
L -
NASA Technical Memorandum 89098

The Fault-Tree Compiler

Anna L. Martensen
Ricky W. Butler

J A N U A R Y 1901

r '

c

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

B87-20765

Unclas
G3/61 US405

.. ... INTROWCTION 1
Fault Tree Construction 2

..
THE FTC USER INTERFACE 6
Basic Program Concept 6
Fault Tree Eefinition Syntax 6
Hierarchical Fault Trees .. 12
F'"C Cormrands .. 15
FTC Graphics .. 18

E " L E Fn: SESSIONS .. 19
Outline of a Typical Session 19
Examples .. 19

CONCLUDING REMNtKS .. 27

REFERENCES .. 28

APPENDIXA .. A-1
Theory .. A-1
Solution Technique .. A-4

APPENDIX B . ERROR MESSAGES ... B-1

i

h

.

Fault tree analysis was first developed in 1961-62 by H.A. Watson of Bell
Telephone Laboratories under an Air Force study contract for the Minuteman
Launch Control System.
support and is often used as a failure analysis tool by reliability experts.
Though conceptually simple, especially for those with a knowledge of basic
circuit logic, the fault tree can be a powerful tool. In its basic form, the
fault tree has limitations; however, recent advances in the tree notation have
often overcome these shortcomings. Even the basic fault tree, though, can be
useful in preliminary design analysis. The goal of the Fault Tree Compiler
(m) program is to provide the user with a tool which can readily describe
even the largest fault tree and, once given the tree description and event
probabilities, can precisely calculate the probability of the top event in the
tree.
with a powerful design analysis capability.

The use of fault trees has since gained wide-spread

Automatic sensitivity analysis can also be performed, providing the user

The motivation for the development of the Fault Tree Compiler began with
the observation that the Computer Aided Reliability Estimation (CARE 111)
program (ref. 3) was often being used for the analysis of fault trees.
Although CARE I11 can be used to solve fault trees, it was designed primarily
to analyze complex reconfigurable systems where the fault-handling capabilities
must be included in the reliability analysis. Therefore, it was not optimized
for systems that can be described by a simple fault tree alone.
fault tree code provided a minimal framework for the FTC mathematical solution
technique. A newer, faster solution was developed and implemented in FTC. To
that was added a new front-end with a high-level language description of the
fault tree.
and sensitivity analysis capabilities provide a powerful fault tree solver.
short :

The CARE I11

The improved solver and the Fault Tree Compiler's input language
In

1) The Fn: program has a simple yet powerful input language, which is
easily mastered.

Automatic sensitivity analysis is provided. 2)

3) The mathematical solution technique is exact to the five digits in the
solution(s).

4) A hierarchical capability is provided which can reduce effort and run
time.

5) FTC is capable of handling common mode events, where the same event
may appear m r e than once in the fault tree.

The FTC solution technique has been implemented in FORTRAN, and the
The program is designed to run on the Digital remaining code is Pascal.

Corporation VAX computer operating under the VMS operating system.

A short tutorial on the construction of fault trees is provided. The
tutorial will outline the basic gate types allowed by the FTC program and their
use in describing an example system of interest.

Fault Tree Construction

An example fault tree structure is shown in Figure 1. The event of
interest, referred to as the top event, appears as the top level in the tree.
Only one top event is allowed.
tree, and different combinations of basic events will result in the top event.
In Figure 1, the basic events are indicated by small circles.
associates a probability of occurrence with each basic event in the tree.
that a basic event may appear more than once in the Fn= fault tree and is
referred to as a connnon mode event.
ability to handle these common mode events.

Basic events are the lowest level of the fault

The user
Note

A useful feature of the FTC program is its

Events are combinations of basic events or other (lower) events. In
Figure 1 the output of the OR gate is an event.
allows "conunentfl boxes to appear in the tree to describe an event. Though only
two comment boxes appears in the example (to describe the hydraulic failure and
the top event), boxes could have appeared above any event, basic or non-basic.
Logic gates delineate the causal relations which ultimately result in the top
event.

Typical fault tree notation

In the FTC program the following gates are allowed:

2

4

+

GUNS INOP

FA1 LU R E

Figure 1

3

Gate Symbol Gate Name Result of Gate

a n
Q
n
A

AND gate

OR gate

The output occurs when all
input events occur
simultaneously. An arbitrary
number of input events are
allowed.

The output occurs when one or
more of the input events
occur. An arbitrary number
of input events are allowed..

*

The output occurs when one
but not both of the input

events are allowed.
MCLUSIVE OR gate events occur. Only two input

M of N gate

The output occurs when m of
the n inputs occur. The
number of inputs must be
greater than or equal to m.

This gate performs a
complement (applying
DeMorgan's Law) on the input.
The number of inputs must
equal one.

INVERT gate

Fault trees are typically constructed by starting with the top event
(usually an undesirable situation) and determining all possible ways to reach
that event.
"backward" approach. An example of a "bottom up" or "forward" approach is the
failure modes and effect analysis (FEIEA), where the analyst starts with the
different failure modes of the system components and traces the effects of the
failures.
which a fault tree is constructed:

This approach is often referred to as the "top down" or

The following short example illustrates the top down process by

The McDonnell Douglas F-15C fighter has three primary weapons systems:
heat-seeking missiles, radar missiles, and the gun.
will be inoperable, due possibly to one or more separate events.
tree shown in Figure 1 delineates the possible causes of in-flight gun
no-fire.
pins, including three pins which, once removed, will allow the gun to fire.
A "rounds counter" on the plane determines the total number of rounds
(bullets) to be fired. It is possible to completely restrict the firing of
the gun with the proper rounds counter setting. The landing gear locked in

Occasionally the guns
The fault

The pre-flight ground check includes the removal of several safety

4

the d m position will also prevent the gun from firing.
of electric power to ignite the bullets, or hydraulic power to rotate the
barrels will completely inhibit the gun.
if the hydraulic lines are severed, or the hydraulic fluid levels are low.

Additionally, loss

Loss of hydraulic power may occur

It is not the goal of this paper to teach the construction of fault trees,
however this simple example illustrates several important elements of fault tree
mode1 ing:

5)

All basic events must be independent.
A and B are independent if

In probability theory, two events

P(AB) = P(A)P(B) .

It is important to note that it is often very difficult to establish
independence of events. In this example, it is assumed that the safety
pin removal and setting of the rounds counter are independent events,
even though both are performed during the pre-flight ground check.

Sequences of events cannot be modeled with the gates allowed by the FTC
program.
event A occurs before event B. If event B occurs before A, a different
result is seen.
the result of some sequence of events and assign a probability to the
basic event.

