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FOREWORD

This report presents a technical summary of the

Allison Gas Turbine project to develop an automotive

gas turbine power-train system under NASA Contract

DEN 3-168 (Department of Energy funding). The report
covers the 1985 calendar year.

The basic objective of this project is to develop

the technology base for an advanced automotive gas
turbine that, when installed in a Pontiac A6000 class

vehicle of 1360 kg (3000 Ibm) inertia weight, will

achieve a fuel economy of 18 kmll (42.5 mpg), meet

or exceed the Federal emission requirements, and

have alternate fuel capability.

Several General Motors Divisions and other com-

panies are major contributors to this effort. They are

as follows: Allison Gas Turbine Division--prime con-

tractor and team leader, overall power-train and con-

trols responsibility; Pontiac Motor Division--vehicle
and cost studies; Delco Remy Division--starter/boost

motor; Corning Glass Works--regenerator; Sohio En-

gineered Materials Co (formerly Carborundum); and
GTE Laboratories--ceramics.

The Allison Program Manager for the AGT 100 is
H. E. (Gene) Helms; design effort is directed by

Leonard Lindgren; materials effort is directed by Dr.
Peter Heitman; and project effort is directed by Philip

J. Haley. The NASA AGT 100 Project Manager is Paul T.
Kerwin.
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SUMMARY

AGT 100 activities during the past year were high-

lighted by extensive engine testing, ceramic compo-

nent fabrication and evaluation, component perfor-

mance rig testing, and analytical studies. Although

significant technical challenges remain, all areas ex-

perienced progress.

Significant accomplishments accrued in the en-

gine testing activity. Ten experimental assemblies
(builds) were evaluated using the two engines. 1985

accumulated operating time was 120 hr of burning
and 170 hr total. Total cumulative engine operating
time to date is 395 hr.

Engine testing verified the effectiveness of most

design modifications and continued to be free of

major failures. Both engines have been limited to

about 84% gasifier speed due to case vibration and/or
shaft displacement (whip). Build number 13 of engine

S/N 1 used flow mechanical and trace gas techniques

to conclude that the primary source of engine work-

ing fluid leakage occurs through the regenerator

seals. Power transfer clutch operation was success-

fully tested in build 14 of S/N 1 and was used for over

two hr in the slipping mode with significant speed

differentials in build 13 of S/N 2, resulting in no wear.
Build 16 of S/N 1 was the initial test of a Kyocera Si3N 4

ceramic gasifier rotor; this rotor was successfully run-

ning at year's end.

Six transient start nozzle cycles were successfully

executed in two engine builds (S/N 2 BU9 and 10) on
an _SiC gasifier scroll assembly. An outer backplate

crack was addressed by a design change. Build 11 of

S/N 2, aimed at dynamics investigation, was aborted

due to a power turbine seizure caused by improper

seating of a scroll locating shim. The second _SiC

gasifier rotor engine test (build 12 of S/N 2) resulted

in blade tip failures, as had the first such test in 1984.

These occurred at 899°C (1650°F) and 60% speed.

Foreign object damage or blade vibration is sus-

pected.

Build 13 of engine S/N 2 was instrumented to

examine engine vibration and rotor whip. Preliminary

results indicate rotor unbalance as the problem
source. This build was also the first definitive use of

the pilotless combustor igniter. After testing to high

temperatures in the scroll rig, the previously engine-

tested c_SiC scroll assembly was incorporated in en-

gine S/N 2, build 14 and tested at 80% airflow, 1066°C

(1950°F). Testing continued at year's end.

Thus, in 1985, silicon carbide scroll assemblies

and silicon nitride rotors were added to the list of

ceramic components successfully engine-tested. The

ceramic combustor assembly, regenerator disk, bulk-

head, turbine vanes, piston rings, and couplings are

continuing to operate satisfactorily in the engine.

Component development activity included rig
testing of the compressor, combustor, and re-

generator. A compressor rig test was run to examine

performance changes arising from reducing surface

friction. A compressor shroud design change to re-
duce heat recirculation back to the inlet was exe-

cuted. A new compressor impeller design was in-
itiated, with target efficiency greater than 80%, based
on an extensive data review. Combustor activities in-

clude qualification of ceramic parts for engine use

and alternate fuel testing (methanol). A new design

was initiated to eliminate fuel tube coking on DF-2

at very high burner inlet temperatures. Hot re-

generator rig testing on new vendor purchased in-

board seals has resulted in the initiation of a quality
control program with that seal vendor. A seal rim

preload test was successfully conducted to evaluate

GM patented features to minimize seal distortion.

The effects of temperature fluctuations on radial

strength were determined for a regenerator matrix.

Material strength was also determined for an ad-

vanced regenerator matrix material.

Ceramic component activity continues to focus

on the development of state-of-the-art material

strength characteristics in full-scale engine hardware.

Injection-molded sintered _SiC and slip-cast Si3N 4

gasifier turbine rotors were delivered from Sohio/Car-

borundum and Kyocera, respectively, and underwent

analysis, spin tests, and engine testing, as noted. SiC

gasifier scrolls were supplied by Sohio (a and
siliconized) and by Norton (siliconized). Power tur-

bine scroll detail design drawings were released. 1986

plans include gasifier and power turbine rotors and

scrolls from both Sohio and Kyocera, plus gasifier
rotors from GTE.

Fiber reinforced glass-ceramic composite turbine
(inner) backplates were fabricated by Corning Glass

Works. The BMAS-III stepped-platform material per-

formed well in engine testing. Backplates of MAS

material were delivered but have not been engine-
tested.



INTRODUCTION

This is one of a series of annual reports document-

ing work performed on an Advanced Gas Turbine

(AGT) Technology Development Project for automo-

tive applications. The work is being conducted by
Allison Gas Turbine Division of General Motors Cor-

poration under NASA/DOE contract DEN 3-168.
The objectives of the project, as highlighted in

Table I, are to develop an experimental power-train

system that demonstrates the following: (1) the po-
tential of a combined cycle fuel economy of 18.1 kmll

(42.5 mpg) using diesel fuel No. 2 in a 1986 automobile

of 1364 kg (3000 Ibm) weight class on a 15°C (59°F)
day, (2) emission levels less than 1986 federal stan-

dards, and (3) the ability to use a variety of fuels. It
is intended that the technology demonstrated

through this project will assist the automotive indus-

try in making a go/no-go decision regarding the pro-

duction engineering development of gas turbine

power trains.

In meeting the project objectives, the engine will

be designed to accomplish the following, also out-
lined in Table I: (1) achieve reliability and life compar-

able to conventional 1986 vehicular power plants, (2)

achieve initial and life-cycle power-train costs com-

petitive with those for 1986 power trains, (3) de-
monstrate vehicle acceleration suitable for safety and

maneuverability, and (4) meet 1986 federal vehicle

noise and safety standards.

Table I.

AGT 100 project and design objectives.

Project objectives

18.1 km/I (42.5 mpg) in
1986 automobile

Meet 1986 emission
standards

Alternate fuels capability

System design obiectives

Comparable reliability and
life

Competitive initial and

life-cycle costs

Competitive accelerations

Meet noise/safety
standards

Initially, the project scope included the fabrica-

tion and chassis dynamometer testing of the engine,

transmission, and electronic control system installed

in a 1985 Pontiac Phoenix passenger car. However,

Government funding constraints after the first year

resulted in a reduction of the program scope.
Activities eliminated included fabrication and

testing of the transmission and vehicle. The electronic

control scope was narrowed from that of controlling

the engine, transmission, and vehicle to controlling

an engine on a dynamometer. Figure I depicts the
activity areas and schedule for the revised project.

The AGT 100 design was originally matched to the

Pontiac Phoenix X-body car. A front-wheel-drive car,

it was one of the General Motors advanced passenger

cars, emphasizing efficiency of space and weight to

combine comfort and function with high fuel eco-

nomy. The AGT 100 will also fit into the Pontiac A6000,

as shown in Figure 2. This is an A-body car that is

slightly larger and is the latest GM front-wheel design

with potential to replace the X-body car in the Pontiac

future marketing of cars. The Fiero, a Pontiac miden-

gine personal car, might also be powered by the AGT

100 engine.
The AGT 100, shown in Figures 3 and 4, is a two-

shaft, regenerative gas turbine engine. In all respects,
this engine design is tailored for high-volume applica-

tion to fuel-efficient passenger cars. Its two-shaft con-

figuration allows (1) the use of conventional transmis-
sions, manual or automatic, and (2) turbine tip speeds

(approximately 503 mls [1650 ftlsec]) commensurate

with available ceramic material properties (strength

and variability). Single-shaft configurations were re-

jected by Allison because of the corresponding re-

quirement for a continuously variable transmission

and for approximately 40% higher turbine rotor

ceramic material strength (for equal reliability). Care-

ful attention was given to component arrangement
for both vehicle installation and management of po-

tentially high heat losses. All hot-section components

are grouped together, bounded on one end by the

regenerator, on the other end by the gearbox, and
enclosed by a well-insulated cylindrical case. High

turbine inlet temperature is possible through the use

of ceramic hot-section parts. This, coupled with high

aerodynamic component efficiencies, produces low

fuel consumption and a 50% improvement in compo-

site miles per gallon (30% energy efficiency improve-
ment) over current spark-ignition engine technology.

2
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Figure 1. ACT 100program plan.
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Figure 2. ACT 100 engine in Pontiac A6000.

Most important is that the AGT 100 uses existing

technologies for shafts, bearings, cases, control sys-

tem, accessories, etc, and thereby provides a reliable

test device for evaluating ceramic aerodynamic com-

ponents.

Design goals of fuel economy and vehicle perfor-

mance are shown in Figures 5 and 6. The fuel eco-

nomy design goal is 18.1 km/I (42.5 mpg) for a compo-

TE82-635

Figure 3. AGT 100 advanced gas turbine engine.
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Figure 4. Cross section of AGT1OO gas turbine engine.

site driving cycle comprising a 55-45% mix of urban

and highway cycles. Peak road-load fuel economy is

over 25.5 km/I (60 mpg) at approximately 56 km/h (35

mph). Average driving cycle velocity is 43 km/h (27

mph). Figure 6 shows the velocity versus time re-

lationship following a wide-open throttle accelera-

tion from stop. The gas-turbine-powered vehicle is

faster at all except the very early elapsed times.

The main development challenges in the program
are in building small, high-performance gas turbine

components and developing ceramic components

for the required high engine cycle temperatures that

are price competitive and capable of being produced
in an automotive production environment. The AGT

100 ceramic components are shown in Figure 7.

Because of the small-size engine (0.35 kg/s [0.76
Ibm/sec] airflow), extensive rig testing, outlined in

Table II, is being performed in component develop-

ment. A major ceramic component development pro-

gram is being pursued, and the ultimate success of

the engine depends on the success of this activity.

Table II.

Aerodynamic componen t rigs--status at end of 1985.

Component Builds Hours

Compressor 12 468

Combustor

Development Rig 22 198

Scroll Rig 5 9
Turbines

Gasifier 2 204

Power 1 26
Interturbine duct 3 239

Regenerator
Cold side flow distribution 8 110

Hot side flow distribution 1 72

Seal leaf leakage 10 100

Hot simulator rig 84 577

Ceramic seal platform 10 units 57

2060



Mechanicaldevelopmentof theengineisbeing
conductedin twoessentialphases.Thefirst incorpo-
ratesearlyavailableceramiccomponentswith metal
substitutesfor thosecomponentsrequiringfurther
development.This phaseincludesmetal turbine
rotorsandengineoperationat1080°C(1976°F)turbine
inlettemperature.Thesecondphaseincludesengine
demonstrationof all ceramiccomponenttypesat
1288°C(2350°F)turbine inlettemperature.Thetransi-
tion fromthefirstto secondphasewill occurinsteps
aseachnewceramiccomponentbecomesavailable.

Ateamconceptisusedin thisproject,withmany
of the teammembersbeingGeneralMotors' divi-
sions.Allisonistheprimecontractorandteamleader
with responsibilityfor the overallpower trainand
controls. PontiacMotor Division(PMD)has inte-
gratedvehicledesignandcostanalysisresponsibility,
andDelcoRemyisresponsiblefor thestarter/boost
systemfor the engine.Theprimarynon-GMgroups

ontheteamareSohioEngineeredMaterialsCompany
(formerly Carborundum),Corning Glass Works
(CGW),and GTELaboratories,Inc (GTE),who are
involvedin the ceramiceffort.

Thisreportis structuredon a componentbasis
(e.g.,all work relatingto the gasifierturbinerotor,
includingrigworkandceramicrotordevelopment,
isdiscussedasapartof thegasifierturbinesection).
Exceptionsto this are functionalareasthat arenot
peculiartoanyonemajorcomponent:enginesubsys-
tems,coverstructures,gearboxandpowertransfer,
rotorbearings,shaft/seals,andsecondaryflow.Sepa-
ratesectionsare presentedfor materialsdevelop-
mentandcontrolsdevelopment.

Certainsectionsare omitted in this report be-
causenoeffortwasexpendedin thoseareas.These
sectionsare identifiedin the Tableof Contentsto
preservecontinuity.

Road-load
Fuel Economy* 70

60 -- 25 F 18.1 km/I 60

20, (42 5
_" mnn' / Jl_ _'_ COmpOsite

F

o  ot/ =2o-_

O- O_
30 60 90

Velocity D km/h 20
! 1 I I I t I
0 20 40 60

Velocity-- mph

EPA Driving Cycle Fuel Economy .... 10

km/I mpg
Urban 15.1 35.5
Highway 23.8 56.0

0
Composite** 18.1 42.5

*Based on diesel No. 2
fuel and 15°C (59°F) day

**55-45% mix
TE85-3025

Figure 5. Design fuel economy goal for a 1364 kg (3000

Ibm) automobile powered by AGT 100 gas turbine.

AGT 100 gas turbine

Baseline spark
ignition piston
engine

-- 151

01
0 4 8 12 16

Time--sec

TE85-3026

Figure 6. Design goal of vehicle wide-open throttle

performance.
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II. ENGINE DEVELOPMENT

2.2 EXPERIMENTAL ENGINE

2.2.1 Fabrication

No major metal engine part fabrication efforts

were initiated during this period. The engine test pro-

gram required the replacement of consumable and

failed parts, parts rework for design modification,
and fabrication of new parts to implement new de-

signs.
Ceramic hardware procurement and develop-

ment is a continuing effort. The largest 1985 procure-
ment was obtained from Sohio and included rotors,

vanes, and smaller quantities of scrolls, inner and

outer backplates, combustor bodies, domes, dilution

bands, and couplings. Kyocera supplied both bare
and brazed rotors and shims. Other vendors included

Norton, Coming, and Feldmuehle supplying scrolls,

inner backplates, and shims, respectively.

During this reporting period work was released

to fabricate ceramic power turbine scrolls and rotors.

The only previous use of ceramic power turbine parts
had been vanes and shims.

2.2.2 Experimental Engine Testing

During the previous reporting period, the engine
test program had progressed through a total running

time of 224 hr 31 minutes, including 156 hr 14 minutes
of burn time.

The test program goal during the present report-

ing period continues to be the identification of en-

gine-related mechanical and aerodynamic problems

as well as engine component modifications necessary

to improve engine operation, durability, and perfor-

mance. An additional particular goal is to test ceramic

components as they become available, gradually ex-

posing them to the total engine environmental

operating conditions.

During this reporting period a number of new

ceramic parts were engine tested. Ceramic gasifier
turbine rotors were tested in two different engine

builds. Additionally, a ceramic gasifier turbine scroll
with its associated ceramic parts (vanes and outer

backplate) underwent testing in both the scroll rig

and the engine.

During the current reporting period engine S/N

1 acquired an additional 123 hr 35 minutes (including

84 hr 05 minutes burning) of running time. Engine

S/N 2 added 46 hr 53 minutes (including 35 hr 39

minutes of burning) of running time. Total running

time accumulated in both engines at the end of this

reporting period was 394 hr 59 minutes, 275 hr 58
minutes of which involved hot fire testing.

Figure 8 graphically displays the burning operat-

ing time, in a cumulative manner, for the two experi-

mental engines.

Each build configuration and test accomplished

in this reporting period is discussed chronologically

in the following pages. Detailed discussion of the

condition of component parts after test can be found

in the report section discussing that component.

Engine S/N 1 BU13 and Test. There are several loca-

tions within the engine where working fluid leakage

can occur. The sources of leakage, as schematically

depicted in Figure 9, can involve flow paths to over-

board, compressor discharge to gearbox, compres-

sor discharge to turbine exhaust (regenerator seals),
and burner inlet pressure to several points within the

turbine flow path.
Consequently, a test program was initiated to in-

vestigate the magnitude of the working fluid leakage

at each location. Two separate techniques were em-

ployed to investigate overboard leakage of the flow

path. Prior to test operation, the engine inlet and

exhaust lines are closed and the engine is externally

pressurized to a low pressure level. Leakage at split-
lines, instrumentation connections, and the gearbox

vent are then checked and corrected if significant.

Additionally, early in the test program a tracer powder

was introduced into the engine airflow with the result

that no significant external leakage was detected.

Leakage from the compressor discharge and

burner inlet pressure airflow can occur at several

places since the flow paths of both turbines (at which

potential leakage can occur) are immersed in the

burner inlet air cavity. The leakage test program was

designed to address evaluation of many of these po-

tential points of leakage and consisted of the follow-

ing steps:
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Figure 9. ACT 100 leakage system.

1. turbine backface cavity cold bench test
2. turbine airflow rate calibration

3. hot engine run with tracer gas and flow cali-
brated turbines

The potential leakage points involving the turbine

backface cavities are denoted in Figure 10. Leakage

paths may exist at surfaces shown by the arrows at

the gasifier turbine and at comparable locations at

the power turbine. A test configuration was assem-

bled using several engine parts with added inlet and
outlet plugs at locations as depicted in Figure 11. Ap-

plication of air pressure to the burner inlet cavity

produced leakage that was individually measured by

flow tubes at each turbine. The resultant leakage

values are plotted in Figure 12 and compared to the

leakage values used in the engine performance com-

putation model. Both the power and gasifier turbine

measured leakage rates determined from this cold

test are lower than their predicted values used in the

calculated engine performance model.
The second step in the leakage program involved

flow calibration of the turbines. The flow calibration

is used during engine testing to determine the actual

flow at the turbines as compared with measured flow

into the engine. A version of the engine configu ration

in which the regenerator and combustor were re-

moved served as the test rig used for the flow cali-

bration. Instrumentation normally present in the en-

gine, i.e. temperature prior to the vane row and pres-
sure taps at both the inlet and outlet to the vane row

permitted the vane row to be calibrated as a nozzle
orifice. The turbines were individually flowed while

rotating to eliminate downstream asymmetric block-

age. A separately measured flow was supplied from

air pressure facilities for calibration purposes.



The third step in the leakage test program in-

volved hot testing in the engine using both the cali-
brated turbines and tracer gas. The leakage source

and amount was determined by using an engine con-

figuration in which air exiting the compressor was

exhausted to the atmosphere and clean air was

supplied to the regenerator. A schematic of this test

setup is depicted in Figure 13. Airflow was measured

at the following locations:

• compressor inlet

• compressor discharge

• regenerator inlet

• gasifier turbine nozzle (vane) row
• power turbine nozzle (vane) row

As a consequence flow leakage between stations

in the same flow path could be determined.

In addition, CO2 (generated in the combustor)
and helium (injected at the compressor inlet) were

used as tracer gases. Sampling probes allowed CO2
concentrations to be measured at combustor dis-

charge and engine exhaust. The CO2 dilution deter-
mined from these two measurements is a measure

of leakage flow into the flow path downstream of the

combustor. Similarly, the injection of helium into the

compressor permitted the measurement of He con-

centration at the compressor discharge (exhaust) and
in the turbine exhaust. These measurements were

used to determine the amount of air leakage from

the compressor into the turbine flow paths.

The test engine configuration used for the airflow

orifice and He tracer gas measurements included a

flow splitter, which replaced the air tube leading from

the compressor to the regenerator. Compressor air,
as stated, was dumped overboard after measurement

and test facility air supplied through a pressure reg-
ulator replaced the compressor air and fed directly

to the regenerator.

Engine leakage (orifice airflow) testing was per-

formed in the speed range of 40% to 80% of full speed

of the gasifier shaft. Leakage was determined from

the orifice flow pressure measurements made at the

compressor inlet, compressor discharge, regenerator

inlet, gasifier turbine, and power turbine. The results

of these airflow measurements are presented in Fi-

gure 14. Leakage between the compressor inlet and

compressor outlet was determined to be nearly neg-

ligible. Similarly, the measured leakage between the

turbines is inconsequential. However, leakage be-

tween the compressor and gasifier turbine was found

to be excessive, particularly at speeds below 65%.

This leakage was primarily through the regenerator
seals. At teardown, measurements showed the hot

seal to be substantially warped. A design modification

has been identified; refer to the regenerator section
for details.

Pocc

orifice
flow tube

t

P supply

Pocc = Pressure, outer combustor
case, virtually equal to
pressure within the
combustion case

TE86-2471

Figure 11.ACT 100 backface leakage test configuration.

In addition to leakage calculation by direct airflow

measurements, two separate tests were performed

to calculate leakage using tracer gases. The first test

used CO2 as the tracer gas. Additional CO 2 gas was

injected into the combustor in a normal engine to
raise the concentration level at the combustor exit

to approximately 10%. CO2 concentration was then

measured at the combustor exit, power turbine exit,

and engine exhaust. The second test used helium as

the tracer gas. The first method inferred the amount

of air leaking into a flow path containing carbon

dioxide from the point-to-point dilution of carbon

dioxide. The second method made use of the parallel

flow paths separated by one or more seals. One flow
path was seeded with helium, and the other was mon-

itored for helium. The amount of helium detected in

the unseeded flow path is nearly proportional to the
leakage at the seals.

The regenerator rig was used to develop the seed-
ing and sampling procedures for both helium and

carbon dioxide prior to engine testing. Samples were
introduced into evacuated gas cylinders for later

evaluation with a mass spectrometer for the helium

9
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tests. The carbon dioxide levels varied from point-to-

point and were measured on-line sequentially using

a nondispersive infrared analyzer typically employed

for emissions characterization. Seeding with both

gases was tested by using manifolded pressurized

cylinders of pure helium and carbon dioxide with

flow controlled by pressure regulators.
The regenerator rig also provided a suitable sys-

tem for verifying the carbon dioxide technique since

the rig directly measures the leakage of a relatively

large amount of air into a gas path with an elevated

CO2 level due to combustion. Development efforts

for the carbon dioxide technique were begun on the

regenerator rig in 1984 and continued through 1985.

The regenerator rig results indicated a carbon dioxide
dilution effect could indeed be measured, but the

quantitative results were not always in agreement

with direct leakage measurements, nor were they sys-

tematically related.

The first engine test attempted to quantify re-

generator seal leakage and leakage at the turbine

scroll and shaft seals. Valuable operational experi-
ence with the carbon dioxide measurement was

gained in the engine tests, but the actual leakage

numbers were suspect.

The gas sampling points, stations 4, 6, and 7 de-

picted in Figure 13, that were used for the carbon

dioxide tracing tests, segregate the following leak

paths:
• Station 4-6

• gasifier turbine scroll splitline

• gasifier turbine face seal

• gasifier turbine shaft seal

• gasifier turbine ceramic scroll spacer

• gasifier turbine thermal isolator
• interturbine duct piston rings

• power turbine scroll splitline

• power turbine face seal

• power turbine shaft seal

• power turbine ceramic scroll spacer

• power turbine thermal isolator

• one power turbine exhaust piston ring
• Station 6-7

• one power turbine exhaust piston ring

• regenerator seals
Carbon dioxide baseline data were obtained for

two engine operating points, nominally 80/70 and 70/
50 (%N1/%N2). At both operating points, data were
taken with carbon dioxide seeding at the combustor

to amplify the dilution effect. The concentration data
are tabulated in Table III. These data showed increases

in CO2 concentration that are unrealistic for the sys-
tem, and the data that were consistent showed a
much smaller dilution effect than expected. The leak-

age results for the 80/70 operating point, reported in
Table IV, reflect the inconsistencies in the raw data.

The data were reduced using a program that

solves the combustion equation to determine the

complete gas composition at station 4, the combustor
outlet, and then calculates the leakage between sta-

tions 4 and 6 and 6 and 7 in terms of gasifier turbine

inlet flow. The leakage equations were derived from

the steady-state flow species conservation and con-

tinuity equations applied to the AGT 100 engine flow

Table III.

AGT IO0 engine carbon dioxide tracer concentrations.

Carbon dioxide volume concentration--%

Station 4 Station 6 Station 7

80/70 poi n t
Baseline 1.655 1.636 1.735

Seeded 11.41 12.00 11.94

Seeded 11.41 10.86 10.70

70/50 point
Baseline - 1.307 1.399

Seeded 10.54 10.49 10.21

11



Table IV.

Carbon dioxide test resultsm80/70 point.

Leakagem% gasifier turbine flow

Baseline Seeded

Station 4-7

(total) -4.6 -4.14 6.14
Station 4-6

(turbines) 1.15 -4.63 4.71
Station 6-7

(regenerator) -5.75 0.49 1.43

path. The equations are applicable only for stable
systems, and the inconsistent results are believed to

be caused by unsteady conditions. The gases were

sampled and analyzed from the three stations con-

secutively, possibly subject to a bias from drifting
burner outlet temperature or unsteady seeding.

As a result of this experience, a differential non-

dispersive infrared analyzer was purchased for future
measurements. This instrument senses the difference

in concentration between two sample streams rather
than the absolute concentration level in one stream.

The instrument removes the bias due to drifting con-
ditions.

Helium was employed as the tracer gas for sub-

sequent tests. These tests again used the split flow

path engine configuration. The engine inlet was
seeded with helium, and the flow was exhausted

downstream of the compressor. Clean flow was

supplied to the turbines through the regenerator
inlet. Any helium measured in the exhaust had to

leak from the inlet seeded flow path through the
turbine shaft seals. Gases from stations 2 and 7, the

compressor and exhaust outlet respectively, were

sampled into evacuated gas cylinders and analyzed

after the test using a mass spectrometer. The sample

cylinders were presumed to contain sufficient gas to

provide a reasonable time average of data. Data were

obtained for two operating points, nominally 80/70
and 65/50 (%NIl%N2).

The major components of the engine gases sam-

pled were determined to be helium, water, nitrogen,

oxygen, and carbon dioxide. Mass spectrometer data
for each of these were reduced to determine the

overall composition at each station. The station 7

analysis was compared with the composition indi-

cated for the engine exhaust based on conventional
(Reference ARP 1256A) emissions measurements. The

differences were relatively small.

The data were then reduced to leakage mass frac-

tions using an equation derived from steady flow

species conservation and continuity equations. The

averaged mass spectrometer data and resulting leak-

ages are given in Table V. The accuracy of the measu re-
ments was estimated to be +--12-15% of inlet flow, and

can probably be improved for future tests.

The Flow Systems Group estimated the turbine
shaft seal backface leakage totaled 0.42% of the en-

gine inlet flow, based on engine measured pressures
and clearances for BU13. The agreement between

these two independent leakage measures is good.

The AGT 100 engine tracer gas measurements have

demonstrated the potential of the helium leakage

measurement technique for engines where parallel

flow paths can be established.

A vibration investigation was also initiated on this

configuration after vibration limits were reached in

the plane of the compressor inlet at 84% of the

maximum gasifier speed. The gasifier whip level at

this speed was also relatively high. Three accels were
performed from 60% to 84% gasifier speed. Vibration

and whip data were recorded on magnetic tape for

real-time analysis. The accels were performed with

oil temperatures of 48°C (120°F) and 111°C (232°F) as

well as power turbine speeds of 25% and 70%. A plot

of one of these accels is shown in Figure 15. These
variations had little effect on vibration levels.

Testing of engine S/N 1 was terminated after the

engine was automatically shutdown due to an exhaust

gas overtemperature. Data indicated that the re-

generator disk had stopped rotating. Upon disassem-

bly, it was found that the ring gear had separated

from the disk due to overheating of the silicone inter-
face material. The overheating was attributed to an

incorrect reverse installation of the disk/ring gear as-

sembly in the regenerator cover.

The gasifier rotor and bearing support assembly

was removed from the engine and the rotor was

check balanced while still installed in the support.
Imbalance was determined to be 2.5 times the blue-

print limit at the turbine bearing. Without disassem-

bling the rotor, balance cuts were made on the tur-

80/70 point
65/50 point

Table V.

Hefium test data and results.

Turbine shaft

seal leakage--
% inlet

Helium mole fraction flow

Station I Station 7

0.0872 0.000512 0.53

0.1244 0.000847 0.49
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bine and impeller to bring the rotor to a near-perfect

balance for the next engine build.

During the testing reported, S/N 1 engine ac-

cumulated 2 hr 28 minutes of burning time and an

additional 2 hr 38 minutes of motoring. Total time on
this engine following BU13 stood at 100 hr 23 minutes.

Engine S/N 2 BU9, BU10, and Test. S/N 2 engine

BU9 was assembled to test a gasifier turbine ceramic

scroll package. This ceramic scroll test was the first

in an engine environment. The ceramic parts assem-

bled into the engine are shown in Table Vl.
All of the static structure intended to be ceramic

and associated with the gasifier turbine was included

in the engine assembly. All of these parts, except the

last two listed, were included in the package that had
been proof tested in the thermal shock scroll rig.

The engine test run was planned to consist of

one start-stop cycle followed by inspection and then

continued testing for five more cycles. The attendant

thermal cycle was intended to expose the ceramic

parts to a moderate level of temperature as the first

step in the test series using temperatures of increas.

ing severity.

The first engine test cycle is recorded in Figure

16. The burner inlet temperature, turbine inlet tem-
perature, and gasifier speed are presented as a func-

tion of time for the complete start-stop cycle. The
maximum temperature attained was about 943°C
(1730°E)

At the conclusion of this first cycle, the engine
was removed from the stand for a limited teardown

inspection of the ceramic parts. No problems were
observed with this limited teardown.

The engine was then reassembled as BU10 and

tested to increase the number of start-stop cycles to

six. These thermal cycles were similar to the first one.

Complete teardown inspection revealed all of the

parts to be unaffected by the test with the exception

of the outer backplate. This part developed a crack

running radially through a locating slot. An analysis

of this test result is in section 9.2.2. The analysis iden-

tified the necessity for redesign and modification of

both the outer backplate and the coupling between

the gasifier and power turbine scrolls.

Engine SIN 2 BUll. Following the ceramic scroll

test, the S/N 2 engine was reassembled (BUll) with

13



Table Vl.

Ceramic parts.

Gasifier turbine scroll _SiC

Gasifier turbine outer

backplate _SiC

Gasifier turbine inner

backplate BMAS II

Gasifier turbinevanes (18) o_SiC

Gasifier turbine scroll
shim

Interturbine coupling

piston rings (2)

Dilution band

(combustor)

Combustor body

Pilot flame holder tube

Interturbine coupling

Power turbine exhaust

piston ring

Zirconia

Refel SiC

c_SiC

_SiC

_SiC

Refel SiC

Refel SiC

Sohio

Sohio

Coming

Sohio

Feldmuehle

Pure carbon

Sohio

Sohio

Sohio

Pure carbon

Pure carbon

a metal gasifier turbine scroll assembly. A test was

initiated to investigate whip and vibration levels

throughout the speed range. This engine build incor-

porated a gasifier assembly for which imbalance had
been checked in the final assembled condition and

was known to be within print limits. In all prior builds

the assembly procedure did not ensure that final as-

sembly was within specified balance limits.

During the initial test run of BUll the power tur-

bine shaft seized while rotating at 20% speed. A re-

view of data indicated that excess pressure existed
behind the power turbine inner backplate that in turn

produced unbalanced pressure loads allowing the

backplate to move into the turbine wheel. A rub pat-

tern observed following teardown of the engine con-

firmed that this analysis was correct. Improper seat-

ing of the scroll locating shim was judged to be the

cause. No significant damage was sustained.

Engine SIN 2 BU12 and Test. Engine S/N D-2 BU12

was configured with the second Sohio ceramic

gasifier rotor to be tested in an engine. The goal of
this build was to expose the ceramic rotor to a com-

bustor lightoff followed by a thermal cycle designed
to test the rotor to 60% N1 and 898°C (1650°F) turbine

inlet temperature (TIT). The thermal cycle consisted
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Figure 16. Ceramic gasifier scroll test cycle.
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of the following:
• a cold motoring to 45% N1

• a soft lightoff controlling the TIT to 537°C-676°C
(1000°F-1250°F)

• an increase in speed to 60% N1

• an increase in temperature to 898°C (1650°F)

• a 20-minute dwell period at 898°C (1650°F)
• a decrease in temperature to 648°C (1200°F)

• shutdown and inspection

The entire cycle was to last approximately I hr 30
minutes.

The cold motoring was completed without prob-

lems. A normal lightoff was performed but was shortly
followed by an increase in gasifier shaft whip and a

decrease in gasifier speed. This is illustrated in Figure

17. The temperature increase was due to the engine

control box adding fuel to compensate for the drop

in speed. Since the change in gasifier whip was small

and the hydraulic starter torque appeared to be about

the same throughout the run (implying no turbine

damage), the rest of the test was completed. After a

cool down period the engine was borescoped and

the ceramic turbine inducer vane tips appeared to
be missing. The engine was then disassembled and

the inducer vane tips were confirmed as missing. The
incident following the lightoff is believed to be indi-

cative of the failure. The total test time during this

build was 1 hr 28 minutes burning and 12 minutes

motoring. The total test time for this engine following
this build was 118 hr 11 minutes burning and 46 hr

45 minutes motoring.

