ORBITAL TRANSFER VEHICLE CONCEPT DEFINITION AND SYSTEM ANALYSIS STUDY

FINAL REPORT

$$
\begin{aligned}
& \text { (AASA-CE-179055) ORBITAL TEADSFER VEHICLE } \\
& \text { CCNCEPT DEFINITICN AND SYSIEH ANAIYSIS } \\
& \text { STODY VCLUME 1A: EXECUTIVE SUMBAEY. PHASE } 2
\end{aligned}
$$

PHASE 2

December 1986

ORBITAL TRANSFER VEHICLE CONCEPT DEFINITION AND SYSTEM ANALYSIS STUDY

FINAL REPORT

VOLUME IA EXECUTIVE SUMMARY

PHASE 2

December 1986

Prepared for
NASA MARSHALL SPACE FLIGHT CENTER
Huntsville, Alabama

Prepared by
ADVANCED SPACE PROGRAMS

GDSS-SP-86-011

VOLUME IA

W. Ketzhum
 Prepared by:
 W. J. Ketchum
 Orbital Transfer Vehicle
 Study Manager

FOREWORD
This report summarizes the Phase 2 results of the Orbital Transfer Vehicle Concept Definition and System Analysis Study. This study was conducted by General Dynamics Space Systems Division (GDSS) under company funds from October 1984 through August 1986 for NASA Marshall Space Flight Center (Don Saxton - NASA MSFC OTV Study Manager). Final documentation is divided into ten volumes:

Volume I	Executive Summary - Phase 1
Volume IA	Executive Summary - Phase 2
Volume II	OTV Concept Definition \& Evaluation
Volume III	System \& Program Trades
Volume IV	Space Station Accommodations
Volume V	WBS \& Dictionary
Volume VI	Cost Estimates
Volume VII	Integrated Technology Development Plan (and
	Centaur for OTV Technology Demo)
Volume VIII	Environmental Analysis
Volume IX	Phase 2 - Detail Summary

The GDSS Study Manager is Bill Ketchum. Many other gDSS personnel contributed to this study. The key individuals and their particular contributions are as follows:

Kathy Anderson
Jon Barr
Gary Bartee
Frank Bennett
Ted Bianchi
Dr. Bruce Cordell
Dan Chiarappa
Craig Cunningham
Alex DeLa Pena
Raymond Gorski
Johna Hanson
Mark Henley
Jeff Holdridge
Tom Kessler
Stan Maki
John Maloney
Colin McClain
Mitch Oliver
Luis Pena
John Porter
Mike Rinker
Paul Rizzo
Michael Simon
Dennis Stachowitz
Chris Toree

CAD/CAM
Aerobrake Design
Propulsion
Propellant Systems
Ground Operations
Advanced Missions
Guidance, Navigation and Control
Space Station Design
Aerothermal
Mission Requirements and Flight Operations
Space Station Operations
Technology and Environment
Design
Configurations
Avionics, Electric Power
Space Station Accommodations
Mission Capture
Costs \& Programatics
Space Station Operations
Centaur Demonstrations
Stress
Robotics
Costs and Programmatics
Mass Properties
Structural Design

Dr. Kenton Whitehead	Aerothermal
Sandy Witt	Costs and Programmatics
Jeff Worth	Mass Properties

For further information contact:

```
Bill Ketchum
OTV Study Manager
General Dynamics Space Systems Division
Huntsville Program Office
6 0 0 \text { Boulevard South, Suite } 2 0 1
Huntsville, Alabama 35802
Telephone (205) 880-0660
```

or
Don Saxton
OTV Study Manager
NASA/Marshall Space Flight Center
PF20
Huntsville, Alabama 35812
Telephone (205) 544-5035

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1-1
2 MISSION REQUIREMENTS 2-1
3 OTV CONCEPTS/LAUNCH VEHICLES 3-1
4 TRADE STUDIES/SENSITIVITIES 4-1
4.1 CRYOGENIC VERSUS STORABLE PROPELLANTS 4-2
4.2 REUSABLE VERSUS EXPENDABLE OTV's 4-4
4.3 GROUND VERSUS SPACE BASING 4-6
4.4 STS VERSUS HLV DELIVERY 4-8
4.5 AEROBRAKE VERSUS ALL-PROPULSIVE 4-10
4.6 ADVANCED ENGINE VERSUS RL-10 4-12
4.7 LOW-PRESSURE TANKS VERSUS CONVENTIONAL 4-15
4.8 SENSITIVITY OF IOC DATE 4-17
4.9 SENSITIVITY TO HLV CAPABILITY 4-18
4.10 IMPACT OF HLV COST 4-19
4.11 PRIORITY OF BENEFITS 4-20
4.12 OTV ACCOMMODATIONS 4-21
5 RECOMMENDED OTV PROGRAM 5-1
6 CONCLUSIONS 6-1
7 BIBLIOGRAPHY 7-1
AppendixA MODULAR SPACE-BASED OTV CONFIGURATION, WEIGHT,\& PERFORMANCE DATAA-1
B CO-ORBITING PLATFORM CONFIGURATION, ELEMENTS, AND WEIGHTS B-1

