
N87-23162

2GCHAS-A HIGH PRODUCTIVITY SOFTWARE DEVELOPMENT ENVIRONMENT

Larry Babb
Computer Sciences Corporation

Systems Sciences Division

111

2GCHAS - A High Productivity Software Development Environment

Larry Babb

Computer Sciences Corporation

System Sciences Division

To the user, the most visible feature of TAE is its very powerful

user interface. To the programmer, TAE's user interface, proc

concept, standardized interface definitions, and hierarchy search

provide a set of tools for rapidly prototyping or developing

production software. The 2GCHAS (pronounced TWO GEE CHARLIE,

Second Generation Comprehensive Helicopter Analysis System) pro-

ject has extended and enhanced these mechanisms, creating a

powerful and high productivity programming environment where

2GCHAS' development environment is 2GCHAS itself and where a

sustained rate for certified, documented, and tested software

above 30 delivered source instructions per programmer day has

been achieved. The 2SCHAS environment is not limited to helicop-

ter analysis, but is applicable to other disciplines where soft-

ware development is important.

BACKGROUND

Predicting the characteristics and performance of helicopters is

not a mature discipline; the theory is still developing and the

computational tools based on the immature discipline are rela-

tively undeveloped. The 2GCHAS project was established by the

U.S. Army to develop a system which can predict the flight char-

acteristics of a helicopter from a physical description of the

vehicle. The objectives pertiner, t to the discussion in this

article include;

I. Providing a standard set of helicopter analysis tools based

on current theory,

2. Providing an environment which can assist developing

computational tools,

new

3. Providing the computational framework into which new or

modified analysis tools can be inserted.

Three major considerations have driven 2GCHAS' design. The first

is the requirement that 2GCHAS be operating system independent.

With a rich set of functional requirements and initial implemen-

tat ions on VAX/VMS and IBM's MVS operating systems, 'pragmatic

considerations have replaced operating system independence with

operating syster0 transportability. To achieve transportability,

the user and programmatic interfaces have been defined to be

constant across operating systems. Host dependencies have been

restricted to the smallest number of units -- operating system

procedures, .OGCHAS procedures, and software -- possible. The

result is that most of 2GCHAS is and will be operating system

112

2GCHAS - A High Productivity Software Development Environment

independent.

The second major consideration is that both end users and devel-

opers of new 2GCHAS analyses are helicopter engineers and sci-

entists, not programmers or computer scientists. Their language

of choice is FORTRAN. Their interest is in developing new analy-

sis tools, modifying existing analysis tools, and using those

tools to predict helicopter performance in a user friendly envi-

ronment. 2GCHAS chose TAE to meet the user friendliness reauire-
merits.

The third major consideration is that every 2GCHAS Module (analo-

gous to a TAE Process) has to be invokable both directly by the

user and by other Modules and must be replacable at run time.

Meeting the run time replacability requirement turned out to oe

the major contributor to the productivity of the 2GCHAS environ-

ment. As background to further discussion, the top level organi-

zation of 2GCHAS and the rationale for the replacabilty require-

ment and its implementaion (run time linking) will be descrioe_
in some detail.

TOP LEVEL 2GCHAS ORGANIZATION

2GCHAS is divided into the Executive complex and the Technology

complex. The Technology Complex will consist of a large number

of FORTRAN 77 Modules which perform the helicopter analysis. The

Executive Complex provides services (e.g., user interface, data

management, Module substitution) required by the Technology Mod-

ules and isolates them from the host operating system. When

2GCHAS is transported to a new operating system, only the Execu-

tive Complex is required to change.

MODULE REPLACABILITY AND RUN TIME LINKING

The replacability requirement for 2GCHAS Modules derives from the

following considerations:

1. There will be a large number of Technology Modules in

2GCHAS. By design, as new helicopter analysis techniques are
developed, Modules will be added to or modified within 2GCHAS.