For many systems of interest, an event'Z occurs if and only if

At best, the analyst must define a basic event which is

Mutually exclusive events must be handled with care.
not be mutually exclusive. For example, basic event A cannot be d ef ined
as "Power onw and basic event B defined as "Power off . I1 However, basic
event A may be defined as "Power on", and an INVERT gate (which performs
the probabilistic complement of the input) with basic event A as input
may define the event "Power not on."

Typically, fault trees are developed to demonstrate the probability of
some undesirable top event. A typical top event might be "Catastrophic
System Failure." Generally, it is much faster to enumerate the ways
that a system will fail than it is to enumerate the ways a system will
succeed. Occasionally, however, it is more advantageous to create a
%uccess" tree.
it simply solves for the probability of the top event in a tree.

Basic events must be assigned a probability of occurrence. The FTC
program also allows for failure rates to be assigned to basic events.
The user must then supply a value for the mission time at which the
probability of system failure will be evaluated. Parametric analysis is
facilitated by allowing one basic event probability or rate to vary over
a range of values.
Definition Syntax" section of this paper.

Basic events can

The Fn: program makes no distinction between the trees;

The syntax is described in the "EVZ Fault Tree

5

For m r e information on fault trees, Reference [2] is recomended. The next
section discusses the user interface for the FTC program and example FTC

sessions follow. Concluding remarks, Appendix A-The Solution Technique, and
Appendix &Error Messages complete the paper.

THE FTC USER INTERFACE

Basic Program Concept

The user of the FTC program must define his fault tree using a simple
language. This language will be discussed in detail in this section.
are two basic statements in the language - the basic event definition statement
and the gate definition statement.
defines a fundamental event and associates a probability with this event.
example, the statement

There

The basic event definition statement
For

x: 0.002;

defines a fundamntal event which occurs with probability 0.002.
definition statement defines a gate of the fault tree by specifying the gate
type and all inputs. For example, the statement:

The gate

G1: AND(Q12, Vl23, L12, E5);

defines an and-gate with output G1 and inputs Q12, V123, L12 and E5.

FTC Fault Tree Definition Syntax

The basic event definition statement and the gate definition statement are the
only essential ingredients of the FTC input language.
of the FTC program has been increased by adding several features coIllmonly seen
in programing languages such as FORTRAN.or Pascal.
language are described in the following subsections.

However, the flexibility

The details of the FTC

6

Lexical details - The probabilities assigned to events are floating point
numbers.
following would be accepted by the Fn: program:

The Pascal RERL syntax is used for these numbers. Thus, all the

0.001
12.34
1.2E-4
131-5

The semicolon is used for statement termination.
statement may be entered on a line.
blanks are allowed.

Therefore, more than one
Comments may be included any place that

The notation "(*" indicates the beginning of a comnent and
"*)" indicates the termination of a coment. The following
the use of a conrment:

GYRO - F: 0.025; (* PROBABILITY OF A GYRO

If statements are entered from a terminal (as opposed to by

is an example of

FAILURE *)

the READ conunand
described below), then the carriage return is interpreted as a semicolon.
Thus, interactive statements do not have to be terminated by an explicit
semicolon unless more than one statement is entered on the line.

In interactive d e , the fic system will prompt the user for input by a
line number followed by a question mark. For example,

13

The number is a count of the current line plus the number of syntactically
correct lines entered into the system thus far.

Constant definitions - The user may equate numbers to identifiers.
Thereafter, these constant identifiers may be used instead of the numbers.
example,

For

LAMBWi = 0.0052;
RECOVER = 0.005;

7

Constants may also be defined in terms of previously defined constants:

GAMMA = lO*LAMBDA;

In general, the syntax is

"name" = "expression" ;

where "name" is a string of up to eight letters, digits, and underscores (-)
beginning with a letter, and "expression" is an arbitrary mathematical
expression as described in a subsequent section entitled "Expressions".

Variable definition - In order to facilitate parametric analyses, a single
variable may be defined.
will compute the system reliability as a function of this variable. If the
system is run in graphics mode (to be described later), then a plot of this
function will be made.
with range 0.001 to 0.009:

A range is given for this variable. The FTC system

The following statement defines LAMBDA as a variable

LAMBDA - 0.001 To 0.009;

Only one such variable may be defined.
number of points over this range to be computed.
any time before the RUN command.

A special constant, POINTS, defines the
This constant can be defined

For example,

POINTS * 25

specifies that 25 values over the range of the variable should be computed.
The method used to vary the variable over this range can be either geometric or
arithmetic and is best explained by example. Thus, suppose POINTS = 4, then

Geometric :

xv = 1 To* 1000;

where the values of XV used would be 1, 10, 100, and 1000.

a

Arithmetic:

xv = 1 To+ 1000;

where the values of XV used would be 1, 333, 667, and 1000.

The * following the TO implies a geometric range. A or simply TO implies
an arithmetic range.

One additional option is available - the BY option. By following the
above syntax with BY "i'nc", the value of POINTS is automatically set such that
the value is varied by adding or multiplying the specified amount.
example,

For

V 131-6 TO* 1E-2 BY 10;

sets POINTS equal to 5 and the values of V used would be 131-6, 1E-5, 131-4,
1E-3, and 131-2. The statement

sets POINTS equal to 3, and the values of Q used would be 3, 4, and 5.

In general, the syntax is

"var" = "expression" TO ("c"] "expression" (BY "inc" }

where "var" is a string of up to eight letters and digits beginning with a
letter, "expression" is an arbitrary mathematical expression as described in
the next section and the optional "c" is a + or *.
if it is used, then "inc" is any arbitrary expression.

The BY clause is optional;

9

Expressions - When defining constants or an event probability, arbitrary
functions of the constants and the variable may be used.
operators may be used:

The following

+ addition
- subtraction
* multiplication
/ division
** exponentiation

The following standard functions may be used:

W (X) exponential function
LN(X) natural logarithm
SIN(X) sine function
COS(X) cosine function
ARCSIN(X) arc sine function
ARCCOS(X) arc cosine function
A R C " (X) arc tangent function
SQRT(X) square root

Both () and [] may be used for grouping in the expressions.
are permissible expressions:

The following

2E-4
1 - [Mp(-LAMBRA*TIME) J

Basic Event Definition - The fundamental events of the fault tree (i.e.
events which are not the outputs of a gate in the tree) must be assigned
probabilities.
statement.

