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SUMMARY

A model is presented which can be used to incorporate the effects of fric-
tion and tortuosity along crack surfaces through a constitutive law applied to
the interface between opposing crack surfaces. The problem of a crack with a
saw-tooth surface in an infinite medium subjected to a far-field shear stress
is solved and the ratios of Mode-I stress intensity to Mode-IIl stress intensity
are calculated for various coefficients of friction and material properties.
The results show that tortuosity and friction lead to an increase in fracture
loads and alter the direction of crack propagation.

INTRODUCTION

The essential ingredients which enter a Linear Elastic Fracture Mechanics
(LEFM) analysis are stress intensity factors and fracture toughness. These
quantities can be used to predict fracture initiation loads as well as the
direction of crack propagation. Stress intensity factors have been obtained
for a large variety of loadings and specimen geometries. 1In most of these
analyses cracks are modeled as discontinuities possessing smooth and friction-
less surfaces. For Mode-I type loadings the assumption that the surfaces of a
crack are smooth and frictionless is quite satisfactory, but for Mode-1I load-
ings or mixed-mode loadings this assumption may lead to erroneous results if
the crack surfaces are tortuous and/or offer frictional resistance to sliding.
For such problems the effects of tortuosity and friction must be accounted for
in order to capture the physics of the phenomena and to correctly assess the
stress intensity factors. This can be seen by considering the crack shown in
figure 1(a). Let us assume that this crack was modeled as being smooth and
frictionless. 1If a far-field shear stress (an apparent Mode-I1I loading) is
applied to this crack, the model would predict a zero Mode-I stress intensity
factor. 1In reality, the Mode-1I stress intensity factor is not zero, since the
displacement of a point along the surface of the

*Work funded by Cooperative Agreement NCC 3-46.
**Work funded under Space Act Agreement C99066-G and U.S. Army Research
Office Grant DAALO3-86-K-0134; presently at University of Wisconsin, Department
of Engineering Mechanics, Madison, Wisconsin 53706..



crack has both a normal and a tangential component. The tangential component
will result in a Mode-II stress intensity, while the normal component will
result in a Mode-I stress intensity.

Cracks of the type shown in figure 1(a) have been observed in many poly-
crystalline and aggregate materials. Some examples are metal, ceramic, con-
crete and brittie geo- and bio-materials such as rock and bone, respectively.
Methods of analysis for mixed-mode fracture due to tortuosity are primitive.
Clech et al. (ref. 1) have observed and analyzed tortuous cracks propagating
along the interface between cancellous bone and the cement which binds an arti-
ficial joint to it. Their analysis considered failure under Mode-I ioading,
where the tortuosity was modeled as a no-slip interface. The question arises
as to what would be the most efficient way to model the problem if the struc-
ture is subjected to mixed-mode loading. One approach would be to model- the
geometry of the crack surfaces explicitly in a finite-element (or boundary
element) mesh, assign a coefficient of friction to the crack surfaces, and to
solve the nonlinear stress analysis problem. This technique is obviously cum-
bersome. Concrete is another material for which friction and tortuosity play
a significant role during crack propagation (refs. 2 to 5). Recently,
Ingraffea et al. (ref. 5), using the finite element method, have modeled fric-
tional interlock effects in concrete as distributions of normal and shear
stresses along the interface between opposing crack surfaces. Their model,
however, does not account for the previously discussed coupling between crack
s1iding displacements and crack opening displacements. Riggs and Powell pres-
ent a rough crack model for the analysis of concrete in reference 6. This
model possesses many desirable features compared to previous attempts at rough
crack modeling but is complex and has a number of empirical constants that
require specification.

In this paper a model is presented which can be used to characterize the
effects of friction and tortuosity along crack surfaces n an efficient and
realistic manner. In this model the crack surfaces are assumed.to be globally
smooth, and the roughness and friction are incorporated through a constitutive
law at the interface between opposing crack surfaces. This constitutive law
contains implicitly the coupling between the tangential and normal components
of the displacement of a point on the interface (this phenomenon is referred
to as dilatancy), and can therefore give rise to Mode-1I stress intensity fac-
tors even when the applied loading is apparently Mode II.

