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Abstract 

In the computation of discontinuous solutions of hyperbolic conservation laws, 

TVD (tot al-variation-diminishing) , TVB (tot al-variation-bounded) and the recently 

developed EN0 (essentially non-oscillatory) schemes have proven to be very useful. 

In this paper two improvements are discussed: a simple TVD Runge-Kutta type 

time discretization, and an EN0 construction procedure based on fluxes rather 

than on cell averages. These improvements simplify the schemes considerably - 

especially for multi-dimensional problems or problems with forcing terms. Prelimi- 

nary numerical results are also given. 
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I. introduction. In this paper we are interested in solving the system of 

hyperbolic conservation laws 

d 
(1.la) ut + fi(u),, = o (or = g(u, z, t ) ,  a forcing term) 

(1.lb) U ( Z , O )  = UO(4 
i= 1 

Here u = (ul, . . . , urn)=, z = (21, z2,. . . , Q), and any real combination of the Jaco- 

bian matrices ti has rn real eigenvalues and a complete set of eigenvectors. 
d 

i= 1 

On a computational grid zj = i Az, tn = n h t ,  we use UT to denote the 

computed approximation to the exact solution u ( q ,  tn) of (1.1). 

We also use the abstract form 

in place of (1.la). Here f! is a spatial operator. 

As is well known, the solution to (1.1) may develop discontinuities (shocks, con- 

tact discontinuities, etc.) even if the initial condition uo(z) in (1.lb) is a smooth 

function. Traditional finite difference methods, even if linearly stable, often give 

poor results in the presence of shocks and other discontinuities. Recently there 

has been a lot of activity geared towards constructing efficient finite difference 

approximations to ( 1.1). These include TVD (total-variation-diminishing) , TVB 

(total-variation-bounded) and E N 0  (essentially non-oscillatory) methods. See, e.g. 

[2], [3], [4], [5], [6], [9], [lo], (121, [13], [14], and the references listed therein. Many 

of the ideas can be’traced back to Van Leer’s work in [15], [16]. 

Usually, rigorous analysis (e.g. total-variat ion st ability, convergence) is only 

done for the scalar, one-dimensional nonlinear case (Le. d = m = 1 in (1.1)). Some 
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partial theory (e.g. convergence for first order monotone schemes, and maximum 

norm stability for higher order TVD schemes) exists for scalar multi-dimensional 

problems ( d  > 1 in (l . l)) ,  but a full convergence theory for multidimensional non- 

linear systems appears to be extremely difficult. However, numerical experiments 

for multi-dimensional problems and/or for systems of equations, using direct gener- 

alizations of TVD, TVB and E N 0  schemes give very good results. Again, see, e.g., 

(21, [4], [6], [lo], [ll]. We now shall confine our discussion at first to this one space 

dimension, scalar case. Systems and multi-dimensional problems are discussed at 

the end of Section 3. 

We shall always use conservative schemes of the form 

with a consistent numerical flux 

in order to guarantee that any convergent bounded a.e. subsequence has as its limit 

a weak solution of (1.1) , (Lax- Wendroff Theorem [8]), i:e. we construct so-called 

“shock capturing methods”. 

The total variation of a discrete scalar solution is usually defined by 

We say the scheme is TVD if 



and TVB in 0 5 t 5 T if 

(1.7) TV(un)  5 B 

for some fixed B depending only on TV(uo) ,  and for all ra and At such that 0 5 
nAt 5 T .  

A nice theoretical advantage of all TVD or TVB schemes is that they have con- 

vergent subsequences as A z  + 0 ,  and, if a further “entropy condition” is satisfied, 

then they are convergent. See, e.g. [3]. 

The formal “order of accuracy” in this paper is in the sense of local truncation 

errors, i.e. if local truncation error is O(Azrtl) in smooth regions, we say the 

scheme is (formally) r-th order accurate. See, e.g. [2]. 

There are many TVD schemes constructed in the literature (e.g. [2], [3], [9], 

[lo], (141). In [lo], TVD schemes of very high spatial order (up to 15th order) 

were constructed. These schemes can be used for steady state calculations (e.g. 

implemented with the TVD Runge-Kutta type time discretizations with large CFL 

numbers in [13]) or for time dependent problems, equipped with a multi-level TVD 

high order time discretization in [13] or with a Runge-Kutta type TVD high order 

time discretization in Section 2 of this paper. These are perhaps the highest order 

TVD schemes existing at present. However the definition of total variation (1.5) 

implies that these methods must degenerate to first order accuracy at extremacy. A 

TVB modification of such schemes which recovers global high order accuracy even 

at critical points is obtained in (121. 

The above mentioned TVD and TVB schemes use a fised, wide stencil (for the 

15th order scheme, the stencil is 17 points wide), thus restricting the-advantage of 
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going to higher order through smearing of discontinuities and resulting degradation 

of the accuracy. Numerically we observed that third order schemes work quite well 

[12], but we lost accuracy in a fairly large region near discontinuities by using a fifth 

order method. Recently Harten, Osher, Engquist and Chakravarthy constructed 

E N 0  schemes which are of globally high order accuracy in smooth regions and 

which use adaptive stencils, thus obtaining information from regions of smoothness 

if discontinuities are present. These methods achieve high order accuracy right up 

to discontinuities. Analysis and numerical experiments are found in [SI, [6], [4]. 

