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PREFACE

An international symposium with the theme "Double Layers in Astrophysics" was held at Marshall Space
Flight Center in March 1986. The symposium was sponsored by NASA and the Universities Space Research
Association (USRA). Participants from six countries came together for 3 days to discuss their latest research efforts

in the experimental, theoretical, and astrophysical application aspects of double layers.

This was the third such symposium. The other two were held at Riso National Laboratory in Roskilde,

Denmark, and at the University of Innsbruck in Innsbruck, Austria, in 1982 and 1984, respectively. Whereas, the

first two symposia concentrated on laboratory and numerical simulation studies of double layers, this symposium
placed emphasis on astrophysical application of double layers.

Most of the applications involved the magnetosphere-ionosphere plasma environment of the Earth because

of its accessibility to direct observatories. However, other astrophysical applications were discussed. These

included the heliospheric circuit, double radio sources, the solar prominence circuit, magnetic substorms, x-ray and

gamma ray bursts, cosmic ray acceleration, x-ray pulsars, and the critical velocity phenomenon.

It is widely felt by the participants that much more work in double layer research needs to be done, especially
in the theoretical aspect. A particular area of concern are the effects of physical boundaries and boundary conditions
on the formation and nature of double layers.

A recommendation was made by the participants to adopt a standard symbol for the double layer when

shown in an electric circuit. This is discussed in more detail in the Recommendations Section of this report.
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KEYNOTE ADDRESS

H. Alfv6n

Department of Plasma Physics, Royal Institute of Technology
Stockholm, Sweden

and

Department of Electrical Engineering and Computer Sciences

University of California, San Diego, California

ABSTRACT

As the rate of energy release in a double layer with voltage AV is P = IAV, a double layer must be treated as
part of a circuit which delivers the current I.

As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are

useless for treating energy transfer by means of double layers. They must be replaced by particle models (Lyons and
Williams, 1985) and circuit theory (Alfv6n, in Chapter III of Cosmic Plasma, 1981, hereafter referred to as CP).

A simple circuit (Fig. 1) is suggested which is applied to the energizing of auroral particles, to solar flares,

and to intergalactic double radio sources. Application to the heliographic current system leads to the prediction of
two double layers on the Sun's axis which may give radiations detectable from Earth.

Double layers in space should be classified as a new type of celestial object (one example is the double radio

sources). It is tentatively suggested that x-ray and gamma ray bursts may be due to exploding double layers
(although annihilation is an alternative energy source).

M. Azar has studied how a number of the most used textbooks in astrophysics treat important concepts like

double layers, critical velocity, pinch effects and circuits. He has found that students using these textbooks remain
essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for

half a century [e.g., double layers (Langmuir, 1929) and pinch effect (Bennett, 1934)]. The conclusion is that

astrophysics is too important to be left in the hands of the astrophysicists. The billion-dollar telescope data must be

treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course

with modem plasma theory. At least by volume the universe consists of more than 99 percent of plasma, and electro-
magnetic forces are 10 39 times stronger than gravitation.

I. GENERAL PROPERTIES OF DOUBLE LAYERS

A. Double Layers as a Surface Phenomenon in Plasmas

Since the time of Langmuir, we know that a double layer is a plasma formation by which a plasma -- in the

physical meaning of this word -- protects itself from the environment. It is analogous to a cell wall by which a
plasma -- in the biological meaning of this word -- protects itself from the environment.

If an electric discharge is produced between a cathode and an anode (Fig. 2) there is a double layer, called a

cathode sheath, produced near the cathode that accelerates electrons which carry a current through the plasma. A

positive space charge separates the cathode sheath from the plasma. Similarly, a double layer is set up near the
anode, protecting the plasma from this electrode. Again, a space charge constitutes the border between the double

layer and the plasma. All these double layers carry electric currents.



Thelaterallimitationof theplasmaisalsoproducedbydoublelayerswhichreducesandslowsdownthe
escapeoftherapidelectronsandacceleratesthepositiveionsoutwardssothatanambipolardiffusionisestablished
(nonetcurrents).If theplasmaisenclosedinavessel,itswallsgetanegativechargeandapositivespacechargeis
setupwhich,again,is theborderbetweenthedoublelayerandtheplasma.If thedischargeconstrictsitself,the
wallscanbetakenaway(withoutremovingthespacechargetheycarry).In thesedoublelayersthenetelectric
currentis zero.

If thecathodeitselfemitselectrons;e.g.,if it isathermionicorphotoelectricemitter,thesignof thecathode
fallmaybereversed,sothatthedoublelayerislimitedbyanegativespacechargewhichactsasa"virtualcathode."
Theanodefall mayalsobereversed.

Thelateraldoublelayersmayalsochangesign.Thisoccursin a dustyplasmaif thedustis negatively
charged(e.g.,byabsorbingmostoftheelectrons).Inthiscasewehavea"reversedplasma"inwhi_:htheionsform
thelightercomponent.A magnetizedplasmain whichtheLarmorradiusof theionsis smallerthanthatof the
electronsmayalsobeareversedplasma.

If aplasmais inhomogeneoussothatthechemicalcomposition,density,and/orelectrontemperaturediffers
indifferentpartsoftheplasma,theplasmamaysetupdoublelayerswhichsplittheplasmaintotwoormoreregions,
eachof whichbecomemorehomogeneous.Forexample,aBirkelandcurrentflowingbetweentheionosphereand
themagnetospheremayproduceoneormoredoublelayersin thiswaywhentheyflow throughregionswithdif-
ferentdensities.

Thereareinnumerablevariationsandcomplicationsofthesimplecasewehavediscussed,in thesameway
asbiologicalcellwallsshowinnumerablevariations.If we try to increasethecurrentby increasingtheapplied
voltage,theplasmamayproduceadoublelayer(seeFig.2)whichtakesuppartof thevoltagesothattheplasma
currentdensitydoesnotexceedacertainvalue.Hence,theplasmadividesitselfintotwocells,analogoustowhata
biologicalcell doeswhenit getsa largeenergyinput.

ThevoltagedifferenceAV over a double layer is usually of the order 5 to 10 times the equivalent of the

temperature energy kTe/e. However, if there are two independent plasmas produced by different sources, the double

layer which is set up at the border between them may be 100 or 1000 k Tile or even larger (see Torv6n and Anders-
son, 1979).

B. Noise in Double Layers

There is one property of a double layer which often is neglected: a double layer very often (perhaps always)

produces noise. By this we mean irregular rapid variations within a broad band of frequencies. Lindberg (1982)

studied the noise in a stationary fluctuating double layer and demonstrated what a profound influence it has. It
broadens the energy spectrum of the electrons and the plasma expands perpendicular to the magnetic field. The

electrons in the beam which is produced in the double layer are scattered much more by the noise than by collisions.
(Some people claim that noise is essential for the formation and sustenance of a double layer. This is actually a

"chicken-egg" problem.)

An analogy to this is that the "critical velocity" phenomenon also seems to be associated with noise. Noise

production is often associated with strong currents through plasmas.

The noise is such an important property of plasmas that theories which do not take it into consideration run

some risk of being irrelevant. It is difficult to include noise in numerical simulations of double layers, which means



thatweshouldalsoregardthesimulationswithsomescepticism.It is claimedthatsupercomputersarepowerful
enoughtotreatanoisyplasma.Withsomanyprominenttheoreticianspresent,I believethatthenoiseproblemwill
beclarified.

C. Theoretical and Experimental Approaches

Since thermonuclear research started with Zeta, Tokamaks, Stellarators (not to forget the Perhapsotron!),

plasma theories have absorbed a large part of the energies of the best physicists of our time. The progress that has

been achieved is much less than was originally expected. The reason may be that from the point of view of the

traditional theoretical physicist, a plasma looks immensely complicated. We may express this by saying that when,
by an immense number of vectors and tensors and integral equations, theoreticians have prescribed what a plasma

must do, the plasma -- like a naughty child -- refuses to obey. The reason is either that the plasma is so silly that it

does not understand the sophisticated mathematics, or it is that the plasma is so clever that it finds other ways of

behaving, ways which the theoreticians were not clever enough to anticipate. Perhaps the noise generation is one of

the nasty tricks the plasma uses in its IQ competition with the theoretical physicists. I am confident that the promi-

ment theoreticians and the plasma will be reconciled before the end of this meeting.

One way out of this difficulty is to ask the plasma itself to integrate the equations; in other words, to make

plasma experiments. Confining ourselves to cosmic plasmas, presently there are two different ways of doing this.

1. By performing scale model experiments in the laboratory. This requires a sophisticated technique, which

in part we can borrow from the thermonuclear plasma physicists. It also requires methods to "translate" laboratory

results to cosmic situations (see CP, 1.2; Alfvrn, 1986). Great progress has been made in this respect, but much
remains to be done.

2. By using space as a laboratory and performing the experiments in space. This is a fascinating new techno-

logy which is most promising, but somewhat more expensive. We shall shortly discuss the laboratory experiments

in later sections. There are a number of good surveys on the program of this meeting.

D. Field and Particle Aspects of Plasmas

Space measurements of magnetic fields are relatively easy; whereas, direct measurements of electric

currents are very difficult and in many cases impossible. (Roy Torbert is now developing a technique which makes

direct measurements of space currents possible.) Hence, it is natural to present the results of space exploration (from

spacecrafts and from astrophysical observations) with pictures of the magnetic field configuration. Furthermore, in

magnetohydrodynamic theories, it is convenient to eliminate the current (i = current density) by curl B. This
method is acceptable in the treatment of a number of phenomena (see Fig. 3).

However, there are also a number of phenomena which cannot be treated in this way, but which require an
approach in which the electric current is taken account of explicitly. The translation between the magnetic field

description and the electric current description is made with the help of Maxweil's first equation

V xB=ta o i+--_-



inwhichthedisplacementcurrentcanusuallybeneglected.(However,it issometimesconvenienttoaccountforthe
kineticenergyof amagnetizedplasmabyintroducingthepermittivitye = _o[1 + (C/VMH)2],wherec andVMHare
thevelocitiesof lightandof hydromagneticwaves(Alfv6n, 1950,3.4.4). If this formalismis used,thedis-
placementcurrentisoftenlarge.)

Phenomenawhichcannotbeunderstoodwithoutexplicitlyaccountingfor thecurrentare:

1. Formationof doublelayers.

2. Energytransferfromoneregionto another.

3. Theoccurrenceof explosiveeventssuchassolarflares,magneticsubstorms,possiblyalso"internal
ionization"phenomenain comets(Wurmet ai., 1963;Mendis,1978),andstellarflares.

4. Doublelayerviolationof theFerrarocorotation.Establishing"partialcorotation"is essentialfor the
understandingof somefeaturesof thesolarsystem.

5. Formationof filamentsinthesolaratmosphere,in theionosphereofVenus,andin thetailsof cometsand
in interstellarnebulae.

6. Formationof currentsheetswhichmaygivespacea"cellularstructure."

Explorationof thoseplasmapropertieswhichcanbedescribedbythemagneticfieldconcepthasingeneral
beensuccessful.However,thisisnotthecaseforthosephenomenawhichcannotbeunderstoodbythisapproach.

E. Recent Advances

There is a rapidly growing literature concerning double layers and their importance for different cosmic

situations. Of special interest is the work of Knorr and Goertz (1974), Block (1978), and Sato and Okuda (1980,

1981). A balanced review of these achievements is given by Smith (1983)., Further, to judge from the abstracts of

this present symposium, we can look forward to important new results.

As indicated by the title of the present lecture, I will concentrate my attention on the astrophysical applica-

tions of double layer theory. The development of the theory of double layers, including numerical simulation, is

covered by a number of other papers.

II. LABORATORY EXPERIMENTS

A. Electrical Discharges in Gases

Toward the end of the nineteenth century electric discharges in gases began to attract increased interest.

They were studied in Germany and in England; and, as there were few international conferences, the Germans and

the English made the same discoveries independently. Later, a strong group in Russia was also active. The best
survey of the early development is Engel-Steenbeck, Theorie der Gasentladungen; see also Cobine (1958). Some

modern textbooks are those by Loeb (1961), Papoular (1963), and Cherrington (1974).

4



B. Birkeland

At the turn of the century geophysicists began to be interested in electrical discharges, because it seemed

possible that the aurora was an electrical discharge. Anyone who is familiar with electrical discharges in the labora-

tory and observes a really beautiful aurora cannot avoid noting the similarity between the multi-colored flickering

light in the sky and in the laboratory. Birkeland was the most prominant pioneer. He made his famous terrella

experiment in order to investigate this possibility (Birkeland, 1908). Based on his experiments and on extensive

observations of aurora in the auroral region, he proposed a current system which is basically the same as is generally
accepted today. However, the theory of electric discharges was still in a very primitive state, and the importance of

double layers was not obvious.

When Sydney Chapman began his investigations on magnetic storms and aurora one or two decades later, he

proposed a current system [the Chapman and Vestime system (Chapman and Vestine, 1938)] which was located

entirely in the ionosphere. His most important argument against Birkeland's current system was that above the

atmosphere there was a vacuum, and hence there could be no electrons or ions which could carry any currents. [The

relation between Chapman and Birkeland is analyzed by Dessler (1983)].

C. Langmuir and Plasma

The interest in double layers made a great leap forward when Langmuir began his investigaitons. He introdu-

ced the term "plasma" in his paper "Oscillation in Ionized Gases" (Langmuir and Tonks, 1929a; see also Langmuir

and Tonks, 1929b). Curiously enough, he does not give any motivation for choosing this word, which was probably
borrowed from medical terminology. He just states: "We shall use the name 'plasma' to describe this region con-

taining balanced charges of ions and electrons." His biographers do not give any explanation either. Langmuir also

made the first detailed analyses of double layers (Langmuir, 1929).

Irving Langmuir was probably the most fascinating man of the plasma pioneers. As his biographers describe

him, he was far from being a narrow-minded specialist. His curiosity was all-embracing, his enthusiasm indis-

criminate. He liked whatever he looked upon, and he looked everywhere. He was not far from the ideal which

Roederer, in a recent paper (1985), contrasts with the insulated specialists that dominate science today (see Section
VIII).

Langmuir once wrote, "Perhaps my most deeply rooted hobby is to understand the mechanism of simple and

familiar phenomena..." and the phenomena might be anything from molecules to mountains. One of his friends

said, "Langmuir is a regular thinking machine: put in facts and you get out a theory." And the facts his always active

brain combined were anything from electrical discharges and plasmas to biological and geophysical phenomena.
Science as fun was one of his cardinal tenets.

From this one gets the impression that he was very superficial. This is not correct. He got a Nobel prize in

chemistry because he was recognized as the father of surface chemistry. He knew enough of biology to borrow the
term plasma from this science, and the mechanism of double layers from surface chemistry. Langmuir's probes

were of decisive value for the early exploration of plasmas and double layers, and they are still valuable tools.

All magnetospheric physicists must regret that as far as is known, he probably never saw a full-scale auroral

display. Schenectady, where he spent most of his life, is rather far from the auroral zone, and he seems never to have

traveled to the auroral zone. If he had, his passion for combining phenomena in different fields might very well have

made him realize that the beautiful flickering multi-colored phenomenon in the sky was basically the same as the

beautiful flickering multi-colored phenomenon he had observed so many times in his discharge tubes. At a time



whenBirkelandwasdeadhemighthavesavedmagnetosphericphysicsfromhalfacenturywhenit wasacredothat
theroadto magneticstormsandauroraeshouldgothroughajungleof misleadingmathematicalformulaewhere
treesandtreespreventedyoufrom seeingthewoods-- butyoucanneverreconstructhistory.

In 1950I publishedamonograph,Cosmical Electrodynamics (Alfv6n, 1950), in which Chapter III deals
with electrical discharges in gases. Essential parts of this is devoted to plasma physics; I mention Langmuir only in

passing because a quarter of a century after his breakthrough the results were considered as "classical": all experi-

mental physicists were familiar with his works on plasmas, double layers, probes, etc. However, many theor-
eticians were not; they had no knowledge of Langmuir's work. They do not mention the word "plasma" and had no

idea that experiments in close contact with theory had shown that plasmas were drastically different from their

"ionized gases." I tried to draw the attention to this by pointing out: "What is urgently needed is not a refined
mathematical treatment (referring to Chapman-Cowling) but a rough analysis of the basic phenomena" (referring to

the general knowledge of plasmas).

Today, 60 years after Langmuir, most astrophysicists still have no knowledge of his work. The velocity of

the spread of relevant knowledge to astrophysics seems to be much below the velocity of light (compare Section

VIII).

D. The Energy Situation in Sweden and Exploding Double Layers

In Sweden the waterpower is located in the north, and the industry in the south. The transfer of power

between these regions over a distance of about 1000 km was first done with a.c. When it was realized that d.c.

transmission would be cheaper, mercury rectifiers were developed. It turned out that such a system normally

worked well, but it happened now and then that the rectifiers produced enormous over-voltages so that fat electrical

sparks filled the rectifying station and did considerabl harm. In order to get rid of this, a collaboration started
between the rectifier constructors and some plasma physicists at the Royal Institute of Technology in Stockholm.

An arc rectifier must have a very low pressure of mercury vapor in order to stand the high back voltages

during half of the a.c. cycle. On the other hand, it must be able to carry large currents during the other half-cycle. It
turned out that these two requirements were conflicting, because at a very low pressure the plasma could not carry

enough current. If the current density is too high, an exploding double layer may be formed. This means that in the

plasma a region of high vacuum is produced: the plasma refuses to carry any current at all. At the sudden interrup-
tion of the 1000 km inductance produces enormous over-voltages, which may be destructive.

In order to clarify this phenomenon, a series of laboratory experiments were made, in close contact with

theoretical work on the same phenomenon. Nicolai Herlofson was the leader of this activity.

At low current densities, a drift motion vd < < V-ris superimposed on the thermal velocity v-r of the electrons

in the plasma. If the current density increases so that Vd > V-rthe motion becomes more similar to a beam, and an

instability sets in which is related to the two-beam instability. This produces a double layer which may be relatively

stable (although it often is noisy and may move along the tube.) If the voltage over the tube is increased in order to

increase the current, the higher voltage is taken up by the double layer and the current is not increased. However,

under certain conditions the double layer may explode.



A simplemechanismof explosionis thefollowing.Thedoublelayercanbeconsideredasadoublediode,
limitedby a slabof plasmaonthecathodesideandanotherslabontheanodeside.Electronsstartingfromthe
cathodegetacceleratedin thediodeandimpingeupontheanodeslabwithaconsiderablemomentumwhichthey
transferto theplasma.Similarly,acceleratedionstransfermomentumto thecathodeslab.Theresultis thatthe
anodeandcathodeplasmacolumnsarepushedawayfromeachother.Whenthedistancebetweentheelectrodesin
thediodesbecomeslargerthedropin voltageincreases.Thisrun-awayphenomenonleadsto anexplosion.

Todaythemercuryarcrectifiersarelongsincereplacedbysemiconductors,butourworkwiththemledtoan
interestingspin-offin cosmicphysics.Wehadsincelongbeeninterestedin solarphysicsandhadinterpretedsolar
prominencesascausedby pinchingelectriccurrents.With thisasbackground,JacobsenandCarlqvist(1964)
suggestedthattheviolentexplosionscalledsolarflareswereproducedbythesamebasicmechanismasmadethe
mercuryarcrectifiersexplode.It drewattentiontothefactthateveryinductivecircuitcarryingacurrentis intrinsi-
callyexplosive.

Furtherconsequenceswere:

1. Theobviousconnectionbetweenlaboratoryandspaceplasmaledtoalongseriesof plasmaexperiments
plannedto clarifycosmicphenomena.

2. It inspiredCarlqvist(1969;1982a,b,c)toworkoutadetailedtheoryof solarflares,andlaterto developa
theoryof relativisticDL's.

3. It inspiredBostr6m(1974)to developatheoryof magneticsubstormswhich,in importantrespects,is
similarto Akasofu'stheory(Akasofu,1977).

In general,theconnectionbetweenatechnicaldifficultyandanastrophysicalphenomenonledto what
Roederer(1985)callsan"interdisciplinarification,"whichturnedoutto beveryfruitful.

E. Extrapolation to Relativistic Double Layers

In most of the DL's in the magnetospheres and those studied so far in the laboratory, the electrons and ions

have such low energies that relativistic effects are usually not very important. However, in solar flares, DL's with

voltages of 10 9 W or even more may occur, and in galactic phenomena we may have voltages which are several
orders of magnitude larger.

Carlqvist ( 1969, 1982a,c) finds that in a relativistic double layer the distribution of charges Zn +(x) and n_(x)

can be divided into three regions: two density spikes near the electrodes and one intermediate region with almost

constant charge density. The particles are mainly accelerated in the spikes; whereas, they move with almost con-

stant velocity in the intermediate region. Examples are given of possible galactic DL voltage differences of 10 _2 V.

This means that by a straightforward extrapolation of what we know from our cosmic neighborhood, we can derive
acceleration mechanisms which brings us up in the energy region of cosmic radiation.



III. DOUBLE LAYERS AND FROZEN-IN MAGNETIC FIELD LINES

A. Frozen-In Field Lines B A Pseudo-Pedagogical Concept

In Cosmical Electrodynamics, I tried to give a survey of a field in which I had been active for about two

decades. In one of the chapters, I treated magnetohydrodynamic waves. I pointed out that in an infinitely conductive

magnetized fluid the magnetic field lines could be considered as "frozen" into the medium -- under certain con-

ditions -- and this concept made it possible to treat the waves as oscillations of the frozen-in medium.

The "frozen-in" picture of magnetic field lines differs from Maxwell's views. He defined a magnetic field

line as a line which everywhere is parallel to the magnetic field. If the current system which produced the field

changes, the magnetic field changes and field lines can merge or reconnect. However, if the current system is

constant the magnetic field is also constant. To speak of magnetic field lines moving perpendicular to the field

makes no sense. They are not material.

In a detailed analysis of the motion of magnetic lines of force, Newcomb (1958) has demonstrated that "it is

permissible to ascribe a velocity v to the hne of force if and only if Vx(E x v x H) vanishes identically."

I thought that the frozen-in concept was very good from a pedagogical point of view, and indeed it became

very popular. In reality, however, it was not a good pedagogical concept but a dangerous "pseudo-pedagogical

concept." By pseudo-pedagogical I mean a concept which makes you believe that you understand a phenomenon
whereas in reality you have drastically misunderstood it.

I never totally believed in it myself. This is evident from the chapter on "Magnetic Storms and Aurora" in the

same monograph. I followed the Birkeland-St6rmer general approach; but, in order to make that applicable to the

motion of low-energy particles in what is now called the magnetosphere, it was necessary to introduce an approxi-

mate treatment (the "guiding-center" method) of the motion of charged particles. (As I have pointed out in CP, III. 1,

I still believe that this is a very good method for obtaining an approximate survey of many situations and that it is a

pity that it is not more generally used.) The conductivity of a plasma in the magnetosphere was not relevant.

Some years later criticism by Cowling made me realize that there was a serious difficulty here. According to

Spitzer's formula for conductivity, the conductivity in the magnetosphere was very high. Hence the frozen-in con-

cept should be applicable and the magnetic field lines connecting the auroral zone with the equatorial zone should be

frozen-in. At that time (-- 1950) we already knew enough to understand that a frozen-in treatment of the magneto-
sphere was absurd, but I did not understand why the frozen-in concept was not applicable. It gave me a headache for

some years.

In 1963 Carl-Gunne F_ilthammar and I published the second edition of Cosmical Electrodynamics (Alfv6n

and F_ilthammar, 1963). He gave a much higher standard to the book and new results were introduced. One of them

was that a non-isotropic plasma in a magnetic mirror field could produce a parallel electric field Ell. We analyzed the

consequences of this in some detail and demonstrated with a number of examples that in the presence of an Ell, the
frozen-in model broke down. On page 191 we wrote:

"In low density plasmas the concept of frozen-in lines of force is questionable. The concept of
frozen-in lines of force may be useful in solar physics where we have to do with high- and

medium-density plasma, but may be grossly misleading if applied to the magnetosphere of the

earth. To plasma in interstellar space it should be applied with some care."



B. Magnetic Merging -- A Pseudo-Science

Since then I have stressed in a large number of papers the danger of using the frozen-in concept. For ex-

ample, in a paper "Electric Current Structure of the Magnetosphere" (Alfv6n, 1975), I made a table showing the

difference between the real plasma and "a fictitious medium" called "the pseudo-plasma," the latter having frozen-
in magnetic field lines moving with the plasma. The most important criticism of the "merging" mechanism of

energy transfer is due to Heikkila (1973) who with increasing strength has demonstrated that it is wrong. In spite of
all this, we have witnessed at the same time an enormously voluminous formalism building up based on this obvi-

ously erroneous concept. Indeed, we have been burdened with a gigantic pseudo-science which penetrates large

parts of cosmic plasma physics. The monograph CP treats the field-line reconnection (merging) concept in I. 3, II. 3,

and I1.5. We may conclude that anyone who uses the merging concepts states by implication that no double layers
exist.

A new epoch in magnetospheric physics was inaugurated by L. Lyons and D. Williams' monograph (1985).

They treat magnetospheric phenomena systematically by the particle approach and demonstrate that the fluid

dynamic approach gives erroneous results. The error of the latter approach is of a basic character. Of course there
can be no magnetic merging energy transfer.

I was naive enough to believe that such a pseudo-science would die by itself in the scientific community, and

I concentrated my work on more pleasant problems. To my great surprise the opposite has occurred; the "merging"

pseudo-science seems to be increasingly powerful. Magnetospheric physics and solar wind physics today are no

doubt in a chaotic state, and a major reason for this is that some of the published papers are science and part pseudo-
science, perhaps even with a majority for the latter group.

In those parts of solar physics which do not deal with the interior of the Sun and the dense photospheric

region (fields where the frozen-in concept may be valid), the state is even worse. It is difficult to find theoretical

papers on the low density regions which are correct. The present state of plasma astrophysics seems to be almost

completely isolated from the new concepts of plasma which the in situ measurements on space plasma have made
necessary (see Section VIII).

I sincerely hope that the increased interest in the study of double layers -- which is fatal to this pseudo-

science -- will change the situation. Whenever we find a double layer (or any other Ell _ 0) we hammer a nail into
the coffin of the "merging" pseudo-science.

IV. DOUBLE LAYER AS A MECHANISM FOR ENERGY RELEASE

A. Double Layer as a Circuit Element

It is a truism to state that a DL which releases a power P = IAV is part of a circuit in which a current I flows.

We shall investigate the properties of such a circuit by starting with a conventional simple circuit and step by step
adopt it to cosmical conditions.

Figure 1 depicts a simple circuit which, besides the double layer DL, contains an inductance in which is

stored an energy ("circuit energy").

W L = -_ LI 2 = i2dr

where B_ is the magnetic field produced by the current I and d'r is a volume element.

(1)



If a magnetizedplasma(fieldBo)moveswithvelocity7 in relationto thecircuitit producesanemf

V =f_'x Bo' ds (2)

..+ _.).

where ds is a line element in the direction of I.

If V > 0 we have a generator transferring plasma energy IAV into the circuit; if V < 0 we have a motor

transferring circuit energy into kinetic energy of the plasma. In Figure I we have introduced a symbol (_ with the
arrow parallel to I to represent a generator and a similar (_, but with the arrow antiparallel to I, to represent a motor.

Finally, the circuit may contain a resistance R which dissipates energy I/2RI 2 into heat, etc.

An electrotechnical circuit like Figure 1 consists essentially of metal wires. Is it realistic to use this for

cosmic plasma problems? Apparently not. There are no metal wires in space. Further, if we want to use the circuit in

connection with a cosmic problem, most or all the circuit elements are distributed over cosmic distances. There have

been many detailed studies made concerning the relations between kinetic energy of a plasma and currents which

give a deeper understanding of these processes than our circuit approach.

However, our purpose is not to study the detailed problems but to get a general survey of energy transports in

cosmical physics. Is the circuit approach useful as a first approximation to such problems? Maybe.

A map of a city is useful in spite of the fact that it does not describe all the houses, or rather because it does

not attempt to do so. For calculating the motion of charged particles the guiding center method is often preferable to

the St6rmer method even if it does not give the exact position of a particle at a certain moment, or rather because it
does not.

In space, charged particles move more easily parallel to B than perpendicular, and parallel currents are often

pinched to filaments. A wire is not too bad an approximation to a pinched filament. Moreover, the generators-

motors as well as the double layer are often confined to relatively small volume. Hence, with all these reservations

in mind we are going to apply the simple circuit of Figure 1 to a number of cosmical problems in Section VI.

However, the circuit representation could -- and must -- be developed in many respects. For example when

a current flows in large regions, the simple inductance L should be replaced by a transmission line (see Fig. 4).

We should also observe that a theory of certain phenomena need not necessarily be expressed in the tradi-

tional language of different equations, etc. It could also be expressed as an equivalent circuit. The pioneer in the

field is Bostr6m who summarized his theory of magnetic substorms in the circuit shown in Figure 11. If this method

is developed, it is quite possible that it will be recognized as the best way to represent energy transfer in cosmic

plasmas.

B. Properties of the Circuit

Every circuit which contains an inductance L is intrinsically explosive (cf. Section II.D). The inductive
energy W_ = 1/2 LIo2 can be tapped at any point of the circuit. If we try to interrupt the current Io, the inductance

tends to supply its energy to the point of interruption where the power P = IAV is delivered (AV = voltage over the

point of interruption and I the current at this point). This means that most of the circuit energy may be released in a
double layer, and if large, cause an explosion of the DL. (If the inductance is distributed over a considerable region,

there are transient phenomena during which I is not necessarily the same over the whole circuit.)
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In electro-technical literature in general, the resistors and inductances in the circuit may often be non-linear

and sometimes distributed over larger volumes. Similarly, the DL symbol may mean one double layer but also a

multiple DL. We should also allow this circuit element to represent other types of Etl; for example, mirror-produced

fields. Hasagawa and Uberoi (1982) have shown that under certain conditions a hydromagnetic wave produces a

magnetic field-aligned electric field, which also should be included as DL. This means that DL stands for any
electric field parallel to the magnetic field.

C. Local Versus Global Plasma Theories

Consider a long, homogeneously magnetized uniform plasma. It is confined laterally by tube walls or by a
magnetic field. It carries no longitudinal current. Information/energy is transmitted in a time T from one end to the

other by sound waves or diffusion. Phenomena with a time constant < < T can be treated by local theories (because

one end does not know what happens in the other). The Chapman-Cowling (1970) theory may be valid. However, if

a longitudinal current I flows through the plasma and returns through an outer wire (or circuit), the situation is
different. Except for rapid transients the current must be the same in the whole tube and in the wire. If the current is

modulated in one end, this information is rapidly transferred to the other end and to the wire. The current may

produce double layers which accelerate electrons (and ions) to kV, MV, GV, etc. It may pinch the plasma, produc-

ing filaments. These effects also produce coupling between the two ends of the plasma column and reduce the
coupling to its local environment.

Electrons accelerated in a DL in the plasma column may travel very rapidly from one end of the plasma
column to the other.

Hence, if there is a current through a plasma, we must use global theories, taking account of all the regions
through which the current through the plasma column flows. Local theories are not valid (except in special cases).

The theoretical treatment of a current-carrying plasma must start with locating the whole region in which the

current flows. It is convenient to draw the circuit and determine the resistances, the inductances, the generators, and

DL's. These elements ae usually distributed and non-linear, and the circuit theory may be rather complicated.

The return current need not flow through a wire. It could very well flow through another plasma column. An

example of this is the auroral current system. As pointed out in Section VI.A the energy is transferred from the cloud

C to DL not by high energy particles nor by waves (and of course, not by magnetic reconnection !). It is a property of

the circuit. A global theory is necessary which takes account not only of the plasma cloud in the equatorial but also

of the ionosphere and double layers which may be found in the lower magnetosphere. Another still more striking
example is given in Section VI.C.

V. TRANSFER OF KNOWLEDGE BETWEEN DIFFERENT PLASMA REGIONS

In CP it is pointed out that the basic properties of a plasma are likely to be the same in different regions of
cosmic plasmas. This is represented by Figure 5, called the Cosmic Triple Jump.

The linear dimensions of plasma vary by 1027 in three jumps of 109: from the laboratory plasmas -0.1 m, to

magnetospheric plasmas -- 108 m, to interstellar plasmas - 1017 m, up to the Hubble distance -- 1026. Including laser

fusion experiments, brings us up to 1027 orders of magnitude. New results in laboratory plasma physics and in situ
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measurements by spacecraft in the magnetospheres (including the heliosphere) make sophisticated plasma diagno-

sis possible out to the reach of spacecraft (- 1013 m). Plasmas at larger distances should to a large extent be investi-

gated by extrapolation. This is possible because of our increased knowledge of how to translate results from one

region to another.

The figure shows us an example of how cosmogony (formation of the solar system) can be studied by

extrapolation from magnetospheric and laboratory results, supplemented by our knowledge about interstellar

clouds. When better instruments for observing the plasma universe in x rays and gamma rays are developed, we may

get more information from these than from visual observations.

Figure 6 contains essentially the same information as Figure 5. It demonstrates that plasma research has been

based on highly idealized models, which did not give an acceptable model of the observed plasma. The necessary

"paradigm transition" leads to theories based on experiments and observations. It started in the laboratory about 20

years ago. In situ measurements in the magnetospheres caused a similar paradigm transition there. This can be

depicted as a "knowledge expansion," which so far has stopped at the reach of spacecraft. The results of laboratory
and magnetospheric research should be extrapolated further out. When this knowledge is combined with direct

observations of interstellar and intergalactic plasma phenomena, we can predict that a new era in astrophysics is

beginning, largely based on the plasma Universe model.

Vl. EXAMPLES OF COSMIC DOUBLE LAYERS

In order to demonstrate the usefulness of the equivalent circuit methods, we shall apply it here to a variety of

different cosmical problems.

A. Auroral Circuit

The auroral circuit is by far the best known. It is derived from a large number of measurements in the

magnetosphere and in the ionosphere which were pioneered by the Applied Physics Laboratory at Johns Hopkins.

Zmuda and Armstrong (1974) observed that the average magnetic field in the magnetosphere had superim-

posed on it transverse fields which they interpreted as due to hydromagnetic waves. Inspired by discussions with

F_ilthammer, Dessler suggested that the transverse field components instead indicated electric currents essentially
parallel to the magnetic field lines (Cummings and Dessler, 1967).

This means that it was Dessler who discovered the electric currents which Birkeland had predicted. Dessler

called them "Birkeland currents," a term which is now generally accepted and sometimes generalized to mean all

currents parallel to the magnetic fields. I think that it is such a great achievement by Dessler to have interpreted the

magnetospheric data in what we now know is the correct way that the currents should be called Birkeland-Dessler
currents.

In the auroral current system the central body (Earth and ionosphere) maintains a dipole field (Fig. 7). B 1and

B2 are magnetic field lines from the body. C is a plasma cloud near the equatorial plane moving in the sunward

direction (out-of the figure) producing an electromotive force

fC2 .._v = _x B)._
Ci
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whichgivesriseto acurrentin thecircuitC,, al,a2,C2 and Ct. The circuit may contain a double layer DL with the

voltage AV, in which the current releases energy at the rate P = IAV which essentially is used for accelerating
auroral electrons. The energy is transferred from C to DL not by high energy particles or waves (and, of course, not

by magnetic merging or field reconnection). It is a property of the electric circuit (and can also be described by the
Poynting vector, see Fig. 7).

B. Heliospheric Current

In a way which is described in CP, II.4.2, we go from the auroral circuit to the heliospheric circuit (Fig. 8).

The Sun acts as a unipolar inductor (A) producing a current which during odd solar cycles goes outward

along the axes (B2) in both directions and inward in the equatorial plane B_. The current closes at large distances

(B3), but we do not know where. The equatorial current layer is often very inhomogeneous. Further, it moves up and
down like the skirt of a ballerina. In even solar cycles the direction of the current is reversed.

By analogy with the magnetospheric circuit we may expect the heliospheric circuit to have double layers.

They should be located at the axis of symmetry, but only in those solar cycles when the axial current is directed away
from the Sun.

No one has yet tried to predict how far from the Sun they should be located. They should produce high
energy electrons directed toward the Sun, and synchrotron radiation from these should make them observable as

radio sources. Further, they should produce noise. They may be observable from the ground, but so far no one has

cared to look for such objects.

C. Double Radio Sources

If in the heliospheric circuit we replace the rotating magnetized Sun by a galaxy, which is also magnetized

and rotating, we should expect a similar current system, but magnified by about 9 orders of magnitude (Fig. 9, CP,

11.4). This seems to be a very large extrapolation, but in fact a number of successful extrapolations from the labora-

tory to the magnetosphere are by almost the same ratio. (Of course all theories of plasma phenomena in regions
which cannot be investigated by in situ measurements are by definition speculative!)

The emf is given by equation (2), taken from the galactic center out to a distance where the current leaves the

galaxy, which may be the outer edge. Inside the galaxy the current may flow in the plane of symmetry similar to the

current sheet in the equatorial plane of the Sun, but whether the intragalactic picture is correct or not is not really
important to our discussion here. The emf which derives from the galactic rotation is applied to two circuits in

parallel, one to the "north" and one to the "south" (see Fig. 9). As galaxies in general are highly north-south
symmetric, it is reasonable that the two circuits are similar. Hence, we expect a high degree of symmetry in the

current system (at least under idealized conditions).

In the magnetosphere, the current flowing out from the ionosphere produces double layers (or magnetic

mirror induced fields) at some distance from the Earth. Because of the similarity of the plasma configuration, we

may expect double layers at the axis of a galaxy and a large release of energy in them. It has been suggested that the

occurrence of such double layers is the basic phenomenon producing the double radio sources.

In the galactic circuit, the emf is produced by the rotating magnetized galaxy acting as a homopolar inductor,
which implies that the energy is drained from the galactic rotation, but from the interstellar medium, not from the

stars. By the same mechanisms as in the auroral circuit, it is transferred first into circuit energy and then to the
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doublelayerswherethepowerP = IAV isreleased.InasingleDLoraseriesofDL'soneachsideofthegalaxy,an
accelerationof chargedparticlestakesplace.Fromthemagnetosphere,weknowthatlayersareproducedwhenthe
currentflowsoutward.(Whetherdoublelayerscanbeformedwhenthecurrentflowsinwardis still anopenques-
tion.)If thesameistruein thegalacticcase,thereisaflowof thermalelectronstothelayerfromtheoutsideand
whenpassingaseriesof doublelayers,theelectronsareacceleratedto veryhighenergies.Hence,abeamof very
highenergyelectronsisemittedfromthedoublelayeralongtheaxistowardthecentralgalaxy.Thisprocessis the
sameastheonewhichproducesauroralelectrons,onlyscaledupenormouslybothin sizeandenergy.In analogy
withthecurrentin themagnetotail,thecurrentin theequatorialplaneof agalaxymayalsoproducedoublelayers,
whichmaybeassociatedwith largereleasesof energy.