This is accomplished using the basic-event definition
This statement has the following syntax:

<event-id> : <expression>;

where <event-id> is the name of the event and <expression> is an expression
defining the probability of the event which evaluates to a number between 0
and 1.

10

Alternately, the user can specify the rate of an event.
accomplished using the following syntax:

This can be

<event-id> -> <rate-expression>;

where <event-id> is the name of the event and <rate-expression> is an
expression defining the rate of the event.
calculated by the program using the following formula:

The probability of the event is

Prob[event] - 1.0 - EXP(- <rate-expression>*TIME)

where TIME is the value of the special constant TIME which defines the mission
time.
mission time.
distribution function,

If TIME is not defined by the user, then the program uses 10 for the
Note that this formula represents the standard exponential

-At
F(t) = 1 - e .

Gate Definition - Once all of the fundamental events are defined, the gate
definition statement may be used to define the structure of the fault tree. The
syntax of this statement is

<output-id> : { f } (<input>, <input>, . . .) ;
AND

or

<output-id> : <int> OF (<input>, <input>, ...);

The <output-id> is the name of the (non-basic) event which is the output of the
gate.
or OF as follows

The type of gate is indicated by the reserved words OR, AND, INV, XOR

11

AND - output probability is the probability of all events occurring
OR - output probability is the probability of one or more events occurring
XOR - output probability is the probability of one of the events, but not

IW - output probability is the probabilistic complement of the input (i.e.
both, occurring (i.e. EXCLUSIVE OR gate)

INVERT gate).

(i.e. M of N gate)
m OF - output probability is the probability of m or more events occurring

Any number of input events may be included within the parentheses.
following gate definition statements are valid:

The

GI: AND(X, Y, Z);
G2: OR(AI., A2, A3);
PLANE - CRASH:
DESPAIR:

2 OF (ENGINE1 - FAILS, ENGINE2 - FAILS, HYDRAULIC - FAILURE);
OR(GET THE FLU, MOTHER - - IN LAW - STAYS - - 2 WEEKS, - -

MEET - wmGH!ms - - NEW BOYFRIEND);

Hierarchical Fault Trees

Often a system consists of several identical independent subsystems.
order to preserve the independence, it is necessary to replicate the subsystem
fault tree in the system model. For example, suppose we have a system which
contains four identical independent subsystems.
the subsystems fail.
component fails, the subsystem fails.
subsystem:

In

The system fails when three of
Each subsystem consists of four components. If any

The following fault tree describes the

COMP 1: .01;
m - 2 : .02;
OMP-3: .03;
W - 4 : - .05;

SUBSYSTEM - FAILS: OR(COMP - 1, COMP - 2, COMP - 3 , OMP - 4);

The system fault tree is as follows:

SYSTEM - FAILS: 3 OF (SUBSYS 1 FAILS, SUBSYS - - 2 FAILS, SUBSYS - - 3 FAILS,
SUBSYS-4-FAILS - -) ;

12

Unfortunately, in order to integrate these sections into one fault tree, the
subsystem has to be replicated four times (each replicate with different
names) :

SUBSYS 1 COMP 1: .01;
sUBsYs-l-COMP-2 : .02 ;
SUBSYS-1-m-3 : .03 ;
SUBSYS-l-~~-4 : . 0 5 ;
SUBSYS-l-FAIa: OR(SUBSYS 1 COMP 1,

SUBsys-1-m-3 , - -
- - -

SUBSYS 2 COMP 1: .01;
sUBsYs-2-cc)MP-2 : .02 ;
SUBSYS-2-COt4P-3 : .03 ;
SUBSYS-2-COM-4 : .05 ;
SUBSYS-2-FAILs: OR(SUBSYS 2 COMP 1,

sUBsYs-2-coMP-3 , - -
- - -

SUBSYS 3 COMP 1: .01;
sUBsys-3-coMl?-2 : .02 ;
SUBSYS-3-COMP-3 : . 0 3 ;
SUBSYS-3-CW-4 : .05;
SUBSYS-3-FAILs: - - OR(SUBSYS 3 COMP 1,

suI3sYs-3-coMP-3 - - - ,
SUBSYS 4 CmP 1: .01;
SUBSYS-4-am-2 : .02 ;
su~Sys-4-COMP-3 : .03 ;
SUBSYS-4-COMP-4 : .05 ;
SUBSYS-4-FAIs: OR(SUBSYS 4 CaMP 1,

suBsYs-4-CaMP-3 , - -
- - -

SUBSYS 1 COMP 2,
suBsYs-l-~-4 -- -) ; ,

SUBSYS 2 COMP 2,
sUBsys-2-coMP-4 - - - 1 ; 1

SUBSYS 3 COMP 2,
sUBsYs-3-coMP-4 - - - ; ,

SUBSYS 4 COMP 2,
SUBsys-4-COMP-4 - - -) ; ,

SYSTEM FAILS: 3 OF (SUBSYS 1 FAILS, SUBSYS - - 2 FAILS, SUBSYS-3-FMLS,
SUBSYS-4-FAILS) ; -

- -

Obviously, this is a tedious process. Therefore, the FIY: program provides
the user with a hierarchical fault-tree capability.
semantically equivalent to the previous fault tree:

The following model is

SUBTREE SUBSYSTEM - FAILS;

c(mp 1: .01;
m - 2 : .02;
OMP-3: .03;
CDMP-4: - .05;

TREE SYSTEM - FAILS;

SUBSYS 1 FAILS: SUBSYSTEM FAILS;
SUBSYS-2-FAILS : SUBSYSTEM-FAILS ;
SUBSYS-3-FAILS : SUBSYSTE3i-FAILS ;
SUBSYS-4-FAILS - - : SUBSYSTEM-FAILS - ;

TOP: 3 OF (SUBSYS 1 FAILS, .SUBSYS-2-FAILS, SUBSYS - - 3 FAILS,
SUBSYS-4-FAILS) ; - -

The model is defined in two sections.
which is named SUBSYSTEM - FAILS.
probability of its top event is saved in the identifier SUBSYSTEM - FAILS.
subsequent trees or subtrees this identifier can be used.

The first section defines a subtree
This subtree is solved by the program and the

In the above model,
In

four events in the main tree are given
SUBSYSTEM - FAILS.