2. A typical analysis will use relatively few of the available

Technology Modules. Available Modules might supply alterna-

tive approximation methods, apply different flight simulation

techniques, or compute different outputs.

3. It is difficult to predict in advance which Modules are

required for an analysis. Modules are called as required by a

combination of processing options, output results desired, and

the description of the helicopter and its flight conditions.

113

ORIGINAL PAGE iS

OF. POOR QUALITY

2GCHAS - A High Productivity Software Development Environment

4. Any Module linked into an executable image uses resources

ever, though it is never executed. For example, all Modules ir;

an executable image are assigned virtual rnemory when the image

is run. Modules which are not executed still consurfle virtual

memory quota.

5. Multiple developers from different organizations will be

developing new Modules throughout 2GCHAS' life. _o provi0e a

framework for developing new analysis technioues, the system

structure must be quite open. Maintaining and distributing a

standard set of object Modules is difficult for an open

system.

The solution to the replacability and transportability require-

merits is to have run time linking, to have a Module call look

exactly like a subroutine call, and to define a Module to be a

FORTRAN subroutine. There are only four minor differences be-

tween a Module and any other FORTRAN subrc, utine:

i. The last argument is the completion status of the l_l,_-,duie,_

2. The ENTRY statemer, t is not oermitted;

3. COMMON is not permitted for inter Module cor,_rnur,icatic, r_;

4. A special set of comments, the C°reamble, is required to

provide informatior, about the Module and its arounlents.

Suppose, for example, Module A calls Module B. Each Module is

compiled, producing an object file. The object files are _her,

linked by the Linker into an executable image which car, be exe-

cuted using the RUN command. (There must be a main orogra_z

linked with the subroutines, but it has beer, omitted here to show

the Module linkage process more clearly.) Figure I shows how the

Modules are linked using the standard linking procedure.

Figure 2 shows the run time linking technique used by LE'GCHAS.

From the Module source, DEFMOD (DEFine MODule) produces a Module

caller source file and then compiles both source files t.-. 0roduce

object files. In this examole, Module B is defined first.

DEFMOD produces the source file for B Caller from the Module B

source file, then compiles both source files to produce object

files for B Caller and the body of Module B. The object file for

B Caller is _)ut in an object library containing the Module call-

ers for all defined Modules. The object file for the body of B

is linked to produce a shareable image of B. Similarly, when

Module A is defined, the object file for A Caller is out in the

Module caller object library and the object file for the body of

A is linked with the library of Module callers to, produce a

shareable image for Module A. Since Module A calls Module B, B

Caller is linked into the shareable image for Module A.

114

ORIGINAL PAGE iS

OF POOR QUALITY

2GCHAS - A High Productivity Software Development Environment

When Module A executes the "CALL B" statement, it actually exe-

cutes a subroutine call on B Caller which has been linked into

the image in place of Module B. The B Caller subroutine, created

by DEFMOD, calls an Executive service, Module Execution Control

(XMEC) to activate the shareable image for Module B. When XMEC

is called, it determines if the image has already been activated.

If the image has not been activated, XMEC calls an operating

system service to activate it. After XMEC activates the share-

able image of Module B (or finds it already activated), XMEC exe-

cutes a subroutine call on Module B and passes the argument list

from the subroutine call executed by Module A. When Module B

completes its execution, it returns to XMEC, which returns to B

Caller, which returns to Module A. On VAX/VMS systems, XMEC uses

the Library Service L IB$FIND_IMAGE_SYMBOL to activate shareable

images.

From Module A's point of view, a standard subroutine call has

been executed. From 2GCHAS' point of view, the Module is assign-.

ed virtual memory and other resources only if it is executed.

Run time linking, like all solutions to difficult problems, con-

Ca ins tradeoffs. The advantages of run time linkir.g are;

i. Vircuai memory aria other resources are allocated to Modules

only if the Modules are executed.