Engine S/N 1 BU14, BU15, and Test. S/N 1 BU13

engine was rebuilt as BU14 using a normal flow path

configuration and a rebalanced gasifier rotor. This
metal scroll and turbine buildup was for a functional

test with special interest in engine vibration and

power transfer clutch operation. Engine oil was
changed at this time from Dexron II to MIUL-23699.

A gasifier speed scan resulted in vibration limits

again limiting speed to 84% N1. All vibration and whip
levels were very similar to those recorded on the
previous build.

Power transfer clutch testing consisted of a total

of eight separate engagements, all of which were

completed successfully. All engagements were per-

formed at a gasifier speed of 60% N1. Four engage-

ments were performed with the power turbine speed

at 57% N2 and four more with the power turbine

speed at 63% N2. Also, four of the engagements were

made with the dynamometer controlling the power
turbine in speed control and four with the

dynamometer in load control.
Numerous combustor flameouts were encoun-

tered during testing along with erratic BVG move-
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Figure 17. Apparent failure incident indication as depicted by data trace during test of ceramic rotor, 5/N 2

BU12 engine test data.
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ment. A flow check of the fuel metering valve controls
revealed that the valve was flowing excess fuel, as

compared to preset calibration, for a given voltage

input. The presence of an engine speed sensor
caused a reduction in voltage input to the valve thus

reducing the fuel flow rate to that required to main-

tain the desired engine rpm. The consequence of this

error in fuel flow as a function of valve input voltage
was an incorrect calculation of the fuel/air ratio. The

electronic control that computes the fuel/air ratio to

the engine infers fuel flow rate through the valve

from the current flowing to the metering valve con-
trols. An incorrect fuel/air ratio calculation results, in

turn, in an incorrect burner variable geometry (BVG)

setting. Dialing in positive BVG bias allowed accept-

able engine operation until the valve metering con-

trol was repaired.

Test hours accumulated by S/N 1 engine during

this report period were 52 hr 46 minutes burning and

10 hr 17 minutes motoring. Total time on this engine
now stands at 163 hr 59 minutes.

The engine was removed from the test stand to
correct an oil leak and returned as BU15. After five

minutes of further engine operation at 60% N1 speed,

an incident of high vibration and high bearingtemper-

ature occurred. Engine teardown revealed a failure

of the No. 1 position carbon seal. Only a small portion

of the carbon from the two rings remained in the

seal housing. The remaining carbon was broken in

several pieces and badly oxidized. Failure of this seal

allowed hot air to enter the bearing cavity causing

the ball separator of the No. 1 turbine bearing to
expand and rub the outer race. The carbon seal had

accumulated a total running time of 55 hr 19 minutes

when it failed. Higher temperature seals have been
ordered.

Engine S/N 1 BU16 and Test. The first test of a

Kyocera Si3N 4ceramic gasifier turbine rotor was desig-
nated for BU16 of engine S/N 1. The goal of this test

was to expose the rotor to a combustor lightoff fol-

lowed by a mild thermal cycle. Subsequent tests

would involve thermal cycles of increasing severity.
The initial thermal cycle exposed the rotor to an

inlet temperature of 898°C (1650°F) at 60% speed

(51,750 rpm). A borescope inspection confirmed that

the rotor was intact. Four more cycles were per-
formed with cycle parameter changes as follows:

• Cycle No. 2--60% N1 speed, 898°C (1650°F) TIT

(repeat of cycle No. 1)

• Cycle No. 3--70% N1 speed, 898°C (1650°F) TIT
• Cycle No. 4--70% N1 speed, 1079°C (1975°F) TIT

(start nozzle)

• Cycle No. 5--70% N1 speed, 1079°C (1975°F) TIT
(main nozzle)

Figure 18 shows a trace of the cycle No. 5 gasifier

turbine inlet temperature and speed.

Approximately 20 hr of additional durability test-

ing were performed on the rotor at 60% N1 speed
and 1065°C (1950°F) TIT.

Test speed was increased to 70% N1 but was lim-

ited to this level because of an apparent high pressure

in the power turbine backplate cavity. It was disco-
vered on teardown, however, that the instrumenta-

tion lines had been mislabeled and the actual pres-
sure was, in fact, normal.

Gasifier shaft whip reached a level of 5 mils at

70% N1 and 1079°C (1975°F) TIT. With a whip limit of

7 mils, it is believed that whip levels would have

precluded all but a modest increase in speed during
these tests.

Test hours accumulated by S/N 1 engine during

this report period were 28 hr51 minutes burning and

2 hr 38 minutes motoring. Total time on this engine
now stands at 195 hr 28 minutes.

Engine S/N 2 BU13 and Test. Several instances of

high engine vibration and gasifier rotor shaft whip

have occurred during engine testing. Most of these
instances have been at 83% to 88% of the maximum

gasifier speed range. The characteristic of vibration

as a function of speed has usually indicated a rotor

unbalance to be responsible, although measured im-

balance has usually been to specified limits or better
as assembled.

Suspect causes of the vibration response include

the casing mode, torsional coupling of the gear train

lowering a rotor mode into the operating speed

range, bottoming of the compressor bearing squeeze

film damper thereby lowering the first bending mode

of the rotor system to near 75,000 rpm, and finally,

lack of rotor assembly balance. To investigate these

possible causes an instrumented engine test was

proposed. Instrumentation to monitor squeeze film
deflection, case motion, rotor torsional response,

coupling shaft whip, and shaft rotation/whip phasing

were added to engine S/N 2 BU13.
The location of the extensive instrumentation

used is presented in Figure 19. At location A a whip

pickup was used to determine the squeeze film mo-

tion. Vibration pickups were mounted inside the case
at locations B, C, and E to monitor the response of

the support structure. An axial vibration pickup was

located at E Two whip pickups, 90 deg apart circumfe-

rentially, were also located at position C to measure

coupling shaft response. A whip pickup was placed
at D with a mark on the shaft to determine phase

timing of the shaft. Torsional motion of the shaft was
also determined with a pickup at E monitoring gear

tooth passage.
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Figure 19. ACT 100 engine cross-section showing
locations of motion instrumentation.

Testing was completed in late November and in-

cluded the following engine operating condition_.

Slow accelerations and decelerations of the gasifier

rotor were performed at constant power turbine rotor

speeds of 15,000 and 45,000 rpm. Two oil tempe ratu res

of 48°C (120°F) and 40°C (230°F) were used during this

transient running to determine damper oil viscosity

effects on response. Temperature transients in TIT

from 704°C (1300°F) to 982°C (1800°F) for gasifier

speeds of 60%, 70%, and 85% of the maximum gasifier

speed were also obtained to ascertain rotor response

as a function of temperature. During engine opera-

tion all instrumentation response was monitored and

recorded on tape for data reduction purposes.

Data reduction analysis was begun in December.

Preliminary results of the data evaluation indicate that

there is no casing mode participation as well as no

torsional coupling of the system. Lack of significant
phase change in the high response speed range also

implies that a rotor mode is not being encountered.

The squeeze film damper response is low until about

85% rpm and then increases rapidly in amplitude to

the limit speed of 89% rpm. At this point the damper
is not bottomed, based on the waveform of the re-

sponse, and is operational although actual

amplitudes are not known because of calibration

problems. At the high response rotor speeds, the

frequency of response for all pickups is synchronous.
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Baseduponthesetestresultstheresponseiscon-
sideredindicativeof rotorunbalanceandis notsig-
nificantlyamplifiedbyrotoror casemodalparticipa-
tion.Thisunbalanceisthoughtto beassociatedwith
aforcecoupleintroduceddueto thecloseproximity
oftheturbineandcompressorcorrectionplanesused
in the low speedbalanceprocedureand/ordueto
inherentbowingoftherotorsystem.Furtheranalysis
usingrotor dynamicsmodeling,balancetests,and
rotor measurementswill bemadeto investigatecor-
rectivemethodsto lowertheforcecoupling.Anitera-
tire threeplanebalanceprocedureemployingthe
front compressortie bolt locationwill beexplored
asa methodof reducingtheforcecouple.Todeter-
minewhateffectthe splineinterfaceand coupling
shafthaveon thisresponse,and for possibletrim
balancingon theengineasrequired,modifications
to thegearboxcasewill bemadeto allowanaccess
plateso that indexingof thecouplingshaftcanbe
accomplishedwithminimumdifficulty.Thecapability
of performingahighspeedbalanceof therotorsys-
temwill alsobepursuedwithoutsideconsultants.

Insummary,thetestprogramon thisenginebuild
includedthefirstenginetestingof thepilotlesscom-
bustorconfigurationand additionaltestingof the
powertransferclutch.Thepilotlesscombustorcon-
figurationin principlereplacesthepilot fuel nozzle
arrangementwithtwocenterbodylocatedsparkignit-
ers.Theoriginalpilotfuel systemisignitedbyasingle
sparklocatedat the pilot nozzlewithin the flame
tube.Forthistestthepilotsystemwasdisconnected.
Enginestarts,usingstartnozzleflow,weresuccessful
with thenewcenterbodysparkignitersovera start
speedrangefrom25%to 38%gasifierspeed.Sub-
sequently,leanblowoutdata,usingmainnozzleflow,
wereobtainedto determineif the presenceof the
centerbodysparkignitioncouldbe usedto extend
the mainnozzleleanblowout limitsat low burner
inlet temperatures.Asexpected,the smallamount
of energyproducedbythecenterbodysparkigniters
provedto be insufficientto extendtheseleanblow-
out limits.Thepilotlesscombustorremainedin the
enginefor subsequenttest programsduring this
buildasitsstartcharacteristicsareexcellent.

Thepowertransferclutchwasexercisedduring
this enginetestprogram.Clutchengagementsand
disengagementswere madewith the gasifiershaft
initiallyrotatingat60%speedandthepowerturbine
shaftrotatingatvariousspeedsfrom nearsynchron-
ous down to 40%.All test resultswere routinely
smoothandnoproblemswereencountered.

Engine SIN 2 BU14. The primary purpose of this

engine build was to increase test time of the gasifier

ceramic scroll, turbine vanes, and inner backplate

that had been previously tested in engine SIN 2 BU9

and BU10. That testing, six cycles of engine operatiot,

to 60% speed and 926°C (1700°F), resulted in a crack
in the outer backplate of that package. The outer

backplate was redesigned and this new design along
with the original scroll, vanes, and inner backplate

were bench tested in the scroll thermal shock rig to

conditions of 80% engine speed and 1065°C (1950°F).

These parts were then installed in engine S/N 2 BU14.

Two cycles of a planned six cycle test had been

successfully completed by the end of the current re-

porting period. A typical cycle, as run, is shown in

Figure 20. The temperature transients occurring at
the 6th and 56th minute in the test cycle were unplan-

ned excursions. These transients are caused by fuel

flow variation due to inadvertent application of star-

ter-motor torque. This torque is often used as an aid

in controlling the engine speed. If starter torque is

applied too rapidly during turbine inlet temperature

changes at constant rpm, speed control sensors can

cause a corresponding reduction in fuel flow and,

hence, turbine inlet temperature. When the starter

torque application rate is reduced, the fuel flow rate
and the turbine inlet temperature recover to the de-

sired values. Application of starter torque is generally

controlled by the operator and, although the ob-

served temperature transients are rare, they do some-

times occur. Analysis of the temperature transients

in Figure 20, however, indicates that the rate of ther-

mal cycling is less than that experienced at light-off

or shutdown. Further, more severe thermal cycling

has been experienced in the scroll rig with no ob-

served subsequent damage to the ceramic scroll as-

sembly. Thus, while the temperature transients are a

potential source of thermal shock and are undesir-

able, no ceramic rotor or scroll assembly damage has

been directly contributed to such excursions. Engine

operational procedures and controls are constantly

being revised to eliminate undesirable events such
as those described above.

2.2.3 Performance Analysis

Performance analysis of the AGT 100 engine in-

volved the initial development of a mathematical

computer model containing component perfor-

mance matching that accurately represented engine

test performance obtained from engine D1 buildup

11. The program included a heat transfer model based

on extensive analysis of the engine test results and

a regenerator seal leakage model with characteristics
substantiated by gasifier turbine flow calibration ob-

tained from engine D1 buildup 13 hardware.

The computer model was subsequently updated
to reflect demonstrated component performance and

operational engine build clearances to be able to es-

18
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timate current engine performance. The model was
recently updated to reflect projected (December

1986) component performance and engine build

clearances to permit estimation of end of program
engine performance.

Table VII presents the maximum power engine

performance and Environmental Protection Agency
(EPA) combined cycle fuel economy estimates for the

current engine and projected end of program engine

configurations. The reference power-train design

(RPD) engine is included for reference. Table VIII de-

tails the component characteristics for the current

and projected end of program engine configurations.

The two engine configurations projected for the end

of program represent two different levels of compo-

nent characteristics and improved quality as defined
in Table VIII.
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Table VII.

AGT 100 maximum power engine performance and EPA combined cycle fuel economy.

Current End of program (December 1986) RPD

Turbine inlet temperature
(TIT)--°C (°F)

Maximum power--kW (HP)

Specific fuel consumption

(SFC)--mg/W.hr (Ib/hp.hr)

1080 (1976) 1204 (2200) 1204 (2200) 1287 (2350)

31.3 (42.1) 49.2 (66.0) 54.5 (73.2) 74.5 (100)

369 (0.607) 299 (0.492) 259 (0.427) 197 (0.325)

Components

Compressor, WamKg/sec (Ib/sec) 0.312 (0.687) 0.347 (0.766) 0.338 (0.745) 0.345 (0.760)

Rc 4.35 4.89 4.5 4.5

_m% 75.1 77.6 80.1 82.8
Gasifier turbine, _1--% 78.4 78.3 81.5 84.6

Power turbine, -q--% 85.4 86.4 86.4 86.7

Regenerator, 0--% 91.3 91.0 91.0 94.7

Leakage--% 5.2 5.0 4.4 5.2

Parasitic losses

Engine leakage--%

Cycle, AP--%
Mechanical Ioss_kW (HP)

Heat rejection--W(Btu/min)

4.6 4.4 4.2 2.5

14.5 19.0 16.5 14.1

7.4 (10.0) 7.7 (10.3) 7.8 (10.4) 5.8 (7.8)

10,761 (612) 8633 (491) 5785 (329) 1670 (95)

Fuel economy, DF2

EPAcombined cycle--

km/I (mile/gal) 8.3 (19.5) 10.1 (23.7) 11.6 (27.3) 18.1 (42.5)
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TIT_°C(°F)

Table VIII.

AGT 100 engine component characteristics.

Current End of program (December 1986)

1080 (1976) 1204 (2200) 1204 (2200)

Compressor Type 1A Type 1Aand Newdesign
steel shroud

Gasifier turbine
Vanes

Axial clearance--mm (in.)

Radial clearance--mm (in.)

Metal Ceramic Ceramic

as designed as designed Cambered design
1.321 (0.052) 0.940 (0.038) 0.965 (0.038)

0.406 (0.016) 0.330 (0.013) 0.330 (0.013)

Power turbine

Axial clearance--mm (in.)

Radial clearance--mm (in.)

Metal Ceramic Ceramic

1.24 (0.049) 0.965 (0.037) 0.940 (0.037)

0.457 (0.018) 0.381 (0.015) 0.381 (0.015)

Regenerator

Leakage

Part power
Temperature limit--°C (°F)

Rising (1) Flat (2) Flat (2_-0.5%

982 (1800) (not 982 (1800) 982 (1800)
reached)

Engine leakage
Shaft seal clearance--mm (in.) 0.051 (0.002) 0.0406 (0.0016) 0.0406 (0.0016)

Heat rejection (3) (4) (5)

(1) D1 BU13 characteristic based on D1 BU13 gas
generator turbine flow calibration

(2) Best rig demonstrated characteristic

(3) D1 BUll insulation quality

(4) (3) + compressor scroll to gearbox insulation,

improved T3 plenum insulation fit, gas generator
and power turbine heat shields

(5) (4) +improved T3 plenum insulation quality, iso-

lated oil drain tubes, T3 plenum to combustor
coolant insulation.
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111. COMPRESSOR DEVELOPMENT 

3.1 COMPRESSOR AERODYNAMIC 
DEVELOPMENT 

In the current reporting period, compressor de- 
velopment activities were dedicated to testing a dou- 
ble splitter Type 1A impeller and to comprehensively 
reviewing the aerodynamic data accumulated on both 
rigs (CX-40 and CX-53) involved in developing the 
AGT 100 compressor. As a result, the CX-53 rig has 
been modified to limit the heat recirculation through 
the shroud. A new impeller design has been initiated 
to obtain higher compressor efficiency. 

3.1.1 Double Splitter Impeller Test 

CX-53 rig test build 6 (BU6) was performed during 
the early portion of 1985. This test was an attempt to 
determine the trade-off between increased impeller 
blade loading and blade surface friction reduction. 
The double splitter impeller was a reworked Type-lA 
impeller originally tested in 1984 (CX-53 BU3). The 
Type 1A impeller demonstrated a measurable gain in 
high speed efficiency compared to the original en- 
gine impeller. The detailed performance maps of the 

Type 1A impeller, obtained during rig testing, were 
presented in last year’s annual report. Although the 
gain was considerable it was short of the design goal 
and the impeller modification was judged insufficient 
to justify replacement costs of the original impeller 
in both of the engines. Consequently, the Type 1A 
impeller was used as the test piece to make the dou- 
ble splitter impeller. The rework involved cutting the 
original Type 1A splitters to 60% of the meridional 
distance while every other full length blade was cut 
back to the original splitter location of 30% of the 
meridional distance. Both sets of splitter leading 
edges were blended to reduce the abrupt change in 
blade thickness blockage produced by the modifica- 
tions. This yielded an impeller with eight full blades, 
eight primary splitters, and 16 secondary splitters. A 
photograph (Figure 21) of the original and the double 
splitter impellers illustrates the rework performed. 
The Ty pe-I A i m pe I I e r i n co r po ra t ed id en t i ca I b I ad e 
shape but reduced blade thickness as compared to 
previous AGT 100 impellers. Previous rig tests (CX-40 
BU5) incorporating both reduced blade thickness and 
exit height (reducing diffusion) indicate that these 
modifications improve performance. The impeller 
flow paths (Figure 22) depict the narrowed exit blade 
height and the double splitter locations. 

TE86-2512 

Figure 27. Comparison of original type ?A and double-splitter reduced blade friction compressor impellers. 
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Figure 22. Meridional flow path comparison of

different compressor blade shapes.

The performance of the double splitter impeller

(BU6) is compared to that of the Type-lA impeller
(BU3) in Figure 23. Although the high speed (100%)

flow capacity of the modified impeller increased by

3.5%, its efficiency levels as compared to the Type-lA

were reduced at all speeds. The modified impeller's

peak efficiencies, for example, were lower than BU3's

(Type-lA) by 2 to 1.5% at 50 to 100% speed. The

aerodynamic increase in losses incurred by increased

blade loading, through reduction of the blade sol-

idity, is greater than the reduction in loss through

lower surface friction. An analysis of the internal pres-
sure measurements (described later) confirmed this
conclusion.

CX-53 BU6 was also the first test of the ACT 100

compressor to use dynamic clearance probes. The

probes, a special miniature design, operated flaw-

lessly with a high degree of accuracy. This was con-

firmed by post-test rub patterns. The readings from

these probes are presented in Figure 24. Data de-
picted in the figure indicate a 0.010 cm (0.004 in.)

discrepancy between the two tip probes at design
speed. This is indicative of the impeller cocking at

high speeds. The two probes measuring the knee

clearance were in agreement, indicating that clear-

ance discrepancies in the knee region are less depen-

dent on speed than clearances at the impeller tip.

The probes do, however, indicate that the knee clear-
ance is about 0.015 to 0.018 cm (0.006 to 0.007 in.);

the exact amount of clearance depends on loading,

especially at high speeds. The knee clearance data
indicates an increase in clearance (approximately

0.0089 cm [0.0035 in.]) upon loading from choke to

surge at design speed.
The modified compressor was also tested to in-

vestigate the effects of clearance and variable inlet

guide vane (IGV) settings. The compressor was first

retested at 0 deg IGV angle and at 50%, 70%, and

80% corrected speeds after closing the cold build

clearance by 0.010 cm (0.004 in.). This test was limited

to 80% corrected speed to prevent hardware damage

caused by expected rub at higher speeds. The IGVs

were closed to 40 deg and the lower three speed

lines retested. The results of both reducing clearance

and prewhirl as compared to the baseline operating

characteristics of the impeller are presented in Figure

25. The results indicate a substantial improvement in
test performance, 2% at both 50% and 70% corrected

speed and 1.3% at 80% corrected speed, respectively,

above the baseline impeller, as a result of both re-

duced clearance and prewhirl. The effects of the clear-

ances measured on CX-53 BU6 on stage performance
are discussed in detail in a later section.

In summary, the testing of CX-53 build 6 proved

beneficial in determining the trade-off of impeller

blade loading and friction, in proving the viability of
the miniature clearance prober, and in demonstrating

the importance of clearance and IGV setting angle

on performance. Even on the small size of the AGT

100 compressor, reducing friction at the cost of blade

loading results in a significant loss in compressor

efficiency (1.5% to 2%).

3.1.2 Comprehensive Data Analysis

A comprehensive analysis of all compressor data

obtained on the AGT 100 compressor rig was under-

taken during the last reporting period. The goal of
this effort was to determine the modifications/rede-

sign required to improve the compressor perfor-
mance. The analysis concentrated on the data ob-

tained when the rigs were considered to be in a

steady-state heat transfer operating condition. Both

early (CX-40) and later (engine hardware, CX-53) rig
data were reanalyzed. Although the rigs were ther-

mally stabilized, steady-state heat recirculation sub-

stantially affects compressor performance. Recom-

mendations resulting from this study, discussed in

the following section, are to isolate the impeller from
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Figure 23. Overall compressor performance for CX-53 BU6 and CX-53 BU3 rigs.

24



0.010

0.008

d

_ 0.006

J

0.002

-- 0.025 V Tip clearance

/
0.020 I-

,oo1  
0.010

_ Choke

0.005 --
CX-40 __

BU5 _-----/'_3
BU3

, I I I I I
-- 050 60 70 80 90 100

Percent corrected speed, %N/_/O

Knee clearance

Near surge

c.o 

BU3--_-,..,.._
E]

I I I I I I
50 60 70 80 90 1O0

Percent corrected speed, %N/_/O
TE86-2516

Figure 24. CX-53 BU6 compressor clearance measurements as a function of corrected speed.

3
E=

78

76

74

72

70
I

0.05

I I
0.1

CX-53, BU6,
40 deg inlet guide vane

cx- , Bu6,odeg
inlet guide vane

Reduced clearance,

._'._ 0.004 in.

/

(3"_"_- CX-53, BU6, 0 deg inlet
guide vane

I I I I I I I
0.09 0.14 0.18 0.23 0.27 0.32 0.36

Corrected flow, Wa_/O/5--kg/s
I I I I I I 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Corrected flow, Wa_/e/_mlbm/sec

TE86-2914

Figure 25. Effect of clearance and inlet guide vane reset

on compressor performance.

heat recirculation from the diffuser and to redesign

the impeller using new design concepts that address

the small size of this compressor. Both of these re-

commendations will be pursued during the next re-

porting period.

Data History. Five builds of the CX-40 rig and six

builds of the CX-53 rig have been used for compressor

testing. The most important of these are builds 3 and
5 of the CX-40 rig and builds 2, 3, and 6 of the CX-53

rig. These builds encompass all of the major config-
urations tested. Some of the important differences

of these compressor rig builds are presented in Table

IX. Although the CX-40 rig was tested with two differ-

ent inlet configurations (an earlier bifurcated inlet

and the present engine inlet), only the data with the

present engine inlet were studied. It has been deter-
mined that both inlets performed identically, this was

also reconfirmed during this reanalysis of pertinent

data. CX-40 BUS employed thinner impeller blades

and narrower diffuser vane heights than those in CX-
40 BU3. These modifications were made to unchoke

the impeller at design speed and to achieve the neces-

sary surge margin for stable operation throughout

the engine's operating envelope. CX-53 BU2 incorpo-

rated the present engine compressor configuration,

which differs from CX-40 BU3 only in inducer blade

thickness. The set of data obtained in these tests per-

mits a very close comparison of the operating charac-

teristics of the two different rigs. CX-53 BU3 tested

an impeller having a considerably smaller exit width
while CX-53 BU6 used the same impeller with blading

removed to simulate a double splitter design. Both

of these builds were attempts to obtain test data that

would guide the redesign of a new, more efficient
compressor. The narrowed exit width impeller (Type-
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Table IX.

AGT 100 configurations.

Rig/build CX40/BU3 CX40/BU5 CX53/BU2 CX53/BU3 CX53/BU6

Inlet Eng Eng Eng Eng Eng
Shroud Steel Steel Aluminum Aluminum Aluminum

Impeller Original Thinned Engine Narr ext Dbl split
No. blades 16/32 16/32 16/32 16/32 8/16/32
Rt 2 2.365 2.365 2.365 2.410 2.410

B 2 0.218 0.218 0.218 03681 03681

Diffuser Wedge Wedge Wedge Wedge Wedge
No. vanes 21 21 21 21 21

R3/R2 1.08 1.08 1.08 1.084 1.084

B4 0.1868 0.1681 0.1868 0.1681 0.1681

W4 0370 0370 0370 0.1870 0.1870

That area 0.6669 0.6001 0.6669 0.6601 0.6601
Area ratio 4.04 4.04 4.04 3.682 3.682

Scroll Tang-ext Tang-ext Ax-ext Ax-ext Ax-ext

1A) also has an increased exit diameter to regain the

flow lost by narrowing the exit. As a consequence,
it was necessary to employ a new diffuser design for
CX-53 builds 3 and 6.

Rig History. Compressor tests, as performed on

the two rigs, indicated a considerable difference in

compressor performance. The two rigs (Figures 26

and 27) differ substantially in the rear bearing arrange-
ment and in the front covermimpeller shroud hous-

ing configuration. Test problems with the first rig (CX-
40) led to a decision to construct the second rig (CX-

53). The CX-40 rig was very difficult to thermally
stabilize because of the large steel rear support and

the close proximity of the rear bearing to the

aerodynamic flow path. This close proximity pro-

duced heat transfer from the rig to the rear bearing

oil. As a result, the rig operated in a highly nonadiaba-

tic condition leading to low compressor exit temper-

ature measurements that prevented the accurate pre-
diction of compressor efficiencies. For the most part,

these design deficiencies were corrected for those

builds included in this data reanalysis. These correc-

tions were achieved by reworking the rear bearing

support, reducing the steel support thickness, and

supplanting with insulation. In addition, the rear bear-

ing oil was heated to minimize heat transfer. How-
ever, the oil could not be heated to a temperature

equal to that of the compressor discharge air at
speeds equal to or exceeding 90%. Compressor el-

ficiencies measured at these speeds were optimistic

by approximately 0.5% (Figure 28). Another reason
to build a new rig was due to discrepancies in the

CX-40 and engine measured airflows. Engine mea-
sured airflows were consistently less (approximately

10%) than those measured in CX-40 BU3 (the engine

configuration rig) using the same impeller. This re-
mained true even when the impellers for the engine

were thinned in the inducer region (CX-40 BU5). A

new rig (CX-53) was designed and built to correct the

remaining thermal problems in the rear bearing sup-

port area and to use as much engine hardware as

possible. In fact, all parts but the rear bearing support

are engine hardware. Additionally, the CX-53 rig was

designed to adjust the cold clearances (static) with a

simple adjusting calibrated screw mechanism. This
feature allows simple and fast determination of the

clearance effects that are important with small com-

pressors.

Individual Build Data Analysis, CX-40 BU3 and 5.

CX-40 BU3 performance (Figure 29) indicates too little

surge margin relative to the engine operating line.

Although design flow was achieved, these results also

indicated an impeller inducer choking problem. The

large decrease in efficiency at design speed and the

flow speed lapse rate at the high flow rate range of
the map are also indicative of choked flow. Impeller
measurements revealed the blade thickness to be

greater than design, therefore creating the choking
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Steel

Figure 26 AGT 100/CX-40 compressor rig.

TE86-2910

condition. The blade thickness was thinned for CX-40

BU5, as depicted in Figure 30. The diffuser throat area

was reduced by 10% (reduced vane height) since thin-
ning the blades would have produced an overflow

condition at the design speed. This reduction in dif-

fuser throat area would also be beneficial by increas-

ing the surge margin.

CX-40 BU5 performance (Figure 31) indicates that

the desired surge margin was achieved, however, the

design speed airflow was above the design value. The

efficiency and flow lapse rates also indicate that the
choking problem of BU3 was eliminated.

The operating line efficiencies for BU3 (Figure

32), adjusted to 10% minimum surge margin, have a
design speed efficiency of 75.1%. By comparison, the

design speed efficiency for BU5, shown in the same

figure, is 77.1%. Although the high speed efficiency

of BU5 is greater than BU3, the part speed perfor-

mance of BU3 is considerably superior. This result is

probably due to the inherent increase in blade load-

ing, diffusion, and sensitivity to incidence with the
thinner blades of BU5.
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Figure 27. AGT 100/CX-53 compressor rig.

CX-53 BU2, 3, and 6. The rig performance of the

engine compressor (CX-53 BU2) exhibited entirely dif-
ferent characteristics than that obtained using a simi-

lar compressor on the earlier rig. The compressor

map obtained from BU2 (Figures 33 and 34) indicates

that the airflow, pressure ratio, and efficiencies are

greatly reduced. However, the rig performance data

matched engine results, accomplishing one objective

for building the new rig. A comparison of CX-40 BU3

and CX-53 BU2 (two very similar compressor config-
urations) is presented in Figure 35. The airflow of

CX-53 BU2 at design speed is approximately 15% less
than the airflow of the compressor in CX-40 BU3.

Similarly, CX-53 BU2 compressor efficiency is about
3% lower than CX-40 BU2. The reduced airflow of the

engine compressor cannot be a choking problem be-

cause the impeller inducer blades of the engine com-
pressor are thinner than the compressor in CX-40

BU2 (the only significant difference between the two)

and the airflow is less at all speeds. Further, the flow

range (choke-surge) at any given speed is greater for

the CX-53 rig (Figure 36), which is another indication
that the two rigs operate quite differently.

CX-53 BU3 (Type 1A) and 6 (double-splitter) incor-

porated revisions to the impeller design to improve
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Figure 28. CX-40 BUS rig compressor rig.

performance. BU3 used the same basic impeller as
all other builds, with the exit width narrowed consid-

erablym25% (refer to Figure 22). BU6 used the same

impeller as BU3 reworked to the double splitter con-

figuration described earlier. The operating line ef-

ficiencies of BU3 and 6 are presented in Figure 37.

The exit width reduction of BU3 improved the effi-

ciency significantly in the high speed region (3% at

design speed) while also increasing airflow and pres-

sure ratio. However, its performance is short of the

design goal. BU6, in contrast, lost efficiency at all
speeds, as compared to BU3, indicating a poor trade-

off between increased impeller blade loading and
reduced surface friction.

All rig builds, except CX-53 BU2, were in-

strumented with impeller shroud static pressures, dif-

fuser inlet and exit static and total pressures, and

diffuser passage pressures and temperatures. These

measurements are invaluable in understanding the

performance differences between the two rigs.

The impeller static pressure recovery and the im-

peller inlet velocity profile were two parameters

primarily used in the analysis of the data obtained

from the impeller shroud instrumentation. As defined

in Figure 38, the impeller pressure recovery parame-

ter is similar to a diffuser-like recovery factor in which

the measured static pressure is ratioed to the local

total relative pressure. The impeller pressure recov-

ery term calculated in this form is a measure of the
shroud diffusion and does not include any pressure

rise due to changes in wheel speed. This recovery
term is calculated at each of the shroud static pressure

measurement locations with respect to the inlet
shroud flow conditions. Allison has found this

parameter to be extremely useful in analyzing effects
due to impeller choking, inducer stall, clearance

changes (and sensitivity to such change), impeller

internal stall, and impeller flow recirculation or back-
flow. The difference between the inlet shroud static

and plenum total pressures in combination with the
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Figure 29. CX-40 BU3 compressor performance.

one-dimensional continuity equation was used to cal-

culate the shroud velocity and the average inlet veloc-

ity. These velocities are ratioed, denoted as the inlet
velocity ratio, and plotted as a function of flow and

speed. The character of the resulting plot is an indi-
cation of shroud-hub inlet flow shifts that result from

inducer stall and impeller flow recirculationo

The impeller pressure recovery term, calculated

near surge conditions at design speed, is presented
as a function of meridional distance in Figure 39. Data

from all of the instrumented builds as well as those

of another Allison compressor (with much larger flow,

the IGT 404) were used in the construction of the

figure. The IGT 404 compressor is very efficient and
is characterized by a pressure ratio of 4:1, an overall

total to static efficiency of 83% at design speed, and

a 10% surge margin. CX-40 BU5 pressure recoveries
are similar to the 404 data indicating strong diffusion

throughout the impeller. CX-40 BU3 pressure re-

coveries are significantly depressed by comparison,
which confirms the impeller choke condition first de-

termined from performance map data analysis. The
CX-40 BU3 also exhibits strong diffusion, much like
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Figure 30. CX-40 BU3, BU5 impeller blade normal
thickness distribution.