At present, a convergence theory (e.g. TV boundedness) for EN0  schemes is still 

unavailable. 

There are two natural directions in which to simplify the EN0 or TVD, TVB 

schemes, especially for multi-dimensional problems or problems with forcing terms: 

(1) Time discretization. Usually, semi-discrete (method of lines) versions of 

EN0 or TVD, TVB schemes are much simpler than the fully discrete ones. There 

are then mainly two ways to discretize in time. One is of Lax-Wendroff type, i.e., 

by using U t  = -fz, U t t  = (f'fz)z,..., U"+' = u? + At(ut)T + $(utt)? + - . a ,  

and then by discretizing the spatial derivatives. Many second order TVD schemes 

(e.g. Harten's in [2]), and the EN0  schemes in [5], [6], [4], used this type of 

time discretization. The main disadvantages to the procedure is that it is com- 

plicated to program, especially for multi-dimensional problems with forcing terms. 

One can see this by writing out a third order approximation to the equation 

ut + f + ' ( ~ ) ~ ,  +  fa(^)^, = g ( u , z + ' , q , t ) .  Moreover it is not easy to prove that 

this results in a TVD or TVB method, even if the original method-of-lines ODE 

and its Euler forward version are both TVD or TVB. The numerical results have 

proven satisfactory, but, speaking theoretically, only second order in time TVD or 
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TVB schemes exist of this type. Another way to discretize in time is to use a multi- 

level or Runge-Kutta type ODE solver. This is much simpler to program than the 

Lax- Wendroff type of discretization for multi-dimensional problems or for problems 

with forcing terms, so it is widely used for numerically implementing a method of 

lines approximation. However, usually only linear st ability analysis is available in 

the literature, which is certainly not enough for our purpose since linear stabil- 

ity does not imply convergence if shocks or other discontinuities are present. This 

is particularly true for E N 0  schemes which use moving stencils. Linear stability 

analysis is based on the fact that the stencil is fixed and the error accumulates in 

a predictable pattern, hence it does not apply to EN0 schemes at all. For these 

reasons we consider TVD time discretizations . In [13], a class of multi-level TVD 

time discretizations were constructed and analysed, (numerical results can be found 

in [ 121). However, for easy starting and for storage considerations, one step Runge- 

Kutta type schemes are preferable to multi-level methods. In Section I1 of this 

paper we present a class of high order TVD Runge-Kutta type time discretizations. 

(2). Avoiding the using of cell-averages. The EN0 schemes constructed in [SI, 

(61, [4] are for cell-averages but involve point values as well. Hence a reconstruction 

procedure is needed to recover point values from cell averages to the correct order, 

which can be rather complicated, especially in multi-dimensional problems. It is 

desirable to use the moving-stencil idea directly on fluxes to get EN0 schemes 

without using cell-averages. In Section I11 of this paper a class of such EN0 schemes 

is constructed. 

Some encouraging numerical results obtained by using schemes constructed in 

this paper are included in Section IV. 
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We conclude these introductory remarks by noting that R. Sanders [17] has 

recently devised third order accurate TVD methods which degenerate to second 

order at extrema. He defines the variation of the numerical solution as the variation 

of an appropriately chosen piecewise parabolic interpolant. The numerical results 

are very good. However this technique has no method of lines analogue, so we omit 

it from our present discussion. 

11. High Order Runge-Kutta Type TVD Time Discretizations. Define 

(2.1) w = T ( u )  = ( I  + ALtC)(u) 

where T and L are nonlinear discrete operators, L is a r-th order discrete approxi- 

mate to the spatial operator l in (1.2): 

if u is smooth. 

Our goal is to get a fully r-th order. approximation to the differential equation 

(1.2) of the form 

(2.3) un+l = S(un)  

(The operator S depends on T). This means that if u(z , t )  is an exact smooth 

solution of (1.2), then 

We also want the scheme to be TVD: 

under suitable restrictions on At (or, equivalently, on the CFL number A). 
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(2.6a) 

or 

(2.6b) 

We call a time discretization (2.3) r-th order TVD if it satisfies (2.4) and (2.5). 

If the spatial operator T in (2.1) is TVD or TVB: 

W ( T ( u ) )  L T V ( 4  

W ( T ( u ) )  5 T V ( u )  + MAt 

for 0 5 LvA uniformly bounded as At -+ 0, then the fully discrete high order scheme 

(2.3) is TVD or TVB, owing to (2.5). 