2. Enhancements to Modules can be tested by Module substitu-
tior, at run time.

3. The option of linking a Module directly using the standard

Linker rernains available with no change in the Module source,
since the source is standard FORTRAN 77.

lhe aisadvantages ,-,f run time linking are;

i. Program execution time is increased. The first time a

Module is called on a VAX 11/785, an elapsed time of about 0.2

seconds is required to activate the Module. Subsequent calls

on the Module take considerably less time, although more than

subroutine call. Because helicopter analysis runs will be

comDutationaliy intensive, the overhead time required to acti-

vate the analysis Modules will be a small portion of the total
job.

2. FORTRAN COMMON blocks cannot be used to communicate between

Modules linked at run time. However, subroutines which are

contained within a single Module may communicate with each

other through COMMON blocks as usual. In 2GCHAS, the Execu-

tive contains data management services which provide a data

structure intended to replace FORTRAN COMMON blocks in commun-

icating between Modules linked at run time.

115

2GCHAS - A High Productivity Software Development Envirc°nment

SUBROUTINE A (X, Y, Z)

CALL B (P, Q)

END

i SUBROUTINE B (R,S)

i

I

i

i END

4

F

I

i

I COMPILE

4

i

i COMPILE

l i

i + +4

I

i

I

I I

i A. OBJ +--+

I i i

+ ÷ i

t

i

]

i

I

i

I

B. OBJ +--+

i i

i

I

I LINK

i

÷ ÷ ÷

I I

I A I

+---+-- I

I +-+--> I

+-+-+--> I

I I B I

+-+-- I

Figure 1. Standard FORTRAN Subroutine Linkage

116

2GCHAS - A High Productivity Software Developmeret Environment

SUBROUTINE A (X, Y, Z) I DEFMOD

• +

• i

CALL B (P, Q) i +

END

+

I

÷ 4.

I . + 0 •

I . i A CALLER I .

I . + 4- .

l- . 4 4- .

• i I .

• I A. OBJ +

• I I .

• 4 ÷ ,

+ +

4 +

I SUBROUTINE B (R,S) i DEFMOD

J . -I- 4-

J • I i

i I + + +

i END I . _ + .

+ . I B CALLER +---+

I

i LINK

I
+ + +

i B <--+---+

I SHARE- I

I ABLE I

i IMAGE --+-+

• -f + ,

• + + .

• I I .

* B. OBJ I

• I I .

+ +

I

I LINK

I

4" -_-4" 4"

I I

I A I

÷ I ----+------4"

<---+-+ I <---+-+ I

I I 4 4- I I
I +--+--- <---+-+--+

I I B CALLER I I

I +--+--> --+-+

I I + +

.f

+--+----

I MODULE

I EXECUTION

I CONTROL

I

I (EXECUTIVE)

+---+--> --+_+

•f 4-

Run-Time Linking

Figure 2. 2GCHAS Module Run Time Linking

117

2GCHAS - A High Productivity Software Development Environment

DEFMOD TAKES THE DRUDGERY OUT OF MODULE CREATION

DEFMOD's role in creating Modules for run time linking has al-

ready been described. DEFMOD provides another feature for de-

veloping and unit testing FORTRAN subroutines. From the MQdule

preamble, DEFMOD creates the process PDF and all of the VBLOCK

references necessary for the user to invoke the Module directly.

To appreciate the amount of effort that DEFMOD saves, consider a

TAE process. It consists of at least two separate files -- the

process itself and the _rocess PDF. In the process PDF, informa-

tion about each parameter can be in as many as three disjoint

places -- the PARM statement, the LEVEL1 description, and the

LEVEL2 description. The information in each place within the

process PDF must be consistent. The process PDF, in turn, must

Be consistent with the VBLOCK references in the process itself.

Consistency of physicaly separated information is hard to achieve

and the requirement for it can lead to increased development and

maintenance costs. In the case where the help text is separate

from the 0rocess F'DF, there are three files which must be consis-

tent.