BU5. CX-53 BU3 and 6 (the latter is not shown in the

figure), however, indicate that completely different

characteristics are occu rring in the compressor. There

appears to be little diffusion over the entire impeller,

which effectively creates high impeller exit blockage

and high aerodynamic losses leading to low overall

compressor efficiency. The higher pressure recovery
at the impeller inlet of the CX-53 builds is due to the

lower flow and is an indication that inducer stalling
due to incidence is not a problem and is not the

cause of the reduced flow rate observed during both

engine and CX-53 rig testing. Rather, the reduced

flows of the CX-53 rig builds and the engine compres-

sor are a result of reduced work and high
aerodynamic losses to the diffuser throat (within the

impeller). Impeller flow recirculation creates impeller

pressure recoveries very similar to the observed data,

but recirculation generally occurs at low speeds as a

result of high inducer incidences, leading to gross
inducer stall. High impeller to shroud clearances also

result in depressed impeller pressure recoveries, but
the decrease in magnitude is much less than the dif-

ferences observed between CX-40 and CX-53 rig test

data. Also, clearance testing performed on the CX-53
rig and clearance measurements obtained on CX-53

BU6 indicate that the differences between the rigs

cannot be totally explained by clearance phenomena.

Thus, no conventional aerodynamic explanation can

explain the observed differences in impeller pressure
recoveries between CX-40 and CX-53 riR test data.

The impeller inlet velocity ratios presented in Fig-

ure 40 indicate huge differences in test results ob-

tained from the two rigs. Generally, impellers with

no inlet swirl have an impeller inlet velocity ratio

between 1.1 and 1.2 at design speed. This ratio de-

creases at lower speeds to approximately 0.9-1.0 as

the inducer begins to stall as flow shifts toward the

hub. At even lower speeds, the velocity ratios drop

even lower to 0.0-0.9 as flow recirculation appears.

The CX-40 data as presented in Figure 40 follow this

description, but the CX-53 data are totally foreign in
nature. CX-53 rig data indicate low velocity ratios exist

over the entire operating regime; this is generally
associated with large flow shifts toward the hub. This

flow shift could be a result of impeller flow recircula-

tion, but is considered unlikely due to the favorable

incidences at the higher speeds. Further, if flow recir-

culation is present in the CX-53 rig data and is used

to explain rig data, why recirculation was not present

in CX-40 testing is questionable.

Impeller to shroud clearances were varied on CX-

53 BU2 and 6 with the effects on operating line perfor-

mance shown in Figure 41. When clearances were

opened, 0.013 cm (0.005 in.) from nominal as in BU2,

as much as a 2% loss in efficiency occurred. However,
when nominal clearances were reduced, 0.010 cm

(0.004 in.) as in BU6, a gain in efficiency of approxi-

mately 1% was obtained. High speeds were avoided

with reduced clearance to eliminate heavy rub. Run-

ning clearances were measured at two circumferen-

tial locations near the impeller knee and tip exit.

These measurements, described in Figure 24, indicate

that the clearances were not, in general, unreason-

ably large. There was a considerable difference de-

tected in clearance between choke and surge condi-

tions at high speeds that caused some variation in

airflow along the choked portion of the speed lines.
However, this result was not observed in the CX-40

rig test speed line data, leading to the conclusion

that the clearances did not change during CX-40 rig

testing. The measured knee clearances obtained dur-

ing CX-53 rig testing were running somewhat greater
than desired and were approximately 0.013 cm (0.005

in.) larger than CX-40 test run conditions. The clear-
ance differences between CX-40 and CX-53 could ac-

count for approximately 1% of the observed effi-

ciency difference between the rigs. This corresponds

with the previous conclusion from impeller static

pressure recoveries; that is, the clearance effects do

not, and cannot, account for all of the performance
differences observed in the test data obtained from

CX-40 and CX-53 rig testing.

Summary of Test Data Analysis. Summary and re-

sults from the data reduction obtained through the

use of Allison's stage design and analysis calculation
(based on Creare's jet/wake flow model) are pre-
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Figure 31. CX-40 BU5 compressor performance.
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Figure 32. CX-40 rig compressor performance along

operating line (10% minimum surge margin).

sented in Table X. An examination of the information

presented in the table reveals that not only is the

impeller's performance less efficient during CX-53 rig

testing, but the high impeller exit blockage is feeding

into the diffuser, creating high diffuser exit blockages
and reducing the diffuser's static pressure recovery.

The analysis also reveals that impeller slip factors for

the CX-53 rig test data are well below those obtained

during CX-40 rig testing and totally beyond Allison's

experience. However, the CX-40 impeller slip factor

data are within Allison's experience, with values of

0.87 for BU5 and values for BU3 only slightly reduced

because of inducer choking. The reduced slip factors

measured during the CX-53 rig testing are an addi-

tional indication that there is a basic problem with

the CX-53 rig and engine configuration, which trans-

lates into poor impeller performance.

A comparison of heat transfer characteristics of

the two rigs shows some rather large differences. The
metal temperatures in the inlet guide vane region for

similar data points at 90% speed are significantly dif-

ferent, as seen in Figure 42. CX-53 rig test metal tern-

peratures are considerably larger than those ob-

served in CX-40 rig testing, indicating increased heat

recirculation. Additionally, the measured difference

between the diffuser passage temperature and the

compressor discharge temperature in the CX-53 rig

(also presented in Figure 42) reveals that with the
addition of insulation the heat loss from the rig was

reduced to nearly zero, but a large difference be-

tween the two temperatures is still present. This again

is indicative of a significant amount of heat recircula-

tion from the compressor exit to the inlet in the CX-53

rig. It is reasonable to assume that the thick aluminum

shroud housing used on the CX-53, as opposed to
the steel shroud on the CX-40, is the cause for this
additional heat recirculation.

It was concluded that, in the absence of any log-

ical and identifiable aerodynamic differences be-

tween the two rigs, the increased shroud heat recir-

culation of the CX-53 rig is reducing the impeller pres-

sure recovery resulting in poor impeller and overall
compressor efficiency measurements. Analysis of the

data indicates no real compressor design deficien-
cies. For example, efficiency improvement attempts

resulted in a 3% gain at high speeds when the impeller

exit width was narrowed (BU3 Type 1A) while an ap-

proximate 2% loss at all speeds occurred when the

solidity of the impeller was reduced (BU6, double-

splitter). Additionally, measured impeller to shroud
clearances and the resultant effects of clearance on

efficiency indicate that the clearance can be reduced

enough to gain approximately 1% in efficiency. These
are all predictable results. As a consequence, it is
concluded that it is the existence of a serious heat

recirculation problem in both the CX-53 rig and the

engine hardware that results in the observed poor

compressor performance.

3.1.3 Planned Rig Modifications and New Impeller De-

sign

This subsection presents a discussion of the plan-

ned rig modification and provides information on the

impeller design.

Rig Modifications to Reduce Heat Recirculation. The

analysis revealed the need for rig and engine modifi-

cation to minimize heat recirculation to not only re-

gain the performance levels of the CX-40 rig, but to

increase the AGT 100's performance with a new com-

pressor design. A rig redesign was accomplished in

1985 that replaced the aluminum impeller shroud and

diffuser front plate with a thin steel shroud and dif-

fuser front plate insert into the large aluminum cast-

ing. The aluminum casting also includes the compres-
sor discharge scroll and the inner gear case. The re-

duced thermal conductivity of steel and the thinned
cross section should reduce the heat recirculation to
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the levels measured during CX-40 rig testing. This

rework, depicted in Figure 43, is in progress. Rig test-

ing is scheduled to begin in the May-June 1986 time
frame.

The planned rig testing includes the impeller con-

figuration that has had to date the most positive im-

pact on performance, i.e., the narrowed exit width
• Type-lA used in the CX-53 BU3 test. A second Type

1A impeller has been machined. Additionally, the

shroud will be recontoured, if necessary, to ensure

the proper impeller-shroud match.

Compressor Potential Performance Gain Estimates.

The performance potential of the AGT 100 compressor

in a rig or engine free of adverse heat transfer effects
has been estimated. The performance improvements

are expected through increased airflow and effi-
ciency. The airflow is expected to increase to the de-

sign level (or possibly more) because the impeller's
inducer blade thickness is the same as the impeller

tested in CX-40 BUS, which exceeded the design

airflow value. Impeller work and efficiency are ex-

pected to increase due to the reduced heat recircula-
tion. A near-term achievable efficiency of 79% can be

estimated by using either CX-40 BU5 test data or CX-53

BU2 and 3 test data as the starting point (Figure 44).

Starting from CX-40 BUS test data, the 79% efficiency

goal can be achieved by adding the performance im-

provements due to narrowing the impeller exit width
as observed between CX-53 BU2 and 3 test data. The

entire effect (3% potential gain) has not been in-

cluded due to possible magnification resulting from

the heat recirculation of the CX-53 rig. Also, Allison

experience with other centrifugal compressors does

not indicate that this large of an effect should be

expected. Seventy-nine percent efficiency can also

be achieved by using CX-53 BU2 test data as a base,

adding the efficiency advantage of BU3 (narrowed
exit width), including the efficiency difference be-
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Figure 36. CX-40 BU3 and BU5, and CX-53 BU2, BU3,

and BU6 compressor flow range comparison.

tween CX-40 BU3 and CX-53 BU2 (due to the rig heat

transfer effects), and including efficiency improve-
ments due to decreased clearances (as determined

during CX-53 rig testing).

New Impeller Design and Estimated Compressor Ef-

ficiency. The recommended impeller redesign would

employ another degree of freedom on blading shape

to better control blade loading, choke flow charac-

teristics, and inducer incidences. The present AGT
100 impeller is constructed with the blade meanline

defined along the hub and shroud, and the blade
meanline between the hub and shroud connected

linearly at even meridional distances (normals) at the

hub and shroud. The blade thickness is applied

linearly about the normals in the meridional plane.

The recommended new blading would describe both

blade surfaces along separate linear lines (Figure 45).
This results in more control of the blade thickness

and blade angles between the hub and shroud, while

maintaining the linear surfaces necessary for numer-

ically controlled machining of developmental
hardware. The increased control of the thickness and

blade angles results in a blade leading edge shape

similar to that shown in Figure 46. The redesign also

incorporates a significant reduction in blade thick-

ness in the midspan region. A leading edge blade

angle distribution that could be realized from the

new blading technique is presented in Figure 47. As

depicted, these changes lead to decreased inducer

incidences while increasing the irnpeller's flow capac-

ity. This results in an efficiency increase across the

entire operational impeller speed range while en-

hancing part speed stability. The impeller redesign

will also incorporate impeller leading edge sweep,

which reduces inducer shock losses while enhancing

the new blading concept (Figure 48). Allison has

tested the effect of leading edge sweep with two
different impellers designed for the same operating

conditions. One of the impellers had a radial leading

edge design, while the other incorporated a swept

leading edge. The test results shown in Figure 49

indicate a significant increase in flow range between

choke and surge for the swept leading edge impeller,

resulting in broader efficiency characteristics. The

lower choke flow of the swept leading edge design
is believed to be a result of a hub condition not inher-

ent to leading edge sweep and it will not exist in the

new AGT 100 impeller design. The impeller redesign
will incorporate the advantages resd]fing from the

narrow exit width design of the CX-53 BU3 test impel-

ler. Thus, the new impeller design will combine new

blading techniques with those design criteria already

identified through rig and engine testing that resulted

in improved compressor performance.

The design was initiated in 1985 with an expected

completion in the April-May 1986 time frame. Testing

of the new design is planned for the fall of 1986.

The efficiency estimation for the new design

(refer to Figure 44) uses the 79% near-term goal with

1.5% added as a result of the proposed new blade

design to attain an estimated efficiency of 80.5%. This
estimated gain is somewhat difficult to verify because

no analytical model exists to yield insight into this

design and, therefore, the gain in efficiency is based

on a combination of experience and intuition regard-

ing the advantages of the incidence and swept leading

edge. To place this performance gain in perspective,

previous and planned AGT 100 compressor efficien-

cies are compared to the efficiencies of several exist-

ing Allison compressors in Figure 50. As the compari-
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Figure 37. CX-53 rig compressor performance along

operating line (10% minimum surge margin).

i /
I

Meridional distance, M/M.

TE86-2929

Figure 39. Impeller pressure recovery, NI v_'= 100%,

near surge.

S = static
TR = total relative

Ps2/PTR2- PsI/PTR1

CPIM -- 1.0 - Ps1/PTR1 /

Avera.ge.__.____I Y"

velocity _,

TE86-2928

Figure 38. AGT 100 compressor impeller pressure

re co very.
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Figure 40. ACT 100 compressor impeller inlet axial
velocity ratios.
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Figure 41. CX-53 rig performance along operating line

(10% minimum surge margin).

son indicates, an efficiency in the 80% region is an

ambitious but reasonable goal.

3.3 COMPRESSOR MECHANICAL DEVELOP-
MENT

Compressor mechanical development activity

this period included modification and rig testing of

a Type-lA impeller, the replacement of an aluminum

compressor shroud with a reduced thermally conduc-

tive steel shroud, and the continuation of a gasifier
assembly balance effort. The latter effort, which in-

volves both the compressor and gasifier turbine, is
reported in subsection 4.2, Gasifier Turbine Mechan-

ical Development.

3.3.1 Modified Type 1A Impeller (Cut Back Blades)

In an effort to improve the performance of the

Type-lA impeller, modifications were made to reduce

the number of full length blades and to introduce a

set of secondary splitter blades. Initial testing of the

modified Type-lA impeller on the compressor rig was

limited to 80% speed due to excessive vibration (this

work is described in the 1984 annual report). Follow-

ing improvements to the impeller assembly, the mod-

ified Type-lA impeller was successfully tested to 100%

speed early in this reporting period. These tests per-
mitted the necessary data to be obtained for assess-

ment of the modified impeller performance charac-
teristics (refer to section 3.1).

3.3.2 Steel Compressor Shroud

Compressor performance has been below pro-

gram goals for all of the impeller designs tested to

date in the engine and on the current compressor

rig. The current AGT 100 compressor rig (CX-53) is

designed to closely simulate the engine by using en-

gine hardware for the compressor rotating and sta-
tionary components. This includes the shroud, dif-

fuser wall, and scroll, which are all integral parts of

the large aluminum casting that also forms part of

the gearbox. The upstream mating components, in-

cluding the aluminum IGV support assembly, are also

common between the engine and compressor rig.

Conduction of heat from the relatively hot impel-
ler exit, diffuser, and scroll regions into the cooler

IGV support and impeller shroud regions appears to
be adversely affecting compressor performance. This

performance degradation is believed to occur
through the addition of excessive heat to the inlet

air before and during the compression process. This

phenomenon may also be introducing adverse boun-

dary layer effects. Performance is expected to im-

prove after replacing the shroud and IGV support

assembly with a lower thermal conductivity material

(stainless steel), thereby decreasing heat transfer to

the inlet air before and during compression. This ex-

pectation is supported by analytical analysis and ac-
tual test data obtained from an earlier AGT 100 com-

pressor rig (CX40). This rig's shroud was fabricated
from steel.

Thus, in order to improve compressor perfor-

mance, the aluminum shroud and IGVsupport assem-

bly are being replaced with stainless steel. The exist-

ing aluminum shroud is being machined out of an

existing inner gear case assembly and replaced with

stainless steel. A stainless steel IGV support assembly

is also being manufactured. These stainless steel parts
have a thermal conductivity approximately on an
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Table X.

flow model data reduction.

CX40/BU5 CX40/BU3 CX53/BU3 CX53/BU6

1349 1065 647 757

0.805 0.769 0.6871 0.684

5.211 4.624 4.524 4.664

0.7881 0.758 0.774 0.764

86,120 86,216 86,232 86,217

10% 10% 10% 10%

1.18 1.15 0.961 0.610

2.43 2.54 2.41 2.39

0.455 0.294 0.195 0.177

0.662 0.695 0.617 0.644

0.862 0.823 0.787 0.808

0.875 0.841 0.842 0.845

0.120 0.124 0.219 0.242

0.0152 0.0124 0.0098 0.0184

0.823 0.804 0.811 0.786

0.798 0.777 0.681 0.633

0.741 0.698 0.634 0.667

0.338 0.325 0.429 0.459

0.768 0.740 0.747 0.736

0.773 0.744 0.751 0.742

order of magnitude less than that of aluminum and

will be configured to the Type-lA compressor design.
Testing of the steel shrouded Type-lA compressor

will initially be performed on the CX-53 compressor

rig. Engine testing of the steel shroud will follow the

rig test. The modified hardware has been designed

to be compatible with the compressor rig and the

engine.
The steel shrouded compressor design is de-

picted in Figure 51. Provision for maintaining the loca-

tion of the shroud relative to the impeller as the parts

reach operating temperature has been incorporated

in the design. This redesign requires a substantial

diametral press fit of 0.41-0.43 mm (0.016-0.017 in.) at

the pilot diameter at room temperature. A heat trans-

fer analysis of the steel shrouded assembly indicates

that a slight interference fit will still be maintained at

the higher steady-state operating temperatures. The

heat transfer analysis also predicts that the steel

shroud will operate at increasingly cooler tempera-

tures, compared to the aluminum shroud, in a direc-

tion forward from the impeller exit region toward the

inlet region, Figure 52. The temperature difference

is predicted to approach 38°C (100°F) at the outer wall
near the IGVs and at the impeller inlet region when

operating at steady state, 100% N1 speed, and

maximum power conditions.

The steel shroud extends outward along the dif-

fuser wall. This design incorporates additional ther-

mal resistance and prevents an undesirable boundary

layer trip at the interface between the aluminum hous-

ing and the steel shroud.

40



At the end of this reporting period, the design

and heat transfer analysis of the steel shroud have

been completed and the inner gear case assembly

has been reworked to accept the steel shroud. The
steel shroud and the steel IGV support assembly have
been fabricated and the steel shroud has been suc-

cessfully installed in the reworked inner gear case.

Final machining of the steel shroud flow path and

pilot features, and the IGV support assembly flow
path, as well as instrumentation of the new parts for

compressor rig testing, are yet to be accomplished.

These efforts will be completed during the next re-

porting period.

CX-40/CX-53 heat transfer
Test results

Corrected speed,
N/V0 = 90%

Metal temperiture
RIG CX-40 CX-53
Tm 140°F 260°F °u- CX-53

_.o _

_.g 10

0
_ 0
o_

1 2

Insulation layers

TE86-2892

Figure 42. AGT 100 compressor.
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Figure 44. ACT 100 compressor design point efficiency
predictions.
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Figure 48. Impeller leading edge sweep concept.
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Figure 47. Impeller inlet blade angle distribution for

arbitrary blade study.
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Figure 49. Leading edge sweep performance.
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Figure 51. Steel shroud insert design.

44



All aluminum design _teel shroud design

Scroll

_._.._ ,,-.204=C (400°F)

J _ Diffuser
/ wall

Inlet guide vane

(IGV) ""._../-.._J _'1_ (250°F)

_---.._/...j%_oO,'FI Shrou_
-_ -___Zg_FI wa,,

Scroll

Diffuser
wall

, I I II

e_ f 177"C (350°F)

/149_ (300°F)
Inlet --121cC (250OF)

flow ._
3'(3 (200°F)

Inlet guid
_.,_.=(IGV) _ / 7_ 79"C (175°F) _ Shroud
_"'"'_,._ L / .,66=C (150OF) wall

_"C (125=F)

TE86-2842

Figure 52. Comparison of steel and aluminum

compressor shroud isotherms at max power, 100% N1,

steady-state condition.

45



IV. GASIFIER TURBINE DEVELOPMENT

4.1 GASIFIER TURBINE AERODYNAMIC DE-

VELOPMENT

Gasifier turbine aerodynamic development dur-

ing this reporting period included performance im-

provements through redesign of the vanes and
characterization of performance sensitivity to various

vane and rotor running clearances.

Results from previous rig testing, as presented in

Figure 53, identified the gasifier turbine vane as a

high (relative to design) efficiency loss element. As

a result of a comparison of the gasifier turbine vane

design with the more efficient power turbine vane

design two items have been identified that have the

potential for improving the gasifier turbine perfor-
mance. These two design changes involve a reduction

in trailing edge blockage from 10.8% to 7.3% and a

reduction of downstream turning (suction surface
camber downstream of the throat) from 10 deg to 0

deg. These two objectives are being accomplished

by using an existing cambered vane configuration

(see Figure 54) from an existing turbocompound en-

gine radial turbine. Modified turbine rig hardware is

being fabricated to accept these vanes as the turbine
size is coincidentally nearly identical to that of the
AGT 100.
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Theplannedtest series will also experimentally

characterize the sensitivity of performance to running

clearance; a design parameter particularly important

for ceramic turbine design. These tests are designed
to examine three critical areas: (1) vane slot clear-

ance, (2) rotor axial clearance, and (3) rotor radial

clearance, as depicted in Figure 55. Vane slot leakage

testing will be initially investigated with clearances

similar to those in previous rig testing. Further testing

will investigate the effects of both increased and
sealed clearances. Axial rotor clearance performance

sensitivity tests will be conducted using increased
clearances obtained by shimming. Radial rotor clear-
ance effects will be tested with normal axial clear-

ances but with a trimmed shroud.

4.2 GASIFIER TURBINE MECHANICAL DE-

VELOPMENT

Gasifier turbine mechanical development during

this reporting period concentrated on vibration/bal-
ance activities.

Vane pocket

_ _._._ Rig testing at

_11 I Three vane clearance

Vane _//J/_i h-= I • values
.... _/JJ._.i _ T;°amit°rs clearance

,x,a,c,°,,,oces

Rotor

\
\

Figure 55. Gasifier turbine rig configuration.

4.2.1 Vibration/Balance Activity

Overview. As described in the 1984 annual report

consistent achievement of 100% gasifier speed (N1)

from build to build has not been possible. While two

engine builds have successfully run to 100% N1 (S/N-l,
BU8, and BUll), other engine builds have encoun-

tered speed limitations due to excessive vibration

and/or gasifier shaft whip. Several studies (both

analytical and experimental) have been undertaken

to eliminate this undesirable gasifier behavior. As

gasifier assembly balance is considered to be of crit-

Cambered airfoils designed and tested in turbocompound

turbine reset for proper flow capacity

__ T_f°ricle:_nce

"__n_ re_eam _l_nkST('E8_!i!_ic

Figure 54. Rig layout of cambered vane set.

ical importance, changes have been made to improve

the balance procedure of the gasifier engine section,

which is depicted in Figure 56. Additionally, balance
fixture equipment has been modified, and a new bal-

ance machine with increased capacity has been pro-
cured.

A significant balance milestone was attained dur-

ing this reporting period, namely the amount of

gasifier assembly rigid body dynamic imbalance, as

installed in the engine prior to test, can now be deter-

mined. This was accomplished through the use of

the new balance procedure, the modified balance
fixture, and the new balance machine. As a result, it

is now possible to obtain and verify rotor imbalances
well within print allowable limits (.085 gin-in.) for

gasifier assemblies as final assembled for engine test.

One gasifier assembly (S/N 1, BU14) was successfully

rigid body balanced to the capabilities of the balance
machine by making small final balance corrections
in the accessible blade channels. (The main balance

correction planes are inaccessible when the gasifier

assembly is final assembled in the bearing support).

Unfortunately, this level of rigid body balance im-

provement had little or no effect on vibration and/or

whip limits and engine testing is still limited to speeds
below 100% N1.

In an effort to gain additional insight into the

nature of the vibration and whip, one of the test

engines (S/N 2, BU13) was equipped with additional

instrumentation to measure squeeze film deflection,
case motion, rotor rotational response, coupling
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shaftwhip, andshaftrotation/whipphasing.An en-
gine test with this additional instrumentation was per-

formed near the end of the reporting period. The

analysis resulting from this test indicates that the vib-

ration levels encountered are primarily due to rotor
imbalance and are not significantly amplified by rotor
or case resonance.

As the gasifier assembly balance was determined

to be well within limits as a rigid body before engine

testing, it is apparent that this type of balance of the

gasifier assembly is not sufficient to eliminate vibra-

tion/whip problems. Thus, new techniques relative

to balancing will be explored during the next report-
ing period. These include the effect of the gasifier

pinion shaft on the gasifier assembly balance, the

determination of a method to balance the assembly

while minimizing internal force couples, and the

feasibility of performing a high speed balance. The

first technique addresses the potential imbalance that
may arise because the gasifier pinion shaft is balanced

only as a detail part, not with the gasifier assembly

as a whole unit. The latter two techniques are in-

tended to correct vibration/whip problems that may

arise because the gasifier assembly is not perfectly

rigid and may be deflecting at high speeds due to

internal force couples that cannot be detected by

rigid body low speed balancing. The gasifier assembly
bow produced can in turn produce additional imbal-

ance. For example, at 100% N1 (86,256 rpm) an inter-

nal force couple of only 0.1 gram-in, resulting from

an imbalance in any plane produces a corresponding

unbalanced force of 21 kg (47 Ib) in that plane; thus,

significant forces can be developed by relatively small

imbalances. The current balance procedure is not

capable of removing such internal imbalances but

Gasifier turbine scroll

Compressor scroll

Compressor impeller

Inlet guide vanes

Gasifier turbine
,_IB Inletair flow

#1

Beadng

#3 Beadng

Gasifier pinion shaft

Gasifier bearing support

TE86-2511

Figure 56. Gasifier engine section.
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only ensures that they cancel in such a way that the

net reaction at the bearings is zero. Because of the
fixed and localized nature of the balance correction

planes, the distributed nature of the source imba-

lance, and the inability of any balance machine to
identify the source of the unbalance, internal force

couples will almost always be present with a low

speed balance. Thus, the latter two techniques will
be considered for minimizing or counteracting the

undesirable effects of such force couples.

BALCO Consultation and Balance Study Results. As

previously reported, Allison enlisted The Balancing

Company, Inc (BALCO) to study the gasifier assembly

balance procedures. BALCO specializes in balancing
rotors and was requested to recommend methods

for ensuring adequate balance during engine testing.
Allison supplied BALCO with a gasifier assembly

for use in its balance investigation. Balco's activity

included balance repeatability studies and assess-

ment of the feasibility of balancing the assembly on

engine bearings. This activity included balance
studies when disassembling and reassembling the

gasifier, tightening and loosening the tiebolt nut,

changing tiebolt nuts, axially shocking the assembly
with a hammer, rotating the impeller relative to the

turbine, rotating the bearing races, and varying the

balancing speed with the gasifier unit assembled with

the entire No. 1 engine bearing.

The results of the repeatability studies were con-
sistent with Allison's balance studies and practice.

Balance repeatability was determined to be within

the allowable balance limit (.085 gin-in.) at each bear-

ing plane for the disassembly/reassembly sequence
using a given set of hardware. Balance repeatability

is considered to be important because of the present

requirement of disassembling the rotor after balanc-

ing for subsequent installation in the engine bearing

support. A large change in balance was detected

when the No. 1 engine bearing replaced the No. 1

dummy bearing. This balance change was not unex-

pected and has led to the investigation of alternate

balancing methods that eliminate the use of the

dummy races in the balancing procedure.

BALCO also indicated that the present gasifier

mechanical design appeared sound with regard to

balance and that the permitted amount of imbalance

was reasonable; however, they recommend elimina-

tion of disassembly after balancing. An extensive re-

design of the gasifier support structure would be re-

quired to accommodate such a change. Thus, initial

balancing of the gasifier assembly will normally re-

quire disassembly of the gasifier section and removal

from the bearing support due to the magnitude of

imbalance typically present and the corresponding

necessity to gain access to the balance correction

planes. However, after initial balancing and reassem-

bly in the bearing support, additional minor balance

corrections will be made without further disassembly

by removing small amounts of mass from the acces-

sible impeller and turbine rotor flow paths.

Other BALCO balance study conclusions are as
follows:

• axial shock of the assembly produced small changes

in balance but was not effective in seating the com-
ponents

• balance changed significantly with tiebolt nut tor-

que but was generally repeatable when fully tor-

qued

• balance changes produced by exchanging tiebolt

nuts were essentially insignificant when fully tor-

qued, indicating that balance changes with torque
were not due to individual nut anomalies

• rotation of the No. 1 engine bearing inner race 180

deg produced balance changes on the order of

twice the balance limit at the No. 1 bearing plane,

indicating that even high quality engine bearings

must maintain their position relative to the other

components subsequent to balancing

• balance continued to change significantly when the

entire No. 1 engine bearing was used until stabiliza-

tion occurred above approximately 1800 rpm, indi-
cating that there is a minimum acceptable speed

required for balancing on the entire ball bearing

when no axial load is applied

Balance Procedure Changes. The procedure used

to balance the AGT 100 gasifier assembly has under-

gone continual evolution, becoming increasingly

more sophisticated with time. Early builds balanced
the two major detail assemblies (impeller assembly

and gas turbine rotor assembly) about their detail

axes, built the gasifier assembly on dummy bearing

races, balanced it, and then reassembled the gasifier

assembly with engine bearings in the engine. Imbal-

ance introduced by a change in the rotational axes

caused by variations between the dummy bearings

and engine bearings, or build nonrepeatability ef-

fects, was left uncorrected. Additionally, the imbal-

anced state of the gasifier assembly as installed in

the engine was unchecked and unknown. Despite

this early, nonrigorous balance technique, two en-

gine builds successfully ran to 100% N1, S/N 1, BU8
and BUll. However, a number of other builds that

used this identical procedure were not successful in

attaining full gasifier speed. Engine S/N 1, BUll was
also the first build incorporating a squeeze film

damper (SFD) in place of spring bar isolators at the

No. 2 bearing location. However, subsequent builds

of both test engines using the SFD have been limited

to speeds below 100% NI.
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A balance fixture was designed to allow the

gasifier assembly imbalance to be checked while as-

sembled for engine test. The balance fixture supports

the gasifier assembly as installed in the engine bear-

ing support structure and is placed on the balance

machine to check the gasifier assembly imbalance.
The gasifier assembly, as it appears in the balance

fixture, is depicted in Figure 57. Initial usage of the

balance fixture was not successful; indicated imbal-

ances varied greatly with rotational speed. Modifica-

tions were subsequently made to the balance fixture

to permit it to completely support the gasifier assem-

bly at both ends, and a new balance machine with

greater rotor weight and combined weight and speed
capacity was procured. These modifications and addi-

tions successfully allow the balance fixture to be used

to recheck the balance of the gasifier assemblies as

assembled on engine test build and teardown. The

balance fixture was used extensively during this re-

porting period.
The balance procedure was extensively revised

during this period to eliminate the dummy bearings

from the balance procedure and to balance the

gasifier assembly as assembled for engine test. These

balance procedural changes now incorporate the bal-

ance fixture as a key part of the balance process. The
balance procedure consists of the following steps:

1. The impeller assemblyand gas turbine rotorassem-

bly are individually balanced as detail parts upon

initial usage.

2. The impeller/turbine orientation requiring the
least amount of balance correction is selected.

3. The gasifier assembly, assembled in the bearing

support and balance fixture, is temporarily cor-

rected with balance weights.

4. The gasifier assembly is disassembled for access
to the balance correction planes. Corrections de-

termined in step 3 are performed.

5. The gasifier assembly is reassembled in the bearing

support and balance fixture for a final check bal-
ance. Small corrections are made in the blade

channels if required.

Beadng support assembly

Compressor
impeller

Balance /
machine
support

Balance Balance
fixture fixture

Balance
machine
support

TE86-2841

Figure 57. Gasifier assembly balance fixture.
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The new balance procedure is very successful in
producing gasifier assemblies that possess a high de-

gree of rigid body dynamic balance about their actual
engine test rotational axes.

4.2.2 Summary of Engine Builds and Test Experience

Engine S/N 1, BU13. This was the first AGT 100

engine build to successfully employ the balance fix-

ture to verify the imbalance of a gasifier assembly of

an as-assembled build ready for engine test. (The

modified balance fixture had been successfully used
on S/N 2, BU8 to check balance the as-assembled

gasifier assembly prior to engine test. However, this

build was the first to incorporate a ceramic rotor, and

testing was not planned to exceed 60% N1. Thus,

balance requirements were less stringent and no

rigorous balance program was conducted on BU8 to

achieve minimal imbalance). The new balance proce-

dure was employed twice during BU13 to balance the

rotor assembly to an acceptable level. The first bal-

ance procedure reduced the imbalance at the No. 1

bearing from 23 to 4 times the print limit. The imbal-

ance at the No. 1 bearing is usually greater than the

imbalance at the No. 2 bearing since most of the

rotor mass is supported by the No. 1 bearing. The

second balance procedure successfully reduced the

imbalance at the No. 1 bearing to approximately the

allowable limit; final imbalance at the No. 2 bearing
was less than 0.33 times the limit.

Subsequent engine testing failed to obtain full

speed as vibration limited the gasifier speed to 84%

N1. A teardown check balance of the gasifier assembly
in the balance fixture indicated that its imbalance had

increased during engine testing to approximately two
and one half times the allowed limit. However, all
BU13 and teardown (TD) 13 balance activities were

performed on the old balance machine as the new,

larger capacity machine was not operational at the

time. Thus, the accuracy of all check balance measure-

ments are suspect due to the old balance machine
limitations.

Engine S/N 2, BU9 through TD11. BU9 was the sec-

ond AGT 100 engine build to successfully employ the
new balance fixture and procedure. The initial em-

ployment of the balance procedure reduced the im-

balance at the No. 1 bearing from four to two times

the allowable limit. Additional balance corrections,

performed by removing stock from the turbine flow

path without disassembling the gasifier assembly, re-

duced the imbalance at the No. 1 bearing to just
under the allowable limit. The final imbalance at the

No. 2 bearing was less than half of the allowable limit.