To simplify the analysis of the effect
of the top event, global variables and

the probability of the subsystem, i.e.

of a system parameter on the probability
constants may be used. These must be

defined before any subtrees are defined.
failure probability of a component in the previous model could be investigated
using the following model:

The effect of the change in the

FP = .01 'IO .05 BY .01;

SUBTREE SUBSYSTEM - FAILS;

COMP 1: FP;
m - 2 : - .02; COMP - 3: .03; COMP - 4: .OS;

TOP: OR(CDMP1 - ,COMP - 2,COMP - 3,COMP - 4) ;

TREE SYSTEM FAILS: -
SUBSYS 1 FAILS: SUBSYSTEM FAILS; SUBSYS 2 FAILS: SUBSYSTEM FAILS;
SUBSYS-3-FAILS - - : SUBSYSTEM-FAILS - ; SUBSYS-4-FAILS - - : SUBSYSTEM-FAILS - ;

TOP: 3 OF (SUBSYS 1 FAILS, SUBSYS - - 2 FAILS, SUBSYS - - 3 FAILS,
SUBSYS-4-FAILS) - - ;

14

. ,

m types of corrrmands have been included in the user interface. The first
type of cammand is initiated by a reserved word:

EXIT INPUT PLOT READ RUN SHOW

The second type of comand is invoked by setting one of the special
constants

CARE3 ECHO LIST POINTS TIME

equal to one of its predefined values.

WIT - The EXIT c m d causes termination of the FTC.program.

INpvT - This connnand increases the flexibility of the READ c o d .
the mudel description file created with a text editor, INPUT c m d s
can be inserted that will prompt for values of specified constants
while the model file is being processed by the READ command.
example, the comnrand

Within

For

INPUT LVAL;

will prompt the user for a number as follows:

LVAL?

and a new constant LVAL is created that is equal to the value input
by the user.
one statement, for example:

Several constants can be interactively defined using

INPUT x, Y, z;

pI#r - The PLOT comaand can be used to plot the output on a graphics display
device.
"Fn: Graphics. "

This c o m d is described in detail in the next section,

15

RERD - A sequence of FTC statements may be read from a disk file.
following interactive comaand reads FTC statements from a disk file
named SIFT.MOD:

The

READ SIFT.HOD;

If no file name extent is given, the default extent .MOD is assumed.
A user can build a model description file using a text editor and use
this command to read it into the FTC program.

IUR4 - After a fault tree has been fully described to the Fn: program, the
RUN command is used to initiate the computation:

RUN;

The output is displayed on the terminal according to the LIST option
specified.
instead, the following syntax is used:

If the user wants the output written to a disk file

where the output file "outname" may be any permissible VAX VMS file
name.
These parameters enable the user to change the value of the special
constants POINTS and LIST in the RUN comand.

W o positional parameters are available on the RUN comnand.

For example

RUN (30,2) 0UTFILE.DAT

is equivalent to the following sequence of comnands:

POINTS = 30;
LIST = 2;
RUN OUTFILE.DAT

16

Each parameter is optional so the following are acceptable:

RUN(10 ;
RUN(t o) ;
RUN(20,1) ;

- change POINTS to 10 then run.
- change LIST to 0 and run.
- change POINTS to 20 and LIST to 1 then run.

- The value of an identifier may be displayed by the following comnand:

SHOW ALPHA;

CARE3 -

Ecm-

LIST -

If set equal to.1 the program will generate a file containing the
fault tree in the CARE 111 syntax.

than no CARE 111 file be written.
CARE3.TRE. Note that the input range is completely specified, but
that the upper value on the output range is specified by "X". The
user must edit the file, supplying the appropriate upper value for
the output range, and insert the tree into an otherwise complete
CARE 111 input file.

The default value of 0 specifies
The name of the generated file is

The ECHO constant can be used to turn off the echo when reading a
disk file.
description to be listed as it is read.
section entitled "Example Fn= Sessions. '0

The default value of ECHO is 1, which causes the model
(See example 4 in the

The amount of information output by the program is controlled by this
cormrand. 'ItJo list modes are available as follows:

LIST - 0; No output is sent to the terminal, but the results can
still be displayed using the PLOT comnand.

SIST = 1; Output sent to terminal. This is the default.

#II"S - The POINTS constant specifies the n h r of points to be calculated
Over the range of the variable.
variable is defined, then this specification is ignored.

The default value is 25. If no

17

TI131p - The TIME constant specifies the mission time.
meaning only when the d e l includes failure rates, which depend upon
time. For example, if the user sets TIME = 1.3, the program computes
the probability of the top event at mission time equal to 1.3.
default value of TIME is 10.

The TIME constant has

The

FTC Graphics

Although the Fn: program is easily used without graphics output, many users
desire the increased user-friendliness of the tool when assisted by graphics.
The FTC program can plot the probability of system failure as a function of any
model parameter. The output from several FTC runs can be displayed together in
the form of contour plots. Thus, the effect on system reliability of two model
parameters can be illustrated on one plot.

PLOT command - After a RUN c o m d , the PLOT command can be used to
plot the output on the graphics display. The syntax is

PLOT <op>, <op>, . . . <op>
where <op> are plot options. ~ n y TEMPLATE "USET" or llupSET" pararneter can be
used, but the following are the most useful:

XLOG

yux;
XYLOG

NOLO

plot x-axis using logarithmic scale
plot y-axis using logarithmic scale
plot both x- and y-axes using logarithmic scales
plotx- and y-axes with normal scaling

XLEN=~.O
&EN-8.0
Xm1b+2.0 set x-origin 2 in. from left side of screen
~ ~ 1 ~ 2 . 0

set x-axis length to 5.0 in.
set y-axis length to 8.0 in.

set y-origin 2 in. above bottom of screen

The PUYTINIT and PLOT+ comMnds are used to display multiple runs on one plot.
A single run of FM3 generates unreliability as a function of a single variable.
To see the effect of a second variable (i.e. display contours of a

18

34imensional surface) the PLOT+ cormand is used. The PUrrINIT commMd should
be called before performing the first FTC run.
variable (i.e. the contour variable):

This command defines the second

PUXINIT BETA;

This defines BETA as the second independent variable.
BETA to its first value.
using the PLOT+ corrmand.
PLOT cormrand.
displayed in conjunction with subsequent run data.
second value, another FTC run made, and PLOT+ must be called again.
both outputs will be displayed together.
together

Next, the user must set
After the run is complete, the output is plotted
The parameters of this comMnd are identical to the

The only difference is that the data is saved, so it can be
Next, BETA must be set to a

This time
up to ten such runs can be displayed

EXAMPLE FM: SESSIONS

Outline of a Typical Session

The FM: program was designed for interactive use.
method of use is recanmended:

The following

1.

2.

Using a text editor, create a
tree to be analyzed.

Start the Fn: program and use
information from this file.