CONSTITUTIVE LAW

In.this section we review the development of analytic relations between
increments of crack surface traction and crack sliding and opening displace-
ments. This theory was fully developed in (ref. 7) and is analogous to the
theory of continuum elasto-plasticity. The surface between two bodies coming
into contact is assumed to be globally smooth as shown in figure 2(a). Atten-
tion is focused on a typical pair of initially adjacent points on the contact
surface as -shown in figure 2(b); these points are shown separated for clarity
and the roughness that the surfaces have is not shown and will be considered
subsequently.

The traction that is supported by the crack surface at the contact point
in question has tangential and normal components which are denoted by ot
and op, respectively. The crack s1iding and opening displacements at the
contact point pair are denoted by g{ and gy, respectively, 'where
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In equations (1) and (2), uy and uy are horizontal and vertical dis-
placements (1.e., displacements tangential and normal to the global crack
surface), respectively, while superscripts + and - denote points on the
contact surface associated with the upper and lower bodies of material,
respectively.

It s assumed that the relative displacements of the crack surface are
additively composed of reversible (elastic) and irreversible (plastic) parts

g, =g; + 95 1=t,n (3)

where superscripts e and p denote the elastic and plastic parts of the
deformation. In equation (3), the plastic part represents the permanent defor-
mation due to s1iding (and perhaps damage), which has components in the normal
direction (due to dilatancy) as well as in the tangential direction. The elas-
tic part represents deformations that occur independently of siiding such as,
for example, presliding deformability. Such recoverable deformations have been
observed in a large variety of experiments between materials such as metals,
ceramics, and rocks (refs. 8 to 10). The stress that the interface supports

is assumed to be related to the elastic part of equation (3) by

.e
where the summation convention is applied to repeated indices and Ej are

the interface stiffnesses, the determination of which will be addressed
shortly.

To prescribe a method for determining the plastic displacements, it is
necessary to assume that (1) a scalar valued slip function F = F(ot,op,...
can be defined such that F < 0 corresponds to presliding conditions, F = 0
corresponds to sliding and F > 0 1is not possible, and (2) there exists a
linear relationship between increments of traction and plastic deformation.
Under these assumptions, it can be shown (ref. 11) that

0 if F <0 or dfF <0
dgf - (5)

where G 1s the s1ip potential whose gradient gives the direction of the
plastic deformation and A 4s a nonnegative scalar that gives its magnitude.
Expressions for F and G can be obtained by considering the idealized rough-
ness shown in figure 2(c). If the friction on the active asperity surface is
governed by Coulomb's law, then |oj] < -uop where yu 1is the coefficient of
friction, oy and op are the tangential and normal stresses on the asperity
surface and the convention that compressive stresses are negative is employed.
By stress transformation, this equation can be expressed in terms of the global
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stresses o and on (ref. 7). This procedure leads to the following forms
for the s1ip function and slip potential

F = Icn sin o, + o, cos akl + u (o, €OS o - o, sin ) (6)
G = |°n sin o + o, COs ak| (7)

where k = R or L depending upon which asperity surface is active
(fig. 2(c)).

Combining equations (3) to (5) leads to the constitutive relation

_ goP
dc1 = E13 dgj (8)
where
P . ¢ if F<O0 or dF <0 (9)
13 13
or
aF _ 36
ep aap E‘\quj 3oq
£y = B4y - o TR if F=df =0 (10)
F) F)
% P9 9%

and H s a hardening or softening parameter that can account for the damage
of crack surface roughness. In this paper we take H equal to zero.