LIST OF FIGURES

Figure Page
1-1 Space-Based OTV/Servicing Facility 1-1
1-2 OTV Operational Scenario and Mission Profile 1-2
1-3 OTV Time-Phasing Relationships 1-3
2-1 OTV Missions 2-1
2-2 OTV Mission Model Comparison 2-3
2-3 Total OTV Propellant Requirements 2-4
3-1 OTV Concepts 3-1
3-2 Launch Vehicles 3-2
4-1 Cryogenic Versus Storable Propellants 4-3
4-2 Cumulative Life Cycle Costs: Expendable Versus Reusable OTV 4-5
4-3 OTV Basing/Delivery Mode Life Cycle Cost Comparison 4-9
4-4 Aerobrake Cost Payback Function 4-11
4-5 Economic Impact of OTV Engine Performance 4-13
4-6 Economic Impact of OTV Engine Longevity 4-14
4-7 Low Pressure Tank Cost Payback Function 4-16
4-8 Impact of Space-Based IOC Date on OTV Life Cycle Cost 4-17
4-9 Impact of HLV Capability on OTV Life Cycle Cost 4-18
4-10 Impact of HLV Cost on OTV Life Cycle Cost 4-19
4-11 Co-Orbiting OTV Maintenance and Propellant Storage Platform 4-22
5-1 Cost/Pound to Geosynchronous Orbit for Various Space Transportation Systems 5-1
5-2 Annual Funding Requirements for Development of Space-Based OTV and Orbital Platforms 5-2
A-1 Core Propellant Stage for Multiple Payload Delivery A-2
A-2 Twin Outrigger Tankset Stage for Manned Missions A-3
A-3 Space-Based OTV Stage Weight Summary A-4
A-4 Space-Based OTV Payload Capability A-5
B-1 Co-Orbiting OTV Platform B-2
B-2 Co-Orbiting OTV Platform B-3
B-3 Co-Orbiting OTV Platform B-4

LIST OF TABLES

Table Page
2-1 Driver Missions/OTV Requirements Summary (Rev. 9/Scenario 2/1995-2010) 2-2
2-2 OTV Mission Model Comparison Rev. 9 vs Rev. 8 2-3
4-1 Key Trade Studies 4-1
4-2 Propellant Selection Trade 4-2
4-3 Reusability Trade 4-4
4-4 OTV Basing Trade 4-7
4-5 Delivery Mode Trade 4-8
4-6 Aerobraking Trade 4-10
4-7 Engine Trade 4-12
4-8 Propellant Tanks Trade 4-15
4-9 Features of Most Cost Effective OTV 4-20
4-10 OTV Accommodations Trade 4-21

ACC
AFE
APS
ASE
CFMF
CG
CITE
CRYO
DoD
DDT\&E
ET
EVA
FOC
GB
GDSS
GEO
GN\&C
GPS
GR/E
HPA
IOC
ISP
JSC
LCC
LEO
LGO
LLO
LTCSF
MES
MMH
MRMS
MSFC

Aft Cargo Carrier
Aerobrake Flight Experiment
Auxiliary Propulsion System
Airborne Support Equipment
Cryogenic Fluid Management Facility
Center-of-Gravity
Cargo Integration Test Equipment
Cryogenic ($\mathrm{H}_{2} / \mathrm{O}_{2}$)
Department of Defense
Design, Development, Test and Engineering
External Tank
Extravehicular Activity
Full Operational Capability
Ground Based
General Dynamics Space Systems Division
Geostationary Earth Orbit
Guidance, Navigation and Control
Geostationary Positioning System
Graphite Epoxy
Handling Positioning Aid
Initial Operational Capability
Specific Impulse
Johnson Space Center
Life-Cycle Cost
Low Earth Orbit
Lunar Geoscience Orbiter
Low Lunar Orbit
Long-Term Cryogen Storage Facility
Main Engine Start
Mono-methyl Hydrazine
Mobile Remote Manipulator System
Marshall Space Flight Center

ACRONYMS AND ABBREVIATIONS, Contd

MST	Module Servicing Tool
OCB	Orbital Cargo Bay
OMV	Orbital Maneuvering Vehicle
OPS	Operations
OTV	Orbital Transfer Vehicle
PGHM	Payload Ground Handling Mechanism
PIDA	Payload Installation and Deployment Aid
P/L	Payload
PRLA	Payload Retention/Latch Assembly
R	Radial Vector
RCS	Reaction Control System
RMS	Remote Manipulator System
RSS	Rotating Service Structure
SB	Space Based
S-C	Shuttle/Centaur
SCB	Shuttle Cargo Bay
SDV	Shuttle-Derived Vehicle
SS, S/S	Space Station
STS	Space Transportation System
TDP	Technology Development Package
TDRS	Tracking Data Relay Satellite
TPS	Thermal Protection System
TSS	Vertical Processing Facility
VAB	

SUMMARY

The Orbital Transfer Vehicle (OTV) Concept Definition and System Analysis Study was conducted by General Dynamics Space System Division (GDSS), a company-funded effort under the direction of NASA/Marshall Space Flight Center (MSFC).