In contrast, a 2GCHAS Module source file contains all of the

information needed by DEFMOD (DEFine MODule) to create the cc0m-

poner, ts necessary to execute the Module. The Module Preamble,

that special set of comments at the beginning of a Module, con-

tains all of the information about the Module and its parameters.

The preamble format rules are less restrictive thar. the rules for

a process PDF. The parameter information which becomes the PARM

statement, the TAE LEVELI text, and the LEVEL2 text is contig-

uous, not separated. The input which becomes the TAE LEVEL1

_arameter information is broken automatically (and reasonably) to

fit into the 32 column width restriction.

To be invoke_ directly by the user, the Module must have, in

addition to a 0rocess PDF, VBLOCK references for the parameters.

But a Module is a FORTRAN subroutine, it contains rlo VBLOCK

references. And the Module's parar_eters can be of any FORTRAN

data type (i. e., INTEGER, REAL, CHARACTER, DOUBLE PRECISION,

COMPLEX, or LOGICAL) not just REAL, INTEGER, and STRING.

From the 0reamble in the Module source file, DEFMOD constructs

the necessary files. The process PDF contains the parameter

Oefinitions and HELP' information. DEFMOD constructs a FORTRAN

program (called the Module Main) which contains the VBLOCK _efer-

ences, the necessary conversion code to go between TAE data

types and the larger set of FORTRAN data types, and a FORTRAN
CALL to invoke the Module.

118

J _

_GCHAS - A High Productivity Software Development Environrnent

LOGICAL parameters are an especially good example of the proces-

sing provided by DEFMOD. The Module preamhle states that the

parameter is of type LOGICAL. In the process _'DF, the Data-

meter's type is (STRING, I) and its valid values are the letters

"T" and "F". In the Module rnain, the letter "T" frorn the inDut

parameter is converted to _ FORTRAN logical .TRUE. ; the letter

"F" to FALSE. The Module main CALLs the Module with a FORTRAN

LOGICAL parameter. After successful return frorn the Module,

LOGICAL .TRUE. is converted to "T" and .FALSE. to "F" if the

parameter is OUT or INPUT (TAE parameter type NAME).

Creating a Module with DEFMOD saves much of the effort norr,lally

required to implement a TAE process and yields three rnajor bene-

fits. The first is the ease with which changes are made to the

calling sequences of Modules. It is easy to add, delete, or

change a pararneter or the pararneter's attributes by editing the

preamble and FORTRAN statements. It is similarly easy to change

the help information for the Module or for individual oararneters.

T_e second benefit is the ease with which small pieces of soft-

ware (e.g., finding the roots of a polync, mial using Newton's

method) can be Quickly Drototyped as Modules an_ tested from corn-

mand or tutor mode. Although there is some effort required to

out a preamble in a Module, that effort is small compared to the

effort of either creating a test driver for the Module or for

implementing VBLOCK calls.

The third benefit is that packagino decisions car, occur very late

in the development cycle. Because the preamble information con-

sists of FORTRAN comments, code developed as a Module can remain

a Module or can be made into a subroutine linked in to a larger

Module. Such a packaging decision requires no change to the

source. Thus, the decision to make a unit into a Module o_ not

is not critical. Not only can the decision can be deferred, but

it is easily changed if made incorrectly.

LOOSE COUPLING OF MODULES CONTRIBUTES TO PRODUCTIVITY

Edward Yourdon and Larry Constantine in Structured Design define

coupling as the degree to which one software unit depends on

knowledge of another software unit in performing its task. They

argue that loose coupling leads to a design that is easier to

develop and easier to maintain and that close coupling leads to a

design which is more difficult to develop and maintain. One of

the working definitions fo_ a loosely coupled system is that the

software units are black boxes; that is, the only information

other software units know about the black box are its name,

inputs, and outputs. Any blackbox unit can be replaced with a

different unit having the same name, inputs, and outputs with no

effect on the system.