The following remarks about the constitutive law should be noted:

(1) Equation (8) is an explicit relation between increments of crack sur-
face tractions and the resuiting crack sliding and opening displacements.
Unlike some other theories for dilatant crack surface problems (ref. 12) in

which equation (8) is postulated at the outset and the E?? (particularly the
Eiﬁ and Esg) are determined either experimentally or according to some ad hoc
rule, this theory provides an explicit and unambiguous method for determining
ep

E1j .

(2) The theory presented in this section is essentially a "continuum"
theory of friction except that we refer to continuum in the sense of continuous
area rather than continuous volume. The traction components ot and op
entering into the theory are the average or macroscopic stresses that the crack
surface supports rather than the exact stresses. Furthermore, the global crack
surface is smooth and the effects of roughness (e.g., dilatancy) are built into
the s1ip rule and slip potential.

(3) The use of the decomposition in equation (3) in conjunction with
equation (4) can be considered a relaxation of compatibility of crack surface
displacements consisting of impenetrability and presliding stick. In order to
render the violation of compatibility insignificant, it is necessary to make
the interface stiffnesses E43 relatively large compared to the stiffness
of the adjacent medium. In tgis investigation, we take E45 = Pdyj,
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where 843 is the Kronecker delta and P 1is a penalty number. The penalty
number has no physical significance and i1s chosen based on computational con-
venience. Values of P that are two to four orders of magnitude greater than
the shear modulus of the adjacent medium were used and provided solutions in
which incompatibilities were extremely small. Larger values of P sometimes
gave numerical difficulties due to i11-conditioning while smaller values of

P gave slightly excessive incompatibility.

(4) It 1s assumed in this research that the amount of tangential sliding
is small enough so that the asperity peak of one surface does not override that
of the other surface. For situations in which this is not the case, the theory
can be suppliemented with an additional set of conditions as discussed in
reference 7. :

COMPLIANCE MATRIX
The problem which will be solved to demonstrate the significance of fric-

tion and tortuosity is shown in figure 1. The singular integral equations that
govern this problem are

1r(k+1)f_§:i-)-_()j(—'w+°t -l <x < ()
«(k " ]) -r —%;%—%— o, -1 <x < (12)

where 1, 1is the far-field shear stress, ot and op are the shear

and normal stresses applied to the crack surfaces, G is the shear modulus,

k =3 - 4» for plane strain, v being Poisson's ratio, and f(t) and e(t)
are the dislocation densities, which are related to the crack sliding and crack
opening displacements by

]
+ -
U, - Uy =.£ f(t) dt = 9 (13)
. _ 1
- = = 1
uy uy fx e(t) dt 9, (14)

Because the crack is closed at the endpoints the dislocation densities must
satisfy the following conditions

1 1
f f(t) dt = f e(t) dt = 0 (15)
A A

Since of and o, depend on the relative displacements between the crack
surfaces, the singular integral equations are nonlinear. 1In order to solve
these equations efficiently, a compliance matrix will be developed that relates
the stresses at the collocation points arising from the applied loads to the
values of the opening (or sliding) of the crack at the integration points. The
method relies on the numerical procedure developed by Gerasoulis (ref. 13),
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which is used to reduce the integral equations to a system of algebraic equa-
tions for Unknown values of e(t) and f(t) at discrete points in the inter-
val [-1,1]. With the aid of the compliance matrix, it will be possible to
obtain the crack opening and crack sliding displacements for a given stress
distribution on the crack surfaces by solving simultaneous algebraic equations
and hence, the need to repeatedly solve the integrail equations and integrate
the dislocation densities is eliminated. The procedure for obtaining the com-
pliance matrix is described in detail in reference 14 and is only reviewed
here. Following (ref. 13), f(t) and e(t) are expressed by

-1/2 -1/2
f(t) = o(t)(1 - t2) e(t) = w(t)(1 - t2) (16)

and ¢(t) and y(t) are approximated as piecewise quadratic on the inter-

val [-1,1]. The result is that the integral equations are reduced to a system
of algebraic equations through the quadrature formulas given in (ref. 13). The
results can be written symbolically as