This study was conducted in two parts. Phase I results were summarized in Volume I. This report, Vol IA, summarizes the Phase 2 results.

The objectives and accomplishments during Phase 1 of the "Orbital Transfer Vehicle Concept Definition and System Analysis Study" were to define preferred OTV concept(s) and programatic approach(es) for the development of an OTV capable of providing reusable operations capabilities to geosynchronous orbit and beyond, and capable of growth to manned geosynchronous access. A major objective was to define the interaction between the OTV and the Space Station, and derive space-basing requirements on both.

The study provided technical and programmatic data for NASA pertinent to OTV requirements, configuration, accommodation needs, operational characteristics, and costs. Significant conclusions of the effort were:
a. An evolutionary program development leading ultimately to a reusable, space-based OTV is cost-effective and low-risk.
b. The performance benefits of cryogenic propellants justify their greater initial development costs and foster growth to manned and planetary mission applications.
c. OTV accommodations on the growth Space Station require a substantial facility with automated systems and teleoperated servicing equipment.
d. Aerobraking has the potential for significant performance gain and program cost benefits.

The objectives of the General Dynamics Phase 2 study were to improve our understanding of the OTV concept by focusing on the following three key issues:
a. Exploring how the mission requirements would be impacted when advanced civil and military missions (including those of STAS) are considered with their resultant effects on OTV system requirements.
b. Developing an increased definition of OTV basing concepts on the space Station, Platforms, and/or remote locations, either manned or man-tended.
c. Examining the means to lower the costs of an OTV program to improve its economic benefits and support its acquisition.

Between Phases 1 and 2, several major changes occurred that had a significant impact on study results and recommendations. The mission model increased to include more total missions, including higher inclination missions. In addition to the STS, the availability of new launch vehicles (HLV) was introduced. Besides the Space Station, the possibility of separate OTV platforms was included. Finally, the aftermath of the Challenger accident puts renewed emphasis on flight safety in selection of an OTV for manned applications.

The space-based orbital transfer vehicle will allow safe launch operations, with higher performance and lower cost than any other chemical propulsion system, and will enable bold new mission opportunities.

The space-based OTV will be the result of many years of careful study using the best technology available to assure the U.S. continued access to space, safely, and economically.

SECTION 1

INTRODUCTION

NASA is proceeding toward a permanently manned Space Station to be initially operational in Low Earth Orbit in 1994. The Space Station concept provides for a six- to eight-person crew in a low-inclination orbit.

The Space Shuttle will launch and provide transportation to the Space Station and will permit crew rotation and resupply at three- to six-month intervals.

The Space Station will enable extensive commercial use of space by providing capabilities not currently available.

The Space Station is being designed to continuously evolve to enhance its capabilities into the next century. By 1997, the addition of a transportation support facility will provide a staging point for payloads requiring placement at higher orbit by an OTV, shown in Figure 1-1.

[^0]A space-based OTV will not be subjected to Earth-to-orbit launch loads and will not be constrainted in size or weight. Since it can be assembled in space from several components, it could carry large payloads. Its inherent reusability and ability to be refueled in space make the space-based OTV very economical to operate and most importantly, will enhance manned safety since it is delivered empty from Earth to orbit.

The operational scenario and mission profile of the OTV, shown in Figure 1-2, include the following:
a. Initial delivery of the OTV and the subsequent delivery of the OTV payloads and propellants from the Earth to the OTV/Servicing Facility by the STS/HLV and orbital maneuvering vehicle (OMV).
b. Integration of payloads on the OTV and refueling of the OTV from propellant storage tanks on the OTV/Servicing Facility.
c. Departure of the OTV and payloads to high orbits, translunar, or interplanetary trajectories.
d. Return of the OTV via aerobraking to the OTV/Servicing Facility.

OTV SERVICING FACILITY

- ASSEMBLY/CHECKOUT
- SERVICING/MAINTENANCE
- OTV FACILITY
- PROPELLANT STORAGE

Figure 1-2, OTV Operational Scenario and Mission Profile

The schedule for development and operation of the Space Station, OTV, and Servicing Facility shown in Figure 1-3, anticipates space-based OTV operation by 1997. Continuing upgrades are expected into the next century as additional missions and requirements develop.

Figure 1-3. OTV Time-Phasing Relationships

MISSION REQUIREMENTS

The NASA/MSFC OTV mission model includes a wide range of missions, shown in Figure 2-1. The driver missions are manned GEO Servicing, mid-inclination/ Polar DoD, and Lunar/Planetary.

The latest version of the NASA-MSFC OTV mission model (Rev. 9) includes STAS scenarios (1-5:292-872 missions). Scenario 2 (422 missions) is the baseline specified by NASA-MSFC for OTV Phase 2 study. These missions occur over a 15-year period (1995-2010).

Since Phase 1, the number of OTV baseline missions increased from 145 to 422 (Rev. 8 low, versus Rev. 9, Scenario 2) placing increased emphasis on OTV. The wide range of missions indicates the continuing need for modularity to give mission flexiblity without performance penalty.