In [13], a class of multi-level type high order TVD time discretizations was 

constructed. Numerical experiments in (12) were very promising . But there are two 

disadvantages of multi-level type methods: (i) for an m-th level method the first m- 

1 levels have to  be calculated by other methods to the same order of accuracy (e.g. 

by using Taylor series expansions); (ii) we have to store all m level datas, creating a 

rather large storage requirement, stretching up to and beyond the limits of present 

day computers for physical problems arising e.g. in computationd aeronautics. At 

present, Runge-Kutta type methods are more often used in discretizing the method- 

of-lines than are multi-level methods. Since the former consists of one-level methods, 

they are self-starting and reduce storage requirements significantly. In the following 

we will analyze the nonlinear stability (TVD) of a class of such methods. 

Assume (2.1) is TVD (or TVB) under a suitable CFL restriction 

(2.7) 5 xo 

We may also need an approximation to -i to the spatial bperator -L which 

we take to satisfy 

(2.8) 

(2.9) i ( u )  = L ( u )  +O(Az') 

2z, = F(u)  = (I- AtE)(u) 
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where (2.8) is TVD (or TVB) under the same CFL restriction (2.7). 

As an example, a very simple first order ( r  = 1) TVD approximation to 

is obtained via simple upwind differencing: 

U(X + AX) - U(X) 
L(u) = Ax 

This scheme (2.1) is TVD if A = & 5 A0 5 1. 

The approximation t ( u )  is defined as 

U(X) - U(X - AX) 
t ( U )  = Ax 

and (2.8) is TVD again for A = 5 A0 5 1. 

This procedure (2.8), (2.9) easily generalizes to any conventional TVD, TVB, 

or ENO-approximation (2.1) satisfying (2.2). 

The general explicit Runge-Kutta method (we use explicit methods to avoid 

solving nonlinear equations) for (2.1) is 

If the operator L also depends explicitly on t ,  as is the case when the forcing 

term g in (l.la) depends explicitly on t ,  or when we have time-dependent boundary 

conditions, the general explicit Runge-Kutta method takes a more complicated form 

(2.1 la)  t ~ ( ~ )  = U ( O )  4- At c i k L ( ~ ( ~ ) ,  + &At) 

where 

i-1 

k=O 



(2.1 1 b) 
k- 1 

For details, see any numerical ODE text, e.g [l], [7] (any such method is usu- 

ally written in a slightly different form, using Icl, ka, . . . , but that form is clearly 

equivalent to (2.16) or (2.11)). 

We shall restrict our attention to (2.10); the generalization to (2.11) is clearly 

straightforward, using (2.1 lb). 

In order to get conditions for TVD, we rewrite (2.10) as follows: For a i k  2 
i- 1 

k=O 

i- 1 i- 1 

k=O k=O 
i- 1 k-1 

k= 1 t= 0 
i- 1 

k=O 
i- 1 i-1 

k=O t=k+l  

i- 1 

SO if we let Pik  = Cik - 

equivalent form 

CtkQi‘, then (2.10) may be written in the following 
t=k+ l  

It is well-known that we can get (rn + 1)-th order accurate methods in the form 

(2.10) or (2.11) for rn 5 3; rn-th order methods for rn = 4,5,6;  or (rn - 1)-th order 

methods for m = 7,8 (see, e.g. [l]). 

I 
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For the classical 4-th order Runge-Kutta methods, the constants cik in (2.10) 

are all non-negative. However, in (2.12) may well be negative. In order to obtain 

TVD we apply a trick used in [13], i.e. we replace L in (2.12) by in (2.8)-(2.9) 

whenever ,& is negative. Now (2.12) becomes a convex combination of TVD (or 

TVB) operators under the CFL restriction 

(2.13) 

and we easily get the following 

PROPOSITION 2.1. Scheme (2.12) is TVD under the CFL restriction (2.13), 

if L is replaced by L when is negative. 

REMARK 2.1. The previous proposition may be put into a more general 

framework as follows. The TV in (2.5) and (2.6)(a,b) may be replaced by G(u) ,  

any convex mapping into the non-negative real line, where u ,  S (u ) ,  T ( u )  belong 

to a Banach space of functions BA2. Also if u is a smooth solution of 1.2, then 

u(z ,  tn+’)  - S(u(z ,  t ” ) )  = O( (Az)‘+I). The statement in the proposition can then 

be replaced by: G ( P )  5 G(uo);  moreover the formal order of accuracy is still r. 

Now our goal is to choose the a j k  and such that (2.12) is of the highest 

possible order and such that the CFL restriction (2.13) is optimal. We would also 

like to minimize the number of negative Pik’s in order to reduce the computational 

work involving i. 

One easy way to do this is to use 2. standard Runge-Kutta method and then 

rewrite it in the form (2.12) to get aik and ,&. Unfortunately, most classical 

RungeKutta methods lead to small CFL numbers in (2.13) as well as negative 

Pik’s. Hence the best way is to consider (2.12) directly. Straightforward but tedious 
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Taylor expansions and an analysis of possible parameters (which we omit) leads us 

to the following results: 

i) Second order case, m = 1. 

For accuracy 

a 2 0  = 1 - a 2 1  

1 pa0 = 1- - 2BlO - cu2lPlO 

Pal = & 
(2.14) 

Pro ,  a21 are free parameters. 