3. Then, various comaands may be

file of Fn: commands describing the fault

the READ camnand to retrieve the model

used to chancre the values of the special
constants, such as LIST, POINTS, etc., as aesired.
of a constant identifier does not affect any transitions entered
previously even though they were defined using a different value for the
constant.
are entered.

Enter the RUN comaand to initiate the computation.

Altering the-value

The range of the variable may be changed after transitions

4.

Examples

The following examples illustrate interactive FTC sessions. For clarity,
all user inputs are given in lower-case letters.

19

-le 1 - This session illustrates direct interactive input and the type
of error messages given by FTC:

Fn= Vl.0 NASA Langley Research Center

l? lambda = le-4;
21 X: 1.0 - exp(-lambda*time);
37 Y: 1.0 - exp(-lamda*time);
31 Y: 1.0 - exp(-lambda*time);
4? top: or(x,y);
51 run

A IDENTIFIER NOT DEFINED

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN
0.420 SECS. C W TIME UTILIZED

61 exit

The warning message is simply informative. If a user receives this message, he
should check his input file to make sure that the model description is correct.
In this example, since the syntax error was corrected in the next line, the
model was correct.
given in APPENDIX B.

A complete list of program-generated error messages is

Exanple 2 - This example demonstrates the use of the hierarchical fault tree
capability to partially describe an aircraft pitch control architecture. The
proposed architecture is composed of four independent actuator subsystems and
the supporting hydraulic and electronic systems.
subsystems is comprised of a pitch rate sensor, a computer, and the actuator.
'Wo of the four actuator subsystems failing will result in loss of pitch
control.
loss of pitch control.

Each of the actuator

Likewise, loss of either the hydraulic or electronic system will cause

20

$Fn:

Fn: v l . 0

11 read ex3.d

NASA Langley Research Center

2: SUBTREE ACT SYS FAIL;
3:
4: PITCH RATE - SENSOR -> 1.831-05;

-> 4.4E-04; 5:
6: ACTUATOR -> 3.73-05;
7:
8: XIP: OR(P1TCH ' RATE - SENSOR, COMPUTER, ACTUATOR);
9:

- -

-

10: TREE LOSS - - OF PITCH - CONTROL;
11 :

13 : ELECTRONICS FAILURE: 5.OE-04; (* AIRCRAPT ELECTRONICS FAILURE *)
14: ACT SYSl F f l L S : ACT SYS FAILS:
15 : m-SYS2-FAILS: ACf-SYS-FAILS ; (* THE ACTUATOR SYSTEM IS *)
16 : ACT'SYS3-FAILS: ACT-SYS-FAILS : (* c0MPOSED OF WUR INDE- *)

~ 12: HYDRAULIC FAILURE: 1.3E-06; (* HYDRAULIC SYSTEY FAILURE RATE * I

17 : ACT'SYS4-FAILS - - : ACT-SYS-FAILS; - - (* PENDENT SUBSYSTEMS. *)
18 :
19 : GRTEl: 2 OF
20 : (ACT SYSl FAILS,ACT SYS2 FAILS,ACT SYS3 FAILS,ACT SYS4 - FAILS);
21 :

221 run

TOP: OR TGATET, EIYDRMJLTC - F ~ ~ L U R E , ELEETRO~~TCS - FAILURE-) ;

Pr[ACT SYS 1 - -
4.93777E-03

Pr[TOP EVENT]

6.46555E-04

1.260 SECS. CPU TIME UTILIZED

231 exit

-le 3 - This example illustrates the use of the F"C program to process
the fault tree used in the Integrated Airframe Propulsion Control System
Architecture (IAPSA 11) project to analyze surface control failures. (See
ref. 1.)

21

The surface control system has three separate actuation channels each
consisting of an actuation stage and a disengage device stage.
channels are brickwalled with force voting at the control surface.
self-monitoring techniques are the primary method of fault detection and
isolation.
tolerance. The disengage device can deactivate a faulty channel.
can be controlled by one channel if the other two channels have been
deactivated.
channels to overpower a channel with a failed disengage device.
failure (top event) can occur in two ways:
channels, (2) loss of two channels when one of the lost channels has a failed
disengage device.
failure process:

The actuation
Channel

Each actuation channel contains two special devices for fault
The surface

Additionally, an override device in each channel allows two good
Thus, surface

(1) loss of all three actuation

The following tree describes these aspects of the system

TREE SURFACE - FAILURE;

CH1: CH FAULT;
C H ~ : CH-FAULT;
C H ~ : CH-FAULT; -

DDI -> 6.03-6;
DD2 -> 6.03-6;
DD3 -> 6.03-6;

(* Channel 1 failure *)
(* Channel 2 failure *)
(* Channel 3 failure *)

(* Channel 1 disengage device failure *)
(* Channel 2 disengage device failure *)
(* Channel 3 disengage device failure *)

LOSS OF ALL CHANNELS: AND(CHI, CH2, CH3); - - -
SFlA: AND(CH1, 001);
SFlB: OR(CH2, (333);
CHANNEL1 - UNISOLATED:

SF2A: AND(CH2, 0 0 2) ;
SF2B: OR(CH1, CH3);
CHANNEL2 - UNISOLATED:

SF3A: AND(CH3, DD3);
SF3B: OR(CH1, CH2);
CHANNEL3 - UNISOLATED:

AND(SFlA, S F l B) ;

AND(S F a , SF2B) ;

AND(SF3A, SF3B) ;

TOP: OR (LOSS OF ALL CHANNELS, CHANNEL1 UNISOLATED,
c"i%Lz - UNYSOLATED, CHANNEL3-UNISOLATED) - ;

Next, the failures leading to an actuation channel breakdown must be enumerated
in a subtree. An actuation channel failure can occur because of the loss of
the I/S bus, lack of two surface commands, or a fault in the actuation channel
elements - the I/S bus terminal, the elevator processor, and the electrical

22

and mechanical actuation hardware.
generation faults or computer bus terminal faults.
describes actuation channel failure:

Surface comaands can be lost due to ccnnmand
The following subtree

SUBTREE CH - FAULT;
Cl COMMAND: COMMAM) FAILURE; (* Loss of comnand 1 *)

(* Loss of command 2 *)
c 3 - m : --FAILURE; (* Loss of c o m d 3 *)
c 4 - m : - COMMAND-FAILURE; - (* Loss of command 4 *)

c 2 3 o ~ ~ ~ m : COMMAND-FAILURE;

C11 -> 1E-6;
C21 -> 1E-6;
C31 -> 1E-6;
C41 -> 1E-6;

