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Abstract
Conventional trellis coding outputs one channel symbol per trellis branch.

Here we introduce the notion of multiple trellis coding wherein more than one

channel symbol per trellis branch is transmitted. It is shown that the
combination of multiple trellis coding with M-ary modulation yields a
performance gain with symmetric signal sets comparable to that previously
achieved only with signal constellation asymmetry. The advantage of multiple
trellis coding over the conventional trellis coded asymmetric modulation
technique is that the potential for code catastrophe associated with the
latter has been eliminated with no additional cost in complexity (as measured

by the number of states in the trellis diagram).
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1. Introduction

Trellis coded modulation (TCM) refers to the technique wherein a
rate n/(n+l) trellis code is combined (through a suitable mapping function [1])
with an M = 2n+1-point signal constellation to produce a coded modulation which
has no bandwidth expansion relative to an uncoded 2n—point modulation of the
same type yet gives significant performance improvement.

Traditionally, TCM systems have employed symmetric signal
constellations, i.e., those with uniformly spaced signal points. Examples of
such for multiple phase-shift-keying (MPSK) and quadrature amplitude modulation
(QAM) may be found in [1]. Although symmetric signal constellations are
optimum for uncoded systems, the same is not necessarily true for TCM. 1In
fact, it has been shown [2,3,4] that by designing the signal constellations to
be asymmetric, one can in many instances obtain a performance gain over the
traditional symmetric TCM designs.

The measure of performance gain and the amount of it achieved are,
in general, functions of many factors, namely, signal-to-noise ratio (SNR),
complexity of the trellis encoder (number of trellis code states), and the
number of modulation levels (M). For TCM systems, an asymptotic measure of
performance gain is the comparison of the minimum free Euclidean distance
dfree of the trellis code relative to the minimum distance dmin of the uncoded
modulation. This performance measure is an indication of the maximum reduction
in required bit energy-to-noise spectral demnsity ratio Eb/NO that can be
achieved for arbitrarily small system bit error rates. At practical bit error
rate values, this measure can often be misleading since the ''real'" gain in
Eb/NO reduction due to coding and possibly asymmetry could be significantly

less. More important, however, is the fact that in certain cases of asymmetry,

the asymptotic improvement as measured by dfree can be achieved in the limit



only as points in the signal constellation merge together, i.e., the trellis
code becomes catastrophic. An example of such is the 2-state code which, for
all values of n, asymptotically results in 3 dB gain over the same bandwidth
uncoded system [3,4].

Here we demonstrate a new and novel trellis coded modulation

technique referred to as multiple trellis code modulation (MTCM) (the

significance of this acronym will be apparent shortly) which is capable of

achieving the above asymptotic performance gains without resorting to

modulation asymmetry. As such, this technique circumvents the problem of code

catastrophe and other potential problems, e.g., increased phase jitter
sensitivity, associated with moving signal points in the constellation
arbitrarily close together. The principle behind our discovery is to design a
rate nk/(n+l)k (k=2,3,4...) encoder and combine it (again through a suitable
mapping function analogous to that employed in [1]) with a 2n+1—point signal
constellation outputting k of these signal points (one for each group of (n+l)
encoder output symbols) in each transmission interval. Since, in each
transmission interval, kn bits enter the encoder and k symbols leave the
modulator, the throughput is still n bps/Hz and we again have a unity
bandwidth expansion relative to a Zn—point uncoded system. The surprising
thing, however, is that values of k greater than 1 (k=1 corresponds to the
conventional TCM system), can, for certain cases, produce increased values of

with symmetric modulations.

dfree
The first part of this report demonstrates this discovery for
2-state trellis diagrams with MPSK and M-AM modulations. In particular, for
MPSK, using k=2 when n=1l, i.e., rate 1/2 trellis coded QPSK, and using k=4 for
1

n>l, i.e, rate n/(n+l) trellis coded M+ PSK, we are able to achieve the

above-mentioned 3 dB asymptotic performance gain improvement using a symmetric




modulation. Also, in the latter case (n>l), we have shown that values of k=2,3
still give performance improvement relative to the conventional (k=1) TCM
approach, but by an amount less than the maximum achievable 3 dB.

For M-AM, a value of k=4 for all n)>l is required to achieve the
maximum performance gain from the multiple trellis coding scheme and a
symmetric modulation. In this case, however, we achieve a 3 dB asymptotic
gain theoretically only as M approaches infinity (the reason for this will be
explained later on). From a practical standpoint, however, a value of M=16
brings us arbitrarily close, i.e., a gain of 2.96 dB. Also, as for MPSK,
values of k=2,3 give proportionate gains relative to the conventional TCM
approach. These results, including the mapping procedure for achieving the
above-mentioned performance gains, will be discussed first.

In the second part of the report, we generalize the above by
considering trellises with more than 2 states and also allowing for

throughputs whose values are not necessarily integers.



2. 2-State Multiple Trellis Code Modulation

To properly set the stage for the general 2-state case, we begin

with two simple examples.

Example #1

Figure la is the 2-state trellis diagram for conventional rate 1/2
trellis coded QPSK and Figure 1b is the corresponding multiple trellis diagram
for the same coded modulation. In Figure lb, we have n=1 and k=2 and thus
there are an = 4 branches emanating from each state. Since there are only
2 states in the diagram, this implies that there must be two parallel branches
between each pair of states. Also, since k=2, we have two output QPSK
symbols* assigned to each branch. The assignment of these symbols to each
branch is made to maximize the minimum Euclidean distance between the path
through the trellis corresponding to correct reception of the transmitted
symbols and that corresponding to an error event path. Also, the assignment

must be made in such a way as to prevent the code from becoming catastrophic,

i.e., a finite number of channel symbol errors producing an infinite number of
decoded bit errors.