It can be verified that the “optimal” scheme (considering CFL restriction (2.13) 

and whether t appears) is 

~ ( 1 )  = u(O) + AtL(u(O)) 
u ( 2 )  = L u ( 0 )  + + A ~ L ( ~ ( ’ ) )  . 

2 i CFL# = 1 
(2.15) 

Notice that 2 does not appear in (2.15). This is equivalent to 

which is the classical Heun’s method or modified Euler method [l]. 

ii) Third order case, m = 2. 

For accuracy 

(2.17) 

P32 = * 
1 

Pal = BBlops:, 

p 3 l  = B l O  

P3o = 1 - a 3 1  Pro - a 3 a  P - P 3 i  - P32 

P20 = p - a 2 1  P l O  - P21 

j - a a a  BIO Ba1-P Baa 

a 2 1 ,  Q 3 0 ,  a 3 1 ,  Plo and P = PaO + a 2 1  

(2.17) is written in convenient inductive form. 

+ Pal are free parameters. The solution 
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Extensive searching leads to the following preferred scheme: 

(2.18) 

Notice that t does not appear in (2.18). Also in computing di)  we only need 

L(di- l ) ) ,  so there is no need to store the previous L(u("), lowering the storage 

requirement significantly. 

(2.18) is equivalent to 

We have been unable to identify (2.19) with any of the "classical" third order 

Runge-Kutta methods. On the other hand, the classical third order Runge-Kutta 

, I 

I 

I 

methods in (71, when written in equivalent forms (2.12), lead to negative Pjk and I 
small CFL numbers (2.13), and are hence inferior to (2.19). , 

(iii) Fourth order case, m = 3 I 

I 
I 

For accuracy we get a system of 7 equations with 16 unknowns, so there are 

9 free parameters. Unfortunately this time the solution is not easily obtained in a 

convenient form. In [l] a general solution with two parameters is given for the form 

(2.10). We can certainly rewrite it in the form (2.12). Extensive searching seems to 

indicate that we cannot avoid negative constants Pik this time. The classical fourth 1 
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order Runge-Kutta method can be written in the form (2.12) as 

Notice that we have to compute i(d0)) and i ( u ( l ) ) .  If we use the more 

awkward definition of d3) 

(2.21) 

then the CFL# can be raised slightly to E. 

Another fourth order scheme with a slightly larger CFL # is: 

(2.22) 

We still need to compute t ( u ( ' ) )  and i ( u ( l ) ) .  

I 
I 

(iv) Fifth order case, m = 5. 

We simply write out the form (2.12) corresponding to a fifth order method 
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given on page 143 of (71: 

Notice that we need to compute i (d0 ) ) ,  i(dl)), L ( d 3 ) ) .  

111. A Simplified Version of E N 0  Schemes. To use the Runge-Kutta 

type TVD time discretizations in Section 11, we must have a spatial discrete opera- 

tor (2.1) to start with. Theoretically one would like to use a TVD or TVB operator 

T satisfying (2.6), because then the full scheme (2.3) would be TVD or TVB. But 

as indicated in section I, the existing high order TVD or TVB schemes may smear 

discontinuities and pollute the solution (i.e. we may not get high order accuracy in 

a fairly large region near discontinuities), due to the fixed, wide stencil. The EN0 

schemes constructed in [SI, [6], [4] are very promising experimentally and appealing 

conceptually, but the fact that they use cell-averages as well as point values via a re- 

construction procedure, and that they were implemented using a Lax-Wendroff type 

time discretization, makes them rather complicated to program, especially in multi- 

dimensional problems, or problems with forcing terms. The Runge-Kutta type TVD 

time discretizations in Section I1 equipped with semi-discrete EN0 schemes will sim- 

plify them in many cases (although there is no rigorous theory concerning TVB of 

semi-discrete E N 0  schemes or their Euler forward version, analysis in many cases 

and numerical experiments strongly support that the total variation increase at each 
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step is O(Az') for a r-th order E N 0  scheme, see [6]. Hence the full scheme (2.3) 

in this case should also be TVB). In this section we further simplify non-oscillatory 

methods by deriving a version of E N 0  schemes using only fluxes, not cell-averages. 

We start with a simple first order monotone Lax-F'riedrichs type of scheme. If 

we define 

where CY 2 max If'(u)l is a constant, then clearly 

The Lax-F'riedrichs scheme is simply (1.3) with'the numerical flux defined by 

Taylor expansion reveals the existence of constants a2, u 4 , .  . . , ~ 2 m - 2 ,  . . . , such 

that if 

(3.5) 

then the scheme (1.3) will be 2m-th order accurate in space in the sense of (2.2). 

1 7 For example, a3 = -%, u4 = =,. . .. 

I In light of (3.4), it is natural to require 

-+ A 

I (3.6) ji++ = jj++ + f j ~ +  

and to define the positive flux fT++ and the negative flux $++ (in the meaning of 

(3.2)) separately. t 
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For accuracy, we require fT++ and p- A to satisfy (3.5) separately: 
J + a  

We achieve (3.7) by using polynomial interpolants pf of f* to the correct 

order: 

(3.8) pf(x) = f*(u(z)) + O(Azam+') 

near x = zj+ +, then define 

Clearly if (3.8) is true, then the fluxes Y?++ defined by (3.9) will satisfy (3.7). 