No attempt was made to run at full gasifier speeds
during BU9 and BU10 as the associated tests were

devoted to thermal cycle testing of a ceramic gasifier

scroll package with speeds intentionally limited to

60% N1. The ceramic scroll package was replaced with

metal components in BUll to facilitate another

attempt to attain full gasifier speed; the test was

aborted due to a seized power turbine rotor. The

gasifier assembly had not been disassembled since
it was balanced for BU9. Subsequent check balance

of the gasifier assembly on TD11 indicated that the

imbalance magnitudes at the bearings were essen-

tially the same as on BU9. Again, the accuracy of the
BU9 and TD11 check balance measurements are sus-

pect because the new, high capacity balance machine

was not operational.

Engine S/N1, BU14 through TD15. The gasifier as-

sembly from BU13 was rebalanced for BU14; disas-

sembly was not necessary. Rebalancing to the allow-

able limit was accomplished by removing stock from
the turbine rotor blade channel. After removal from

the balance machine, a decision was made to improve

the balance down to the machine limits, theoretically

one-tenth that of the print limit. When the gasifier
assembly was replaced on the balance machine, how-

ever, the indicated imbalance at the No. 1 bearing
had increased by one-third. This unexpected increase
in imbalance was determined to have resulted from

several deficiencies built into the old balance

machine. Variations in machine drive belt tension and

pedestal height, and the process of removal/reinstal-

lation of the gasifier assembly itself were found to

have significant effects on the indicated imbalance.

Suspected limitations of this low capacity balance
machine were confirmed and it was removed from

further use. The new balance machine with increased

capacity was then available and placed in operation.

The same BU14 gasifier assembly was used to conduct
similar tests on the new machine. Indicated imbal-

ances as determined by the new machine were virtu-

ally unaffected by any of the factors previously iden-
tified.

The gasifier assembly was rebalanced on the new

machine without disassembly by removing additional
stock from the turbine blade channel. Indicated im-

balances near one-tenth the allowable limit were ob-

tained. Subsequent engine testing, however, was

again speed limited when vibration limits were ex-

ceeded near 84% N1. The gasifier assembly was not

removed from the engine until TD15. A check balance

could not be performed on TD15 because the No. 1

bearingwas damaged as a result of a No. 1 seal failure.

Engine S/N 2, BU12. This build incorporated the

second Sohio ceramic rotor to undergo engine test-

ing. No rigorous balance procedure was conducted
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to minimize imbalance since the test plan did not

require the gasifier to exceed 60% NI.

Engine SIN 1, BU16. This build incorporated the
first Kyocera silicon nitride ceramic rotor. The gasifier

assembly was balanced using the new balance proce-
dure and the new balance machine. The initial bal-

ance attempt reduced the imbalance at the No. 1

bearing from 12 to 1.4 times the allowable limit and
from five to two-thirds the allowable limit at the No.

2 bearing. No additional balancing was attempted so

as to avoid damage to the ceramic rotor, and, addi-

tionally, the test was planned to be conducted at re-

duced speed. Shaft whip measured 5 mils at 70% N1 ;

it is expected that the 7-mil limit would have been
exceeded before full speed was achieved. The speed

was limited to 70% N1 because of measured high

power turbine backplate pressure. This measurement

was subsequently determined to be erroneous. A
teardown check balance indicated that the No. 1 bear-

ing imbalance had increased by a factor of three and

the No. 2 bearing imbalance by a factor of two.

Engine S/N 2, BU13 and BU14. Special instrumen-

tation was included in BU13 to study the gasifier as-

sembly vibration/whip response during engine oper-

ation. The gasifier assembly was balanced to approx-

imately 0.5 times the allowable limit at the No. 1 bear-

ing and 0.35 times the allowable limit at the No. 2

bearing. Subsequent engine testing was limited to

90% N1 due to excessive vibration and whip. Data

analysis was not completed during this reporting
period, but initial indications are that the response
is due to imbalance and not to resonance of the

gasifier assembly or support structure. Additionally,

the squeeze film damper at the No. 2 bearing does

not appear to be bottoming.

The same gasifier assembly was used for BU14

without rebalancing as BU14 was a ceramic scroll

package test in which high speeds were not required.

BU14 engine testing was not completed during this
period and a teardown check balance has not been

performed.

Engine S/N 1, BU17. This was the second engine
build to incorporate the Kyocera silicon nitride

ceramic gasifier rotor first run in S/N 1, BU16. Prior

to installation in BU17, the gasifier assembly was rebal

anced. By repeating the balance procedure and mak-

ing small final corrections in the rotor blade channels,

a near-perfect rigid body balance was achieved (the

measured imbalance approached the limits of the

balance machine's capabilities). The gasifier assembly

in this state was installed in BU17, but engine testing

was not initiated during this reporting period. Engine

test plans include an attempt to achieve 100% N1.

4.3 CERAMIC GASIFIER TURBINE DESIGN

4.3.1 SiC Gasifier Turbine Engine Test and Postfailure

Investigation, S/N 2, BU12

Rotor S/N FX34360 was installed in engine S/N 2,

BU12 and ran for approximately one hr at idle condi-
tions (also see section 2.2.2). Post-test teardown in-

spection revealed failed inducer blade tips as shown

in Figure 58. However, the remainder of the rotor,

including the exducer region of the airfoils, was in-

tact. The rotor-shaft attachment was structurally

sound and no damage downstream of the blade tips
was observed.

Post-test investigation considered several
phenomena in an attempt to identify the cause of the

inducer tip failure. These included thermal shock,

overspeed, airfoil rub, material strength/flaw, foreign

object damage (FOD), and vibration response to vane

passage. It was concluded that FOD was the probable

failure mode, vibration was a potential mode, and

the other phenomena had only a remote probability

of contributing to the failure.

VS85-893

Figure 58. Condition of the ceramic rotor assembly
after engine testing.

The dynamic characteristics of the airfoil were

both analytically and experimentally assessed

through use of two-dimensional (2-D) and three-di-
mensional (3-D) finite element simulation and bench

tests, respectively. The 2-D simulation successfully

predicted the airfoil natural frequencies (substan-

tiated by bench test), and the frequencies are pre-
sented as a function of rotor speed on an interference

response diagram in Figure 59. This diagram identifies

the particular rotor speeds at which the natural fre-
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quencies of the rotor airfoil would be coincident with 
the periodic pulse resulting from the 18-vane passage. 
Examination of the engine test records identified the 
31,000 to 38,000 rpm speeds as the likely range for 
fracture of the inducer tips. This was based on data 
for engine vibration, rotor whip, temperatures, and 
power. This speed range is identified in the figure as 
the event-the probable inducer tip fracture event. 
It is  not coincident with inducer response to vane 
passage. 

The nature of the response of the inducer airfoil 
at i ts resonant frequency was experimentally investi- 
gated. The objective of the tests was an assessment 
of the fracture stress and the corresponding analytic 
probability of survival for the measured fracture 
stress. Four airfoils were instrumented with radially 
oriented strain gages placed at the maximum stress 
location and then were excited at their natural fre- 
quencies. The excitation was increased until fracture 
occurred. The airfoils failed between 289.6 MPa (42.0 
x IO3 Ib/in.2) and 326.1 MPa (47.3 x IO3 Ib/in.2) with a 
tip double amplitude of 0.356 mm (0.014 in.) (Figure 
60). 

Three-dimensional finite element models, as 
shown in Figure 61, were used to assess the probabil- 
ity of survival of the airfoil in the first mode for the 
observed tip deflection. The partial cube (3-D) in- 
ducer finite element model (FEM) was shown to accu- 
rately model the mode shape and frequency of the 
more complex full airfoil model. Mean probability of 
survival, calculated at 2 319.9 MPa (46.4 x IO3 Ib/in.2) 
(which corresponds with observed tip amplitude at 
fracture) would seem to indicate that inherent aver- 
age rotor blade strength was only 71% of the material 
characteristic strength as determined from modulus 
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Figure 59. Ceramic rotor airfoil natural frequencies. 
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of rupture (MOR) test bars. The 71% MOR correlates 
with the rotor material strength deduced from spin 
burst characterization tests. It is unlikely that the 
319.9 MPa (46.4 x IO3 Ib/in.2) level of inducer excitation 
was present in the engine at the failure event (see 
Figure 59); therefore FOD was concluded to be the 
probable failure mode. 

FOD Failure Mode Investigation. A bench test in- 
vestigation is being conducted to investigate the na- 
ture of impact failure of gasifier turbine inducer air- 
foils made from Sic material. A containment (coffin) 

Dynamic fracture stress (4 airfoils) 
first inducer mode 
290-326 MPa (42,000-47,300 Ib/in.2) 

Radial strain gage installed on 
gasifier inducer airfoil 

VS85-895A 

Figure 60. Ceramic rotor inducer blade dynamic 
fracture test. 
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Full cube 
finite element model 

(statics) 

Elements = 514 
Nodes = 2479 
DOF' = 6160 

Partial cube inducer 
finite element model 

(dynamics) 

I 
Elements = 60 
Nodes = 523 
DOF = 1347 

'DOF = degrees of freedom 

For an airfoil stress of -c 320 MPa (246,40Olb/in2) and 
the following MOR strengths the resulting probably of 

survival (POS) is: 

Rotor Material I 
Strength I POS 

100% MOR 0.94 
71 % MOR I 0.50 

VS05-096A 

Figure 61. Probabilisticassessment of dynamic fracture 
test res u Its. 

rig (Figure 62) has been developed for FOD testing. 
The purpose of these tests i s  to determine the re- 
lationship between rotor speeds and foreign object 
particle sizes that cause rotor failure upon impact. 

The coffin rig i s  built with the axis of rotor rotation 
parallel to the base of the coffin. The rotor i s  bonded 
to an arbor and spin driven.The dropping mechanism 
is basically a trap door arrangement, actuated by a 
solenoid, allowing the particle to free fall without any 
initial velocity. FOD particles investigated include 
steel ball bearings and shot varying in size from 0.406 
mm (0.016 in.) to 3.175 mm (0.125 in.) in diameter. A 
thick, wax ring encircles the rotor to catch the FOD 
particle as it is deflected from the inducer tips, as 
well as any resulting rotor debris. This technique re- 
duces the probability of secondary impacts. The cof- 
fin rig i s  evacuated to less than 1 mm (0.039 in.) of 
mercury, absolute pressure, by a combination of two 
vacuum pumps. 

Figure 62. Foreign object damage rig used to 
investigate potential impact damage to the ceramic 

gasifier rotor. 

Documented impact tests were performed 
primarily on four silicon carbide gasifier rotors previ- 
ously proof-tested to between 94,000 and 95,000 rpm. 
These impact tests were conducted at rotor speeds 
varying between 35,000 to 90,000 rpm. Impacting par- 
ticle size varied from 0.4699 mm (0.0185 in.) to 3.175 
mm (0.125 in.) in diameter. An example of rotor dam- 
age sustained during testing i s  presented in Figure 
63. A preliminary data curve representing the relation- 
ship between rotor speed, particle size, and the onset 
of rotor damage is  presented in Figure 64. Testing will 
be continued during the next reporting period to 
further characterize the nature of impact failure and 
substantiate the preliminary data results. 

Airfoil Vane Passage Response Investigation. As 
gasifier (Sic) inducer airfoil vibration i s  considered a 
potential failure mode a FOD-free test i s  planned to 
investigate airfoil response to potential vane excita- 
tion pulses. This i s  an experiment designed to ob- 
serve the dynamic response of the inducer airfoils in 
a clean engine environment. The engine will be mo- 
tored to approximately 50% N1 with no combustion 
and a fine screen installed over the scroll inlet to 
preclude particles from passing through the nozzle 
vanes and impacting the gasifier airfoils. The goal is 
to demonstrate a sufficient lack of airfoil response to 
vane excitation at rotor critical speeds coincident with 
the inducer first response mode. It i s  planned to con- 
duct this test during the next reporting period. Testing 
will be conducted with nine and eighteen vanes in- 
stalled in the scroll. With nine vanes, half the normal 
complement, the coincidence of inducer and vane 
passage frequency will be well above the operating 
speed range. 
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Figure 63. Airfoil damage resulting from FOD impact, 
Sic gasifier turbine. 

Thickened Airfoil Design. The design of a thick- 
ened airfoil has been implemented for potential im- 
provement in impact resistance. The design criteria 
were: (1) no increase in the airfoil stress levels and 
hence no change in the airfoil taper ratio and (2) no 
change in the flow controlling exducer throat area. 
The resulting thickness increase is graphically illus- 
trated in Figure 65. In addition to the potential im- 
provement in impact resistance (which will also be 
experimentally determined), the stiffened airfoil 
shifts the first inducer mode well above the operating 
range as shown in Figure 66. Processing of rotors 
incorporating this thicker airfoil is discussed in sec- 
tion 9.2.1. 

4.3.2 Silicon Nitride Gasifier Turbine 

Two attachment designs are being analyzed for 
joining the Si,N, rotor to the metal (Inco 907) gasifier 
shaft, as illustrated in Figure 67. Both use an air gap 
to reduce heat flux from the gasifier rotor into the 
compressor shaft. One design uses a braze joint and 
the other an interference fit. Both designs are being 
analytically evaluated to assess the effects of rotor 
dynamics, heat transfer, and stress. The calculated 
rotor assembly resonant dynamic modes (and corre- 
sponding frequencies) for the brazed configurations 
and interference fit are presented in Figures 68 and 
69, respectively. The first three modes shown consist 
of the two rigid body modes and the first bending 
mode. All modes are outside the engine operating 
speed range; the first bending mode is predicted to 
occur at 130% NI. This i s  considered a desirable and 
safe margin. 

Stress analyses of the Si,N, rotor and shaft attach- 
ment during this reporting period have been focused 
on the interference fit configuration. Calculated 
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Figure 64. Bench test FOD rigpreliminary results using 
a gasifier rotor made from Sic material (zero initial 

velocity on balls). 

stresses for both the rotor and shaft at 100% speed, 
steady-state operation, and 1080°C (1976°F) turbine 
inlet temperature (TIT) are presented in Figures 70 
and 71, respectively. The predicted stresses are well 
within acceptable levels. 

The Kyocera braze joint configuration i s  based 
on results of their turbocharger experience. The con- 
figuration features an air gap between the rotor and 
shaft to reduce heat flux into the shaft. Steady-state 
thermal analysis, Figure 72, at 100% speed and 1287°C 
(2350°F) TIT predicts the shaft temperature at the bear- 
ing location to be 210°C (410"F), approximately the 
same level as the Sic rotor system for the same operat- 
ing conditions. The steady-state temperature distribu- 
tion for the interference fit attachment configuration 
at 100% speed and 1080°C (1976°F) TIT i s  depicted in 
Figure 73. 

Airfoil natural frequencies were calculated for the 
finished machined Si,N, rotor, and the results are 
shown in Figure 74. The interference diagram com- 
pares the calculated frequencies with possible vane 
passage excitation throughout the rotor speed range. 
Potential resonant response of the third and fourth 
modes is possible within the engine operating range. 
The calculated mode shapes for these modes are pre- 
sented in Figure 75. 
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In preparation for engine testing, the rotor airfoil

natural frequencies were also bench test measured.

These data are also shown in Figure 74. The measured

natural frequencies of the first inducer and exducer

resonant conditions are higher than the calculated

frequencies because the calculated frequencies were

based on the specified airfoil thickness of 0.76 mm
(0.029 in.) whereas the actual thickness was 1.0 mm

(0.039 in.). Both the inducer and exducer region of

the gasifier airfoil successfully passed through poten-

tial vane passage response during the numerous

speed excursions of the rotor up to a maximum of

60,000 rpm during engine operation.

4.3.3 Ceramic Gasifier Turbine DesignmStatic Compo-

nents

During this reporting period design activity ef-

forts were focused on determining the operating

characteristics of the gasifier turbine static compo-
nents. This effort included the following:

• analysis
• start-up transient and steady-state operation of

an all silicon carbide scroll assembly

• start-up transient and steady-state operation of

a scroll assembly with a silicon nitride outer back-

plate substituted for a silicon carbide outer back-

plate

• start-up transient and steady-state operation of
an all silicon nitride scroll assembly

• design

56



Braze zone

Braze joimng (Kyocera)

!
Interference fit joining (AIhson)

VS85-898

Figure 67. 5ilicon nitride rotor attachment designs.

• investigation of the fracture of a silicon carbide

outer backplate during engine testing and mod-
ifications to reduce local thermal and mechanical

stresses

• configuration of a silicon nitride scroll assembly

• modification of the gasifier turbine heat shield
and surrounding components to simplify installa-

tion within the engine

• comparison of the operating characteristics of a

gasifier turbine scroll assembly with silicon carbide

and silicon nitride outer backplate

A fracture of an _SiC gasifier turbine outer back-

plate during engine testing initiated an investigation

to evaluate a Si3N4 outer backplate in combination

with a successfully engine tested o_SiC gasifier turbine
scroll.

This investigation was conducted using FEM
analysis of a two-dimensional axisymmetric model,

Figure 76, of the gasifier turbine scroll assembly and
adjoining metal engine structure. Heat transfer and

stress analyses were performed at two different en-

gine operating conditions to determine the operating

characteristics of a Si3N4 outer backplate assembled

with an eSiC scroll. The initial operating condition to

be analyzed was a transient start-up cycle. Tempera-
ture and stress data were calculated at 10-sec intervals

for the first 100 sec of operation. The next operating

point considered simulated steady-state operation at

the RPD design condition (1287°C [2350°F] TIT). Dupli-

cate analyses were conducted for an o_SiC outer back-

plate (assembled with an o_SiC scroll) to allow direct

comparison of results. Selected Si3N4 and 0cSiC mate-

rial properties used in the analyses are tabulated in
Table Xl.

The calculated probability of survival (POS) of the

components of a scroll assembly in which all compo-

nents were o_SiC is presented in Table XlI. The smallest

POS for the overall assembly occurs at about 60 sec

into the start-up cycle. The overall POS then improves

to 0.997613 at RPD steady-state conditions.
When silicon nitride material is substituted for

silicon carbide in the outer backplate (only) of the

gasifier turbine the probability of survival for the

outer backplate improves significantly during the
start-up transient condition.

The POS of the outer backplate for the two mate-

rials during the start-up cycle and at RPD steady-state
conditions is compared in Table XlII. The effect of
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Figure 69. Calculated gasifier rotor assembly modes-
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Figure 70. Calculated maximum principal stress for
interference fit configuration Si3N4 rotor at 100%

speed and 1080°C (1976°F) TIT.

the higher strength and Weibull modulus of Si3N 4 is

clearly evident.

The analysis also considered the effect of the
lower coefficient of thermal expansion of the SigN 4

material when compared to _SiC (see Table Xl). The
reduced thermal expansion in the Si3N 4 outer back-

plate as compared with that of the c_SiC scroll results
in a subsequent separation of the two parts at the

outside pilot diameter as they heat. The separation

of the two parts at the pilot diameter is greatest (0.127

to 0.152 mm [0.005 to 0.006 in.] radially) at the steady-

state RPD operating condition. The radial thermal

growth at the pilot diameters of the Si3N_ outer back-

plate and _SiC scroll during both transient and

steady-state (RPD) operating condition are presented

as a function of time in Figure 77. The c_SiC scroll

begins to thermally separate from the SigN 4 outer

backplate at about 55 sec into the start-up cycle; this

separation continues during the remainder of engine
warm-up to the RPD operating condition. The close

fit of the pilot diameters at the scroll/outer backplate

interface is to maintain concentricity between the
scroll shroud and the turbine rotor. Separation of the

scroll from the outer backplate potentially allows the
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Figure 73. Thermal analysis of Si3N 4 rotor/metal shaft at 100% speed and 1080°C (1976°F) TIT for the in terference

fit configuration.

shroud to shift up to 0.127 mm (0.005 in.) radially with

respect to the rotor. Thus, additional radial clearance

would be required to prevent turbine rotor rub. How-
ever, additional turbine rotor operating clearance is

undesirable because of its severe impact on turbine

efficiency.

Separation of pilot diameters does not occur

when an _SiC outer backplate is used with an (xSiC

scroll. In contrast, the oLSiC outer backplate thermally

grows into the scroll during the transient cycle and
continues to maintain a close fit at the scroll/outer

backplate interface; therefore, no additional turbine

rotor clearance is required. The radial thermal growth

of an o(SiC outer backplate and (xSiC scroll during

both the transient and steady-state (RPD) operating

conditions are presented as a function of time in

Figure 78.
This investigation indicates that the use of a Si3N 4

outer backplate in combination with an _SiC scroll

is unacceptable because the critical scroll locating
function at the outer backplatelscroll interface is not

maintained. This condition is caused by the dissimilar
thermal expansion coefficients of the two materials.

Gasifier Turbine Scroll Assembly Fabricated from

Silicon Nitride. An analysis of a gasifier turbine scroll

assembly fabricated totally from silicon nitride was

then initiated to determine the probability of survival

of the components and the deflected shapes of the

entire assembly and its individual components during
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Figure 76. Gasifier turbine scroll assembly finite

element model geometry.

engine operation. For purposes of comparison, the

analysis was performed to simulate the same engine
operating conditions (start-up transient and steady-

state operation condition at the RPD condition,

1287°C ([2350°F] turbine inlet temperature [TIT]) em-

ployed in the previous SiC analysis. The scroll assem-

bly FEM used in the previous analysis (Figure 76) was

also employed in this analysis. The silicon nitride ma-

terial characteristics used in this analysis were those
presented in Table Xl.

The calculated probability of survival for the sili-

con nitride scroll assembly is very high during both

start-up transient and steady-state (RPD) operation.

Probabilities of survival for the individual compo-
nents and overall assembly are shown in Table XlV.

These probabilities of survival, based on fast fracture

strength data, exceed the engine design goal of
0.999375 set for each failure site.
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Table XI.

Ceramic material properties.

0.119

26.3
Density

Young's modulus at 1200°C (2192°F), (Iblin .2 x 1@6)

Characteristic strength, Iblin.2 x 103

Su rface at RT 98.2

Surface at 1200°C (2192°F) 86.3

Volume at room temperature 67.2

Volume at 1200°C (2192°F) 59.0

Weibull modulus

Surface 15

Volume 15

Coefficient of thermal expansion, in .li n.-°F 2.14 x 10 -6

Poisson's ratio 0.27

Thermal conductivity Btulhr-in.-°F at 1200°C (2192°F) 0.500

o_SiC

0.115

55.5

48.7

48.7

25.6

25.6

8.7

8.4

2.73x10 -6

0.17

1.81

Table XII.

Probabilities of survival for gasifier turbine scroll assembly components fabricated from silicon carbide
(RPD conditions)--POS.

Outer Inner Insulating Overall

Time--sec Scroll backplate backplate shim (ZrO z) assembly

10 1.000000 1.000000 1.000000 1.000000 1.000000

20 0.999937 0.999977 0.999893 1.000000 0.999807

30 0.993139 0.997002 0.988332 1.000000 0.978608

40 0.979039 0.987951 0.960813 1.000000 0.929339

50 0.981865 0.972120 0.939065 1.000000 0.896329

60 0.988216 0.962730 0.928869 1.000000 0.883712

70 0.993379 0.964223 0.945664 I. 000000 0.905794

80 0.996508 0.976624 0.969297 1.000000 0.943338

90 0.998487 0.986563 O.983974 1.000000 0.969284
100 0.999403 0.991104 0.989880 1.000000 0.980488

Steady-state 0.997801 0.999999 0.999813 1.000000 0.997613
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Table XIII.

Comparison of probability of survival for Si3N 4 and aSiC gasifier
turbine outer backplates at RPD operating conditions

(when assembled with aSiC scroll and _SiC inner backplate).

POS

Time_sec Si3N_ cxSiC
1o 1.oooooo :1.oooooo
20 1.000000 0.999977

30 0.999998 0.997002

40 0.999997 0.987951

50 0.999998 0.972120

60 0.999998 0.962730

70 0.999999 0.964223

80 0.999999 0.976629

90 0.999999 0.986563

100 0.999999 0.991104

Steady-state RPD condition 0.999999 0.999999
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Figure 77. Radial thermal growth of gasifier turbine Si3N 4 outer backplate and SiC scroll.
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Figure 78. Radial thermal growth of gasifier turbine SiC outer backplate and SiC scroll.

Calculated thermal/mechanical growth at the

piloting diameter of the silicon nitride outer back-
plate and scroll body are presented in Figure 79. Dur-

ing both start-up and steady-state operation the outer

backplate expands slightly more than the scroll,

thereby maintaining the desired fit between the two

components. Cold assembly clearance between the

two parts is adjusted to obtain proper fit during oper-
ation.

Gasifier Turbine Outer Backplate Redesign. The fi rst

c_SiC gasifier turbine outer backplate to be engine

tested fractured during engine testing. This outer

backplate had previously been successfully tested in

the scroll thermal shock test rig. Two fractures occur-

red during subsequent engine testing and are both
described in detail in subsection 9.2.2. One fracture

shown in both Figures 80 and 81, may have been

caused by a thermal gradient in the part at the origin

of the crack. The crack originated in a corner of one

of six cross-key slots and propagated radially inward

and outward as shown in Figure 80.

The design of the gasifier turbine outer backplate

was subsequently modified, as shown in Figure 82,
to reduce thermal stress in the region of the fracture

origin. The continuous circumferential rim in which
the six cross-key slots are cut was removed except at

the actual position of the cross-key slots. This initial
modification reduced the local thickness of the com-

ponent by nearly a factor of two and resulted in a
reduction of the tensile hoop stress in the region of

the cross-key slots. The second modification reduced
the stress concentration at the bottom of the cross-

key slots by increasing the depth of the slots and
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Table XIV.

Probabilities of survival for components of silicon nitride gasifier turbine scroll assembly (RPD conditions).

Outer Inner Insulating Overall

Time--sec Scroll backplate backplate shim(ZrO_) assembly

10 1.000000 1.000000 1.000000 1.000000 1.000000

20 0.999999 1.000000 1.000000 1.000000 0.999999

30 0.999999 0.999999 0.999998 1.000000 0.999997

40 0.999999 0.999999 0.999989 1.000000 0.999989

50 0.999999 0.999999 0.999998 1.000000 0.999985

60 0.999999 1.000000 0.999995 1.000000 0.999995

70 1.000000 1.000000 0.999999 1.000000 0.999999

80 1.000000 1.000000 0.999999 1.000000 0.999999

90 1.000000 1.000000 0.999999 1.000000 0.999999

100 1.000000 1.000000 0.999999 1.000000 0.999999

110 1.000000 1.000000 0.999999 1.000000 0.999999

120 1.000000 1.000000 0.999999 1.000000 0.999999

Steady-state 1.000000 1.000000 1.000000 1.000000 1.000000

machining a full radius at the bottom of the slot(s)

in place of the initial sharp corners.

Design of Silicon Nitride Gasifier Turbine Static

Components. The favorable probability of survival and

satisfactory thermal growth characteristics of a silicon

nitride gasifier turbine scroll assembly (scroll, vanes,
and inner and outer backplates) have been de-

monstrated through analysis. The results of the

analysis led to a decision to procure silicon nitride

gasifier turbine static components; successful testing

of a silicon nitride gasifier turbine rotor also favorably
influenced this decision.

Allison prepared an alternate gasifier turbine
scroll design during 1984. This design featured a sepa-

rately fabricated inlet section and a revised scroll

body casting configuration that improved mold re-

lease. This alternate scroll design was then analyzed

to obtain transient and steady-state temperatures,

stresses, and probability of survival (the results were

reported in the 1984 Annual Report). The vendor

(Kyocera) selected to supply silicon nitride gasifier

turbine scrolls submitted a proposal to revise the

alternate scroll design. The revision involved a new

configuration in the region of the bonded joint be-

tween the scroll body and the shroud; this proposal
was accepted.

The revised configuration and Allison's original

alternate design concept are presented in Figure 83.

The separately fabricated inlet section bonded to the

scroll body and a typical cross section of the Kyocera

scroll body casting are shown in Figure 84. A cross

section of the complete silicon nitride gasifier turbine

scroll assembly, indicating the bonded joints between

the scroll body, shroud, and outlet transition elbow

is presented in Figure 85. Although construction dif-

ferences are evident the original and vendor alternate
scroll assemblies have similar scroll flow areas and

the complete scroll assemblies (scroll body, shroud,

exit, and inlet connection features) are interchange-
able.

The silicon nitride inner and outer backplate con-

figurations are also identical to the corresponding

silicon carbide components. The silicon nitride outer

backplate design incorporates the recent silicon car-

bide design modification as depicted in Figure 82.

Gasifier Turbine Heat Shield Design. Gasifier tur-

bine heat shields have recently been fabricated to be

installed in the turbine assembly in an effort to reduce
radiant heat transfer from the hot turbine inner back-

plate to the adjoining metal engine structure. The

heat shield has been designed so that its installation

is optional; installation (or omission) of the shield in

the turbine assembly does not impact the dimen-

sional stack of the engine. The heat shield may be
used with either ceramic or metal turbine scroll as-

semblies. The heat shield, as it would appear if instal-

led in the gasifier turbine, is shown in Figure 86.
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V. POWER TURBINE DEVELOPMENT

5.3 CERAMIC POWER TURBINE DESIGN

Power turbine ceramic design efforts during this

reporting period involved the power turbine rotor

and static components. The scope of work was similar

to that performed on the gasifier turbine system as
described in section 4.3.

5.3.1 Ceramic Power Turbine Rotor Design

Thickened Airfoil. The design of a thickened

gasifier airfoil has been implemented (ref section

4.3.1) for potential improvement in impact resistance.

Similar considerations led to a redesigned (resized)
power turbine airfoil in which the thickness has been

increased. The new airfoil design, as compared to
the initial design, was thickened in the locations

shown in Figure 87. Both the airfoil taper ratio and

the size of the exducer throat controlling the flow

rate remained unchanged. The resulting airfoil is

applicable for power turbine rotors made either from
silicon carbide or silicon nitricle.

The procurement of silicon nitride power turbine
rotors from Kyocera is discussed in section 9.3.3. The

natural frequencies of the silicon nitride material
thickened airfoil were calculated and the results are

presented in the Campbell diagram in Figure 88. The

airfoil design satisfies the general guideline that all

natural frequencies be in excess of the fourth order

engine (vane) excitation frequency.

Temperature contours, resulting stress gradients,

and probability of survival calculations have been ini-

tiated for this rotor configuration made from silicon
carbide material. Fabrication of the rotor in silicon

nitride material (ref section 9.2.4) is also under consid-

eration and the corresponding calculations will be
performed for a silicon nitride rotor.

5.3.2 Ceramic Power Turbine Design - Static Compo-
nents

During this reporting period, design activity ef-

forts on the static ceramic power turbine components

included the following:

Original inducer tip at 0.75 mm (0.030 in.) thick

2.0

t
t orig.

1.0

I , I I

0 62.5% 100%

Axim position

11"E86-2848

Figure 87. Redesigned (thicker) inducer region airfoil,

ceramic power turbine rotor.
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Figure 88. Campbell diagram, silicon nitride (SN 220M)
material thickened airfoil.
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Design

• scroll design update to reflect both gasifier turbine

scroll design refinements and revised rotor to scroll

clearance specifications

• design drawings finalized for silicon carbide and

silicon nitride scroll/backplate assemblies

• design of power turbine heat shield to simplify in-

stallation on engine

• analysis of steady state and start-up transient oper-

ation of a silicon carbide turbine scroll assembly

Power Turbine Scroll Assembly Design. Detail draw-

ings of the ceramic power turbine scroll and inner

and outer backplates have been completed. The

power turbine scroll design incorporates the current

design features of the gasifier turbine scroll, which

evolved through detailed finite element model (FEM)

analysis directed toward improving the probability of

survival (POS) of the gasifier turbine scroll. These

changes include increased shroud and scroll wall

thickness. The final design of the power turbine outer

backplate also incorporates the revisions made to the

gasifier turbine outer backplate (refer to section 4.3.3)
to reduce thermal stresses in the nozzle vane/cross-

key slot region of the part. The power turbine inner

backplate design incorporates a modified shape to
allow installation of an optional heat shield between

the scroll/backplate assembly and the adjoining metal
engine structure.

Drawings for ocSiC power turbine static compo-
nents have been released to Sohio for part fabrica-

tion. Tooling to produce scrolls and outer backplates
has been procured.

Detail analysis of a silicon nitride gasifier turbine
scroll assembly showed that silicon nitride is a viable

alternative material for those components with a high
calculated probability of survival. Based on the results

of that analysis, detail drawings were prepared for

silicon nitride power turbine components. These

components are dimensionally interchangeable with

like silicon carbide components. However, based on

the results of the gasifier turbine analysis, use of a

silicon nitride outer backplate with a silicon carbide

scroll would not be acceptable because of the differ-
ence in thermal expansion rates of the two materials.

A silicon nitride inner backplate may be used with
an outer backplate made of either material. Silicon

nitride vanes (already procured for this program) may
also be used in either a silicon nitride scroll/outer

backplate assembly or a silicon carbide assembly.

The vendor (Kyocera) quotation for the silicon

nitride components contained a proposal for an alter-

nate construction of the power turbine scroll/shroud

assembly. Kyocera's proposal was similar to the pro-

posal for their gasifier turbine scroll assembly de-

scribed in section 4.3.3. The proposed construction

simplifies the scroll body casting and improves the

probability of successful removal of the scroll body
from the mold. In the power turbine scroll, the inlet

transition is an integral part of the scroll body casting,
and the shroud is a separate part that is bonded to

the scroll body to complete the scroll assembly. A

comparison of the silicon carbide scroll design and
the alternate silicon nitride scroll design appears in
Figure 89.

The inlet section of the power turbine scroll is

an integral part of the scroll body casting in the silicon

nitride design as presented in Figure 90. A typical

cross section of the scroll body casting is also de-

picted in the same figure.