Earth orbital

- Multiple GEO payload delivery
- Large GEO satellite delivery
- GEO satellite retrieval
- Experimental GEO platform
- GEO shack elements
- Manned GEO sortie
- GEO shack logistics
- DoD

Beyond earth

- Unmanned planetary
- Unmanned lunar orbit
- Unmanned lunar surface
- Lunar orbit station
- Manned lunar sorties/logistics

Figure 2-1. OTV Missions

The importance of high-performance OTVs (cryogenic propellants and aerobraking) is indicated by the increasingly demanding missions. (See Table 2-1.)

The number of missions per year for each Rev. 9 scenario and the nominal and low Rev. 8 model are shown. The baseline Rev. 9 model - Scenario 2 - is 5-10 missions per year in excess of the Rev. 8 Nominal. (See Figure 2-2.)

Table 2-2 shows the comparison of Rev. 8 and Rev. 9 for the candidate missions.
Using the Rev. 9 mission model, total annual OTV propellant requirements can reach 1.5 million pounds for the baseline scenario. (See Figure 2-3.)

Table 2-1. Driver Missions/OTV Requirements Summary (Rev. 9/Scenario 2/1995-2010)

Mission	Payload	Number of missions	IOC	OTV propeliant/ number of tanks*
Multiple payload delivery	12,000 lb to GEO/2,000 lb return	84	1995	$41,500 \mathrm{lb} / 1$
DoD	$10,000 \mathrm{lb}$ to GEO, mid-inclination $5,000 \mathrm{lb}$ to polar	240	1995	24,900-35,800 lb/1
GEO shack logistics	12,000 lb up/10,000 lb down	37	1999	$66,900 \mathrm{lb} / 3$
Manned GEO sortie	12,000 lb up/10,000 lb down	16	2002	$66,900 \mathrm{lb} / 3$
Reflights	20,000 lb to GEO	8	1997	$64,600 \mathrm{lb} / 3$
Manned GEO shack	25,080 lb to GEO	1	2004	$72.000 \mathrm{lb} / 3$
Lunar	$72,680 \mathrm{lb}$ to lunar orbit	4	2009	$137.000 \mathrm{lb} / 3$
Planetary	Various: up to $122 \mathrm{C}_{3}$; up to 32 K lb, etc)	14	1995	Up to 123,000 lb/3 (6 with kick stages)

[^1]

Figure 2-2. OTV Mission Model Comparison

Table 2-2. OTV Mission Model Comparison Rev. 9 vs Rev. 8

Mission group	Rev 8		Rev 9 Scenarios				
	Low	Nominal	1	2	3	4	5
Experimental GEO platiorm	1	1	1	1	1	1	1
Operational GEO platforms	5	6	0	0	0	0	0
GEO shack elements	2	2	0	2	2	2	2
Manned GEO sortie	3	17	0	16	16	16	22
GEO shack logistics	5	26	0	37	37	37	51
Unmanned planetary	6	14	14	14	17	14	25
Unmanned lunar orbit	2	2	0	3	3	3	4
Unmanned lunar surface	N/A	N/A	0	5	5	5	1
Lunar orbit station	0	1	0	0	0	0	1
Manned lunar sorties/logistics	0	11	0	0	0	0	8
Multiple GEO payload delivery	46	79	84	84	84	84	88
Large GEO satellite delivery	3	7	10	10	10	10	19
GEO satellite retrieval	0	0	2	2	2	2	2
Nuclear waste disposal	0	0	0	0	0	0	391
DoD (generic)	68	85	176	240	240	480	240
Subtotal	142	252	287	414	417	654	855
Reflights	3	5	5	8	8	13	17
Total	145	257	292	422	425	667	872

Figure 2-3. Total OTV Propellant Requirements

SECTION

OTV CONCEPTS/LAUNCH VEHICLES

To accomplish the missions, many OTV concepts were defined including ground-based launched either in the STS orbiter, the aft cargo carrier (ACC), or on the HLV, and a space-based OTV designed to be effective over a wide range of mission requirements without redesign or performance penalty. (See Figure 3-1.)

Study results indicate a significant advantage (economic and technical) for a cryogenic ($\mathrm{H}_{2} / \mathrm{O}_{2}$) space-based OTV.

Launch vehicles included the STS, a partially reusable cargo vehicle (HLV), and a fully reusable Shuttle II. (See Figure 3-2.) Study results indicate a significant advantage (economic and technical) for a partially reusable cargo vehicle (HLV).