It is in constructing the interpolating polynomials pf(z) that we use the E N 0  

moving stencil idea: in order to achieve (3.8) pif(z) can be polynomials of degree 

2m interpolating f*(u(z)) at any 2m + 1 points near xi++. We use the EN0 ideas 

in [SI, [6] and [4] to choose the 2m + 1 points automatically from the smoothest 

possible region, but start with the correct one according to (3.4). 
I 

I 

! 
The algorithm can be written as follows: For constructing pf(z): 1 

I 
(2) Inductively, assume we have kmh (-1) , p - 1 1  m m  and Q?-"(z), then we com- 

pute the n-th divided differences of f+(u(x)): 
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We proceed to add a point to the stencil according to the smaller n-th divided 

difference: 

(3.13a) 

(3.13b) 

(3m) (3) ~ f ( z )  = Q+ (z) 

For constructing p;  (2) : 

( 0 )  ( 0 )  (1) kmin = kmax = j + 1, 

(2) same as (2) above with f+ replaced by f- and Q+ replaced by Q-; 
Q!?(z) = f - (uj+l)  

(3.15) 

(2m) (3) P ; ( Z )  = Q- (4 

REMARK (3.1). 

(a) For the first order scheme we just get back the Lax-F'riedrichs flux (3.4); 
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(b) The second order scheme here is similar to the usual minmod second order 

TVD scheme, [9] except that the minmod function is replaced by choosing the value 

closer to zero (we omit the details of the derivation here); this is still a TVD method. 

(c) For the linear equation ut + auz = 0 (the scheme is still nonlinear!), the 

schemes here are equivalent to the EN0 schemes in [6] using the primitive function 

reconstruction, except for a possible difference in the choice of stencil. The EN0 

schemes in [6] choose the stencil according to the divided difference table of cell 

averages of u,  rather than that of f* ( u )  here. We again omit the details of derivation 

here. Since the EN0 schemes in [6] worked so well numerically, and our simplified 

schemes here are equivalent to those in [6] for linear equations, we expect ours to 

work as well. For preliminary numerical results see section IV. 

As mentioned before there is at present no rigorous theory about TVB of this 

type of EN0 schemes. Here we make two observations for our schemes along these 

lines: 

(1) For smooth solutions all the divided differences (3.11) should be bounded 

(by the maximum norm of the n-th derivative of f*, times some constant). So if 

we use 

in the place of c(") in (3.14) for n 2 2, where M(") are constants which are related 

to the maximum norm of the n-th derivative off* in initial smooth regions, it does 

not affect the accuracy in regions of smoothness. We then get a TVB scheme. We 
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can easily see that our flux with (3.16) satisfies 

^ T V D ~  (3.17a) ij++ = fj++ + ij++ 

where 

(3.17b) Itj++I 5 MAz3 

with the constant M depending on the M("), and jTVD2 is the second order TVD 

flux mentioned in Remark (3.lb) above. Now (3.17) clearly implies TVB of the 

scheme. Numerically we do not see any essential difference by using or not using 

(3.16), hence we strongly believe that EN0 schemes without (3.16) are also TVB, 

at least for most practical problems; 

1+ 4 

(2) The approach in (3.1) - (3.15) is not the only possible one which can be 

used to construct an EN0 scheme based on interpolating fluxes. At an early stage 

of our current work we used another approach: starting from f+ and f- in (3.1), 

then for constructing p$(z): 

(1) k d n  (1) = j - I, k L  = j ,  QY'(2) = f+(uj) + f + [ u ( ~ j - l ) ,  u (z~ ) ] ( z  - zj); 

(2) & (3), same as the procedures (2) and (3) above in (3.10), 

Similarly, for constructing p;(z): 

(1) k d n  (1) = j ,  kmax (1)  = j + 1, ~ l f ' ( z )  = f-(uj) + f-[u(zj), (zj+l)l(z - zj); 

(2) and (3), same as the procedures (2) and (3) above in (3.15). 

Then we take pi(.) = $(z) + p;(z), and write our scheme as 

d 
(3.18) UT" = UT - At( z p j  (2) )==ti 

, 
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Notice that the scheme (3.18) is simpler than (3.9) - (1.3). The only trouble is that 

it is not in conservation form (1.3). However, if we use (3.16), then it is easily seen 

that (3.18) can be written as 

(3.19) 

where l Z j l  5 M, and jLFA is the first order Lax-Friedrichs flux (3.4). We can call i+ 
such schemes “essentially conservative” because the most important property of a I 

I 
conservative schemethe conclusion of the Lax-Wendroff theorem in [8] - is still 

valid. Since the scheme deviates from a first order monotone scheme (not only a 

TVD scheme) by MAX’, we have even a stronger theory than before - we have 

the entropy condition, hence full convergence (not just of a subsequence), aad also I 

convergence in multi-dimensional scalar problems i.e. we have every convergence I 

property first order monotone schemes have. Unfortunately numerical experiments 

indicate that in some cases, (3.18) is inferior to the fully conservative (3.9) - (1.3). 