Figure 1b illustrates the appropriate assignment of QPSK symbol
pairs for each branch in the trellis diagram. Assuming the all zero sequence
as the transmitted bit sequence with corresponding all '0" QPSK output
symbols, then the error event path of length one, i.e., the parallel path

between successive zero states, produces a squared Euclidean distance

d2 = 2d2(0,2) = 2(4) = 8 (1a)

*For convenience, we denote the QPSK symbol 53 simply by its subscript "j"
on the branch labels.




where dz(i,j) denotes the squared Euclidean distance between QPSK symbols s;
and sj. For the error event path of length two (illustrated by dashed lines

in Figure 1b), we see that the squared Euclidean distance is

= d2(0,0) + 4%(0,2) + d42(0,1) + d2(0,3)

[=X
I

0+ 4+ 4 sin’p/2 + & cos24/2 = 8 (1b)

independent of the asymmetry angle ¢. Thus, we may choose ¢ = w/2 (symmetric

QPSK) and obtain a rate 1/2 trellis coded QPSK modulation which achieves a

squared free distance equal to 8. We recall that for the conventional TCM of

Figure la, we can achieve dgree = 6 for the symmetric QPSK constellation and

diree = 8 for the asymmetric constellation whose adjacent signal points merge

together, i.e., the code becomes catastrophic [3,4].

Example #2

Figure 2 is the 2-state trellis diagram for conventional rate 1/2
trellis coded 4-AM (note that the output symbols assigned to the transitions
emanating from state "1'" are reversed with respect to those in Figure la so as
to get maximum gain from the asymmetry of the modulation [5]). The appropriate
trellis diagram for rate 1/2 multiple (k=2 for this example) trellis coding of
symmetric 4-AM (distance 2 between adjacent signal points) is identical to
Figure 1b with the understanding that the branch assignments now correspond to
two 4-AM symbols per branch. Assuming the all “0** 4-AM sequence tramsmitted,
then the error event of length one., i.e., the parallel path between successive
zero states, produces a normalized (by the average power of the signal set
which, in this case, has value equal to 5) squared Euclidean distance

32 _
== = 6.4 (2a)

2 _ a%((0,0),(2,2)) _ 2()?

P 5
av

d



For the error event path of length two, the squared Euclidean distance is

given by

2 _ 4%((0,0),(0,2)) + a%((2,2),(1,3)) - ) + 2)* =25 _ .8

d 5 5 5

(2b)
Thus, the minimum free distance squared is the smaller of (2a) and (2b) namely,

2

= 4.8 (2¢)
free

Relative to the squared minimum distance of uncoded 2-AM (same bandwidth as
rate 1/2 trellis coded 4-AM) which has value 4 [5], we achieve a gain of
0.792 dB. We recall that conventional rate 1/2 trellis coded symmetric 4-AM
produced no gain relative to the uncoded 2-AM [5]. Thus, even for just k=2,
multiple trellis coding has bought us an advantage.

We recall [5] that when asymmetry was introduced into the 4-AM
modulation, then asymptotically the squared Euclidean distance achieved by
conventional TCM could approach 32/4 = 8.0 or a gain of 3 dB over the uncoded
system. Once again to achieve that gain it was necessary to merge signal
points together (i.e., 0 with s; and S,y with s3) which results in a catastro-
phic code. Here we will see shortly that with k=4, we can achieve a squared
Euclidean distance equal to 32/5 = 6.4 or a gain of 2.041 dB over the uncoded
system. For larger values of k, we are limited by the Euclidean distance of

the error event path of length one, and thus d cannot increase beyond

free
the above value.

The reason that we cannot achieve with multiple trellis coding of
symmetry M-~AM the same maximum gain "achieved' with conventional trellis

coding of asymmetric M-AM is explained as follows. We see from the above

simple example that, ignoring the normalization by the average power of the




signal set, we can in either case achieve a squared free distance equal to

32, With multiple trellis coding, the signal set remains symmetric and hence
the normalization is constant, e.g., a value of 5. When asymmetry is
introduced into M-AM modulation, as in Figure 2 for example, the average power
is reduced, e.g., to a value of 4 in the limit as adjacent 4-AM signal points

merge together. Thus, the difference in performance gain between the two

schemes relative to an equivalent bandwidth uncoded system is attributed to

the reduction in the average power of the latter. As the number of levels, M,

gets larger, the reduction of the average power of the signal set due to
asymmetry becomes smaller; thus in the limit of large M, the multiple trellis
coded symmetric M-AM will approach the 3 dB gain over the uncoded system.

Numerical justification of this discussion will appear later on in Table 2.

A. The General Mapping Procedure for 2-State Multiple Trellis Encoding

As in [1], we begin by partitioning the original signal point
constellation into two constellations each with maximum distance among its
signal points. This is tantamount to assigning alternate points of the
original constellation to each of the two partitions (see Figure 3 for
example). Then, the first observation is that signals in partition #1 will be
used for transitions emanating from state "0 and signals in partition #2 will
be used for transitions emanating from state "1",

From the above discussion of k-multiple trellis coding, we note
that there will be 2nk_1 parallel paths between like states, e.g., "0" and
"Q" or "1'" and "1", and the same number of parallel paths between unlike
states, e.g., "0" and "1" or "1" and "0". For the transition between like
states, we assign to each parallel path a sequence of k symbols (we shall

refer to this as a k-tuple) all chosen from a fixed partition (of 2" points)




such that the minimum squared distance between any two of these parallel paths

is equal to twice the minimum squared distance between points in the partition,

i.e., 8 sin” w/2" for MPSK and 32/[(22°+2

an_l k-tuples formed from symbols in the same partition are assigned to the

-1)/3] for M-AM*. The remaining

parallel paths corresponding to a transition to an unlike state. The minimum
squared distance among all pairs of parallel paths between unlike states will
also be twice the minimum squared distance between points in the partition.
However, the minimum squared distance among all pairs of paths consisting of a

path between like states and a path between unlike states both originating

from the same state is only equal to the minimum squared distance between the

2n+2

points in the partition, i.e., &4 sin21r/2n for MPSK and 16/[(2 -1)/3] for M-AM.