119

2GCHAS - A High Productivity Software Development Environment

_GCHAS Modules have three attributes that make them a loosely

coupled system:

1. _GCHAS Modules are FORTRAN subroutines with names and spe-

cific calling sequences; i.e., Modules are black box software

units;

_. COMMON is not allowed as a communication mechanism

Modules, thus removing the greatest source of data

from 2GCHAS Modules;

bet ween

coupling

3. Modules are linked at execution time,

or linkage edit time.

not at corapile time

So how do Modules help improve productivity? The primary benefit

is that any Module can be changed with little concern for other

Modules in the system. As long as the new version of the Module

has the same name and calling sequence, no changes are required

elsewhere. For software development, top down implementation is

easy. As they are develo0ed, the functional Modules replace the

limited function stub Modules, The replacement or, ly reouires

that the functional Module be processed by DEFMOD.

The second benefit arises from the fact that Modules are located

and loaded at run time via an extension of the TAE hierarchy

search. A developer's personal version of any Module can be in-

voked at run time instead of the "official Module" in the 2GCHAS

system library. Thus, a develo0er can have corrected versions or

completely new versions of existing Modules in a private account

and can test those Modules as part of a complete system. This

means that new Modules to be integrated have been already been

tested as part of a complete system.

CHANGE CONTROL HELPS PRODUCTIVITY

2GCHAS has created a set of configuration management support

tools which enhance the productivity of all developers. These

support tools provide formal change control, automatic system

generation from source changes, and continuing operation of the

previous version while a new system is being generated.

TAE is delivered for VAX/VMS systems, the System Manager's Guide
describes how to set up the TAE version tree so that only the TAE

system manager has write access. Change by anyone other than the

system manager is effectively prevented. VAX/VMS file protection

and the TAE hierarchy search provide both control and flexi-

bility. 2GCHAS uses these basic TAE concepts.

120

2BCHAS - A High Productivity Software Development Environment

It was recognized early that a mechanism to quickly and reliably

introduce changes to 2GCHAS in a controlled manner was required.

The mechanism, CHASGEN, consists of seven manual steps, each

either a DCL procedure or a 2GCHAS procedure. The CHASGEN pro-

cess is started when the Configuration Management officer is

notified that new source units are being delivered. The Confi-

guration Management officer begins the CHASGEN by copying the new

source units -- not object files, libraries, executables, or

message help file indices -- into the 2GCHAS version tree. Based

on each source unit's file type and uodate date, the appropriate

actions -- compile, library u0date, link, MSGBLD, etc. -- are

performed. Within a short time, the Configuration Management

officer, not a senior 0rogrammer, has constructed a new 2GCHAS

Execut ive.

CHASGEN has prover, to be quick and reliable. However, interrup-

tions to users or developers is costly. Therefore, CHASGEN does

not operate against the current version tree, but against a newly

created version tree. The previous version remains untouched and

operational. When the newly created version tree has been tested

aria proven to be good, it is then available for use.

STANDARD TAE FEATURES AS PRODUCTIVITY AIDS

The focus thus far has been on the 2GCHAS extensions to TAE and

the benefits derived from those extensions. In large measure,

however, those extensions have been possible within the real

constraints of time and money because TAE provided such a stable

01atform upon which to build. This last section provides a brief

summary and, in some cases, a recapitulation of the TAE features

which have directly contributed to a high level of productivity

within the 2GCHAS project.

For the programmer at a terminal, HELP and TUTOR, not paper

documents, provi0e 2GCHAS documentation Without work flow inter-

ruptions of referring to a manual. Fewer interruptions means

that the programmer more effective uses time.

The hierarchy search and its extension to Modules provide a

simple and easy mechanism to check out and test new software.

Little effort is required to have a private version of some part

of 2GCHAS and, so, there can be more effort available for other
tasks.

