary, the
shape sensitivity formula_is expressed in terms of domain integral (refs. 1 and
2). Hence, instead of (VTn), one has terms V and (div V) in the gensitlvity
formula.

J_

Design Variables: d, b, and h

Constraints:
*k = fffl ¢(°(z))mk d_ _ 0 , k = 1,2,..*,NE

!

_?k = _ ffi_i [g(_'z)T V + F(_,z)div V]d_

Figure 12
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SHAPE DESIGN SENSITIVITY FOR SIMPLE BOX

Since shape design variables are given as d, b, and h, one can assume the

velocity field to be linear on each plate and thus (div V) is constant. An 8-

noded isoparametric element is used for analysis. A finite element model of 320

elements, 993 nodes, and 1886 degrees of freedom7is used. For numerical data,

Young's modulus and Poisson's ratio are 1.0 x i0 psi and 0.316 respectively.

The dimension of the structure is b = d = h = 8 in. and the thickness of the plates

is 0.i in. Uniform external load is 4.77 ib/in.

In figure 13, the sensitivity accuracy result is given separately for 3%

change in d and h. Results given in figure 13 show excellent agreement between

predictions _ and actual changes A_k. The boundary method that is applied to

the beam-plate-truss built-up structure is tested to the same box problem with

unacceptable results. The domain method of shape design sensitivity for built-up

structure has a promising future. Work continues in evaluating the method on

larger scale examples.
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