Power Turbine Heat Shield Design. A heat shield

has been designed and parts fabricated for installa-

tion in the power turbine assembly. The heat shield

is placed between the hot inner backplate and the

metal engine structure to reduce radiant heat transfer

to the metal engine structure. The reduced heat trans-

fer results in cooler running bearings and less heat

rejection to the oil. The heat shield is designed to be
used with either ceramic or metal turbine scroll as-

sembly components and may be optionally included

in or omitted from the turbine assembly without im-

pacting the dimensional stack up of the engine. The

installation of the heat shield as it appears in the

power turbine is shown in Figure 91.

Power Turbine Silicon Carbide Scroll Assembly Static
Component Design Analysis. A two-dimensional (2-D)

finite element thermal and stress analysis has been

completed for the ceramic power turbine scroll,
vanes, inner and outer backplates, and insulator/shim

components. Calculations were made for steady-state

and transient start-up operating conditions using the

finite element model shown in Figure 92. The proper-
ties of the component materials used in the analysis

were 0cSiC for all components except the zirconia
insulator/shim.

Steady-State Operating Condition. Operating
temperature, stress, deflection, and probability of
survival were calculated for the c_SiC static ceramic

power turbine components operating in a steady-

state manner at reference power-train design (RPD)

conditions (gas turbine inlet temperature (TIT) =

1288°C (2350°F), powerTIT = 1138°C (2080°F). The POS

for the four analyzed components are presented in

Table XV. The POS of the outer backplate and the

scroll, at steady-state operating conditions, is at or

near the design reliability goal of POS = 0.999375.
The inner backplate and insulator/shim POS are suf-

ficiently high to be good candidates for experimental
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Figure 89. Comparison of original design SiC power turbine scroll and Kyocera

alternate design 5i3N 4 power turbine scroll.

engine testing, but require further design refinement

or improved material characteristics to meet reliabil-

ity goals.

The results of operating temperature calculations
of the components are shown in Figure 93. The

maximum steady-state temperature occurs in the
scroll at a location near the nozzle vane where the

heat transfer coefficient is relatively high and the heat

loss to ambient is at a minimum. A temperature drop
in excess of 316°C (600°F) occurs across the ZrO 2 in-

sulator/shim component.

The calculated steady-state operating principal

stresses in the ceramic components are presented in

Figure 94. The maximum principal stress in each com-

ponent is tabulated in Table XV. The deflected shape

plot of the components operating at steady-state con-

ditions is depicted in Figure 95. The deflections have

been magnified to indicate how the components

would deflect in operation.

Transient Start-Up Operating Condition. Operat-

ing temperature, stress, deflection, and POS were
calculated for the static ceramic power turbine com-

ponents during an engine start-up cycle. Calculations
were made at 10 sec intervals up to 120 sec. The cycle

simulates a cold (room temperature) engine start-up

during which the gasifier turbine speed and temper-
ature are increased linearly to 83% N1 and 1288°C

(2350°F), respectively, during the first 20 sec and then
held constant at those levels for the remainder of the
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period analyzed. The POS, as a function of time for

the power turbine scroll, inner and outer backplates,

and the insulator/shim, is presented in Figure 96. The

POS of the scroll, inner backplate, and insulator/shim

remain very high during the first 120 sec, while the

POS of the outer backplate decreases to a minimum
value at about 70 sec into the start-up and then in-

reases to near unity as RPD steady-state conditions

re approached. The reduced POS calculated at RPD
eady-state condition for the inner backplate and

nsulator/shim is not experienced during the first 120
ec of the start-up cycle.

The temperature, principal stress, and deflected

hape plots for the static ceramic power turbine com-
ponents at the point of lowest outer backplate POS

i(approximately 70 sec into start-up) are presented in

_igures 97, 98, and 99, respectively. At 70 sec into the

start-up cycles the maximum principal stresses in the

components are:

Component

Scroll/vanes--(SiC)

Outer backplate--(SiC)
Inner backplate--(SiC)

Insulator/shim--(ZrO 2)

Silicon nitride power turbine
scroll body casting

/ .__asting

(_ --_

Scroll body casting cross section

I

Ma,i.umprincipa,stressqmPa(Ib/in. 2)

89.57 (12,990)

38.61 (5600)

13.87 (2011) I

59.01 (8558) TE86-2503

Figure 90. Kyocera alternate design silicon nitride

power turbine scroll body casting.

Table XV.

Probability of survival and maximum principal stress for ceramic

power turbine scroll assembly--steady-state RPD conditions.

Component

Scroll--SiC

Outer backplatemSiC

Inner backplatemSiC

Insulator/shimmZr02

Probability of
survival

0.9991900

0.9999990
0.9958198

0.9935034

Maximum principal
stress--mPa (Iblin. 2)

80.26 (11,640)

31.12 (4513)

42.70 (6192)

94.25 (13,670)
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Figure 91. Power turbine heat shield installation.
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Figure 93. Steady-state (RPD condition) operating

temperatures for SiC ceramics power turbine scroll

assembly.
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Figure 92. Power turbine scroll assembly finite element
model.
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Figure 94. Max principal stress in SiC ceramic power

turbine scroll assembly--steady-state (RPD)
conditions.
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Figure 95. Deflected shape plot for SiC ceramic power
turbine scroll assembly operating at RPD conditions.
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Figure 96. Probability of survival of SiC ceramic power

turbine scroll assembly components as a function of

time during start-up cycle.
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Figure 97. SiC power turbine component temperatures
at 70 sec into transient start-up cycle.
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MPa Ib/in.2

A -41.37 -6000
B -20.68 -3000
C 0 0
D 20.68 3000
E 41.37 6000
F 62.05 9000
G 82.74 12,000
H 103.42 15,000
I 124.11 18,000
Max 126.25 18,310
Min .-43.99 -6380

TE86-2823

The maximum temperature (829°C (1525°F)) at this

point in the start-up cycle is at the leading edge of
the nozzle vane. The temperature drop across the

insulator/shim is approximately 204°C (400°F).

The deflected shape plot, Figure 99, indicates the

same general shape as calculated for steady-state op-

eration. Thermal growth at the 70 sec point is 57% to

70% of that at steady-state conditions, depending on

the component.

Figure 98. Max principal stress in SiC ceramic power

turbine scroll assembly components 70 sec into

transient start-up cycle.

__ TE86-2824

Figure 99. Deflected shape plot for SiC ceramic power

turbine scroll assembly at 70 sec into transient start-up

cycle.
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VI. COMBUSTOR DEVELOPMENT

During this reporting period, combustion de-

velopment efforts were primarily focused on the fol-

lowing items:
• combustor airflow distribution and liner pressure

drop

• combustor proof testing
• alternate fuel (methanol) demonstration

In prior testing, rig measurements indicated that

the pressure drop across the combustor was approx-

imately 40% larger than the design condition. Con-

sequently, tests during this reporting period were ini-

tiated to investigate this discrepancy. Engine develop-

ment was also supported by qualifying combustion

hardware through combustor proof testing. In addi-

tion, a rig demonstration test to evaluate the alterna-

tive fuel capability of the AGT 100 combustion system

was completed with methanol used as the alternate
fuel.

6.1 TEST FACILITY

As reported in the eighth AGT semiannual report,

a combustor rig test section capable of handling the

high temperatures of the RPD cycle has been in use.

This facility, as modified in 1983, duplicates the envi-

ronment expected in the engine--the general flow

path, insulating features, combustor orientation, vari-

able geometry control, and fuel systems-_as closely

as possible. A television camera, positioned to look

through a periscope in the combustor exhaust, is
connected to a television monitor to allow visual ob-

servation of the combustion tests. This arrangement

is beneficial in analyzing the combustion phenomena

during the continual development of the combustor.

Several optical ports have been added to the rig (six

for pyrometers and one for a camera) for viewing the

combustor outer wall during hot firings. A large opti-

cal port allows an infrared camera to view the combus-
tor body axially from planes just below that of the

pilot to that of the combustor exit. Circumferentially,
the view includes the two dilution holes across from

the pilot. This method of observation has removed

the requirement for thermally painting the combus-

tor to determine potential ceramic skin hot spots

caused by imperfections in the fuel spray pattern.

The combustor rig is fitted with a preheater capable

of providing inlet air temperatures up to 1024°C

(1875°F) to permit investigation of engine problems

that have occurred or may potentially occur during

pilot, start, and main nozzle operation at such high

inlet air temperatures.

6.2 TEST RESULTS

6.2.1 Combustor Liner Pressure Loss

Combustor development activity was initiated to

resolve the difference between the design combustor

liner pressure drop and the unexpectedly high pres-

sure drop measurements acquired in 1984. The sus-

pect measurements were obtained from nonreacting

flow experiments in the burner rig (burner assembly

BU16) to determine liner pressure drop as a function

of flow factor and burner variable geometry (BVG)

setting. It was concluded at that time that the mea-

sured Ap/p liner loss was larger than the design

specification. A 5% pressure loss at maximum power

airflow rates with a BVG setting near 15.24 mm (0.6

in.) had been measured, nearly 1.7 times larger than

expected. Even with the BVG set at the maximum

setting (bypass holes fully open), the measured Ap/p

was still nearly 3.5%, or 1.4 times greater than the

design specification.
Nonreacting flow calibrations of combustor liner

pressure drop versus flow rate as measured in the

burner rig are essential to conduct scroll thermal

shock rig tests. The inherent built-in leakage in the

scroll rig requires an accurate calibration to deter-

mine the percentage of airflow into the scroll rig that

actually enters the combustor when it is placed into

the scroll rig. Calibration tests are conducted in the

burner rig because it is leak-free.

The nonreacting flow calibrations were con-
ducted at two inlet air temperatures, ambient and

537°C (1000°F). The relationship between combustor

pressure drop, flow factor, and BVG setting do not

change significantly with temperature as de-

monstrated in Figures 100 and 101.
Combustor rig burner assembly BU19 and BU20

refer to two different Asahi combustor bodies. Burner

BU19 has small slots cut for the BOT thermocouples

at the combustor exit plane while burner BU20 does

not. Burner BU19 is dedicated to the scroll rig and

often referred to as the scroll rig combustor. In all

other aspects the burner assemblies are identical.

Additionally, burner assembly BU20 is the same as-

sembly previously referred to as BU16. Removal and

reinstallation of the burner assemblies change their

build numbers for purposes of identification. Thus,

any difference in the comparison of liner pressure
loss for burner assemblies BU16 and BU20 indicates

that incorrect calibration data were obtained for one

of the builds. Burner assembly BU19 calibration re-
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Figure 101. AGT 100 combustor pressure loss calibration.
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sults are included to serve as a referee combustor

liner to further indicate which set of data, BUt6 or

BU20, has the higher probability of being incorrect.

Finally, it is important to note that no changes in the
instrumentation or procedures to measure the liner

pressure loss occurred between BU16, BUt9, and
BU20.

The ambient temperature data presented in Fig-
ure 100 for BUt9 indicate that the maximum liner

pressure drop was about 3% at a BVG setting of 15.24
mm (0.60 in.) and attained the design value of 2.5%

at larger BVG settings where the combustor would
normally operate under normal steady-state condi-
tions. These measurements are in direct contrast to

the larger pressure loss previously measured in the

burner rig. As a result of these new measurements

burner assembly BUt6, now denoted BU20, was re-

flowed in the burner rig.

The data comparison between BUt9 and BU20 as

presented in Figure 101 indicates that the two liners

have very similar but not identical pressure loss

characteristics. It is not surprising that the scroll rig

liner (BU19) pressure loss data are slightly lower. As
previously stated, this is primarily due to the slots

cut for the BOT thermocouples at the combustor exit

plane and the fact that one of the slots is open (un-
filled) due to an interference fit that occurred be-

tween the thermocouple designed for that slot and

the gasifier scroll. The current measurements ob-

tained in the burner rig for BU19 are compared to

the pressure loss measurements for BU16 in Figure

102. The flow factor, F1, of 0.42 corresponds to
maximum airflow rate at RPD conditions where the

greatest deviation of measurements exists. At a BVG

setting of 13.97 turn (0.55 in.), the deviation between

the pressure drop results is over 60%. Because of the

similarity of BU19 and 20 a direct comparison of BU16

and BU20 pressure loss data is not presented. An
indirect comparison of BU20 and BU16 pressure loss

data can be obtained by comparing the results pre-

sented for each in Figures 101 and 102. The current

values for liner pressure loss are clearly lower, even

though the same ceramic liner, radial swirler assem-

bly, and centerbody/axial swirler assembly (BU16 and

20) were used. It can only be concluded that the 1984
cold flow test data, denoted BU16, are in error, most

probably due to an instrumentation leak that was not
detected.

As a result of these recent comparisons, liner

pressure loss has been determined to be no larger

than 3.75% and has approximately the design value

of 2.5% at higher BVG settings. Further, the variation
between liners and their different radial swirler and

centerbody/axial swirler configurations is not signifi-
cant.

6.2.2 Combustor Proof Testing

Ceramic combustor hardware received from the

various manufacturing vendors is assembled and

tested under simulated engine conditions in the com-

bustor rig before being installed in an engine build.
The new combustor hardware is exposed to condi-

tions similar to a typical engine lightoff and to full

power operation. After testing, the combustors are

carefully examined for damage and released to sup-

port AGT100 engine activity if no flaws are detected.

During this reporting period, two combustors

successfully completed the proof test evaluation pro-

cess. An Asahi combustor was subjected to the estab-

lished proof test procedures that have proven to be

a satisfactory evaluation of combustor integrity; also,

a Sohio combustor was proof tested as part of the
alternate fuel demonstration described in the next

section. Limitations of the main fuel nozzle flow using

methanol reduced the aerodynamic loading imposed

upon the CBO combustor in the full power phase of

the test. The test was, however, judged adequate be-

cause the temperature rise across the combustor

simulated full power conditions and the burning time

exceeded typical proof test requirements. In fact, the

duration of the alternate fuel test was approximately

triple the average proof test duration time.

6.2.3 Alternate Fuel Demonstration

The objective of this test was to demonstrate the
alternate fuel capability of the AGT 100 combustion

system. Traditionally, DF-2 and ]P-5 have been used
as fuels in the AGT 100 program. Methanol was

selected as an alternate fuel for testing because of

its relative low cost compared to DF-2, potential avail-

ability, and its low exhaust emission potential.

The AGT 100 combustion system consists of three

individual fuel nozzles used during various engine

operating regimes. The pilot nozzle acts as an initial

ignition source at engine lightoff and as a sustainer

source during main nozzle operation at low BIT and/

or at operating conditions outside the lean-blowout

limit. After ignition, the start nozzle is used to raise

the combustor outlet temperature. Since the AGT 100

is a regenerative engine, the burner inlet temperature
rises in unison. After the inlet temperature has risen

sufficiently, the fuel flow transits from the start to the
main nozzle that then sustains the engine operation.

Methanol was successfully used as the primary fuel

in all three of these fuel delivery systems.

The pilot torch was lit and a pilot fuel flow rate

of 0.95 kg/s (2.1 Ib/sec) produced an ignition source

that ignited the start nozzle. Inlet temperature and
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Figure 102. ACT 100 combustor pressure loss calibration comparison of BU16 (old) and BU19 (new) data.

pressure to the combustor were 315°C (600°F), and

0.18 kPa absolute (26 Ib/in. 2 absolute) at ignition, re-

spectively. The burner outlet temperature rose to

648°C (1200°F) with a corresponding start nozzle fuel

flow of 58.5 kg/h (21.5 Ib/hr). Optimal start nozzle

combustion efficiency (98.4%) was achieved at a BVG
setting of 5.08 mm (0.20 in).

Methanol employment as the primary fuel for the

main nozzle is flow rate limited with the existing

hardware because the energy content per pound of
methanol is roughly half that of DF-2 (heating value

CH3OH = 19.6 MJ/kg [8,580 Btu/Ib], heating value

DF-2 = 42.8 MJ/kg [18,400 Btu/Ib]). Therefore, the
quantity of fuel required to achieve a fixed tempera-

ture rise in the combustor using methanol is about
twice the DF-2 flow rate. The main fuel nozzle was

designed for DF-2 operation and does not have the

capability to deliver twice that flow rate. Con-

sequently, the RPD full-power engine airflow could

not be flowed in the combustor rig and still achieve

the desired high temperature rise across the burner.

Thus, the alternate fuel demonstration test plan called

for an airflow rate that corresponded to the maximum

airflow rate of the current test-bed engine (approxi-
mately 0.26 kWs [0.58 Ibm/sec]).

The main nozzle test was conducted with the

burner inlet temperature set at 815°C (1500°F) and a

420 kPa absolute (61 Ib/in.2 absolute) burner inlet pres-

sure. Airflow was fixed at 0.26 kg/s (0.58 Ib/sec).
Methanol was introduced into the main nozzle to

achieve a combustor fuel/air ratio of 0.012. With the

BVG set to 12.7 mm (0.50 in.), chemical sampling re-

vealed high hydrocarbon and CO emissions (UHC =

3.07 parts/million, CO = 635 parts/million)with rela-

tively poor combustion efficiency (96.7%).

The emission data indicated that the optimum

fuel/air mixture was not being introduced into the

combustor. Therefore, the BVG was changed in 2.54

mm (0.10 in.) steps from 12.7 to 7.62 mm (0.50 to 0.30
in.). At 7.62 mm (0.30 in.) BVG position, emissions

were dramatically reduced and combustion efficiency
rose to 99.96% (UHC = 0.47 parts/million, CO = 6.57

parts/million). The outlet temperature from the com-
bust0r was recorded as 948°C (1738°F).

The burner outlet temperature was raised to

1038°C (1900°F) by increasing the fuel flow to achieve

a 0.0197 fuel/air ratio. A flickering flame in the vicinity

of the bypass holes was observed from the periscope

viewing the combustor axially looking upstream from

the combustor exit. The small flame appeared to origi-
nate at the stress relief crack in the combustor dome

that extends radially from the bypass holes to the

dome inner diameter. The flame is most likely a small
diffusion flame that is stabilized in the local recircu-
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lation region downstream of the crack and created 
by a locally rich fuel mixture. Corrective action was 
taken by moving the BVG so that more air was intro- 
duced into the upstream portion of the combustor. 
The small flame disappeared at a BVG setting of 12.7 
mm (0.50 in.). This operation is  also typical of DF-2 
or JP-5 combustion. 

Assessment of the combustor performance relied 
upon visual inspection and chemical sampling. Visual 
observation was possible because chemical reaction 
between methanol and air produces a translucent 
reaction zone, as shown in Figure 103. In terms of 
visual assessment of combustor performance, 
methanol is an ideal fuel. 

The effects of combustor airflow distribution 
upon emissions and, hence, combustion efficiency, 
were examined by moving the BVG mechanism in 
2.54 mm (0.10 in.) increments up to a BVG position 
of 20.32 rnm (0.80 in.). The results of this survey are 
plotted in Figure 104 along with previous DF-2/JP-5 
emission experience. The CO and NOx emission 
levels from methanol are nearly an order of mag- 
nitude lower than those from DF-2 at similar burner 
inlet temperatures. Movement along an inlet temper- 
ature curve represents movement of the BVG 
mechanism. Optimal combustion efficiency for 

methanol (99.97%) occurred at a BVG setting of 12.7 
mm (0.50 in.), the lower point on the methanol emis- 
sion curve of Figure 104. 

Main nozzle operation with methanol fuel re- 
quired different optimal BVG settings than would be 
predicted from prior DF-2/JP-5 experience. This is not 
unexpected as the physical properties of methanol 
are quite different from the other hydrocarbon-based 
fuels. In fact, the atmospheric boiling point of 
methanol is  near 66°C (150"F), at least half the normal 
boiling point of DF-2. The main nozzle vaporizes fuel 
distributed along a film surface placed in a prevapori- 
zation chamber located upstream of the primary reac- 
tion zone. A change in the physical properties of the 
fuel alters the evaporation rate at the film surface, 
and the standard operating procedures derived from 
DF-2/JP-5 testing need to be changed for methanol. 

The methanol results are encouraging and 
suggest that the current main nozzle configuration 
i s  capable of handling fuels with a wide variation in 
physical properties through alteration of the burner 
variable geometry. Methanol combustor operation 
under both maximum airflow and temperature rise 
was not examined because of the current main nozzle 
tube size limitation. However, the successful results 
of this test imply that the combustor could be oper- 
ated at full power conditions with hardware changes. 

Figure 103. ACT 100 methanol fuel combustion. 
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Figure 104. Comparison of CO-NOx emissions from

methanol and diesel (jet) fuel combustion.

Overall, results of the alternate fuel test indicate

that the AGT 100 combustion system is capable of

methanol fuel operation. The start and main nozzles

were ignited easily, and main nozzle operation was
successful with no lean blowout or rich flashback

problems. Chemical sampling revealed that main noz-
zle emissions with methanol fuel were an order of

magnitude below DF-2 which, in turn, were about an

order of magnitude below a typical diffusion flame

combustor. Therefore, the potential for creating an

ultra-low emission gas turbine burning prevaporized

methanol, as in the AGT 100 system, is very encourag-

ing.

'. _;
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VII. REGENERATOR DEVELOPMENT 

Design and development of the regenerator disk 
and seals included the following activities during 
1985 : 

seals from new seal vendor evaluated in leaf seal 
rig test fixture 
seal rim preload tests conducted to evaluate 
patented feature to minimize seal distortion 
hot regenerator rig seal test of seals from new seal 
vendor 
characterization of the effects of permeability on 
radial and tangential strength of AS regenerator ma- 
trix material at 1100°C (2012°F) 
characterization of engine tested regenerator ma- 
trix material to determine effect of thermal cycling 
on radial strength 
strength as a function of thermal expansion require- 
ments determined for advanced regenerator matrix 
materials for three engine operating conditions 
regenerator test rig repaired and recalibrated fol- 
lowing test fixture failure 

7.1 DESIGN A N D  MATERIAL DEVELOPMENT 
7.1.1. Regenerator Seal Tests 

Inboard Seals 

Leaf R ig  Tests. Three hot (in board) seals were 
tested for leaf leakage. These seals were the first pro- 
duced by a new vendor and were of poor quality. The 
best of these three seals had leaf leakage of 0.013 
kg/sec at 345 kPa-gage (0.028 Ib/sec at 50 Ib/in.2-gage). 
Previous seals have shown the following leakage 
rates: 

0.013 kg/sec max at 345 kPa-gage (0.028 Ib/sec max 

0.009 kg/sec average at 345 kPa-gage (0.020 Ib/sec 

0.006 kg/sec min at 345 kPa-gage (0.014 Ib/sec min 

Sealing the platform-to-rim joint with wax pro- 
duced 0.009 kg/sec (0.020 Ib/sec) leakage. This de- 
monstrated that most of the excess leakage was from 
a poor joint at that location. When 12.7 mm (1/2 in.) 
long rubber O-ring segments were installed beneath 
the leaf joints to act as helper springs, leakage was 
reduced to 0.008 kg/sec (0.017 Ib/sec); however, metal 
helper springs inserted at the same locations, which 
were necessary for hot operation, could only produce 

at 50 Ib/in.2-gage) 

average at 50 Ib/in.2-gage) 

at 50 I b/i n .*-gage) 

the rubber inserts demonstrates the need for better 
control of the metal load application. 

Allison has completed a quality control program 
with the vendor on regenerator seals for the 404 Pa- 
triot engine that will provide improvement in future 
AGT 100 seals. 

Seal Rim Preload Tests. Allison hot seal rim seg- 
ments are preloaded by expanding them radially for 
joining with the crossarm.This patented feature coun- 
teracts thermal effects causing the rim segments to 
cone. These preloads are checked before hot opera- 
tion and again afterward to confirm proper preload. 
Preloads on three short rim segments measured 13.6 
to 14.5 kg (30 to 32 Ib) and on three long rim segments 
measured 4.5 to 8.6 kg (IO to 19 Ib). A recheck of rim 
preloads following several thermal cycles in the hot 
regenerator rig showed little change in preload. This 
showed that proper initial preloads have been estab- 
lished. 

Hot Regenerator - R ig  Seal Tests. The best of the 
three new hot seals was tested briefly in the hot re- 
generator rig. It suffered disengagement between the 
short rim segment and the crossarm due to rounded 
corners at the step joint. This resulted in concentrated 
wear on the corner of the rim segment, as shown by 
Fieure 105. The regenerator disk was erooved as a 

0.011 kg/sec (01024 Ib/sec) leakage. This failure of the 
metal helper springs to approach the leakage rate of 

-Figure 705. Regeneratorsealshowingdisplacementof 
rim segment and worn corner. 
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result. Keepers were installed on the three new seals

to prevent this disengagement. After modification,
the seal demonstrated 15% leakage at 100% speed

and 14% at 55% speed. Future seals to be made by

this vendor employing new quality controls are ex-

3ected to provide 6% to 8% leakage.

Seals that had exhibited 33% leakage at 55% speed

and 12% at 80% speed in the engine were shown to

have 18% and 11% at similar conditions in the rig.
The hot seal had a 7.6 mm (0.3 in.) bow in the crossarm

and was believed to be not blowing down under the

lower differential pressure conditions existing at low

speed. Higher leakage in the engine was attributed

to more adverse thermal gradients. An undistorted

seal would be expected to produce 6% to 8% leakage

in both rig and engine at all speeds.

7.1.2. Regenerator Disk

Characterization of Regenerator Matrix Strength.

The objective during the past year was to expand the

data base for the wrapped 1100°C (2012°F) alumino-sili-

cate (AS) matrix to include the radial modulus of rup-
ture (MOR, Yr), i.e., force per unit area. The vast

maJority of regenerator disk failures in the test rigs

and engines occurred as circumferential cracks that
involve tensile failure in the radial direction. Data

i from several sources show that the radial MOR is

approximately one-third the tangential MOR. Work

reported previously in this program has shown that

the radial strength is dependent on the fracture plane

wall thickness, the channel skew angle, and the cyclic
thermal exposure (CTE) of the matrix.

Investigation during 1985 has shown that porosity
of the matrix material also has an effect on the

strength of the disk material. (This effect had been

observed in engine disk tests where a low leak rate

through the matrix walls is an acceptance test. The

thigh leak rate disks showed a high rate of early fail-

ure). Comparison of the disk leak rate acceptance

test data, which evaluates the tangential permeation
rate, indicated that the leak rate data were about ten

times larger than the radial permeation rate obtained

in the laboratory for correlation with the tangential

MOR. Accordingly, tangential permeation rates were

measured to compare with the radial MOR values. It

is recognized that the effect of the matrix structural

geometry, which is quite different in the two direc-

tions, cannot be easily separated from the porosity/
permeation effect.

Two disks were tested; disk 5 (GM16-04), which

was exposed to an engine during the Ceramic Appli-

cations in Turbine Engines (CATE) program (1422
hours, 7800 cycles) and disk 7, a new untested disk.

Samples from disk 5 were used to correlate the radial

MOR (Yr) with the effect of CTE (change in MOR due
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Figure 106. Power curve regression of radial modulus

of rupture (MOR) on axial position.

to reduction of the amplitude of the temperature
fluctuation with distance from the hot face). (See Fi-

gure 106). The key elements shown in the figure are
the very low radial MOR, the reduced hot face

strength due to CTE (engine cycles), and the drop off
in strength from 4.5 cm (1.75 in.) to 7cm (2.76 in.)
due to channel skewness. The mean wall thickness

of 0.0475 mm (1.875 mils) and lower than average
skew angle of these test samples do not account for

the low radial MOR values. A complete set of

strength, wall thickness, skew angle, and porosity
data in both tangential and radial directions was
needed.

The second disk tested, disk 7, was selected from

inventory and was in as-received condition. A suffi-

cient number of samples to obtain a complete set of

data comparing tangential and radial properties was

obtained from disk 7. The results show the tangential

MOR of disk 7 (Yt = 2.34 MPa [341 Ib/in.2]) to be very

close to the mean strength (mean Yt = 2.32 MPa [337
Ib/in.2]) of the seven 1100°C (2012°F) AS disks tested

during this program. The range of tangential MOR
for the seven tested disks was 1.85 MPa (268 Ib/in. 2)

to 2.77 MPa (402 Ib/in.2). Thus the strength characteris-

tics of disk 7 should be viewed as typical of the middle
range of as-received wrapped 1100°C (2012°F) AS disks.
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Figure 107. Comparison of tangential (Yt) and radial

(Yr) modulus of rupture.

In Figure 107, a comparison of tangential and ra-

dial MOR properties is shown, which is typical of

those run for disk 7. The plots show the difference

in strength as a function of the wall thickness at a

disk radius of approximately 25.4 cm (10.0 in.) to be
about 1.79 MPa (260 Ib/in.2). The relatively small effect

of channel skew angle--obtained by multiple regres-

sion analysis--is shown by dashed bounds on either
side of the tangential strength regression line. The

variation in Yt and Yr due to wall thickness, over a

very similar range of Xw, is similar in trend. A similar

plot for samples taken at a radius of 19.1 cm (7.52 in.)

confirmed the data shown in Figure 107 and elimi-
nated disk radius as a variable that must be consid-

ered in identifying the large difference in strength
observed.

Two sets of gas permeation data were taken to

compare the radial and tangential rates. One set of

data is for samples taken from the 25.4 cm (10.0 in.)
radius and the other set from the 19.1 cm (7.52 in.)

radius. Table XVI compares data at the two disk radii

for radial and tangential permeation rates for a fixed
Ap of 138 kPa (20 Ib/in.2).

The difference in permeation rates for the two

axes is very large and in the direction that will produce
the observed difference in strength. Further, the dif-

ference in permeation rates shown is not believed to
be a function of wall thickness since the averages

and ranges of wall thickness are quite comparable,
as shown in Figure 107. As a consequence, it is be-

lieved that the permeability is caused by a corre-

sponding difference in porosity, which produces a

sharp reduction in strength in ceramic materials. Suf-
ficient data are not available to relate MOR to permea-

bility for this disk.
The process steps involved in fabricating the

ceramic channels in the wrapped AS matrix disk are

different for the separator walls (flat strips) and the

sinusoidal (corrugated side walls) parts of the chan-
nels, and are considered to be a probable cause for

the experimentally demonstrated difference in poros-

ity.

This information will be of considerable practical

importance in the near future when the extruded

1100°C (2012°F) AS matrix is made available by CGW.

In the extruded matrix, the separator strips and side

walls should be identical in processing and, having

been formed under high pressure rather than solvent

deposited, much lower in porosity than the wrapped
matrix.

Allison has ordered extruded AS matrix samples

from Corning for evaluation. The following are poten-

tial advantages for an extruded matrix:

• potentially less strength loss from temperature

transients due to preferential grain alignment

minimizing thermal stress caused by anisotropic ex-

pansion

• much greater strength due to improved geometry
• much greater strength due to less porosity due to

compaction, grain alignment, and elimination of

paper carrier burnout

• greater strength due to elimination of thin walls

due to wicking in wrap process

• greater strength due to lower incidence of wall dis-
tortion

• ultimate lower cost especially when a one-piece ex-
trusion is achieved

• higher effectiveness and lower pressure drop due
to consistency in hole size

Overall, the conclusions reached from this work
are as follows:

• Permeability and the correlate porosity are a factor
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Sample

Permeation rate--kg/sec mm2/mm

(Ib/sec in.2/in.)

Mean Xp x 10s

Range Xpmax x 10s

Xpmin x 10s

Table XVI.

Comparison of data for radial and tangential permeation rates.

25.4 cm (10 in.) radius 19.1 cm (7.52 in.) radius

radial tangential radial tangential

0.00004 (0.0024) 0.0055 (0.3085) 0.00029 (0.0162) 0.00496 (0.2776)

0.0001 (0.0055) 0.0072 (0.4006) 0.00044 (0.0245) 0.0060 (0.3354)

0.00003 (0.0015) 0.0045 (0.2516) 0.0001 (0.0054) 0.00329 (0.1842)

of 17 or more times higher in the tangential direction
than in the radial direction for wrapped AS matrix.

• Permeability in the tangential direction involves

only corrugated walls.
• Permeability in the radial direction involves the

same number of corrugated walls as in the tangen-

tial direction plus an equal number of flat walls.

Therefore, it can be concluded that corrugated

walls are more permeable and weaker than flat walls.

The effects of matrix geometry and permeability on

strength have not been separated.

The laboratory tangential permeability data agree

with figures calculated from leak rate acceptance

checks and support rejection of disks with high leak

rates for reasons of strength.

Regenerator Disk Stress Study. A regenerator disk

stress study was done to predict required disk

strength versus thermal expansion for future ceramic

materials that will be required to withstand expected
transient temperature peaks. Currently used AS mate-

rial has adequate strength to withstand expected
steady-state temperatures but cannot withstand an

adequate number of transient temperature peaks and
retain adequate strength. New candidate materials,

which offer higher temperature capability, have

higher thermal expansion that requires higher

strength to resist resulting thermal stress. The obJec-

tive of this study was to define required strength

versus thermal expansion as a guide for material de-

velopment. The effects of various engine operating

conditions, nonlinear thermal expansion, and change
in elastic modulus were also considered.

Figures 108 through 111 show maximum radial

and tangential tensile and compressive stresses for

constant coefficients of thermal expansion and for a

variable coefficient representing a particular candi-

date material. The variable and constant expansion

characteristics used in the study are shown in Figure

112. The stresses shown in Figures 108 through 111

are for the following engine conditions:

Regenerator inlet Compression

Power temperatu re ratio

100% 788°C (1450°F) 9:1

100% 788°C (1450°F) 4:1

Idle 1093°C (2000°F) 2:1

With this range of conditions, estimates could be

made of the strength required for specific conditions.