N
c] 12] N1(Xk)¢(t1) = Tco + at(xk) k =1,N -1 (]7)
N
c] E N1(Xk)¢(t1) = dn(Xk) k =1,N -1 (18)
1-1
N
Y vie(t,) =0 (19)
3 i i
-1
N
2: voae(t,) =0 (20)
s B

where ¢y = 2G6/w(k + 1), N is the number of integration points, N - 1 1s the
number of collocation points, and the weights wy(xg) and vy, as well as

the collocation points xi and integration points t4y are given in (ref. 13)
(the locations of the integration and collocation points are shown schematically
in fiqure 3(a)). These equations can be written as

c,6 =L (21)

1k® = Nk

c,6 + M (22)

T8 "

where matrices [L] and [M] represent the nodal values of the stresses along the
crack surfaces and the crack closure conditions. To obtain the compliance
matrices for the crack the inverse of matrix [G] 1s obtained, and the product
-1/2
of this matrix and (1 - t2) is integrated term by term to obtain a matrix
[C] which will be called the compliiance matrix for this particular geometry.
This matrix will relate the values of crack si1iding displacements (or crack
opening displacements) at the integration points to the values of the shear (or
normal) stresses at the collocation points, that is




E,H((TX + dt(xk)> = (U; - U;)t1 = (gt)t1 (23)

Cheontx) = (“; il “;()t1 = ()¢, (24)

where 51 is a rectangular matrix with dimensions (N,N-1). We wish to point
out that Because of the technique employed to determine the compliance matrix,
the locations at which the crack opening and crack sliding displacements are
determined (ie., the integration points) are different from the locations of
crack surface tractions (i.e., the collocation points). Furthermore, the
number of displacement points is one greater than the number of stress points.
In order to eliminate the computational difficulties associated with differing
numbers of collocation and integration points, we present in the following sec-
tion a method for rendering the compliance matrix square.

The stress intensity factors are proportional to the values of the func-
tions ¢ and ¢ at the endpoints (ref. 13) and can be obtained by pre-
multiplying matrices [L] and [M] by the inverse of matrix [G]. The detaiis of
the calculations can be found in references 13 and 14. We note that the com-
pliance matrix for shear loading is the same as that for normal loading. This
is because the Green's functions for the two problems are the same.

NUMERICAL SOLUTION

Before writing equations (23) and (24) in matrix form, it is necessary to
make the compliance matrix square. Because the number of integration points
is odd (ref. 13), there is an integration point at the center of the crack.
By eliminating the equation corresponding to this point from equation (23), the
number of displacement points is reduced by one and the compliance matrix
becomes square. Following this procedure the location of the displacement and
stress points become as shown in figure 3(b). The compliance matrix is now
denoted by [C] and is given by

cij if 1 < (N +1)/2

Civnyy M V2 (N2

{C] = C1j = (25)

where 1, =1,2,...,N-1. The modified forms of equations (23) and (24) can
now be written collectively in incremental form as

i
dg Cy 0] ldx + do
t ' © t
I SR O (26)
dg_ 0 : c{ 3 do,
i
where
;
(dg,} - [(dgt)t]""’(dgt)tN ] (21)
-1
{da,} —[(do ) (do,) L (28)
t t x1 t waJ |
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with similar definitions for {dg,} and {dop}. dt, 1is a vector with N-1
components, each equal to the increment in the applied loading.