Figure9showsaradioastronomypictureof adoubleradiosource.It isessentialinourmodelthattheemfof
thegalaxyhassuchadirectionthattheaxialcurrentsflowoutward.TheDL's theyproduceshouldbelocatedatthe
outeredgesof thestrongradiosource.Whenelectronsconductingthecurrentsoutsidethedoublelayerreachthe
doublelayer,theyareacceleratedto veryhighenergies.Similarly,ionsreachingthedoublelayerontheiroutward
motionfromthecentralgalaxywill beacceleratedoutwardwhenpassingthedoublelayers.Thestrongaxialcurrent
producesamagneticfield,whichpinchestheplasma,confiningit to acylindercloseto theaxis.

Althoughtheelectronsareprimarilyacceleratedin thedirectionofthemagneticfield,theywill bescattered
by magneticinhomogeneitiesandspiralin sucha way thattheyemitsynchrotronradiation.Theaccelerated
electronswill bemorelikeanextremelyhotgasthanabeam.Withincreasingdistancefromthedoublelayerthe
electronswill spreadandtheirenergy,andhencetheirsynchrotronemission,will decrease.This is in agreement
withobservations.It ispossiblethatsomeof themwill reachthecentralgalaxyandproduceradioemissionthere.It
isalsopossiblethattheobservedradioemissionfromthecentralgalaxyisduetosomeothereffectproducedbythe
current(thereareseveralmechanismspossible).Suchphenomenain thecentralgalaxywill notbediscussedhere.

Theionspassingthedoublelayerin theoutwarddirectionnwill be_icceleratedto thesameenergyasthe
electrons.Becauseoftheirlargerrestmass,theywill notemitmuchsynchrotronradiation,butthereareanumberof
othermechanismsbywhichtheymayproducetheobservedradioemissionfromtheregionsfartherawayfromthe
centralgalaxy.

It shouldbestressedagainthat,justasinthemagnetosphereandin thelaboratory,theenergyreleasedinthe
doublelayerderivesfromcircuitenergyandis transferredto it by electriccurrentswhichessentiallyconsistof
relativelylow-energyparticles.Thereisnoneedforabeamof highenergyparticlestobeshotoutfromthecentral
galaxy(orplasmons).Onthecontrary,thecentralgalaxymaybebombardedbyhighenergyelectronswhichhave
obtainedtheirenergyfromthedoublelayer.

A quantitativeanalysisof thedoubleradiogalaxiesisgiveninCP. It is possible that some modifications are
needed.

D. Solar Prominence Circuit. Solar Flares

The circuit consists of a magnetic flux tube above the photosphere and part of photosphere (see Fig. 10). The

generator is in the photosphere and is due to a whirl motion in sunspot magnetic field.

Generator output increases circuit energy which can be dissipated in two different ways: (1) When current

density surpasses critical value, an exploding DL is produced in which most of the circuit energy is released. This

causes a solar flare. H6noux (1985) has recently given an interesting study of solar flares and concludes that a

current disruption by DL's is an appealing explanation of solar flares. (2) Under certain circumstances the electro-
magnetic pressure of the current loop may produce a motor which gives rise to a rising prominence (Alfv6n and

Carlqvist, 1967; Carlqvist, 1982b).
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E. Magnetic Substorms

According to Bostr6m (1974) and Akasofu (1977), an explosion of the transverse current in the magnetotail

gives an attractive mechanism for the production of magnetic substorms (see Fig. I 1). Bostr6m has shown that an
equivalent magnetic substorm circuit is a way of presenting the substorm model. The onset of a substorm is due to

the formation of a double layer, which interrupts the cross-tail current so that it is redirected to the ionosphere.

F. Currents and Double Layers in Interstellar Space

As it is relatively easy to measure magnetic fields, it is natural that the first description of the electro-

magnetic state of interstellar and intergalactic space is based on a magnetic field description. However, as no one

claims -- at least not explicitly -- that the magnetic fields are curl-free, we must have a network of currents. As

investigations of DL's (and quite a few other phenomena) require explicit pictures of electric currents, it is essential
to apply these pictures.

Filamentary structures were quite generally observed long ago, and may be observed everywhere where

sufficient accurate observations can be made. There are a number of processes by which they are generated. For

example, the heliospheric current system must close at large distances (cf. Fig. 8), and it is possible -- perhaps

likely -- that this is done by a network of filamentary currents. Many such filaments may produce DL's, and some
of these may explode.

G. Double Layers as a New Class of Celestial Objects

The general structure and evolution of such a network of currents, including their production of DL's, has

not yet been investigated. It is possible that under certain circumstances the final destiny of a set of currents is DL's,

perhaps exploding DL's. DL's may be considered as a new class of celestial objects. We have already given an
example of this in the interpretation of double radio sources as DL's.

H. X-Ray and Gamma Ray Bursts

When a number of explosions are observed, such as gamma ray and x-ray bursts, one may try to explain

them as exploding DL's. However, another possible source of energy is annihilation (CP, VI.3). There is also a

possibility that they may be due to double layers in a baryon symmetric universe.

I. Double Layers as a Source of Cosmic Radiation

As pointed out in Section II.E, relativistic DL's in interstellar space may accelerate ions up to cosmic ray

energies (see Carlqvist, 1969; 1982a,c).
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VII. DOUBLE LAYERS IN TEXTBOOKS

As has been pointed out many times (see e.g., CP I; Alfv6n, 1982) in situ measurements in the magneto-

spheres and progress in laboratory plasma physics have caused a "paradigm transition" which means that a number

of old concepts have to be abandoned and a number of new phenomena must be taken into account. Michel Azar has

gone through some of the most generally used textbooks in astrophysics and listed in which of these the new con-

cepts have been presented to the student in astrophysics. The results are shown in Table 1. The table gives the

surprising and depressing result that the students in astrophysics still are kept ignorant of what has happened in
plasma physics.

Double layers were analyzed in detail by Langmuir (1929). The development described in Section III.A

demonstrated that there must be "double layers" in a generalized sense ( = magnetic field-aligned electric field) so
the first decisive evidence for their existence in the magnetosphere dates from 1962. The real discovery of double

layers in the magnetosphere is due to Gurnett (1972), but still there are only 2 out of 17 textbooks which even

mention that anything like that could exist.

The critical velocity was postulated in 1942 in order to explain the band structure of the solar system. In a

series of experiments especially designed to clarify this and other cosmic plasma phenomena, the critical velocity

phenomenon was confirmed in the laboratory by Fahleson (1961), by Angerth et al. (1962), by Eninger (1965), and
by Danielsson (1973).

The use of "equivalent circuits" is discussed in Alfv6n and F_lthammar (1963) and further in a number of

papers. Bostr6m (1974) has given the most interesting account of their use. Still, Akasofu is the only one in the list
who has understood the value of this in cosmic physics.

That parallel currents attract each other was known already at the times of Ampere. It is easy to understand

that in a plasma, currents should have a tendency to collect to filaments. In 1934, it was explicitly stated by Bennett

that this should lead to the formation of a pinch. The problem which led him to the discovery was that the magnetic

storm producing medium (solar wind with present terminology) was not flowing out uniformly from the Sun.

Hence, it was a problem in cosmic physics which led to the introduction of the pinch effect.

Today everybody who works in fusion research is familiar with pinches. Indeed, several big multimillion
dollar thermonuclear projects are based on pinches. Pinches in cosmical physics are discussed in detail in Alfv6n

and F_ilthammer (1963) and further in a large number of papers; see CP, II.4. However, to most astrophysicists it is
an unknown phenomenon. Indeed, important fields of research, e.g., the treatment of the state in interstellar

regions, including the formation of stars, are still based on a neglect of Bennett's discovery more than half a century

ago. As shown in the table, present-day students in astrophysics hear nothing about it. A recent survey article in

Science described some "mysterious" threads which were claimed to be different from anything earlier discovered

(Waldrop, 1985). Published photographs indicated that these phenomena are likely to be common filamentary

structures; indeed, they have been well known since 1934.

In conclusion, it seems that astrophysics is too important to be left in the hands of theoretical astrophysicists

who have gotten their education from the listed textbooks. The multibillion dollar space data from astronomical

telescopes should be treated by scientists who are familiar with laboratory and magnetospheric physics, circuit

theory, and, of course, modern plasma physics. More than 99 percent of the Universe consists of plasma, and the
ratio between electromagnetic and gravitational forces is 1039 .
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VIII. ROEDERER'S INTERDISCIPLINARIFICATION

A. The Roederer Syndrome

In his article "Tearing Down Disciplinary Barriers," Juan G. Roederer (1985) points out the conflict

between the demand for "increased specialization on one hand and the pursuit of an increasingly interdisciplinary
approach on the other."

This is important. Indeed, in the present state of science specialization is favored to such an extent that

science is split up into a number of increasingly small specialties. We lack the global view. This is evident from the
preceding section.

We should remember that there once was a discipline which was called "Natural Philosophy" ("reine Natur-

wissenschaft"). Unfortunately this discipline seems not to exist today. It has been renamed "science," but science of
today is in danger of losing much of the Natural Philosophy aspect.

Roederer further discusses the psychological and structural causes for the loss of the global view, and points
out that one syndrome of cause is the "territorial dominance, greed, and fear of the unknown." Scientists tend to

"resist interdisciplinary inquiries into their own territory...In many instances, such parochialism is founded on the

fear that intrusion from other disciplines would compete unfairly for limited financial resources and thus diminish
their own opportunities for research."

B. Microscale Example

All this agrees with my own experience. When running a lab I found that one of my most important activities

was to go from room to room and discuss in depth the problems which a certain scientist or a group of scientists was

trying to understand. It often happened that one group reported that in their field they had a special problem which
they could not possibly understand. I told them that if they cared to open the door to the next room -- it was not

locked! -- just this special problem had been solved half a year ago, and if they injected the solution into their own

field, this would take a great leap forward. Often they were not at all happy for this suggestion, probably because of
the syndrome which Roederer has discussed, but when faced with "tearing down the disciplinary barriers" within

the laboratory they realized how important such action is for progress (cf. Section II.D). This may be considered a

mild case of the Roederer syndrome.

Such an example from the microscale structure of science supports Roederer's general views, but examples

from the macroscale structure are much more important. Large parts of this lecture have been a series of examples of
the malady which Roederer describes.

The lack of contact between Birkeland's and Langmuir's experimental-theoretical approach on the one hand

and the Chapman-Cowling mathematical-theoretical approach on the other had delayed progress in cosmic plasma

physics by perhaps halfa century. The many new concepts which came with the space age begin to be understood by

magnetospheric physicists but have not yet reached the textbooks in astrophysics, a delay of one or two decades,

often more as seen in the preceding section. Very few if any deny that (at least by volume) more than 99 percent of

the Universe consists of plasma but students in astrophysics are kept ignorant even of the existence of important
plasma phenomena like those listed in Table I.

Dr. Roederer's prescription for curing this serious disease is "tearing down disciplinary barriers," indeed

"interdisciplinarification" of science. This seems to be wise. However, we must suspect that to many astrophysi-

cists this is bitter medicine. Can we find ways to sweeten it?
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Figure 3. Dualism in plasma physics (cf. CP, 1.3).
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OTHER SYMBOLS

IF INDUCTANCE IS DISTRIBUTED L SHOULD ,3E REPLACED

BY TRANSMISSION LINE.

MAGNETIZED CELESTIAL

BODY ACTING AS

HOMOPOLAR INDUCTOR I I

Figure 4. (Upper) In certain cases, e.g., if the circuit has large dimensions, the simple inductance L should be

replaced by a transmission line. (Lower) A rotating magnetized celestial body often acts as a homopolar inductor.
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Figure 8. Heliospheric circuit. The Sun acts as a unipolar inductor (A) producing a current which goes outward

along both the axes (B2) and inward in the equatorial plane C_ and along the magnetic field lines B,. The current

must close at large distances (B3), either as a homogeneous current layer, or-- more likely -- as a pinched current.

Analogous to the auroral circuit, there may be double layers which should be located symmetrically at the Sun's

axes. Such double layers have not yet been discovered.
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GALAXY ACTING

rI AS UNtPOLAR
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a) b)

Figure 9. Galactic Circuit. (a) Observed radio emission of Cygnus A (by Hargrave and Rylej1974) is attributed to
synchrotron emission by electrons accelerated in the double layer. (b) The heliospheric circuit is scaled up by a

factor 10 9 and the Sun replaced by a galaxy located almost exactly between the radio sources (cf. CP, III.4.4).
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Figure 10. Prominence-solar flare circuit. Whirling motions in the photosphere act as a generator, feeding energy

into the circuit (which is similar to Figure 1). The circuit energy can be released either as a solar flare produced by an

exploding double layer and/or as a kinetic energy in a rising prominence.
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Figure 11. Bostr6m (1974) has given a summary of his theory of magnetic substorms in the form of a circuit. Solar

wind energy produces a cross-tail current in the neutral sheet. The arrow indicates that this current can give rise to a

very large voltage. (In our terminology, it should be replaced by the DL symbol.) This causes the circuit energy to

be discharged over the ionosphere, where it is observed as a magnetic substorm. At substorm onset, the resistance of

the neutral sheet increases because a DL is produced and the tail current is redirected to the ionosphere.
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TABLE I. CURRENT TEXTBOOKS DEALING WITH DOUBLE LAYERS

AND RELATED PHENOMENA*

Double Critical Pinch

Layers Velocity Effect Circuits

Astrophysical Concepts

M. Harwit, 1973 (New York: John Wiley & Sons)

Theoretical Astrophysics

Ambartsumian, 1958 (New York: Pergamon Press)

Astrophysics: The Atmospheres of the Sun and Stars

L. H. Aller, 1963 (New York: The Ronalet Press)

Plasma Astrophysics

Kaplan and Tystovich, 1973 (New York: Pergamon Press)

Astrophysics and Space Science

A. J. McMahon, 1964 (Englewood Cliffs, N J: Prentice-Hall)

Plasma Astrophysics, Vol. 2 X
D. B. Melrose, 1980 (New York: Gordon and Breach, Science Publ.)

Astrophysics and Stellar Astronomy

T. L. Swihart, 1968 (New York: John Wiley & Sons)

General Astrophysics with Elements of Geophysics

J. S. Stodolkiewiecz, 1973 (New York: Amer. Elsevier Publ.)

Astrophysics

W. K. Rose, 1973 (New York: Holt, Rinehart & Winston, Inc.)

Cosmic Electrodynamics

J. H. Piddington, 1964 (New York: John Wiley & Sons)

Astrophysics I and II

Bowers and Deeming, 1984 (Boston: Jones and Bartlett Publ.)

Solar Flare Magnetohydrodynamics

E. R. Priest, 1982 (Dordrecht, Holland: D. Reidel Publ. Co.)

Physics of the Solar Corona

L. S. Shkloviskii, 1965 (New York: Pergamon Press)

Solar Terrestrial Physics

S. I. Akasofu and S. Chapman, 1972 (London: Oxford University Press) _

Introduction to Space Science

Haymes, 1971 (New York: John Wiley & Sons)

Introduction to the Physics of Space

Rossi and Albert, 1970 (New York: McGraw-Hill Book Co.)

Physics of Magnetospheric Substorms
S. I. Akasofu, 1977 (Dordrecht, Holland: D. Reidel Publ. Co.) X

* X means that the field of research is at least mentioned. Blank squares mean that the student is kept ignorant of the fact that such a
field exists.
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I. DOUBLE LAYERS IN THE LABORATORY
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FORMATION MECHANISMS OF LABORATORY DOUBLE LAYERS

Chung Chan

Center for Electromagnetics Research
and

Department of Electrical and Computer Engineering

Northeastern University
Boston, Massachusetts 02115, U.S.A.

ABSTRACT

The evolution processes of double layers have been studied in a series of laboratory experiments. It was

found that the existence of virtual cathode-type potential wells at the electron injection boundary was the dominant

triggering mechanism. The rapid growth of the potential well led to collisionless ion trapping and the establishment

of the necessary trapped ion population. For double layers with small potential drops, collisionless ion trapping

actually induced ion-ion streaming instabilities and the formation of ion phase-space vortices. In this regime, the

system often exhibited relaxation-type oscillations which corresponded to the disruption and the recovery of the
double layers.

I. INTRODUCTION

Much of our recent understanding of double layers has come from laboratory experiments and numerical

simulations which had rather limited system dimensions. The system boundaries are often in close proximity with

the double layer electric field, thus affecting almost all aspects of double layer physics. The situation is obviously

different in space plasmas where boundaries are not well defined and often far away from the regions of possible

double layer formation. In order to extrapolate the results from laboratory and computer experiments to the space

context, it is important to understand the role of the system boundaries on the formation of double layers.

Most double layers experiments (Quon and Wong, 1976; Leung et al., 1980; Singh and Schunk, 1983;
Iizuka et al., 1979; Saeki, et al., 1980) have utilized the injection of a drifting electron species to trigger the forma-

tion process. It was found that a necessary condition for double layer formation is that the electron drift velocity vd

exceed the thermal velocity Vteof the ambient electrons. This condition results in the belief that the Buneman in-
stability with an instability threshold of vd/> vie was the triggering mechanism for double layers. However, double

layers with potential drops _ > Te/e, the electron temperature divided by the electron charge, have been observed

(Hollenstein et al., 1980) experimentally with vd as small as 0.2 vte. Ion-acoustic turbulence instead of the Buneman

instability was expected to be the triggering mechanism for double layer formation in that experiment.

Numerical simulation (Sato and Okuda, 1980) of double layers with Vd _<Viehave found different results. No

double layers with qb> Te/e were found. Rather, a new class of double layers with non-montonic potential profiles

and _b_< TJe was found. These double layers were always preceded by negative potential pulses and associated with

current-driven, ion-acoustic turbulence. As such, these double layers have been identified as "ion acoustic" in order

to distinguish them from the conventional double layers. Since an electron drift velocity of vo >vte may not exist in

space (e.g., the auroral plasma), the ion-acoustic double layers have also become a subject of considerable interest.

In this talk, we will discuss previous (Hershkowitz et al., 1981 ) as well as new experimental results in order

to identify the formation mechanism of double layers in our triple plasma device. We begin with the roles of the
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boundaries on the steady state characteristics of double layers. It is shown that the drifting electrons provide the

initial space charge for double layer formation, while the trapped ions determine the evolution process and the shape

of the potential profile. It is also shown that the growth of virtual cathode-type potential wells at the electron injec-
tion boundary is the triggering mechanism for double layers. Collisionless ion trapping by the potential well is

found to be the main process for the establishment of the necessary trapped ion population.

Furthermore, double layers with ¢ <_ TJe are shown to be unstable to the evolution of ion phase-space

vortices from ion-ion streaming instabilities. In this regime, the double layer potential profile has a strong resem-

blance to ion-acoustic double layers. This result may represent an alternative explanation of the small electric field

signatures observed in the auroral plasma.

II. STEADY STATE EXPERIMENT

It is useful to first describe the operational characteristics of the triple plasma device in order to get some

insights into the sources of particles that support the double layer. The triple plasma device consists of two source

plasmas bounding a target plasma. Each source is separated from the target chamber by two grids. Plasma potential

in each chamber is determined by the bias voltages of the grid and the internal anode. The source plasmas are created
by filament discharge in argon gas (operating pressure Po _< 1 x 10-4Torr) with density ns = l0 9_ 101° cm -3 and Te

2 eV. The ionizing electrons are trapped by surface multidipole magnetic fields in the region closed to the fila-

ments so that they cannot reach the target chamber and produce plasma there directly. We have also confined our

study on double layers with qb_< 10 V. These procedures ensure that ionization effects are minimized in our double

layer experiment. A schematic of the triple plasma device is shown in Figure 1.

Stable double layers with ¢ _< 5 TJe can routinely be achieved using the boundary conditions shown in

Figure 2. We chose to investigate these smaller double layers in order to limit the accelerated electron beam energy

to below the ionization potential of argon. From the boundary conditions shown in Figure 2, we expect ions to only

come from the high potential source. These ions are usually pre-accelerated into the target chamber by the potential

difference between the high potential source plasma and the target plasma. These ions are further accelerated by the

double layer into the low potential side. These beam ions either exit the target chamber at the left boundary or they
charge exchange with neutrals and form cold ions (Ti -- 0.3 eV). The cold ions, once formed, are confined electro-

statically by the potentials of grids B and C. Although the charge exchange reaction rate is relatively low at our

operating neutral pressure, the cold ion density accumulates to a significant fraction of the beam ion density due to

their long confinement times.

Electrons which enter the target chamber from the high potential source are those in the tail of the Maxwel-

lian source distribution function. These electrons have almost no drift energy, thus becoming the thermal electron

species in the target plasma. This contrasts with the situation at the low potential end. There the tail of the source

distribution function, which is energetic enough to get over the barrier provided by grid A, is accelerated into the

target plasma. This results in an electron drift with the drift energy determined by the potential difference between
grid A and the target plasma.

The boundary conditions in this experiment are believed to play the following roles:

1. The high potential side boundary ensures that the ions will enter the target chamber with a flow velocity

uo > Cs. This situation is quite similar to that of a sheath at a plasma boundary. Downward curvature of the plasma
potential requires an ion drift velocity uo > C_. Since the high potential side electrons can be treated as approxi-

mately isothermal, the "Bohm sheath criteria" applies in this case for the double layer as well.
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2. Grid B acts as a potential barrier for the low potential source ions as well as for the charge exchange cold

ions which formed between the double layer and grid B. Since the height of the potential barrier of grid B is roughly

20 times the ion temperature (T_ _ 0.3 eV), no low potential source ions are expected to enter the target chamber. On

the other hand, the high potential source ions are at a much higher energy than grid B and can exit through grid B into
the low potential source. As such the only source of thermal ions in the target plasma appears to be that of the charge

exchange ions.

3. The low potential side boundary allows only electrons to drift in from the left. Such excess electron

space charge may be neutralized only by the ion beam and the charge exchange ions.

4. There is no externally applied electric field across the target plasma since grids B and C are at roughly the
t

same potential. The formation of double layers is a result of the particle flow rather than that of an external electric
field.

Using the experimental boundary conditions and the particle distributions at the sources, it is possible to

determine the potential profile across the target chamber by solving the Vlasov-Poisson equations. The details of

such calculations have been described in an earlier paper (Hershkowitz et al., 1981) and will not be repeated here.

Rather we will point out some results which are relevant to our present discussion. A typical solution of the target

plasma potential profile and the boundary conditions employed is shown in Figure 3. The model has grid potentials

similar to those shown in Figure 2. The double layer is formed in the region Xe _<x _<XRwhere _b(xe) = 0 and _b(XR)

-----Do- Using the dimensionless variable 0 = e_b/Te, the density of the free ions n_fand trapped electrons net entering

from the high potential source are, respectively:

N (Te/Ti)(_k2-_) T/' "

nif(qJ) =_-e erfc J_i'i" (_02 - _)
(1)

and

net (_) = N e(_'-ff2) (1 - erfc _x/'_- _A ) (2)

The density of the free electrons entering from the low potential source is:

N _k-¢, 1 erfcv _ (3)nef (_k) =-_ e - _A

where 0t, t_2 and I_A are, respectively, the low potential source, high potential source, and grid A potentials norma-

lized to the electron temperature. Both source particles are assumed to be Maxwellian distributed with equal density
N.
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Thedensityof thechargeexchangeionscannotbecalculatedfromtheboundaryconditions,thusit canbe
treatedasavariableor:

nit (0) =/3ne(0) e-(Te/Ti)0
(4)

and

nif (0)
/3= 1-_

n e (0)

(5)

[3is a parameter which depends on the density ratio of the trapped ions to the beam ions and ne(0) is the total electron

density at t_ -- 0.

We show the dependence of the double layer on the trapped ion density with [3 varying from 0 to 0.35 in

Figure 4. As the trapped ion density increases, the double layer becomes more detached from the low potential side

boundary. Since [3 = 0.35 corresponds closely to the potential profile in the experiment, it is possible that a signifi-

cant amount of charge exchange ions are trapped by the double layer at the low potential side; i.e., [3 = 0.35

corresponds to a trapped ion/beam ion density ratio of 54 percent. The trapped ions neutralize the excess negative

space charge created by the drifting electrons, thus maintaining a uniform plasma potential at the low potential

region of the double layer.

The contributions of the various particle species on the double layer space charge are shown clearly in

Figures 5a and 5b where the charge density profile and particle density profiles are plotted versus axial distance. As

discussed earlier, the ion beam provides the positive charge density for the downward curvature of the double layer

at the high potential side, while the drifting electrons supply the negative charge density for the upward curvature of

the double layer at the low potential side.

III. THE FORMATION MECHANISM

In order to understand the triggering mechanism for the double layers in our experiment, we examine the

temporal evolution of the target plasma potential profile with VD_< Vteand VD> Vte- An extra grid is installed at the
low potential side to facilitate the pulsing of the drifting electrons. The boundary conditions for this experiment are

shown in Figure 6. A steady state target plasma with ne _ 10 7 cm -3 is extracted from the high side source, and the

target plasma potential is quite uniform axially with _bT = 4 V. Low side source electrons and ions are normally

excluded from the target plasma by the potential barriers of grid B (biased at -30 V) and grid C (biased at + 12 V),

respectively.
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At timet = 0, gridB isswitchedto thegroundpotentialandthelowsidesourceelectronsareaccelerated
intothetargetplasmabythepotentialdifferencebetweenqbTandground,i.e.,

vD _ Vte (6)

Whentheun-neutralizedelectronstreamentersthetargetplasma,theentiretargetpotentialdecreasesrapidlyfrom4
to 3 V in 10txswhichresultsin VD= 1.2Vte.Thetemporalevolutionof thetargetplasmapotentialprofiles,as
obtainedwithanemissiveprobeusingBoxcarinterferometeraveragingtechnique,isshowninFigure7.A potential
wellbeginstoformneartheelectroninjectionboundaryatt = 50I_s.Thepotentialwellgrowsdeeperandwidens
intoadoublelayeratt > 400Ixs.Theamplitudeofthedoublelayeris_b= 1.1Te/e and appears to be quite stable.
This result can be interpreted as follows.

Electron injection from the low side source creates excess space charge at the injection boundary, and a

virtual cathode-type potential well is formed to limit the injected current. The growth of the potential well is accom-

panied by ion trapping in the potential well. As the density of the trapped ions increases, the double layer becomes

detached from the electron injection boundary, in agreement with our earlier result on the effects of trapped ions (see
Figure 3). Notice the double layer formation time of TOE _<400 IXSis considerably shorter than the charge exchange

time of Tcx _ 1 ms in this experiment. At such, the trapped ion population cannot come entirely from the charge

exchange ions which fall into the potential well. A more possible source is the neighborhood ions which fall into the

well during its growing phase. These ions will actually get accelerated down the potential well with energies

depending on their locations in the potential well.

We further decrease the drift velocity of the injected electrons by decreasing the target plasma potential to qbT

_--3 V. When the un-neutralized electron stream enters the target plasma, qbTdecreases from 3 to 1.5 V in 10 Ixs. As

shown in Figure 8, a potential well is once again formed near the electron injection boundary at t = 50 p,s when VD
0.7 Vte. At t > 75 I_s, a small double layer with qb _- 0.5 TJe has formed. However, in contrast with the earlier

experiment, the double layer decays into an ion hole-like potential well. Note the similarity between the potential
profile at t = 150 Ixs and an ion-acoustic double layer.

The time history of the plasma potential (_bu) at an axial distance of x = 10 cm, the electron current flow

across the target chamber from the low potential source (IeH), and the ion saturation current (IlL) at x = 15 cm are

shown in Figure 9 in order to illustrate the double layer formation processes. At t > 50 p.s, _bT = 1 V, and VD _ 0.7

Vt_, the growth of the potential well corresponds to the abrupt decrease of _bu. On the other hand, I_n continues to

increase due to the injected electron current until +L becomes negative where IeH begins to decrease rapidly. As +u

reaches a minimum at -1.0 V, I_n returns almost to the level at t < 0. +L subsequently becomes slightly more

positive, and an intense low frequency noise appears in I_Lwhich corresponds to the evolution of the ion hole-like
pulse.

A similar evolution process is observed when we increase VDjust slightly. As shown in Figure 10, the double

layer breaks into one or more ion hole-like pulses. The long time history of this experiment is shown in Figure 11.

The ion saturation current exhibits relaxation-type oscillations in time with a period roughly characterized by the

transit time of the ion hole-like pulses across the target plasma. The relaxation oscillation corresponds to the evolu-

tion of the double layer from virtual cathode potential well and the subsequent decay into ion hole-like pulses. When
the pulses reach the high side boundary (e.g., the ion-hole velocity is the order of the ion thermal velocity), the

process repeats itself.
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Thebreakingofthedoublelayerintotheionhole-likepulsescanbeunderstoodasfollows.Themagnitude
of thevirtualcathodepotentialwell+wis formedtolimit theinjectedcurrent.Sincethepotentialwellmustbecome
apotentialbarriertotheinjectedelectronsinordertolimitthecurrent,_bw--- (vUvte) 2 Te/e. The potential drop of the
double layer _b _ _bw;also, we have _b = (Vo/Vte)2 TJe.

As shown in Figure 9c, the injected current IeH and VD are reduced to very small values as a result of the

formation of the double layer. We believe the growth of the potential well and the double layer formation also

triggered bursts of counterstreaming ions which are accelerated down each side of the potential well with an average

velocity:

(7)

This results in a counterstreaming or "tuning fork" ion phase space configuration at the double layer front.

As reported in many numerical and experimental studies (P6cseli and Trulsen, 1984; Chan et at., 1984) of ion-
acoustic shocks and ion holes, the ion-ion two-stream region becomes unstable when Vb_< Cs and evolves into one or

more ion phase-space vortices.

As we have observed double layer formation with vo <_ vt_, it is doubtful that the Buneman instability plays

any roles in triggering the formation of double layers in these experiments. When Vo < vt_, no steady double layer

exists as a result of the ion two-stream instability and the evolution of ion phase-space vortices.

IV. DISCUSSION

We have reviewed results from a series of laboratory experiments concerning the formation of double layers

in a triple plasma device. In steady state, the double layer electric field is sustained by the negative space charge of

the drifting electrons and the positive space charge of the ion beam. The low potential boundary condition permits

the injection of an un-neutralized electron species which space charge is crucial for the initiation of the virtual

cathode potential well. The ion reflecting grid (grid B in Fig. 2) plays two roles; first, to prevent the low potential

source ions from entering the double layer and second, to confine the charge exchange cold ions in the low potential
side of the double layer. The charge exchange (trapped) ions are needed to neutralize part of the drifting electrons,

thus allowing the double layer to move away from the low potential boundary.

The formation phase of the double layers is associated with the growth of virtual cathode-type potential

wells at the electron injection boundary. The formation of the virtual cathode potential well is a result of the lack of

neutralizing ions at the electron injection boundary. As long as the injected electron density is sufficiently high, the

potential well will form independent Of VDand it need not be associated with instabilities. We have clearly shown the

formation of double layers with VD < Vt_ which is below the threshold of the Buneman instability.

The movement of the double layer electric field away from the electron injection boundary is probably
caused by the accumulation of the trapped ion density at the low potential side of the double layer as demonstrated

by Figure 3. Since the double layer formation time is much shorter than the charge exchange time, the source of

trapped ions is more likely coming from ions in the neighborhood of the potential well during the growth of the well.

As such, these ions are accelerated down the potential well with a maximum velocity of:
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< C
Vb = s

(8)

When the magnitude of the potential well _bw< Te/e, the ions become two stream unstable because Vb < Cs. As

such, the double layer decays into ion phase space vortices with potential structures that resemble ion acoustic

double layers. This situation is similar to the auroral plasma condition where small electric signatures (Temerin et
al., 1982) are often observed along with counterstreaming ions.

For the case of Vo > vie, the depth of the potential well +w > Te/e and results in a stable double layer

formation. For the stable double layers, the charge exchange ions will be the main fueling source for the trapped ion

population in steady state. In that case, the main loss mechanism for the trapped ions is radial diffusion to the side
walls.
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SOME DYNAMICAL PROPERTIES OF VERY STRONG DOUBLE LAYERS
IN A TRIPLE PLASMA DEVICE

T. Carpenter

Department of Physics

University of Iowa

Iowa City, Iowa 52242, U.S.A.

N87-23315

and

S. Torv6n

Department of Plasma Physics, Royal Inst. of Technology, Stockholm, Sweden

I. INTRODUCTION

Since double layers observed in space and in simulations are rarely if every static, considerable attention has

been given to studies of motions of double layers in the laboratory. Extensive reviews have recently been published

of the dynamical properties of very strong double layers (eV/kTe - 1000) in a Q machine (Sato et al., 1983; Iizuka
et al., 1983) and strong double layers (eV/kTe - 10) in a triple plasma device (Hershkowitz, 1985). In both cases

the double layers were essentially planar. We report here on some of the dynamical properties of very strong double

layers (eV/kT_ -- 200) seen in a differentially pumped triple plasma device (Torv6n, 1982). These double layers are
V-shaped. In particular, we discuss the following findings: (1) Disruptions in the double layer potential and in the

plasma current occur when an inductance is placed in series with the bias supply between the sources in the external

circuit. These disruptions, which can be highly periodic, are the result of a negative resistance region that occurs in

the I-V characteristic of the device. This negative resistance is due to a potential minimum which occurs in the low

potential region of the double layer, and this minimum can be explained as the self-consistent potential required to

maintain charge neutrality in this region. (2) When reactances in the circuit are minimized, the double layer exhibits

a jitter motion in position approximately equal to the double layer thickness. The speed of the motion is approxi-

mately constant and is on the order of 2 times the ion-sound speed. The shape of the double layer does not change
significantly during this motion. (3) When the bias between the sources is rapidly turned on, the initial phase in the

double layer formation is the occurrence of a constant electric field (uniform slope of the potential) for the first few

microseconds. The potential then steepens in the region where the double layer will eventually be formed and

flattens in regions above and below this. The double layer is completely formed after about 100 microseconds and

then engages in the jitter motion discussed above.

In the following we discuss first the apparatus used in all of the work and then consider each of the three

phenomena mentioned above. In the first case it is believed that the phenomenon is rather completely understood

and the situation is discussed at some length. The same cannot be said for the last two cases and limited discussion is

included. However, these two phenomena have characteristics which differ qualitatively from what is seen in Q
machines and these differences are identified.

II. EXPERIMENTAL DETAILS

The experiment was performed in a triple plasma device (Torv6n, 1982) consisting of a central chamber

with coaxial plasma sources located on either side as shown in Figure 1. Plasma was produced in the sources by

discharges in argon between heated tungsten filaments and the source chamber walls. The electrodes B 1 and B2 can
also be used as anodes; but, for the present investigation, they were left floating. They, therefore, acquired poten-

tials approximately equal to the respective filament potentials. The sources were independent in the sense that

PRECEDING PAGE BLANK NOT FILMF...D 55



discharge voltages and currents and gas flow rates could be varied independently in either source with unmeasurably
small effects on the plasma parameters in the other source. The potential between the anodes of the two sources was

determined by Uo, which was also taken as the difference in the plasma potentials in the sources. This assumption

was tested several times during the course of the experiments using collecting probes in the sources to measure the

potentials there and was found to be satisfied within the accuracy with which the potentials could be determined

from the probe characteristics, or about -+0.5 volt, over a variation of Uo by more than 200 volts. Plasma diffused
into the central chamber from the sources through apertures A1 and A2 in the end plates of the central chamber.

These apertures determined the diameter of the plasma column (3.0 cm) which was radially confined by a homogen-

eous magnetic field of up to 20 mT. Because of the small diameter of the apertures compared to the diffusion pump

(25 cm), it was possible to maintain sufficient pressure in the sources for their proper operation (10 to 100 mPa)

while restricting the pressure in the central chamber to about 1 mPa, thereby minimizing the importance of

ionizing processes in the chamber. It is this property that allows the production of very strong double layers (poten-

tial drops up to 3 kV) in this device (Torvrn, 1982).

Electric potentials were measured with electron emitting probes which could be moved both radially and

axially with electric motors. For low frequency measurements (from d.c. up to about 10 kHz), the probes were
operated essentially at their floating potential, which was measured using 100 mohm frequency-compensated volt-

age dividers. For a.c. signals which are not too large (cf. Torvrn et al., 1985), the frequency response of the probe is

determined by the product of the dynamic resistance of the plasma near the floating potential and the distributed

capacitance of the probe and its heating circuit. This capacitance (about 100 pf) is dominated by the capacitance to

ground of the feed wires to the movable probe inside the vacuum chamber. The dynamic resistance of the plasma,

defined as the reciprocal of the slope of the probe characteristic, depends on the plasma density and the probe wire

temperature. For the present experiment it was on the order of 10 kohm.

III. DISRUPTIONS WITH AN INDUCTIVE EXTERNAL CIRCUIT

When an inductor of sufficient size is placed in series with the bias source Uo, it is observed that periodic

disruptions of the plasma current and of the double layer potential occur. These disruptions have been previously

reported in detail (Torv6n et al., 1985) and we review here only those aspects pertinent to the present work.

Figure 2 shows an example of the disruptions when the inductance was 0.1 Hy. The top oscilloscope trace

shows that the potential measured on the positive source varied from zero to 400 volts. For these runs Uo was 100

volts so there was a 300-volt inductive overvoltage. This overvoltage was given exactly by L dI/dt, where I is the

current flowing through the inductor. This current is shown by the bottom trace in Figure 2. The other traces are of

potentials measured by probes at fixed positions in the plasma and show that the potential drop does occur over a

limited spatial region, that is, in a double layer.