$\left[\begin{array}{c} 40 \\ 30 \\ 20 \\ 10 \\ 0 \end{array}\right.$					
Type deecription	Intertm ground-besed OTV	Advenced ground-besed OTV	Adv. Aerge tankset ground-beeed OTV	Adv. modular SBOTV core propellent	Adv. modular SBOTV 3 tanksets
Payload - geo circular - geo roundtrip Stage ignition weight Total thrust Main propulsion - Propellants - $\mathrm{H}_{2} / \mathrm{O}_{2}$ - Engine description - Number of engines - ISP - vacuum IOC Launch vehicle	10.100 lb 4.750 ib 62.800 lb 30.000 lb 52.100 ib RL 10 -IIC 2 444 sec 1992 STS-OCB (72K Ib)	$\begin{aligned} & 10,280 \mathrm{lb} \\ & 4,930 \mathrm{lb} \\ & 50,870 \mathrm{lb} \\ & 7,500 \mathrm{lb} \\ & 41,500 \mathrm{lb} \\ & \text { Adv. space engine } \\ & 1 \\ & 485 \text { sec } \\ & 1995 \\ & \text { STS-ACC } \\ & \text { (72K Ib) } \end{aligned}$	26.100 lb $13,000 \mathrm{lb}$ $98,900 \mathrm{lb}$ $15,000 \mathrm{lb}$ $83,000 \mathrm{lb}$ Adv. space engine 2 485 sec 1996 HLV	$13,500 \mathrm{lb}$ $6,450 \mathrm{lb}$ $48,340 \mathrm{lb}$ $10,000 \mathrm{lb}$ $40,800 \mathrm{lb}$ Adv. space engine 2 485 sec 1996 STS/HLV	$\begin{array}{r} 59,100 \mathrm{lb} \\ 31,450 \mathrm{lb} \\ 134,900 \mathrm{lb} \\ 10,000 \mathrm{lb} \end{array}$ 122.500 lb Adv space engine 2 485 sec 1996 STS/HLV

Figure 3-1. OTV Concepts

Figure 3-2. Launch Vehicles

SECTION 4
TRADE STUDIES/SENSITIVITIES

System and program trade studies were conducted, using performance, cost, safety/risk, and operations/growth criteria, to identify preferred OTV concepts/approaches. Table 4-1 sumarizes the results. The basis for these conclusions are discussed in the following sections.

The study shows that mission requirements and substantial economic benefits justify a reusable, cryogenic ($\mathrm{H}_{2} / \mathrm{O}_{2}$) space-based OTV to reduce operational cost, to return payloads, to permit growth, and to increase safety.

Table 4-1. Key Trade Studies

OPTION	RECOMMENDATION
- CRYOGENIC VS STORABLE PROPELLANTS	CRYOGENIC
- REUSABLE VS EXPENDABLE OTV'S	REUSABLE.
- GROUND-BASING VS SPACE-BASING	SPACE-BASING
- STS VS HLV DELIVERY	HLV
- AEROBRAKE VS ALL-PROPULSIVE	AEROBRAKE
- ADVANCED ENGINE VS RL-IO	ADVANCED
- LOW-PRESSURE TANKS VS CONVENTIONAL	LOW-PRESSURE
- ATTACHED VS FREE-FLYING OTV PLATFORMS	FREE-FLYING

4.1 CRYOGENIC VERSUS STORABLE PROPELLANTS

Cryogenic ($\mathrm{H}_{2} / \mathrm{O}_{2}$) propellants resulted in 50% less propellant required, fewer vehicle stages/operations, lower life cycle cost ($-\$ 7 \mathrm{~B}$), and are available in quantity from the current STS infrastructure. (See Table 4-2 for propellant trades.)

Table 4-2. Propellant Selection Trade

Criteria	Storable ($\left.\mathrm{N}_{2} \mathrm{O}_{4} / \mathrm{MMMH}\right)$	Cryogenic ($\mathrm{H}_{2} / \mathrm{O}_{2}$)
Performance	Lower Isp (342) increases propellant requirement, number of stages	Higher $I_{\text {SP }}$ (485) Less propellant Fewer stages
Cost	Higher operations cost Life cycle cost $=\$ 20 B$	Lower operations cost Life cycle cost $=\$ 13 B$
Safety	Toxic, hypergolic	Flammable in atmosphere
Operations/growth	Quantity production \& operations not currently available	Large quantity production operations available (STS infrastructure) ET scavenging potential
		Space Station accommodations DDT\&E not significantly different Possible lunar production (oxygen) for Space-based OTV

[^2]In Phase 1, a $\$ 7 \mathrm{~B}$ savings for use of $\mathrm{H}_{2} / \mathrm{O}_{2}$ propellant resulted. Applying Phase 2 factors (three times as many missions; $1 / 3$ the propellant delivery cost using HLV instead of STS), approximately the same savings resulted (-\$7B). (See Figure 4-1 for cryogenic versus storable propellants trades.) Throughout this report, all costs shown are in 1985 dollars and exclude contractor fee and program contingency.

Figure 4-1. Cryogenic Versus Storable Propellants

```
4.2 REUSABLE VERSUS EXPENDABLE OTV'S
Reusable OTVs offer $9B lower life cycle cost and capture all missions
(expendable OTVs fail to capture 55 missions out of 422 - manned GEO sortie,
logistics, etc.). (See Figure 4-3.)
```

Table 4-3. Reusability Trade

Criteria	Expendable	Reusable
Performance	55 missions not captured	All missions captured (422: Rev 9 Scenario 2) Cost
Lower DDT\&E	Lower operations cost Lower LCC (-\$9B) Safety/risk	Limited crew involvement
Return to ground or to		
Space Station		
Crew involvement		
Can meet future		
mission needs		

271.658-212

The reusable OTV has a higher development cost. However, once the flight program starts, the expendable OTV production and operations cost dominate. (See Figure 4-2.)