The highest stress is 3.9 MPa (565 Ib/in. 2) tangential

tension (Figure 110) produced at the idle, high temper-
ature condition with either constant or variable coef-

ficients of.expansion. This stress is 99% thermal and

only 1% pressure related. Allowing a factor of two
for material variation, a new material with coefficient

of expansion of 43.75 x 10"6 mm/mm--°C (1.7225 x 10 "6

in./in.--°F) would be required to have a tangential

tensile strength of 7.79 MPa (1130 Ib/in.2). The predic-

tions of strength for extruded material indicate this

is an achievable goal. Stress at the idle condition was

found to change in direct proportion to modulus of

elasticity. Complete results of this study are contained
in Allison TDR AD.0440-037.

7.2 RIG DEVELOPMENT TESTING

Extensive repairs have been made to the re-

generator rig following a failure during testing. Rig
inspection following failure of a ceramic flow

straightener revealed burn through, cracking, and

warpage of the inner liner and combustor, which re-

quired repair. The ceramic flow straightener had

melted and collapsed. Debris from the straightener
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Figure 708. Radial tensile stress versus coefficient of thermal expansion.

damaged the face of the regenerator test disk making
it unsuitable for further testing. The failure was re-

vealed by a 35% increase in on-line indicated seal

leakage. All of the damage may have resulted from

a malfunctioning pressure regulating valve that cut

airflow abruptly several times. It is planned to reduce

maximum regenerator inlet temperature from 982 to

954°C (1800 to 1750°F) to improve durability and ease

control The rig is being leak checked and calibrated
before resuming testing.
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VIII. SECONDARY SYSTEMS

i Progress during 1985 has been made in the follow-

iing areas:
• power transfer clutch

• oil pump and regulating valve

8.1 GEARBOX

8.1.1 Power Transfer Clutch

Limited engine clutch testing has continued dur-
ing this reporting period. Clutch testing was

reinstated after installation of a redesigned engine

oil pump that increased the supply pressure to the

engine oil system. Testing of engine S/N 2 BU13 was

performed during this period to evaluate control/en-

gine response during clutch engagement and disen-

gagement. Shaft speed differences between the two

elements of the clutch were set prior to clutch activa-

tion; the shaft speed differences ranged from 3% to

20%. A typical engagement/disengagement cycle is

presented in Figures 113 and 114. During this test the

80 -- 552 - 1093 -- 2000

70 -- 483 - 7fl 1038 -- 1900

Gasifier turbine inlet temperature

60 -- 414 - 60 982 -- 1800

Gasifier turbine
speed Clutch apply pressure

50 --_345 - 5(_ 927 -- 1700
o_
¢0 0o. ou-
__ o_ Power turbine o
t I speed I I

4o- 276- 4o 871-_=-1600
U) L_

E E

3O --_ 210 - 30 816 -- 1500

20 -- 138 - 2G 760 -- 1400

10 -- 69 - 10 704 -- 1300

0 -- 0 - 0 -- 1200
0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Elapsed time wsec

TE86-2855

Figure 113. Speed, clutch pressure, and turbine inlet temperature as a func_on of Hme dunng power transfer

clutch engagement.
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Figure 114. Speed, clutch pressure, and turbine inlet temperature as a function of time during power transfer

clutch disengagement.

dynamometer was regulated to constant current, i.e.,
constant load. All testing was successful.

During the clutch testing the clutch was operated

in the slipping mode for about 2.1 hr. This condition

is the major mode of operation intended for the

clutch in vehicular application. The test was per-

formed to observe wear. Post-test teardown inspec-
tion revealed the clutch to be in excellent condition.

8.1.2 Oil Pump and Regulating Valve

Engine testing has been performed with an oil

pump in which the pressure relief valve section was

redesigned to both prevent valve sticking and to de-
liver higher oil pressure. Test results indicate the oil

pump modifications have been successful. No valve

sticking has been encountered and system oil pres-
sure has increased from 482 kPa (70 Ib/in. 2) to 689 kPa

(100 Ib/in.2).

8.2 BEARINGS AND SHAFT SEALS

8.2.2 Shaft (Carbon) Seals

The air-buffered, carbon, floating ring shaft seal

behind the gasifier turbine continued to experience

94



oxidation failures. Data indicate that the air buffer

pressure is less than that in the turbine backface al-

lowing hot gas to enter the seal and replace the buffer

air designed to protect it. Flow capacity of the present

i buffer air system has been determined to be in-

i adequate to stop this hot gas backflow because of
the large seal clearances that are being employed

during the shaft whip investigation. The air supply

path is being reexamined to determine the potential
to increase the flow capacity. Current carbon used in
the seal is rated for 482°C (900°F). Carbon has been

selected with 593°C (1100°F) rating and new seals with
the more oxidation resistant carbon will be ordered.
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IX. MATERIALS DEVELOPMENT

Materials development during this reporting

period included effort on zircon thermal barrier ma-
terial, silicon carbide components (gasifier and

power turbine rotors and scroll assemblies), silicon

nitride components (gasifier and power turbine
rotors and scroll assemblies), and fiber-reinforced

glass ceramics.

9.1 THERMAL BARRIER DEVELOPMENT

Material development for thermal barrier applica-
tions has concentrated on zircon. The effort has in-

cluded property consistency studies, material qualifi-
cation, process development, and advanced material

development. During 1985, effort was directed

primarily toward the last three items.

9.1.1 Material Qualification

Material qualification entails checking a new lot

of spray-dried granules to see if it has the same charac-

ter as previous lots. During 1985, 488 grams (1.08 Ib)
of a new batch (lot 4) were produced and qualified

for thermal barrier application. The material is ZSA-

100 zircon granules made at the AC Spark Plug Divi-

sion of General Motors Corporation.
This material is considered to be the baseline or

standard to which other advanced materials (or pro-

cesses to produce zircon materials) are compared. A

considerable study has been undertaken during past

reporting periods to address the consistency (and
characterize the variability) of this material.

Material qualification involves certain criteria;
one of these is the thermal expansion characteristic

of the material. It has been specified that the thermal

expansion for the zircon material must lie between

the upper and lower limits of the thermal expansion
observed for sintered silicon carbide. As is evident

in Figure 115, both lots 3 and 4 satisfy this criterion.

Another criterion is strength. Material qualification

requires that the mean modulus of rupture (MOR)
of subsequent (or new) lots should not be less than

the mean MOR of a previously qualified lot (lot 3 in

this case) by more than one standard deviation, 245

MPa (3.499 x 103 Ib/in. 2) for this example. Strength
data for lots 3 and 4 are listed in Table XVII.

The strength of lot 4 was within the specified
limits; however, the material had surface inclusions

high in zirconium and titanium oxide and its percent
shrinkage did not fall within the limits presented in

Figure 116. Nevertheless, the lot was sufficiently uni-

form to pass qualification requirements.

During 1986 more of this standard material will

be prepared and checked for use in thermal barrier

applications.

9.1.2 Process Development

Strength studies have been addressed to op-
timize MOR in zircon thermal barriers. If large voids

on the order of 100 microns (shown in Figure 117) are

present, the material is considered to be defective

and material strength is greatly reduced. Such voids

are usually attributed to entrapped air in the fired
microstructure. High pressure processes have been

developed to alleviate this problem.
It has also been observed that the spray-dried

granules are frequently hollow or collapsed. Thus,

an effort was initiated to reduce the frequency of this

o_
I

e-
.o
c/)
e-

ca.
x
Od

0.200

0.100

m

Lot #

• 1
a 3

o _iC (FX 34291) //o

j

I I I I I
100 200 300 400 500

Temperature--°C

I I I I I
212 392 572 752 932

Temperature--°F

TE86-2844

Figure 115. Thermal expansion of various zircon
batches as compared to silicon carbide.
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Table XVll.

Strength data for lots 3 and 4.

Mean MOR--MPa

Lo___tt (Ib/in. 2)

3 38.769 (267.27 x 103)

4 35.697 (246.09 x 103)

Standard deviation--MPa No. of

(Ib/in. 2) bars

3.499 (24.12 x 103) 24

4.593 (31.66 x 103) 7

type of defect. A study was conducted to determine

if lower water content in the spray slurry would im-

)rove the granule character. Granules were prepared
from slurries with 67.15, 62.06, and 60.68% water and

subsequently calcined. The granules were mounted
and polished to permit examination of their interior.

Results of the study indicated that the lower water

content contributed to a reduction of the frequency
of collapsed and hollow granules (Figure 118). How-

ever, occasional large hollow voids (upper right
corner of Figure 118C) were still present even in those

18

17

1E-

1.=
10

I
5.5

Y = 0.322 X + 13.03

+
Granule Donuts per

lot no. sample

+ 1 4 and 6
• 2 11

O 3 5 and 5

I I
11 12

Specific surface area--m2/g

I I

6.0 6.5

Specific surface area--yd/Ibm X 103

I
13

I
7.0

TE86-2845

Figure 116. Shrinkage correlation with specific surface
area.

samples prepared with the lowest water content.

Scanning electron microscope results also confirmed

this result. Additional analysis is planned to resolve
this problem.

9.1.3 Advanced Material Development

Research in advanced materials addresses im-

proved strength, thermal expansion matching, and

fabrication potential of new compositions. Results to

date have indicated that zircon purity can affect repro-

ducibility of thermal expansion. Both in-house and

commercial sources to obtain high purity raw materi-

als are being explored. Fully dense materials have
been made from two different sources of raw material

in an attempt to make a high purity fired final product.

To date, the purity level has been increased, but a

final product containing virtually pure zircon has not

yet been obtained.

A fine grained zircon was obtained from M&T

Chemicals, Rahway, NJ. A fired density of 4.216 g/cm 3

(263.2 Ib/ft 3) was achieved; this is effectively the same

100/_.m

TE86_284G

Figure 117. Typical defect in fired microstructure.
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as the present raw zircon material fired without added
aluminum oxide. The M&T zircon does not appear

to be an improvement over the present raw material.

Ceracryl (aGeneral Motors trademark) zirconium
oxide was added to the raw material in an in-house

investigation to react in situ and produce pure, dense
zircon. A maximum density of 4.467 g/cm 3 (278.9 Ib/ft 3)

was obtained, a yield which equates to 97% of the

theoretical density for pure zircon. This is the highest

purity ever obtained using an in situ reaction ap-

proach. Future MOR studies will indicate whether
this material exhibits substantial property improve-

ments over the present standard material.

9.2 SILICON CARBIDE COMPONENT DE-
VELOPMENT

9.2.1 Gasifier Turbine Rotor

Process Development. The key features involved

in the process development of _SiC material gasifier
turbine rotors are summarized in Table XVlII. Particu-

lar emphasis was allocated to groups 8C and 8D that

feature shaft end injection molding during this report-

ing period. Shaft end injection molding was success-

ful in eliminating backface region molding flaws ob-

served in prior processing. This resulted in a process

yield (defined as green form to rotors suitable for

spin proof test) of 52% as compared to only 11% for

prior processing techniques. This substantially re-

duced the data scatter usually present from spin test
results.

Evaluation Summary. The evaluation of 162 SiC

rotors received during CY 1985 is summarized in Table

XlX. The overall quality level (NDE) of the rotors is
summarized as follows:

Quality level (surface) Number

A 90

B 52

C 2O

162

where A quality is free of visual or fluorescent

penetrant inspection (FPI) indications, B quality
rotors exhibit blendable indications, and C quality is

rejected due to the presence of permanent

(nonblendable) indications. Spin test and disposition

of rotors number 105 through 162 (Table XlX) are pend-

ing at the date of this report.

A, 67,15%

200 p.m

........ 200 p.m

B, 62.06%

200 p.m

C, 60.68%
TE86-2847

Figure 118. Granule interiors at three water contents.
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No.

PIN molded

Time period--through 1984

Group I

100395

al shaft)

P
Group2

AA100932
I

(round shaft)

Group 3A

Group 3B

42

90

110

16

138

15

20

33

15

15

20

100

100

76

100

100

Group4 125

GroupS*

AA101151

(green body

machining of

backface,

Baud curve)

212

Table XVIII.

Process development, gasifier turbines.

Sohio As-molded Sintered rotors

SIN Borbetter Quantity/Date

Actual

486 to 527 14 9 613183

528 to 617 21 20 618

618 to 727 33 29 7118

728 to 743 0

744 to 881 16 12 7129

882 to 896 7 6 815

897 to 916 5 4 8122

917 to 949 13 10 9113

950 to 964 10 8 9130

965 to 979 7

980to 999 8 12 11/8

1000 to 1099 17 9 11121

1100 to 1199 29 28

1200 to 1275 0 0 1/19/84

1276 to 1375 27 27 1/25

1376 to 1575 64

233 received as of 6130184

1576 to 1700 8

20 4127

20 5118

19 6/8

8 8131

1701 to 1912 93 9

13

8117

8/27

Condition

Reed + microprocessor

Reed + microprocessor

Reed (65.09 mm [2.5625 in.] shot)

Reed (66.68 mm [2.6250 in.] shot)

SB-1, N-1 experimental

SB-1, N-1 (15)

SB-2, N-2 (20--same as 15)

SB-2, N-2 experimental

SB-2, N-2 (15)

SB-3, N-1 experimental

SB-3, N-1 (20)

SB-2, N-2 (100) without heat

SB-2, N-2 (100) with heat

Variable conditions

SB-2, N-2 (100) with heat

SB-2, N-2 (100)

with heat,

invariant conditions

Reed + microprocessor butwith

round shaft (see Group 1)

SB-2, N-2 with heat.

Adjusted parameters but

invariant from 1783 on.

Extra stock, backface,

and shaft
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P/N

Group6*

AA101155

No.

molded

42

Group 7*

AA100932

24

Group 8A* 60

AA101156

Group8B* 10

AA101156

Time period--1985

Group 8C-1 96
AA101242

GroupSD-1 75
AA101243

Group 8D-2 52
AA101243

Group 8C-2 78
AA101242

Sohio

S/N

Table XVIII (cont).

As-molded Sintered rotors

Borbetter Quantity/Date

1913 to 1954 20

1955 to 1978 23

1979 to 2038 49

10 None

delivered

(experimental)

6 None

delivered

(experimental)

12 None

delivered

(experimental)

2039 to 2048 8 6 None

delivered

(experimental)

263 received as of 31 December 1984

2049 to 2145 66 15 6/6

19 7/10

11 8/28

2146 to 2220 50 16 8/28

17 9/30

2221 to 2272 48

2273to2350 32

5 2/26

12 3/4

10 3/29

6 4/2

4 6/6

4 7/10

6

21

2

412

4/26

6/6

Condition

KX02 material, ECR tool

(oversize), high polymer

mix.

Experimental compound

based on blade matrix

High mold yield.

Shaft end injection,

extra stock base and

shaft, invariant

conditions.

Shaft end injection,

extra stock nose,

invariant conditions.

Shaft end injection, extra
stock nose, base and shaft,

invariant conditions, green
machine Baud curve backface

Shaft end injection, experi-
mental mix, extra stock

nose, base and shaft, three

conditions, green machine
Baud curve backface.

Shaft end injection, experi-
mental mix, extra stock

nose, backface and shaft,

green machine Baud curve
backface, invariant conditions.

Shaft end injection, extra
stock nose, backface and

shaft green machine Baud
curve backface, four conditions.
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Table XVIII (cont).

No. Sohio As-molded Sintered rotors

PIN molded SIN Borbetter Quantity/Date

Group 5B 63 2351 to 2413 15 6/85
AAlo1151

162 received in 1985

425 received to date (12-31-1985)

Condition

Extra stock base and

shaft--replicate Group 5.

*Damaged compoundermmetallic contamination of injection mold compound

Code:

Reed--Type of compounder

SB-1, -2, -3--Three sizes for the injection mold sprue busing
N-l, -2--Two sizes for the injection mold nozzle

Spin Test. A suspended item (proof and burst)

Weibull treatment of the Group 8 spin tests is shown

in Figure 119. The data are for 24 successful spin proof

tests and 33 burst tests of the total group of 85 rotors
suitable for spin. The balance (28) will be tested dur-

ing the first quarter of 1986.
A cumulative probability of failure as a function

of spin speed is presented in Figure 119. The success-

fully proofed rotors are flagged by an arrow pointing

to the right (higher speed range). The data indicate

an average burst speed of 115% N1 and a Weibull
modulus (scatter) of 12. Calculations indicate that an

average MOR bar strength in the 310 MPa (45 x 103

Ib/in.2) to 345 MPa (50 x 103 Ib/in.2) range corresponds

to this average burst speed.

MOR Bar Strengths. The material strength calcu-

lated from spin burst speed data is generally substan-

tiated by strength tests conducted on sample test
bars sectioned from rotors serial number FX34408 and

FX34412 (reference Table XlX). Results of the tests are
summarized as follows:

MOR strength--MPa (Ib/in. 2)

Rotor serial No. Radial Axial

FX34408 383.4 (55.61 x 103) 338.13 (49.04 x 103)

FX34412 355.64 (51.58 x 103) 311.65 (45.20 x 103)

HIP Processed Rotors. Hot isostatic press (HIP) pro-

cessing was investigated to determine its potential

for producing rotors possessing high strength charac-

teristics. NASA Lewis Research Center development

work indicates that a 20% strength increase can be

achieved by HIPing sintered _SiC materials in test
bar form.

A sample of nine, Group I, C quality rotors were

HIP processed by NASA-Lewis. The objective of this

study was to assess the potential microstructure/

strength enhancement of fully sintered _SiC rotors.

The assessment included sectioning, microstructure

examination, MOR bars, and spin tests to burst. The

rotors, identified by serial number, the HIP process,
and status, are listed in Table XX.

The HIPed rotors exhibited an increase in density

to 3.163 g/cm 3 (98.5% theoretical density) as compared

to the original rotor density of 3.133 g/cm 3 (97.6%
theoretical density). No observable differences in

microstructure were detected. The observed spin

burst speeds were similar to the non-HIPed group I

results. This group was generally influenced by
strength controlling surface flaws and the HIPed sam-

ple was likewise composed of C quality rotors with

surface indications. HIPing is not effective in healing
surface indications and it was concluded that this

sample was not a definitive assessment of the poten-
tial of HIP processing.

A sample of 12 A and B surface quality Group 8
rotors were subsequently selected for another HIP

process assessment. These are identified in Table XlX

and at the date of this report are awaiting HIP at Lewis

Research Center. It is anticipated that the rotors will

be processed in March 1986.

Molding Trials, Thickened Airfoil Rotor. The gasifier

airfoil was redesigned for increased thickness in the
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NO.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table XlX.

Inspection evaluation, gasifier turbines (1985 program).

Shipment
date

2-26

2-26

Group (1)

8D-2

8D-2

NDE

2-26

2-26

2-26

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-29

3-29

3-29

3-29

3-29

3-29

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

8D-2

Part Serial Quality Dimen-

number number(2) level(3) sions(4)

AAI01243 FX34405 B

(2221)

AA101243 FX34406 B

(2222)

AA101243 FX34407 B

(2223)
AA101243 FX34408 B

(2225)

AA101243 FX34409 B

(2226)
AA101243 FX34410 B

(2227)
AA101243 FX34411 B

(2228)
AA101243 FX34412 B

(2229)
AA101243 FX34413 B

(2230)
AA101243 FX34414 B

(2231)
AA101243 FX34415 B

(2232)
AA101243 FX34416 B

..(2241)
AA101243 FX34417 B

(2242)

AA101243 FX34418 B

(2243)

AA101243 FX34419 B

(2244)
AA101243 FX34420 B

(2245)
AA101243 FX34421 B

(2246)
AA101243 FX34422 AIC

(2233)

AA101243 FX34423 C

(2234)
AA101243 FX34424 B

(2236)
AA101243 FX34425 A

(2237)
AA101243 FX34426 BIC

(2239)

AA101243 FX34427

(2247)

Spin (krpm)
test

-1.8%

Proof at

96.8

2 blade fail-

ures, 34.0
and 79.0

Burst at

106.5

No

Bu rst at

101.6

Burst at

93.0
Proof at

96.3

No

-1.0%

Burst at

79.3

Burst at

102.2

Proof at

95.8

Proof at

95.2

Burst at

90
Proof at

96.0
Burst at

91.3
Burst at

98.0

Proof at

96.2

Proof at

97.5"

Proof at

96.5

C 01-3.0%

Disposition

Engine candidate

(shaft machining)

Broken

airfoil

MOR bars

Inducer airfoil

release at 93.6

Proof at 104.6

MOR bars

Broken

airfoil

Inducer airfoil

release at 79.3

Engine candidate
(shaft machining)

Engine candidate
(shaft machining)

Engine
candidate

Burst at 100.7

Broken airfoil

Broken airfoil

Burst at 114.2

Burst at 98.5

Broken airfoil

Joiningtrial
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Table XIX. (cont)

No.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

Shipment
date

3-29

3-29

3-29

3-29

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-26

4-26

4-26

4-26

4-26

4-26

4-26

4-26

Part Serial

Group (1) number number (2)

8D-2 AA101243 FX34428

(2249)
8D-2 AA101243 FX34429

(2250)
8D-2 AA101243 FX34430

(2251)
8D-2 AA101243 FX34431

(2251)
8 D-2 AA101243 FX34432

(2253)
8D-2 AA101243 FX34433

(2254)

8D-2 AA101243 FX34434

(2255)

8D-2 AA101243 FX34435

(2256)

8D-2 AA101243 FX34436

(2257)
8D-2 AA101243 FX34437

(2258)
8D-2 AA101242 FX34438

(2286)
8C-2 AA101242 FX34439

(2292)
8C-2 AA101242 FX34440

(.2.293)
8C-2 AA101242 FX34441

(2295)
8C-2 AA101242 FX34442

(2297)
8C-2 AA101242 FX34443

(2300)
8C-2 AA101242 FX34444

(2312)
8C-2 AA101242 FX34445

(2314)
8C-2 AA101242 FX34446

(2315)
8C-2 AA101242 FX34447

(2318)
8C-2 AA101242 FX34448

(2322)

8C-2 AA101242 FX34449

(2327)
802 AA101242 FX34450

(2273)
8C-2 AA101242 FX34451

(2274)

NDE

Quality Dimen-
level(3) sions(4)

C

C

AJC

A

B

A

C

A -1.7%

A

C

B

A

B -1.5%

B

B

B

B

B

C

B -1.1%

NB

Spin (krpm)
test

Proof at

98.0

Proof at

104.7

Burst at

92.2

Burst at

95.8

Burst at
82.7

Burst at

92.4

Burst at

82.2

Proof at

95.0

Burst at

92.0

Burst at

88.8

Burst at

85.6
Proof at

95.0

Burst at
89.9

Proof at

96.5

Proof at

97.0

Proof at

96.5

Proof at

92.0 and

105.4

Proof at

96.0
Proof at

97.0
Proof at

96.5

Disposition

Joining trial

Broken airfoil

Warped airfoil

Burst at 101.3

Proof at 102.5

HIP by Sohio

Proof at 104.0

Shaft broke

after proof
FOD test

Local void

Proof at 103.5

HIPat Sohio

Broken airfoil

Engine candidate

FOD test

Burst at 99.2
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Shipment Part
No. date Group (I) number

48 4-26 8C-2 AA101242

49 4-26 8C-2 AA101242

50 4-26 8C-2 AA101242

51 4-26 8C-2 AA101242

52 4-26 8C-2 AA101242

53 4-26 8C-2 AA101242

54 4-26 8C-2 AA101242

55 4-26 8C-2 AA101242

56 4-26 8C-2 AA101242

57 4-26 8C-2 AA101242

58 4-26 8C-2 AA101242

59 4-26 8C-2 AA101242

60 4-26 8C-2 AA101242

61 6-6 8C-2 AA101242

62 6-6 8C-2 AA101242

63 6-6 8C-1 AA101242

64 6-6 801 AA101242

65 6-6 8C-1 AA101242

66 6-6 8C-1 AA101242

67 6-6 8C-1 AA101242

68 6-6 8C-1 AA101242

69 6-6 8C-1 AA101242

70 6-6 8C-1 AA101242

Table XIX. (cont)

NDE

Serial Quality Dimen- Spin (krpm)
number(2) level(3) sions(4) test

FX34452

(2279)

B

FX34453 B

(228O)
FX34454 A

(2283)
FX34455 C

(2285)
FX34456 AJC

(2330)
FX34457 C

(2331)
FX34458 AJB -0/5%

(2332)
FX34459 B

(2333)
FX34460 B

(2334)
FX34461 AIB

(2335)
FX34462 B

(2339)
FX34463 A/B

(2345)
FX34464 B

" (2346)
FX34465 A

(2348)
FX34466 AJB -1.2%

(2349)
FX34467 C

(2056)
FX34468 A/C

(2057)
FX34469 A

(2058)
FX34470 B

(2061)
FX34471 B

(2063)
FX34472 A

(2064)
FX34473 A -1.5%

(2066)
FX34474 B

(2067)

Proof at

96.5 and

104.5
Proof at

97.0
Bu rst at

87.2

Proof at

100.8

Burstat

94.6

Bu rst at

88.3

Burst at
95.0

Bu rst at

79.8

Burst at

92.8

Burst at

78.0

Proof at

104.8

Burst at
105.5

Disposition

Engine candidate

Engine candidate

Material sample

Broken airfoil

Material sample

Burst at 101.5

Warped blade

Broken blade

HIP, LRC

Proof spin

pending
Material sample

Warped blade
HIP, LRC

Proof spin

pending
HIP, LRC

Warped blade

Engine candidate

Proof spin

pending
Warped blade
HIP, LRC
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Shipment
No. date Group (1)

71 6-6

72 6-6

73 6-6

74 6-6

75 6-6

76 6-6

77 6-6

78 6-6

79 6-6

80 6-6

81 6-6

82 7-10

83 7-10

84 7-10

85 7-10

86 7-10

87 7-10

88 7-10

89 7-10

90 7-10

91 7-10

92 7-10

93 7-10

94 7-10

Table XIX. (cont)

Part Serial

numbe______Z number (2)

8C-1 AAI01242 FX34475
(2069)

8C-1 AA101242 FX34476
(2071)

8C-1 AA101242 FX34477
(2102)

8C-1 AA101242 FX34478
(2103)

8C-1 AA101242 FX34479
(2104)

8C-1 AA101242 FX34480
(2106)

8C-1 AA101242 FX34481
(2108)

8D-2 AA101243 FX34482
(2259)

8D-2 AA101243 FX34483
(2260)

8D-2 AA101243 FX34484
(2261)

8D-2 AA101243 FX34485
(2262)

8C-1 AA101242 FX34486
(2072)

8C-1 AA101242 FX34487
(2073)

8C-1 AA101242 FX34488
(2074)

8C-1 AA101242 FX34489
(2077)

8C-1 AA101242 FX34490
(2O79)

8C-1 AA101242 FX34491
(2082)

8C-1 AA101242 FX34492
(2084)

8C-1 AA101242 FX34493
(2087)

8C-1 AA101242 FX34494
(2089)

8C-1 AA101242 FX34495
(2091)

8C-1 AA101242 FX344%
(2092)

8C-1 AA101242 FX34497
(20%)

8C-1 AA101242 FX34498
(2097)

NDE

Quality Dimen- Spin (krpm)
level(3) sions(4) test

A/C

A

NB

B

A

B

A

B

A

A/C

NC

A

A

A

A

B

A

A

C

A/C

A

A

A

B

Proof at

105.5

Burst at

99.0

+0.3%

Proof at

95.0

0/+0.2% Burst at
89.0

Proof at

95.0

-0.8%

Burst at

94.8

Disposition

Engine
candidate

Proof spin

pending
Proof spin pend-

ing, chipped
blade

Proof spin

pending
Warped blade

HiP, LRC

Proof spin

pending
Proof spin

pending
3 broken

blades

Broken blade

HIP, LRC

Proof spin

pending
FOD

Rig

HIP, LRC

HIP, LRC

FOD

Rig
HIP, LRC

Material sample

HIP, LRC

Proof spin

pending

Proof spin

pending
Proof spin

pending
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No.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Shipment
date

7-10

7-10

7-10

7-10

7-10

7-10

7-10

7-10

7-10

7-10

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

8-28

Group (1)
8C-1

8D-2

8D-2

8D-2

8D-2

8C-1

8C-1

8C-1

8C-1

8C-1

8C-1

801

8C-1

8C-I

8C-1

8C-1

8C-1

8C-1

8C-1

8C-1

8C-1

8D-1

8D-1

8D-1

Table XIX. (cont)

NDE

Part Serial Quality Dimen- Spin (krpm)
number number(2) level(3) sions(4) test

FX34499

(2101 )
FX34500

(2263)
FX34501

(2264)
FX34502

(2269)
FX34503

(2270)
FX34504

(2121 )
FX34505

(2123)
FX34506

(2124)

FX34507

(2125)

FX34508

(2126)
FX34509

(2128)
FX34510

(2129)
FX34511

(2130)
FX34512

(2131)
FX34513

(2132)

FX34514

(2133)

FX34515

(2134)
FX34516

(2136)
FX34517

(2142)
FX34518

(2143)
FX34519

(2144)

FX34520

(2154)
FX34521

(2159)
FX34522

(2160)

AA101242

AA101243

AAI01243

AAI01243

AAI01243

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101242

AA101243

AAI01243

AA101243

A

A

A

A

A

A

A

A

A

A

A/B

B/C

A

B/C

C

C

A

A

NB

B

A

A

B/C

A/B

-1.0%

-1.3%

Proof at

95.0

Proof at

103.6

Proof at

95.0

Disposition
HIP, LRC

Proof spin

pending
Proof spi n

pending

Proof spin

pending

Proof spin

pending
FOD

Rig
HIP

by Sohio

Proof spin

pending
FOD

Rig
HIP, LRC

Distorted

inducers

Broken

inducer

Proof spin

pending

Chipped
inducer

Distorted

inducers

HIPatSohio

Proof spin

pending

Proof spin

pending

Chipped
inducer

Proof spin

pending

Proof spin

pending

Proof spin

pending
Chipped
inducer

Chipped
inducer
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Table XIX. (cont)

Shipment Part Serial
No. date . Group(l! number number(2)

119 8-28 8D-1 AA101243 FX34523
(2162)

120 8-28 8D-1 AA101243 FX34524
(2164)

121 8-28 8D-1 AA101243 FX34525
(2165)

122 8-28 8D-1 AA101243 FX34526
(2166)

123 8-28 8D-1 AA101243 FX34527
(2167)

124 8-28 8D-1 AA101243 FX34528
(2168)

125 8-28 8D-1 AA101243 FX34529
(2169)

126 8-28 8D-1 AA101243 FX34530
(2171)

127 8-28 8D-1 AA101243 FX34531
(2173)

128 8-28 8D-1 AA101243 FX34532
(2175)

129 8-28 8D-1 AA101243 FX34533
(2176)

130 8-28 8D-1 AA101243 FX34534
(2177)

131 8-28 8D-1 AA101243 FX34535
(2179)

132 9-30 8D-1 AA101243 FX34536
(2180)

133 9-30 8D-1 AA101243 FX34537
(2183)

134 9-30 8D-1 AA101243 FX34538
(2186)

135 9-30 8D-1 AA101243 FX34539
(2188)

136 9-30 8D-1 AA101243 FX34540
(2191)

137 9-30 8D-1 AA101243 FX34541
(2196)

138 9-30 8D-1 AA101243 FX34542
(2199)

139 9-30 8D-1 AA101243 FX34543
(2203)

140 9-30 8D-1 AA101243 FX34544
(2204)

141 9-30 8D-1 AA101243 FX34545
(2205)

142 9-30 8D-1 AA101243 FX34546
(2206)

NDE

Quality Dimen-
level(3) sions(4)

AIC

BIC

AIB

AJB

A

AJC

A

B

A

A

A

AJB

A

C

A

A

B

C

NC

C

AIC

C

8

A

Spin (krpm)
test Disposition

Broken

exducer

Broken

airfoils

Chipped
inducer

Chipped
exducer

Proof spin

pending

Chipped
inducer

Proof spin

pending
Proof spin

pending
Proof spin

pending
Proof spin

pending
Proof spin

pending

Chipped
inducer

Proof spin

pending
Distorted

inducers

Proof spin

pending
Proof spin

pending

Chipped
inducer

Chipped
inducer

Distorted

inducers

Material

sample
Broken

inducer

Material

sample

Proof spin

pending
Proof spin

pending
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TableXIX. (cont)

NDE

Shipment Part Serial Quality Dimen- Spin (krpm)
No. date Group(l) number number(2) level(3___.__)sions(4____))_ test Disposition

143 9-30 8D-1 AA101243 FX34547 A/C Broken
(2207) ind uce r

144 9-30 8D-1 AA101243 FX34548 A Proof spin
(2208) pending

145 9-30 8D°1 AA101243 FX34549 B/C Distorted
(2209) inducers

146 9-30 8D-1 AA101243 FX34550 C Chipped
(2210) inducer

147 9-30 8D-1 AA101243 FX34551 B/C Chipped
(2212) inducer

148 9-30 8D-1 AA101243 FX34552 A Proof spin
(2213) pending

149 11-4 8D-1 AA101243 FX34553 A Proof spin
(2214) pending

150 11-4 8D-1 AA101243 FX34554 NC Broken
(2215) exducer

151 11-4 8D-1 AA101243 FX34555 C Mate rial
(2220) sample

152 11-4 8D-2 AA101243 FX34556 B Proof spin
(2271) pending

153 11-4 8D-2 AA101243 FX34557 B Proof spin
(2272) pending

154 11-4 5B AA101151 FX34558 B Proof spin
(2375) pending

155 11-4 5B AA101151 FX34559 B Proof spin
(2376) pending

156 11-4 5B AA101151 FX34560 B Proof spin
(2377) pending

157 11-4 5B AA101151 FX34561 C Material
(2378) sample

158 11-4 5B AA101151 FX34562 B Proof spin
(2382) pendi ng

159 11-4 5B AA101151 FX34563 C Material
(2390) sam pl e

160 11-4 5B &A101151 FX34564 B Proof spin
(2407) pending

161 11-4 5B AA101151 FX34565 B Proof spin
(2408) pending

162 11-4 5B AA101151 FX34566 B Proof spin
(2409) pendi n g

(1) Prior groups per Table XVlll, 1984 Annual Report, EDR 12070

(2) Allison serial No. (Sohio serial No.)
(3) Quality level based on visual and FPI evaluation. Second rating (example A/C) refers to spin rating. Typically

the C identifies a warped or broken airfoil.