I 
I 
I 

An illustrative example is to compute the Riemann problem for Burgers’ giiation 

ut + uuz = 0 with a moving shock (e.g. uleft = .a, Uright = -1 . )  using the fifth 

order versions of (3.18) and (3.9) - (3.15), (1.3), equipped with a fifth order multi- 

I 

I 

I 
1 

I 

level TVD time discretization in [13]. The procedure (3.9) - (3.15), (1.3) givcs good 1 
I 

results, with or without (3.16); while without (3.16), the non conservative (3.18) 

gives the wrong shock location. With (3.16) the shock location becomes correct, but 
1 
I the mechanism that enforces this causes a rather severe smearing of the shock. For 

these reasons we abandoned the simple and theoretically pleasing version (3.18). 
1 

Finally let us point out that the Lax-Friedricks building block is only a con- 

venient one; we may also use other monotone or E-fluxes (see, e.g. [lo]) as our 

building blocks. Of course it is not always possible to assoicate f+  and f- as in 

(3.1) with each E-flux such that (3.2), ( 3 4 ,  (3.4) is valid, but careful inspection 
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reveals that we do not need to use the values of f+  and f -  - only their divided 

differences. For each E-flux hi++ we can define 

where df? and df,;+ replace the first (undivided) differences fT+l - f.jf and 
3+ 1 

- f;. Hence we can just use the divided difference tables of df+ and df- in . 

place of the divided difference tables of f+  and f- in constructing p! and p?, and 

define fr, f’ in any consistent way such that f” +fT = fj, e.g. f.jf = fj, f’ = 0. 

By (3.20) 

hence if p$ and p i  use the same stencil then p$(z) + p ; ( z )  is a polynomial inter- 

polating f(u(z)), thus accuracy is guaranteed with (3.9) - (3.6); if the stencils are 

different, say fir has the same stencil as p;  but p$ does not, then it is easy to show 

that 6; - pi+ is a sum of r-th order undivided differences of df”++ ( r  is the order of 

the polynomials p $ ,  p ; )  hence as long as these are O(Az‘+’) (valid if the E-flux 

hi++ is smooth up to order r )  we still have the correct accuracy. 

The reason one might consider general E-fluxes as building blocks is that the 

Lax-Friedrichs flux is considered to be too dissipative. While the first order Lax- 

F’riedrichs scheme is much inferior to  upwind schemes (e.g. to Godunov’s or the 

Engquist-Osher schemes), our numerical experiments show that higher order E N 0  

schemes using Lax-Friedrichs building blocks work quite well (although they are still 

slightly inferior to the same order EN0  schemes based on upwind building blocks, 

the difference is much smaller than that in the first order case). The advantage of 

the Lax-Friedrichs flux is that it is Coo, hence the EN0 schemes based on it have 

full high order accuracy. On the other hand, most other E-fluxes - Godunov’s, 
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Engquist-Osher's, Entropy condition satisfying version of Roe's, etc. - are not 

smooth at sonic points (points at which j'(u) = 0), hence EN0 schemes based 

on.them using the methodology of this paper will lose accuracy at sonic points. 

Although we may overcome this by smoothing those E-fluxes at sonic points, in 

most cases the simple Lax-Friedrichs building block should be good enough. 

Problems in mult i-dimensions are approximated by applying the procedure 

described in (3.1) - (3.15) or its generalization (3.20), (3.21) to each of the terms 

BZi in (1.la). The Range-Kutta methods devised in section 2 are then used, with 

CFL numbers shrunk by a factor ( d ) - l .  

Systems of equations are approximated using by nov familiar field-by-field 

decompositions ideas. In (3.1) we replace the scalar constant cr by a constant 

matrix aI, a = {ai i }Zzl ,  where the eigenvalues of are non-negative and of 

E are non-positive. 

Obviously Q might be taken to be a sufficiently large positive scalar multiple of 

the identity, but this might also lead to some smearing of discontinuities associated 

with slower waves. Other more practical choices might involve freezing at some 

constant state a, diagonalizing: 

and letting 

where each A; 2 IA;(u)l throughout the region. To be safe, the margin of difference 

between each and the maximum value of lA;(u)l has to be sufficiently large. 
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In any case, the corresponding p f ( z )  are obtained with the help of the left 

and right eigenvectors of g ( u j ) ,  which we denote by l!!) and r:!), i = 1, ... d. We 

interpolate lji) - f f ( u )  obtaining ti!) - pif(2) exactly as in (3.10) - (3.15). We then 

define 

The fluxes e++ are defined through (3.9). 

Generalizations of the type described in (3.20), (3.21) using approximate Rie- 

mann solvers for hi++, appropriately smoothed at sonic points, may also be ob- 

tained. 

Work is currently under way with various colleagues applying these met hods 

to Euler’s equations of compressible gas dynamics in multi-space dimensions. 