The disruptions are thus seen to be completely explained in terms of variations in the plasma current. The

plasma current, in turn, is controlled by the potential structure between the two sources. Figure 3 shows the potential
measured in the low potential region for various times during the disruption cycle. There is clearly qualitative

agreement between the minimum value of the potential, which should be the only feature of the potential structure
that influences the plasma current, and the plasma current. To test the quantitative sufficiency of this mechanism, a

series of experiments were performed with the inductance removed and with Uo varied slowly over the voltage range
of interest. Preliminary reports of these results have appeared (Carpenter and Torv6n, 1984; Carpenter et al., 1984),

and a detailed account will appear (Carpenter and Torv6n, 1986), but we will review the pertinent results here.
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ToobtainI-V characteristicsofthedevice,thepotentialUobetweenthesourceswasslowlyvaried,eitherby
handorbyusingafunctiongeneratortocontrolthepowersupplywithvoltage-controlprogramming,andtheresult-
ingplasmacurrentmeasuredusingprecision1ohmshunts.ThedataweretakenusingacalibratedX-Y plotter,ora
calibratedtwo-parametertransientdigitizer.Theemittingprobeswereusedtomeasurebothaxialandradialpoten-
tial profilesfor differentvaluesof Uo.Anexampleof theaxialpotentialstructureobservedbetweenthesourcesis
showninFigure4. ForthesedataU0was150volts.A minimuminthepotentialisclearlyseenatabout15cmfrom
theleft aperture.Thattheminimumis in factquitewelldefinedisseenmoreclearlywith theexpandedscale.The
magnitudeoftheminimumpotential,Vm,wasdeterminedfor valuesof U0betweenzeroand200volts.Fordetails
of howthiswasaccomplishedseeCarpenterandTorv6n(1986).Anexampleof suchameasurementisshowninthe
lowerhalf of Figure5. ThecorrespondingI-V characteristicis shownasthesolidcurvein theupperhalfof this
figure.

Thepurposeof thesemeasurements,asmentionedabove,wasto testwhetherornotthevariationsinVm
couldquantitativelyexplainthevariationsin theplasmacurrent.Forpurposesof thisdiscussion,consideronlythe
casewheretherightsourceisbiasedpositivewithrespecttotheleftsource.Plasmafrombothsourcesdiffusesinto
thecentralchamber.Sinceapotentialminimumexistsbetweenthesources,theionflowwill notbeaffected,butthe
electroncurrentbetweenthesourceswill bereducedbecauseof reflectionof electronsfrombothsourcesbyan
amountthatdependsonlyonthedifferencesbetweentheminimumpotentialVmandtheplasmapotentialsin the
sources.Thesepotentialdifferencescanbeobtainedfromthedata,andtheI-V characteristicscanaccordinglybe
calculatedif theelectrondistributionfunctionsareknown.

Assumethattheplasmasin thesourcesareMaxwellianwithtemperaturesTp and T. and densities np and nn,

where the subscripts p and n refer to the positive and negative sources, respectively. These symbols refer to the

electrons only. (Ion currents can be easily included, but they contribute much less than 1 percent of the total current

and so are ignored in order to simplify the notation.) Then the distribution function at a point where the potential is
V(x) is generally given by

[ 2m _ ½ [ my2 e(V0 - V(x)) 1

f(x,v) = no _-_--_--] exp L 2kT -_,17 ...1_ for a < v < oo (1)

= 0 for velocities outside this range

Here no is the plasma density at a point where the potential is V0, e is the magnitude of the electronic charge, m is the

electron mass, and k is the Boltzman constant. The lower velocity limit a is negative for points between the source

and the minimum, since reflected electrons exist in this region, and positive for points beyond the minimum. It is

exactly zero at the minimum, so the lower limit is the velocity such that the energy, which is constant, is just equal to
Vm. Thus,

I rolla = -+ (x) - V (2)

The current is of course independent of the point x where it is evaluated. However, it is convenient to evaluate the
contributions to the total current from each source at the position of the potential minimum, since at this point the

distribution functions take on their simplest forms. The result is

i=Ael_2k_/" Vn-Vm_ C Vp-Vm_l
|\_'me'-"-'] InnTen½exp( - k--'Te---n_/-npTep½exp_k- ]_'_pp "/]

-,-C v .;vq]I
(3)
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HereVpandV, aretheplasmapotentialsin thesourcesandtheotherquantitieshavebeendefinedpreviously.Asthe
appliedvoltageUoisincreased,thecurrentincreasesatfirstbecauseof thedecreaseinthemagnitudeofthesecond
term.Thatis, VpapproximatelyfollowsU0andVnstaysapproximatelyatground.AfterU0increasesto several
timeskTp,thesecondtermwill becomenegligible,andfurtherchangesin I canonlyoccurif Vmchangesrelativeto
g n .

In order to test the sufficiency of this picture, we have used the measured variation of Vm with U0 and

determined the values of the temperatures and densities that best fit the data with equation (3). That is, the value of

Vm observed at Uo = Vp- V_ is used in equation (3) to calculate I_t and the results compared with the corresponding
observed currents Iex p. The parameters in equation (3) are varied in order to minimize the sum

_0 =Z (Iexp - Ifit)2 (4)

The result of a typical fit is shown by the dashed line in the upper part of Figure 5. The main features of the

data are certainly rather well explained. However, the temperatures that give acceptable fits are larger than those

observed with probes in the sources. For example, the temperatures that give the fit shown in Figure 5 are 12.3 eV
for the left source and 2 I. 5 eV for the right source. Measured values for the temperatures were about 8 eV in both

sources. However, the probe characteristics showed high energy tails of the type usually seen in discharge sources

corresponding to a significant population of ionizing electrons. If distributions corresponding to such electrons

were included in the model, the best-fit temperatures of the Maxwellian populations would certainly be reduced.
However, the number of parameters to be fit would be doubled, thereby reducing the significance of the small

improvement in the fit that might be expected. It is felt that the appropriateness of the model has been adequately
demonstrated without this refinement. Data were taken and fits performed in the manner described for 12 different

combinations of source parameters, such that the plasma density in both sources varied by an order of magnitude.

No unusual characteristics were observed and the fits obtained were in all cases comparable to that described above.

The model can also be used to provide some insight into the role of the potential minimum and its behavior.

The basic feature of the region of space below the double layer is its charge neutrality. That is, even though there are

variations in the potential here, they occur over many hundreds, even thousands, of Debye lengths, so the departure
of the ratio of electron-to-ion densities from unity is expected to be vanishingly small. Therefore, since the electron

and ion charge densities depend in different ways on the voltage applied between the sources, some self-adjusting

potential is needed between the sources in order to keep the region quasineutral. Mathematically, the requirement
that the net charge density at the minimum be zero will insure quasineutrality over a broad region near this point.

The electron densities were obtained by integrating the distribution functions given in equation (1) over the

appropriate velocity intervals. The ion densities were obtained in a similar way. The form of the distribution func-
tions was the same, but the velocity intervals were different since the ions were accelerated from the sources. The

equation giving zero net charge at the minimum is

Vp - V m .__ - V m

nepeXp( - Tep ]+neneXp(-VnT--_nm" ) =nifexp(VPTi p )

X [l_erf( VP_-'_)]+nin (Vn-Vm'_
_/ Ti p exp_ ;r_.n ]

[1 (__ erf ( _'2-_ _]
X + erf _q Ti n ] - 2 _/ Tin ]J ,

(5)
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wherethenewsubscriptsi andereferto the ions and electrons. This equation was solved by simply stepping Wm, in

successively smaller steps each time zero was crossed, until the step size was smaller than the accuracy desired. The

results are sensitive to the ion temperatures, about which we have little experimental information. Examples show-

ing how Vm varies as Uo = Vp-V, is changed are shown in Figure 6 for three different sets of ion temperatures. The

plasma parameters used were typical of those observed experimentally in the two sources. It seems clear that a rather

good fit to the experimental curve of Vm versus Uo could be obtained by adjusting the ion parameters, with possibly

some small adjustment of the electron parameters, but in view of the number of parameters involved and the fact that

the charge exchange ions have been neglected, such an effort hardly appears justified. However, the agreement with
the data of the trends shown in Figure 6 provides some confidence in the following explanation: As Uo is first

increased, the biggest change is the reduction in the number of electrons reaching the minimum region from the

positive source. To compensate, the minimum becomes less negative so more electrons from the negative source are
admitted. This continues until all electrons from the positive source are reflected. Competing with this effect is the

reduction of ion density from the positive source due to increasing ion velocity as Uo increases and when the
electrons are eliminated, this effect becomes dominant. Thus, the minimum increases in depth to reduce the flow of

electrons from the negative source. It is exactly this last process that gives rise to the negative resistance region

according to this model.

The main features of the variation of V m with Uo are obviously rather well explained by these considerations,

at least for cases where Uo varies slowly with time. Thus, the negative-resistance region in the I-V characteristic is

explained, and it can be said that the low frequency disruptions are understood. It should be emphasized that in order

to observe disruptions of low enough frequency that this explanation applies without modification, additional

lumped capacitance must be added in parallel with the distributed capacitance between the sources (Carpenter et al.,
1984). At higher frequencies ion-transit times become significant and there is some delay in the charge neutrality

condition that can be expected to affect Vm. Although these effects have not been included, it seems clear that

careful consideration of the potential structure in the low potential region must be included in any complete theory of

double layers.

IV. JITTER MOTION

When the potential indicated by the emissive probe is monitored by a device capable of following high

frequency variations, such as an oscilloscope, it is observed that the signal fluctuates wildly when the probe is in the

vicinity of the double layer. Observations as the probe moves through the double layer lead quickly to the conclu-

sion that the fluctuations are due to the random motion of the entire potential structure around its equilibrium posi-

tion. The effect is shown in Figure 7. These data were recorded by plotting single sweeps obtained with a transient

digitizer on the same graph. Also shown is an overlay of the double layer obtained with an X-Y plotter during this

run. The sweeps were obtained with the probe fixed at the three positions marked A, B, and C on the double layer.

For all three sets of sweeps, horizontal lines are shown that correspond to the variation in potential which results

when the double layer makes an excursion with a total extent of 1.2 cm centered at each of the three points. Clearly

the various amplitudes of the fluctuations which are observed as the probe moves through the double layer are all

explained by movements of the structure by a constant amount. Also evident in these data are regions where the

potential changes with a constant slope for several microseconds. The velocity of the structure is apparently con-
stant during these times. Since the double layer provides a convenient conversion factor -- distance required for a

given potential change -- the velocity of the motion can be determined if we can determine the change in shape of

the double layer (the calibration constant) as it undergoes its random motion.

The X-Y plotter provides a potential profile which is time-averaged over the rapid jitter motion. To obtain
instantaneous profiles, a second stationary probe was mounted in the double layer slightly off-axis. The signal from
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thisprobeprovidedatriggerwhichgatedtheoutputof themovingprobeusedto mapthepotentialstructure.The
varyingsignalfromthetriggerprobecorrespondedto varyingpositionsof thestructure.Thus,differentdouble
layerpositionscouldbeselectedbychoosingdifferenttriggerlevels.Dataobtainedwith threedifferentlevelsare
showninFigure8. If anyofthecurvesisdisplacedhorizontally,it isseentocloselyoverlaptheothertwocurves.
Weconcludethatthedoublelayermoveswith little, if any,changeinshape.Anotherinterestingimplicationof this
resultshouldbementioned.Thefactthatdoublelayershapesthathavebeenpreviouslyreportedaretimeaverages
hasbeeninvokedbysomeauthorsto explaintheapparentbroadnessof laboratorydoublelayers.However,the
widthsoftheinstantaneousprofilesreportedhere,definedforexampleasthedistancerequiredforachangefrom10
percentto90percentofthefull height,arenotsignificantlydifferentfromthoseobtainedwithanX-Y plotter.This
is theexpectedresultif thestructurebetweenthe10percentand90percentpointswasastraightline,thevelocity
wasconstant,andthemaximumexcursionwasequalto thedoublelayerwidth,whichseemsto beapproximately
thecase.

ThedatainFigure7indicatethatmotiontowardthenegativesource,correspondingto anincreasingpoten-
tial, occurswith ahighervelocitythanmotiontowardthepositivesource.However,thisapparentdifferenceis
entirelydueto experimentaleffectsassociatedwith thedistributedcapacitanceof theemissivepr()beto ground.
Thiswasfirstsuspectedwhenit wasnoticedthattheapparentdifferencewasreducedwhentheemissiveprobewas
shuntedwith anexternalresistor.Thedistributedcapacitancecaneasilybechargedmorepositivelyby simply
emittingelectrons.However,tobecomemorenegativeit mustcollectelectronsandit hasinsufficientareatodothis
rapidlyenough.Putanotherway,thetimeresponseof theprobeisdeterminedbyitsRCtimeconstant,whereCis
thedistributedcapacitanceandRisthedynamicresistanceoftheplasma,definedasthereciprocaloftheslopeof the
probe'sI-V characteristic.Thedistributedcapacitanceisontheorderof 100pFandthedynamicresistanceof the
probenormallyisontheorderof 10kohms.Thus_RCisontheorderof 1microsecondandtheprobecanrespondto
changeson theorderof 1MHz.However,whentheprobeis collectingelectronsaturationcurrent,whichwould
happenif theplasmapotentialsuddenlydropped,thedynamicresistanceisontheorderof afewmegohms,giving
RCon theorderof atenthof amillisecond.

Inordertoovercomethiseffect,aspecialemissiveprobewasconstructedinwhichtheheatingcircuit,which
contributedalmostallof thedistributedcapacitance,wasmechanicallydisconnectedfromthepotentialmeasuring
circuitduringthemeasurementtime.Thedistributedcapacitanceduringthemeasuringtimewasreducedto 10pF
whichgivesanRCvalueof 10microsecondsevenintheworsecase.Sometracesof thefluctuatingpotentialtaken
withthisprobeareshowninFigure9. Thereis stillaslightdifferencebetweenthemaximumratesof increaseand
decrease,but it is smallenoughthatit canbeexplainedasa residualeffectof thedistributedcapacitanceof the
probe.Thedetailsof thisprobeandafurtherdiscussionof theeffectof distributedcapacitanceonprobemea-
surementswill appearelsewhere(Torv6n,privatecommunication,1986).

Themaximumratesof increaseanddecreaseshownbyoverdrawnlinesinFigure8are36and24voltsper
microsecond,respectively.Thecentralportionofthedoublelayerobservedforthiscasehadaslopeof50voltsper
centimeter.Thus,theindicatedvelocitiesare7.2and4.8 x 105cm/s.Asacomparison,theelectrontemperature
observedfor thisrunwas7 eVsotheion-acousticspeedwas4.1 x 105cm/s.

FluctuationsareobservedalsoindoublelayersformedinQ machines(Iizukaetal., 1983;Satoetal., 1981).
In thecaseof double-endedoperation,themodemostcomparabletothetripleplasmamachine,nearlystationary
doublelayersareobserved.Thefluctuationconsistsof amoreor lessperiodicvariationof theslopeof thedouble
layerwiththekneeatthehighpotentialsideremainingapproximatelyfixed.Thus,thekneeatthelowpotentialside
showsa sortof roughlyperiodicmotionwhichhasbeentermeda"foot-pointoscillation."
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V. INITIAL FORMATION

In order to study the initial formation of the double layer, Uo was replaced by a transistor-switched power

source capable of supplying 100 volts with a rise time on the order of 1 microsecond. Standard boxcar sampling

techniques were then used to measure the potential structure at various times after the bias voltage was switched on.

Typical results are shown in Figure 10. There is a small structure near the low potential source that seems to propa-

gate toward the high potential source, but the striking feature of the potential structure is that at early times the slope

is essentially a constant. As time progresses the slope steepens in the vicinity of the place where the double layer will

eventually form while it flattens in regions above and below this. The structure is nearly formed after 50 microse-

conds and completely formed after 100 microseconds. If one wants to think of the low potential foot-point as propa-

gating toward the high potential source, then its velocity of propagation is about 50 cm in say 100 microseconds or 5
x 105 cm/s, a speed which is somewhat supersonic and which seems to be typical of the propagation velocity of the

double layers in this device.

The initial formation of double layers has also been studied in a double-ended Q machine (Iizuka et al.,

1983). In this work it was observed that immediately following the application of the bias #oltage the potential rose

to the positive source potential over nearly all of the column, forming an ion-rich sheath near the cathode. This

condition persisted for about 100 microseconds, after which the double layer detached itself from the cathode and

propagated, as a completely formed structure, toward its final position. The velocity of propagation was approxi-

mately 3 times the ion-sound speed.

It has been suggested that the motion of laboratory double layers represents a sort of "hunting" for that

position where the Langmuir criterion (the square of the electron-to-ion current ratio equals the ion-to-electron mass
ratio) is satisfied (Iizuka et al., 1983; Torvrn, 1982). The basis for this explanation is that the ion flux at the double

layer should decrease as the length of the high potential region increases because of radial losses of ions along the

part of the column at high potential. It should be expected, then, that the larger these losses are, the smaller should

be the excursions from the equilibrium position. This may explain why the double layers seen with relatively weak

magnetic fields are more stable than those seen in the Q machines. It may also explain the lack of stability of double

layers seen in simulations where the use of periodic boundary conditions at the sides is equivalent to the total

removal of radial ion losses. In order to investigate this question, a systematic investigation should be made of the

motion of double layers as a function of the strength of the magnetic field and the planarity of the plasma column.
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Figure 2. Oscilloscope traces during the disruptions. Probes P1, P2, P3, and P4 were located at 55,
45, 20 and 6 cm from aperture A1. The gain settings and zero levels are different for the various

sweeps and are indicated to the right of each trace.
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Figure 3. Potential structure in the low potential region sampled at various times, indicated by

circles in the inset, during the disruption cycle. The serpentine line shows the timing sequence and

the inset shows the time variation of the plasma current and the positive source potential.
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PUMPING POTENTIAL WELLS
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ABSTRACT

Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady

state plasma potential wells separating regions having different plasma potentials are often found in laboratory
experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge
exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and

fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state

structures are found in which the wells do not fill up. This means that it is important to take into account processes

which "pump" ions from the well. As examples of ion pumping of plasma wells, we consider potential dips in front

of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma. Pumping is
provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case

the two-dimensional character of the problem is shown to be important.

I. INTRODUCTION

A variety of experimental measurements of double layer and double layer related phenomena have demon-

strated the presence of steady state plasma potential dips, at least in one dimension. Experiments range from glow

discharge plasmas (Biborosch et al., 1984), to unmagnetized collisionless laboratory plasmas (Leung et al., 1980),

to Q machine experiments (Sato et al., 1981), to fusion experiments (Hershkowitz, 1984). The general problem

with all such structures is the question -- what prevents the dip from filling up with ions either by charge exchange

or by some kind of scattering? This problem has been identified as a key issue in maintaining "thermal barriers" in

tandem mirrors (Baldwin and Logan, 1979) for which several techniques have been proposed for "pumping" out

trapped ions. The only technique so far tested has been "neutral beam pumping" (Inutake et al., 1985; Grubb et al.,

1984) -- they use charge exchange of trapped ions on energetic neutral beams injected into the thermal barriers.

Although a dip may be present in one-dimensional data, it is not immediately apparent that ions are electro-

statically confined in the dip in the perpendicular dimensions. Many structures have been found to have only
minima in the potential in one dimension, while, in the other dimension the potential might be a relative maximum.

In this case ions are not confined, pumping is not an issue, and potential variations in the perpendicular dimension

can dominate the self-consistent solution to the problem. It is clear that the double layer is the wrong structure upon

which to concentrate. This paper considers the problem of pumping steady state and slowly time varying potential
dips in a multidipole laboratory plasma.

Representative double layers with dip structures that have been previously reported are shown in Figures 1

through 4. The data in Figure 1 (Coakley et al., 1978) were obtained in a triple plasma device for which T_ = 0.2

eV. The various steady state structures were obtained by varying the bias on a boundary grid on the low potential

*On leave from Southwestern Institute of Physics, Leshan, Sichuan, China.
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side. Note that potential dips as deep as 5 V, equal to 25 T_/e_were achieved. For these data the pumping mechanism
was later identified to be ion leaks in the perpendicular dimension. Another example is a discharge tube double layer

shown in Figure 2 (Maciel and Allen, 1984). Examination of the associated radial potential profile also showed that

the potential minimum was a relative maximum in the perpendicular dimension and that ions could again leak out.

While the first two examples are ones for which the ions can easily leak out, the data shown in Figure 3

(Suzuki et al., 1984) give a different situation. In that case a double layer was found at a B field minimum in a

magnetized plasma. Ions trapped in the dip had to cross the magnetic field. In addition it was also found that the dip

was an absolute minimum in potential in the radial direction. As the neutral pressure was incresed to 7 × 10 -6 from

10 -7 Torr, the dip was substantially reduced and eventually disappeared (as seen in Figure 4) (Suzuki et al., 1984).

The pumping mechanism of this dip is not yet understood, but it is possible that instabilities provided wave energy

which energized the trapped ions or that trapped ions were lost to the diagnostic used to determine the dips presence.

II. EXPERIMENTAL RESULTS

Consider the potential near a positively biased plate (Forest and Hershkowitz, 1986). A copper plate, radius

= 3 cm, coated with a ceramic insulator on the back side and support, was introduced into an argon plasma with

plasma density n = 108 cm -3 and electron temperature Te = 3.5 eV. The plate was biased to + 20 V and the chamber

walls were grounded. The plasma was produced in a conventional muitidipole device (Leung et al., 1975).

The plasma potential measured with an emissive probe along the axis of the plate is given in Figure 5. Note

that a potential dip equal to A+ _ 1.7 V is found a distance dM_Nfrom the plate and that the potential far from the

plate is only 3 V compared to the plate bias potential of 20 V.

We have also achieved a similar result (Wang et al., 1986) by looking at the potential on the axis of a set of

parallel plates mounted in the same device. One was grounded and one biased to an oscillating potential at 100 kHz

whose amplitude was approximately 12 V. The resulting plasma potential profiles at the maximum and minimum

part of the cycle are shown in Figure 6. Note that once again a potential dip is also apparent in front of the positively
biased electrode. In this case the backs of the plates were not insulated. The data shown in Figure 6 were taken using

a new technique based on differentiated time-averaged emissive probe I-V characteristics which has been described

elsewhere (Wang et al., 1986).

We can separate the interpretation of the results shown in Figures 5 and 6 into two issues. The first is the dip

characteristics and the second is the question of why the dip does not fill in. Figure 7a shows that the size of the

potential dip in Figure 5 scales linearly with electron temperature and is approximately equal to Te/2. In Figure 7b it

is also shown that the dip separation dM_Nfrom the plate decreases as the plasma density is increased. In Figure 8 we

compare the dip separation to the predictions of the Child-Langmuir law and show that there is good agreement.

This indicates that the self-consistent potential is established to make the electron loss from the plasma consistent

with space charge limited emission as only electrons from the plasma are present near the front of the plate.

The question of why the dip does not fill in requires a look at the two-dimensional equipotential contours for

a somewhat different case (shown in Figure 9) which also exhibits a dip (labeled 16). For that particular case,

contours are apparent (indicated by + 4 _ + 14) which are negative with respect to the potential dip. These were

identified as being associated with a fingerprint on the plate. These suggest that the presence of an insulator on the

surface could provide the necessary ion leaks. A careful examination of the contours near a cleaned plate is given in

Figure 10. The potential dip is still present. Note that the dip contours te ,_inate on the edges of the plate at the

insulator which coats the back of the plate. The pumping is clearly provided by these leaks. Note also that the

contours are quite one-dimensional near the center of the plate and that the radius of the plate is equal to approxi-

mately 30 Debye lengths.
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Weinvestigatedthespatialprofileneartheplateasafunctionof neutralpressureandfoundthatthedipis
reducedastheneutralpressureincreased(asshowninFigure11).Thiscanbeunderstoodastheleaksoutof theend
of thedipsnotbeingableto keepupwith thechargeexchangefilling of thedip.

Webelievethationpumpingisanecessaryconditionforthepresenceof thedip.Wecantestthisconjecture
byremovingthepumpingfromthesystem.Forthestaticcase,weremovedthesourceof thepumping,i.e., the
insulatorfromthebackof theplate.ThisresultedinaverydifferentplasmapotentialaxialprofileshowninFigure
12.ThesedatacorrespondtothesameconditionsasthoseshowninFigure5.Theonlydifferenceis thattheinsula-
toronthebackof theplateswasnotpresentfor thedatainFigure12butwaspresentforthedatainFigure5. It is
apparentthatwhenpumpingisnotpresent,theplasmapotentialis everywheremorepositivethantheplate.This
meansthattheself-consistentsolutionthattheplasmafindsisdeterminedbythecoatingonthebackof theplate,30
Debyelengthsfromthecenterof theplate.Thisresultstronglysuggeststhatdoublelayerpotentialprofilesmaybe
determinedbythepresenceof, forexample,aninsulatingboundaryontheedgeof thedevice.Wedemonstratedthat
theinsulatormustbein a locationwhereit canpumpthedipbyremovingtheinsulatorfromtheplatewhilestill
locatingit within theplasmavolume.Inthiscasetheplasmapotentialalsoremainedmorepositivethantheplate.

ThedatashowninFigure7 indicatethatasimilarpotentialdipcanalsooccurin frontof acapacitorplate
duringthepartof thecyclethatit isbiasedpositively.However,in thatcasethereisnoproblemwithtrappedions
becausesuchionsemptyoutduringthepartof eachcyclewhentheplateis negativelybiased.

III. SUMMARY

We have shown that a plasma potential dip can exist in front of positively biased plates because of "ion

pumping" of trapped ions from the dip. The dips were located in front of a steady state positively biased plate and

also when the maximum positive bias was applied during an oscillating potential. Pumping was achieved by provid-

ing ion leaks, i.e., decreasing potential contours leading far from the structure that is usually measured, and in-

dicates that boundary conditions far from the axes of experimental devices may play key roles in determining mea-

sured structures. A similar plasma potential structure was found when an oscillating potential was applied to a plate

and no insulator was present. In that case ions were emptied from the dip by the time varying potential.

Acknowledgment. This work was supported by NASA grant NAGW-275.
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Figure 2. Triple layer axial potential profile obtained in a low pressure Hg arc discharge. This
solution was identified to depend only on the boundary conditions; i.e., it was found to be a BGK

solution.

78



C B ----_ S

"-:.-I;: :": '. ::"-..::".: '<===PLASMA_"I "-
• " _" L

..,._.,--..--..¢.

1 I
50 cm

F._O

-2

Vo/C s =2.2

_

I J

50crn

Figure 3. Schematic of the Q machine setup used by Suzuki et al. (1984) and the corresponding

axial magnetic field profile. The axial potential profiles corresponding to two ion flow speeds are
also shown.

79



2>

q_)
\
i____
Od

0.0.0-,,4 -0 .0_0-0-0-0

,-.. .0_o--o
c_C-_,-Q.__o-o- o

.o.O_c-cr_O

00-0-o

50 cm

PRESSURE

-I.O x lC)s Tort

(L/X. "-0.0 I)
IR

7. 2 x l(D6 Torr

(0.07)

_J

Tort

Figure 4. Axial potential profiles as a function of neutral gas pressure in the magnetic well (R m ---

0.3).

80



0
m

0.

I

(M

I

i

<_

I I
0
m

Lr_

- rr)

E
{3

N

(M

C
e_

E

0
0

0

E_

E-

=+

LE_

(S_lOA)_WsDla_

81



3
e-

o_

O _

_ o

e._ _

._

0

E_

_ ._

82



A ,_2- (o)

(V°lts) I _////_

0 I I I I
0 I 2 5 4

kTe (eV)

d

(cm)
(b)

0 I P i 11 I I I I I I I I r I I I r

108 10 9

ne (cm -3)

Figure 7. (a) The potential difference Aqbbetween the plasma and the inflection point of the dip, as

a function of electron temperature. A straight line is drawn through the data. (b) The penetration of

the dip (d) as a function of plassma density. A smooth curve is drawn through the data.

83



2

tE i

E
O

•-_ 0

i

O

0 I 2

d (cm) Predicted

Figure 8. A comparison between measured values of drain and values predicted by using space

charge limited electron flow to the plate.

84



t
c"%i
I

A

E
V

I",,I
O

I I

!
rr'l

m

,,,I-

/

I
A

E
V

!",,1

m

i

-- O

"7
__ o .,._.°

l,,,..

¢,,,I

Z
• ¢,1

o_

E_

t'-I ¢.i

E_
°_

m

m
,-'I

t,.,i

°_

¢)

[.-,

o4

[.-,

E

@

85



E E

I_ ¢xJ !

1
rc_

t
4-

I
¢%i

E
C_

N

I

Ov

m

t-

o

c_

o

°_

86



I I I I t 1 I I I t

0 0 0 0

I I I I

X X X X

II II II II

o x r-I <_

x

\
I I I I I I 1 I I I

h. _0 LO _- rO cJ -- 0 -- c_
I IeLuSeld

(S_lOA) A

ro
I

r_

A

E

I._

O

> ,o

_o o

°_

N

°_

87



I

ummmm

cJ 0
i,mumJ

0
(_j

t_

E

N

0

E
o

o
E

E

_P

m

o

o_

_s

o

E

°_

o

c_

[--

88



N87-23317

A LABORATORY INVESTIGATION OF POTENTIAL DOUBLE LAYERS

Philip Leung

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California 91109, U.S.A.

ABSTRACT

In a triple plasma device, the injection of electron current from the source chamber to the target chamber

causes the formation of a potential double layer. At a low current density, the space charge of the injected current

produces a virtual cathode-type potential double layer. This double layer is stable, and various wave instabilities are

observed to associate with this double layer. As the current density is increased, the double layer becomes unstable,

and a moving double layer results. As the current density is increased further, the enhanced ionization causes the
neutralization of the space charge of the electron beam, and the "beam plasma discharge" is ignited.

I. INTRODUCTION

The importance of potential double layers in astrophysical phenomena is well known (Alfvrn, 1958). Theo-

retical work on potential double layers has indicated that wave instabilities may be responsible for the formation of

potential double layers. However, different theoretical models have predicted different instabilities in order for a

double layer to form. These instabilities include ion-acoustic (Sato and Okuda, 1980), ion hole (Schamel and Bujar-

barua, 1983), Langmuir turbulence (Levine and Crawford, 1978), and Buneman (Iuzuka et al., 1979) instabilities.

This paper presents experimental measurements of the characteristics of instabilities associated with a potential

double layer. The double layers were produced in a conventional triple plasma device by the injection of an electron
current from the source chamber to the target chamber. Different types of wave turbulences were observed to be

associated with a stable double layer. Despite the presence of these wave instabilities, the virtual cathode-type

mechanism (Leung et al., 1980) associated with the space charge of the injection electron current was found to be

the single most important mechanism responsible for the double layer formation. Experimental data on the transi-

tion of the double layer phenomenon into the beam plasma discharge phenomenon (Bernstein et al., 1978) will also

be discussed. This transition was due to the transition from space charge-limited electron current flow to source

temperature-limited electron current flow. This transition further illustrates the importance of space charge effects

in the stability and formation of potential double layers.

Part II of this paper describes the experimental setup, part III presents the measurements of wave instabilities

associated with a stable double layer, part IV discusses the transition of a stable double layer into the beam plasma

discharge phenomenon, and part V is the conclusion.

II. EXPERIMENTAL SETUP

The experiments were performed in a modified triple plasma device. The details of this setup have been

described elsewhere (Leung et ai., 1980). In most of the experiments, the system was operated as a double plasma
device. The diagnostics consist of a two-sided Langmuir probe and an emissive probe, both mounted on the same
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probe shaft. This permits measurements of plasma potential and plasma electron distribution function simultane-

ously. An electron gun (5-9 keV, 100 nA) is available for electric field measurements. This gun provides a non-

perturbative diagnostic to verify the existence of a double layer. The ion dynamics are measured by an electrostatic

energy analyzer.

A shielded RF probe is used to measure the unstable wave spectrum. Wavelength measurements are made by

two probe correlational methods. In this series of experiments, the frequency of unstable waves ranges from 50 kHz
to 100 MHz.

III. RESULTS

A steady state double layer is produced by operating the system in a double plasma device configuration.

The potential profile and the grid biases are shown in Figure 1. The plasma parameters associated with this double

layer are shown in Figure 2. In the high potential side, the electron distribution function is in the form of a bump-on-

tail distribution. In the low potential region, the electron distribution function is a modified drifting Maxwellian. In

the low potential region, counterstreaming ion beams are present; whereas, in the high potential region, only

thermal ions are present. These particle distributions are very important for the understanding of a potential double

layer since they are responsible for both the self-consistent potential profile and the wave instabilities.

The typical frequency spectrum associated with a stable double layer is shown in Figure 3. The frequency

spectrum can be divided into two regions: (1) the high frequency spectrum around the electron plasma frequency

and (2) the low frequency spectrum in the vicinity of the ion plasma frequency. The unstable waves at tom only have
significant amplitude at the high potential side. This is because the bump-on-tail electron distribution on the high

potential side excites beam plasma instabilities. The cross-spectral intensity obtained by a two-probe correlation

method is shown in Figure 4a. The value of the wavelength derived from this interferometer trace indicates that the
waves propagate at approximately the same velocity as the electron beam that is present in the high potential region.

Consequently, the waves are excited by the beam-plasma (Schmidt, 1979) instabilities.

The waves around the ion plasma frequency range from 0.10_pi to 3 topi, where top_is the ion plasma fre-
quency. The amplitudes of these waves are significant only in the low potential region. Figure 4b shows a typical

cross-spectral density function obtained by the two-probe correlation measurement technique. The dispersion

relationship of these low frequency waves is shown in Figure 5. The data displayed in Figure 5 show that the phase

velocity of most waves is faster than Vb, where Vb is the ion beam velocity associated with the stable double layer.

Due to their fast phase velocity and the fact that the unstable waves are present above the ion plasma frequency, the

waves cannot be excited by the ion-beam plasma instabilities.

A theoretical model was developed to interpret the dispersion relationship shown in Figure 5. The details of

this model are discussed in a previous publication (Leung, 1980). The model indicates that the waves around the ion
plasma frequency are excited by a modified Buneman-type (Buneman, 1959) instability. The main interaction

mechanism is operating between the drifting electrons and the ion beam that is propagating at the same velocity as

the electron drift. In the stationary frame of the ion beam, the excited waves have Buneman-type properties. The

observed dispersion relationship is just the Buneman dispersion relationship after a transformation from the station-

ary frame of the ion beam to the stationary frame of the laboratory. The drifting electrons should also interact with

the ion beam that propagates in the opposite direction; however, the resulting unstable waves will be subjected to

strong Landau damping. This is because the phase velocity of this unstable wave in the laboratory frame will be very

close to the velocity of the preceding (rightward in Figure 2) ion beam. Consequently, this mode was not observed in

the measurements. The theoretical model discussed in Leung (1980) predicts a very high growth rate. In our mea-
surements, the growth of the Buneman-type waves was not observed. This could be due to the fact that the high

growth rate caused the waves to saturate near the grid.
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IV. TRANSITION OF A STABLE DOUBLE LAYER INTO
THE BEAM PLASMA DISCHARGE

The current that flows from the source to the target region can be increased by increasing the grid bias. As the

grid bias is increased, the potential drop across the double layer also increases. This trend continues until the poten-

tial drop reaches 14 V, which is approximately the first ionization potential of argon. Beyond this point, a sudden

increase in the grid bias causes an abrupt increase in the current; and, at the same time, the double layer potential

profile collapses (Fig. 6). The plasma density in the target chamber increases by more than an order of magnitude

and the "beam plasma discharge" (Bernstein et al., !978) is excited. The ignition of the beam plasma discharge

(BPD) phenomenon is characterized by abrupt increases in the following plasma parameters: (1) optical emission,

(2) plasma density, (3) plasma current (Fig. 7), and (4) wave turbulence (Fig. 8).

It should be noted that before the ignition of BPD, the double layer becomes unstable, and large amplitude

potential fluctuations are observed. Figure 9a shows the fluctuations in the local electric field as measured by the

diagnostic electron beam. The electric field fluctuates at a frequency of approximately 1 kHz. Figure 9b shows the

signal detected by the Langmuir probe. The fluctuation in the probe current was due to the change in local plasma

potential induced by the moving double layer. The temporal change in potential profile was obtained by performing

a time sampling of the emissive probe trace. Figure 10 shows the time development of the potential profile. In this

figure, t -- 0 is chosen arbitrarily. The data show that the double layer is no longer stable but is moving toward the
end of the chamber, i.e., away from the source. The velocity of propagation varies, but under most conditions it is

faster than the ion-acoustic speed. The data presented in Figure 10 indicate the significance of the space charge of the

electron current in double layer formation. At t -- 150 p,s, the normalized potential of the low potential region has a

value of 2, and the amount of electron current that can flow from source chamber to target chamber is very large

(Figs. 11a,b). At t -- 200 p,s, the normalized potential has a value of 6, the flow of current from source to target is

severely limited, and the potential double layer is not well defined. The cycle for the formation and disappearance of

a potential double layer repeats itself. This is responsible for the observed fluctuation in the potential profile. A

detailed model (Leung et al., 1980) on double layer formation has been discussed elsewhere and will not be dis-
cussed in this article.

Referring again to Figure 10, at t --- 150 p,s, the current limitation by the space charge effect is at its

minimum. If the absolute potential of the low potential region is further reduced, the current flow is significantly

increased (Figs. 1 l a,b). This increase in current increases the rate of ionization in the high potential region. The

increase in the ion fluxes further reduces the space charge in the low potential region, and eventually the space
charge limitation of the electron current flow is eliminated. The uninhibited flow of current leads to the ignition of

the beam plasma discharge.

It should be noted that the transition from double layer (DL) to BPD is not a reversible process. By lowering

the bias, the BPD will not transform back to a DL immediately. A DL is formed only when the bias voltage is

lowered to a value such that the ionization cross-section is substantially reduced.

The injection of electron current from the source to the target chamber is very similar to the injection of an

electron beam from a rocket to the ionosphere. BPD has been observed in several rocket experiments (Hallinan et

al., 1978). In some of the beam injection experiments, large amplitude fluctuations (Winckler, 1980) in the electron

return current and in the optical emission were also observed. This type of fluctuation could be due to the excitation

of moving double layer-type potential structures in the ionosphere. The space shuttle and the future Space Station,
with its diverse sophisticated diagnostic instruments, should be able to provide a test bed for beam-excited double

layer structures in the ionosphere.
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V. CONCLUSIONS

This paper has discussed the instabilities associated with a stable double layer. The unstable wave spectrum

around the electron plasma frequency is due to the excitation of the beam plasma instabilities by the electron beam

that is present in the high potential region. The unstable waves around the ion plasma frequency are due to the

excitation of the Buneman-type waves by the electron current.

The data in our experiments show that as the grid bias is increased, there is a transition from a stable double

layer to a moving double layer, followed by the ignition of beam plasma discharge. This transition shows that the

space charge of the injected electron current plays a very important role in double layer formation. The role of
instabilities is not evident in our experimental measurements. Since wave instabilities are always associated with

double layers, their role in modifying the characteristics of DLs is undeniable and should be further investigated.

REFERENCES

Alfv6n, H., Tellus, 10, 104 (1958).

Bernstein, W., et al., Geophys. Res. Lett., 5, 127 (1978).