Note that thus far the distances discussed have been independent of the

multiplicity k.

The place where the trellis multiplicity k has its influence is in
regard to the minimum squared distance among all pairs of paths consisting of

a path between like states and one between unlike states where the two paths

originate from two different states. With the above k-tuple assignments, this

minimum squared distance is k times the minimum squared distance between points

in one partition and points in the other, i.e., &4k sin21r/2n+1 for MPSK and

hk/[(22n+2

-1)/3] for M-AM. As we shall see in the next section, it is the
increase in these distances with k that increases the minimum distance
associated with the error event path of length 2 and thus allows for an
improvement in dfree performance. The examples provided by the trellis

diagrams of Figure 4 are further illustrations of the general mapping

procedure.

*Herein in our discussion of M-AM distances, we shall assume that the signal
point constellation and its partition have been normalized by P,y = (20%2-1)/3.

8




B. Evaluation of Minimum Squared Free Distance

If one constructs a 2-state trellis based upon the above mapping
procedure then clearly the minimum squared distance for an error event path of

length 1 is the minimum squared distance among parallel paths between like

states, i.e., d2 =8 sin21r/2n for MPSK and 32/[(22n+2

1

the error event path of length 2 (see the dashed curve in Figure 1b for

-1)/3] for M-AM. For

example), the minimum squared distance is made up of two parts. The first
part corresponds to the minimum squared distance between two paths originating
from the same state one of which terminates in a like state and the other in

an unlike state. As discussed above, this is given by 4 sin21r/2n for MPSK and

2n+2

16/[(2 -1)/3] for M-AM. The second part corresponds to the minimum squared

distance between two paths which originate from two different states and both

terminate in the same state. Again from the above discussion, this is given

2n+2

by 4k sin“)'1r/2n+1 for MPSK and 4k/[(2 -1)/3] for M-AM. Thus, the minimum

squared distance for the error event path of length 2 is dg =4 sin21r/2n +

1 for MPSK and a2 = (16 + 4k)/[(22®*2_1)/3] for M-AM. Finally,

4k sinw/2™* >

then the minimum squared free distance for the 2-state multiple trellis coding

scheme is the smaller of df and dz, namely,

?ree = min (8 Sinzﬂ'/Zn, 4 sin211'/2rl + 4k sin21r/2n+1} for MPSK
?ree = min {32/01C22%*2_1)/3], (16 + 4k)/[(22**2-1)/3]} for M-aM

(3)

It is interesting to investigate, as a function of n, the value of
trellis multiplicity k which if increased causes dg to become greater than
d%, i.e., the largest value of k beyond which there is no performance

improvement in dfree' In particular, we seek the largest integer k for which



d% > di. From the above, using straightforward trigonometric manipulations,

we arrive at the result

-
[}

[2(1 + cos m2™] < 4 for MPSK

=
]

4 for M-AM (&)

From (4) we see the following interesting results. For MPSK, a value of n =1
yields kmax = 2 whereas for any n>l, kmax = 4, For M-AM, we have kmax = 4 for
all n>l.

Tables 1 and 2 tabulate, for MPSK and M-AM respectively, as

dfree’
computed from (3), versus n for values of k from 1 to kmax' Also tabulated are:
1) the performance gain (in dB) of multiple trellis coded MPSK (M-AM) relative
to conventional TCM obtained by taking the ratio of dgree for the given value
of k to d2 e for k=1, and 2) the performance gain (in dB) of multiple

fre

trellis coded MPSK (M-AM) relative to uncoded symmetric 2"_MPSK (M-AM).

C. New Description of Multiple Trellis Coding

A few years back, Calderbank and Mazo [6] introduced a new
description of conventional trellis codes which expressed the modulator output
as a series expansion of products (of all order) of the encoder input bits.
The advantages of this new approach were manyfold. First, it was no longer
necessary, as in previous discussions, to treat the overall design as a
two-step process, i.e., specify an underlying trellis code and then map the
output code symbols into the fixed signal constellation based on the "mapping
by set partitioning rule" [1]. The new trellis code description given in [6]
allowed these two steps to be combined into one. Second, the input/output

description of the system afforded by [6] allowed the implementation of the

10




transmitter to be drawn by inspection. Finally, the representation of [6] was
particularly convenient for studying the behavior of trellis coded modulations
in an intersymbol interference (ISI) environment.

In [7], the work of Calderbank and Mazo [6] was reviewed and
discussed in the context of its application to the optimum design of trellis
coded asymmetric modulations. Here, we generalize the work of [6] and [7] to
multiple trellis coding.

Let {bi} be a sequence of +l-valued real variables which are a
mapping of the 0, l-valued encoder input sequence {ai} according to the linear

transformation
bi =1 - 2ai (5)

Then, for a conventional (k=1) trellis code, the modulator output x(bl,bz,...,bm)*

may be written as a sum of products of the bi's [6,7], namely,

m m
x(b,,b,y.c.,b ) =d, + L d,b, + L ..b.b.
1°72 m 0 s=1 1 1 i,j=1 ij7i7]
il
m
+ I d...b.b.b + ... +d b.b,...b
i,3,k=1 ijk'i"jk 1...m7172 m
k>j>i (6)

where the d's are a set of constraints that can be determined by a simple

vector multiplication as foliows.
m
Let X = (x(l),x(?-),...,x(2 )) denote a column vector of length 2m

whose components represent the 2™ values that x(bl’bz""’bm) can take on.

d ) denote a 2m—length colum

Next let d = (dydyseeesd sdipsdigsennsd) o

*The sequence length m is equal to the sum of n, the number of input bits per
channel symbol, and v, the memory of the code (2V is the number of states of
the encoder).