IV. Preliminary Numerical Results. The numbers in this section are often 

written in exponential form, e.g. 4.2-3 means 4.2 :< loe3. 

EXAMPLE 1. The E N 0  schemes (3.1) - (3.15) in section I11 combined with 

the Runge-Kutta type TVD time discretizations (2.19) - (2.20) in section I1 are used 

to solve the nonlinear Burgers equation with periodic initial conditions: 

ut + ($), = 0 
u(z,O) = a 1 1  + 6 sin 1rz - 1 s z g  

The exact solution is smooth up to t = :, then it develops a moving shock 

which interacts with the rarefaction waves. We get the exact solution by using a 

Newton iteration. For details, see [6]. 

Since there is a sonic point, we use the smooth LF (Lax-F’riedrichs) building 

block in our EN0 schemes. Both 3-3-LF-EN0 (third order in time and space E N 0  
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I 

schemes with Lax-F'riedrichs building blocks) and 4-4-LF-EN0 are used. 

1 

We use a CFL number of 0.8 for 3-3-LF-EN0 and 0.6 for 4-4-LF-ENO. 

The errors of the numerical solutions at t = 0.3 are listed in Table 1. Since the 

exact solution is still smooth, we get the full order of accuracy in both L1 and L ,  

norms. 

At t = ?, the shock begins to form. We use Ax = & and print out the errors 

at 10 points near the shock: 

3-3-LF-ENO: -8.7-4, -2.6-3, -7.1-3, -1.3-2, -1.2-1, * 
8.2-2, 8.0-3, 1.1-3, 2.6-4, 1.9-4 

4-4-LF-ENO: -1.5-4, -3.2-4, -1.6-3, -1.5-2, -1.2-1, * 
7.8-2, 7.9-3, 9.2-4, 1.8-4, 9.5-5 

where the * is the position of the shock. 

We see that there is a very good shock transition. (No oscillations are observed). 

Figures 1-6 show the shock transitions. 

In smooth regions the numerical solutions are very accurate. We compute the 

L1 and L ,  norms in the region a distance of 0.1 from the shock (i.e. Iz- shock location1 2 

0.1) and list them in Table 2. From the table we can see that the errors are of the 

same magnitude as in the smooth case when t = 0.3. 

At t = 1.1, the reaction between the shock and the rarefaction waves is over. 

The solution becomes monotone between the shocks. We again print out the errom 

at 10 points near the shock for Az = &: 
3-3-LF-ENO: -1.0-4, 4.6-4, 4.2-4, -3.3-2, -8.3-3, * 
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fashion (Le. T ( u )  = (I+ AtL, + AtL,)(u) in (2.1), together with the R - K time 

discretization: (2.19)-( 2.20)). The exact solution is one-dimensional depending only 

on = x + y, however our grid points are rectangular in (2, y) coordinates, and 

thus this example is a truly 2-dimensional test problem. 

The CFL number is always taken to be half of the one dimensional analog, i.e. 
I 
I 

3.9-2, 1.7-3, -1.6-4, -2,5-5, -7.0-6. 

4-4-LF-ENO: 1.1-5, 6.6-4, -1.6-3, -5.7-2, -1.3-3, * 
5.7-2, 2.7-3, -2.4-4, -5.8-5, -1.2-6 

Figures 7-12 show the shock transitions. 

The errors where the solution is smooth are again listed in Table 2. 

We can see the excellent behavior of EN0 schemes in this example. 

I 0.4 for the 3-3-LF-EN0 and 0.3 for the 4-4-LF-ENO. 

EXAMPLE 2. A two-dimensional version of Example 1 

As in Example 1, we collect the L1 and L, errors at t = 0.3 (smooth solution) 

in Table 3 and the L1 and L, errors in regions at a distance of 0.1 from the shock 

at times t = $ and t = 1.1 in Table 4. We also print out 10 points near the shock 

when 2 = 0, t = 

! 
I 
~ 

I 

~ 

1 
i 
I 

1 and t = 1.1 for Ax = Ay = z. 

t = , ,  2 z = o :  
1 

2 
'Ilt + ($), + (%)v = 0 

- 2 5 2 ,  y < 2  
u(z,  y, 0) = f + f sin a( y) 

I 3-3-LF-ENO: -9.7-4, -2.3-3, -7.6-3, -4.5-3, -1.2-1, * 

is tested'using the same schemes as in Example 1 in a dimension by dimension 
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8.2-2, 7.9-3, 1.1-3, 2.6-4, 1.9-4 

4-4-LF-ENO: -1.5-4, -3.2-4, -1.6-3, -1.5-2, -1.2-1, * 
7.8-2, 7.9-3, 9.2-4, 1.8-4, 9.5-5 

t = 1.1, 2=0: 

3-3-LF-ENO: -1.0-4, 4.6-4, 4.2-4, -3.3-2, -8.3-3, * 
3.9-2, 1.7-3, -1.6-4, -2.5-5, -7.0-6 

4-4-LF-ENO: 1.1-5, 6.6-4, -1.6-3, -5.7-2, -1.3-3, * 
5.7-2, 2.7-3, -2.4-4, -5.8-5, -1.2-6 

The shock transition graphs are very similar to Figures 1-12, hence we omit 

them. 