(4) Exducer throat, nominal = 8.33 mm (0.328 in.)
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Figure 119. Cumulative probability of failure as a

function of spin speed, Group 8 (1985) SiC gasifier
rotors.

inducer region. The redesign was fully discussed in

Section 4.3; the following describes the processing
I of this rotor.

i Sohio modified the injection-molding tool with

new inserts for the thicker airfoil (part number

AA101326). The gasifier rotor tool with these inserts
presented new molding problems. A total of 234

rotors were molded during December of which only
79 were selected for further processing; the mold

yield was only 33.8%. The area between the blades

was generally good and defects were largely on the

base and nose. All 79 rotors were subsequently sub-

mitted for base contour machining (removing 0.254

mm [0.010 in.] on most of the rotors) and removal of
the excess nose stock.

All 79 parts completed green machining and a
total of 47 were submitted for binder removal. If sub-

sequent processing is satisfactory, the first rotors
should be shipped about mid-March 1986.

Engine Candidate Gasifier (SIC) Turbine Assemblies.

An example of a finished SiC rotor/metal shaft assem-

bly is shown in Figure 120. The status of engine can-
didate gasifier turbine assemblies is summarized in

Table XXl. Assembly number 10 (S/N FX34360) was

engine (S/N 2, BU12) tested during August 1985. It
experienced inducer airfoil failure similar to the test

in November 1984. Two other assemblies are com-

plete: Number 11 (S/N FX34357), which is scheduled

to be installed in engine S/N 2, BU15 for a foreign
object damage (FOD) free test, and number 13 (S/N

FX34362), which is available for engine test.

9.2.2 Gasifier Turbine Scroll Assembly

Silicon carbide gasifier turbine scroll assembly

development continued during the present reporting

period and included the following major activities:

• two proof tests of a Sohio scroll assembly in thermal

shock test rig--one to 898°C (1650°F) and one to
1051°C (1925°F)

• testing of Coming composite ceramic inner back-

plates in engine and static proof test rig

• two engine tests of the Sohio scroll assembly
• one test completed at 926°C (1700°F)

• one test begun at 1079°C (1975°F) and continuing

at year's end

• analysis of fracture of outer backplate in 926°C

(1700°F) engine test

• design modification and rework of outer backplates
to reduce thermal stresses

• investigation of scroll braze joint oxidation

• preparation of second scroll assembly for testing

• silicon carbide gasifier turbine static components

parts fabrication

These scroll assembly development activities are

described in the following sections.
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NO.

1

2

6

7

8

S/N

FX34134

FX34137

FX34144

FX34151

FX34163

FX34169

FX34181

FX34187

FX34191

Table XX.

HIP process rotors (all processed at 137 MPa [20 x 103 Ib/in. 2]

in an Argon atmosphere).

2200°C (3992°F)

2050°C (3722°F)

Process

1 hr, carbon sand encapsulation

1 hr, carbon sand encapsulation

2200°C (3992°F)

2200°C (3992°F)

3hr

3 hr, carbon sand encapsulation

2200°C (3992°F) 3 hr, carbon sand encapsulation

2050°C (3722°F)

2200°C(3992°F)

2050°C (3722°F)

lhr

lhr

I hr, carbon sand encapsulation

2200°C (3992°F) I hr, carbon sand encapsulation

Status

Microstructure

Spin burst at

86,000 rpm

Microstructu re

Spin burst at
98,300 rpm

Spin burst

pending

MOR bars

MORbars

Spin burst

pending

MOR bars

No. Rotor S/N

1 FX34305

2 FX34311

3 FX34312

4 FX34307

5 FX34286

6 FX34334

7 FX34340

8 FX34346

Table XXI.

Status of engine candidate gasifier rotor assemblies.

_ .-_" _, 4": "_
Comments

X X

X X X

X X X

X X

X X

X X

X X

X X

X X X

X X X X X

X X X

The insulator and rotor shaft were damaged during finish grind

of the o.d and length. (Joining of the insulator to the rotor shaft

is the first step in the assembly buildup.) Stub shaft was not
usable.

Complete rotor/shaft assembly was successfully built. Rotor

stub shaft fractured during routine handling at Allison.

Complete rotor/shaft assembly was successfully built. Rotor
stub shaft fractured during lathe setup for machining at Atlas.

(Fracture was similar to FX34311.)

Fractured during bearing assembly at Balco.

Final spin test limited to 77,000 rpm due to equipment; operated

in engine SIN 2 BU8. Inducer airfoil fracture. (November 1984)

Failed at 52,500 rpm due to defective spin equipment.

Two chipped airfoils at exducer section due to handling.
Inducer airfoil broken in handling; not usable.
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No. Rotor S/N

9 FX34321 X

I0 FX34360 X

111 FX34357 X

12 FX34356 X

13 FX34362 X

14 FX34366 X

!15 FX34369 X

16 FX34320 X
!17 FX34325 X

18 FX34358 X

19 FX34371 X

Table XXl. (cont)

1985 Group 8 processing

X

X X X X X X

X X X X X X

X

X X X X X X

X X X X X

X X X

Comments

Proofed to 95,000 rpm; two airfoils broken in handling; not
usable.

Final spin test limited to 73,400 rpm due to equipment; operated

in engine S/N 2, BU12. Inducer airfoil fracture. (August 1985)

Assembly final spin to 50,000 rpm. Being installed in S/N 2, BU15,
FOD free test.

Not usable--2 broken exducer airfoils (handling).

Rotor proofed to 95,000 rpm, shaft assembled and machined at

Ahaus. Final spin test limited to 50,000 rpm (equipment)
available for engine test.

Proofed to 95,000 rpm. Not usable--broke two inducer airfoils
during bal.

Proofed to 95,000 rpm. Not usable--stub shaft fractured

at Ahaus du ring machining.

Proofed to 95,000 rpm. Not usable--one broken inducer airfoil.
Proofed to 95,000 rpm. Not usable--one broken inducer airfoil.

Proofed to 95,000 rpm. Not usable--damaged (chipped) rotor
stub shaft.

Proofed to 95,000 rpm; two induced blades released; not
usable.

20 FX34405 X

21 FX34411 X

22 FX34415 X X

23 FX34416 X X

24 FX34418 X

25 FX34432 X

26 FX34438 X

27 FX34442 X

28 FX34445 X

29 FX34447 X

30 FX34448 X

31 FX34449 X

32 FX34450 X

33 FX34452 X

34 FX34453 X

35 FX34472 X
36 FX34476 X

Notes:

X = completed

Proofed to 96,500 rpm.

Proofed to 104,600 rpm.

Proofed to 95,800 rpm.

Proofed to 95,200 rpm.

Proofed to 96,000 rpm.

Proofed to 104,700 rpm.

Proofed to 102,500 rpm.
Proofed to 104,000 rpm.

Proofed to 97,000 rpm.

Proofed to 103,500 rpm.

Proofed to 105,400 rpm. Not usable, broken inducer (handling).
Proofed to 96,000 rpm.

Proofed to 97,000 rpm.

Proofed to 104,500 rpm.

Proofed to 97,000 rpm.

Proofed to 104,800 rpm.

Proofed to 105,500 rpm.

Items 4-8 had 3.5 deg backface and machined stub shaft.
Items 9-20 had Baud curved backface and machined stub shaft.
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Figure 120. Rotor SiC�metal shaft attachment.

Gasifier Turbine. _SiC Scroll Assembly Developmen-

tal Testing.

Initial Thermal Shock Rig Testing to 898°C (1650°F).

During the previous reporting period the first gasifier
turbine o_SiC scroll/backplate/vane assembly was suc-

cessfully proof tested using the start nozzle fuel flow

to 898°C (1650°F) (idle operating condition) in the ther-

mal shock rig. A listing of the components incorpo-

rated in the scroll assembly is presented in Table XXlI.

Engine Test to 926°C (1700°F). Following shock rig test-

ing the scroll assembly was assembled into S/N 2
(BU9, BU10) engine, and tested to--_, 926°C (_-'1700°F).

The engine was operated through six start-up to idle

test cycles, again employing the start nozzle as the

fuel flow source. Total engine burning test time was
8 hr with 3 hr at 926°C (1700°F). Inspection of the

ceramic scroll assembly components after test re-

vealed the scroll, vanes, and inner backplate to be

in good condition. The outer backplate had a frac-
tured locating tang and a crack from the inside diame-

ter of the part through a blade pocket and cross-key

slot to a point about 75% of the way through the part
toward its outside diameter. The investigation of this
failure was described in Section 4.3.3 and the correc-

tive redesign of this part is described in this section.

Thermal Shock Rig Test to 1051°C (1925°F). Follow-

ing rework of another outer backplate, a second

gasifier turbine ceramic scroll assembly was assem-
bled for proof testing. This scroll assembly consisted

of the Sohio e_SiC scroll and vanes previously rig proof

and engine tested to approximately 898°C (1650°F), a
new reworked outer backplate (P/N AA100623, S/N

FX30562), and a new Corning BMAS-III composite

ceramic inner backplate (P/N AA101353 S/N FX50502).

This Corning inner backplate had a different fiber/

matrix configuration than that previously engine

tested. This scroll assembly was proof tested in the

scroll thermal shock rig to 1051°C (1925°F) using the
normal main nozzle steady-state operating condition

procedure. The duration of the proof test was 1.6 hr
with 0.24 hr at 1051°C (1925°F) and 1.35 hr at 898=C

(1650°F) or above.

Following disassembly of the ceramic compo-
nents at the conclusion of the rig proof test, the fol-

lowing observations were noted:
• The scroll, vanes, and outer backplate (all SiC) were

intact, and FPI inspection revealed no cracks.
• A few vanes (three or four) had minor chipping at

corners within the vane pocket region. No chipping
or deterioration was observed in the gas path por-

tion of the vanes.

• The inner and outer backplates were stuck together

at the conclusion of the test. Light tapping was re-

quired to separate the backplates. The scroll and

outer backplate were lightly stuck together. Only
moderate hand force was required to separate
them.

• A surface deposit was noted on the scroll assembly
at the scroll-shroud braze joint, as shown in Figure

121.
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Table XXII.

Detail components in the first tested SiC gasifier turbine scroll assembly.

Part Serial

No. No. Name Vendor Material

AA 100626 FX30584 Scroll Sohio _SiC

AA 100623 FX30559 Outer backplate Sohio _SiC

AA 101218 18 parts Vane Sohio oLSiC

AA 101005 FX50503 Inner backplate Corning Composite SiC

The composite ceramic inner backplate delami-

nated at a point shown in Figure 122.

Disassembly of the scroll rig is discussed in the

following paragraphs.
The scroll, vanes, and outer backplate are nor-

mally removed from the scroll proof test rig as a

,unit assembly while the inner backplate remains in

the test fixture trapped behind a fixed test rig com-

ponent that simulates the turbine rotor. After the
P1051°C (1925°F) proof test, the complete scroll as-

isembly could not be dislodged from the fixture by

[hand force. Consequently, the scroll was removed

separately. Inspection revealed that the inner and

outer backplates were stuck together at their o.d.-

i.d. interface. Three light taps with a mallet broke

the bond between the backplates allowing removal

of the outer backplate from the test fixture.

Examination of the scroll body after testing re-

vealed a thin glassy coating that appeared to have

bled out of the scroll body-shroud braze joint. This

substance was carried along the shroud surface

through the vane row by gas flow during the test,
as shown in Figure 121. A similar condition existed

at other braze joints in the scroll body assembly.

SEM analysis of the substance revealed it to be sili-

con, aluminum, and oxygen. Aluminum was an un-

expected constituent in the deposit. An investiga-
tion was initiated to determine the source of the

aluminum in the deposit.

Traces of the deposit entered some of the vane

pockets in the scroll and outer backplate and caused

light bonding of the vanes to adjoining parts. In

addition, it is possible that some of the deposit

material entered the clearance gap that exists be-

tween the inner and outer backplates during the

proof test. When the parts cooled, the clearance

gap decreased in size and the solidified coating may

have caused the outer backplate to shrink tightly

around the inner backplate, creating the difficulty

in disassembly described previously.

Upon removal of the outer backplate, the inner

backplate was determined to have separated into

two pieces through delamination between flat

layers of the compositematerial. The post-test con-

dition of the inner backplate is shown in Figure 122.

This inner backplate is of similar material but with

different laminate configuration to an inner back-

plate successfully tested during several engine

builds. The differences in laminate configuration is
depicted in Figure 123. The stepped laminate config-

uration has demonstrated greater strength in static
deflection tests and is now considered to be the

preferred configuration for the inner backplate. No

additional development of the flat laminate config-

uration is planned.

Engine Test to 1079°C (1975°F). The Sohio cxSiC

scroll/vane/backplate assembly that had been rig

proof tested to 1051°C (1925°F) was assembled into

SIN 2 BU14 engine along with the Coming composite
ceramic inner backplate used in the first ceramic

scroll engine test. The detail components of the scroll

assembly used in this test are listed in Table XXlII.

The main nozzle test was the second engine test for

the scroll detail and vanes, the fifth engine test for

the inner backplate, and the first engine test for the

outer backplate. At the end of December 1985, two

1-hr thermal cycles had been completed with a total

test time of about 3.4 hr. Additional testing will be

accomplished in January 1986.

Analysis of Silicon Carbide GasifierTurbine Outer

Backplate Fracture in Engine Test. Examination of the

_SiC gasifier turbine outer backplate at the comple-

tion of engine testing (S/N 2, BU10) revealed two sepa-

rate failures. The first was a fracture of the locating

tang from the main body of the part. The second was

a crack running from the inside diameter of the back-

plate through a blade pocket and a cross-key locating

slot and terminating near the outside diameter of the

part. Except for the tang, the outer backplate re-
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Deposit emanating from braze joint 
TE86-2701 

Figure 121. SiCscroll body following 1925"Fproof test. 

LDelaminated surface TE86-2,02 

Figure 122. Corning composite ceramic inner 
backplate following 1925°F proof test. 

mained in one piece. The failure of the outer back- 
plate did not impair operation of the engine during 
the test. 

The outer backplate had been proof tested to 
898°C (1650°F) in the thermal shock rig without indica- 
tion of cracks. During engine test the part was ex- 

posed to six start-up-to-idle condition cycles. The 
temperature experienced in the engine test was simi- 
lar to that of the proof test. An in-place inspection 
of the part after the first engine start cycle did not 
reveal the broken tang. The crack through the cross- 
key slot and vane pocket would not have been visible 
in that inspection. The failures were discovered after 
the outer backplate was removed from the engine 
following completion of the six start-up cycle test. 

Metallurgical examination of the outer backplate 
showed the origin of the crack in the backplate to 
be in a corner of a cross-key slot as shown in Figures 
124 and 125. The origin of the fracture of the tang 
from the backplate i s  shown in Figure 126. Contact 
marks on the fractured tang and the corresponding 
tang on the scroll body suggest that a tangential load 
was imposed on the tangs during engine test. The 
crack in the cross-key slot is on the loaded side of 
the slot when referenced to the loading indications 
on the tangs. 

Investigation of the outer backplate failure re- 
vealed that the gasifier turbine scroll assembly that 
includes the outer backplate may have experienced 
an unintended load that contributed to the failure of 
the outer backplate. Engine operation with a ceramic 
gasifier turbine scroll assembly and a metal power 
turbine scroll assembly results in greater misalign- 
ment of the scroll connecting duct at  operating tem- 
perature than would occur if the power turbine scroll 
was ceramic.The ceramic interturbine coupling could 
not, if situated in the worst case position in the scroll 
pockets, accommodate the misalignment caused by 
the thermal growth of the metal power turbine scroll. 

If this condition existed, a tangential load would 
have been imposed on the gasifier turbine scroll out- 
let elbow as shown in Figure 127. This tangential load 
would be transferred through the gasifier turbine 
scroll body to the mating locating tangs on the scroll 
and outer backplate and then through the outer back- 
plate to the cross-key slots on the outer backplate 
that mate with the metal engine structure. Both outer 
backplate features (locating tang and one cross-key 
slot) that would have experienced such a load failed 
during the engine test. The order in which the failures 
occurred could not be determined from post-test evi- 
dence. 

One theory is  that the crack in the cross-key slot 
occurred first followed by the fracture of the locating 
tang. The supposition i s  that the slot in which the 
crack initiated may, because of dimensional toler- 
ances, have been carrying more than an equal share 
of the load to locate the backplate/scroll assembly to 
the engine structure and to resist the tangential load 
from the spring loaded combustor body. In addition, 
the location of the cross-key slot in which the crack 
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Part

No.

AA 100626

AA 100623

AA 101218

AA 101005

Table XXIII.

Detail components of second engine tested ceramic gasifier turbine scroll
assembly (engine S/N 2 BU14).

Serial

No.

FX30584

FX30562

18 parts

FX50503

Name Vendor Material

Scroll Sohio _SiC

Outer backplate Sohio _SiC

Vane Sohio c_SiC

Inner Backplate Coming BMAS/SiC Composite

Plane of
delamination

Flat laminate configuration

Failed in proof test

Stepped laminate configuration

Successfully engine tesled

TE86-2703

Figure 123. Coming composite ceramic inner

backplate laminate configurations.

initiated is nearest the scroll gas-path inlet (from the

burner) and may be a region that experiences greater

thermal shock/stress conditions than regions where

the other five cross-key slots are located. After the

crack in the backplate cross-key slot occurred, the

load in the other five cross-key slots became more

equalized and cracking in additional slots did not

occur. Instead, the locating tang on the outer back-
plate (which prevents rotation of the scroll relative

to the backplate) broke off, transferring the tangential

locating function to the relatively loose fitting vanes.
The vanes would have allowed enough rotation be-

tween the backplate and scroll to eliminate the

tangential load on the cross-key slots caused by the

thermal growth of the power turbine scroll. It should

also be noted that only one tang on the outer back-

plate is used to locate the backplate tangentially to

the scroll body.

Part Modifications. To reduce the chance of outer

backplate failure due to the loading described previ-

ously, two engine parts were modified. The intertur-

bine coupling was modified by reducing the outside

diameter between the seal ring grooves. This modifi-

cation permits the coupling to accommodate up to

3 mm offset between the gasifier turbine scroll outlet
elbow and the power turbine scroll inlet without

transferring a lateral load from one scroll to the other.
This amount of offset is 150% of that expected while

operating at MOD I conditions with a ceramic gasifier

turbine scroll and metal power turbine scroll. Addi-

tionally, two (,SIC outer backplates were modified to
remove the continuous circumferential rim that exists

between the cross-key slots, leaving only six short

segments in which the cross-key slots are located.

This modification eliminates the tensile hoop stress

that could exist in a continuous rim during engine

operation. In addition, the stress concentration at
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L V a n e  pocket 

!-Cross-key slot 

TE86-2829 

Figure 124. Crack indications in d i c  gasifier turbine outer backplate. 
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Cross-keyslotq

Origin of
failure

Vane pocket

TE86-2840

Figure 125. Origin of failure in aSic gasifier turbine outer backplate.

Tang broken off
of backplate

(origin of crack) _

of tang qitt ii_ I _,,/,/'\ _' _

\_t,.,_&\ i .J.7;_!,:.' Illi

_Crack thOroUghblade pocket

and cross-key slot
(origin of crack in cross-key slot)

TE86-2706

Figure 126. Location of crack origins in gasifier turbine _xSiC outer backplate.
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Figure 127. Loads imposed on gasifier turbine scroll assembly during engine test.

the bottom corners of the cross-key slots was reduced

by increasing the depth of the slots and by adding a
full radius contour at the bottom of the slots. These

modifications are shown in Figure 128.

Scroll Braze Joint Oxidation Study. All of the scroll

designs (Sohio, Norton, Kyocera) involve brazing of

ceramic component parts. The first scroll tested

(Sohio) has undergone a 898°C (1650°F) rig test, 926°C

(1700°F) engine test, 1051°C (1925°F) rig test, and is

currently undergoing 1070°C (1975°F) engine testing.

Following the rig test, some of the nonbrazecl parts
of the assembly were stuck together and required

light tapping to separate. Further, evidence of bleed-

ing or running of some substance from braze regions

was observed. The substance is a glassy layer and was

found to contain silicon, aluminum, and oxygen. The

source of the aluminum is not understood by Sohio
as the braze material is molybdenum disilicide.

Further, Sohio believes that the basic braze is good

for much higher temperature levels (they are unable

to debraze other units requiring modification). Other

scrolls were exposed in an oven for 24 hr at 1287°C

(2350°F) in air. Those exhibiting no reaction were (1)
Norton NC430 siliconized, (2) Sohio siliconized, and

(3) a Sohio cxSiC (also a first generation type). No
conclusions have been made at this time. However,

it is judged that the material is not from the basic

braze and that scrolls exhibiting the glassy layer are

structurally sound and acceptable for rig and engine
test.

Second Gasifier Turbine Scroll Assembly Available

for Proof Testing. A second gasifier turbine scroll/back-
plate assembly has been assembled for rig proof test-

ing and subsequent engine testing. This assembly

consists of the following components:

Part name Material Vendor

Scroll eSilicon carbide Sohio

Outer backplate _xSilicon carbide Sohio

Vanes Silicon nitride GTE

Inner backplate Silicon nitride GTE
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This material removed from
outer backplate between
cross-key slots

New cross-key slot
contour

This material removed
from cross-key slots

TE86-2708

Figure 128. Modification of gasifier turbine outer backplate.

This assembly differs from the first assembly that

was engine tested in that the vanes are silicon nitride

instead of silicon carbide and the inner backplate is

silicon nitride instead of a composite BMAS ceramic
matrix with silicon carbide filaments.

The second scroll assembly was installed in the
scroll shock test fixture in December 1985 and is in

the process of being proof tested to 1093°C (2000°F)
at 100% N1 flow conditions.

Silicon Carbide Gasifier Turbine Static Component

Parts Fabrication. Fabrication of silicon carbide gasifier

turbine static components continued during 1985

with four vendors delivering parts. Parts procured

included turbine scrolls, outer backplates, inner

backplates, vanes, couplings, interturbine couplings,

and exhaust couplings.

Sohio Engineered Materials. Sohio delivered the

following gasifier turbine components in 1985:

Component Quantity

Scrolls--o_SiC 4

Scrollnsiliconized SiC 1

Outer backplate--_SiC 4

Inner backplate--o_SiC 4

VanesnotSiC 54

Interturbine couplings--o_SiC 6

Exhaust couplings (power turbine)--_SiC 6

The process used to bond the three details of the

turbine scroll together underwent considerable de-

velopment during 1985. Early scrolls were sinter

bonded together with the joint filled with a silicon

carbide paste. The most recent scrolls are presin-

tered, machined in the bonded joint region and
brazed together with a MoSi2 braze material. Three

119



ORIGINAL PAGE iS

OF pOOR QUALITY

of the scrolls had dimensional deviations that could

not be corrected in final machining. These scrolls
were returned to Sohio for correction. Scrolls and

outer backplates supplied by Sohio are supplied

rough machined and are final machined at an outside
vendor.

Norton Company. The Norton Company supplied

gasifier turbine scrolls made of NC-430 siliconized
silicon carbide. Ten scrolls were being processed dur-

ing 1985. Five scrolls were shipped to Allison during

1985 and, except for vane pockets, came fully

machined. The remaining five scrolls will be shipped

in early 1986.

Pure Industries. Pure Industries supplied reaction
bonded silicon carbide (PS-9242) interturbine cou-

plings and power turbine exhaust couplings during
1985. This was a new material offered by Pure Indus-

tries. Previously, these components had been fur-
nished in Purebide Refel PR8708 material. The mate-

rial substitution was made because Pure Industries

no longer supplies parts made of Purebide Refel, a
reaction bonded silicon carbide.

Coming Glass Works. Corning fabricated gasifier

turbine inner backplates of a composite material that

incorporated silicon carbide (Nicalon) fiber reinforce-
ment. BMAS, MAS, and LAS matrix materials were

used with the SiC fibers in fabricating the inner back-

plates. Several composite (reinforcement) preform

configurations were fabricated. The preferred

(strongest) configuration was a stepped preform that
allowed continuous (uncut) reinforcement in the

inner backplate configuration.

9.2.3 Turbine Scroll Static Components Thermal Simula-

tion Rig.

The turbine scroll static components thermal

simulation rig (also known as the scroll thermal shock

rig) is designed to produce AGT100 engine combustor
outlet conditions within an environment that dupli-

cates the engine airflow paths, temperatures, and

pressures. The rig was designed to provide a thermal
simulator suitable for testing nonrotating ceramic

components as a demonstration of their engine read-
iness.

The initial shakedown of the scroll thermal shock

rig was performed using a metal scroll assembly, as
described in the 1984 annual report (EDR 12070). This

background work defined deficiencies in the rig

hardware that were subsequently corrected, creating

a scroll thermal shock rig capable of simulating en-

gine operating condition.

Activity during 1985 revolved around testing the

structural integrity of and, thus, qualifying the first

gasifier ceramic scroll for general engine use. A sys-
tematic, engine-verified approach was adopted that

subjected the scroll assembly to a series of tests in

which each successive rig test was followed by engine
verification before imposing more demanding rig
simulation conditions. The initial test of the ceramic

scroll assembly subjected the hardware to rig simu-

lated start nozzle operating conditions. After success-

ful completion of this test phase, the scroll assembly

was installed in an engine build and subjected to

actual engine start conditions. The scroll assembly

was then placed back into the scroll rig and tested

at conditions simulating engine operation at 8_o

gasifier rotor speed. The material presented in this
section reviews the scroll thermal shock rig data ob-

tained during the start nozzle and 80% speed main
nozzle simulations.

Start Nozzle Simulation (Scroll Rig BU4). The objec-

tive of this scroll rig test was to expose the SiC ceramic

gasifier scroll hardware to a typical start sequence.
For the purpose of simulation, the inlet air conditions
to the combustor were set at 315°C (600°1:), 179 kPa

absolute (26 Ib/in. 2 absolute) and 0.11 kg/s (0.25 Ibm/
sec).

Fuel was introduced into the start nozzle and the

combustor ignited, raising the combustor exit tem-

perature, i.e., gasifier scroll inlet temperature, to

565°C (1050°1:), as shown in Figure 129. Fuel flowwas

gradually increased until the combustor exit temper-

ature reached 693°C (128001:) (Figure 130), and this

temperature level was maintained for approximately

15 minutes. The data traces in Figure 130 show an

abrupt drop in fuel flow with a subsequent rapid drop
in combustor exit temperature. A random electrical
failure of the fuel solenoid valve halted fuel flow to

the combustor for approximately 15 sec and the com-

bustor flamed-out with the result that the exit temper-

ature fell dramatically. The operator applied a

mechanical jolt to the solenoid and fuel resumed

flowing to the start nozzle; the combustor relightecl

and the temperature recovered to 693°C (1280°F).
After the 693°C (1280°F) stabilization, the start noz-

zle fuel flow rate was gradually increased (Figure 131)
until the combustor exit temperature reached 898"C

(1650°F). Figure 132 shows the 15-minute stabilizalh)n
at this operating condition. The fuel flow was then

decreased gradually in two stages with stabilization

again occurring at 676°C (1250°F) until the combustor
reached a condition where lean blowout occurred.

Examination of the ceramic scroll assembly after

rig teardown indicated that no damage was incurred

by the ceramic parts. In fact, the actual test conditions

were more severe than anticipated because very slow

transients were planned to investigate the structural

integrity of the ceramic scroll. However, as illustrated
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Figure 129. AGT 100 scroll test thermal shock rig: Rig 54, BU4 Series A, start nozzle operation.

in Figure 130, the ceramic scroll was subjected to a

rapid thermal cycle. The temperature of the gas enter-
ing the scroll was cycled 226°C (440°F) from 693°C

(1280°F) to 448°C (840°F) and back in a time period of

15 sec. The scroll assembly sustained no damage,
implying that the SiC ceramic material is durable and

tolerant to rapid thermal cycles.

Main Nozzle Simulation (Scroll Rig BU5). The scroll

rig main nozzle test conditions were set such that

the rig simulated a typical AGT 100 engine operating

at 80% engine speed (80% gasifier rotor speed). The

ceramic scroll hardware, with minor changes, instal-
led into the rig for this main nozzle test was identical

to the scroll hardware used in the previous rig and

engine start nozzle investigations•

The scroll assembly within an engine operating

at 80% speed typically is subjected to an airflow of

0/19 kg/s (0.42 Ibm/sec) and a pressure of 275 kPa
absolute (40 Ib/in. 2 absolute) while the temperature

of the gas leaving the combustor is around 1051°C

(1925°F). Figure 133 shows the combustor ignition and
stabilization at 898°C (1650°F). After 15 minutes, the

combustor outlet temperature was raised 135°C (275 °)
to 1051°C (1925°F). Stabilization at this condition is

shown in Figure 134. The fuel flow rate delivered to
the combustor was then reduced in two stages until
combustor lean blowout occurred.

No damage to the SiC ceramic scroll components
was evident during the teardown inspection of the

scroll rig. Consequently, this scroll assembly was de-

livered to the engine to be tested at 80% power. Fu-

ture scroll rig testing will be conducted at maximum

engine airflow and temperature conditions.

9.2.4 Power Turbine Rotor

An initial sample of near power turbine size rotors

was processed using the gasifier injection molding

tool to mold green form bodies that were sub-

sequently siliconized. The material was processed to
KX02 (siliconized silicon carbide) standards in an inert

atmosphere. The gasifier molding tool is approxi-

121



1500 -

1400 -

1300 -

1200

1100

o

11000

900

E

8O0

700

600

500

800

700

600

g
-I

•_ 500 - ........ ,
. z,.. I

g ,
E ,I

I

I

400 iI
I
I

300 -

, , , , I

0 50

.... Fuel flow

....... Exhaust duct
BOT ring

..:
I

, ,"[, I,,,, I I,,, I,, , , I , , , , I , , , , I , ,

100 150 200 250 300 350

- 9

8

ol
,,.-I

7

,.4

.4

-4

I-

O

B .

-4== .
LL

N

3

°

2 "

°

.

°

,,I
400

2O

18

16

14

Z-
12

I

10

0

8 "_
LL

0

Time -- seconds
TE86-2713

Figure 130. AGT 100 scroll test thermal shock rig: Rig 54, BU4 Series A, start nozzle operation.

mately 20% oversize (for a 100% size sintered gasifier

rotor) and thus produces a green form nearly the size

of the power turbine rotor. Furthermore, no shrin-

kage occurs during siliconizing. Three siliconized

(KX02 material) gasifier rotors were received during
this reporting period, and the evaluation of these is
summarized in Table XXlV.

X-ray examination indicated a uniform density

through the rotor; that is, the silicon infusion was

uniform. Although the inspection of surface quality

appeared satisfactory, the spin burst test speeds were

below expectations.

The spin test failure of rotor S/N FX28511 involved
an airfoil release; the airfoil release occurred at the

airfoil root at the rotor hub, and this in turn triggered
the rotor burst. The second spin test failure of S/N

FX28512 rotor was a more typical hub burst.

Subsequent processing of power turbine rotors

used the power turbine metal rotor wax master die

to mold a suitable green form for siliconizing. Sohio
modified the aluminum wax master die for injection

122

molding and trials were conducted to produce test

bars and rotors. The molding trials involved a range

of SiC powder grit size and carbon level, which in
turn addressed component strength and density after

siliconizing. The molding trials are detailed in Table
XXV.

The results of the siliconized rotor program are
summarized as follows:

• test bars, mixes 1 through 6, were vacuum

siliconized--density and strength were somewhat
low, see Table XXV.

• sample rotors, mixes 1 through 6, were very fragile
while mixes 7, 8, and 9, which were void of C, were

less fragile; partial binder removal bake and bisque
fire after bake were investigated as potential

techniques to use if C is present in the mix; it was
concluded that mixes free of C would be investi-

gated in 1986

• sample rotors, mixes 1 through 6, were vacuum

siliconized; the surface was extremely rough (not

satisfactory) and the silicon was not uniformly in-
fused
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Figure 131. ACT 100 scroll test thermal shock rig: Rig 54, BU4, start nozzle operation.