Buneman, O., Phys. Rev., 115, 503 (1959).
Hallinan, T., H. C. Stenbaek-Nielsen, and J. R. Winckler, J. Geophys. Res., 83, 3263 (1978).

Iizuka, S., K. Saeki, N. Sato, and Y. Hatta, Phys. Rev. Lett., 43, 1404 (1979).

Levine, J., and F. Crawford, SU-IPR Report 78-7, Stanford University, CA, 1978.

Leung, P., "Interaction Between Particle Beams and Nonlinear States," Ph.D. Thesis, University of California, Los

Angeles, 1980.

Leung, P., A. Wong, and B. Quon, Phys. Fluids, 23, 992 (1980).
Sato, T., and H. Okuda, Phy. Rev. Lett., 44, 740 (1980).

Schamel, H., and S. Bujarbarua, Phys. Fluids, 26, 190 (1983).

Schmidt, G., Physics of High Temperature Plasmas, Academic Press, 1979.
Winckler, J. R., Rev. Geophys. Space Phys., 18, 659 (1980).

92



(1)

(i i._

o- 3

"_ ._
(J') ._

E_
LLI C_J

,.On-

E

C_
o_

rlt,

0

0

_- 0

.._ t-

u

I,I

__-_-:

ol
l,w

0

c-
O

(1)

o
c1.

C_J

Ih..

(1).o Cx
E
C__- Cx

_ CX

0

-E
_ eric-

t.,.

E

0

_o or)

r_-

o_

_o _.

-_ °(1)
C_
r'-

c_

CI)

L.L-I

<=C

I---.-
Z
LlJ
I..--.

i

°_

(1)

c-

o

..J

o

0

Q

E

93



94

W_

N

_N

N

0

-6

6

-6

40

a)
Transition

- Region/_

Low _" High
- Potential _ Potential -

Region Region
Region _

_b) ,. C.; _-'_'_,-;:: E3-0"i"
•.-.- 11...-:...........

,-,...... - 11 ........• - 0.5

.... ....
----_:--- ..... :" . :.

'.. • •

..... i.." ..... • .I .........• el , i...• i.

0.1

c)

_ e e _o.L_&.. _

d)

-e)

I l I
5 I0 15 20

Distance from Source (cm)

Figure 2. The plasma parameters associated with a potential stable double layer. The plasma

parameters are normalized with respect to electron temperature Te and the electron density at the

high potential side. (a) Plasma potential profile. (b) One-dimensional phase-space representation of

electron distribution, W c = 1/:2racy 2, where We is the normalized electron energy. The numbers on
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potential profile is also shown here for reference.
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N87-23318
EXPERIMENTAL OBSERVATION OF ION-ACOUSTIC DOUBLE LAYERS

IN LABORATORY PLASMA

Y. C. Saxena

Plasma Physics Programme

Physical Research Laboratory
Ahmedabad 380009, India

ABSTRACT

Computer simulations indicate existence of weak, electrostatic potential structure with eA_b/kTe _ 1, having
a negative potential dip on low potential side in a current carrying plasma (DeGroot et al., 1977; Sato and Okuda,

1980). These types of structures, known as ion-acoustic double layers, have been analytically correlated with the
ion-holes which are known to be nonlinear extensions of normally damped slow ion-acoustic modes (Schamel,

1979; Hasegawa and Sato, 1982). Ion-acoustic double layers have also been evoked for explaining recent satellite
observations (Hudson et al., 1983).

In this paper we present experimental results on the observation of ion-acoustic double layers in laboratory

plasma. In a double-plasma device, modified suitably to inject electron beam into the target plasma, modulation of

the beam through a step potential leads to excitation of ion-acoustic fluctuations. The fluctuations, growing away

from the separating grids, develop into weak asymmetric ion-acoustic double layers. The observations are com-

pared with the scenario emerging out of the computer simulations and analytical results on ion-acoustic double
layers.
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II. THEORY AND SIMULATION OF DOUBLE LAYERS
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A NEW HYDRODYNAMIC ANALYSIS OF DOUBLE LAYERS

Heinrich Hora

Department of Physics and Astronomy
and

Iowa Laser Facility
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ABSTRACT

A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily

static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a

macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping.

Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced

cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as

in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description.

Results are the rotation of plasmas in magnetic fields and a new second harmonics resonance, explanation of the
measured inverted double layers, explanation of the observed density-independent, second harmonics emission

from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

I. INTRODUCTION

There is a close similarity between the double layers in the surface of laser-produced plasmas and a wide

class of astrophysical plasmas (Hora, 1975). In both cases a high temperature plasma is produced which expands

into vacuum or into gases of much less density. During this dynamic process, a separation of space charges will
happen at the plasma surfaces when the equithermal electrons with their much higher velocity than that of the ions

will expand much faster generating first a negatively charged cloud followed by a positively charged cloud of the
ions. Then the more or less homogeneous and space charge quasi-neutral plasma follows. The separation of the

electrons and ions with a net neutral charge is a double layer (DL) in which electric fields persist within these plasma
areas (Fig. I). These fields were suggested for explaining phenomena in extraterrestric plasmas by Alfv6n (1958)

not without hefty opposition of other plasma theoreticians. Even the more advanced presentation (Alfv6n, 1981)

was commented by Kulsrud (1983) as "Alfv6n's electric fields whose origin is intuitively not clear." These fields

and double layers were also suggested to be involved with the solar atmosphere (Alv6n and Carlqvist, 1967;

Carlqvist, 1979, 1982; Torv6n et ai., 1985), in the ionosphere and magnetosphere of the Earth and the magneto-
sphere of Jupiter (Shawhan, 1976), and with the striated structure of the barium clouds when expanding in the
ionosphere (Haerendel et al., 1976).

In laser-produced plasmas, these double layers in the surface of the expanding plasma were thought to be

involved with the measured speeding up of the ions to multi-kiloelectronvolt energies as measured by Linlor (1963)

while the particle temperatures were 100 eV or less. However, the analysis of the double layer (Hora et al., 1967)
with a derivation of its thickness being of a Debye length (Hora, 1975) arrived at a number of accelerated ions which

was 105 times less than measured. A completely different acceleration mechanism had to be derived by nonlinear

forces (as a generalization of the ponderomotive forces) of nonthermal electrodynamic interaction of the laser radia-
tion with the plasma (Hora, 1969).
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Thedirectexperimentalproofof thedoublelayerandhighelectricfieldsin laser-producedplasmaswas
givenby MendelandOIson(1975)wherethebendingof an ionbeampassingthedoublelayerledto themea-
surementof electricfieldsof 10kV/cm.Thegenerationof electrostaticpotentialswasmeasuredby Pearlmanand
Dahlbacka(1977),andamoredetailedstudyusingRogowskicoils(EliezerandLudmirsky,1983),Figure2,witha
hightemporalresolutionto 50psecor less(Ludmirskyetal., 1985;Eliezeretal., 1986)arrivedatthediscoveryof
theinverteddoublelayersandspatiallyoscillatingbehaviorof thedoublelayers(Horaet al., 1984).

Thefirst measurementof thedoublelayersin spaceplasmaswasnotbefore1977(Mozeret al., 1977;
Temerinetal., 1982;TemerinandMozer,1984)using$3-3satellitedata.Theseresults,togetherwiththelabora-
toryexperimentsondoublelayersasreviewedby Hershkowitz(1985),emergedfromtheinitial theoryonplasma
doublelayersbyLangmuir(1929),Bohm(1949),Bernsteinetal. (1957),andKnorrandGoertz(1974),andfrom
computersimulationsbyDeGrootetal. (1977)andSatoandOkuda(1980).TurbulencetheorybyYabeetal. (198!)
arrivedat electricfieldsinsideof theseturbulenceareasandmaybe interpretedassomesortof adoublelayer
behavior.Thelaboratoryexperimentsshoweddoublelayersin mercurydischarges(Torv6n,1981;Stangebyand
Allen, 1973),Q machines(Satoetal., 1976),andtripledeviceswheretwoplasmasatdifferentelec.tricpotentialare
connectedthroughgridsbyaplasmawhichhasthenadoublelayeraccordingtothedifferenceofthevoltagesplus
thedifferenceof thetemperaturesbetweenthetwoouterplasmas(CoakleyandHershkowitz,1981;Quonand
Wong, 1976;Leunget al., 1980).Thegeometrycanbe one-dimensional(Hershkowitzet al., 1981),two-
dimensional(Bakeret al., 1981),or three-dimensional(Merlinoet al., 1984).

A specialmotivationforstudyingthedoublelayerin laser-producedplasmawasgivenfromthetheoryof the
nonlinearforce(Hora,1969,1974,1981;Lindl andKaw, 1971;PerattandWatterson,1977;Peratt,1979).The
electrodynamic,dielectricallycausedaccelerationof plasmabylaserradiationisbasedontheforceactingonthe
highdensityelectrongasin theplasmabeingpushedorpulledandtheiongashastofollowthenbytheelectricfields
generatedbetweenthetwofluids.Whentheessentialpropertiesofthenonlinearforcewerederivedfromthespace
chargequasi-neutralplasmamodel(Hora,1969),thementionedfieldsweredisguisedbythepresumptionsof the
model.However,theexistenceof thefieldsof thedescriptionof thesingleelectronmotion(Hora,1971)was
evident,anda searchwasoverduesincethebeginningof theworkonthenolinearforcein 1965.

Whilethetreatmentofthedoublelayersandthehighelectricfieldsisessentiallynoproblemonthebasisof
thekinetictheorywiththeVlasovequation(KnorrandGoertz,1974),theinclusionof collisionsfortheconditions
ofthehighdensitylaser-producedplasmaswouldhavebeennecessaryforwhichthecomplicationsof thecollision
processesfor thekinetictheorywouldbeaproblem.Howimportantthecollisionprocessesarein laser-produced
plasmacanbeseenfromseveralexamples.Simply,theclassicalopticalconstants(Hora,1981)canbeevaluated
onlybycarefullywatchingthenumericalproblemsclosetoapoleoftherelatedfunctionswherethechangeof the
realpartor theimaginarypartof theopticalconstantcanbebyafactor10 3 or much more for a change of the plasma

temperature or the plasma density by less than 1 percent. Another drastic example is the theory of Denisov's reson-

ance absorption (to distinguish from a new resonance found by Hora and Ghatak, 1985) where the derivation based

on the electric field by White and Chen (1974) arrived at a negative infinite pole of the function for the effective

dielectric function of the plasma was collisionless. Introducing a tiny little bit of absorption (collisions), however,

caused a swap of the pole from minus infinity to nearly plus infinity (Hora, 1979). Collisions are therefore essential
in laser-produced plasmas.

The use of N-particle simulation of the plasma (with N = l0 6) by computers could again not be used as the

physics of the collisions could be covered yet only in a limited way and only first attempts have been done to

correctly treat Coulomb collisions now in a simplified way by using supercomputers (Yabe, 1985). The difficulties

in this macroscopic theory, however, are in the presumptions of space charge quasi-neutrality that could not at all be

used to treat the electric fields or double layers in plasmas. It even could not describe the coupling of the longitudinal

("electrostatic") Langmuir waves with transversal electromagnetic waves in plasma (Schamel, 1979).
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II. THE GENUINE TWO-FLUID MODEL

The macroscopic hydrodynamic theory for the consequent description of the double layers and the generated

electric fields required the use of the complete two fluids for electrons and ions including collisions, viscosity,

equipartition of temperatures between ions and electrons, optical constants with the correct nonlinear dependence

on the laser intensity (about an incorrect formula, see e.g., Duderstadt and Moses, 1983), and including the general

expression of the nonlinear force apart from the thermokinetic force given by the gas dynamic pressure (Hora, 1969,

1981, 1985a). In one spatial dimension, the problem was then to solve the following seven quantities depending on

the spatial coordinate x and the time t for given initial and boundary values: the density, temperature and velocity (in
the x-direction) for electrons, the same for ions (ne, Te, ve, n_, T_, Vi) and the electric field E (in the x-direction)

differing from the external electric and magnetic fields EL and He of the incident laser radiation. For the seven

functions, seven differential equations are available: the equations of continuity for electrons and ions, the

equations of motions for electrons and ions, the equations of energy conservation for electrons and ions, and the

Poisson (or better Gaussian) equation (Lalousis and Hora, 1983). For the whole three-dimensional description there

have to be added the two variables for the other components of the electron velocity and the same for the ion

velocities for which the four further velocity components of the equation of motion are accounted. Instead of the

longitudinal electric field component E of the one-dimensional case, all three components of E and that of the

magnetic field H generated in the plasma during the complex dynamics have to be included for which instead of the

Gaussian law in one dimension, the six components of the Maxwellian equations have to be used. All together, there

are 16 equations for the 16 quantities to be determined in space and time, automatically also reproducing the

complete development of the so-called spontaneous magnetic fields in the laser-produced plasmas.

The solution of the one-dimensional problem allowed for numerics is very complicated in this general

property of the plasma because the time steps have to be very much shorter than the shortest plasma oscillation time.

For the plasmas at irradiation with neodymium glass laser radiation, the time steps have then to be shorter than 0.1

fs. In order to arrive at physically detectable results in the picosecond scale, long computer runs have to go on,

where for each time step the Maxwellian equations also have to be solved for the incident laser radiation with the

correct conditions for the reflected wave. For the treatment of the reflection field, a very quick computation by a

matrix procedure was invented (Lalousis, 1983). The whole computation had to be using a very unusual Eulerian

code instead of the usual Lagrangian codes because of the appropriate inclusion of the description of the electric

fields produced inside the plasma. The basic problem of the boundary conditions in this case ran into instabilities,

and a special new method for a stable solution had to be discovered as derived by numerical experiments (Lalousis,
1983; Lalousis and Hora, 1984).

The results described in the following were attained by using a CD 7600 computer and a Cray 1. The stability

of the computation and the correctness of the output was confirmed after the runs up to the picosecond range by

checks of the conservation of energy. Also the fact that the gain or loss of energy of relativistic electrons, fired

through the then not longer static and conservative electric fields with potentials, but having the dynamic electric
fields E where

E- dx _ 0 (1)

resulted in reasonable numbers of the gain or loss of electron energies (Green et al., 1986), was a proof of the correct

computations.
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III. ELECTRIC FIELDS, DL'S, AND OSCILLATIONS IN PLASMA
WITHOUT LASER INTERACTION

When using the genuine two-fluid code, the appearance of strong electric oscillations was marked. For a

plasma without laser irradiation, the following initial condition was chosen; a fully ionized hydrogen plasma slab of

10 Ixm thickness with a linear increase of the electron density from 5 x 1020 cm -3 at x = 0 to 102t cm -3 at x = 10 Ixm

was taken at time = 0 with same ion density and an electron and ion temperature Te = Ti = 10 3 eW at t = 0. The

initial velocities were ve = vi = 0 everywhere at t = 0 and, consequently, the electric field E = 0 at t = 0. Working
with time steps of 1.5 × I0-_6 s (1/30 of the shortest plasma period of 5 x 10-_5 s) at x = 10 Ixm, expanding plasma

showed a very strong oscillation of the electric field displayed by electrons moving down the ramp and being

returned. The field was always negative, never positive, because the electron cloud went back to the initial position

within the ions or less. At later times an "ambipolar" oscillation field was noted (Figs. 3 to 5) which decayed faster

when the initial plasma temperature was lower (higher collision frequency). The oscillations were damped out and a

bent profile of the electric field resulted, nearly unchanged along the whole expanding plasma profile. The field had

the highest negative values at x = 0 of 2.6 × 10 6 V/cm. This value was interpreted for a temperature of 10 3 eV and a
length of 10 -3 cm, reaching a value of 3 x 10 6 W/cm, of a "potential" of 10 3 kT was assumed. As we have a

time-dependent evaluation of the field E due to the plasma dynamics, we have no longer a conservative field and

therefore no potential. These fields are then, strictly speaking, no longer electrostatic fields, and the generated

double layer is, strictly speaking, not an electrostatic double layer, though the result is close to the picture of one.

An analytical description of the numerically very general result is possible with some approximations: The

Poisson equation, which was formulated for a potential as an inhomogeneous differential equation to the homogen-

eous Laplace differential equation, is then only an approximation as the fields are, strictly speaking, no longer

conservative. The following Gauss law was used where ne and n_ have to be considered as time-dependent. The

non-conservative character of these fields, equation (1), can be used to produce an acceleration or a stopping of

charged particles by manipulating the time dependence of ne and ni. From the time-dependent electric field, we get

the Gauss law by time differentiation, substitution of the equations of continuity, and integration over the spatial
coordinate (without discussing the integration constant),

a
E = 4rre(neV e - Zvin i) (2)

at

Further time differentiation, substitution by the equations of motion and re-arrangement of the terms with the colli-
sion frequency v results in

where

a2E aE+ 4rre a
+ v _ COpo2E = E0wpo 2 + m (EL2 + HL2)/8r r + 41rev(neVi _ Znive)

at 2 m e ax

__ [._.x ( __ 2) _._x] 3n3kTe
E0 = 4rre 3 3nikTi + 2nivi _ + neVe 2

COpo2 \ m i m e

(3)

(4)
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and

n Z2n i

C°P° 2 = 4rre 2 -e +
m e m i

(5)

The driving laser field EL and HL were used for the following section. Neglecting (3) for v << tOpand assuming a

vanishing laser field (EL = HL = 0), the local solution of (3) results in an electric field,

E:E0ll°xp/E os
+ 2V/COpo2 _ v2 P°2 - (6)

which oscillates with a frequency close to the plasma frequency. These oscillations, however, are damped (ex-

ponentially decaying)by the collision frequency such that after a time t >> 2/v a nearly constant electric field E

remains, as seen numerically (Fig. 5). This field E is determined by the spatial gradients of the enthalpy of the ions
and electrons given in the brackets within the square bracket of equation (4) divided by the particle masses.

The (nearly static) electric field has an understandable order of magnitude at least for the early time of the

damping processes of an initially stationary inhomogeneous plasma where any electron and ion velocity is small and
from the big ratio of the ion to the electron mass. It follows,

E_
4_e a

_po2me _x 3nekTe
' (7)

or

1 d
9 m

eE_ ne dx 3nekTe ' (8)

We see that the electric field E is simply caused by the gradients of the electron density and/or the temperature
temporally changing. Therefore the expression "inhomogeneity field" or "dynamic electric field" has been used. In

the stationary approximation (8) the inhomogeneity field corresponds to the (thermionic) work function for the

electrons that moved from the plasma interior to the vacuum (or an electrode) outside corresponding to the spread
Debye sheath (Hora, 1983).

This result of a quasi-potential value eEi£ = eVc = 3kTe corresponds to the measured 600 volts in a

tokamak of a maximum temperature of 200 eV where the missing factor 3 was mentioned as an unexplained result

(Razumova, 1983). If there are experimental conditions where, instead of a factor 3, a factor I0 (Eliezer and

Ludmirsky, 1983) has been measured from the electric fields in laser-produced plasmas with (spread) Debye lengths

over 10 to 100 times of its usual value, this may be explained for the more general conditions of the time developing

enthalpy in (4) which was simplified in (8). Higher values than a factor 3 were also measured in cases of double layer
experiments.
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IV. ELECTRIC FIELDS AND DL'S WITH LASER INTERACTIONS

For the case of incident laser radiation, the computer output of the following cases will be discussed (Hora et

al., 1984). A 25 _m thick plasma slab of initial 103 eV temperature and zero velocity with an ion and electron

density of symmetric parabolic shape very close to the value in Figure 6 for t = 0.5 ps is given. No laser interaction

occurs during the first 0.5 ps such that the minor thermal expansion does not change much of the initial density

profiles while this time is long enough to damp down the fast electric oscillations. At t = 0.5 ps, a neodymium glass

laser field incident from the left-hand side is switched on with a vacuum amplitude of 1016 W/cm 2. The resulting

electric field density E-L-TL/8"rraveraged over a laser period is given in Figure 7 showing an exponential decay for x > 8

_m because of superdense plasma there. At several time steps up to 1.5 ps, the resulting densities (Fig. 6) and ion

velocity (Fig. 8) are given. The density (Fig. 6) shows a strong minimum (caviton) at x = 5 txm indicating the

predominance of the nonlinear force-driven ponderomotion. Plasma blocks with ion velocities up to 10 7 cm/s are

created in agreement with simplified estimates of the strong acceleration densities.

The resulting differences of the ion and electron densities are given in Figure 9. They cause fast changing
electric fields E given in Figure 10 reaching values beyond 108 V/cm. This value corresponds to the expected

numbers: the dielectrically swollen laser field EL in the plasma can be up to 10 _ V/cm decaying to zero within 10 -3

cm.

Using similar simplifying approximations as in equation (6), including the oscillating laser field, the long-
itudinal (dynamic electric) field E from (3) is given by

I_ (3nikTi 2) a (3nekTe 2) 1 _.,_..E = 4rre m + Znivi -_x m + neVe + u (EL2
\ m i \ m e m e _x

+Hi2)/8rr 1 II-exp(-2 t) cOSWptl + _P 2-46°2
(_p2-4w2)2+v2w 2

×
47re a 2vw 4rre

me 3x (EL2 + _-_ __L2) cos 2cot + 2 4co2)2 + v2co2 m e bx
(COp -

(EL2 + HL2) sin 2cot

(9)

where the first term represents the former quasi-static field E, (4) with its damped-fast oscillations but modified by

the amplitude of the fast time-averaged laser field density EL2 + HE2 which is dominant before the gas dynamic

pressure nekT e acts. As EL2 + HE2 changes fast (still very slow compared to the laser oscillation time), a quite
complicated result for E_ can be seen in Figure 12, in which the exact result is given without the simplification of

equation (9). Considering the complicated time dependence of n_, n e, T i, T e, Etjand HE, the term "potential" is no
longer applicable and E is a dynamic electric field following equation (1). Only at stationary conditions, the

pressure may be a potential or one may consider a ponderomotive potential.

The second and last terms in equation (9) oscillate quickly with twice the laser frequency. As Es is directed to

the x-direction, i.e., perpendicular to the EL of the laser field, we have -- obviously for the very first time -- the

coupling of the transverse electromagnetic wave with the, longitudinal plasma waves which is made possibly only by

overcoming the restriction of the quasi-neutrality of the earlier two-fluid theory, and without the artificial inclusions

of microscopic model assumptions. The last term in equation (9) has a resonance denominator, causing a very steep

increase of the oscillation amplitude at 2to = tOp. As we consider a case of purely perpendicular incidencewithout
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any surface rippling and no self-focusing, we have here a new type of resonance mechanism acting in the evanescent

part of the wave in a depth of 4 times the critical density, if there is still sufficient laser intensity. This resonance is

basically different from Denisov's reesonance absorption which works at oblique incidence for p-polarization only
(Denisov, 1957). The new type of perpendicular incidence resonance can be significant (Hora and Ghatak, 1985) as
will be discussed in Section V with other phenomena.

The numerical result of Figure 9 can explain the inverted double layers in laser-produced plasmas if cavitons

are produced by the nonlinear forces. The existence of the electric fields in plasma surfaces had been shown directly
by electron beam probes and from electrostatic acceleration of a small number of the nonlinear force-accelerated

ions. A more systematic experiment was done by Eliezer and Ludmirsky (1983), Ludmirsky et al. (1985), and

Eliezer et al. (1986) where the temporal dependence of charge of the expanding plasma and the temporal change of
the target potential were measured. A very unexpected observation was that the plasma leaving the target was first

positively charged and then negatively charged. This was in contrast to the general expectation that an electron

cloud should first leave the plasma. The picture changes, however, if we look at all fields at the surface and in the

interior of the plasma in the genuine two-fluid model if a nonlinear force-driven caviton is generated. Figure 9

shows, near x = 25 txm, where no laser light acts, that a negatively charged plasma expands before the positively

charged plasma follows. Near x = 0, one sees that first a strong positively charged plasma is emitted and then a

negatively charged plasma before a nearly neutral plasma follows. This is the result of the caviton generation.

Though the experiment (Eliezer and Ludmirsky, 1983) was on the nanosecond time scale, the comparison with the

picosecond processes should be justified not only by the correct polarity of the plasma charges but also from other

experiments that showed the picosecond buildup of the cavitons (Briand et al., 1985). The experiment of Eliezer

and Ludmirsky (1983) is an indirect proof that they had also generated cavitons.

A further experiment which can be explained is the energy upshift of alpha particles from laser fusion

pellets. It was observed (Gazit et al., 1979) that the DT-alpha particles from laser fusion pellets had not the expected

maximum energy of 3.56 MeV but showed an upshift by A_ of up to 0.5 MeV. The exact description of the interac-

tion of the alphas with the spatially and temporally varying electric field E(x,t) in the (one-dimensional) plasma

corona is very complicated as the field is non-conservative. The velocity of the alpha particle, v, with an initial

velocity, Vo and mass, mot is given by the complex integral equation,

+ 2e ( t2v(x) = vo -- E[x (t),t] dt
mol 'st 1

; x = v(t)dx (10)

For a very simplified estimate we use,

d(_--_ -_ v2) =2eE[x,t(x)]dx , (11)

with an average value E of E to give the increase of the alpha energy,

Ae = 2EE Ax , (12)

after acceleration along a length Ax of the plasma corona. In order to reach Ae -- 0.5 MeV for Ax = 10 Ixm, we find
F. = 2.7 × 10 3 V/cm. Such fields for Nd glass laser pulses of 1016 W/cm 2 are possible only if the nonlinear force-

produced cavitons (Fig. 10) are present, since lengths very much larger than l0 Ixm are not realistic. Thermally

produced fields of up to l06 V/cm could not produce the measured upshifts of 0.5 MeV. Our results, theretore, are
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notonly aroughexplanationof thealphaupshiftbythe largeelectricfieldsin thecavitonsbutarealsoaclear
indicationthatnothermalelectricfield cancausethemeasuredupshifts.

Wehavepreliminaryresultsontheexactnumericalsolutionof equation(10)fromE-valuesderivedfrom
laserplasmadynamics(Greenetal., 1985).It wasdiscoveredthatbroadE-maximamovewithin0.3to 0.9of the
speedof light (Fig.10).Thecorrectphasingof thechargedparticlesin thefield doesleadto anaccelerationby
multiplesof theestimateof equation(12).It canbeshownhowtodayavailableCO2lasers(Antares)with80TW
shortlaserpulsesandasequenceofseveralpulsescanshiftelectroncloudsof GeVenergytoTeVelectronenergy.
Thecaviton(nonlinearforce)fieldsofthetypeinFigure12of 1011V/cmactlikethe(non-conservative)pumpfields
in themicrowavecavitiesof anaccelerator.Thephasingof thenonlinearforcefield electronaccelerationis an
extensionof theconceptbasedonmanyyearsof workonthenonlinearforceandthethenrecentresultsonhigh
electricfieldsin plasmas(Clarket al., 1985).

V. DISCUSSION AND FURTHER RESULTS

Against all prior assumptions of space charge quasi-neutrality of plasmas, our analysis of genuine two-fluid
hydrodynamics has shown very high electric fields inside of plasmas. These are simply given by gradients of density

and/or temperature (inhomogeneity fields) modified by plasma oscillations due to changes in mechanical motion for

free expansion or due to the nonlinear force-produced block motion or cavitons. A consequence for laser fusion of
the resonance at perpendicular incidence may be significant, but it is only one of numerous anomalous and nonlinear

phenomena known. A more important consequence, however, is the fact that the electric fields in the double layers

change the thermal conductivity drastically. In order to fit experiments with too low temperatures of the interior of

the plasma-irradiated pellet and the low fusion neutron emission with the computations, fitting factors f for reduc-
tion of the thermal conduction were used since 1979 (Ding et al., 1983; Richardson et al., 1986) which were around

1/100. The results of the double layers offer a quantitative theory for this reduction. This and further consequences
of the reviewed results will be discussed in this section (Hora, 1985b).

A. Double Layers and Reduction of Thermal Conduction

The generation of electric fields and double layers inside of plasmas at gradients of density and/or tempera-

ture can cause the inhibition (reduction) of thermal conductivity below the Spitzer-value for the plasma electrons.

This inhibition was detected indirectly from laser fusion experiments when the interior of the compressed pellet did

not reach the temperatures expected from electronic thermal conduction (Cicchitelli et al., 1984), expressed by a
reduction factor f. This can be understood simply from Figure 11 where a double layer is produced between a hot
laser-irradiated corona and the cold pellet interior.

The energetic electrons have left the positive area (causing a mostly negligible preheat), and the following

electrons are returned by the positive charges. If a total disconnection of the electron transport through the double

layer is considered because fo the return current of the electrons, only the ions can transport the heat. The thermal

conductivity K is then that of the ions, K_given by that of the electrons Ke,

K = _:i = _e(m/mi ) ½ , (13)

where m is the electron mass and m i is the ion mass. This gives the factor K/K e ---- 1/70 for the ion mass of deuterium

and tritium used in the experiments where a computation fit with a factor 1/100 was shown (Ding et al., 1983;
Richardson et al., 1986).
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Thisexplanationof thereducedthermalconductionbythedoublelayerdoesnottakeintoaccountthatthe
electronsin thehotplasmamayhaveaMaxwellianequilibriumdistributionof theirenergywithasmallnumberof
veryfastelectronspenetratingthedoublelayer.Thefactorfof thethermalconductionbythefastelectronsthrough
thedoublelayerisgivenbytheratioof theenergyfluxdensityof theelectrons(oftemperatureT) in thex-direction
Eout at x = x2 in Figure 11 over the energy flux density Ei, of the electrons incident from the left-hand side at x = x,,

f = Eout/Ein (14)

Based on an equilibrium distribution n of the electrons with the velocity v = (Vx; Vy; Vz)

n(Vx,Vy,Vz) = n o exp \ 2kT /

where no is the (spatial) electron density, we find,

m v2 n dvxdvydv z = 4rmom(kT/21rn) 3/2Vx 2

(15)

(16)

The flux density Eout must take into account the fact that the energy of the electrons beyond the double layer is

reduced by the electric potential eVo of the layer and only electrons with a velocity component in the x-direction Vx
> Vxo = (2eVo/m) '/2 will be transmitted. This results in,

where

Eout = Sf f-L_ dVydVz fVx_ Vx(mV2/2 - eVo)n dvx

= 47rnom(kT/2 m) 3/2 exp(-o0

(17)

(18)

ot = eVo/(kT). (19)

The final result

f = exp(_eVo/kT ) (20)

is then a simple Boltzmann factor.

From the experiments (Eliezer et al., 1985) there may be good reasons that eVo is more than 5 kT up to at

least I0 kT. In this case f is less than 1/70 given from the thermal ion conduction for D-T plasma. If we, however,

work with the simple (one-dimensional) adiabatic relation eVo = 3kT, the factor f is 1/20, showing a well reduced

but electronically dominated thermal conduction.
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Weconcludethatthereductionof thethermalconductivitybytheelectrostaticdoublelayerbetweenhotand
coldplasmadoesnotnecessarilydropdownto thelow valueof the ionconductivity,anda reducedelectronic
thermalconductionbytheenergetictail of theelectronenergydistributionmayremain.Fortheanalysisof future
experiments,thesevariablesofthermalconductivityfactorshavetobetakenintoaccountif nofurthercompetitive
mechanisms(e.g.,turbulence,classicalthermalconductivityin inhomogeneousmedia)aretakenintoaccount.
Withrespecttotheenergetic(so-called"hot")electronsin laser-producedplasmas,it hasbeenfoundthattheredoes
notexista fastMaxwelliantail of theenergydistribution(McCall,1983)provingthattheseenergiesaredueto
nonthermalquivermotion.Theseelectronswouldnotbeableto contributetothethermalconductionmechanism
discussedhere.Anotherindicationthattheseenergeticelectronsarenot of a thermalnature(veryprobably
representingthecoherentquivermotion)is theveryanistropic"butterfly"directivityof thex-rayemission.

Thereducedthermalconductivityin thedoublelayersatsteepthermalordensitygradients,asgivenbythe
dynamicelectricfieldstrengthE (inhomogeneityfield),equation(9), isanimportantconsiderationin pelletabla-
tion-compressioncomputationswhetherthedrivingis by particlebeamsor by lasers.As longasno nonlinear
forces,nonlinearopticalresponse(absorption),andparametriceffectsareinvolved,thereisalotof similaritytothe
laserdrivingwherethecomputerevaluationof thehydrodynamicsautomaticallyresultsin acompressionof the
plasmabelowthedriverheatedablatingcorona.Asasufficienttemperatureisneededforthecompressedplasmain
thepelletcore,theheattransportbetweencoronaandcoreisessential.If theclassicalelectronicconductivityisused
(withoutchangebytheinhomogeneityfieldsorthespacechargesofthedoublelayers),it isnosurprisethatthelaser
ablationresultedinhighcoredensitieswellafterthemechanicalrecoil,butthetemperaturesweretoolow(Yaakobi
etal., 1984)andtheneutrongainsfromfusionwere104timeslessthanexpectedatthisablationmode(Hora,1981).

It shouldbenotedthattheinhibitionof electrontransportbythedoublelayer(Fig. 11)isvalidalsoforthe
energetic(erroneouslycalled"hot")electrons.Evenif theirenergyissome100keVasinCO2laser-irradiatedfusion
pellets,thenumberofelectronstoproduceaDebyelayeronlycanmovetothepelletinteriortopreheattheplasma.
Thefollowingelectrons,especiallyif theyhavenofastMaxwelliantail of adistribution,cannotpassthe100keV
DL. Theusualelectronpreheatin pelletsis thenonlyafew mJat some100J absorptionof laserradiation.

B. New Resonance at Perpendicular Incidence

The only resonance phenomenon (to be distinguished from parametric instabilities) at laser-plasma interac-

tion is Denisov's (1957) resonance absorption which only may work at oblique incidence of laser radiation for

p-polarization. White and Chen (1974) published the first derivation with the electric field description for a colli-

sionless plasma, showing a resonance maximum of the electric field component of the laser field in the direction

perpendicular to the surface at the critical density for laser light which is obliquely incident and p-polarized. The

resonance in this case is in the evanescent field region below the reflection point of the propagating radiation. When

generalizing this derivation (Hora, 1979) to the case with collisions, the pole of the effective dielectric constant
suddenly changes from minus infinity to a high positive value and the width of Denisov's resonance maximum can

be directly calculated in a transparent way (Hora, 1981).

In difference to this, a resonance was found (Hora and Ghatak, 1985) at perpendicular incidence of the (laser

driven) longitudinal dynamic plasma field E (not the laser field) of such magnitudes that some phenomena at

perpendicular incidence may be explained now where Denisov resonance was mentioned hoping that density ripple

provides the necessary oblique incidence. This was questionable with respect to the low angle of incidence.

While the results on the numerical theory of the genuine two-fluid model were most general, the simplified

analytical evaluation of the equations was possible by neglecting terms because of the electrons to ion mass ratios,
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droppingdiscussionsof integrationconstantsandreducingtolocaldifferentiationsandbycouplingwithMaxwell's
equations.In a laser-irradiatedplasmaforperpendicularincidence,aninhomogeneousoscillationequationis then
derived(withdrivingterms)for the(longitudinallyoscillatingdynamic)electricfieldE whichisperpendicularto
thedrivinglaserfield EL(andHL).Thesolutionof thedifferentialequationresultedinequation(9).

Thelastterminequation(9)significantlyindicatedaresonanceof COp= 2to(4timesthecriticaldensity).
Thiswasnotedapproximativelybeforeandevaluatedroughlynumerically(Horaet al., 1984;HoraandGhatak,
1985).ThemorepreciseevaluationwasperformedbyGoldsworthyetal. (1986).It isstressedagainthatin eval-
uatingthelastterminequation(9)beforetimeaveraging,thewholenonlinearforceneedstobestrongenoughsuch
thatthetermproportionalto sin(2tot)resonantlydominates.Thecoefficientof thistermis

2vco e b (EL2+ HL2) (21)
ER= 2 4o22)2+ 16v2co2 2m ax

(COp-

In orderto getthesolutionsELandHLfromtheinhomogeneousplasma we especially select the condition that the

electron density is increasing linearly in the region of the evanescent field. In this case, the wave equation can be

solved by Airy functions (Lindl and Kaw, 1971; Goldsworthy et al., 1986). The full resonance amplitude given in

equation (21 ) can now be evaluated numerically for any slope of the linear density profile and a constant temperature

(collision frequency) by numerically solving EL, deriving HL from Maxwell's equations and calculation fi, and

using these values to compute the resonance amplitude ER.

Numerical evaluation of the resonance phenomenon described in the previous sections was carried out for a

plasma irradiated by neodymium glass laser light.

In Figure 12 the value of E R of the resonant field amplitude is plotted as a function of depth x where the zero

of the depth axis represents the critical layer. Noting that the resonant field depends linearly on the incident laser
intensity, only the results of the realistic case, an initial intensity of 1016 W/cm 2, are discussed.

The electron collision frequency v is density dependent and is given by

n e
v=2.72X 10"5_ £nA

T3/2
(22)

where ne is the electron density per cubic centimeter, Te is the electron temperature in electron volts (eV), and £n A

is the Coulomb logarithm.

Results have been obtained for several different plasma temperatures, of which the case for 1 keV is given in

Figure 12. The gradient of the density profile was varied as a parameter of the curves. The gradient is determined by

Or,

or2 = (bne/aX)- 1_o/c (23)

where the maximum of each curve is at such depth x where the density has reached 4 times the critical density.

Figure 12 shows the results for the conditions T_ = 1 keV for different depths of the maxima. The density gradients

ct2 range from 140 to 240. T_ is the effective temperature (chaotic plus coherent motion of the electrons) which can

well have the values of 10 4 eW at high laser intensities. Figure 13 evaluates the maximum field Emax of ERaS Emax/EL

related to the amplitude of the laser field in vacuum for various plasma temperatures.
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Figure 13 shows that any strong resonance effect can be expected only when the profile has a very high

steepening such that 4 times the density is reached at one wavelength or less below the critical density. This high

steepening, however, is not unusual in cases where the nonlinear force is dominating the plasma dynamics
(Ahlstrom, 1982; and Montes and Willi, 1982).

For laser-plasma interaction at perpendicular incidence a resonance is analyzed which produces high electric

fields oscillating with the second harmonic perpendicular to the plasma surface (longitudinal oscillations). These

fields are found in the application of a new genuine two-fluid hydrodynamic theory which is not restricted by space

charge quasi-neutrality. For linear density profiles beyond the critical density, the resonance maxima are evaluated

on the basis of the Airy functions and reach considerably high values for such profiles which can be generated by

nonlinear force driving of the laser-plasma dynamics. Even the necessary high temperatures (appearing then as
quiver energy as in the theory of the optical constants) seem to be reasonable. This perpendicular resonance mech-

anism may possibly be distinguished from the ordinary nonlinear force acceleration by the appearance of electron
bursts.