ACT1 -> 9031-6;
B1 -> 2031-6;

(* computer 1 bus terminal fault *)
(* computer 2 bus terminal fault *)
(* computer 3 bus terminal fault *)
(* computer 4 bus terminal fault *)

(* fault in actuation channel elements
(* failure in I/S bus *)

AC1: OR(C1 COMMAND, C11);
AC2 : OR(C2-COMMAND, C21) ;
AC3: OR(C3-COMMAND, C31) ;
AC4: OR(C4-COMMAND, - C41);

LOSE TWD COMMANDS: 3 OF (AC1, AC2, AC3, AC4);
TOP:-OR(&"l, B1, IXlSE - - TWD COmmANDS);

A comand generation fault can occur due to lack of PCS data, IRADC data,
or computer failure.
bus failure or computer bus terminal failure:

The loss of data can be due to data source failure or I/S

SUBTREE COMMAND - FAILURE;

PCSl -> 11.OE-6;
B1 -> 2031-6;
C11 -> 131-6;
IRADCl -> 122.53-6;

PCS2 -> 11.031-6;
B2 -> 2OE-6;
C12 -> 35-6;
IRADC2 -> 122.531-6;

pCS3 -> 11.OE-6;
B3 -> 203-6;
C13 -> 13-6;
IRADC3 -> 122.5E-6;

(* loss of channel 1 PCS data *)
(* failure in channel 1 I/S bus *)
(* bus terminal to channel 1 fault *)
(* loss of channel 1 IRADC data *)

(* loss of channel 2 PCS data *)
(* failure in channel 2 I/S bus *)
(* bus terminal to channel 2 fault *)
(* loss of channel 2 IRADC data *)

(* loss of channel 3 PCS data *)
(* failure in channel 3 I/S bus *)
(* bus terminal to channel 3 fault *)
(* loss of channel 3 IRADC data *)

23

CLCl -> 1OO.OE-6; (* computer failure rate *)

LPD1: OR(PCS1, B1, Cll);
LPD2: OR(PCS2, B2, C12);
LPD3: OR(PCS3, 83, C13);
PCS - DATA - LOSS: AND(LPD1, LPD2, LPD3);

LID1: OR(IRADC1, B1, C11);
LIDZ: OR(IRADC2, 82, C12);
LID3: OR(1-3, B3, C13);
IRADC - DATA - LOSS: AND(LID1, LID2, LID3);

TOP: OR(PCS - DATA - LOSS, IRADC - RAW4 - LOSS, CLC1);

The above model was available in file IAPSA.MOD prior to the following
interactive session.

FTC Vl .0 NASA Langley Research Center

l? echo - 0
27 read WSA

457 run

12.230 SECS. CPU TIME UTILIZED

24

-le 4 - This example illustrates the use of the program to investigate
the sensitivity of a fault tree to a parameter.

$ E

E v l . 0

17 READ Ex5;

NASA Langley Research Center

2: V = 0 TO 1 BY .I;
3: G11: V;
4: G12: V/2;
5: G13: SQRT(V);
6: G14: 1 - V;
7: G15: 1 - V/2;
8: G16: 1 - SQRT(V); .
9: G17: V*(l-V);
10: G18: (l-V)*(l-V*V)*(l-V**3);
11 :
12: A21: AND(Gll,G12,G13);
13: A22: OR(G12,G13);
14: A23: XOR(G13,G14);
15: A24: 30F(G15,G16,G17,G18);
16: A25: AND(G16,G17);
17:
18: B31: OR(A21,A25);
19: B32: INV(A22);
20: B33: OR(A24,A22);
21:
22: C41: AND(B31,A23);
23: C42: AND(B33,B32,A22);
24 :
25: TOP: 20F(C41,C42,A25,A23);

263 run

V

O.OOOOOE+OO
1.OOOOOE-01
2.OOOOOE-01
3.OOOOOE-01
4.OOOOOE-01
5.OOOOOE-01
6.OOOOOE-01
7.OOOOOE-01
8.OOOOOE-01
9.OOOOOE-01
1.OOOOOE+OO

O.OOOOOE+OO
3.9965531-02
4.86548E-02
5.236803102
6.0221931-02
7.756983-02
1.0915OE-01
1.603353-01
2.375493-01
3.481653-01
5.OOOOOE-01

4.090 SECS. CPU TIME UTILIZED

273 PLOT
28? DISP COPY (See Figure 2)

25

.6 -

. 4 -.

0 .
0 . .25 .5 -75 1.

V

Figure 2

26

The Fault-Tree Compiler is a new reliability analysis program based on
combinatorial mathematics. The program has three major strengths: 1) the
input language is easy to understand and learn, 2) automatic sensitivity
analysis is allowed by varying a parameter over a range of values, and 3) the
answer provided by the program is precise. Additionally, the use of the
hierarchical fault tree capability can reduce model complexity.
can be used for an exact analysis, or a simple analysis of any system of
interest.

The program

27

1. Cohen, G. C.; Lee, C. W.; Brock, L. D.; and Allen, J. G: Designflalidation
Concept for an Integrated Airframe/Propulsion Control System Architecture
(IAPSA 11), NASA Contractor Report 178084, June 1986.

2. Henley, E.J.; and Kumamoto, H.:
Assessment, Prentice-Hall, Inc., 1981.

3. E3avus0, S.J.; and Petersen, P.L.: CARE I11 Model Overview and User's
Guide, NASA Technical Memorandum 86404, April 1985.

Reliability Engineering and Risk

L

28

APPENDIX A

.

'Iheory

The Fault Tree Compiler program solution technique relies upon three basic
model assumptions:

1)
2)

3)

System components, or basic events, fail independently,
Components are either failed or operational;
not exist.
The system is either failed or operational;
exists.

an "in-between" state does

no "in-between" state

Figure Al illustrates a representative fault tree.
the fault tree is generalized to have n basic events and a probability of
occurrence associated with each.
"components" and a probability of "failure" will be attributed to each of the
components in the system.

In the following discussion,

Basic events will be referred to as

Figure Al

A-1

Let

A,, represent the event component A, has not failed
A, represent the event component has failed.

By defining the variable vi as

0

1

if system component i has not failed

if system component i has failed,
1 S i S n

we have, by independence of the n basic events,

- n n P(qy 1
i ill

It is possible to enumerate all combinations of components-failed and
components-operational describing the different possible states of the system.
Each system state can be represented by an n-dimensional "binary" vector
composed of 1's and O's, where 1 indicates that the component has failed and 0
indicates that the component has not failed.
fail, for example, would be represented by the vector

The event that all n components

(1 1 1 . - . 1).