We observe essentially the same results as in the 1-dim Example 1. This indi- 

cates that our EN0 schemes work well in multi-dimensional problems. 

EXAMPLE 3. We use the same schemes as in Example 2 above to solve a 

linear problem 

(4.3) 

where s = ((2, Y) : 15 - YI q +, I2 + YI < 31 is a unit square centered at  the 

origin and rotated by an angle of 5 (see [4]). We use Ax = $ and run the scheme 

up to t = 16 (8  periods in time), in order to study the stability and the amount of 

smearing of discontinuities of these methods. 

The numerical solutions at  t = 2 (after 1 period in time) and at t = 16; y = 0 

and y = -0.4, are displayed in Figures 13-20. 
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Observations: (1) the 2 dimensional schemes are stable under CFL numbers 

one half of those used for 1 dimension; (further experiments using 1-dimensional 

CFL numbers led to instability-overflow), 

(2) The 4 t h  order scheme resolves the discontinuities better than the 3rd order 

method. 

(3) Overshoots and undershoots, if any, are negligible. 

EXAMPLE 4. We did not prove for these E N 0  methods that limit solutions 

satisfy the entropy condition. However, numerical experiments in [6], including 

some tests using nonconvex fluxes, indicated the convergence of EN0 schemes to 

the correct entropy solution. We test our schemes 3-3-LF-EN0 and 4-4-LF-EN0 

for Riemann problems for two such fluxes. One is 

1 
((4.4)) f(u) = q(u2 - l)(u2 - 4) 

with UL = 2, UR = -2 (the exact solution is a shock followed by a rarefaction 

wave followed by another shock) and with UL = -3, UR = 3 (a stationary shock at 

x = 0). See [6] for details. Our schemes converge to the correct solutions in both 

cases with good resolution. The results are displayed in Figures 21-32. 

Another nonconvex flux we test is the well known Buckley-Leverett example: 

(4.5) 

with initial data u = 1 in [-i,O], and u = 0 elsewhere. 

The exact solution is a shock-rarefaction-contact discontinuity mixture. Our 

schemes resolve the correct solution well. However, the 3-3-LF-EN0 (using the Lax- 

F'riedrichs building block) smears more than the 3-3-EO-EN0 (using the Engquist- 

Osher building block) (Figures 33-38). Although in this example f'(u) 2 0 so 
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there was no need to smooth the flux, the observed improvement using the upwind 

building block indicate that sometimes it is worthwhile spending the effort to smooth 

the EO or other upwind flux rather than to use the simple LF building block. 



Table 1. (Example 1). 

~ 

La2 

3-SEN0 r &&EN0 r 

2.6-3 .2.1-3 

2.3-4 3.50 1.1-4 4.25 

3.1-5 2.89 5.45 4.35 

t- 
11 

%SEN0 r 4-&EN0 r 

7.2-4 5.3-4 

5.7-5 3.66 2.5-5 4.41 

6.5-6 3.13 9.2-7 4.76 

t = 0.3; 

$&EN0 44ENO 

E : type of error; 

%%EN0 4-4-ENO 

r : numerical order 

ao 

40 

Table 2. (Example I). 

Erron in smooth region 12- shock( 2 0.1; Ax = A* 40' 

I t = 2/r t = 1.1 

8.7-4 

t = 2/n  t = 1.1 

3.5-5 I 8.6-6 I 6.7-6 I 1.4-6 
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3-3-EN0 r 4-4-EN0 t 

Table 3. (Example 2). 

t = 0.3; E : type of error; 

3-SEN0 r 4-4-EN0 r 

r : numerical order 

I 

2.7-3 2.1-3 

2.3-4 3.55 1.1-4 4.21 

3.2-5 2.85 5.6-6 4.36 

k 
A 
10 

1 
10 

1.4-3 2.7-4 

1.1-4 3.67 1.3-5 4.40 

1.3-5 3.08 4.5-7 4.80 

t = 2/r t = 1.1 

3-3-ENO &&EN0 %&EN0 44-EN0 

9.9-4 1.5-4 1.6-4 1.7-5 

Table 4. (Example 2). 

Er&rs in smooth region I(z, y)- shock1 3 0.1; Az = Ay = 1- 20’ 

t = 2/r t = 1.1 

3-&EN0 4-4-EN0 3-SEN0 PPENO 

7.45 4.8-6 1.5-5 7.7-7 
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In the following figures, the solid lines are for exact solutions, and the circles 

are for numerical solutions. 

Figures 1-12 are for Burgers’ equation (4.1); 

Figures 13-20 are for the linear two dimensional equation with discontinuous 

initial data (4.3), with Az = $; 

Figures 21-32 are for Riemann problems for the nonconvex flux (4.4). Figures 

21-26 correspond to uleft = 2, Uright = -2; Figures 27-32 correspond to uleft = 

-3, uright =3; 

Figures 33-38 are for Riemann problems for the nonconvex flux (4.5). 
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