11



vector of the unknown constants. Finally, let B be a 2™ x oM matrix where
each row represents the 2™ values taken by all products of the bi's called for
in Eq. (6) for each sequence b

1’b2""’bm' In terms of these definitions,

Eq. (6) can be written in the matrix form
x=Bd D)

If B is a vector corresponding to a particular product of the bi's (i.e., a
column of B), then as shown in [6,7], the corresponding coefficient of that

product in the expansion of Eq. (6) is simply obtained from

d = la §T§ (8)

N

i.e., the Hadamard transform of the vector x. In (8), the "T" superscript
denotes the transpose operation.

To apply this description to multiple trellis coding, we simply
note that a description such as Eq. (6) is appropriate for each of the k
elements in the k-tuples assigned to the trellis branches. Thus, letting
()

3y i=1,2,...,k denote the ith modulator output corresponding to an input
sequence of length nk, then the matrix representation of (7) is appropriate to
(1) . (i) . .
X and yields a vector d in accordance with (8). The set of vectors
{g(l)}; i=1,2,...,k determined as above completely describes the multiple

trellis code.

Example i1
As a simple example of the above, consider the case of rate 1/2

(n=1) multiple (k=2) trellis coded 4-AM with memory v=1 (2 states). The

12




(i)

length of the input sequence upon which each output symbol x s 1 =1,2

depends is now m = nk + v = 3. For m=3, Eq. (6) simplifies to*

x(by,b,,by) = d by + dpb, + dgby + d; b,
+d 3b1b3 + d23b2b3 + d123b1b2b3
Here b3 denotes the previous state and b1 the present state. (Note that

(9)

neither the previous nor the present state depend on b2‘ Rather b2 is used to

decide between the parallel paths between states.) From the trellis diagram

of Figure 1b (with state "0" and "1" respectively replaced by "1" and "-1" in

accordance with Eq. (5) and the signal constellation of Figure 2 (with A =

we have

*Pa,1,1) = -3 2 (1,1,1) = -
«Pa,-1,1) =1 «Pa,-1,1) = 1
Vi1, = -3 x(Z)(—l 1,1) = 1
xP1,-1,1) = 1 P (1,-1,1) = -3
*P1,1,-1) = 1 x(Z)( 1,1,-1) =

B C1,-1,-1) = 3 2 (1,-1,-1) = 3
«P,1,-1) = 1 x(Z)(1,1,—1) =3
«P,-1,-1) = 3 P (1,-1,-1) = -1

0)

(10)

Then, using Eq. (10), the expansion of Eq. (6) can be put in the matrix form

of Eq. (7) where

*As in [6], we choose the additive constant dg

0 with no loss in generality.

This assumption reduces the dimensionality of d and B to 2™ - 1 and 27 x 27 -1,

respectively.

13



(1)

and

To solve for the elements
example, using the second and third colummns of B for d

seventh columns of B for d

(1) _

N
oo |

(2)

00|

-1

-1

-1

-1

[1111-1-1-1-1){-1]=-1 d

(2)

we would have

3]
1
-3

l-11-11-11-1]]1}=-2 d (1) =

-1
3
-1

)
1

1
-3

3
3
-1

e

14

QO | =

- -
-3 a,
L d
(2) L 3
_1 d
3 13
3 dy3
B d
123
by byb, Dbyby byby Dbbyb,
11 1 1 1
1 -1 1 -1 -1
1 -1 -1 1 -1
1 1 -1 -1 1 (12)
1 -1 1 -1 1
11 1 1 -1
401 -1 -1 -1
1 -1 -1 1 1
o
(i)

3y i = 1,2, we make use of Eq. (8). For

(1) and the third and

[1111-1-1-1-1] 1l|=

é [1-1-111-1-11}-1

(13)




Application of Eq. (8) to the remaining columns of B results in zero values

for all other d's. Thus, the trellis of Figure 1lb is represented by the relations

(L)
X —2b2 - b3

2 - b - b,b

3~ 2 (14)

3

A simple implementation of Eq. (14) as a transmitter is illustrated in
Figure 5. Note that Figure 5 represents the combined modulation/coding process
without the necessity of separating it into its component parts, i.e., a

trellis code followed by a rule for mapping and an AM modulator.

Example #2

As a second example, consider the case of rate 1/2 (n=1) multiple
(k=2) trellis coded QPSK with memory v=1. Since once again m=3, Eq. (9) holds
for the input/output relationship of the trellis encoder. Here, however, the
output symbol, x, represents phase instead of amplitude and the true encoder
output, y, is given (in complex notation) by y = ejx [7)]. Similarly, the
trellis diagram of Figure 1b is appropriate together with the signal

constellation of Figure la (with ¢ = 0). In particular,

M 1,1,1) = w4

X

*1,-1,1) = 3u/4

x1(-1,1,1) = -v/4

1 (-1,-1,1) = 3w/4

x(l)(—l,l,-l) = /4

x 1 (1,-1,-1) = -3w/4
(1)

x '(1,1,-1) = w/4

*V,-1,-1) = -3w/4

) (1,1,1) = ~m/4
() (1,-1,1) = 3w/a
_(2)(_1’1

L,l) = 3“/&

KoM M

2)(C1,-1,1) = -w/a
@) 1,1,-1) = w/a
) 1,-1,-1) = -3w/4
2)1,1,-1) = -3v/4
2)(1,-1,-1) = w4

L L

(15)
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Putting Eq. (15) in vector form as in Eq. (11), then using Eq. (12) and
(1),

solving for d" "3 i=1,2 from Eq. (8) gives the desired result, namely,

LD

ISE

(b3 - 2b2b3)

<2 - % (by - 2b;b,) (16)

Figure 6 is an implementation of Eq. (16) where the phase modulator is used to

convert X to y in accordance with the relation given above.