TAE orovides many features for tailoring the user interface. So

fare every _GCHAS developer has used ULOGON to tailor the user

interface. There is a great deal of idiosyncratic tailoring, but
two characteristics are common. The f'irst is to use DEFCMD to

make commonly used VAX/VMS DCL commands available inside _GCHAS.

The second is having PDFs which allow various editors to be

invoked from inside 2GCHAS. The DEFCMDs and editor PDFs means

that the 2GCHAS and DCL environments are the same in many re-

spects, making the transition from one environment to the other

smoother for the develooer.

121

2GCHAS - A High Productivity Software Development Environment

2GCHAS chose to use message helo files as a orimary means of

providing online diagnostic information. The simple and oowerful

mechanisms of message help files and the MSGBLD utility contrib-

ute to productivity in three ways. The first is that messages

and their corresponding help can be grouped. Having the help for

possible messages produced by related software units -- a TAE

facility -- together in a single place makes it easier to get

consistency of information across messages. The second is that

the 2GCHAS project experience indicates that message keys tend to

get reused for similar or identical situations. When this hap-

pens, there is less help text to generate and the message text

can be use_ to provide occurrance specific information. The

third property of message files which acts to reduce effort is

that they are located outside of the software units to which they

apply. This means that the continual activity of making clari-

fications and additions to message help noes not a0oect the
software units themselves.

TAE features have significantly reduced the testing effort for

2GCHAS. Formal testing, the use of predefined and oocumented

test scenarios generating output for comparison against expected

results, is a 2GCHAS project requirement. The conten'ts c,f each

new system generation or build are quickly cataloguec with scri0t

files containing TUTOR and HELP commands for each 2GCHAS service.

If the script completes without stooping, then all of the ser-

vices are present. A missing service stops the scri ot --

$MESSAGE is set to "ATTN allowing the tester to log the

missing service. The script files provide for a level of speed

and repeatability that a person at a terminal with a written test

scenario can only dream of approaching.

2GCHAS test procedures have been designed to be both self veri-

fying and self reporting. Basically this means that the test

determines whether or not it succeeded and then reoorts the

success to the test conductor. The effort to perform and docu-

ment formal testing is reduced because of these test 0rocedures.

In addition to scripts, tests are implemented as procedures and

orocesses. $SFI, the success/fail indicator, is set by every

test and reported in the session log. The STDOUT cc,rnrnar,d 0uali-

fief is used to retain outmut generated by ir,dividual tests.

Listings of session logs and test output orovide most of the

formal test documentation, further reducing the testing effort.

122

ORIGINAL PAGE iS

OF POOR QUALITY

2GCHAS - A High Productivity Software Development Environment

CURRENT 2GCHAS STATUS

The Executive Complex of 2GCHAS is being developed under contract

by Computer Sciences Corporation (CSC) at Ames Research Center in

a series of five builds. CSC delivered Build 3 of the Executive

to the Army in September, 1986. Technology Module development

began in early 1986. Technology Module developers will access

Executive Build 3 (arid Build 4 later) either by telecommunicating

with AMES or by having a copy of the 2GCHAS on their own VAX.

Run time Linking was included in Builds I, 2, and 3 of the Execu-

tive; was tested by the Army as part of normal build testing; and

was used by CSC for deveiooing Builds 2 and 3.

SUMMARY

TAE provides both tools and concepts for achieving high produc-

tivity software development. Additional requirements have led

the 2GCHAS O_o]ect to extend TAE's tools and concepts with resul-

tin!i; additic, nal increases in prc,ductivity.

ACKNOWLEDGEMENT

I would like to thank the staff of the 2GCHAS project for their

SUI__L_,'z,rt and for their diligence in creating the products and

results reported here. Soecial thanks to Clark Oliphint for

F_',_oviding text and illustrations for the discussion of run time

i ir__.<ir_g.

123