A system composed of four basic events would generate the following binary
vectors :

5. (0 0 0 1) 9. (0 1 1 0) 13. (1 1 0 1)
14. (1 0 1 1)

7. (1 0 1 0) ' 11. (0 0 1 1) 15. (0 1 1 1)
16. (1 1 1 1)

1. (0 0 0 0)
2. (1 0 0 0) 6. (1 1 0 0) 10. (0 1 0 1)
3. (0 1 0 0)
4. (0 0 1 0) 8. (1 0 0 1) 12. (1 1 1 0)

Clearly, for an n-component system there are 2" possible binary vectors
representing 2" distinct system states. The jth system state is denoted by sj,

A-2

and its associated probability by P (s j) .

be written in terms of the variables vi , (v, v2 . . . v,,) , and that the
probability of the jth system state is

Note that the jth binary vector can

The sample space S is the set of all possible system states denoted by the
2" binary vectors. By definition,

P(S) = 1.

Because the components are either failed or not-failed, the 2" binary vectors
exhaustively describe all possible system states. Therefore,

P (s , + s 2 + ... +s) = P(S) = 1.
2 n

Clearly, the system can be in one and only one state at any given time,
indicating that the system states are mutually exclusive. By definition,

P (s i s j) = 0 for every i and j # i

and, for the 2" mutually exclusive system states,

P (s , + s 2 + ... +s - P(s, 1 + P (s , 1 + ..e + P (S " 1 -
2 * 2

To calculate the probability of system failure, the sample space S camposed
of 2" system states is divided into two subsets, where one subset contains all
states representing system failure, and the other subset contains all states
that represent system operational.
operational these two subsets are clearly exhaustive and mutually exclusive.
Fslrthermore the system states composing each of these two subsets are mutually
exclusive, and the probability of either subset can be found by summing the
appropriate individual system state probabilities. Therefore, calculating the
total probability of system failure by simply s d n g the probabilities of the
system configurations that represent system failure is exact.

Because the system must be either failed or

A-3

I

The Solution Technique

The program solution technique generates binary vectors in an orderly
fashion, starting with binary vector

(0 0 0 . - . On).

Vectors are checked through the user-defined system tree; for each binary vector
found to represent a system-fail configuration its probability is added to a
running total of binary vector probabilities, where all vector probabilities in
the sum represent system fail configurations. As shown above, the total number
of binary vectors to be checked through the system tree is 2".
many components, the number of fault vectors to check through the system tree
can be very large.
to reduce the total number of fault vectors checked through the system tree.
The pruning technique will not affect the FTC program answer; it will reduce
run-time and improve efficiency.

For systems with

A simple and effective pruning technique has been developed

Consider a system composed of ten highly reliable components. The
probability that any one component fails is low; the probability that all
components fail is much, much lower.
probability, when sumaned with the former probability, will not affect the answer
within five or even ten or more significant digits.
established, and binary vectors with probabilities less than the threshold may
be disregarded.

It is often true that the latter

A threshold value can be

The FTC program establishes a threshold by first calculating a "weight"
function.
vectors, all of value
less than or equal to 0.5~10-~ (d - the number of significant digits in the FTC
answer). The function

A worst case scenario is solved, where it is assumed that 2"-1
are to be pruned. The sum of all the values must be

(2"-1) x lomk < 0.5x1Wd

is solved for the smallest integer value of k that satisfies the equation.
a binary vector representing a system-fail configuration is found, its

Once

A-4

probability is multiplied by the weight function value and the threshold is
established. The threshold is used to reduce the total number of fault vectors
checked through the system tree by eliminating those vectors that would not
influence the FTC answer even if they do represent a system-fail configuration.
For large systems With many basic events, the time savings can be substantial.

The solution algorithm can be roughly sumMrized as follows:

Calculate the weight function (shown above).

Rank the probabilities of failure.
IVEC and JVEC. IVEC represents the basic events in the order in which
they were entered in the model.
probabilities of failure and orders the basic events from highest P(f)
to lowest.
shortly.

Select the (0 0 0

Using the IVEC representation, check to see if the fault vector
represents a system fail state.

If the fault vector represents a system fail state, then

fault vectors are maintained,

JVEC, on the other hand, ranks the

The need for two vector representations will become clear

0,) fault vector.

If this is the first system fail fault vector to be found, calculate
the probability of the set of events represented by the fault
vector.
the threshold value, CUTOFF. Lastly, initialize the total
probability of system failure to the fault vector probability.

If this is not the first system fail fault vector, simply add its
probability of occurrence to the total probability of failure.

Then multiply this value by the weight function to obtain

Increment the JVEC fault vector, and generate the equivalent IVEC fault
vector.
IVEC, the fault vectors are generated in patterns of decreasing
probabilities.

If at least one fault vector has been found representing a system fail
state, calculate the new fault vector's probability of occurrence,
PFVOCC .

By incrementing the JVEC fault vector and then converting to

If a PFVOCC value is calculated, it is compared to the CUTOFF value.
PFVOCC < CUTOFF, then the next JVEC fault vector with a PFVOCC greater
than CUTOFF is generated.
(1 1 1 - e - 1,) has been reached, the program jumps to step 9.

Loop to step 4.

The total probability of failure is passed to the calling program.

If

If no such vector exists, or the vector

A-5

Fault tree solvers exist; it is felt that the FTC program is superior in its
The use of subtrees to reduce run tree input language and specification syntax.

time and aid in the analysis of large trees is especially powerful.
probability of the top event in the system tree is exact to five significant

The

is, however, the user's responsibility to assure that basic events
are independent, and that the tree is semantically correct.

digits. It
in the tree

The fau t tree is often satisfactory for design analysis and system failur2
studies.
detailed analysis of complex systems containing dependencies, it can be very
useful in preliminary design reviews.

Though the fault tree methodology may have limitations for the

e

A-6

APPENDIX B

Error Messages

c

.

Error and warning messages are listed in alphabetical order, with messages
beginning with a symbol (i.e. =, I , ;) listed tt the end.

ALREADY DEFINED AS A GLOBAL CONSTANT - The value defined has been defined
previously as a global constant.

ALREADY DEFINED AS A GATE OUTPUT OR EVENT - The value has been defined
previously as a gate output or event.

a local constant.
ALREADY DEFINED AS A LOCAL CONSTANT - The value has been previously defined as

ALREADY DEFINED AS A RESERVED WORD - The value defined is an FTC reserved word.
ALREADY DEFINED AS A SUBTREE - The value defined has previously been defined
as a subtree title.