D. Bit Error Probability Performance

Thus far our entire discussion has focussed on performance gain as
measured by improvement in minimum free distance of the trellis code. In the
limit as the system bit error probability becomes arbitrarily small, this
measure is equivalent to the improvement in required bit energy-to-noise
spectral density ratio. From a more practical standpoint, one is often
interested in the reduction of bit energy-to-noise spectral density ratio for
a given average bit error probability. Previous results [2-5] on conventional
trellis coding showed that such reductions were possible. Using pair-state
diagrams and upper bounds on bit error probability computed from the transfer
function of these diagrams [2-5], we shall now determine the magnitude of
these performance gains for multiple trellis codes.

Without going into great detail, it has been shown [4] that a tight

upper bound* on the bit error probability of trellis codes is given by

1
b < o erfd N L D iz T(D,z) (17)

*This bound was shown in [4] to be an excellent match to numerical results
obtained by computer simulation.
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where erfc x is the complementary error function, D is the Bhattacharyya

distance defined by

D = exp |- (18)

with Eb/N0 denoting the bit energy-to-noise spectral density ratio, and
2

dfree is, as before, the squared free distance of the trellis code, and
T(D,z) is the transfer function of its pair-state diagram. Provided that one
finds the proper pair-state diagram for multiple trellis codes, then Eq. (17)
also applies in this case except that the factor of 1/2n is replaced by 1/2nk.
We also note that the Bhattacharyya distance for multiple trellis codes is
still given by (17) independent of the value of k.

As an example consider a rate 1/2 multiple (k=2) trellis coded QPSK
system with trellis diagram as in Figure lb. The corresponding state diagram
is illustrated in Figure 7 and the equivalent pair-state diagram [3] for
computing T(D,z) is shown in Figure 8. In Figure 7 the branches are labelled

with the input bit and output QPSK symbol pairs that cause that particular

transition whereas in Figure 8 the branches are labelled with a gain of the form

2
1 Q8
G=-—2D 19
2nk (19)
Here z is an index, { is the Hamming distance between input bit sequences

and 82 is the squared Euclidean distance between MPSK output symbols for
the transition between the pair states.

The transfer function of Figure 8 is easily computed as [3]

(2z + Zz2 + z3)D8 - (z2 + z3)D12
1 - (z + zz)Dh

T(D,z) = (20)

17



where, in accordance with (19),

(z + z2)Dh

N |

(1 + z)p*

o
1}
N

zD (21)

(]
H
M=

Substituting (21) into (20) and performing the differentiation required in (17)
yields the desired upper bound on Pb’ namely,

4 8
P, ¢« Lerfe (/-2 | x (2=8D 23D (22)

0 (1 - 2Dl‘)2

Figure 9 is an illustration of the upper bound of Eq. (22). Also shown in
this figure, for purpose of comparison, are the upper bounds on Pb for uncoded
PSK and conventional (k=1) rate 1/2 trellis coded symmetric and optimum*

asymmetric QPSK modulations. These results are obtained from [4] in accordance

1 Ey
P = erfe| — (uncoded PSK) (23)
b 2 N0

with the relations

1 3y
= erfes| s
2 2 0
Py< 5 (coded symmetric) (24)
(1 - exp(-EbIZNO))
and
1 Eg (1+2a)
3 erfc N0 (l+a)
Pb < 2
(1 - exp(-E,/[Nj(1+a)]))

(coded optimum asymmetric) (25)

*The value of asymmetry as given in (26) is exactly optimum for a slightly
looser upper bound (see [3]) but only approximately optimum for (25).
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with

Eb/N0
On 3

a = -1 (26)

We observe from these results that, over the range of Eb/N0 illustrated, the
multiple trellis scheme is slightly better in performance than the conventional

trellis code with optimum asymmetry.

3. Generalized Multiple Trellis Coded Modulation

As mentioned in the introduction, here we generalize the results of
Section 2 by considering trellises with more than 2 states and also allowing
for throughputs whose values are not necessarily integers. In particular, we
propose an encoder with b binary input bits and s binary output symbols which
are mapped into k M-ary symbols in each transmission interval (see Figure 10).
For such a transmitter, the throughput is b/k bps/Hz which depending on the
choice of b and k may or may not be integer—valued.

To produce such a result, we partition the s binary encoder output
symbols into k groups of m = logzM symbols each. Each of these groups
results in an M-ary modulator output symbol. Thus, the only constraint on the

transmitter parameters is that s, k, and M must be chosen such that
s =k logzM (27)

Furthermore, b is not required to be an integer multiple of the multiplicity &k
and thus the trellis code rate b/s is not constrained to be the ratio of
adjacent integers.

It is interesting to note that the non-integer throughput MICM's do
not have equivalent uncoded counterparts. Thus, in these cases, the notion of

unity bandwidth expansion of the trellis coded scheme relative to the uncoded
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scheme has no meaning. Instead, we must define a performance measure which
directly characterizes the generalized MICM technique. For this purpose, we

shall use the computational cutoff rate Ro [8] of the channel as a basis for

demonstrating the efficiency of the above technique (in terms of the required
bit energy-to-noise ratio at a sufficiently small error rate). This procedure
is analogous to but simpler than that performed by Ungerboeck [1] who used

channel capacity as his basis of comparison.