Development of a new expendable OTV for better performance would not change the results, since a greater development cost would be incurred for a new expendable. Therefore, Centaur was used for the analysis. For the expendable to capture the other (manned) missions, development of an additional propulsion unit for de-orbit from GEO would be necessary, at additional cost.

271.658.213

Figure 4-2. Cumulative Life Cycle Costs: Expendable Versus Reusable OTV

4.3 GROUND VERSUS SPACE BASING

A space based OTV is not constrained by launch vehicle dimensions/environment. It is delivered to orbit empty of propellants, and therefore is a lighter-weight structure design resulting in improved performance. Since it is not launched to orbit each time, its weight and dimensions do not detract from launch vehicle performance. The net result is lower operational cost for a life cycle savings of $\$ 9 B$ over a ground-based OTV. Inherent safety advantages with manned launch vehicles (e.g., STS) results from lack of onboard propellants/interfaces for the OTV. Simple operations result since there is no need to return the OTV to the Earth after every mission. (See Table 4-4.)

The space-based OTV has more versatility and growth potential for future missions.
Table 4-4. OTV Basing Trade

Criteria	Ground-based	Space-based
Launch vehicle lift capability	OTV constrained by launch vehicle dimensions \& loads	Lighter OTV with fewer dimension/load constraints, launched empty
Cost	Lower DDT\&E Higher operations cost	$\begin{aligned} & \text { Lower LCC } \\ & (-\$ 9 B) \end{aligned}$
Payload volume	OTV payloads in cargo bay (or fairing) at same time - multiple launches required for some missions	Entire cargo bay (or fairing) available for payload
Mission difficulty	Complexity of mating multiple launch payloads and returning OTV to Earth after each mission Turnaround OTV on ground where manpower readily available.	Turnaround OTV in space - mostly by teleoperations to conserve crew time Requires propellant delivery/transfer in space Modular design allows quick change-out
Propellant scavenging	Not ap	Allows operations cost benefits
Safety	OTV launched full of propella	OTV launched empty - fueled on orbit
Location of transportation nodes	Can launch payloads to desired inclinations	Cover all inclinations with platforms at $28.5^{\circ}+60^{\circ}$
Mission model evolution	Cannot easily grow to support advanced missions requiring multiple launches or large payloads	Can support large propellant mission requirements \& especially advanced missions to the Moon and Mars
Availability of return transport	Requires Shuttle on orbit past mission required time of capture Complete new launch return/vehicle design	Return transport required only under special circumstances
Initial operational capability	Potentially earlier	Could operate Semi-space-based for early operational capability

4.4 STS VERSUS HLV DELIVERY

The three launch vehicle options shown in Table 4-5 were evaluated for delivery of the OTV, propellants, and payloads.

Table 4-5. Delivery Mode Trade

Criteria	STS	HLV	Shuttle II
Performance	63 K	150 K	65 K
Payload size	$15 \times 60 \mathrm{ft}$	$25 \times 90 \mathrm{ft}$	$15 \times 60 \mathrm{ft}$
Cost per flight	$\$ 106 \mathrm{M}$		
(DDT\&E NC)	$\$ 1680 / \mathrm{lb}$	$\$ 70-85 \mathrm{M}$	
Safety/risk	Crew involvement Would need more Operations/growth orbiters/operations	No crew involvement Fewer operations needed Applicable to other missions	Simple return operations Crew involvement
IOC	1981	2095	2002

The HLV was selected as the baseline launch vhicle (over the STS) because of significant life cycle cost savings for the OTV program. Although the Shuttle II results in further cost savings, its late availability is a significant disadvantage. (See Figure 4-3.) Advancing the availability of the Shuttle II should therefore be considered.

4.5 AEROBRAKE VERSUS ALL-PROPULSIVE

Aerobraking for OTV return to LEO reduces propulsive burn requirement and therefore propellant required (-7 M 1 b), results in fewer vehicles/operations, and offers $\$ 3.5 \mathrm{~B}$ lower life cycle cost. (See Table 4-6.)

Table 4-6. Aerobraking Trade

Criteria	Aerobraked	All-propulsive
Performance	Reduces return ΔV requirements, propellants required, stage size	More propellant/more stages
Cost	DDT\&E ~\$0.5B Lower operations cost Lower LCC ($-\$ 3.5 B$)	No special DDT\&E investment Higher operations cost
Risk	Aerodynamic/aerothermodynamic environments Brake structures Thermal protection materials Adaptive guidance, navigation \& control	No atmospheric pass
Operations/growth	Difficult to return if Ground-based Easily handled if Space-based	Easier to return Ground-based OTV to Earth Space-based OTV hangar can be smaller
	Aerobrake can be added onto all-propulsive stage	Need greater propellant capacity at depot

The propellant saved by aerobraking over all-propulsive return to low Earth orbit results in a net savings of $\$ 300 \mathrm{M}$ per year. The investment in aerobrake technology, DDT\&E and production (assumed to be $\$ 500 \mathrm{M}$) is recovered within 2-3 years of OTV operations. Total net benefit of aerobraking is almost \$3.5B. (See Figure 4-4.)