C. Density Independent Second Harmonics Emission

A rather surprising phenomenon was reported by Mayer et al. (1982). Irradiating a plane target in vacuum by

a neodymium glass laser, a side-on time-integrated picture in the second harmonic frequency showed the large

plasma plume in nearly constant 2o) intensity though the plasma density has been lower by orders of magnitudes in

the outermost parts of the plasma than in the focus. A similar observation was detected more precisely (Aleksan-
drova et al., 1985) from a 400 txm diameter pellet irradiated by a 2 ns rectangular neodymium glass laser pulse

(Delfin), where a nearly constant 2to radiation from a sphere of 2 mm diameter (to which the pellet corona had

expanded during the laser irradiation) was detected. The fact that the very low peripheric plasma density emits the

same 20) radiation as the inner part of the cut-off density can be explained by the middle term of equation (9). The

factor is nearly density-independent at low top (tOp << tO), and the standing wave pattern may result in a constant

nonlinear force factor; therefore, this term of equation (9) should produce a spatially constant term of the dynamic
electric field Es as long as the laser is shining.

While this gives a qualitative explanation of the observation, a quantitative evaluation of the transfer of the

dipole oscillation of E into emission of electromagnetic radiation results in an emission power of about 10 6 watts

(Goldsworthy et al., 1986). The experimental evaluation of the calibration of the experimental results in a 2to-power
of about 105 watts (Fedotov et al., 1985).

D. E x B Rotation of Plasmas

Since the dynamic electric fields, e.g., (9), in plasmas are (apart from the oscillations, damping, and

transient effects of internal and/or external plasma dynamics) in a simplified way due to gradients of electron density

and/or temperature, their E x B interaction with external magnetic fields B may cause drift motion or rotation of
plasmas. We shall first discuss this as examples with plasmas without laser irradiation, e.g., with tokamaks and

stallarators, and then consider the extremely high E-fields by the nonlinear forces in laser-produced plasmas that

describe fast block acceleration of plasma. There is a similarity to the simple ambipolar field effects.

The consequences for dynamic inhomogeneity electric fields in tokamaks are not only the modification of

the thermal conduction but also the resulting basic change in the dynamics. The radial decay of density and tempera-

ture in any plasma column produces an inhomogeneity field in the radial direction which under stationary conditions
is given by equation (9)
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3 d
E s - nekT e ° (24)

ene dx

This field combines with the toroidal magnetic field B and causes a drift with the velocity of the poloidal plasma

rotation in meters/second (Fig. 14)

Vro t = 3T/rB , (25)

where the electron temperature is in electronvolts, the radius r of the plasma column is in meters, and B is in Tesla.

Measurements from tokamaks fully agree with the result of equation (25). Bell (1979) measured rotation
velocity v = 2 x 10 3 m/s for r = 2 X 10-2 m, B = 0.5 T, Te = 50 eV for which case equation (25) results in v =

2.4 x 10 3 m/s. These plasma rotations were detected from the Doppler shift of Hot-lines, with similar agreement

with equation (25), by Sigmar et al. (1974) who did not interpret them as plasma rotation, but as an anomaly of hot

protons in the banana and plateau regimes. The agreement with equation (25), however, favors an interpretation of a
simple rotation.

The same is with the experiment at the stellarator W7, where the result of 1980 agrees with a rotation accord-

ing to equation (25). As this experiment was with tangential neutral beam injection, one would have had to exclude

the rotation of these neutrals, which is difficult. Recent measurements at W7 without neutral beam injection but

with plasma production by intensive microwave irradiation and heating (Thumm, 1985) result in exactly the same

rotation given by equation (25).
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Figure 1. Between the vacuum range A and the space charge neutral interior of homogeneous

plasma C, the plasma surface sheath is depleted by the escape of fast electrons until such a strong

space charge is built up that the following fast electrons from the plasma C are electrostatically
returned into C. The electric field E(x), due to the space charge density p(x), and the resulting

potential V are given schematically (Hora, 1975).

124



CI

I(t)

Dielectric I I

V(t)

Current probe

Laser beam

_:_ Electron flow direction for
positive output signal I(t)

Figure 2. Experiment for a laser-irradiated pellet whose potential and the field [by the Rogowski

coil I(t)] are measured.
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Figure 3. Time-dependent development of the longitudinal dynamic electric field E_ along the

density with an initial ramp of linear plasma of initial temperature 107 K of 5 × 102° cm -3 at x -- 0

and 1021 cm 3 at x = 10 p_m (Lalousis and Hora, 1983).
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similar to its initial value. The energy maximum near x = 4 txm produces a caviton by nonlinear
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ABSTRACT

The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation

of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double

layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate

the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared

with similar results from one-dimensional numerical simulations of the problem.

I. INTRODUCTION

A plasma can support a large variety of stationary (or quasi-stationary) double-layer-like structures. The

proceedings (Michelsen and Rasmussen, 1982; Schrittwieser and Eder, 1984) of the first two double layer sumposia

at Riso and in Innsbruck contain an extensive summary of theoretical, numerical, and experimental investigations.

A number of these investigtions, however, refer to conditions with very carefully chosen initial or boundary condi-

tions imposed on the plasma. These conditions may often be highly idealized, or even unrealistic representations of

those met in, for example, ionospheric conditions. However, not all examples have this shortcoming. One of these

seems to be small amplitude double layers occurring in current-carrying plasmas. One possible mechanism for their

generation is reflection of electrons by a negative potential dip associated with an ion plasma-space vortex, which

consequently acts as a "seed" for the double layer (Sato and Okuda, 1980; Hasegawa and Sato, 1982; Nishihara et
al., 1982; Berman et al., 1985, Prcseli, 1984). This is a spatially localized process and thus independent of any

boundary conditions. The potential drop associated with one such double layer will be rather small. If, however, the

system is large and the ion phase-space vortices sufficiently frequently occur, many of these small double layers

may be generated and will eventually add up to a significant potential drop. With this scenario in mind, we found it

worthwhile to investigate the properties of the ion phase-space vortices in detail. These properties will be

summarized in the following paragraphs.

II. ION PHASE-SPACE VORTICES IN ONE-DIMENSIONAL SYSTEMS

The properties of ion phase-space vortices are discussed in some detail in Berman et al., 1985, Prcseli,

1984, Burjarbarua and Schamel, 1981, Prcseli et al., 1984, 1984, and Trulsen, 1980. They represent one particular

type of Bernstein-Green-Kruskal (BGK) equilibria (Bernstein et al., 1957) which appear to be very stable. An ion

phase-space vortex thus represents a careful balance between trapped and untrapped particles maintaining a local

potential dip, resulting in a corresponding plasma density depletion. It was demonstrated (Bujarbarua and Schamel,

1981 ) that a simple analytical model, characterized by only three parameters, can be constructed for the ion velocity
distribution function. The electrons were assumed to be Boltzmann-distributed. In spite of its simplicity, this model

accounts very well for the properties of ion vortices. The analysis is formally very similar to that of electron holes

PRECEDING PAGE BLANK NOT FILMED
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(Bujarbarua and Schamel, 1981; Lynov et al., 1979, 1985) especially if electron modes in a strongly magnetized

plasma waveguide are considered (P6cseli, 1984). A particularly important result of the analysis (Bujarbarua and
Schamel, 1981) predicts that ion vortices cease to exist (i.e., their amplitude goes to zero) as the electron-to-ion

temperature ratio Te/Ti becomes smaller than -3.5. This result was confirmed in a numerical particle simulation
(P6cseli et al., 1981, 1984; Trulsen, 1980).

The dynamic properties of ion phase-space vortices can be most conveniently accounted for by considering
them as quasi-particles. A simplified analysis demonstrates that an ion vortex can be assigned a negative charge and

a negative mass (P6cseli, 1984; Dupree, 1983). Numerical simulations (P6cseli, 1984; Bujarbarua and Schamel,

1981 ; P6cseli et al., 1981, 1984; Trulsen, 1980) demonstrated that two ion vortices may coalesce into one when they

are sufficiently close in phase space, very much like electron vortices (Lynov et al., 1979, 1980). A detailed para-

meter study of this process remains to be carried out. Isolated ion holes, on the other hand, appeared to be very stable

(P6cseli et al., 1981, 1984; Trulsen, 1980) in a description where the electron component is assumed to be in

Boltzmann equilibrium at all times. This simplification becomes inappropriate in current-carrying plasmas, where
the interaction between ion vortices and individual electrons becomes important. In this case, the reflected electrons

give up a net momentum to the ion vortex, which consequently decelerates, since its effective mass is negative.

However, as its velocity is decreased, it can move into regions of increasing ion phase-space density. The result is a

slow increase in amplitude of the phase-space vortex, which consequently becomes more efficient in reflecting
electrons. The process is thus accelerated. The charge distribution of the reflected electrons gives rise to localized

double-layer-like structures. Eventually, the phase-space vortex is destroyed. The very simplified physical picture

outlined here is elaborated in more detail by Berman et al. (1985) and Dupree (1983) and also by Nishihara et al.,

(1982) and P6cseli (1984). In particular, Berman et al. (1985) describe very spectacular one-dimensional numerical
particle simulations, showing the slow time evolution of ion phase-space vortices under conditions like those dis-

cussed here. It is important to emphasize that the unstable growth of the ion vortices is due to a slowly growing

nonlinear instability, which can be excited for bulk electron flow velocities well below those giving the linear
two-stream instability. The only criterion for the nonlinear instability seems to be that long-lived ion vortices are
formed. In the simulations reported in Berman et al. (1985), this formation occurred for a rather wide class of initial

phase-space distributions of simulation particles. The formation of large ion vortices was investigated by P6cseli et

al. (1981, 1984) and Trulsen (1980). It could be analytically demonstrated that such vortices are formed in the

saturated stage of the one-dimensional ion-ion, two-stream instability of P6cseli and Trulsen (1982). Alternatively,

the formation could be due to ion bursts (which after all can be considered as a segment of an ion beam).

III. ION PHASE-SPACE VORTICES IN THREE DIMENSIONS

The properties of ion phase-space vortices described in the previous section referred mainly to one-
dimensional investigations. The experimental investigation reported in P6cseli et al. (1981, 1984) and Trulsen

(1980) is of course three-dimensional, but it refers to very carefully chosen initial and boundary conditions. Numer-

ical investigations (Morse and Nielson, 1969) of electron phase-space vortices demonstrated that an ensemble of

these was very stable in one dimension, while the phase-space structures were very rapidly eroded in two or, in

particular, three spatial dimensions. In order to investigate the properties of ion vortices in three dimensions, we

performed a laboratory experiment where the vortices were generated by the ion-ion beam instability, which gives

linear instability for wave directions in a cone around the beam velocity.

Our investigations were carried out in the double-plasma device at the University of Tromso (Johnsen, 1986;

Johnsen et al., 1985). The vacuum vessel has an inner diameter of 60 cm and is divided into source and target parts

.... _=,, 40 cm and 80 cm, respectively) by a fine meshed grid. The device was operated at a typical neutral argon

pressure of 1.5 x 10 -4 Torr, with plasma densities in the range 2 to 10 x 108 cm -3. The electron temperature was Te

2.5 eV, while Ti _ 0.15 eV in the absence of a beam. By adjusting the bias of the source, an ion beam was injected

into the target plasma. Typical beam energies were 4-8 eV. The density ratio between beam and background ions is
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adjustablein thesetupandwaschosentobearoundone.Thefluctuationlevelincreasesalongthedirectionofbeam
propagation(Z axisin thefollowing,withZ = 0 correspondingtothepositionof theseparatinggrid)andsaturates
roughlyatadistanceofZ = 9cm,withadensityfluctuationleveloffi/n0- 1-5percent•Theincreaseinnoiselevel
is accompaniedby asignificantscatteringof theincomingionbeam,asobservedbyusingbothconventionalthree-
gridandthenoveldirectionalelectrostaticenergyanalyzers•It isnotexperimentallypossibletoobtaininformation
aboutspontaneouslygeneratedindividualionvortices.Instead,weperformeda statisticalanalysisof theexperi-
mentaldata.Theturbulentplasmafluctuationsin thefrequencyrange10kHzto 1MHzwereinvestigatedbythe
fluctuationsinelectronsaturationcurrenttotwomovableLangmuirprobeswithanexposedsphericaltipof I mmin
diameter•Realtimesignalsequencesof 800Ixsdurationwererecordedwithasamplerateof 2.5MHz. At each
combinationof probepositions,five suchsequencesformedthebasisof astatisticalanalysis.With therealtime
signalsavailable,wethusperformedastatisticalanalysisonaconditionalbasis•ThesignalnAfromthefixedprobe
(A) at position7' waschosenasa reference•Choosingacertainvalueof thedensityperturbation,sayn_,the
correspondingtimerecordsaresubsequentlysearchedfortimest', wherethesignaltakesavaluewithinthenarrow
interval(n_,nl + A), where A is taken as the minimum amplitude resolution of the record. Each time this condition

on signal A is satisfied, the signal from the movable probe B is recorded in a certain prescribed time interval (t' - "r, t'

+ "r). These conditionally chosen time series are then considered as independent realizations for the ensuring statist-
ical analysis. The analysis is repeated for varying positions-_of probe B. The result is most conveniently expressed

in terms of the electrostatic potential by the relation fi/no - e_/Te, which is adequate for the relatively low fluctua-

tion level in the experiment. A record of 800 ItS duration is sufficiently long to give an adequate representation of
many realizations in the ensemble• By the procedure outlined above, we thus obtained the conditional ensemble

average, where t' is just a dummy variable for time stationary turbulence

+ = <_b(r,t+t )l+(r ,t') = +1> . (1)

This quantity has the following rather self-evident physical interpretation: given that a particle is located in a poten-
• • • "% • 1 -- --r-_ v • •

tlal qbl at a position r at time t, then _ = _b(r,t+t ) is the average potentml variation it will experience in the
vicinity of r_ at the same or at different times•

One important question to be discussed in the following is the lifetime "rLof a conditional structure (or eddy
for simplicity) described by equation ( 1), compared to the average bounce time "rBof a charged particle derived from

+. Thus, if'rB % _'L, a small cloud of test particles released at (_' ,t') will be likely to stay together with the trajectories

being correlated for a substantial time. Ions with velocities close to that of the eddy will, if _bl < 0, be trapped, on

average, by the (average) potential, thus exhibiting the features of three-dimensional ion phase-space vortices. On

the other hand, if "rLis very short, the particles will disperse rapidly with a large probability, and vortex or "clump-

like" features will be immaterial for the description of the turbulent fluctuations in question. In our case, we find "rL

_'B. In Figures Ia,b we show equipotential contours for _b in a rectangular cross-section of the plasma for two

different values of the reference potential _bt. The position of the reference probe is indicated by o. The full spatial

variation is obtained by rotating the figure around the Z axis. This symmetry was explicitly verified in the experi-

ment. For the region of measurements, we may consider the turbulence to be homogeneous and isotropic in the
plane perpendicular to the axis of the device. In particular we note that since full time records are available, it is

perfectly feasible to let t be negative, i.e., to consider the formation of the conditional eddy. Evidently the eddy

rapidly assumes a roughly spherical shape and propagates in the direction of the ion beam. A lifetime of 60 I_s for the
eddy is estimated for the present plasma conditions• By fitting a parabola to the local minimum of the conditional

spatial potential profile, we obtain an inverse angular ion bounce frequency rOB-_ _ 8 lXSfor the largest eddy, indica-

ting that the trapping of ions is a significant dynamic process. The observed structures corresponding to large nega-

tive values of qbl can thus be considered as evidence for quasi-static three-dimensional ion holes• Using the electro-

static energy analyzer, we verified (Johnsen et al., 1985) that there was indeed a significant number of ions in the
velocity range where they can be trapped by the conditional eddy. From measurements such as those summarized in

Figure 1, it is easy to deduce the eddy velocity•
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An eddy described by equation (1) and shown in Figure 1 is an average quantity. In each individual realiza-

tion we may find eddies which may deviate significantly from the average. However, we expect these to have little

statistical weight. This statement can be given support by a theoretical analysis.

Being particularly interested in ion-hole formation, we concentrated on negative values for +1 in the present

summary of our results. Of course, positive values of qbl can be chosen as well, where now the electrons can be

trapped. We found that the evolution of conditional structures corresponding to +1 > 0 was somewhat similar to the

overall features given in Figure 1, with some deviations in the actual shapes and velocities. A more general account

of these results is in preparation.

IV. CONCLUSIONS

In this work we discussed experimental observations of conditional structures in ion beam driven turbul-

ence, presenting the actual variation of the average potential deduced from a conditional analysts of measured

fluctuations. Given the propagation velocity and lifetime of these structures, we obtained evidence for the formation

of quasi-stationary, ion phase-space vortices. We find it worthwhile to emphasize that the conditionally averaged

potential need not coincide with the most probably conditional potential variation. An analysis of this problem

requires investigations of the conditional amplitude probability distribution of potential in each spatial point as a
function of time. This (rather lengthy) investigation was also carried out. However, the differences between the

resulting spatial potential variations and those shown in Figure 1 were not sufficiently pronounced to necessitate a

separate figure here. Although we have obtained evidence for the formation of three-dimensional ion phase-space
vortices, it seems conclusive that their lifetime is much shorter than for those found in one-dimensional numerical

simulations (P6cseli et al., 1981, 1984; Trulsen, 1980, P6cseli et al., 1982). In particular, we find that the vortex

lifetime is too short to manifest coalescence of two vortices, which is a relatively slow process in units of bounce

time. Several reasons for this difference between one and higher dimensions can be found. First of all, a stability

analysis (Schamel, 1982) has demonstrated that one isolated vortex is unstable with respect to transverse perturba-
tions in three dimensions, although the growth rate of this instability is rather small for realistic conditions. Prob-

ably more important, however, is the possibility of two or many such vortices colliding at an angle in three dimen-

sions, thus destroying the simple trapped particle orbits. Finally, the interaction between ions and potential struc-

tures is rather different in one and in higher spatial dimensions, as illustrated in Figure 2. Thus, in one dimension

(Fig. 2a), an ion coming in from infinity may give up momentum to an isolated positive quasi-stationary potential

structure (top trace) while it only gives a transient perturbation to a negative potential variation (lower trace). In two

or three dimensions, an ion may give up momentum to both polarities of a potential variation as indicated in Figure
2b. We see no obvious method to discriminate between these effects in our experiment. Numerical simulations such

as those reported in, for example, DeGroot et al. (1977) and Barnes et al. (1985) may provide some insight into

these features. It is rather evident that the experimental conditions discussed here do not exactly match those met in

current-carrying plasmas. It seems fair, however, to assume that the properties of ion phase-space vortices are, at

least in a first approximation, independent of a small electron drift. The conclusion based on the results summarized

here will consequently be that the lifetime of ion vortices in three-dimensional unmagnetized systems is not suffi-

ciently long to allow an analysis in terms of quasi-particles interacting with individual electrons, in contrast to the

one-dimensional investigations discussed in Berman et al. (1985) and Dupree (1983). The growth of very small

vortices, or holes, from an initial low-level noise is thus improbable for a small electron drift. If, however, the
electron drift exceeds the threshold for the linear current-driven instability, a rapid growth of negative potential

spikes may occur (Barnes et al., 1985) which subsequently form ion vortices by particle trapping (Nishihara et al.,

1982). The instability may then evolve nonlinearly as described in Section II. Although the ion vortices have a
relatively short lifetime, they have in this case a large amplitude and are thus effective local barriers for the slow

electrons. One might expect that these conclusions should be modified for magnetized plasmas with electron drifts

142



alongB-fieldlines.However,thetwo-dimensionalnumericalsimulationsinBarnesetal. (1985)donotrevealany
particularvariationsoftheresultswiththeintensityofanexternallyappliedmagneticfield.Unfortunately,practical
limitationsimplythatmostnumericalsimulationsarerestrictedto atmosttwospatialdimensions.

Although ion phase-spacevorticeswere discussedhere with referenceto one particularplasma
phenomenon,it maybeworthmentioningthattheypresentanonlinearplasmamodewhichmaybeinterestingalso
in adifferentcontext[see,for instance,thediscussionbyHershkowitz(1984)].
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Figure 1. Contour plots of conditional eddies for two different reference values 4)i in equation (1)
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between contours is 0.1 _b,ms.
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ABSTRACT

The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone

field line (about 10 RE) which characterizes Alfvrn wave propagation to the scale of microscopic processes which

occur over a few Debye lengths (less than 1 km). These processes interact in a time-dependent fashion since the

current carried by the Alfvrn waves can excite microscopic turbulence which can in turn provide dissipation of the

Alfv6n wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis

on consequences for models of microscopic turbulence. In the second part of the paper a number of models of

microscopic turbulence will be introduced into a large-scale model of Alfvrn wave propagation to determine the

effect of various models on the overall structure of auroral currents. In particular, we will compare the effect of a
double layer electric field which scales with the plasma temperature and Debye length with the effect of anomalous

resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field

strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility
of narrow, intense current structures.

I. INTRODUCTION

Auroral arcs and the auroral current structures which produce them occur in a variety of scale sizes and time
scales. While electrostatic models of auroral electrodynamics (Lyons et al., 1979; Fridman and Lemaire, 1980;

Chiu and Cornwall, 1980) have had success at describing the overall current-voltage relationship of the auroral zone

and in defining the scale size of the inverted-V precipitation signature, they are not well suited to describing the

dynamics of small-scale auroral arcs, multiple auroral arcs, and time-dependent auroral structures. In this realm a

fluid picture of auroral electrodynamics has advantages and can describe a number of auroral processes (Sato, 1978;

Goertz and Boswell, 1979; Miura and Sato, 1980; Lysak and Dum, 1983; Lysak, 1985, 1986). The difficulty with

the fluid models is that the kinetic processes which play an important part in defining the auroral potential drop must

be described by means of assumed transport coefficients which should be determined by a consideration of the
microscopic plasma processes.

The formation of parallel potential drops in laboratory and computer simulated plasmas has been covered in
many of the reviews in this workshop. The problem with applying most of these results to the auroral zone is the

high sensitivity of the results to the initial and boundary conditions which are imposed. In the auroral plasma, there

are no grids to be set to a certain voltage and, perhaps more fundamentally, the scale of the system is vastly larger
than the sizes of a thousand Debye lengths or so which are typical in laboratory and computer studies. Therefore a

description of the auroral potential drop should consider the large-scale dynamics of the auroral zone as well as the

microscopic processes which can directly produce parallel electric fields.

The remainder of this review will consist of two major sections. In the first, we will consider some of the

time-dependent aspects of auroral current structures and the implications these structures have for models of micro-

scopic plasma turbulence. In particular, we will argue that auroral currents are closely associated with Alfvrn wave
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signaturesthattendto definethecurrentwhichflowsalongauroralfieldlinesandthatincludeatransientparallel
electricfield whichcansetuptheparticledistributionsnecessaryto supportdoublelayerstructures.In thesecond

. partof thereview,wewill discusssomenumericalexperimentsinwhichtheformof theparallelelectricfield is
changed.Wewillconsidertwoextremecases.Inthefirst,weassumeadoublelayermodelinwhichapotentialdrop
thatscaleswiththeelectrontemperatureisdistributedoverdistanceswhichscalewiththeDebyelengthwhenthe
currentexceedsathreshold.Wewill comparethismodelwithamodelof nonlinearresistivitydueto electrostatic
ioncyclotronturbulenceinwhichtheeffectiveresistivityincreaseswiththecurrentoverathreshold.Thesemodels
produceratherdifferentoverallcurrentstructures,sincein theresistivemodelthecurrentdiffusesacrossthemag-
neticfield producingbroaderstructures,while in thedoublelayermodelnarrowcurrentstructurescanpersist.

II. A BRIEF REVIEW OF AURORAL ELECTRODYNAMICS

The Earth's auroral zone is a region in which the ionosphere and the outer magnetosphere are coupled by

means of magnetic field-aligned currents which flow between the two regions. These currents must close across

field lines in the ionosphere and also somewhere in the outer magnetosphere. Ionospheric current closure is de-

scribed by the current continuity equation, which is generally integrated along the field line over the thin layer

(about 50 km) in which the ionospheric currents flow. To simplify the description, we will consider a two-

dimensional geometry in which variations in longitude are ignored. This assumption is well justified on the dawn

and dusk flanks of the magnetosphere, although it should be modified to take into account the more complicated

current structures at noon and midnight. With these approximations ionospheric current continuity can be expressed
as follows:

OI_ o_ (1)
j_ - - [Ep Ex] ,

O_x C3x

where EF, is the height integrated Pedersen conductivity and the geometry is defined in Figure 1. Note that here a

positive current is parallel to the magnetic field line, i.e., downward in the northern hemisphere.

In the steady state and in the absence of parallel electric fields, the north-south electric field Ex simply maps

along the field line, which, in the dipolar coordinates of Figure 1, means that it stays constant. (More details on the

dipolar coordinate system can be found in Lysak, 1985.) However, if we assume that a linear relationship exists

between the parallel current and the parallel potential drop:

j_ = -K(qb i-qb_) , (2)

where _ and lffJ) e represent the potential in the ionosphere and in the equatorial plane, respectively, the perpendicular

field must change along the field line so that the curl of the total electric field vanishes. In this case, we can combine

equations (1) and (2) to relate the potential in the ionosphere to the equatorial potential:

K _i = (IOe .
(3)

This relationship indicates that large-scale potential structures in the equatorial plane, with sizes large compared to
L = _Vr_p/K, will pass unattenuated to the ionosphere with no potential drop along the field line. On the other hand,

equatorial structures with sizes less than L will not be mapped to the ionosphere, and the resulting difference will
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appearasaparallelpotentialdrop.Forauroralzoneparameters,thisscalelengthL isabout100km.Thisscalesize
isappropriatefor thelargestscaleauroralstructures,but islargecomparedto thesizesof individualauroralarcs
whichhavea scaleof about1kin.

Consequencesof thistypeofmodelin thesteadystatehavebeenconsideredbyLyonsetal. (1979),Chiuand
Cornwall(1980),andothers.Twocriticalassumptionsaremadein thesemodels.First,it isassumedthata linear
current-voltagerelationshipasinequation(2) ispresent.Theseauthorsassociatesucharelationshipwithplasma
sheetparticlemotioninthedipolarmagneticfield, aswasshownbyFridmanandLemaire(1980).Asweshallsee
below,suchanapproximatelinearrelationshipisnotrestrictedto theseadiabaticmodels.A secondassumptionis
thatthedrivingforcein theoutermagnetosphereischaracterizedby afixedpotentialasafunctionof position
representedby thefight-handsideof equation(3).Suchapotentialcouldberelatedto theE × B motionof the
equatorialplasma,in whichcasetreatingit asconstantimpliesthattheequatorialconvectionis notaffectedby
conditionsonthefield linewhichconnectsit to theionosphere.

Ontheotherhand,it hasbeenknownfor sometimethatthe ionosphereexertsa frictionalinfluenceon
magnetosphericconvectiondueto thedissipationcausedbythefinitePedersenconductivity(e.g.,Vasyliunas,
1970;Sonnerup,1980).Informationonionosphericconditionsis transmittedtotheequatorialregionbymeansof
shearmodeAlfvrn waves which can propagate along the field line between the two regions, which have a travel

time from the ionosphere to the equator of about 30 s in the auroral zone, as is evidenced by the existence of Pi2

pulsations with periods of about 2 min (Southwood and Hughes, 1983), which would correspond to the travel time

from one ionosphere to the conjugate ionosphere and back.

The presence of Alfvrn waves on auroral field lines should cause one to rethink the steady state model
presented above. For one thing, the steady state model assumes that currents perpendicular to the magnetic field

only exist at the ionosphere and in the equatorial plane, while Alfvrn waves carry with them a polarization current

which depends on the rate of change of the perpendicular electric field. In a static structure, these currents will

vanish, but the possibility exists that a standing wave structure could be set up in which the polarization currents

could persist. Such a situation is shown in Figure 2, which shows results from a time-dependent, two-dimensional

MHD model of auroral currents (Lysak and Dum, 1983; Lysak, 1985). The contours in this figure represent flow

lines of the current for a case in which a potential structure is propagated across the field line. Alternatively, this

figure could be viewed as the current pattern produced by a potential structure in the presence of a north-south

component of plasma convection in the auroral zone. As can be seen, the multiple reflections of the Alfvrn wave

pulses give rise to wave structure in which interference occurs between up- and downgoing waves. This wave
interference decouples the field-aligned currents which connect to the ionosphere from those which flow up to the

equatorial plane. In a structure such as this, which may be typical of multiple auroral arc structures, the steady state

model is clearly inappropriate.

This structure can be described by a generalization of the model given above by replacing the assumption

that a fixed equatorial potential structure is present by a more general assumption that a relation exists between the

electric field and the perpendicular currents. For the case of polarization currents, this relation involves the so-called

Alfvrn conductance (Mallinckrodt and Carlson, 1978), ]_A = C2/47rVA, where VA is the Alfvrn speed. If it is

assumed that the ionospheric currents close via these polarization currents, a relation with the form of equation (3)

results but with the scale length becoming:

L = II_ "_P_A I I/2(Y_r,+ Y'A)
(4)
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TheAlfvrn conductanceEAisplottedalonganauroralfieldlineinFigure3, whereit canbeseenthatitsvalueover
thefieldlineis generallylessthanthePedersenconductivity,whichis typicallyover1mho.FortheCaseEA<<
Ep, equation(4) showsthatthescalelengthdependson theAlfvrn conductanceratherthanthePedersencon-
ductivity, leadingto smallerscalesthanthosepredictedbyequation(2). Thus,the 1-kinscalesizeof discrete
auroralarcsmayin factbearesultof currentpatternssuchasthoseshownin Figure2.

Anotherprocesswhichviolatesthesteadystateassumptionis theenhancementof the ionosphericcon-
ductivitydueto theenhancedenergeticelectronprecipitationproducedbytheparallelelectricfield.Thiscangive
riseto afeedbackinstability(Sato,1978;Rothwelietal., 1984;Lysak,1986)in whichtravelingenhancementsof
theconductivityandthefield-alignedcurrentoccur(Fig.4). Numericalmodelingofthisinstability(Lysak,1986)
showsperiodsof about1s whichappearto beduetoAlfvrn wavereflectionsataltitudesof 2REor less,sothese
currentsalsoclosewellbeforetheyreachtheequatorialregion.ThestructuresshowninFigure4havescalesizesof
about10km, approachingthesizeof thediscreteaurora.

Thediscussionaboveindicatesthatwhilethesteadystatemodelcandescribethelarge-scalepropertiesof
theaurora,time-dependenteffectsmaybeimportantatcreatingshort-scalecurrentstructuresonauroralfieldlines.
Parallelelectricfieldsthusforminacurrentenvironmentwhichcanfluctuateontimescalesasquicklyas1s.On
thesetimescales,Alfvrn wavescarrychangesin thefield-alignedcurrents.Parallelelectricfieldsformasaresult
(GoertzandBoswell,1979)ofthecurrentrequiredtoflowbecauseofthemagneticperturbationassociatedwiththe
Alfvrn wave.Plasmaturbulencewill formwhenthecurrentexceedsthethresholdforinstabilities.Theeffectofthis
turbulencewill beexaminedin thefollowingsection.

III. MACROSCOPIC EFFECTS OF PLASMA TURBULENCE

If plasma turbulence does develop, it can affect the development of the current structure which produced it.

Lysak and Carlson (1981) showed that the introduction of parallel resistivity modified the Alfv6n wave dispersion

relation, producing a reflection and dissipation of the wave which reduces the current. From the point of view of the

MHD equations, this is the result of the well-known magnetic diffusion equation in the presence of resistivity.
Plasma turbulence in a strong magnetic field will most likely give rise to a non-isotropic conductivity. In the case of

double layer formation of electrostatic ion cyclotron turbulence, the dominant effect is that of parallel resistivity

(Lysak and Dum, 1983). It can be shown that this term gives rise to diffusion across the magnetic field:

aBY - _ I_q aBY ] (5)c3x c3X II c3x J '

in the geometry of Figure 1 with gradients in y ignored. Thus, the presence of plasma turbulence will in general lead

to a broadening of current structures and the reduction in the current strength.

In this section, we will compare three models of parallel electric fields caused by current-driven turbulence.

In order to incorporate these effects into a MHD model, a simple relationship between the fluid properties of the

plasma, such as density, drift velocity and temperature, and the parallel electric field, must be introduced. Clearly, a

satisfactory model of this type has not yet been found and, indeed, it is likely that the complexities of plasma

turbulence cannot be so easily parameterized. Nevertheless, some simple models of this type can be considered and
will serve to indicate some of the relevant effects.
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Thefirstmodelwewill considerwill bebasedonsimulationsof currentdrivendoublelayers(e.g.,Satoand
Okuda,1981;Kindeletal., 1981;Barneset al., 1985).Whenthedrift velocityin thesemodelsis abouthalf the
electronthermalspeed,doublelayerswithamplitudee_/Te"=-1 are produced and, in long enough systems, will
recur at intervals of the order of 1000 Debye lengths, where a Debye length is the order of a few meters in the auroral

plasma. Since the MHD model has a grid size along the magnetic field of about 500 km, it is appropriate to consider
the average electric field, which for the above numbers leads to:

Ez = 0.001 [4"n'nTe] I/2 (6)

Although the drifts in excess of the threshold cause these double layers to grow and decay more quickly (Barnes et

al., 1985), the average electric field over the time step of the MHD model (about 0.01 s) may remain roughly

constant. To avoid a discontinuity in the electric field, the parallel field is increased linearly [using the linear resisti-

vity given by equation (9) below] until the double layer electric field given above is reached. It should be noted that

double layer electric fields are not present when the plasma frequency exceeds the electron cyclotron frequency

(Barnes et al., 1985). This effect has not been explicitly included in the model; however, in the region in which the

critical current is the lowest, the plasma frequency remains below the cyclotron frequency.

As an alternate to the double layer model, we consider a model for electrostatic ion cyclotron (EIC) turbul-

ence due to resonance broadening (Dum and Dupree, 1970; Lysak and Dum, 1983). In this model, a resistive

potential drop is introduced whenever the current exceeds the threshold for the EIC instability, i.e., about 0.3 of the

electron thermal speed for Te = Ti. The amplitude of the fluctuating electric field, and thus the effective resistivity,

increases quadratically as the current increases. Thus, the electric field becomes:

mp:_

Ez - (J_ - j_nt) (7)
ne 2

where the effective collision frequency is:

[v* = 0.4_Qi I + 0.1
\ Jcrit /

(8)

Note that in this case the parallel electric field will scale with the strength of the background magnetic field through

the ion gyrofrequency 1)_ = eB/m_c, in contrast to the double layer model described by equation (6).

These two models have very differing behavior in that the double layer model is electric field-saturated in the

sense that once the critical current is reached, the parallel electric field does not increase further. The nonlinear

resistive model described by equations (7) and (8) is in a sense current-saturated since the electric field rises very

rapidly after the critical current is reached. This enhances the diffusion of the current and reduces it to a lower level.

The third model that will be considered will be one in which an effective collision frequency is assumed as in

equation (7) but the collision frequency is independent of the current once the threshold is reached. Thus, equation
(8) is replaced by:

v* = 0.412i ,
(9)
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when the drift velocity exceeds 0.3 of the electron thermal speed. This model will be referred to as the linear resisti-

vity model.

In order to assess the macroscopic consequences of these models, a series of runs were done with the MHD

model described earlier. In these runs, a current loop of a fixed magnitude and width is introduced on the field line,

propagates toward the ionosphere, and enters a region of parallel electric field described by one of the three models.

The ionospheric conductivity is taken to be fixed at 1 mho, and the density profile is of the form:

n(r) = 105 e-<r-r')/h + 5 (r- 1)"ls , (10)

where n is measured in cm -3, r is in RE, the base altitude for the ionosphere is ro -- 1.05 RE, and the scale height h =

0.1 RE. The electron temperature is 1 eV and the upper boundary condition is taken to absorb Alfv6n waves which

are incident upon it after being reflected from lower altitudes (Lysak, 1985). As the runs proceed, the maximum

potential drop and the field-aligned current at the ionosphere are monitored, as the system approaches a steady state.

Since the ionosphere is a very good conductor, the current of a reflected Alfv6n wave is in the same direction as that
of the incident wave (Mallinckrodt and Carlson, 1978); thus, the final value of the current will be twice the injected

current in the limit of infinite ionospheric conductivity (Y_r,>> EA) and no parallel electric field. Such a case is

shown in Figure 5 in which the injected current was 20 txA/m 2 and the final current of 36 p,A/m 2 is nearly double this

value. Because of the diffusion associated with the parallel electric field, the current reaching the ionosphere is

reduced when a parallel electric field is present. This effect is shown for the double layer model and the nonlinear

resistivity model in Figures 6 and 7, respectively. In these figures the injected current was 20 p,A/m 2. It can be seen
that the double layer model is much less diffusive than the resistive model, with the final currents being 30 p_A/m 2

and 6 _A/m 2 for the two runs.

The final current-voltage characteristics for a series of runs are shown in Figure 8. First of all, note that each

of the models produces potentials in the kilovolt range for currents of a few microamps per square meter. This is

significant since the parameters of the parallel electric field model were determined purely from the local properties

of the auroral plasma without any requirement that the global current-voltage relation come out right. Therefore,
none of the models can be ruled out on this basis.

Turning to differences in the models, we see that the double layer model exhibits the voltage-saturation
effect referred to earlier. As the current increases, more of the field line can support the formation of double layers,

leading to an increased total potential drop. Since it is assumed that the parallel electric field does not increase

further as the current increases, the addition of more current does not further increase the total potential drop.

The linear resistivity model produces a linear current-voltage characteristic. At first glance this may appear

obvious, but actually the situation is complicated by the scaling of the fields and currents along the field line. It was

shown by Lysak and Dum (1983), however, that these factors cancel when the resistivity scales with the magnetic

field strength, preserving the linear relationship between the total potential and the field-aligned current at the

ionosphere. The approximate linear relationship has been invoked by Lyons (1980) to support the nonlocal current-

voltage relationship based on adiabatic particle motions (e.g., Fridman and Lemaire, 1980). However, the present

argument shows that this interpretation is not unique.