A. Computational Cutoff Rate for Generalized MTCM Channels

The computational cutoff rate is dependent only on the coding
channel and not on the coding scheme. For MPSK modulation, and discrete

memoryless channels, R, is given by

0

M-1 2
R, = log,M - log,|1 + E ptsin” (in/M) (28)

i=1

where D is again the Bhattacharyya distance that depends only on the decoder
metric. In our case, i.e., a maximum-likelihood metric, D is given by

E
D = exp(- Z%—) (29)
0

where Es is the energy of an M-ary channel symbol. For generalized MICM, Es
is related to the input bit energy by Es = (b/k)Eb. For the simple MICM case
discussed in Section 2 where b/k = n, (29) becomes (18), which is independent

of multiplicity and thus also characterizes conventional TCM.
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B. Error Probability Performance

Analogous to (17), an upper bound on the bit error probability

performance of generalized MICM is given by

2
2 -d
_Eh dfree D free

1
b-2b kNO 4 dz

|ﬂ-

T(D,z) (30)
z=1

Similarly, an upper bound on first error event probability P [9] is given by

2 2
E,L d -
b free free
W, s P T(D) (31)

0

—

Pe £3 erfc

Both of these bounds require determining the transfer function of the pair
state diagram [9] associated with the trellis. For trellises with large
numbers of states, this process can become analytically quite cumbersome.
Thus, instead we consider an approximate (asymptotically approached at high

SNR) lower bound which for first error event probability is given by

E d2
1 b free ]x N(d ) (32)
Pe £3 erfc kNo 4 free
where N(df ) is the number of error event paths at distance d from the
ree free

all zeros path, i.e., the multiplicity of error events at distance d‘*ee'
In effect, (32) represents the result that would be obtained from (31) by
keeping only the first term in the power series expansion of T(D).

The approximate lower bound of (32) can be simplified (at a slight

expense in tightness) still further by ignoring N(dfree)' Thus, for a given

ge, €.8., 10_6,,we can readily compute the required Eblyc for any particular

generalized MICM with given values of b, k, and M once we determine its d

free’
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Next, we give several examples illustrating the procedure and then examine
their communication efficiency relative to Ro.

Example 1

Consider a trellis encoder with b=3, s=6, whose binary output
symbols are mapped into 8PSK symbols with multiplicity k=2 in accordance with
(27). The throughput of this MTCM scheme is thus b/k = 1.5 bps/Hz. We again
note that there is no equivalent (same throughput) uncoded modulation. In
fact, the above MTCM scheme is exactly midway between BPSK with a throughput
of 1 bps/Hz and QPSK with a throughput of 2 bps/Hz. For the above example,
the number of transitions emanating from each state in the trellis diagram is
2b = 8. If we postulate that there are to be no parallel paths between

transitions (later examples will relax this requirement), then the minimum

number of states for the trellis must be 8, i.e., a fully—-connected trellis.

Thus, we begin by considering this specific case.

1. 8-State Trellis

In accordance with the above, we must assign a pair (k=2) of 8PSK
symbols to each trellis branch in such a way as to maximize the free distance
of the code. For the symmetric 8PSK signal set illustrated in Figure 11,

define the sets (pairs of 8PSK symbols)*

A0 =00 Ah =2 2 BO =0 2 B4 =20
A1 =4 4 A5 =6 B1 =46 B5 =64 (33)
A2 =04 A6 =26 B2 =06 BG =24
A3 =40 A7 =6 2 B3 =4 2 B7 =60

*For simplicity, we denote the MPSK symbol merely by its subscript.
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These sets have the following minimum squared Euclidean distances:

2

dmin (Ai’Aj) =4
2

dmin (Bi’Bj) =4 (34)
2

diin (A10B) =2

We assign the Ai's to the paths leaving the odd-numbered states each time
permuting the assignment by one. Similarly, we assign the Bi's tp the paths
leaving the even-numbered states with the same permutation (see Figure 12).

When this is done, the minimum distance path will be of length 2 (see Figure 12)

and thus the squared free distance for the code is

2 2 2
free = dmin (Ai,Aj) +d . (Ai,Bj) =4 +2=6 (35)

Note that, in effect, we require only a QPSK signalling set to achieve the

above. We remind the reader that conventional rate 1/2 trellis coded QPSK

(throughput = 1 bps/Hz) with an 8 state trellis resulted in dgree =12.0

whereas conventional rate 2/3 trellis coded 8PSK (throughput = 2 bps/Hz)

with an 8 state trellis produced d2 =6 -2 = 4.586 [3].

free

2. 16-State Trellis

Here we still assume no parallel paths between states but use a

half-connected trellis (each state transitions to only half the total number

of states). The treliliis and mulitiple 8PSK symbol set assignment are illus-
trated in Figure 13. In particular, we do as before, namely, we assign the
Ai's to the paths leaving the odd-number states and the Bi's to the paths
leaving the even-numbered states. With the assignment of Figure 13, the

minimum distance path is of length 2 and
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2 2

2
free = %min (Ai’Aj) * dhin (Ai’Aj) =4 + 4 (36)
= 8
. s . 2 2
This is to be compared with values of df = 14 and d = 5.172 for
ree free

16-state conventional rate 1/2 trellis coded QPSK and rate 2/3 trellis coded
8PSK respectively. Again, we note that, in effect, only QPSK signalling is

used.

Example 2

The free distance of the MTCM schemes of Example 1 can be increased
by defining the mapping sets such that transitions between states contain
parallel paths. In particular, we define sets containing 2 elements per set

as follows:

Co = at Eg = 355
- I .F
€y = {22 Ey = ;3;
C3 = lo2 E3 = {3;
- i -
D, = 22 F1=§§§
D2=%§2 Fzﬂ’%
Dy = [go F3 = N (37)
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These sets have the following squared Euclidean distances:

a2(cy) = 8 d2(E;) = 8
dz(Ci,C.) =4 d2(Ei,E.) =4
REFY NEFY
2 2
4nin(CsoDy) = 2 dinEgoFy) = 2
d?(p;) = 8 d2(Fy) = 8
2 2
i#j I 1143

where dz(Xi) is the squared Euclidean distance between the two elements in the
set, dz(xi,Yj) is the squared Euclidean distance between either element in
X, and either element in Y., and dz. (X.,Y.) is the minimum of the squared
i j min "1i'"j —_—
Euclidean distances between either element in Xi and either element in Yj'

Since b = 3 (2b

= 8 paths emanating from a given state) and there are
two parallel paths per transition (i.e., each corresponding to one of the two
elements in a given set), then each state will now have a transition to only 4

other states. We begin by considering a trellis with 4 states which implies a

fully connected trellis.