ARGUMENT To EXP FUNCTION MUST BE < 8.80289E-tOl - The argument to the M p
function is too large.

ARGUMENT TO LN OR SQRT E'UNCTION MUST BE > 0 - The LN and SQRT functions require
positive arguments.

ARGUMENT To STAMXW) F"CTI0N MISSING - No argument was supplied for a standard
function.

COMMA EXPECTED - Syntax error; a camma is needed.

CONSTANT EXPECTED - Syntax error; a constant is expected.

DIVISION BY ZERO NOT ALLOWED - A division by 0 was encountered when evaluating

EVENT PROBABILITY GREATER THAN 1 - The event probability was evaluated to a

EXP FUNCTION ovERFL(Jw - The argument to the M p function is too large. The

EXPRESSION CAMVOT CONTAIN THE VARIABLE - The variable cannot be defined in

the expression.

value greater than 1.

value of the argument must be less than 8.80289E+Ol.

terms of itself.

EXPRESSION OVERFLUi - The value of the expression caused arithmetic overflow.
FILE NAME EXPECTED - Syntax error; the file name is missing.
FILE NAME TOO LONG - File names must be 80 or less characters.

B-1

IDENTIFIER EXPECTED - Syntax error; the file name is missing.

IDENTIFIER NOT DEFINED - The identifier entered has not yet been defined.

ILLEGAL cxmXTE3 - The character used is not recognized by the FTC program.

ILLEGAL LN OR SQRT ARGUMENT - The LN and SQRT functions require positive

ILLEGAL STAlEME"r - The command word is unknown to the program.
ILLEGAL NUMBER OF INPUTS TO GATE - The AND and OR gates may have an arbitrary
numbe r of inputs; however, the INVERT gate must have only one input, the
EXCLUSIVE OR gate must have two inputs, and the M OR N gate must have the
number of inputs such that

arguments.

N - M 2 0.

INPUT ALREADY DEFINED AS A VARIABLE - The gate or variable defined in the

INPUT LINE TOO LONG - The command line exceeds the 100 character limit.
INTEGER EXPECTED - Syntax error; an integer is expected.

statement has already been defined globally as a variable.

INV GATE MUST HAVE ONLY 1 INPUT - Only one input is allowed for the INVERT gate.
MUST BE IN "READ" MODE - The INPUT conunand can be used only in a file processed
by a READ command.

NOT A VALID EVENT - Events used as gate inputs must be previously defined as
a basic event or the output from a previous gate.

NO GATES IN FAULT TREE - The fault tree contains no gates.
NUMBER TOO LONG - Only 15 digits/characters allowed per number.

ONLY 1 VARIABLE ALLUiED - Only one variable can be defined per complete fault
tree.

REAL EXPECTED - A floating point number is expected here.

SEMICOLON EXPECTED - Syntax error; a semicolon is needed.
SUB-EXPRESSION Too LARGE, i.e. > 1.7OOOOE+38 - An overflow condition was
encountered when evaluating the expression.

- SUBTREE RESULT NOT FOUND - The fault tree was unable to calculate subtree top

TOP NOT REACHABLE - No combination of events led to the top event in the system

UNK" GATE TYPE - Verify that the gate type is AND, OR, INV, XOR, or

event probabilities.

tree.

Check for syntax errors in the subtrees.

M OF < >.
information.

See the "Gate Definition" section of this paper for more

B-2

.

VARIABLE MUST BE DEFINED AT GLOBAL LEVEL - Variables may "I be defined within
subtrees; variables must be d ef ined giobally.

VMS FILE NOT FOUND - The file indicated on the READ command is not present on
the disk. (Note: make sure your default directory is correct.)

*** WARNING: VARIABLE CHANGED TO A CONSTANT! PREVIOUS EVENTS MAY BE WRONG -
If previous basic events have been defined using a variable and the variable
n e is changed, inconsistencies may appear in &e results.

*** WARNING: SYNTAX ERRORS PRESENT BEFORE RUN - Syntax errors were present
during the mod el description process.
prior to the run.

They may or may not have been corrected

*** WARNING: RUN-TIME PROCESSING ERRORS - Computation overflow occurred during
execution.

*** W"ING: REMAINDER ON I"I LINE IGNORED - The information on the rest of

- EXPECTED - Syntax error; the = operator is needed.

] EXPECTED - A right bracket is missing in the expression.

< EXPECTED - Syntax error; the < symbol is needed.
) EXPECTED - A right parenthesis is missing in the expression.
(EXPECTED - A left parenthesis is missing in the expression.

the input line is disregarded.

B-3

Standard Bibliographic Page

. Report No.
NASA TM-89098

2. Government Accession No.

~ . Author(s)

Anna L. Martensen and Ricky W. Bu t l e r

1. Performing Organization Name and Address

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages
Unc la s s i f i ed Unc las s i f i ed 39

NASA Langley Research Center
Hampton, VA 23665-5225

2. Sponsoring Agency Name and Address
Nat iona l Aeronautics and Space Adminis t ra t ion
Washington, DC 20546-0001

22. Price
A0 3

5 . Supplementary Notes

3. Recipient’s Catalog No.

5 . Report Date

Jaunary 1987
~~

6. Performing Organization Code

505-66-21-01
8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

Anna L. Martensen, PRC Kentron, Inc . , Hampton, V i rg in i a .
Ricky W. Bu t l e r , Langley Research Center, Hampton, V i rg in i a .

16. Abstract

The Fault Tree Compiler Program is a new reliability tool used to predict
the topevent probability for a fault tree.
allowed in the fault tree: AND, OR, EXCLUSIVE OR, IMIERT, and M OF N
gates.
describing the system tree. In addition, the use of the hierarchical fault
tree capability can simplify the tree description and decrease program
execution time.
(within the limits of double precision floating point arithmetic) to the
five digits in the answer.
probability over a range of values and plot the results for sensitivity
analyses.
program code is implemented in Pascal.
Digital Corporation VAX with the VMS operation system.

Five different gate types are

The high-level input language is easy to understand and use when

The current solution technique provides an answer precise

The user may vary one failure rate or failure

The solution technique is implemented in FORTRAN; the remaining
The program is written to run on a

17. Key Words (Suggested by Authors(s)) I 18. Distribution Statement
Fau l t Tree
R e l i a b i l i t y Analysis
R e l i a b i l i t y Modeling
Fau l t Tolerance

Unc las s i f i ed - Unlimited

Star Category 61

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 83 (June 1985)