The current limiting effect of the nonlinear resistivity model is apparent from Figure 8. Here an attempt to

increase the current simply causes an enhancement in the diffusion, leading to large potentials and a broader current

structure as is seen in Figures 9 and 10, which compare the field and current profiles for the double layer and

non-linear resistivity models. Here the enhanced diffusion due to the nonlinear resistivity is evident.
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Figure11showstheeffectivediffusionintheentiresetofrunsbyplottingtheratiobetweenfinalandinput
currentsagainsttheinputcurrent.Asdiscussedabove,themaximumvalueof thisratiois2for thecaseof infinite
Pedersenconductivity.TheopensquaresrepresentrunswithnoparallelelectricfieldandaPedersenconductivityof
1mho.Thesmallreductionfrom2inthesecasesrepresentstheeffectof ionosphericdissipation.Notethatthelinear
andnonlinearresistivemodelshavecomparablediffusionfor smallcurrentswherethenonlinearpartof theresisti-
vity is not important;but,at largercurrents,thenonlinearmodelis morediffusive.Thedoublelayermodelis
comparableto theothermodelsatlowcurrents,butanincreasein thecurrentdecreasestheeffectivediffusionsince
thepotentialdropdoesnot increasefor increasingcurrent.

In summary,the threemodelsfor a localcurrentvoltagerelationproduceresultsconsistentwith the
observedglobalrelationship.Thus,thistypeof modelcannotbedistinguishedfromthekineticmodelsof parallel
potentialdroponthisbasis.Thedoublelayermodelallowsforverystrongcurrentstoflow inanarrowchannelsince
thepotentialdropandthustheeffectivediffusiondonotincreasemuchasthecurrentincreases.Thenonlinear
resistivemodelhastheoppositeeffectin thatthestrongincreasein thepotentialdropforanincreasein thecurrent
causesanenhanceddiffusionwhichbroadensthecurrentchannel,ineffectcausingthecurrenttoflow aroundthe
regionof parallelelectricfield.

IV. SUMMARY AND CONCLUSIONS

The simplified models of parallel electric fields presented here have provided some insight into the develop-

ment of the auroral potential drop, but are clearly limited in their applicability to the auroral plasma. Auroral con-

ditions can be quite varied, and the presence of turbulence along the field line can result in the heating of the plasma

as well as a decrease in the plasma density as transversely heated ions are expelled from the acceleration region.

Therefore, there is more to auroral dynamics than can be found in the simple cold plasma model used here.

Density decreases in the auroral zone serve to decrease the critical current necessary for the generation of
microscopic turbulence, and therefore will increase the total potential drop for a given level of current. Numerical

results indicate that this result is more important in the double layer model because of the "switch-on" nature of the

double layer electric field. Since the double layer electric field scales with the plasma pressure, the potential drop is
localized at the lowest altitudes at which the critical current is exceeded. This is in contrast with the resistive electric

field which depends on the excess current over the critical current, and thus maximizes at the point where the critical

current is lowest. A set of runs in which a current of 10 i_A/m 2 is injected showed that the potential drop increased by

25 percent in the double layer model when the ionospheric scale height [see equation (10)] is reduced to 0.05 RE

from the value of 0.1 RE used in the other runs, while in the nonlinear resistivity model the increase was only 18

percent. Thus, the effect of a density cavity would be to produce an increase in the potential drop, especially in the

double layer model.

The temperature of the topside ionosphere can also vary under auroral conditions, and may be expected to

increase as the result of microscopic turbulence. Increases in the temperature will tend to decrease the extent of the

turbulent region since the critical current scales as the electron thermal speed. Thus, potential drops due to nonlinear

resistivity would be expected to decrease. A similar result is true in the double layer model; however, this effect is

counteracted by the increase of the average electric field due to double layers since this field scales with the square
root of the temperature. Runs at 10 ixA/m 2 indicate that the potential drop in the nonlinear resistivity model

decreased by 35 percent when the temperature was raised by a factor of 10, while in the double layer model the

potential increased by 12 percent. Thus, the increase of temperature favors the double layer model, at least until the
point at which the current becomes sub-critical.
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In the actual auroral zone, these two effects will be necessarily connected. The transverse heating of ions

observed in the auroral zone can create density cavities since the heated ions are subject to the magnetic mirror force

that expels them from the low-altitude auroral zone. One can imagine a scenario in which the increase of the current

magnitude excites turbulence, leading to the heating of ions and the creation of the density cavity. This hot, low

density plasma would lead to conditions under which the formation of double layers could further accelerate
electrons into the atmosphere and ions out of the atmosphere. This would result in the density cavity progressively

extending to lower and lower altitudes, with a corresponding increase in the total potential drop along the field line.

While the existing numerical model is too crude to account for all these effects, this scenario seems plausible based

on the results above. A more complete model including the effects of the thermal evolution of the plasma will be the

subject of future work.

In conclusion, this work has shown first of all that models of the auroral potential drop based on microscopic

turbulence, whether due to double layrs or a nonlinear resistivity, can account for the correct magnitude of the

auroral potential drop for typical auroral currents. The two models differ in that the nonlinear resistivity model

limits the current density by spreading the current over a broader area. In contrast, the double layer model proposed
above has a limit to its total potential drop and can sustain currents with a high density. At such high current densi-

ties, however, this model will most likely be too simplified, since plasma heating and the formation of a density

cavity, effects not included in the cold plasma model presented here, will likely change the nature of the current-

voltage relation.

The oversimplified models presented here represent an attempt to incorporate kinetic effects of the plasma

into a fluid model. In order to model the global structure of the auroral zone, some such approximation must be

made since particle-in-cell or Vlasov models of any large volume of the auroral zone are technically not feasible

with present or anticipated computer resources. The question of a satisfactory parameterization of the kinetic effects
for use in a fluid model remains an open question, which can only be answered by a combination of fluid modeling

and kinetic modeling, as well as analytic theory of the auroral current region.
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Figure 1. A sketch of the dipolar coordinate system used in this paper. Here z is the coordinate

along the geomagnetic field, y is the longitude, and x is a coordinate proportional to the inverse of
the L value of the field line.
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CURRENT DRIVEN WEAK DOUBLE LAYERS

G6rard Chanteur

CRPE/CNET, 92131 Issy-les-Moulineaux, France

ABSTRACT

Double layers in plasmas can be created by different means. For example, a potential difference forms

between two plasmas with different temperatures (Hultqvist, 1971; Ishiguro et al., 1985), in a plasma jet flowing

along a converging magnetic field (Serizawa and Sato, 1984), in a quiescent plasma submitted to an external differ-

ence of potential, or in a turbulent plasma carrying an electric current. The first three cases can be current-free, but

not necessarily, although the numerical simulations have been made under such conditions for the first two points

(Ishiguro et al., 1985; Serizawa and Sato, 1984). Apart from the third case, which is mainly of interest for labora-

tory experiments, these double layers are good candidates for accelerating the auroral electrons to the few kiloelec-
tron volts observed.

I. INTRODUCTION

This paper is devoted to the fourth case, i.e., to weak double layers driven by an electric current. Two papers

have triggered the studies in this field: DeGroot et al. (1977) showed the formation of localized potential jumps in an

homogeneous plasma with a suprathermal electron drift; later, Sato and Okuda (1980) gave evidence for the forma-

tion of small double layers under ion-acoustic instability conditions, i.e., a large electron-to-ion temperature ratio

and a subthermal electron drift. Our present understanding of weak double layers built by electric currents has

mainly grown from the analysis of numerical simulations with either superthermal (DeGroot et al., 1977; Singh et
al., 1985; Singh and Schunk, 1984) or subthermal (Sato and Okuda, 1980, 1981; Kindel et al., 1981; Hudson and

Potter, 1981 ; Okuda and Ashour-Abdalla, 1982; Hasegawa and Sato, 1982; Nishihara et al., 1982; Chanteur et al.,

1983; Chanteur, 1984, 1986; Barnes et al., 1985) electron drifts, but always in linearly unstable conditions. The

formation mechanism seems to be different in these two cases; furthermore, it is likely to be sensitive to the

boundary conditions in the superthermal case. The basic mechanism which produces weak ion-acoustic double

layers is a current interruption caused by a negative potential spike. This fact was primarily recognized in one-

dimensional periodic simulations (Sato and Okuda, 1981 ; Kindel et al., 1981 ; Hasegawa and Sato, 1982; Nishihara

et al., 1982; Chanteur et al., 1983) and has been recently confirmed in the two-dimensional case with a strong

magnetic field and under various boundary conditions (Barnes et al., 1985). The theoretical explanation given to the

appearance and the growth of a double layer (Hasegawa and Sato, 1982; Nishihara et al., 1982; Chanteur et al.,

1983; Chanteur, 1984) turns out to be more or less independent of the linear instability. The goal of this paper is to

specify this point, and it will be shown that small and localized differences of potential can be built by a partial

current interruption under linearly stable conditions. It has been demonstrated (Dupree, 1983; Berman et al., 1985;

Pdcseli, 1984) that phase space holes can be unstable for electron drifts less than the critical value which destabilizes

the ion-acoustic modes. Although different from our work in many respects, it invokes the same physical basis, i.e.,

the reflection of the current carrying electrons by coherent structures. Section II gives an account of the formation of

weak ion-acoustic double layers under linearly unstable conditions. Section III is a first presentation of recent

simulations demonstrating that small double layers can be produced by a localized current interruption in a margi-

nally stable plasma. A more thorough presentation of these numerical experiments is in preparation (Verga et al.,
1986).
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II. UNSTABLE CASE

Most of the numerical studies concerning ion-acoustic double layers have been made with electrostatic par-
ticle codes that allow for the existence of thermal fluctuations. Indeed, the relatively small number of particles per

Debye length (usually a few 101 or 102) gives rise to an artifically high level of thermal fluctuations. Besides, the

probability of "big" fluctuations of the electric potential increases with the length of the system and should not be

dismissed. Since ion-acoustic waves are weakly dispersive, we can argue that a big and negative potential spike

present in the "initial" condition has a coherence time long enough to interact resonantly with the electrons. The

word "initial" deserves a short explanation: a particle run is usually started with particles regularly distributed in

space and attributing each particle a velocity given by a random number generator. The electric field usually taken

equal to zero everywhere at t = 0 is built self-consistently by the thermal motion of the particles in a few tens of time

steps. It appears that the "initial" condition on the field is determined by the microscopic details of the loading of the

particles. The longer the system, the greater the probability to find a negative potential spike sufficiently above the

thermal level to produce a persistent interruption of the current by reflecting the electrons. In a short and periodic
system without any externally applied electric field, this current interruption goes on for the tr_insit time of the

electron flow through the system and a stable BGK state results with a large fraction of trapped electrons. If the

system is long enough for the establishment of this BGK state to be delayed and if the negative spike is not too close

downstream of another big spike, the evolution will be qualitatively different, giving rise to a weak and transient

double layer, as will be seen below. Increasing the length of the system, we increasee the probability of the large

fluctuations and delay the appearance of the BGK state; the combination of these two facts is likely to explain both

the reason why double layers have never been observed in short periodic systems and the reason for the mean
distance between double layers in very long systems. Instead, open boundary conditions not only provide a con-

tinuous input of energy into the system but new potential fluctuations are usually created near the input boundary

(i.e., where the incoming flux of electrons is greater) and propagate through the system, giving rise to the observed

temporal recurrence of double layers even in short open systems (Barnes et al., 1985). Consequently, the spatial and

temporal recurrences of double layers in open systems are mainly governed by the chosen injection process of the

particles at the boundaries. On the other hand, it has been shown (Barnes et al., 1985) that the formation mechanism

of a weak double layer reported in detail in Nishihara et al. (1982), Chanteur et al. (1983), Chanteur (1984, 1986),
and Barnes et al. (1985) is independent of the boundary conditions. Let us now recall the main features of this

process.

In a system driven unstable by an electric current, the perturbations propagating against the electron flow are

strongly damped, and the perturbations close to the most unstable wave number are rapidly selected among the other
ones. On the basis of the linear instability theory for an homogeneous plasma, we expect the turbulence to develop

homogeneously. Instead, it is observed that the evolution of long systems is dominated by one or few coherent

structures, as was shown initially by Sato and Okuda (1980). For example, Figure 1 shows a negative potential spike

(the figure in fact represents the potential energy of an electron), with e_b/Te -- 1 which has emerged from the
thermal noise in a one-dimensional electrostatic and periodic particle simulation with the following parameters:

length L = 512 hD, ion-to-electron mass ratio m_/me = 100, electron-to-ion temperture ratio Te/Ti = 20, and
electron drift to thermal speed ratio Vd/Vth = 0.8. As previously discussed, this pulse originates in a thermal fluctu-

ation present in the "initial" condition. This negative spike of potential is initially amplified by the linear instability
taken over by the nonlinear instability discussed in Nishihara et al. (1982) and Chanteur (1983). The electrons

having a kinetic energy less than the height of the potential barrier are reflected on both sides of the pulse; yet, due to

the current, more electrons impinge on the left side of the barrier than on the right side and, consequently, more
electrons are reflected upstream of the barrier than downstream. This simple fact has important implications. First,

the resulting charge separation in the vicinity of the barrier develops a difference of potential between the two sides

of the pulse, as can be seen around x = 120 hD in Figue I, the low electric potential being on the upstream side of
the barrier (upstream with respect to the electron drift). Second, quasi-neutrality of the plasma being preserved

outside of the pulse, the electron density in excess on the upstream side is compensated for by an increased ion
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density• Thus, the deep density trough associated with the potential pulse separates the upstream region of inflated

plasma density from the depleted downstream region• Third, taking into account the velocity of the barrier, the
mechanism of the instability can be easily understood• Let Vo be the velocity of the barrier and _ the velocity of an

incoming electron in the frame of reference moving with the barrier; assuming that the potential does not change
during the interaction with this electron (a reasonable assumption considering the time scales in the numerical

experiments), the collision is elastic and the parncle leaves with a velocity -V. The kinetic energy of the particle in
the laboratory frame has changed from 1/2 me(Vo + V) 2 to 1/2 me(Vo - V)2; "1.e., an energy 2me Vo._ has been
transferred to the barrier. The potential barrier moving primarily in the direction of the electron flow receives more

energy from the electrons impinging on the upstream side than it gives the downstream side, and the field energy
locally grows! Detailed energy and momentum balances have been made theoretically (Nishihara et al., 1982;

Chanteur et al., 1983; Pecseli, 1984) and checked in the simulations (Chanteur et al., 1983).

Due to the relatively small number of particles per Debye length, local diagnostics in phase space (for
example the distribution function of electrons at a given location) are poorly done in particle simulations. Instead,

Vlasov simulations are free of this limitation, but in return suffer, at least for this study, from the absence of thermal

noise• Starting with an initial condition strictly independent of x, a good Vlasov code can be run a long time before

truncation and round-off errors seed a potential instability. An initial perturbation has to be put, whether random or

not, in the system; an account of weak double layer formation under such circumstances has been given in Chanteur
(1984). For the present discussion, we just recall the simulation presented in Chanteur et al. (1983). This Vlasov run

was initialized with the same physical parameters as the aforementioned particle run, the initial perturbation being a

localized 10 percent density depression on both species. Although qualified "perhaps unphysical" in Borovsky

(1984), this initial condition reproduces what is built from the exaggerated thermal noise present in particle simula-
tions. In fact, the potential energy of an electron shown versus x and t in Figure 2 is strinkingly similar to the result of

the particle simulation (see Fig. 1). This temporal evolution of the system is not an artifact of the periodic boundary

conditions; doubling the length of the system while keeping the same physical parameters does not change anything.
On the other hand, this behavior is also observed in bounded systems and for different physical parameters (Barnes

et al., 1985)• Thus, it is not due either to some numerical coincidence for a magic set of parameters; in turn, the

boomerange motion of the localized wave seems to be an artifact of one-dimensionality (Barnes et al., 1985). Figure

3 displays the electron phase space in the vicinity of the double layer at three different times during its propagation in

the direction of the electron flow. The reflections of the electrons are clearly visible on both sides of the structure,
and the electron holes are seen to be formed in the depleted downstream region [see also Chanteur (1984) and Barnes
et al. (1985)]•

The slowing down and the late evolution of the weak double layer cannot be understood without taking into

account the ion dynamics (Chanteur et al., 1983; Chanteur, 1984). Figures 4a and b are local representations of the

ion phase space just around the double layer for the above-mentioned particle and Vlasov simulations, respectively•

It again emphasizes the similarity of the two runs. In the beginning, the negative pulse of potential is moving
subsonically (-- 0.8 cs) toward the right in Figures 1 and 2, consistently with the negative velocity perturbation seen

at times 320 and 340 in Figures 4a and b.. The pulse first undergoes a very faint slowing down (Chanteur et al.,

1983) of purely hydrodynamic origin because of the extremely small number of resonant ions. It has been

emphasized in Chanteur (1986) that resonant ions are by no means responsible for this slowing down and the point
can be stated in the following way. Weakly nonlinear ion-acoustic waves in a stable plasma with a large electron-to-
ion temperature ratio are well accounted for by assuming a cold fluid behavior of the ions and a Boltzmannian

distribution of the electrons in the electrostatic potential. The evolution of the potential is then determined by a
Korteweg-de Vries (KdV) equation, and the numerical integration of this evolution equation shows that a localized

and rarefactive ion-acoustic wave is very slightly slowed down, and simultaneously weakly damped by the radiation

of a dispersive tail on its trailing edge (Nishihara et al., 1982; Fornberg and Whitham, 1978; Okutsu and Nakamura,

1979). In the unstable case presently under investigation, the alteration of the pulse by the reflection of the electrons

has been incorporated in a dissipative KdV equation (Nishihara et al., 1982; Chanteur et al., 1983)• The resulting
amplification strengthens the deceleration of the pulse caused by the quadratic nonlinearity qb(0_b/0x) of the evolu-

tion equation (Nishihara et al., 1982). Of course, the validity of this dissipative KdV equation relying on a fluid

description of the ions progressively breaks down with the onset of the ion trapping. The growth of the potential
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pulse occurs on a time scale comparable to the transit time of the ion through the pulse; thus, the closer to resonance

the ions, the greater the non-adiabatic effect they suffer (which eventually traps them inside the pulse). The onset of

the trapping is visible in Figures 4a and b at times 448 and 512, respectively. The transfer of momentum to these ions

enhances the slowing down of the pulse, which in turn makes the trapping more efficient as the pulse velocity moves

toward the central part of the ion distribution, as shown in Figures 4a and b where the pulse velocity is indicated at

each time by a heavy horizontal line. The trapping is completed when the pulse velocity comes to zero, at times

around 600 in both simulations; yet, the trapped ions are not phase-mixed inside the pulse, and the highly asymmet-

ric trapped population is responsible for the backward acceleration of the pulse with the subsequent detrapping of

the ions. The burst of ions accelerated up to Cs is formed during this process (Fig. 4b) in the downstream region.

Such bursts up to 2 Cs are commonly observed in Vlasov simulations started with random initial conditions

(Chanteur, 1986). In a two-dimensional system, the trapping acts differently since the ions can enter sideways the

potential well, which leads to a trapped population much more symmetric than in one dimension. Barnes et al.

(1985) actually observed in two-dimensional simulations that the pulse does not move backward after it has
stopped. We can thus conclude that the observed boomerang motion of the structure is an artifact of one-

dimensionality.

Except for this rather secondary point, one- and two-dimensional simulations agree on the basic process

responsible for the formation of weak double layers driven by the ion-acoustic instability. This process recently

received an experimental confirmation in the laboratory experiment done by Sekar and Saxena (1985).

III. AROUND THE MARGINAL STABILITY

It has been suggested in Chanteur (1986) and Pecseli (1984) that the formation mechanism discussed at

length in Section II can work with electron drift velocities unable to destabilize the ion-acoustic mode. A series of
Vlasov simulations have been done to check that point. More generally, we have studied both subthermal and

superthermal drift cases, but always near or below the marginal stability of the plasma. The marginal stability

condition referred to is the classical one computed for an infinitesimal harmonic perturbation of the plasma and thus,

strictly speaking, is not of concern for the initial condition used to start the simulations. Nevertheless, it indicates

that the thermal noise, absent in the Vlasov simulation, would be marginally stable. We chose the same initial

condition previously used in Chanteur et al. (1983) and Chanteur (1984) and reported to in the preceding section,

i.e., a I0 percent density dip on both species. The drift motion of the electrons relative to the ions rapidly creates a

potential trough, the depth of which strongly depends on the drift velocity Va and on the initial amplitude of the

density dip. It is worth noticing that the weak double layers triggered by initial density dips almost vanish when the

initial amplitude of these dips is reduced to 1 percent. Thus, under marginally stable conditions, the formation

mechanism of weak double layers needs a rather strong initial depression of the plasma density to be effective. In

this respect, the linear instability helps a lot in the unstable case. In the present case, the initial density dip has to be

produced by other means. The length of the system has been chosen equal to 1024 hD and 2048 hD in some cases to

prevent an early influence of the periodic boundary conditions in the circulating electrons. As said in the
introduction, we only present a small sample of our simulation results. A full account of these results will be given

in the paper by Verga et al. (1986), presently under preparation. The physical parameters of the five selected runs

are listed in Table 1. Figures 5 to 8 illustrate runs 1 to 4, respectively, each figure being composed of an upper panel

for the electric potential (averaged over two plasma periods) in unit Te/e, and of a lower panel for the electron phase

space. The results are conveniently organized with respect to the ion-to-electron temperature ratio.
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TABLE 1. PHYSICAL PARAMETERS OF THE SELECTED RUNS

Run Number

1

2

3

4

5

Ti/Te

0.30

0.30

0.50

1.00

1.00

Vc/Vth Va/Vth

0.55 0.50

0.55 0.60

0.88 0.85

1.44 1.25

1.44 1.50

Linearly
Stable?

yes

no

yes

yes

no

System

Length

(XD)

1024

1024

1024

1024

2048

Note: The mass ratio is mi/mee = 100 for the five runs, and Vc is the critical electron drift which destabilizes the
plasma.

The case of relatively cold ions (Ti/Te = 0.30) is illustrated by runs 1 and 2, which are linearly stable and

unstable, respectively, but both marginally, as appears from Table 1. The two upper panels in Figures 5 and 6 show

that the electric potential in the vicinity of the moving density depression has the same spatial variation as the one

discussed in Section II for strongly unstable cases. Only quantitative differences occur; the amplitude of the nega-

tive pulse and the difference of potential between the downstream (on the right of the figures) and upstream sides
which were of the order of one in the Section II cases are now reduced to 0.05 for run 1 and 0.10 for run 2. It is worth

noticing that the linear instability, although weak, helps building a difference of potential which is twice the one of

the stable case. The electron phase spaces drawn with the same contour levels (lower panels in Figs. 5 and 6) show
the same enhancement of the structure; moreover, tiny electron holes are formed downstream of the double layer in

run 2. These electron holes can be associated one to one with the small positive pulses seen on the high potential side
(Fig. 6, upper part). Run 3 for Ti/T e = 0.50 differs from run 1 by the formation of electroo holes, which are even

deeper than in run 2, as shown by the phase space (Fig. 7, lower part) and the associated pulses of potential, also

more pronounced than in case 2. The potential trough and jump have values twice those of the corresponding values

in run 1. Going on to higher ion temperature with T_/Te = 1, a superthermal drift velocity is now required to get the
marginal stability of the plasma, and differences with the colder ion cases can be seen both on the potential and in the
electron phase space. First, the potential trough is not as sharp as in the previous cases. Second, the difference of

potential, although greater than previously, is much less steep, apart from the large pulses associated with very deep

electron holes. Correspondingly, the acceleration region of the electrons in the vicinity of the potential well (see

Fig. 8, lower part) is not as well defined as in the cold ion case. To briefly summarize the observations, we can say

that, except for very weak drift velocities, electron holes moving at velocities close to 0.5 Vth are recurrently formed

in the density depression which moves subsonically. The region of high potential extends between the density
depression and the leading electron hole.

Run 5 differs from run 4 by the initial condition, which is now made of two identical density depressions
separated by 512 hD. Snapshots of the averaged potential presented in Figure 9 show that the two structures evolve

independently, as long as they are disconnected, yet a blowup of the potential occurs when the two depleted regions
join together. This behavior has not yet been investigated in detail and needs to be confirmed for other sets of

parameters.
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IV. CONCLUSION

The physics of the formation of weak double layers by current interruption seems now to be satisfactorily
understood after a few years of both theoretical and numerical work. We have presented the first evidence of weak

double layer formation in stable conditions: they share conditions, except for those associated to the ion dynamics.

Their weakness explains why they have almost no effect in the ion phase space. An interesting point associated with
these structures is the recurrent formation of electron holes; we believe that it deserves further work, as well as the

blowup of the field observed during the coalescence of two depleted regions.
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Figure 4. Ion phase spaces around the double layer at different times. (a) Particle simulation;
(b) Vlasov simulation. The heavy horizontal line indictes the velocity of the localized wave.
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ABSTRACT

Various mechanisms for driving double layers in plasmas are briefly described, including applied potential

drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are dis-

cussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and

the currents through them undergo slow oscillations which are determined by the ion transit time across an effective

length of the system in which the double layers form. It is shown that a localized potential dip forms at the low

potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion,

whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient

magnetic field by contact potentials is also discussed. Two different situations have been considered; in one, a

low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current
sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces.

In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also

discussed when the current sheet thickness is varied. Finally, the generation of electric fields (parallel to an ambient

magnetic field) and double layers in an expanding plasmas is discussed.

I. INTRODUCTION

Since the early days of double layer (DL) research (e.g., Block, 1972), considerable progress has been made

in the understanding of the formation of DL's and their dynamical features. The purpose of this summary is to

highlight some of the major findings on the generation of electric fields in collisionless plasmas and on the forma-

tion, dynamics, and structure of double layers. We define double layers as electrostatic potential structures that can

support localized electric fields in collisionless plasmas. The nomenclature "double layer" is derived from the fact

that the electric field is primarily supported by two layers of charges (positive and negative). Such potential struc-

tures can form in current carrying plasmas as well as in the absence of a current.

Figure 1 shows a summary of the various mechanisms that can create double layers in a plasma. Broadly
speaking, the mechanisms can be categorized as follows:

1. Applied potential drop across a plasma

2. Current through a plasma

3. Contact potentials

4. Plasma expansion.

..:_c._,_,., PAGE BLANK NOT FILMED
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These mechanisms are not as distinct from each other as it may appear. For example, when a potential drop is

applied across a plasma, a current develops (Singh, 1980, 1982; Singh and Schunk, 1982a), or when a current is

drawn through a plasma, a potential drop develops (Singh and Schunk, 1982b, 1984a). The characteristics of

double layers driven by an applied potential drop and by a current through the plasma have been compared, and they
have been shown to be very similar (Singh and Schunk, 1983a).

Contact potentials develop when plasmas with different properties come into contact. The difference in the

ion and electron gyroradii plays an important role in creating perpendicular electric fields when the contact surfaces

are parallel to the ambient magnetic field. Typically, the scale length of such electric fields is of the order of the ion

Larmor radius. The potential structures associated with such electric fields appear as perpendicular or oblique

double layers. When the perpendicular electric fields are shorted out at some location away from the source region,

it is possible to generate tWo-dimensional potential structures with electric fields parallel to the ambient magnetic

field. Such two-dimensional potential structures are known to play an important role in auroral electrodynamics. It

is worth mentioning that the generation of a parallel potential drop by shorting out the perpendicular electric fields

away from their source region is, in a sense, equivalent to applying a potential drop. Here, the perpendicular poten-

tial drop becomes a parallel potential drop due to the conducting boundary condition.

Current sheets or filaments of a finite thickness in plasmas are examples where the plasma processes driven

by both the contact potential and the current take place. Multi-dimensional double layers form in such cases (Singh

et al., 1983, 1984, 1985, 1986).

When a high-density plasma expands along an ambient magnetic field into a low-density plasma or into a

vacuum, electric fields are set up. Near the expansion front, a double-layer type-charge separation occurs. Thus,

currentless double layers form in expanding plasmas (Singh annd Schunk, 1984b).

The purpose of this paper is to present a summary of our studies on the above mechanisms for generating

electric fields and double layers. These studies have been performed either with a one-dimensional Vlasov-Poisson

solver (Singh, 1980) or with a two-dimensional particle-in-cell (PIC) code (Singh et al., 1983, 1985).

II. APPLIED POTENTIAL DROP

Basically, the process of DL formation is creating a potential drop. Thus, the application of a potential drop
across a collisionless plasma may drive a double layer along with a host of other plasma processes (Singh and

Schunk, 1982a). There are several laboratory experiments (Coakley and Hershkowitz, 1979; Iizuka et al., 1983,

1985) and numerical simulations (Joyce and Hubbard, 1978; Singh, 1980, 1982; Singh and Thiemann, 1980a,b;

Singh and Schunk, 1982a,c, 1983a; Johnson, 1980) in which DL'shave been driven by applied potential drops.

Some of these experiments and simulations (Singh, 1982; Singh and Schunk, 1982a, 1983a) show remarkable

similarities in both the processes leading to the formation of a DL and its dynamics. It is found that these processes

are cyclic; the DL formation leads to current interruption, as the DL moves the currents recuperate, leading to the
reformation of a new DL. In connection with several space and cosmic plasma phenomena, Alfv6n (1982) has

invoked the role of exploding double layers, which are cyclic. Thus, it is relevant here to discuss the cyclic behavior

of double layers as seen in laboratory experiments and simulations.

Here we illustrate some important plasma processes taking place during recurring DL formation by present-

ing results from one-dimensional Vlasov simulations (Singh, 1982; Singh and Schunk, 1982a,c, 1983a) in which

a._ ._..... :A_ Vm_m a _< -< d is followed by solving the Viasov and Poisson equations after at,,c uy,m,,,_._ of the-' ...... of length 0 x

potential drop A_bois applied across the plasma. In Figure 2 we present a summary of a simulation in which d = 100

h0 and A_b0 = 30 kBTo/e, where k0 is the plasma Debye length with To as the electron and ion temperature.
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Applying a potential drop across a quasi-neutral plasma is equivalent to applying a uniform electric field Eo

(see the potential profile at t - 0 in Figure 2a), whose strength depends on the applied drop A_boand the length of the

system; Eo -_ A_bo/d (Fig. 2a). This field accelerates electrons and ions in opposite directions. However, during very

early time ion acceleration is not important, but the electrons are accelerted to the extent that a current is set up in the

plasma which may exceed the current at the cathode boundary, x = 0 (Fig. 2b). When this happens a positive space

charge appears near the cathode (x = 0, in Fig. 2) modifying greatly the initial linear potential profile (Fig. 2a). This

potential perturbation evolves into an electron hole in the form of a positive potential pulse which propagates in the

direction of the initial electric field (Fig. 2a) and it is destroyed when it reaches the anode end. During the phase of

the electron hole propagation, counterstreaming electron beams form (Singh, 1982). After this phase the plasma is

subject to a strong high frequency turbulence, which modifies the plasma greatly. One important modification is the

expulsion of the plasma and creation of plasma cavity. In simulations with very short lengths (Singh, 1980) (£ <
100 hdo), the formation of an extended cavity is not seen. However, as the system length increases, the extended

cavity becomes an important feature of the plasma (Singh, 1982; Singh and Schunk, 1982a). Also, the ion flux into

the plasma from the anode boundary is totally disrupted; as a matter of fact, an outflux of ions occurs.

The potential step near the cathode evolves into a double layer (Figs. 2a, c, and d) self-consistently modify-

ing the electron and ion velocity distribution functions. Soon after its formation, the DL develops a potential dip

(potential profiles marked with "A" in Fig. 2e) at its low potential end which interrupts the electron current (bottom

panel in Fig. 2e) and it moves toward the anode (compare potential profiles "A" and "B" in Fig. 2e). The moving

double layer sits on an expanding plasma density front moving approximately at the ion-acoustic speed (Singh and

Schunk, 1982b). The expanding plasma and the ion acceleration by the double layer produce counterstreaming ion

beams near the low potential end of the DL (Singh and Schunk, 1982a). In the frame of reference of the moving

double layer, the electron and ion current continuity conditions are maintained (Singh and Schunk, 1982a).

As the double layer moves, the ion flux (current) at the anode reverses from outflux to influx (Fig. 2e). As

the ion current through the DL recuperates, so does the electron current approximately satisfying the Langmuir
condition (Singh and Schunk, 1982c). In the presence of the ion beam and the electron current on the low potential

side, any positive potential perturbation near the cathode triggers the reformation of the double layer and the above

plasma processes repeat in a cyclic fashion (Fig. 2e). The time constant of this cyclic process is the ion transit time

('ri) across the system or equivalently the transit time of the double layer across the system. The above cyclic

phenomenon of DL formation is summarized in Figure 3. The cyclic reformation of double layers has been seen in

simulations with applied potential drops reported by other authors (Joyce and Hubbard, 1978; Borovsky and Joyce,
1983).

Some of the cyclic processes seen in the simulations have also been seen in laboratory experiments (Iizuka et

al., 1983, 1985). These experiments were carried out in a Q machine with both single- and double-ended opera-

tions. In the single-ended operation only the cathode plasma source was operative. On the other hand, in the double-

ended operation both the cathode and anode plasma sources were operative. Iizuka et al. (1983) clearly show that in
both types of operations, cyclic behaviors were seen, but there were some differences between them as discussed

below. With the single-ended operation, the double layer formed near the cathode and subsequently moved toward

the anode and disappeared there, and with the applied potential drop persisting, a new double layer formed near the
cathode and moved away from it. Thus, the double layer appears to show a forward (toward anode) and backward

motion. However, the backward motion (toward cathode) was found to be so fast that the details of the plasma
processes during this phase could not be resolved in the experiments. From our simulations we find that the time

scale of the rise in the potential at the low potential end of the double layer, which eventually leads to the formation
of a new double layer (Fig. 2f), is roughly % < 100 O_po-I . For the plasma densities (-- 108 cm -3) in the experiment, %

0.1 I_S which is much smaller than the temporal resolution of about I Ixs in the experiments.
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In double-ended operations, Iizuka et al. did not see the motion of the whole double layer; instead, a back

and forth motion of the low potential end of the double layer was seen. In agreement with the single-ended opera-

tion, the backward motion was found to be so fast that it could not be resolved in the experiment while the forward

motion was slow. These motions were correlated with the oscillation in the current at a frequency determined by the

transit time of the low potential end during its forward motion. Such features of double layers seen in the Q machine

with the double-ended operations are common in simulations with very short system lengths (Singh, 1980; Singh
and Thiemann, 1980a).

The cyclic behavior seen in the simulations and laboratory experiments driven by applied potential drops
has also been seen in simulations (Singh and Schunk, 1982b, 1983a, 1984a) and experiments (Leung et al., 1980)

in which double layers were driven by current injections.

It is important to assert here that the cyclic behavior seen in the simulations and experiments do not appear to

be an artifact of the boundary conditions. The primary cause of the cyclic behavior appears to be the fundamentally

different time scales associated with the electron and ion dynamics. The plasma processes which lead to the double

layer formation interrupt the ion flux into the double layer. Due to the lack of the ion flux, the double layer moves

and also the current through it disrupts according to the Langmuir condition (Singh and Schunk, 1982c). When the

ion flux recuperates slowly, so does the electron current. Some plasma fluctuations on the low potential side, after

the current recovery, start the process of double layer reformation. In the simulations, the fluctuations are found to

be growing electron holes, which appear to be caused by the rarefaction instability (Carlqvist, 1972; Block, 1972;

Singh, 1982).

The cyclic oscillations discussed above appear to be in accord with the theoretical work of Silevitch (1981),

who showed that in an unbounded plasma, strong double layers have a negative dynamic resistance. Thus, only

when the system (circuit), of which the double layer is a part, is sufficiently "lossy," it is possible to create a steady

double layer. Otherwise, the double layer oscillates with a frequency determined by an effective ion transit time
(Silevitch, 198 I).

It is worthwhile to mention that Smith (this proceedings) draws quite different conclusions from those drawn

here regarding the cyclic behavior of double layers as seen in simulations and experiments. His discussion on the

experimental results with the double-ended operation of the Q machine and the comparison of the results from

experiments (Iizuka et al., 1983) with those from simulations (Singh and Schunk, 1982a,c) are misleading.

The cyclic behaviors of the double layer and the current through it, as discussed here, may be relevant to

some space and cosmic plasma phenomena such as magnetic storms, solar flashes, and solar flares, which are found

to be repetitive (Alfv6n, 1982). It has been suggested that these phenomena may be caused by exploding double

layers (Alfvrn, 1982) which are caused by the inductive effects in the current systems in the plasma. When the

double layer forms, the current interrupts. The decreasing current may induce large voltages which add to the

double layers. The repetitive feature appears because of the subsequent current recovery. The time scale (%) of such

recovery may be determined by the circuit properties. If % << -r_,the current recovery through a DL is dictated by
the time scale of the ion transit time. Otherwise (% > > "ri), the repetition time is determined by %. For a given space

or cosmic situation it is possible to make rough estimates of "ri (Singh and Schunk, 1982c), but it is difficult to

estimate % because of the distributed nature of the circuit properties associated with the currents.

As an illustrative example, let us consider the auroral circuit. If we assume that circuit length parallel to the

geomagnetic field is _11"_--Re, the Earth radius, the transit time of an ionospheric hydrogen ion with thermal energy
1 eV is Ti _ 500 S. For an auroral circuit, Alfv6n (1982) estimated the inductance L _- 30 H. Assuming the resistance

in the circuit to be R "-=-0.1 ohm, % = 300 s. However, we note that these numbers are highly tentative. It is not even

certain that for the auroral double layer, which exists in extended auroral cavity, the transit times across or along the

field lines are relevant (Singh and Schunk, 1982c).
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III. CURRENT INJECTION

The above cyclic process leading to double layer reformation has been seen in laboratory experiments

(Leung et al., 1980) and simulations (Singh and Schunk, 1982b, 1984a) when electron current is injected into the

plasma. However, there are some important differences in the formation processes of the double layers driven by
current injection or applied potential drop. In the former case when the electron drift velocity is sufficiently large the

Buneman instability leads to the double layer formation. In the early stage of the Buneman mode relatively small

scale waves grow (see early time (t < 1920) plots Fig. 4a). During the nonlinear stage of the instability the small

scale oscillations transform into long wavelength ones (1920 < t < 2000; Fig. 4a). Further evolution of the waves

leads to formation of solitary pulses (t _> 2000; Fig. 4a). The double layers evolve from these pulses by self-
consistent modification of the electron and ion distributions.