1. 4-State Trellis

Consider the trellis of Figure 14 where the Ci sets have been
assigned to the paths leaving states 1 and 3 and the Di sets have been
assigned to the paths leaving states 2 and 4. Again we permute the assignment
by one between paths leaving state 1 and paths leaving state 3, and similarly
for states 2 and 4. By inspection of Figure 14, we immediately find that the

minimum distance path is of length 2 with squared Euclidean distance
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2 2
d (ci,cj) + dmin(ci’Dj) =4 +2=6 (39)

i#]

Since this squared distance is smaller than the squared distance between

parallel paths, i.e., d2 = 8, then d?ree = 6. We note that by using parallel

paths between transitions, we are able to achieve a larger free distance with

only 4 states than we achieved previously in Example 1 using 8 states. Also,

the set assignment in Figure 14 does not require the use of the Ei and Fi
sets. Thus, in effect, we require only a QPSK signalling set to achieve the

above.

2. 8-State Trellis

Here we have a half-connected trellis as illustrated in Figure 15
with the Ci's assigned to the odd-numbered states and the Di's assigned to
the even-numbered states. Again the minimum distance path is of length 2 and

achieves

=4 + 4 =8 ([*0)

d2(Ci,C )
I 14 i#j

+ dz(Ci,C.)
i#]j 3

Since this is identical to the squared distance between parallel paths, we
have dgree = 8 which is the same as that achieved with 16 states and no
parallel paths in Example 1. Again, only a QPSK signalling set is needed
since sets Ei and Fi are not assigned to the trellis.

Since the maximum free distance achievable is limited to the distance
between parallel paths, we cannot achieve any further improvement by going to

16 states.
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Example 3

Consider next a trellis encoder with b=7, s=12, whose binary output
symbols are mapped into 8PSK with multiplicity k=4 in accordance with (27).
The throughput of this MTCM scheme is b/k = 1.75 with no equivalent uncoded
system. There are now 2b = 128 transitions emanating from each state so
that for any number of trellis states less than 128, we must have parallel
paths between states. The first case we consider is again that of a
fully-connected 8-state trellis which implies that the number of parallel

paths between states is 128/8 = 16.

1. 8-State Trellis

In accordance with the above we must assign 16 4-tuples of 8PSK
symbols to each trellis branch in such a way as to maximize the free distance
of the code. We can use the trellis diagram of Figure 12 but first we must
define and then assign the sets of 8PSK 4-tuples. The construction of these

sets is as follows:

Set Number of Elements Per Set
1) 0000
A = 2
0 44 44
2) A=A, +0044 2
A2 = A0 +0404
A3 = A0 +4004
= UA U u
3) BO AO 1 A2 A3 8
4) B1 = B0 +2222 8
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Set Number of Elements Per Set

5) C,=B,UB | 16
6) ¢, = C,+ 0004 16
C,=Cy+0022
C3=Cy+2200
C,=Cy+2002
Cg=Cy+2020
Cg =Cy+ 0220
C,=Cy+0202
7) D, =C,+0002; i=0,1,2,...,7 16
8) E;=C +11113; i=0,1,2,...,7 16
F, =D, +1111; i=0,1,2,...,7 16 (41)

Only the final sets, i.e., Ci’ Di’ Ei’ and Fi’ with 16 4-tuples each, are of

interest insofar as assignment to the trellis. These sets have the following

squared Euclidean distances:

2 2 .

dmin(ci) = dmin(Ei) =8; i=0,1,2,...,7

diin(ci.c.) = di.n(E.,E.) =4 (42)
ETY R N E P

2 e . .

dmin(ci’Ej) = 4(2 - 2) 'Y 1= 0,1,2,--.,7, J - 0,1,2’.00,7

2 . .. R .
where dmin(xi) is the minimum squared Euclidean distance between elements

2

(4-tuples) in the set Xi’ and dmin(xi’Yj) is the minimum squared Euclidean

distance between any element in Xi and any element in Yj'
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If we replace the trellis branch assignments Ai and Bi of Figure 12
with Ci and Ei’ respectively, then, since the distance between parallel
branches is 8, the free distance is determined by the minimum distance path of
length 2, namely,

2
free

2
(C ,C ) +d_, (E,,E,)
m1n i4j min "1’7j i4j

4 + 4(2 - V2) = 6.343 (43)

2. 16-State Trellis

Using the half-connected trellis of Figure 13 and again replacing
the Ai and Bi branch assignments with Ci and Ei’ respectively, the

minimum distance path of length 2 has a squared Euclidean distance

d° = (c. c ) = (c c ) + d (c c )
m1n 1 1#_] 1#]

L+4=8 (44)

Since (44) is equal to the minimum squared distance between parallel paths

(i.e., 8), then the squared free distance of the trellis is

free (45)

Example 4

As a last example, we consider b = 6, k = 4 and a 4-state trellis.
This example has the same throughput as Examples 1 and 2, namely, b/k = 1.5
but with an increase in multiplicity from 2 to 4. The appropriate trellis
diagram is illustrated in Figure 16. Here, the even-numbered Ci sets of
(41) are assigned to the paths leaving states 1 and 3 while the odd-numbered
Ci sets are assigned to the paths leaving states 2 and 4. The minimum

distance path is of length 2 and achieves
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2
d (Ci’cj) .