• sample rotors, Nos. 8-9, 8-11, and 1-11, were inert

atmosphere siliconized; the density [silicon diffu-
sion] was uniform and surface smoothness was satis-

factory; two rotors, Nos. 1-11 and 8-11, were suitable

for spin, neither exhibited fluorescent penetrant

inspection (FPI) or visual indications. Results were
as follows:

number 1-11, p = 2.80 g/cm 3, burst at 54,800

rpm (80.6% N2), see photo of burst, Figure 135

number 8-11, p = 2.81 g/cm _, burst at 48,100

rpm (70.7% N2), see photo of burst, Figure 136

These burst speeds indicate substantial improve-

ment compared to the initial sample of siliconized
rotors, as shown in Table XXIV. Based on this favorable

trend, Sohio has defined a process development pro-

gram for 1986 addressing further improvements in

strength. The program will investigate time and tem-
perature parameters associated with inert atmos-

phere siliconization. The objective is to identify a
favorable combination of these parameters, which

will produce a dense, fine grain, high strength struc-

ture. The 1986 process development plan for
siliconized SiC material can be summarized as fol-
lows:

• powder--submicron and bimodal only, no carbon

• compound--identify the optimum level of binder

considering viscosity for injection molding and

porosity (after binder removal) for subsequent
siliconization

• siliconization--inert atmosphere, identify op-
timum time/temperature parameters for compo-

nent strength
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Application of the redesigned, thicker inducer

airfoil (see subsection 5.3.1) is also being considered

for the siliconized silicon carbide power turbine

rotor. It appears feasible to replace the airfoil inserts
in the metal rotor wax master die with alternate in-

serts to form the thicker airfoil. Other considerations

include cost, schedule, and process development.

Following an evaluation of these considerations, a

decision regarding airfoil replacement is planned for

early 1986. A delivery goal of 40 acceptable quality

siliconized SiC power turbine rotors has been sched-
uled for 1986.

9.2.5 Power Turbine Scroll Assembly Development

Development effort, during 1985, directed toward

design and fabrication of a silicon carbide power tur-
bine scroll/backplate assembly involved the comple-

tion of design drawings of the components, analysis

for steady-state and transient operating conditions,
and the initiation of fabrication of the scroll and outer

backplate at Sohio.

Tooling for the scroll and outer backplate has

been procured and scroll body castings and pressed

outer backplate details have been molded and sin-

tered. Adjustments to the material mix have been
made to obtain the desired shrinkage. The first outer

backplates will be received at Allison in January 1986

in a rough machined state. After dimensional inspec-
tion to determine that details conforming to print can

be machined from the rough parts, the outer back-

plates will be sent to a vendor for final machining. It

is anticipated that fully machined outer backplates
will be available for test in late May 1986.

Initial castings of the power turbine scroll indi-
cated distress in the region where the inlet transition

blends into the scroll body. A design modification of

that portion of the scroll has been completed to in-
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No. Serial No.

1 FX28510

2 FX28511

3 FX28512

Note:

Table XXIV.

Evaluation, siliconized (KX02) gasifier rotors.

(Oversize gasifier rotors--inert atmosphere siliconization)

Inspection

Visual, FPI, and X-ray

were satisfactory

2.8/2.9 g/cm 3
(0.101/0.1051b/in .3)

density

100% design speed, power turbine

Disposition

Held for shaft joining trial

Spin burst at 43,300 rpm

Spin burst at 30,000 rpm

68,000 rpm

SiC grit

Mix No. 7

Carbon level 1

Vacuum siliconized test

bars (injection molded)

Density--g/cm 3 2.81
(Ib/in. 3) (0.10)

MOR--MPa 411.69

(Ib/in. 2) (59.71 xi03)

Table XXV.

5iliconized rotor program.

(Power turbine)

1000 la,

1 2 8

2 3 1

Submicron Bimodal

2.75 2.76

(0.10) (0.10)

3 4 9 5 6

2 3 1 2 3

Note: Mixes 1-6 contain carbon (7, 8, & 9 are void of carbon)

2.85

(0.10)

2.78 2.88

(0.10) (0.10;
412.65

(59.85 x 103)

crease the size of the fillet radius between the inlet

transition and the scroll. This will permit better drain-

ing of the slip mold in this region and promote more

uniform wall thickness in the casting. An additional

design modification has been made to improve the

braze joint configuration between the scroll body

and the shroud. These design changes required mod-
ification to the model of the scroll body used to fab-

ricate molds for the slip-cast part. Delivery of the first

rough machine power turbine scroll/shroud assembly

is scheduled for late April, 1986. Completion of a

completely machined scroll assembly is projected to
occur near the end of June 1986.

Silicon carbide power turbine vane parts have

been procured and are available for test with the
ceramic scroll and backplate assembly.

9.3 SILICON NITRIDE COMPONENT DE-

VELOPMENT

9.3.1 Gasifier Rotor

Kyocera Rotors. A ceramic technology develop-

ment program conducted with Allison discretionary

funds in parallel with this contractual effort has re-
sulted in the delivery of 14 Si3N4 gasifier turbine rotors

from Kyocera. The process development, tooling, and
fabrication were funded in the referenced develop-

ment program, while inspection, evaluation, attach-
ment development, and engine testing were ac-

complished under AGT 100 contract funds. These

rotors, configured for interference fit shaft attach-
ment (AA101029) are shown in Figure 137, and are
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Figure 13.5. Initial failure, airfoil release at root (4:OOposition) at 54,800 rpm, siliconizedgasifier rotor, SIN 7-11. 

abricated of slip-cast SN220M sintered Si3N,. Non- 
lestructive inspection (visual and fluorescent pene- 
rant) of these rotors revealed no objectionable indi- 
ations. Dimensional evaluation indicated that all di- 
nensions were within print tolerance with the excep- 
ion of a minor closing of the exducer throat spacing 
bbserved in the first two rotors received (K-I and 
1-21. This was corrected in subsequent rotors by the 
ise of appropriate fixturing during the sintering pro- 
ess, and the remainder of the rotor met all structural 
nd dimensional requirements. The overall disposi- 
ion of the Kyocera SN220M sintered Si,N, gasifier 

turbine rotors (AA101029) is  summarized in Table 
XXVl. Each rotor (with the exception of K-2) was suc- 
cessfully proof spin tested to 100,000 rpm (116% de- 
sign speed), Table XXVII. 

Ten additional semifinished rotor assemblies 
were received from Kyocera during this reporting 
period. The assemblies consist of a Kyocera slip-cast 
SN220M sintered Si,N, gasifier turbine rotor attached 
to an lnco 907 shaft by a Kyocera developed and 
applied braze operation. The rotors were proof spin 

tested to 112,000 rpm (130% design speed) by Kyocera 
prior to shaft attachment. 

One of the rotorlshaft assemblies (0004-8) frac- 
tured during airfoil machining. The rotor separated 
from the lnco 907 shaft at the front surface of the 
braze joint. Fractographic analysis of the Si,N, rotor 
shaft revealed that the fracture initiated from two 
pre-existing surface cracks, identified in Figure 138 
by the large black arrows. The two surface cracks 
were interpreted as having been present in the rotor 
shaft prior to the finish machining operation because 
both crack surfaces were observed to have a thin 
layer of an iron-nickel alloy. Further analysis revealed 
a nonuniform braze layer in the attachment, depiaed 
in Figure 139, with no braze alloy present at the failure 
origins (direct ceramic/metal contact). An approxi- 
mately 120 micron thick layer of braze was located 
opposite the origins. 

The Kyocera brazed rotor shaft attachment under- 
went additional evaluation by selecting a second 
rotor assembly (0004-3) for flexural load testing. This 
rotor assembly failed at a bending moment of 22.6 
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Figure 136. Initial failure, airfoil release at root (2:OOposition) at48,100 rpm, siliconizedgasifier rotor, SIN 8-11. 

Figure 137. Kyocera slip-cast SN22OM sintered Si,N, gasifier turbine rotor. 
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Rotor
serial
No.

K-1
K-2

0002-1 100,000

0002-2 100,000

0002-3 142,800

0002-4 100,000

0002-5 100,000

0002-6 100,000

0002-7 100,000

0002-8 100,000

0002-9 100,000

0002-10 100,000

0003-1 138,000

0003-2 134,000

Table XXVI.

Disposition Kyocera slip-cast SN220M gasifier turbine rotors.

Spin test--rpm Shaft

Proof Burst assembly Machined Status

100,000 MOR bars

140,700

139,500

126,800

Yes Engine test

Yes

Yes Yes

Yes Yes

Yes Active

Yes Active

Spin test pending

Airfoil frequency testing

Table XXVII.

Spin test results for Kyocera SN220M Si3N 4 rotors.

Rotor No. Spin speed--rpm

0002-2 140,700

0002-3 '142,800"

0002-4 139,500

0002-5 126,800

0003-1 138,000"

i 0003-2 134,000"

*Rotor intact, test terminated at this speed due to
facility limitations

N-m (200 in.-Ib), (36.56 MPa [5.3 x 103 Iblin. 2] stress).

This compares to an average moment of 30.51 N.m
(270 in.-Ib), (111.74 MPa [16.2 x 103 Iblin. 2] stress) ob-
served for fracture of the SiC rotor shaft assemblies

and 35.36 N.m (313 in.-Ib), (132.38 MPa) [19.2 x 103

Iblin. 2] stress) measured for an interference-kit Kyo-

cera Si3N 4 rotor shaft assembly without failure. Frac-

ture initiated from a large crescent-shaped surface
flaw in the Si3N 4 rotor shaft, Figure 140. This rotor

assembly also had a nonuniform braze layer thick-

ness, Figure 141, with no evidence of braze alloy ad-

jacent to the fracture origin.

Kyocera is currently addressing modifications to

the Si3NJmetal braze process to ensure improved

positioning and more uniform braze coverage.
An additional order was placed with Kyocera for

delivery of 10 gasifier turbine rotors fabricated of slip-

cast SN250M sintered Si3N 4 material. The SN250M

Si3N4 features improved strength at elevated temper-

atures compared to the SN220M Si3N 4. The material

strength characteristics of the SN250 Si3N 4 are sum-
marized in Table XXVlll.

The rotors will be proof spin tested by Kyocera

to 112,000 rpm (130% design speed) prior to shipment
and will be configured for the Allison interference fit

shaft attachment. Delivery of the rotors is anticipated
in March 1986.

Ongoing material development activities at Kyo-

cera have resulted in further strength improvements

in advanced Si3N 4 material. This material, identified

as SN270, has demonstrated strengths of 689.48 MPa
(100 x 103 Ib/in. 2) at a temperature of 1400°C (2552°F).

While this material is currently available in test bar

form only, Kyocera is actively pursuing process de-
velopment for fabrication of structural ceramic com-

ponents.
As discussed, two techniques are being analyzed

for joining the Si3N4 rotor to the metal (Inco 907)

gasifier shaft, illustrated in Figure 142. Both
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TE86-2800 

Figure 738. Fracture surface of  Kyocera Si,N, rotor brazed to lnco 907shaft (0004-8). Origins are locatedat large 
black arrows. 

mechanisms utilize an air gap to reduce heat flux 
from the gasifier rotor into the compressor shaft. The 
difference in the techniques is  in the method of join- 
ing the metal shaft to theceramic rotor; configuration 
1 (Figure 142) utilizes a braze joining while configura- 
tion 2 (Figure 142) employs an interference fit. Both 
mechanisms are being analytically evaluated to in- 

clude the effects of rotor dynamics, heat transfer, and 
stress. The calculated rotor assembly modes and cor- 
responding frequencies for configurations 1 and 2, 
respectively, are presented in Figures 143 and 144. 
The first three modes, which consist of the two rigid 
body modes (the two bearing mounts) and the first 
bending mode, are shown. All modes are outside the 
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TE06-2801 
Figure 139. Cross section of Kyocera Si, N4 rotor 0004-8 showing nonuniform braze thickness. Note direct contact 

at fracture origin (bottom picture). 
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TE86-2802 

Figure 140. Fracture surface o f  Kyocera Si,N, rotor 0004-3 broken in load test (36.54 MPa (5300 /$/in.'). 
Origin is located at large black arrow. 

engine operating speed range includingthefirst bend 
mode, which is predicted to occur at 130% NI. This 
is  considered a desirable and safe margin. This discus- 
sion and that in the next paragraph are similar to that 
in subsection 4.3. 

The Si,N, rotor and shaft attachment has been 
analyzed for stress, with the effort during this report- 
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ing period focused on the interference fit configura- 
tion. The calculated stresses for this configuration at 
the 100% speed, SteadY-state operation, and 1080°C 
(1976°F) TIT are shown in Figures 145 and 146. The 
predicted stresses are well within acceptable levels. 

Kyocera's method to braze join the Si,N, rotor 
and metal shaft, configuration 1, i s  based on their 
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TE86-2803 
'igure 141. Cross section of Kyocera Si,N, rotor0004-3showing nonuniform braze thickness. Note direct contact 

at fracture origin (B). 

xtensive turbocharge; experience. This configura- 
on also features an air gap between the rotor and 
haft to reduce heat flux into the shaft. Thermal 
nalysis performed at 100% speed and steady-state 
onditions at 1288°C (2350°F) TIT indicates the shaft 
?mperature at the bearing location is 210°C (410°F) 
:@re 1471, approximately the same level as the Sic 
Itor system. The temperature distribution for the 
iterference fit attachment, configuration 2,  at 100% 

speed and 1080°C (1976°F) steady-state TIT is pre- 
sented in Figure 148. 

The airfoil natural frequencies were calculated 
for the finished machined Si,N, rotor, and the results 
are presented in Figure 149. This figure, an interfer- 
ence diagram, compares the calculated frequencies 
with potential vane passage excitation sources over 
the entire rotor speed range. Potential response of 
the third and fourth modes can occur in the engine 
operating range. The calculated mode shapes for 
these modes are shown in Figure 150. 

In preparation for engine testing, the rotor airfoil 
natural frequencies were also bench test measured. 
These data are also shown in Figure 149. A difference 
exists between the measured values of the first in- 
ducer and first exducer frequencies as compared to 
the calculated values of these frequencies; the mea- 
sured values were determined to be at higher fre- 
quencies because the calculated frequencies were 
based on the print specified airfoil thickness of 0.76 
mm (0.03 in.) while the actual thickness of the airfoils 
was 1.0 mm (0.039 in.). Both the inducer and exducer 
region of the gasifier airfoil successfully passed 
through potential airfoil natural frequency response/ 
vane passage excitation regimes during numerous 
speed excursions of the rotor up to a maximum of 
60,000 rpm during engine operation. 

GTE Rotors. GTE apprised Allison of the develop- 
ment of an injection molding process for the fabrica- 
tion of silicon nitride rotors. An order was placed for 
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Table XXVIII.

Strength characteristics of Kyocera SN250 Si3N4.

MOR strength--MPa (Iblin. 2

Surface
condition Room 1000°C (1832 °F) 1150°C (2102°F)

Machined 751.53 (109 x 103) 496.42 (72 x 103) 558.48 (81 x 103)

As-fired 475.74 (69 x 103) 475.74 (69 x 103) 475.74 (69 x 103)

Braze zone

TE86-2818

Figure 142. Si3N4 rotor shaft/compressor shaft joining schemes. (a) brazed joint (configuration 1), (b) interference

fit joint (configuration 2).

10 gasifier rotors fabricated in the GTE PY-6 Si3N 4 ma-

terial by injection molding and HIP processing. The

order also requires the proof spin testing of the rotors

to 100,000 rpm (116% N1) by the vendor. The exducer

region of the airfoil was shortened (see Figure 151)
to render the airfoil radially pullable. This affected

considerable savings in tooling costs for the relatively

small order. Delivery of the rotors is projected by

May 1986.

GTE Silicon Nitride Time Dependent Properties.

During the current reporting period both dynamic

and static fatigue were assessed for injection-molded

AY6 sintered Si3N4 test bars from GTE Laboratories.

The object of this study is to determine some of the

fundamental properties of ceramics, particularly in-

jection-molded silicon nitride, to build a theoretical

foundation permitting the development of better

dynamic and static components for use in the engine.
The study is highly theoretical in nature, reinforced

by sophisticated experimental techniques. Allison
has recently published the results of the study to

date.* Interestingly, one of the conclusions is that it

*Khandelwal, R K., Chang, J., and Heitman, RW.,
"Slow Crack Growth in Sintered Silicon Nitride," Frac-

ture Mechanics of Ceramics, Vol 8, Ed. by R. C. Bradt,

et al, Plenum Publishing Corp, 1986.
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Figure 143. Calculated gasifier rotor assembly modes (configuration 1)ntiebolt stiffening load included.

may be possible to use the present GTE silicon nitride

material, properly processed, up to 1000°C 0832°F)

for 1000 hr at Ioadings between 206.84 to 275.79 MPa
(30 to 40 x 103 Ib/in. 2) static stress before material
failure occurs.

9.3.2 Gasifier Turbine Scroll Assembly Development

Development activity on the silicon nitride

gasifier turbine static components during this report-

ing period included the following:
• vendor-proposed alternate design scroll body to

simplify fabrication

• part fabrication initiated at vendor utilizing vendor

alternate design concept

Calculated probability of survival for a silicon ni-

tride gasifier turbine scroll/inner and outer backplate

assembly is very favorable. Based on that result, pur-

chase orders have been placed for silicon nitride

scrolls, inner backplates, and outer backplates. Sili-

con nitride gasifier turbine vanes are already on hand.
The silicon nitride gasifier turbine components will

be supplied completely machined including nozzle

vane pockets. Table XXIX details the quantity of com-

ponents ordered and their scheduled delivery dates.

9.3.3 Power Turbine Rotor

The successful engine demonstration of a silicon

nitride material gasifier rotor supported the decision
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Figure 144. Calculated gasifier rotor assembly modes (configuration 2)--tiebolt stiffening load included.

to procure a power turbine rotor fabricated from the

same material. An order was placed with Kyocera for

12 power turbine rotors made from the slip-cast
SN220M material (same as used in the manufacture

of the gasifier turbine). The order specifies vendor

proof spin test to 130% NPT (88,500 rpm) and delivery

of rotors suitable for interference fit joining to the

power turbine shaft. Allison is supplying an oversize
aluminum master die. Kyocera has specified a 114.5%

master die size to accommodate subsequent shrink-

age in the processing. The die features a redesigned
(thicker) inducer airfoil in an effort to improve airfoil

resistance to impact.

Table XXlX.

Summary of purchase orders issued for silicon nitride

gasifier turbine static components.

Quantity Scheduled

Component ordered delivery date Vendor

Scroll 6 24March1986 Kyocera

Outer backplate 6 24March 1986 Kyocera

Inner backplate 12 24March 1986 Kyocera

Note: All components fully machined, ready for test
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L_end

MPa

A -100 (-15.00 x 103)
B -70 (-10.00 x 103)
C -30 (-5.00 x 103)
D 0 (0x 103)
E 30 (5.00 x 103)

F 70 (10.00 x 103)
G 100 (15.00 x 103)
H 140 (20.00 x 103)
Max 160 (23.50 x 103)
Min 110 (-16.05x 103)

TE86-2488

Figure 145. Contour plot of calculated maximum principal stress for interference fit (configuration 2), Si3N 4 rotor

at 100% speed and 1976°F turbine inlet temperature (TIT).

LeQend MPa

A 100 (14.00 x 103)
B 140 (21.00x 103)
C 190 (28.00x 103)
D 240 (35.00x 103)
E 290 (42.00x 103)
F 340 (49.00x 103)
G 390 (56.00 x 103)
H 430 (63.00 x 103)
Max 450 (64.93x 103)

NZN

TE86-2487

Figure 146. Contour plot of equivalent stress, Inco 907shaft at 100% speed and 1976°t: turbine inlet temperature
(TIT) for interference fit attachment.
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I
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I(i="

Legend

°c °F
A 1149 2100
B 982 1800
C 816 1500
D 649 1200
E 482 900
F 316 600
Max 1201 2194
Min 217 422

!x
F

I
I¥

°C °F
m

A 293 560
B 277 530
C 260 50O
D 243 470
E 227 440
F 210 410
Max 299 570
Min 194 382

TE86-2804

Figure 147. Contour plot of calculated temperatures for the Kyocera braze joining of 5i3N4 turbine and metal
shaft (configuration 1) at 100% speed and 1288°C (2350°F) TIT.

At the date of this report, the drawing for the

master die is being prepared. The die will be procured

from Plumb Mold during the first quarter of 1986.

Kyocera has estimated delivery of the rotors during

the third quarter of 1986.

9.3.4 Power Turbine Scroll Assembly Development

Development activity on the silicon nitride power

turbine static components during this reporting
period included the following:

• completion of design drawings

• vendor proposed alternate scroll design configura-
tion

• component fabrication initiated at vendor
Purchase orders have been issued to procure sili-

con nitride power turbine scrolls (vendor alternate

design), inner backplates, and outer backplates. Table

XXX details the quantity of parts ordered and their

expected delivery dates. The scroll and outer back-

plates will be supplied by Kyocera without vane pock-
ets because they do not have the capability to
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Figure 148. Thermal analysis of Si3N 4 rotor and metal shaft at 1080°C (1976°F) TIT and
interference fit (configuration 2).

°C "F

1038 1900.00
982 1800.00
927 1700.00
871 1600.00
816 1500.00
760 1400.00
704 1300.00
649 1200.00
593 1100.00
538 1000.00
482 900.00
427 800.00
371 700,00
316 600.00
260 500.00
204 400.00
149 300.00
93 200.00

976 1788.31
184 304.12

100% speed for the

machine pockets (all at one time) in a component as

large as the power turbine scroll or outer backplate.
A domestic vendor will be selected to machine the

vane pockets into the components. Silicon nitride

power turbine vanes have previously been procured

and are available for installation in a power turbine

scroll assembly.

9.4 FIBER-REINFORCED GLASS CERAMICS

A total of six reinforced glass-ceramic composite

gasifier turbine inner backplates were received from
Coming Glass Works during this reporting period.

These included four barium magnesium aluminosili-

cate (BMAS-III) and two magnesium aluminosilicate

(MAS) whisker-reinforced parts.
The BMAS-III inner backplates contain ceramic

grade Nicalon SiC fibers from Nippon Carbon 30-40%
by volume stacked in a 0-deg/+-45-deg/90-deg orienta-

tion. The BMAS-III matrix is a glass-ceramic compo-

sition with higher temperature capability than the
earlier lithium alumino-silicate (LAS) and BMAS-II

matrices. Coming test data indicate a room tempera-

ture flexural strength of 1027.32 MPa (149 x 103 Ib/in. 2)

for 0-deg/0-deg orientation BMAS-III test bars with a
strength of 434.37 MPa (63 x 103 Ib/in. 2) measured at

1250°C (2282°F). Coming is also developing a matrix

material with improved temperature resistance. Test

material (0-deg/0-deg) of this new composition has
demonstrated a strength of 372.32 MPa (54 x 103 Ib/

in. 2) at a temperature of 1350°C (2462°F). The four

BMAS-III backplates received were fabricated using

a stepped preform. The stepped preform differs from

the earlier flat preform backplates in that the stepped
construction incorporates fibers at a 45-deg angle

across the sharp corner to improve interlaminar shear

properties. The differences in laminate configuration
are shown in Figure 152.

A two-dimensional axisymmetric FEM model was

employed to calculate deflections of the composite

ceramic inner backplate under engine operating con-
ditions. The analysis required an estimate to be made
for the value of the elastic modulus of the material

in the component. This estimate was based on vendor
data. Static load tests were conducted on three differ-

ent material/reinforcement configurations to obtain
deflection as a function of load characteristics for the

material configurations and to also verify the elastic
modulus estimate used in the calculations. The re-

sults of these tests are presented in Figures 153

through 155. The LAS-III/flat preform configuration
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andtheBMAS-III/flat preform configuration slope de-

flection dependency on load was greater than pre-
dicted as indicated in Figures 153 and 154, respectively.

The slope of the deflection dependency on load for

two samples of the BMAS-III/stepped preform config-

uration are very similar to the predicted value, Figure

155. These data show the BMAS-III/stepped preform
configuration to be the stiffest of the three inner

backplate configurations tested, and a sample of this

configuration was selected for engine testing. A sam-
ple of a BMAS-III/flat preform composite ceramic

inner backplate has been tested in the static thermal

shock rig.

The remaining two backplates received from

Corning were MAS matrices reinforced with approx-
imately 25% SiC whiskers. This material has a flexural

strength of 344.74 to 413.69 MPa (50-60 x 103 Ib/in. 2)

with a fracture toughness (Kic) measured by single-
edged notched beam (SENB) of 5.5 MPa m 1_. The

whisker reinforced backplates offer improved near-

net-shape fabrication capability (sinter and/or HIP)

compared with the fiber reinforced backplates (hot

pressed) in addition to high surface hardness and

erosion/wear resistance. These backplates have not

as yet been rig or engine tested.
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Figure 149. Frequency-speed interference diagram gasifier turbine-silicon nitride (at speed and temperature),

drawing airfoil thickness.
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Figure 150. Calculated mode shape, third and fourth mode, Si3N 4 material rotor.
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Figure 151. GTE silicon nitride material (PY-6) gasifier rotor featuring radially pullable airfoils.
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Table XXX.

Summary of purchase orders issued for silicon nitride power turbine static components.

Quantity Expected

Component ordered delivery date Vendor

Scroll 6 15 June 1986" Kyocera

1 Aug.15 Oct 1986"*

Outer backplate 6 15 March 1986" Kyocera

1 May-15 July 1986"*

In her backplate 12 15 March 1986 Kyocera

*Delivered without vane pockets

**With vane pockets machined by domestic vendor

Flat laminate Stepped laminate

configuration configuration

TE86-2703A

Figure 152. Coming ceramic composite gasifier turbine inner backplate laminate configurations.
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Figure 153. Linear deflection as a function of load, Coming LA5 Ill--flat preform composite ceramic inner

backplate.
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Figure 154. Linear deflection as a function of load, Coming BMAS-IIl--flat preform composite ceramic inner

backplate.
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Figure 155. Linear deflection as a function of load, Coming BMAS-IIl--stepped preform composite ceramic
inner backplate.
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X. CONTROLS DEVELOPMENT

10.2 SOFTWARE CHANGES TO SUPPORT EN-
_,INE TESTING

Programming changes to support engine testing
:luring this reporting period include:

a new version of the electronic control unit software

to permit engine operation with the pilotless com-
bustor

an improved version of the software required to

permit engine operation with an electrical starter

minor software improvements/adjustments to exist-

ing control systems

Pilotless Combustor Operation. A new version of

he electronic control unit (ECU) software was written

_nd tested to permit engine operation with the pilot-

!ess combustor. The original start sequence for the

_.ombustor employed a pilot nozzle through which

fuel was introduced and ignited with a single electri-
Cal igniter. The pilot flame (torch) then ignited the

Start fuel introduced through the start nozzle.
r In the pilotless combustor system start fuel is

directly ignited with dual electrical igniters rather
than with the pilot flame. This scheme simplifies the

_ontrol system by eliminating the pilot and quickfill

_olenoids and the pilot nozzle temperature input.

Light-off logic is also simplified in that one-stage,

_ilot nozzle light-off has been completely eliminated.

Other reductions in the software include elimination

of the pilot nozzle flameout, pilot thermocouple fail-

ure, and pilot nozzle overtemperature logic. The ECU

still energizes a single relay to turn on the ignition;

however, in the absence of the pilot nozzle, dual

exciters are paralleled from the ignition relay to acti-
vate the dual electrical start nozzle igniters. Pilotless

combustor operation has been successfully de-

monstrated in the engine on the test stand and rep-
resents a sizeable reduction in both hardware and
software in the ECU.

Electric Starter Operation. Software has been writ-

ten and tested to permit engine operation with an

electric rather than a hydraulic starter. The original

engine start sequence used an electric starter and

this new version of the software simply merges the

original start logic with the improvements that have

occurred during the engine development program.

This version has not as yet been used on the test
stand.

Other Engine Support. Minor software changes

were also made during this reporting period to sup-

port normal engine testing. These include improve-
ments to the software for the new fuel system, adJust-

ments to the burner variable geometry schedule, and

changes to improve operator control of the engine.
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XII. SUPPORTIVE MANUFACTURING, COST,

AND MARKETABILITY

12.1 MANUFACTURING FEASIBILITY

Pontiac Motor Division (PMD) has had integrated

vehicle design and cost analysis responsibility

throughout the program effort. Although the effort
at Pontiac during this reporting period was curtailed
because of the intense effort directed toward ceramic

engine development, this annual report would not

be complete without a brief summary of Pontiac's
manufacturing feasibility studies to date.

Pontiac has successfully developed dies to man-

ufacture (stamp) the engine sheet metal case. RPD

design revisions proposed for the combustion case

assembly included elimination of separate combustor

support and mounting flange castings by including
these formations in the sheet metal case (ref: Fifth

Semiannual AGT Report, Section XII). An expansion

forming die process was investigated for the forma-

tion of these areas during 1984.

The objectives of that program were as follows:

• to verify the manufacturing feasibility of the com-

bustion case assembly incorporating design revi-
sions as previously proposed and included in the

manufacturing and cost analysis for the RPD engine
• to determine the feasibility of using anexpansion

forming die process to produce the combustion

case assembly on a high-volume production basis

• to gain experience with the draw and forming
characteristics of SAE 4130 steel

• to gain experience regarding the downstream
machining requirements based on the outcome of

actual parts fabrication

The expansion forming die process was only par-

tially successful. During the die tryout program, the

mounting flanges were successfully formed, but

metal near the top surface of the combustor support

area fractured before reaching the specified height.

Various techniques tried during the die tryout pro-

gram, including preforming the support area, did not

alleviate the fracturing. The conclusions from this pro-

gram were:

• The depth of draw in the combustor support area
with the existing design and material specification

exceeds the capability of the expansion forming pro-
cess.

• The mounting flanges can be formed by using either

an expansion forming or a conventional roll forming

process.
• The expansion forming process can be used for

sizing and qualifying the concentricity of the inside
diameter of the case.

Pontiac recommended that the combustor sup-

port area should be formed by a conventional draw

die process and initiated a program to verify this con-
clusion. Conventional draw die tooling was con-

structed but no experimental effort was performed

during 1985 to verify formability of the case combus-
tor support area. However, based on past experience,

Pontiac is certain that the combustor support area

could be formed by this more conventional process.

Further, it is Pontiac's contention that their prior work

is sufficient to verify the manufacturing feasibility of

the engine sheet metal case and combustor support

area incorporating all of the RPD design revisions to
date.
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APPENDIX. TERMS AND DEFINITIONS

_GT

_GT 100

_REQ
_S

ALCO

IP

IT

OT

U

;VG

.'ATE

"BO

i
?

L
CY
bE-2
DOE
E

ECR

ECU
EDR
L

IEMI

EMTL

EPA

oF

t/a

fEM
FOD

FPI
'ft

GM

GTE

ihorhr

HIP

,_hp
Hz

liB
i
,i.d.
i lGV

in.

km

r

1

advanced gas turbine kPa

the AGT model being developed by kW
Allison L

equivalent area ratio I_AS
aluminum silicate Ib

The Balancing Company, Inc. Ibm
burner inlet pressure LBO

burner inlet temperature m

burner outlet temperature mA

buildup number Metnet

burner variable geometry

damping coefficient MAS

degrees centigrade mg
Ceramic Applications in Turbine mil

Engines Program rain
Carborundum Company mm

compressor discharge temperature MOR

Coming GlassWorks MPa

centimeter m s
carbon dioxide

cycles per minute m v
coefficient of thermal expansion or

cyclic thermal evaluation mpg
calendar year N
diesel fuel number 2

U.S. Department of Energy N 1

Young's modulus N 2

engine configuration rotor NASA
electronic control unit

Allison engineering report . NDE

electromagnetic inspection NGK

Energy Materials Testing Laboratory

experimental procurement authority O/B

degrees Fahrenheit o.d.
fuel-to-air ratio POS

finite element model PMD

foreign object damage

fluorescent penetrant inspection Ps
foot

General Motors Corporation P,

General Telephone and Electronics Pv

Corporation
hour RBSiC

hot isostatically pressed ref

horsepower RFB
Hertz RIT

inboard RPD

inside diameter rpm

inlet guide vane RT
inch RTV

kilogram sor sec
kilometer SAE 4130

kilopascal
kilowatt

liter

lithium aluminum silicate

pound

pound mass
lean blowout

meter

milliampere
a foamed metal later filled with a wear-

face material

magnesium aluminum silicate

milligram
one thousandth of an inch

minutes

millimeter

modulus of rupture

megapascal
Weibull modulus based on surface

characteristics

Weibull modulus based on volume

characteristics

miles per gallon

force (Newton) or speed of rotation
(rpm)

gasifier speed of rotation
power turbine speed of rotation

National Aeronautics and Space
Administration
nondestructive evaluation

ceramics manufacturing company in

Japan
outboard

outside diameter

probability of survival
Pontiac Motor Division of General

Motors

probability of survival based on surface
characteristics

total probability of survival

probability of survival based on volume
characteristics

reaction-bonded silicon carbide

reference
rich flashback

rotor inlet temperature

reference power-train design

revolutions per minute

room temperature

room temperature vulcanizing
second

moly steel containing 3.9% C and
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APPENDIX (cont)

SFD

S/N

S/N 1

S/N 2

SiC

SJ3N4

SS
T/C

TD

TDR

T-I

TIT
TMOR

TOT

v

Yr

Vt

2-D

3-D

A

_R

p_

p.m
o"

(Ito

O'os

O'OV

5.1% Mg, along with P,S, Si, Cr, and Mo

squeeze film damper
serial number

first experimental AGT 100 engine

second experimental AGT 100 engine
silicon carbide

silicon nitride

steady state
thermocouple
teardown

Allison technical engineering report
Tri Industries Incorporated

turbine inlet temperature
tangential modulus of rupture

turbine outlet temperature
volt

radial modulus of rupturemregener-
ator disk

tangential modulus of rupture--regen-
eratordisk

two dimensional

three dimensional

difference between two measure-

ments, e.g., temperature or pressure

regenerator effectiveness
coefficient of friction

micrometer (micron)
stress

Weibull characteristic strength

Weibull characteristic strength--

surface flaw strength distribution

Weibull characteristic strength--

volume flaw strength distribution
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