IV. DOUBLE LAYER STRUCTURE

During their temporal evolution, double layers undergo considerable modification in their potential dis-

tribution which critically depends on the current through the double layers. In this section we illustrate this through
an example in which the plasma was driven by a current as discussed in Section III. However, it is important to note

that the features discussed here are quite general. Figure 4b shows the temporal evolution of the double layer poten-

tial profile after the initial evolution shown in Figure 4a. The corresponding temporal evolutions of the average

electron drift (Vae), electron thermal velocity ('_te), electron current (Je), and electron temperature (i"_), all quan-

tities being on the low potential side (_ = 50), are given in Figure 4c. At early time (t < 2340), when the current
density is large 0=1> 1.5), multiple double layer formations with typical double layer dimension _DL = 20 kao are

seen. On the other hand, when the current interrupts suddenly at t = 2345, the double layer develops a localized
potential dip at its low potential side. At such times Wde < _'rte. The sudden electron current interruption is seen to be

accompanied by a disruption in the ion influx caused by the strong solitary pulse at t = 2345. Figure 4d shows the

structure of the double layers with a dip by plotting the electron and ion density profiles along with the potential

profile. Considering the charge separation (Fig. 4d) we note that the potential distribution is a triple layer. However,

its predominant nature, as determined by the large electric field, is still of double layer type. The dip plays the role of

a current interruptor to adjust the electron current in accordance with the ion influx so that the Langmuir condition is
met.

The formation of a dip at the low potential end of a weak ion-acoustic (IA) double layer has been known

since its first observation in numerical simulations (Sato and Okuda, 1981). The interesting fact to note is that the

formation of an IA double layer itself depends on such dips (Hasegawa and Sato, 1982). On the other hand, we have

shown here that in the case of an already existing double, whether weak or strong (Singh et al., 1985), the current

interruptions lead to the formation of such dips.

V. DOUBLE LAYER SCALE LENGTHS

Several simulations and laboratory experiments have indicated that for strong double layers the scale length

L is given by (Joyce and Hubbard, 1978, Singh, 1980),

L "- 6 (eAdPDL/kBTo) 1/2 (1)
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Thisscalinghasbeenempiricallyderivedfromsimulationsbasedonappliedpotentialdrops.Wefind thatwhen
doublelayersevolvefromwavesorwavelets,suchastheelectronholes(Fig.4b),thedoublelayerscalelengthis
typicallyof theorderof thescalelengthof theperturbationsfromwhichtheDL evolves.

Vl. CONTACT BETWEEN DIFFERENT PLASMAS

The existence of contact potentials (electric fields) near the contact surface between two materials having

different electrical properties is a well-known phenomenon. In plasmas, the existence of such potentials has been

investigated in connection with plasma confinement (e.g., see Sestero, 1964). In space plasmas, the studies related

to the structure of the magnetopause indicate that this is a region where contact potentials can develop (e.g., see

Whipple et al., 1984 and references therein). Several years ago, Hultqvist (1971 ) suggested that the contact between

the hot plasma in the plasma sheet and the cold ionospheric plasma may create magnetic field-aligned (parallel)

electric fields which could account for the observed precipitating energetic ions along the auroral field lines. More
recently, Barakat and Schunk (1984) suggested that the contact between the cold polar wind electrons and the hot

polar rain electrons may create parallel electric fields.

It is now clear that electric fields perpendicular to the geomagnetic field are an important feature of the

auroral plasma. However, the mechanisms for creating such fields have not been well established. It is possible that

they are supported by discontinuities in the plasma properties (such as particle temperatures and densities) across

magnetic field lines. Such discontinuities, in which the normals to the plane of the discontinuities are perpendicular

to the magnetic field lines, are known as tangential discontinuities.

Even though the existence of perpendicular electric fields in the auroral plasma is well established, the

nature of the plasma discontinuities (associated with the fields), if they exist, remains virtually unexplored.

Recently, however, Evans et al. (1986) have presented observational evidence that tangential discontinuities do

occur in association with discrete auroral arcs. They also conducted one-dimensional steady-state calculations on

the generation of perpendicular electric fields through the contact of a high-density hot plasma with a low-density

relatively cold plasma. They obtained electric fields having scale lengths of both the electron and ion Larmor radii.

This is expected because in their model the electrons were not highly magnetized; they used f_e/COp_< 1/3, where f_e

and tope are the electron-cyclotron and electron-plasma frequencies, respectively. However, in the auroral plasma,

where the large perpendicular electric fields have been observed, typically _-_e > > tope, implying highly magnetized
electrons.

Motivated by the observations of large perpendicular electric fields in the auroral plasma, we have pursued
two different approaches for creating perpendicular fields by contact potentials as follows:

. When a low-density containing sufficiently hot ions is sandwiched by high-density cold plasmas, it is

possible to generate electric fields having strengths comparable to those observed in the auroral plasma.

In such a situation the electric fields occur near the edges of a cavity in the plasma density as it is

sometimes the case in the auroral plasma (Mozer and Temerin, 1983).

. Upward field-aligned currents are a well-known phenomenon in the auroral plasma. These currents can

occur in the form of thin sheets or filaments. We study such a situation by driving currents through a
background plasma. The currents flow in sheets of finite thicknesses. The contact between the plasmas

inside and outside the sheet produces perpendicular electric fields.

By means of numerical simulations, we have studied the above mechanisms for the generation of perpen-

dicular electric fields. We briefly summarize our studies in the following two subsections.

188



A. Perpendicular Electric Fields Near the Contact Surface Between Hot and Cold Plasmas

Figure 5 shows the geometrical scheme of our simulations. Using a standard particle-in-cell code (Morse,

1970), we simulate a two-dimensional plasma of size Lx × Ly. The magnetic field B is along the y-axis. It is
assumed that all field quantities and plasma properties are invariant along the z-axis. In order to study the generation

of the perpendicular electric fields, the plasma is stratified along the x-axis. The simulation plasma is divided into

regions I, II, and III, which are initially (time t = 0) filled with plasmas with different properties. For this study, the

plasmas are as follows. In region I, nil = ne_ = no, where n denotes density and subscripts e, i, and 1 refer to

electrons, ions, and region I, respectively; the electron temperature Tel = T O and the ion temperature Til is varied in

the different simulations. In regions II and III, the plasma properties are the same: n_2 = ne2 = ni3 = ne3 and T_2 =

Te2 = Ti3 = Te3 = Tc. The temporal evolution of the plasmas for t > 0 is followed by calculating the particle

dynamics with the self-consistent electric fields.

In our simulations we use the electrostatic approximation. Thus, the electric fields are calculated by solving

the Poissson equation with the following boundary conditions: +(x = -Lx/2,y) = _b(x = Lx/2,y) = 0. Note that

these are the Dirichlet conditions on the electric potential 4. Along y we use a periodic boundary condition, imply-

ing +(x,y = 0) = +(x,y = Ly). The electric fieldE is obtained from E = -V+.

In the simulations described here, we ignore the magnetic fields generated by the plasma currents, which

flow near the plasma interfaces. Thus, the ambient magnetic field remains unperturbed. Such an assumption

appears justified at altitudes up to a few Earth radii, where the geomagnetic field is strong and the particle pressures

are much smaller than the magnetic pressure.

We use the following definitions and normalizations: density fi = n/no; temperture "F = T/To, where no and

To are the initial (time t = 0) density and electron temperature in region I; distance _ = x/hdo; velocity "q = V/Vto;

time t = tt%o; electric potential _ = e_b/kaTo; electric field 1_ = E/Eo; current ] = J/(noeVto), where Vto = (kBTo/

m_) _/2, tOpo= noe2/m_eo, hdo = Vto/tOpo, Eo = kaTo/ehdo, kB is Boltzmann's constant, and me is the electron mass. In
the simulations we use an artificial ion mass, m_ = 64me.

The results described in the following sections are taken from simulations in which Lx × Ly = 64 × 64 hdo2,

d = 32 hdo, _e/O_po = 4, where f_e is the electron cyclotron frequency, and where the number of electrons and ions
per cell of dimension hdo2 was 4 in region I and 16 in regions II and III.

When the plasma properties change along a direction perpendicular to the magnetic field, as in Figure 5, the

ions play a crucial role in creating the contact potential near the interfaces between the different plasmas. As long as

the ion temperature Ti > (mflmi)_/2T_, where T_ is the electron temperature, the ion Larmor radius p_ > pe, the

electron Larmor radius. Thus, ions from the neighboring plasmas penetrate the interface more effectively than do

the electrons. Thus, depending on the relative densities and the ion temperatures in the neighboring plasmas, a

contact potential may develop.

There are numerous possibilities for choosing the relative densities and temperatures in region I to III of

Figure 5. In this study, we were primarily motivated by the observations of perpendicular electric fields near the

edges of density cavities (Mozer and Temerin, 1983). Thus, we chose fi2 - fi3 = 4 and fi_ = 1. We assumed that the

dense plasmas in regions II and III were cold and that they had the same temperature Tc < To. On the other hand, the

electrons and ions in region I were assumed to be warmer than those in the other two regions. We present results on
the effect of the variation of the warm ion temperature on the perpendicular electric fields that developed near the
contact surfaces.
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Figure 6 shows the distributions of the electric potential, the perpendicular electric field, and the plasma

density as functions of _ at t = 100 for Tc = 0.2 To, and Tit = 20 To. Recall that Tel = To. Thus, in the low-density

plasma of region I, the ions are hotter than the cold ions in regions II and III by a factor of 100. We note that the

average Larmor radius of the hot ions PH _--9 hdo. The quantities shown in Figure 2 are time-averaged over a time
interval of A_ -- 50 centered at t = 100.

Figure 6a shows that a negative potential valley develops in region I (]_l < 16). The large perpendicular

electric fields develop near the contact surfaces, where sharp gradients occur in the density (Fig. 6b). The maximum

magnitude of the electric fields is approximately I_± _- 0.6 and the scale length of the electric field near each

interface is about PH _- 9 hdo.

We find that such large electric fields develop only when the ions in region I are sufficiently warm. In order
to show this we carried out simulations by varying the hot ion temperature T_. For Til = To, we did not find any

enhancement in El near the interfaces. As the ion temperature Ti, was increased, bipolar electric fields developed
near the interfaces; for TidTo = 5, E±max - 0.2. It was found that for Ti_/To > 10, E±max does not increase

indefinitely, but for the parameters used in the simulation it is limited to about ]__Lmax _ 0.6.

A noteworthy feature was found that is that the electric fields maximize just inside the low-density plasma

and not at the interface (Fig. 6). This happens because the gyrating cold ions in the high-density plasmas of regions

II and III partially neutralize the space charges created by the hot gyrating ions near the interfaces. In Figure 6 the

magnitude of the hot ion Larmor radius PH is indicated. The electric fields at the interfaces have scale lengths of the
order of the Larmor radius.

The temporal evolution of the potential drop Aqb = +(x -- 0) in the simulations show that at early times (t <

20) the potential drop grows and afterward undergoes a slow oscillation, with time-averaged values depending on

the hot ion temperature Til. It is worth mentioning that the time constant ('too, t) for the development of the contact

potential (A_b) is approximately given by

-1 _ _-_i-I (2)Tcont _ 20 O,)po

where _ is the ion-cyclotron frequency (12_ _- eB/mO. By varying l)e/tOpo, we found that the above scaling of 'rcont

with 12_is generally valid. Thus, the contact potential sets up with a time constant that is associated with the ion

cyclotron motion.

The slow oscillations occur at the ion-plasma frequencies of the plasmas in regions I and II. Comparing the

relative amplitudes of E± and Eliassociated with the oscillations, we find that E± > > Eli. Thus, these oscillations are

not of the ion-acoustic type, but are associated with the lower hybrid frequencies in regions I to II.

It is important to note that the geometry of our simulations does not allow the excitation of drift modes

propagating in the direction of the diamagnetic currents near the interfaces at x = ---d/2. These currents flow along
the z-axis. We have assumed in our simulations that all physical quantities are invariant with respect to z. Thus, no

wave modes are allowed to propagate in this direction.

The contact potential develops because the hot ions in region I, while gyrating, penetrate into the neighbor-

ing plasmas of regions II and III. In order to show this, the ion velocity distribution function (F) is plotted in Figure 7

as a function of the x-component of the ion energy, Wx = 1/2 miVx 2 = 32 Vx2kBTo, at several locations for the

simulation with T_dTo = 15. The distribution at x = 0 (center of region I) clearly matches the initial Maxwellian

distribution with a temperature q'_l = 15, as shown by the asymptote marked with this temperature. On the other
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hand, at _ = 32 (near the end of region III) the ion population is cold. At _ = 24, we see that the hot and cold ions

have mixed together. The average ion Larmor radius for the hot ions in region I for 'ril = 15 is 'PH _ 8. Thus, we

expect the penetration of a large number of hot ions from region I(1 1< 16) into region III up to a distance of about

24. This is verified by the distribution function at _ = 24. The distribution at _ = 16 is near the initial interface,

where we see that compared to the numbers of ions in the cold and hot populations at _ = 24, the number of ions in

the cold population has decreased, while that in the hot population has increased.

We summarize this section by noting that when a low-density plasma containing hot ions comes into contact

with a high-density cold plasma with the contact surface being parallel to the magnetic field, it is possible to create

perpendicular electric fields. The time constant for creating such fields is roughly Oi -1 and the scale length is appro-

ximately PH, the Larmor radius of the hot ions.

The above results indicate that when the hot ion temperature T_ > 10 To, a rough estimate of the strength of

the perpendicular electric field is

E± -0.5Eo , (3)

where the normalizing electric field Eo critically depends on no and To. When no varies from 1 to 10 cm -3 and To

varies from 1 to 100 eV, the strength of E± ranges from several tens to several hundreds of mV/m. Satellite observa-
tions indicate that the electric fields associated with electrostatic shocks (Mozer et al., 1980) have a similar strength.

For example, if we assume that the hot plasma in region I is of plasma sheet origin and the electron temperature To =

100 eV, then it is possible to create perpendicular electric fields of several hundreds of mV/m if the hot ion tempera-
ture T_ > 1 keV, which is common in the plasma sheet. For To = 100 eV, the cold plasma temperature assumed in

our simulations is Tc = 20 eV. We find that when Tc is reduced below 0.2 To, as assumed here, this does not

significantly affect the electric fields. Thus, the cold plasma may originate in the ionosphere.

However, the question of how the stratification of the plasma assumed in our simulations (Fig. 5) is created

in space plasmas still needs to be answered. It now appears that plasma blobs and clouds are created in the magneto-

tail region. When these blobs of plasma move closer to the Earth where a colder plasma exists, the stratification of

the plasma assumed in our simulations may be created.

In this section we were mainly concerned with the generation of perpendicular electric fields. In the near

future we will study the creation of parallel electric fields, the formation of double layers, the parallel acceleration of

electrons and ions, and the generation of parallel currents that occurs when the perpendicular electric fields gener-

ated by contact potentials are shorted out by a conducting boundary. Such studies will complement our previous
studies on current sheets as summarized in the next section.

B. Double Layer Structures Associated with Current Filaments or Sheets

There are evidences that the current systems in space and cosmic plasmas are filamented (e.g., see Alfvrn,

1982 and references therein). Thus, there is a need to study double layer structure in filamentary currents. The

available temporal and spatial resolutions for the plasma measurements in the auroral region indicate that the field-

aligned currents are highly structured in the form of current sheets with north-south thicknesses of a few kilometers

(Dubinin et al., 1985). Probably even thinner sheets exist but they have not been resolved.

Here we briefly summarize our recent efforts on simulations of double layers driven by current sheets (Singh
et al., 1983, 1984, 1985; Thiemann et al., 1984). Figure 8 shows our simulation scheme. A two-dimensional
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plasma of size Lx × Ly is driven by a magnetic field-aligned current sheet having a current density Jo. Initially the
simulation region is filled with a plasma of density no and temperature To. At later times, particles are injected both

at the top and lower boundaries. Electrons and ions injected at the top boundaries have temperature To and T_u (TH)

while those at the lower boundary Ti_ and Te_. Various simulations were performed by varying these temperatures

using a standard particle-in-cell (PIC) code. The electron current is set up in the sheet by injecting electrons at the

top of the current sheet at rates to produce desired current (flux) densities. These electrons were also given a down-

ward drift Vde- Overall, charge neutrality of the simulation plasma was maintained by counting the number of

electrons and ions and injecting an appropriate number of the deficient particles at the lower boundary. The electro-

static boundary conditions are as follows; the plane y = 0 is assumed to be conducting, _b(x,y = 0) = 0; at the top

boundary we set Ey(x,y = Ly) = 0 and a periodic boundary condition was used in x.

We use the following definitions: hdo is the Debye length based on the temperature To and on the initial

density of no = 4 particles per cell, _-_e is the electron-cyclotron frequency and COpo2 = noe2/meo, where eo is the

permittivity of free space and m is the electron mass. The ion-electron mass ratio was chosen to be M/m = 64. In the
analysis that follows, we use the following normalizations: distance _ = y/hdo, time t = tOpo, velocity '_/ = V/Vto,

potential _ = e_b/kBTo, electric field I_ - E/Eo, Eo = (kBTo/ekdo), and current density J = J/(enoVto), where Vto =

(kBTo/me)'/2. The numerical technique used here has been previously described in much greater detail by Singh et al.

(1985).

Figure 9 shows an example of the potential structure as seen in a simulation in which _ = 12 hdo, PH = 9 hdo,

Pi_ = 4 kdo, _e/tOpo = 2, ]o = 1.25, TH/To = 5, Te£ --- Ti_ = To, andLx x Ly = 64 x 128 kdo2, where PH and Pi_.
are the Larmor radii of the ions injected at the top and bottom of the simulation plasma, respectively. The potential

structure is illustrated by plotting (a) equipotential surfaces, (b) contours of constant E±, the component of the

electric field perpendicular to the magnetic field, and (c) contours of constant Eli, in x - y plane. The current sheet
edges are indicated by the arrows at the bottom of each panel. The solid and broken line contours show positive and

negative values of the quantities. A V-shaped potential structure is evident from panel (a); a negative potential

valley develops in the upper portion of the current sheet. Panel (b) shows the occurrence of a large bipolar perpen-

dicular electric field near the edges of the current sheet at the top of the simulation plasma. The perpendicular

electric fields develop due to the contact between the high-density plasma inside the sheet with a low-density plasma

around it (Kan and Akasofu, 1979; Wagner et al., 1980; Singh et al., 1983). The hot ion Larmor radius determines

the perpendicular scale length of the electric fields. The V-shaped potential structure develops when the perpen-

dicular electric fields originating near the top of the simulation plasma are shorted out by the conducting surface at y

= 0, thus, creating a parallel potential drop.

Panel (c) of Figure 10 shows the localized parallel upward electric fields as indicated by the "H" inside the

current sheet. These parallel fields are of double layer type. There are three double layers stacked on top of each

other inside the current sheet. The existence of these double layers can also be inferred from the equipotential

surfaces in Figure 9a. Typically the maximum electric field strength in the double layers is about I_ = 0.25. The

scale length of the double layers along the magnetic field is found to be about 10 hdo while they fill the entire width of
the current sheet.

The double layers shown here are not dc, but they undergo considerable temporal variations at time scales

ranging from electron to ion-plasma periods. Figure 10a shows the temporal variation in the double layer potential

profile after averaging out the fast electron oscillations. Note the considerable changes in the potential profile and as
well as in the magnitude of the net potential drop across the double layer. The temporal variations in ELIand E± at the

point (0, 100) in the region of double layer formation, are shown in Figure 10b. Even at the times when Ell has a dc
component, there are considerable fluctuations in both Ell and E±. These fluctuations appear to have frequencies

ranging from below the ion-cyclotron frequency to above the lower hybrid frequency. In addition, Eli is found to

have high frequency oscillations up to electron-plasma frequency and its harmonic which are averaged out in Figure

10b. The high frequency oscillations are not seen in E±.
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In a narrow current sheet, as discusssed above in context of Figures 9 and 10, it is difficult to distinguish

clearly between the double layers inside the current sheet and the large perpendicular electric fields occurring near

the edges of the sheet. On the other hand, in wide sheets (£ >> PH), the double layers inside the current sheets are

well separated from the large El occurring near the edges. Figure 11 shows an example of a potential structure

associated with a current sheet of thickness _ = 32 h do, and _/PH _ 10. Panel (a) shows the equipotential surfaces in

the x - y plane, panel (b) shows the perpendicular distributions of E±(x) and _b(x) at y = 120 hdo, and panel (c)

shows the perpendicular distribution of Jil(X) at y = 120 hdo. In this simulation maximum possible value of the
upward current in the sheet is Jo -_ 0.6 noeVto. Note that only weak potentials (- kaTo/e) develop inside the sheet,

and the regions exterior to the sheet near the top (panel a) are highly positive. The perpendicular potential profile in

the sheet is quite flat (panel b). Thus, El is mostly confined near the edges. In the region of large Ej, near the edges

we find that E l > > Etl, which is an important feature of the electrostatic shocks observed in the auroral plasma

(Mozer et al., 1980). On the other hand, inside a wide sheet where double layers from E± -- Ell and both E± and Ell are

considerably smaller than the perpendicular electric field near the edges. It is found that near the edges

EL -- Elm _ Eo (4)

We note that Eo depends on no and To; when no varies from 1 to 10 cm -3 and To from 1 to 100 eV, Eo ranges from
about 100 to 1300 mV/m. Thus, the large perpendicular electric fields occurring near the edges of the current sheets

resemble the phenomenon of electrostatic shocks observed in the auroral plasma Mozer et al. (1980).

that
Whether or not the double layers are well separated from the large E l near the current sheet edges, it is found

EIIDL << Eo (5)

Depending on no and To, EItDL may range from a few mV/m to several tens of mV/m. So far only weak double layers
(Ell < 15 mV/m) have been observed in space plasmas (Temerin et al., 1982).

We find that in the case of wide sheets it is possible to develop relatively large downward parallel electric

fields outside the current sheets (panel a, Fig. I 1). These fields drive downward return currents (panel c).

In these simulations we have seen both parallel and perpendicular accelerations of ions (Singh et al., 1986).
Most energetic ions are seen to be at pitch angles near 90° . Ion beams are seen only in narrow sheets with thicknesses
_PH.

It is found that the double layers play a key role in electron acceleration, even though, all the features of the

accelerated electrons cannot be explained by a simple picture of electron acceleration by dc double layers. The
double layers act as a trigger mechanism for a host of plasma processes, which determines the velocity distribution
function of the accelerated electrons.
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VII. PLASMA EXPANSION

Plasma expansions have been studied since the pioneering work of Gurevich et al. (1966), who studied the

expansion of a plasma into a vacuum using the quasi-neutrality approximation. In this case the plasma equations

allow self-similar solutions. However, this approximation breaks down in the low-density region where the local
plasma Debye length becomes comparable to the scale length in the density gradient. Thus, a positive-negative

charge separation occurs like in a double layer (Singh and Schunk, 1984b). However, it is worth noting that there is

no current through such a double layer. The charge separation is supported by a relative smooth variation in the

electron density while the ion density has a sharp density jump creating an ion density front. The plasma expansion

is preceded by such a density front, behind which the self-similar solutions are found to be valid.

When a high-density (nl) plasma expands into a plasma of low density (nil), the expansion properties criti-

cally depend on the density ratio R = n_/nu (Mason, 1971). An example of such a dependence is shown in Figure 12,

in which we have compared the potential profiles associated with expanding plasmas as the ratio R is varied from R

= 0.001 to 0.2. The potential profiles shown in this figure are obtained as follows. We consider that initially (time t

-- 0) the high- and low-density plasmas occupy the regions I (x _< 300 hdi) and II, respectively. At times t > 0, the

expansion is studied solving Vlasov equations for the ions in a self-consistent electric field obtained by solving the

Poisson equation. The electrons are assumed to obey the Boltzmann law. In the calculations presented here we

assume that the electron temperature Te -- 10 Ti, where T_ is the initial ion temperature in regions I and II. The

potential profiles shown in Figure 12 are at t = 60 tOp_-_, where (.Opiis the ion-plasma frequency in region I and hoi --

gti/O)pi with Vt_ being the ion thermal velocity. The different curves shown in Figure 12 are for different values of R
as marked.

The noteworthy feature of the potential profile shown in Figure 12 is that as the density in region II is

increased, the potential profiles steepen over a localized region in the expansion zone. When R is increased from

0.001 to 0.01, we note the formation of a "knee" in the potential profile near x - 625 hdi. When R is increased

further this "knee" steepens and for n = 0.1 and 0.2 we note the presence of two sharp transitions in the potential
profiles; one occurs in region I in which the rarefaction wave propagates in the backward direction, and the other

occurs in the expansion region II. Near the transitions localized electric fields, like that in a double layer, occur. It is

important to note that the sharp transitions in the potential profiles (double layers) occurring in regions I and II move

in opposite directions. With increasing time the potential profile in region I becomes less and less steep while that

near the sharp transition in region II maintains its profile giving a localized electric field nearly constant with time.

The features associated with occurrence of localized electric fields also occur when a multi-ion plasma expands into

a vacuum (Singh and Schunk, 1983b).

VIII. CONCLUSION

We have presented a brief summary of our studies related to the generation of electric fields in plasmas.
Some of the mechanisms we discussed are as follows. When a potential drop is applied across a plasma, localized

electric fields in the form of double layers occur. Double layers also form when a current is drawn through a plasma.

The dynamical feature of such a double layer shows a cyclic behavior with a frequency determined by the transit

time of the ions across an effective length of the system, in which the double layer forms. The formation of a

potential dip at the low potential end of a DL and the current interruption are intimately related phenomena.
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We have also discussed the generation of electric fields perpendicular to the ambient magnetic field in a

plasma. Such fields can be generated by contact potentials near discontinuities in plasma properties. It was found

that ion gyration plays an important role in generating the fields. The cases presented indicate that the scale length of

the perpendicular electric field is of the order of the ion Larmor radius. Two complementary situations, in which

perpendicular electric fields can be generated, were discussed. In one situation, we considered a low-density hot

plasma sandwiched between high-density cold plasmas. It was shown that even if the hot ion density is low these

ions are effective in creating electric fields of the magnitude observed in the auroral plasma. In the other situation,

we considered a current sheet in a plasma. The density gradient across the sheet created the perpendicular electric
fields. The formation of double layers in the sheet were studied.

The generation of electric fields in expanding plasmas was briefly discussed. It was shown that when a

high-density plasma expands into a low-density plasma, the nature of the spatial distribution of the electric field

critically depends on the density ratio of the two plasmas. A currentless double layer forms near the expanding
plasma front.
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Figure 2. Double layer formation and dynamics as seen in one-dimensional Vlasov simulations. In the simulation,

the plasma occupied the region 0 <_ x <_ 100 Xo, where Xo is the Debye length in the initial plasma (t -- 0) across

which a potential drop of Ad_o = 30(kBTo/e) was applied, where To is the initial plasma temperature• We used the
following normalizations: _ = X/Xo, velocity "v" -- V/Vto, time t = tCOpo, temperature 1" = T/To, potential Ub =

e_b/kBTo, current ] = J/noeVm, where V,o = (kBTo/me) i/2, 0%0 is the electron plasma frequency with the initial

density no, kB is the Boltzmann constant, m_ is the electron mass, and m_/m_ = 64, with m_ the ion mass; (a) temporal
evolution of the potential profile, (b) temporal evolution of the current density profile, J_(_), (c) double layer poten-

tial profile at t = 150, (d) density profiles and space charges supporting the DL in (c), and (e) recurring DL forma-
tion (top) and electron and ion current interruptions and recovery (bottom)• The arrows indicate the times of the

potential profiles; the arrows originating from the potential profiles marked with "A" indicate that these profiles

correspond to the early stages of the electron current interruptions and to the beginning of the ion influx into the

double layer during the three cycles of the double layer formation. Note the dip at the low potential end. The

potential profile marked with "B" corresponds to the current recovery stage during the first cycle• (f) Potential

profiles during a reformation of the DL; at t = 400 there is aDL, a positive potential perturbation near x = 0 is seen

at t -- 500; at later times this perturbation grows and eventually a new DL forms at t _ 610.
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CYCLIC NATURE OF: DOUBLE LAYERS

Apply a Potential Drop

U

Uniform Electric Field

Accelerate Electrons (earlytime)

U

Up > do (near cathode boundary)

tL

Positive Spacecharge Near Cathode Boundary

U
Electron Hole & Propagation
Counterstreaming Electrons
Plasma Modification/Expulsion
Cavity Formation
Distruption of Ion Flux from the Anode Boundary

U

DOUBLE LAYER (DL)

U

DL Propagation/Plasma Expansion from Cathode

U

Potential dip Formation at the Low Potential Side

U

Ion Influx Resumption at Anode (Ion or DL Transit Time Effect)

U

Current Recovery

U

Instabilities on the Low Potential Side

U

Positive Potential Perturbation near the Cathode

Figure 3. Summary of the various plasma processes occurring during the formation and

reformation of a DL when a potential drop is applied across a plasma.
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Figure 4. (a) Double layer evolution from the Buneman instability. Spatial profiles of the electric field E are shown

at different times. At early times, 1880 < t < 2000, small wavelength waves grow. At later times, in the nonlinear

regime, these waves coalesce into long wavelength oscillations, which evolve into solitary pulses and double
I..,a.o gk% T ...... I,,,:_ .... tu) , _.,,,l-,,-,la, e'v'olutioi-_ of the double layer potential profile, (c) the corresponding temporal evolutions of the,

electron current Je, electron drift velocity Vde, thermal velocity Vte, and temperature Te at _ = 50, and (d) spatial

profiles of the electron and ion densities and the potential profile for a DL with a dip at its low potential end. The

charge separation indicates the presence of a triple charge layer.
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plasma reservoirs at the boundaries.
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ABSTRACT

Transversely localized double layers evolve randomly in turbulent regions of strongly magnetized plasma
carrying current along the magnetic field. Results from numerical simulations and spacecraft observations in the

auroral plasma indicate that the parallel electric field in such regions is microscopically intermittent or stochastic.
The implications of stochastic double layer fields on electron acceleration will be discussed here in terms of a

statistical process involving ensemble averages over test particle motion. A Fokker-Planck equation can be derived

for the electron phase space density, which depends on the mean and rms amplitudes of the double layers, the mean

double layer density, and the initial electron velocity distribution. It is shown that the resulting electron acceleration

is very sensitive to the ratio of the initial electron energy to the rms double layer amplitude. When this ratio is large,

the acceleration process differs little from that expected in a dc electric field. When it is small, stochastic "heating"

competes with directed acceleration. Evidence for both cases can be found in the auroral ionosphere in association
with so-called inverted-V precipitation and collimated edge precipitation.
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DOUBLE LAYERS IN A MODEL AURORAL CIRCUIT

Robert A. Smith
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Science Applications Intemational Corporation

McLean, Virginia 22102, U.S.A.

ABSTRACT

The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel

current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of

the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is

effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This

process provides the limiting constraint on the double layer potential. The flank charging may be represented as that

of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a

nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to

give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function

of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

I. INTRODUCTION

A vast body of ground-based, rocket, and satellite observations reveals that auroral-zone acceleration

processes occur in a hierarchy of latitudinal scale widths. On the scale of the inverted-V region (AA > I°) parallel

electric fields are observed in narrow, soliton-like structures interpreted as weak or ion-acoustic double layers

(DL's) (Temerin et al., 1982). Assuming statistical homogeneity of the distribution of these weak DL's over an

altitude range comparable to 1 Re, one infers a total potential drop of up to a few kV, typical of the inverted-V

region. On smaller spatial scales (AA < 0.1 °) more energetic precipitation is observed in discrete arcs, which have

projected widths _ 1 km in the ionosphere. Discrete arcs (DA's) are associated with electrostatic shocks (Torbert

and Mozer, 1978; Kletzing et al., 1983). We adopt the hypothesis that electrostatic shocks constitute the nearly

field-aligned "flanks" of the paradigmatic U-shaped potential structure of a strong double layer. Although this

hypothesis seems plausible, many questions exist concerning the conditions under which DL's may exist in space,
their dynamics, and their structure. These questions are vital for understanding the complex observational morphol-

ogy of fields and particles in the auroral zone. At present, investigations of such questions must to a large extent be

motivated by and proceed from consideration of the fast-growing literature on experiments and simulations,

although usually the applicability of these situations to DL's in space is indirect (Smith, 1985, 1986a).

In this paper, we first discuss theoretically the question of what limits the potential of DL's in auroral arcs,

and report results of recent simulations of DL's in a model circuit. Somewhat more detailed expositions are given by
Smith (1986b, c).

;'RECEDING PAGE BLANK NOT FILMED
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II. THEORY

Experiments and simulations (Goertz and Joyce, 1975; Coakley and Hershkowitz, 1979) reveal a scaling

law for the DL potential in terms of its length _OLand the electron density neK on the low potential (cathode:K) side;
we write this law as

( -)lqbDe(kV) _- 300 102 cm -3] \ 1 km/ (1)

where £ DL _- d_DL/maxlEIII.In space, _DL is not limited a priori and, absent other constraints, equation (1) implies
that the potential may grow to much larger values than the observed limit on the auroral precipitation energy, which

is a few tens of keV.

This dilemma is resolved by considering how the field-aligned flanks of the arc become charged during the
evolution of the DL's. We adopt as a starting point the basic idea of the recent MHD models discussed by Haerendel

(1983) and Goertz (1985, 1986) in which the DL evolves in the parallel current sheet of a kinetic Alfv6n wave. This
scenario limits the thickness of the sheet a priori to a few times the ion gyroradius at an energy representative of the

distant plasma population in the generator region. Taking this energy to be _ 1 keV, we may estimate Jll by

c _B±

Jll-- neUei- 4"_ R"'_

Using n - 102 cm 3, B0 _ 0.05 G, _B l -- 10 -3 G, and assuming a current sheet of a few kilometers thick, this

equation gives a relative drift velocity Uei greater than the electron thermal velocity Ve. At such a relative drift

velocity, the current sheet is unstable to a variety of instabilities, including the ion cyclotron and Buneman

instabilities. We expect the instability to be triggered at some altitude z. where the density and magnetic field

profiles first combine such that Uei exceeds the threshold drift. In addition, experiments reveal that the U-shaped
structure, with the field-aligned flanks curved toward the low potential side as is required for Earthward-directed

Poynting flux (Smith, 1986a),requires O_e< f_e, where toe and _e are the electron plasma frequency and gyro-
frequency, respectively. This is just the condition for strong magnetization (O_e/Oe = RJM), and is fulfilled in a

limited altitude range along the auroral field lines (Gurnett, 1974).

Simulations show that DL's evolve from current-driven instabilities when the current is interrupted by trap-

ping (Smith, 1982a, b). Trapping creates local regions of macroscopic non-neutrality; in the finite-thickness current

sheet, the plasma tends to expel charge in the transverse direction in an attempt to neutralize the local electric field

(Fig. 1). Electrons are tightly magnetized and cannot be expelled very far, but the ion motion is essentially ballistic
(the evolution time scale is <f_i-'), and ions are accelerated in the transverse direction out to some distance greater

than their gyroradius. Owing to mirror forces, the expelled charge spreads upward, providing the initial charging of
the flanks.

The charging mechanism described above operates in the transient phase. The characteristic time scale of the

evolution is "rDL-- _DL/_t_Z where UiA > Cs the ion inflow velocity in the frame of the DL. The charge spreads along
the flank at velocity c/Vej_, where e± is the dielectric constant. In the MHD limit, el = c2/VA z, but we shall see later
• I.. ,. /- 21"it 2 v'x'_ • T / 1i2
that e / "_- C ! V A in the L,t_ flanK, m any case, however, we find that the time "rind = fdsc/N/e± /c for the charge to
spread along the field lines back to the generator region (Fig. 2) is long compared to TDL ( t < "rind,the spreading
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chargewouldthinoutalongB andtheflankwouldnotsustaintheDLpotential;thentheDLwoulddischarge.This
would occur in a time short comparedwith the typical lifetime of discrete arcs. Therefore,
asymptoticstabilityof theDArequiresatransportmechanismproducingacross-fieldcurrentdensityJx(_b),which
persistsas0_bDL/0t -' 0.

If such a mechanism exists, then in the time-asymptotic regime, the density neK in equation (1) is determined

by current continuity and is of the form

neK(Z*) = neoc -- g f_._dz Jx(qb,z) , (2)

where g is a constant. Substituted in equation (1), equation (2) provides the physical constraint on the DL potential,

which is transparently self-stabilizing for Jx, a monotonically increasing function of _b.

A mechanism to maintain a distributed Jx in the time-asymptotic regime is discussed by Smith (1986b). The

mechanism is based on anomalous transport due to lower hybrid waves which are driven by the inhomogeneous
structure of the flank itself. The discussion above implies that the initial scale length _f of the perpendicular electric

field Ex in the flank is _f > Ri. AS this field is established along B, the electrons acquire the local polarization drift

velocity cEx/Bo. The ions, however, encounter an inhomogeneous electric field over the scale of their gyroradius,

and so their drift orbit is modified by finite-Larmor-radius (FLR) effects. For _f > Ri, the ion drift speed is approxi-

mately given by the first non-vanishing order of the phase-averaged FLR correction:

VDi _ (1 q_4Ri2V2) cEx(._o_ 1 _4__.._f ] B___fRi2_ c_b"
(3)

Then there is a relative drift

Uei _-- VDe-- VDi -- 4 Ri2_f2 C/'_o_ )

if Uei > V_, this relative drift drives the electrostatic modified two-stream instability (MTSI) studied by McBride et

al. (1972). (Other instabilities are also possible, of course, but for simplicity we consider only the MTSI.) The most

unstable mode has frequency to _ toLH = toi/( 1 + toe2/12e2)1/2,with growth rate ",/_ toLH, and parallel wave number kll

(m/M) I/2 k±.

The salient property of the MTSI for our purposes is that it saturates by trapping ions in the perpendicular
drift direction and electrons in the parallel direction; in the saturation process, the ions and electrons are heated to a

fraction ot2 of the relative drift energy:

T l_i _" Tlle "- ot2MUei2/2 .

From simulations, McBride et al. (1972) find ot = 0.5, with a wave energy density W at saturation of

W/nMUei 2 - a few percent.
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Motivatedbytheseresults,Smith(1986b)postulatesaself-scalingmodelinwhichtheflankisassumedtobe
alwaysatsaturation(marginalinstability)withrespecttoaninstabilitysuchastheMTSI.Themodelcharacterizes
theinstabilityby twoparameters(x,13, defined by

Vii = o_(cE×/Bo) ; Uei = 13(cEx/Bo) , (4)

where Uei is now the threshold drift speed and Ex _ +/£f. Using equations (3) and (4), we find the self-similar

scalings

Ri2/_f 2 = 0_[3 ; T.l.i/Teo = (ce313) 1/2 (e(bDL/Teo) ;

WDe -- cEx= B"_---_k'_"l/' 13'_1/4 (" m"_l/2_k"M-J (eqbDL) I/2"_ ' (_)1/4 ("_') I/2 {_e0 _\_Qeo] ("_eo')eqbDL 1/2, (5)

where _eo, Teo, and COeoare reference values of the electron Debye length, temperature, and plasma frequency.