Figure 4-4. Aerobrake Cost Payback Function

4.6 ADVANCED ENGINE VERSUS RL-10

An advanced engine with higher Isp and longer life reduces the OTV propellant requirement (-5 M 1 b), can be designed for the best thrust level, will be reusable, and offers \$4.7B lower LCC. (See Table 4-7.)

```
Table 4-7. Engine Trade
```

Criteria	Advanced	RL-10 derivative
Performance	Higher Isp (485 sec) reduces propellant requirement Design for best thrust level	Less Isp (445 sec) 15K thrust imposes weight penalties
Cost	Requires:DDT\&E investment $\sim \$ 0.3 \mathrm{~B}$ Lower operations cost Lower LCC (\$-4.7B)	Currently available Higher operations cost
Risk	Higher chamber pressure, turbomachinery speeds	Current technology
Operations/growth	Reusable Maintainable	Not designed for reuse Demonstrated high reliability

Reduction in propellant delivery requirements for an OTV justify high-performance engines. The 485 sec Isp advanced engine provides \$2.5B operating benefit over the existing RL-10 445 sec Isp engine. (See Figure 4-5.)

Figure 4-5. Economic Impact of OTV Engine Performance

Reusability (10-20 missions) offers substantial reduction in engine production and delivery costs. (See Figure 4-6.)

271.658-222

Figure 4-6. Economic Impact of OTV Engine Longevity
4.7 LOW PRESSURE TANKS VERSUS CONVENTIONAL

Low-pressure propellant tanks for a space-based OTV result in lower weight tanks (-700 lb per tankset), reduced propellant requirement (-1 M lb), and \$0.5B lower life cycle cost. (See Table 4-8.)

Operating with low tank pressures is possible for a space-based OTV since the tanks are only operated in a vacuum, and the propellants can be conditioned to low vapor pressures (<5 psia) as compared to ~ 20 psia for a ground-based OTV. The savings in tank weight results from reduced material skin thickness (0.008 aluminum lithium).

Table 4-8. Propellant Tanks Trade

Criteria	Low pressure	Conventional
Performance	Reduced weight, less propellant required Lower operations cost Lower LCC (-\$500M) Operations/growth Handling more difficult Propellant conditioning system required (on the Earth)	Meavier tanks

The estimated $\$ 80 \mathrm{M}$ cost of developing low-pressure propellant tanks and required ground conditioning facilities for the space-based OTV is recovered within 3 to 5 years of OTV operations. These cost savings are made possible through reductions in propellant requirements and delivery costs. Use of low-pressure tanks saves approximately 700 lb in vehicle weight per OTV tankset used, resulting in a 1 M lb reduction in OTV propellant usage over the course of the Rev. 9 mission model, for a net savings of over \$0.5B. (See Figure 4-7.)

Figure 4-7. Low Pressure Tank Cost Payback Function

4.8 SENSITIVITY OF IOC DATE

Expendable or ground-based OTVs are more expensive to operate than a space-based OTV. Therefore any delay in IOC date for the space-based OTV results in a higher life cycle cost. (See Figure 4-8.)

Figure 4-8. Impact of Space-Based IOC Date on OTV Life Cycle Cost

4.9 SENSITIVITY TO HLV CAPABILITY

OTV life cycle costs are most sensitive to HLV performance at the lower end of the HLV capability range (i.e., less than $100,000 \mathrm{lb}$ to LEO). A higher performance HLV (than the $150,000 \mathrm{lb}$ baseline) would not significantly affect the difference in life-cycle cost between the ground-based OTV and the space-based OTV, but a lower performance HLV could increase the economic advantage of space basing considerably. (See Figure 4-9.)

Figure 4-9. Impact of HLV Capability on OTV Life Cycle Cost

4.10 IMPACT OF HLV COST

Due to the greater payload delivery capability of the HLV, life-cycle costs for the ground-based OTV and the space-based OTV are not as sensitive to HLV costs as they are to STS costs. The ground-based OTV would become competitive with the space-based OTV if HLV cost could be reduced to $\$ 30 \mathrm{million}$ or less. (See Figure 4-10.) Note that a ground based OTV requires a reusable carrier vehicle. An HLV with return capability costs more ($\$ 15 \mathrm{M}$ per flight).

Figure 4-10. Impact of HLV Cost on OTV Life Cycle Cost

4.11 PRIORITY OF BENEFITS

The most beneficial features for an OTV are reusability, space-basing, and cryogenic propellants. Aerobraking and advanced engine technologies also offer significant benefits. Low-pressure propellant tanks for space-based OTV offer lesser but still positive benefit. (See Table 4-9.)