+ d%(c..c.) =4+ 4 =8 (46)
. 1 ]
i#j

i#]

which is equal to the squared distance between parallel paths. Thus,

d2 = 8. Hence, we can achieve with 4 states and multiplicity 4 the

free
equivalent performance to what required 8 states when the multiplicity was
only 2 (see Example 2). Once again going to a larger number of states will
result in no gain, since a free distance equal to the distance between
parallel paths has already been achieved.

Illustrated in Figure 17 is a plot of RO versus Es/NO with M as a
parameter as computed from (28) and (29). Superimposed on these curves are
points, corresponding to the various examples given in this report, whose
abscissa is the required Es/NO to achieve the upper bound on Pe (ignoring the

factor N(dfree)) equal to 10-6. The ordinate of these points is obtained by

setting R0 = b/k for each case at hand.

4. Conclusion

Multiple trellis coding, wherein more than one channel symbol per
trellis branch is transmitted, has been shown to yield a performance gain with
symmetric signal sets comparable to that previously achieved only with signal
constellation asymmetry. The advantage of multiple trellis coding over the
conventional trellis coded asymmetric modulation technique is that the
potential for code catastrophe associated with the latter has been eliminated
with no additional cost in complexity (as measured by the number of states in
the trellis diagram). While indeed additional computations per branch are
needed for the multiple trellis coding scheme, this is thought to be a small
price to be paid for the relatively large performance gains achievable.

Also, extension to higher dimensional modulations such as
quadrature amplitude modulation (QAM) is obvious from the results of [1] and
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{5].

In particular, each pair of M-AM symbols per branch (assuming k is even)

would be regarded as the coordinates of a QAM symbol.
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Table 1.

Minimum Squared Free Distance Performance of Multiple

Trellis Coded MPSK - 2 States.

Performance Gain Relative

Performance Gain Relative

dfree n k to Conventional TCM (k=1) to Uncoded 20-PSK

6.0 1 1 0.0 dB 1.76 dB
8.0 1 2 1.25 3.01
2.586 2 1 0.0 1.116
3.172 2 2 0.887 2.003
3.757 2 3 1.623 2.739
4.0 2 4 1.895 3.01
0.738 3 1 0.0 1.00
0.8903 3 2 0.814 1.814
1.0425 3 3 1.50 2.50
1.172 3 4 2.01 3.01
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Table 2. Minimum Squared Free Distance Performance of Multiple
Trellis Coded M-AM - 2 States.

Performance Gain Relative Performance Gain Relative
dfree n k to Conventional TCM (k=1) to Uncoded 2M-AM

4.0 1 1 0.0 4B 0.0 dB
4.8 1 2 0.792 0.792

5.6 1 3 1.461 1.461

6.4 1 4 2.041 2.041
20/21 2 1 0.0 0.757
24/21 2 2 0.792 1.549
28/21 2 3 1.461 2.218
32/21 2 4 2.041 2.798
20/85 3 1 0.0 0.918
24/85 3 2 0.792 1.71
28/85 3 3 1.461 2.379
32/85 3 L 2.041 2.959
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ASYMMETRIC 4-PSK

Figure la. Trellis Diagram for Conventional Rate 1/2 Trellis Coded QPSK.

Figure 1b. Trellis Diagram for Rate 1/2 Multiple Trellis Coded QPSK; k=2.
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ASYMMETRIC 4-AM
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Figure 2. Trellis Diagram for Conventional Rate 1/2 Trellis Coded 4-AM.
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Figure 3. Set Partitioning for Asymmetric 8-PSK.
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7,7

7.3

Figure 4a. 2-State Multiple Trellis Diagram for Rate 2/3 Coded 8-PSK and 8-AM; k=2.
(0,00 44,4 20,2 6,46
0,04 44,0 206 6,4,2
022 46,6 220 6,6,4
026 46,2224 66,0
0,40 404 24,2 6,0,6
04,4 40,0 24,6 6,0,2
06,2 426 26,0 62,4
\0,6,6 422 26,4 62,0

\J
2,2,2 6,6,6 4,0,0 77,7 51,1 15,5
2,26 6,6,2 4,06 7,73 5,1,7 15,3
244 60,0 4,20 71,1531 1,75
24,0 60,4 4,24 7,15 535 1,71
26,2 6,26 44,2 7,3,7 55,3 1,1,7
26,6 6,22 44,6 733 55,7 11,3
2,04 6,40 4,6,0 7,51 57,1 1.35
20,0 6,4,4 46,4 7,55 5,75 1,31

~
~

,1,1 555 3,03 75,7
,1,6 55,1 30,7 7,53
1,33 5,77 33,1 7,75
1,37 5,73 335 7,71
16,1 5,16 3,56,3 7,1,7
1,56 51,1 36,7 7,1,3
1,73 53,7 3,71 7,35
. 1,7,7 5,33 3,75 7,31

Figure 4b. 2-State Multiple Trellis Diagram for Rate 2/3 Coded 8-PSK and 8-AM; k=3.
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Figure 5. Transmitter Implementation for Rate 1/2 Multiple Trellis Coded 4-AM
(2 States); k=2.
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Figure 6. Transmitter Implementation for Rate 1/2 Multiple Trellis Coded QPSK
(2 States); k=2,
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Figure 7. State Diagram for Rate 1/2 Multiple (k=2) Trellis Coded QPSK.

Figure 8. Pair-State Diagram Corresponding to Figure 7.
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Figure 10. Generalized MTCM Transmitter.
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Figure 11. Symmetric 8PSK Signal Set.
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Figure 12, 8-State Trellis Diagram for Example 1.
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Figure 13. 16-State Trellis for Example 1.
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Figure 14.

4-State Trellis for Example 2.

Figure 15.

8-State Trellis for Example 2.
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Figure 16. 4-State Trellis for Example 4.
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Figure 17. Comparison of Computational Cutoff Rate of MPSK with

Throughput Performance of Trellis Coded MPSK
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