Although the number of displacement points and stress points are now the
same, the locations of these points are different as shown in figure 3(b). The
constitutive law given by Eq. (8), however, relates the crack surface stresses
at a point to the displacements at the same point. The crack displacements at
the stress points can be expressed in terms of those at the integration points
by interpolation. For example, the relation between the crack sliding dis-
placements at the stress points and the collocation points is given by

{dgt}x1 = [T] {dgt}t1 : (29)

where the coefficients of [T] are zero except for

T1,1 = T-\’ll +1 = 0.5 when 1 5_1 < (N - ])/2
Ty,4 = 0.75 when {1 = (N + 1)/2
Ti,9 +71 =0.25 when {1 = (N - 1)/2
(30)
Ty, -7 =0.25 when 1 = (N + 1)/2
Ty,4 = 0.75 when 1 = (N + 1)/2
Ty,9 -1 =T4,4 = 0.5 when (N +1)/2 <3 <N-1

Combining equations (8), (26), and (29) leads to

c o T O dg¢ C D0) (dx
ool deml d adl dly e
0 C o T dgp, 0 c)(o
which is a system of simultaneous nonlinear algebraic equations to be solved
for the incremental crack opening and siiding displacements. By taking small
increments in far-field shear loading, good convergence was attained in the
numerical work, where {E€P} was computed at each step using the displacement-

stress configquration from the previous step and treating equation (31) as
1inear within each load increment.

RESULTS

The problem shown in figure 1 was solved for the various combinations of
materjal properties 1isted in table I. Figures 4 to 6 are plots of stress
intensity factors as functions of the far-field shear stress for several values
of the uniform asperity angle «. It can be seen from these figures that as
« 1increases, K;j ‘increases, while Kjj decreases. The reason for this
is that frictional resistance and the kinematic constraint provided by the
jagged surfaces resist crack siiding displacements and therefore reduce Kij.
The dilatancy, on the other hand, produces a normal gap between the crack
surfaces, therefore increasing Kj.

The curves in figures 4 to 6 have been terminated at the values of 1o
that result in crack initiation according to the maximum principal stress cri-
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terion (ref. 15), which postulates that crack growth will occur in a direction
perpendicular to the maximum principal stress op, when this value 1s equal

to the value of op 1in an equivalent Mode-1I case. The angle at which the
crack will extend with respect to the horizontal is given by reference 15.

2 1/2 :
0 K| K1
tan 2)= 0.25 Ko~ 0.25 — (32)
11 K + 8
11
and the fracture criterion is
36 20 e
KIC = KI cos 5 - 3KII cos” 5 sin > (33)

where Kie 1s the fracture toughness.

Figures 7 to 9 are plots of the fracture stress for several materials as
functions of «. The angle of extension 6 1is also shown on these figures.
As seen from these curves, the effect of tortuosity and friction is to increase
the fracture stress and to decrease the angle of extension. 1In order to sepa-
rate the effects of friction from those of tortuosity, the case of steel was
analyzed for various coefficients of friction. It can be seen from figure 7
that friction has a significant effect on the fracture stress. When o = 40°
and u = 0.0, the increase in fracture stress with respect to zero tortuosity
is approximately 20 percent, while for u = 0.2 this increase is 40 percent,
and for u = 0.5, it is approximately 90 percent.

DISCUSSION

From the results obtained in this investigation, it can be concluded that
friction and tortuosity have a significant effect on crack tip stress fields
when a crack is subjected to mixed mode loading. 1In the example problems
solved in this paper the increase in fracture stress (as predicted from the
maximum principal stress theory) with respect to zero friction and tortuosity
ranged from 3 to 100 percent. The crack extension angles as predicted from the
maximum principal stress theory were also affected by the Mode-1 stress inten-
sity which arises from the dilatancy of the interface between opposing crack
surfaces.

Although the use of the compliance matrix developed in section 3 renders
the numerical problem very attractive, it is limited to simple geometries. The
effects of tortuosity and friction in problems with arbitrary geometries can
be conveniently analyzed using the constitutive iTaw in conjunction with the
finite element method or boundary element method.
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TABLE I.

Kic, E, v u
ks1-1n1/2 | ksi
M50 Steel 18 30 000 (0.3 {0.20
Concrete 1 3 000 .2 .50
Sintered Silicon 4 59 000 .14 .30

Carbide Ceramic

n
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APPLIED LOADING (STEEL).
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