Table 4-9. Features of Most Cost Effective OTV

Recommended attribute	Life-cycle benefit $(1985 \$ B)$	Rejected alternative
Reusable	9.2^{*}	Expendable
Space-based	9.0	Ground-based
Cryogenic	7	Storable
Aerobraked	3.5	All-propulsive
Advanced engine - High performance (485 sec. Isp) - Long life (≥ 20 missions) Low pressure propellant tanks (5 psi)	2.5	Existing engines (445 sec Isp)

* Theoretical benefit: expendable OTVs fail to capture 55 missions out of 422
* Does not include differences in engine DDT\&E \& production costs

4.12 OTV ACCOMMODATIONS

Although more expensive (\$0.4B), an unmanned co-orbiting OTV facility (separate from the manned space station) offers safety advantages, a more favorable space-station environment, and better growth potential. (See Table 4-10.)

This facility (see Figure 4-11) is a free-flying platform for storage, maintenance, fueling, etc of an OTV, OMV, and OTV payloads. It provides the same capabilities and services as a space station OTV facility, and uses similar structure and subsystems (power, attitude control, etc.). It is unmanned, but operated remotely (controlled from the manned space station a short distance away).

Table 4-10. OTV Accommodations Trade

Criteria	Space Station attached	Co-orbiting Platform
Cost	DDT\&E \& production: \$1.0B	DDT\&E \& production: \$1.4B
Risk	Low: Extension of Space Station capabilities	Low: Derived from Space Station subsystems
Inherent safety	Large quantities of propellants permanently stored on station	Platform normally unmanned
	Frequent rendezvous/docking operations at station	
Versatility/growth	Limited	Facility readily expanded and/or replicated
Operational complexity	All in-space operations at one location	Occasional crew transport to platform
		Control functions performed at Space Station More complex logistics
Environmental considerations	Micro-g environment disruptions Added contamination sources	No adverse effects

271.658 .229

```
GDSS-SP-86-011
Volume IA
```


Figure 4-11. Co-Orbiting OTV Maintenance and Propellant Storage Platform

SECTION 5
RECOMMENDED OTY PROGRAM

The space-based OTV can provide the lowest cost transportation to GEO and beyond (one-third the cost of STS/TOS, and one-fourth the cost of Ariane IV).

With payloads delivered to the co-orbiting platform by STS, ELVs, or advanced unmanned cargo vehicles, the OTV will be indifferent to launch vehicles, and safe for manned sytems. It also will enable the U.S. to perform new, essential missions such as return of payloads from GEO, remote payload servicing, expeditions to the Moon and Mars, and implementation of critical military programs. (Refer to Figure 1-1.)

Economic comparison of space-baed OTV with existing upper stages shows that the space-based OTV offers the lowest operating cost. (See Figure 5-1.)

The total investment cost for a space-based OTV and servicing facility is less than $\$ 3 \mathrm{~B}$, with a peak annual funding requirement of less than $\$ 0.8 \mathrm{~B}$. (See Figure 5-2.) Refer to Figure 1-3 for the development schedule.

Figure 5-1. Cost/Pound to Geosynchronous Orbit for Various Space Transportation Systems

Figure 5-2. Annual Funding Requirements for Development of Space-Based OTV and Orbital Platforms

SECTION 6

CONCLUSIONS

A space-based OTV program should be a national objective.
This system can be operational as early as 1997 , but to do so requires Phase B program authorization in FY 88.

Further concept definition is needed now.
Continuing study needs include:
a. OTV operations with HLVs:

- Physical interfaces
- Flight operations
- Propellant delivery systems
- Return of OTV to Earth
b. Logistics operations:
- Turnaround operations
- Ground support functions
- Propellant resupply
- Facility requirements
c. Accommodations facility definitions:
- Platform studies
- Space Station control module requirements
- Crew transfer concepts
- Updated trade studies

Critical technology development required for the space-based OTV includes:
a. Aerobrake
b. Engine
c. Cryogenic propellant management
d. Long life/low maintenance subsystems
e. In-space rendezvous/docking
f. Space logistics
g. Remote payload integration
h. Manned systems

SECTION 7

BIBLIOGRAPHY

1. D.R. Saxton, Revised Groundrules, Orbital Transfer Vehicle Concept Definition \& System Analysis Studies, Follow-on Effort, NASA-MSFC, 1986.
2. D.R. Saxton, OTV Mission Model, Rev. 9, NASA-MSFC, 1986.

APPENDIX A

MODULAR SPACE-BASED OTV CONFIGURATION, WEIGHT, PERFORMANCE DATA

GDSS-SP-86-011
 Volume IA

Figure A-2. Twin Outrigger Tankset Stage for Manned Missions

Figure A-3. Space-Based OTV Stage Weight Summary

Figure A-4. Space-Based OTV Payload Capability

APPENDIX B

CO-ORBITING PLATFORM CONFIGURATION, ELEMENTS, AND WEIGHTS

Figure B-1. Co-Orbiting OTV Platform

Figure B-2. Co-Orbiting OTV Platform

Figure B-3. Co-Orbiting OTV Platform

[^0]: Figure 1-1. Space-Based OTV/Servicing Facility

[^1]: - Modular Space-based OTV, $\mathrm{H}_{2}-\mathrm{O}_{2}$, aerobraked $28^{1 / 2^{\circ}} \& 60^{\circ}$ platiorms

[^2]: Phase I study eliminated storable propellants
 Phase II study concentrated on cryogenic propellants