Owing to momentum conservation, there is a wave-modulated friction between the electrons and ions,

which may be described by an anomalous collision frequency (Davidson and Krall, 1977) v, "-- _o_Ltt, where e =

W/nMU_i 2. Thus, the electron and ion fluids are acted on by volume forces Fy i = -Fye, leading to an F x B drift

velocity in the x-direction, i.e., opposite to Ex (the coordinate system is defined by Fig. 3). This drift velocity is
given by Vx_ = Vxi ------Vx (ne,+DL), where

V x = E (0£3135)1/4 _kfifl(m_l/2"_i _'_eo)O)LH e+DL 1/2 Veo , (6)

and Veo = (Teo/m) I/2. Thus, above the DL, plasma is transported from the center of the arc to the flanks, concentrat-

ing the parallel current there (Fig. 3). Although Vxe = Vxi, there is a net current Jx because above the region of

strong Ell in the DL, we expect an extended region of small charge density p which sustains a weak parallel density
field Eli driven by beam-plasma instabilities. Then the continuity equation is

OJz/OZ = - OJx/OX _ - O(pVx)/O×

Upon solving and integrating along the field line, we obtain (Smith, 1986b)

J_(_)- Jz(0) = C(oL,13) (+DL/_a2) 5/8 (7)

where C(cx,13) is a constant and _'a is the perpendicular scale length of the arc (Fig. 3). The RHS of equation (7) is just

the term J" Jxdz in equation (2). Assuming Jz(0) << Jd°°), equation (7) gives a scaling law

214



_DL_ (Jz(°°)/c)8/5£a2 (8)

Fortypicalauroral-zoneparametersequation(8)yieldsI_)DL _ 10 kV for _a _ 1 km, in general accord with observa-
tions.

III. SIMULATION

In the context of the above discussion, the flank may be modeled as a transmission line with local potential _b
= Ex£f, where £e _ +,/2. Once the DL potential has reached a threshold value + ,required to drive the MTSI, the

transmission line is charged by the distributed (in z) perpendicular current Jx = pVx of equation (7). We shall report

elsewhere on simulations in which the transmission-line equations (Smith, 1986c) are solved simultaneously with a

one-dimensional simulation of the DL evolution; this procedure provides the necessary self-consistent boundary

condition on the current density JDL(t) at the simulation boundaries. In this paper, we replace the transmission line
with a simple model circuit.

If the flank were uniform between the DL (z = z, = 0) and the generator, the transmission line would appear
to the DL as a pure impedance over the evolution time of the DL, with value ZT = (Lr/CT)'/2, where l-.x = _f/4"rrc2,

CT = 4_re±/_f. We model the impedance by the same form, with variable _f(_b). We thus adopt the model circuit

shown in Figure 4 where the diode symbol represents the DL and the variable resistor R(_b) represents leakage
current in the flank; this term is modeled by using the same form for Jx as derived above, but over the perpen-

dicular scale length _f instead of _a, by integrating Jx _ n_/2(z) over the length ZK(t) = ct/X/e I . The dielectric
constant is defined by

t.! - = 1 -F- (OJeo2/_'_e 2) "F (£0io2/_-_i 2) [(I--oil3) 2 + 0(2(1 +_/e)] , (9)

where _/e ------Tlle/T/i.

The heuristic definition [equation (9)] is such that the total energy stored in the dielectric is el Ex2/8ar: the
first term in [] represents the reduced ion drift speed, while the second term accounts for ion and electron heating by
saturation of the self-scaled modified two-stream instability.

For the purpose of testing the scaling of 6DL with _a and et, we adopt the philosophy that owing to the
separation between the perpendicular scale lengths _a and _f, the flank may be represented by these circuit elements

while the DL will evolve in an essentially one-dimensional fashion in the central region of the arc. The DL evolution

is simulated with the one-dimensional Vlasov code described by Smith (1982b), replacing the circuit used there by
that of Figure 4. The boundary condition on the current density JDL(t) is then given by

_ Is qbDL(t) [_T1 1 ]JDL(t) _a _a (6DL) -4- R(qbDL)_ J (10)

where Is is the constant source current and

ZT = [Ot/[3]TM (Y/_i 1/2) (Veo/C) (J_a/_l, I/2) _)DL 1/2 , (1 I)
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Teo._l/2 (Y£a) 2/3 6DL TMR = _- _-TUi)'(_ [l-exp(-K2ZK(t))/2]
(12)

la, = m/M, K2 is defined in Smith (1986b) Y = O_eo/lIeo, Veo = OJeoheo, and all lengths and time scales are norma-
lized to the nominal upstream quantities h_o and tOeo, respectively; also doOL_ edoDe/T_o. The term in [] in equation

(10) replaces the physically derived Ix of equation (8). This term is valid only after the threshold potential dO. has

been attained, and so is turned on adiabatically for dO> dO,. Therefore, the circuit model does not accurately

describe the initial dynamics in the linear instability phase of the evolution. In addition, the lumped circuit of Figure

4 cannot represent the distributed nature of the flank charging, and so we cannot construct a circuit topology that
allows for inductive fields. Therefore, we cannot model the acceleration of the inflowing (injected) distributions by
inductive effects.

For the parameters we use (see below), we estimate that the effect of neglecting inductive effects is small. As

for the first limitation, the transient charging mechanism vanishes as 0dOOL/Ot-+0. Thus, we expect the model to be

adequate for our present objective of studying time-asymptotic scalings.

We show results for five runs. For all cases, the injected distributions are drifting Maxwellians with drift

speeds in the simulation frame of Ue = 2 Veo, Ui = -0.5 Veo- The forms of these distributions are held fixed (up to

normalization). The threshold drift parameter 13is held equal to 2, and M/m = 16. Holding _a/h_ = 60, we use
values of a = 0.05, 0.02, 0.50. Fixing a = 0.50, we use J_a/he = 20, 40, 60. Initialization and other im-

plementations are as described by Smith (1982b).

Figure 5 shows the scaling of dODLwith a, the fundamental parameter of the self-scaling marginal stability

model of the MTSI discussed earlier. In the circuit equation (10), the principal effect of ot is contained in the depen-

ence of the impedance ZT on the dielectric constant _±. In terms of the circuit equation (10), the DL scaling law
equation (1) becomes in dimensionless notation

dODL1/2 dODLTM ]dODL = G_DL2Js 1 _oJs _ '
(13)

where ZT(dO) = ZodO1/2, R(dO) = RodO TM. The RHS (13) has the form of a large factor GJs _DL 2 times a small factor

[... ], and the upper bound for doDLis obtained from setting [... ] = 0. Because Zo < < Ro, equation (13) implies doDL

Zo2. In Figure 5 we also plot the dependence of Zo2 on et, which agrees well with the plotted points.

Figure 6 confirms the scaling doDL -- _a 2 found above. Again, this result is contained in equation (13) through

the dependence doDL_ Zo2 (the results of Fig. 6 are all for ot = 0.5, where Zo << Ro).

Because the speed of light c is introduced in the impedance, the choice of V¢o/C yields a physical scaling of

velocities. Because Y = t%o/[1¢o is a parameter, we obtain physical values of the length scales for an assumed value
of either Bo or n¢o. All runs discussed here are for Teo = Tio = 1 keV, typical of the plasma sheet population (note

dODLscales independently of T¢o). The scaled dODLis then given in kV as shown in the right-hand scale of Figure 6.

Similarly, if we adopt a nominal value of Bo = 0.05 G (fc_ = 250 kHz) for the acceleration region, the top scale of

Figure 6 gives arc thickness projected into the ionosphere of the order 1 km, which is the correct order of magnitude.
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Thepowerflows(kb)throughthevariouspartsof thecircuitareshownforonecaseinFigure7;forthiscase
_bDL= 42.5kV. In thesteadystate,only10percentof thepowerflowsgoesthroughtheDL, andabout90percent
goesintochargingtheflanks.Thephysicalscaleontherightshowsthepowerdissipatedper1000kmextentof the
arcin theE-Wdirection.Arcsaregenerallyobservedinsystemsof parallelbands,quasi-periodicin theN-Sdirec-
tion;for theparametersofthisexample,eachDA insuchasystemwoulddissipateabout10I1W,comparedwitha
typicalsubstormpowerof -- 1012 W.

The scalings in ct and J_a have straightforward physical intepretations. The increase of _bDL with et has two

related aspects. First, the efficacy of the anomalous transport mechanism reported in Smith (1986b) increases with

o_, which is a measure of the strength of the MTSI. Second, in this self-scaling model the ratio Ri(_b)/£f(_b) _ (XI/2, SO

that as ot increases, finite-Larmor radius effects lead to decreasing ion drift speed; hence, a higher ratio of electro-

static to kinetic energy is stored in the flank "dielectric" for a given charge. The factor _a in Zo [equation (6)]

originates in the current balance (Is = Js %), and because the flank is charged from the interior of the arc the charge
available increases with £a- The quadratic scaling (DDL _ _a 2 derives from the self-scaling of the transport model

because _f _ (I) I/2.

IV. DISCUSSION

We have shown that basic considerations of DL evolution and stability require anomalous transport

processes to divert the uniform upstream current to the flanks of a DA even after the parallel electric field has

evolved to a steady state. The transport model we have discussed, albeit highly simplified, yields an estimate [equa-

tion (8)] for the arc potential in general accord with observations. Other important consequences of the model are

also in accord with satellite and rocket observations of DA's and laboratory DL experiments. These include: (1) the

density in a DA is substantially depleted relative to the ambient density (Benson and Calvert, 1979; Alport et al.,

1986); and (2) concomitant with the depletion of the arc is that the current is diverted to the flanks, so that the highest
current density is at the edges (Bruning, 1983; Burke, 1984).

Besides the simple transport mechanism discussed here, there are many other mechanisms which are prob-
ably important in DA's. We are presently investigating models including ion-cyclotron modes.

In terms of the simple circuit model, the potentials, perpendicular length scales, and power flows physically

scale to correct orders of magnitude. For the nominal parameters we have chosen, the potential ranges from 5 to 42

kV, while the length scales are consistent with the observational bound of -_3 km on the latitudinal scale projected

in the ionosphere (Boehm and Mozer, 1981). These quantities scale as neo and r_o-1/2, respectively. We adopted Bo
= 0.05 to correspond to the frequency of peak intensity of the auroral kilometric radiation, and chose t%o/f_eo as the

marginal limit of strong magnetization (toJl)_ = RflX_), which experiments reveal to be a requisite for strong DL
formation with Earthward-directed Poynting flux (Smith, 1986a). (Recall that n_o is the ambient density before DL

formation, not that of the evacuated arc.) Thus, our choice of O_o = _o is an upper bound; smaller values lead to
lower potential, larger widths, and lower power flows.

In future publications we shall report on refinements and extensions of the simulation concept, including a

model in which the simplified circuit used here is replaced by the transmission-line equations.
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Figure 1. Schematic illustration of initial charging of the DL flanks by expulsion of charge from the localized,

rapidly changing non-neutral region (shaded: stippled region p > 0, cross-hatched p < 0) where onset of current-
driven instabilities occurs in the parallel sheet of a kinetic Alfv6n wave.
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DRIVING SOURCE

Figure 2. Schematic of the double layer flank spreading along B from the double layer toward the generator (here

for illustration taken to be in the plasma sheet).
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Figure 3. Left side: Schematic of the current diversion in the discrete arc. Right side: Definition of the scale lengths
of the arc (_a) and flank (_f) and the associated scale factors which are used in the text to replace perpendicular

derivatives. Also shown is a sketch of the inhomogeneous electric field Ex, which produces relative drift between

the electrons and ions owing to finite-Larmor-radius effects, and the definition of the xyz coordinate system. The

magnetic field Bo = -Boez.
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Figure 4. Model circuit used to provide the current density boundary condition in one-dimensional DL simulation.
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Figure 6. Scaling of t_)DL with the perpendicular scale width _a of the arc model. The bottom and left scales are

dimensionless. The right scale shows the potential in kV for assumed Teo = 1 keV; the top scale shows the arc

dimension (2£a) projected into the ionosphere, for the given ambient parameters (before DL formation).
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Figure 7. Time history of power flows through the various circuit elements for run 8606 (e6DL/Teo = 42.5). TL -

transmission line (flank) impedance; DL - double layer; AR - anomalous resistivity (leakage) in flank. The right-

hand scale shows the physically scaled power for an arc extended 1000 km in the E-W direction.
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ABSTRACT

Previous work on the evolution of weak double layers in a hydrogen plasma has been extended to include H +

and O + with relative drift. It has been shown (Bergmann and Lotko, 1986) that the relative drift between hydrogen

and oxygen ions due to a quasi-static parallel electric field gives rise to a strong linear fluid instability which

dominates the ion-acoustic mode at the bottom of the auroral acceleration region. This ion-ion instability can

modify ion distributions at lower altitudes and the subsequent nonlinear evolution of weak double layers at higher
altitudes in the ion-acoustic regime. We have found that ion hole formation can occur for smaller relative electron-

ion drifts than seen in previous simulations, due to the hydrogen-oxygen two-stream instability. This results in local

modification of the ion distributions in phase space, and a partial filling of the valley between the hydrogen and
oxygen peaks, which would be expected at higher altitudes on auroral field lines. It is shown that the observed

velocity diffusion does not necessarily preclude ion hole and double layer formation in hydrogen in the ion-acoustic

regime. These simulation results are consistent with the experimentally measured persistence of separate hydrogen
and oxygen peaks, and the observation of weak double layers above an altitude of 3000 km on auroral field lines.

I. INTRODUCTION

Weak double layers with potential jumps comparable to the electron thermal energy have been observed to

form in one-dimensional (Sato and Okuda, 1980) and two-dimensional (Barnes et al., 1985) electrostatic panicle
simulations; the double layer formation is driven by an electron drift relative to ions which is unstable to the ion-

acoustic mode but is less than the electron thermal speed. Such weak double layers have been observed in space in
the auroral particle acceleration region (Temerin et al., 1982), and in laboratory plasmas (Chan et al., 1984; Sekar

and Saxena, 1985; Chan, 1986). Thus far, theoretical efforts at understanding weak double layer formation have

focussed on a single ion species, while it is known from space observations that weak double layers occur in regions

of upward flowing hydrogen and oxygen of ionospheric origin. A quasi-static parallel electric field has been postu-
lated to explain the observed panicle distributions (Chiu and Schulz, 1978; Lyons, 1980). While the existence of

such a field will remain a zeroeth order assumption in the present paper, we will also examine non-adiabatic mod-

ifications of the particle distributions at the bottom of the acceleration region which may affect weak double layer
evolution further up the field line, and the stability of the assumed quasi-static field.

We will first briefly review previous work on weak double layer evolution in a hydrogen plasma, and then
extend our simulations to include a relative drift between hydrogen, oxygen, and electrons which occurs, for
example, in a mirror-supported parallel electric field. Our purpose is to examine the nonlinear effects of the result-

ing hydrogen-oxygen two-stream instability (Bergmann and Lotko, 1986) on the particle distributions, and con-
sequences for double layer formation further up the field line.

_RECF..DiNG PAGE ELANK NOT FILMED
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III. WEAK DOUBLE LAYER FORMATION IN A HYDROGEN PLASMA

Barnes et al. (1985) showed in a series of one- and two-dimensional, bounded and periodic particle simula-

tions that weak double layers with potential jumps comparable to the electron thermal energy form when the system

is driven by an electron drift relative to ions which is less than the electron thermal speed, e.g., Vd = 0.5 - 0.7 ae,

and an electron to ion temperature ratio Te/Ti > > 1. The electron drift was maintained by injection of electrons from

the boundaries at a continuous rate in bounded runs, and by applying a weak electric field uniformly across the

system in periodic runs.

Sato and Okuda (1980) first studied the occurrence of weak double layers in a one-dimensional periodic

system in which electrons are given an initial drift that subsequently decays. They found that it was necessary to use

a long system, L > 256 hD (Debye lengths), in order for weak double layers to form in periodic runs. Our subse-

quent interpretation (Barnes et al., 1985) is that long periodic systems are required to prevent electron recycling

from the low to high potential side, which neutralizes the double layer. Electron injection boundary conditions

eliminate this problem in bounded simulation runs, and a weak applied electric field acts to impede electron

recycling in periodic runs; both of these simulation techniques allow shorter system lengths.

Figure 1 from Barnes et al. (1985) shows the temporal evolution and recurrence of weak double layers in a
one-dimensional system with electron injection boundaries. Ion-acoustic turbulence evolves, for VH = 0.5 ae and

Te/Ti = 50, into a discrete localized pulse which propagates into the system initially at the sound speed. The pulse is

characterized by a negative potential dip which amplifies by momentum exchange with reflected electrons (Lotko,

1983; Chanteur et al., 1983); the asymmetic reflection of electrons results in a potential jump downstream. As the

negative potential dip grows, it traps ions, slowing down the pulse via mass loading until an effective Bohm

criterion for existence of the double layer potential jump is no longer met. The latter requires that ions flow into the

high potential side at or near the sound speed (Chen, 1974), achieved here by motion of the pulse in the ion frame.

The potential jump then decays and ion holes (Chan, 1986) or ion-acoustic solitons (Sato and Okuda, 1981) propa-

gate away from the high potential side to seed new double layer formation. The decaying ion hole, still apparent in

phase space, recoils backward as it moves downward through the ion distribution.

Barnes et al. ( ! 985) examined the persistence of weak double layers in two-dimensional magnetized simula-

tions. Electron injection boundary conditions produce one-dimensional double layers which are roughly uniform

across the system in the direction perpendicular to B. To examine the transverse scale, a doubly periodic system

with a weak electric field imposed uniformly along B was employed. The magnitude of the electric field was such

that the corresponding potential drop across the system was less than the electron thermal energy, or eEo/Te =

0.6/160 hD. Figure 2 shows transverse localization of weak double layers for strongly magnetized electrons (COce/tOp_

= 3 is the ratio of electron gyro to plasma frequency). The transverse dimension appears to decrease with increasing
magnetic field strength, scaling with X/hD 2 + 9s2, where hD is the Debye length and Ps is the ion gyroradius at the

electron temperature. The parallel scale length remains the order of tens of Debye lengths, as in one-dimensionality.

Ion-acoustic turbulence becomes homogeneous and does not evolve into localized weak double layers in weakly

magnetized (oJdCOp_< 1) periodic systems. One therefore might expect to see such structures in the auroral acceler-

ation region, but not, for example, in the solar wind.
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IV. ION HOLES IN MULTIPLE ION SPECIES PLASMAS

To the double layer evolution problem we would now like to add the effects of multiple ion species, H ÷ and

O +, with relative drift. This introduces an important complication noted by Bergmann and Lotko (1986). A quasi-

static parallel electric field produces a relative drift between ionosph_rogen and oxygen ions which have been
accelerated through the same potential drop, such that VH/Vo ----X/Mo/MH = 4. This situation is fluid unstable for

parallel propagating modes when the relative H ÷-O ÷ drift exceeds a minimum, determined primarily by ion Landau

damping, up to a maximum value that is less than about twice the hydrogen sound speed Cs = "V"Te/MH. This
indicates that the ion two-stream instability (for parallel propagating waves) will be confined to the bottom of the

acceleration region, since at higher altitudes the relative drift will exceed the upper bound for instability. It is likely,
although it has not yet been demonstrated, that obliquely propagating modes may still be unstable for drifts exceed-

ing this upper bound. The growth rate for the ion two-stream instability is larger than that for typical (electron-ion)

current-driven instabilities, and one might expect significant modifications of the hydrogen and oxygen dis-
tributions to occur. In particular, the unstable ion two-stream waves have phase velocities lying between the

hydrogen and oxygen distributions, and one might expect some quasi-linear filling, that is to say, formation of tails

on the high and low velocity sides of oxygen and hydrogen, respectively. This quasi-linear filling could, in turn,
affect the ion-acoustic instability and double layer evolution at higher altitudes, when ion drifts relative to electrons

become a significant fraction of the electron thermal speed, as required for double layer formation in hydrogen

plasma simulations. The instability analysis and simulations require knowledge or assumptions about the electron

distribution in the region of interest. Bergmann and Lotko (1986) have integrated the electron distribution func-
tions, F(vTI, v±), in the Chiu-Schuiz (1978) equilibrium model of a mirror-supported electric field to obtain an effec-

tive one-dimensional distribution, f(vii ). These electron populations include precipitating magnetospheric

electrons, primary and secondary backscattered electrons, and those electrons which are trapped between the mag-
netic mirror below and retarding electrostatic potential above. At an altitude relevant to the ion two-stream

instability, the bulk of ionospheric electrons has been retarded at lower altitudes by the potential drop which

produces the relative ion drifts. The sum of the remaining electron populations, shown in Figure 3, is essentially a
stationary Maxwellian with a precipitating electron tail. Also shown in the figure is a Maxwellian fit for the first
three moments as described by Bergmann and Lotko.

We would like to examine the spatial evolution of the ion distribution functions along the geomagnetic field
line at various distances above the bottom of the acceleration region (nominally at an altitude of 2000 km in Chiu and

Schulz, 1978), including the ion two-stream unstable regime near the bottom on up to altitudes where the ion drifts
become comparable to the electron thermal speed, and where double layers have been observed (>3000 km alti-

tude). Since our computer resources limit the simulation system to lengths less than or the order of 1000 Debye

lengths, we examine instead a temporal evolution problem which differs from the spatial evolution problem in at
least one respect. In the spatial evolution case, the ratio of the H +/O ÷ bulk drift velocity is M'X/'_H, as oxygen and

hydrogen are accelerated to the same energy as a function of potential at a given altitude. In steady state at a fixed

altitude there will be a continuous flow of oxygen and hydrogen whose drifts differ by a factor of 1 to 4, respec-
tively, but the hydrogen and oxygen ions passing that altitude at a fixed time will not leave the bottom of the

acceleration region simultaneously, since hydrogen flows up the field line faster. This follows from the relation

e_b = 1/2 M H VH 2 = I/2 MoVo 2 (1)

which holds at any given altitude where the potential is e_b. Alternatively, in a simulation system evolving in time
with a uniformly applied Eo, the ion velocity varies as
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which results in an H +-O + velocity of Mo/MH, rather than (Mo/MH)1/2. Furthermore, depending on the strength of
the applied electric field Eo, the ions may accelerate so rapidly that the upper limit on the relative drift for the ion

two-stream instability may be exceeded before nonlinear saturation can occur. In such a case, we would not see the

full effects of wave-particle interactions on the ion distributions.

With these caveats in mind, we performed a series of one-dimensional electrostatic simulations using the

particle code ESI (Birdsall and Langdon, 1984), in a periodic system of length 240 hD, using 16,000 hydrogen and

16,000 oxygen ions and 32,000 electrons. We varied the uniform applied electric field from eEo/Te = 0, 1.2/240 ho

to 2.4/240 hD and applied it only to the ions in order to simulate the approximately stationary electron Maxwellian
(Fig. 3) through which the outflowing ions accelerate. We did initial value runs with VH = Vo = O at t = O and

runs which were initiated with VH and Vo in the range where the ion two-stream growth rate peaks.

Figure 4 shows the nonlinear evolution of the ion two-stream instability for initial drifts VH = 1.2 Cs and Vo

= 0.3 Cs and a uniform applied electric field eEo/Te = 2.4/240 hD. The electron-to-ion temperature ratio is Te/T_ =
20 and the mass ratios are MH/Me = 50 and Mo/MH = 8. The choice of drifts VH/Vo = 4 is intermediate between

the spatial evolution case where VH/Vo = _ = 2V'2 and the temporal evolution case where VH/Vo =

Mo/MH = 8 for our mass ratio. Variations about this set of parameters are discussed below. One observes the

formation of a localized fluctuation in the potential similar to that seen in the previously described (single ion)

simulations at a time when the hydrogen drift relative to electrons is VH = 0.2-0.3 a_. This drift is smaller by a factor

of 2 than in the single ion runs previously shown. The localized wave is a result of the nonlinear evolution of the ion

two-stream instability which occurs at lower relative drifts (VH-Vo) than the current-driven, ion-acoustic

instability. The potential pulse is subsonic in the ion frame, and appears to propagate with the ions out the right-hand

boundary and re-enter on the left. Periodicity of the system allows one to see that the pulse is continuous from the

right through the left boundary of an adjacent frame, since the pulse has not moved much from frame to frame. (The

frames are separated in time by 60 top_-_.) A significant localized potential jump e+/Te _> 1 develops, but does not

persist as far downstream as in cases where the relative electron-ion drift is larger (Fig. 11). We therefore hesitate to

call this structure a double layer when the system is in the ion two-stream unstable regime, although its features are
very similar to those shown in Figure 1, when translated to a frame in which electrons are stationary and ions drift.

One sees trapping of hydrogen and oxygen on the sides of the distribution functions corresponding to the phase
velocities of the (ion two-stream) unstable waves, namely the low velocity side of hydrogen and the high velocity

side of oxygen. It seems appropriate to call this structure an ion hole.

We observed ion hole formation in the ion two-stream unstable regime for a range of parameters summarized

in Table 1. The ion two-stream instability was observed over a broader range of parameters (Bergmann and Lotko,

1986) than was ion hole formation, which apparently requires large amplitude waves and occurs only for sufficient-

ly rapid linear instability. Recall that the ion two-stream instability is limited in duration as the electric field

accelerates ions into and out of the range of linearly unstable drifts. Ion hole formation did not occur in runs 2-4 until

the hydrogen bulk was accelerated to 0.2-0.3 a_. In run 6, with no applied electric field but the same initial drifts as
run 3, ion hole formation was not observed. In run 7, also with no electric field, but with initial drifts in the range

produced by the electric field in run 3 at the time ion hole formation was observed, an ion hole forms. Sato and

Okuda (1980) saw weak double layer formation in a system 256 ho long but not in one 128 hD long. Our system

length of 240 )to is marginally long enough to allow a double layer to form in the absence of an applied electric field

before periodic electron cycling neutralizes the evolving double layer space charge. We also did a run (8) using a
bounded one-dimensional electrostatic code, PDW1 (Lawson, 1984), with constant particle injection maintained

by an external circuit and floating potential at both ends of the system, but with parameters otherwise the same as in

run 7. Ion hole formation in runs 7 and 8 is comparable, as shown in Figure 5.
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In order to address the temporal evolution question, we performed two runs (9 and 10) with two different

values of the applied electric field, eEo/Te = 1.2, 2.4/240 hD, no initial ion drifts, and periodic boundary con-

ditions. Ion hole formation was evident but weaker for the larger electric field (run 9) than in the initial drift case

(e.g., run 3), and absent for the weaker electric field (run 10) when compared at time such that Cs < VH-Vo < 2 Cs.

Some ion heating occurs in the initial value runs (9 and 10) before the relative drifts are comparable to the initial drift

runs, i.e., optimum for ion two-stream instability. In initial value runs the hydrogen and oxygen ion distributions

separate more quickly than in the case of spatial evolution, and so spend less time in the range of unstable relative

drifts, VH - Vo <_ 2 Cs. The maximum growth rate of the two ion-stream instability is the order of _//cop_-- 10-2

(Bergmann and Lotko, i 986, Fig. 3) for the k modes in our simulation system of length 240 hD and grid size 0.5 ho.
Both initial value (run 9) and initial drift (run 3) cases remain in the range of unstable drifts VH-Vo _ 1.2-2 Cs a

number of e-folding times, but there appears to be some difference between initializing the system in the linearly

unstable regime and evolving through it. In the auroral problem, one expects spatial evolution and weaker electric

fields, discussed below, to separate the drifts more slowly relative to the linear growth time.

The question arises whether ion heating by the ion two-stream instability, evident in Figure 4, will affect

double layer evolution at higher altitudes where the ion drift relative to electrons is larger. Figure 6 shows the initial

ion and electron distributions for runs 9 and 10. Figure 7 shows the same distributions for run 9 at the time an ion

hole is beginning to form, while Figure 8 shows the same distributions at a later time when the hydrogen drift is

becoming significant relative to electrons. Figure 9 shows the particle distributions in the weaker electric field case

at a time when the drift is the same as Figure 7. We would conclude from this set of figures tht there is no major

modification of the hydrogen and oxygen distributions by the ion two-stream instability, which is present in runs 9

and 10. There is some heating on the low velocity side of hydrogen and the high velocity side of oxygen, as

expected, in the range of unstable ion two-stream phase velocities. Figure 10, a similar plot for run 3 which showed
ion hole formation at large trapping amplitudes (e_b/Te _ 1), indicates more heating between the hydrogen and

oxygen distributions. This plot exhibits distribution functions which are spatially averaged across the whole

system, and it is the case that the plateau evident in hydrogen (and oxygen) is due primarily to the spatially localized

ion hole evident in Figure 3. It is questionable to call this heating versus localized ion trapping since it is not uniform

across the system. It therefore seems reasonable to conclude that in our simulation system the hydrogen and oxygen

average distributions are not so greatly modified by the ion two-stream instability as to preclude ion-acoustic

instability and double layer formation at larger ion drifts relative to electrons.

IV. ION-ACOUSTIC DOUBLE LAYERS IN AN O+-H ÷ PLASMA

As hydrogen and oxygen continue to accelerate up the geomagnetic field line out of the region of ion two-

stream instability, hydrogen eventually acquires a drift relative to electrons comparable to the electron thermal

speed. If the hydrogen velocity distribution has not been too greatly modified by the ion two-stream instability, as

our preceding results indicate, we might expect double layers to evolve from the electron-hydrogen acoustic
instability, as described by Barnes et al. (1985), as long as oxygen and hydrogen remain well separted. To test this,

we did a series of simulations at large electron drifts (0.7-0.9 a_) in the oxygen frame with hydrogen drifting at -0.2

C_. Electron injection boundary conditions were employed as in Barnes et al. (1985), in a system 512 kD long,

containing 8000 ions of each species and 16,000 electrons. More realistic mass ratios, MH/Me = 1000 and Mo/MH

= 10, were used. Oxygen was kept cold relative to electrons, Te/To = 100, and two cases were examined for

hydrogen: TJTH = 20 corresponding to no significant heating of hydrogen by the ion two-stream instability at

lower altitudes, and Te/T H = 2 where significant heating has occurred. The assumption that electrons are hotter than

ions is justified by the altitude where weak double layers have been observed (>3000 km), since the large scale

parallel electric field restricts colder electrons to lower altitudes. No electric field was applied in these bounded
runs.
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Figure l l shows the hydrogen and oxygen distributions and potential at a time when one and possibly a

second double layer are forming with hole(s) evident in hydrogen phase space. Oxygen responds more slowly and

appears to play a passive role in the double layer formation, but eventually forms a hole in ion-phase space by the

time hydrogen has undergone significant heating and the double layer is disappearing (Fig. 12). In a similar run with

Te/TH = 2, a hole does not appear to form in hydrogen but is evident in oxygen at later times. This result is con-
sistent with Schamel's (1982) criterion that ion holes do not form for TJTi < 3.5 (see also Hudson et al., 1983). An

oxygen ion hole and weak double layer appear to form when the hydrogen is heated too much to support such a

structure. Should the hydrogen be significantly heated and the oxygen remain cool, a hole can still form in oxygen in
association with an electron -O + drift instability at phase velocities between the electron and O + peaks.

V. APPLICATION TO THE AURORAL REGION

A number of caveats are in order before applying the foregoing simulation results to the auroral particle

acceleration region. We have examined separately two regimes: (1) where the two ion-stream instability operates at

low relative ion drifts (<2 Cs) produced by a quasi-static parallel electric field near the bottom of the acceleration

region, and (2) ion-acoustic double layer formation at higher altitudes where relative electron-ion drifts are larger
and the ion distributions will have undergone some heating at lower altitudes. We have restricted our analysis to

parallel propagating modes and one-dimensional simulations in the present paper. It is likely that oblique modes
will affect the ion distributions. Kaufmann et al. (1986) have examined the stability of hydrogen and oxygen beams

measured by the $3-3 and DE 1 satellites and concluded that oblique modes are unstable. It may also be the case that
the upper limit on relative drift for the ion two-stream instability is relaxed for oblique modes, since !_. (VH - Vo) <2

Cs for larger relative ion drifts when k is oblique. The linear instability of oblique modes is under investigation by

Bergmann (private communication, 1986). Barnes et al. (1985) showed that ion-acoustic double layers evolve in the

presence of oblique (EIC) modes in two-dimensionality with behavior similar to the one-dimensional case. We plan

to extend the present multi-ion studies to two-dimensional in the future.

Another qualification to our conclusions is the strength of the electric field used in the initial value simula-
tions. The values of eEo/T_ = 1.2-2.4/240 )_Dcorrespond to 5-10 mV/m for kD = 10 m, T_ = 10 eV, and n_ -- 10

cm -3. These are not large parallel electric fields compared with observations in the acceleration region (Temerin,

private communication, 1986), but are larger than the mirror-supported fields calculated by Chiu and Schulz (I 978)
which maximize at Eo < 0.5 mV/m near the bottom of the acceleration region.

It is somewhat difficult to extrapolate from the temporal evolution approach taken in this paper to the spatial

evolution of ion distributions along auroral field lines. Nonetheless, with the neglect of oblique modes and use of

somewhat large electric fields, and/or initializing the simulations with unstable drifts, and preheated ions in the ion

acoustic regime, we find the following:

I. Ion holes form in the ion two-stream unstable regime at relatively low drifts compared with those requi-

red to form ion-acoustic double layers. They occur in systems with and without an applied electric field, but over a

narrow range of relative hydrogen-oxygen drifts.

2. The ion two-stream instability does not appear to greatly modify the ion distributions, except locally in

the presence of a large amplitude (e_b/Te - 1) ion hole.

3. Double layer evolution should proceed at higher altitudes as previously described in the ion-acoustic

regime, with holes forming in hydrogen, and oxygen responding passively.
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Therearetwopiecesof experimental evidence supporting our conclusion that hydrogen and oxygen dis-

tributions are not so greatly modified at lower altitudes by the ion two-stream instability as to preclude double layer

formation at higher altitudes.The first is the set of particle measurements from the $3-3 and DE 1 satellites analyzed

by Kaufmann et al. (1986) showing well separated H ÷ and O ÷ peaks, with a slight filling in between the two. The

second is the observation of what have been identified as weak double layers by Temerin et al. (1982), also Temerin

and Mozer (1986), at altitudes >3000 km in regions of upward ion flows. These observations indicate that the

heating of the ion distributions that occurs at lower altitudes is not as great as the relative acceleration, nor enough to

make Te/Ti - 1, which would preclude ion-acoustic double layer formation.

A number of questions remain to be addressed: Can one design a temporal evolution simulation which better

models the spatial evolution problem within the constraints of comq.__EE_ time and memory, e.g., by moving one ion
species with an electric field which differs from the other by VMH/Mo to mimic the spatial case in an initial value

problem? What effects do oblique modes and two-dimensionality introduce in the problem? Is it possible to use

weaker electric fields and follow the evolution from the ion two-stream through the ion-acoustic double layer
regime. These and other questions remain to be addressed in future work on the evolution of weak double layers in

the multi-species auroral plasma.

TABLE 1. ION HOLE FORMATION IN THE ION TWO-STREAM
UNSTABLE REGIME

Vo(0) VH(0) VH-Vo t

Run (ae) (a_) (Cs) eEo/Te bc (Or,e-l ) hole

1 0 0.17 1.2 2.4 per 0 no

.2 0.035 0.17 0.95 2.4 per 0 yes

3 0.042 0.17 0.91 2.4 per 0 yes

4 0.049 0.17 0.86 2.4 per 0 yes

5 0.06 0.17 0.78 2.4 per 0 no

6 0.042 0.17 0.91 0 per 0 no

7 0.06 0.30 1.7 0 per 0 yes

8 0.06 0.30 1.7 0 bnd 0 yes

9 0 0 0 2.4 per 0 marginal

10 0 0 0 1.2 per 0 no

Note: Units of eEo/Te are (240 kD)-I; bnd and per refer to bounded and periodic boundary conditions (bc).
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Figure 1. Time series plots of ion-phase space (left) and electrostatic potential (right) for a bounded one-
dimensional run with M/m = 2000, TJT_ = 50, and VH = 0.5 ae. The snapshots are taken at intervals of 360 o_p_-I

(8 tOpi-_) beginning at 1080 tOp_-_ (24 tOpi-_) (from Barnes et al., 1985).
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Figure 3. Reduced electron distribution function f(V) for Chiu and Schulz (1978) Model W, at e_b/Tc = 110, where

Tc is the cold ionospheric electron temperature. This represents a sum of contributions from magnetospheric,
primary and secondary backscattered and trapped electrons, with ionospheric electrons negligible at this value of

the mirror potential measured from zero at an altitude of 2000 km (adapted from Bergmann and Lotko, 1986).
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Figure 5. (a) Potential for run 7 at tope At = 900; (b) Potential for run 8 at tOpe At = 900. Parameters in (a) and (b) are

the same, except that (a) was periodic, using ESI, and (b) was bounded using PDW1, with particle injection main-

tained constant as initialized (VH = 0.30, Vo = 0.06, Ve = 0 in units of ae) by an external circuit. All potential

plots shown are averaged over 30 tOpe.| .
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Figure 6. Initial (a) electron, (b) hydrogen, and (c) oxygen distribution functions for runs 9 and 10.
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Figure 7. Same plots as Figure 6 for the stronger electric field case eEo/Te = 2.4/240 kD, at the time an ion hole is

beginning to form, tom At = 900. The potential averaged over 30 tor,j _ is also shown in (d).
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Same plots as Figure 6 for run 9 at O_p_At = 2160 when VH = 0.44 ae is becoming comparable to Figure
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Figure 9. Same plots as Figure 6 for the weaker electric field case, run 10, with eEo/Te =

1800, corresponding to the same amount of ion acceleration as Figure 7.
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Figure 10. Same plots as Figure 6 for run 3, at the end of the time series shown in Figure 4.
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One or more double layers are apparent.
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PARTICLE SIMULATION OF AURORAL DOUBLE LAYERS

Bruce L. Smith* and Hideo Okuda

Princeton Plasma Physics Laboratory
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ABSTRACT

We report on our work to simulate auroral double layers (DL's) with "realistic" particle-in-cell models. An

early model simulated weak DL's formed in a self-consistent circuit but under conditions subject to the ion-acoustic

instability. More recent work has focused on strong DL's formed when currentless jets are injected into a dipole
magnetic field.

INTRODUCTION

For several years we have been simulating space plasmas using "realistic" models. These models have

included both numerical MHD and particle-in-cell (PIC) codes. Here we discuss two PIC models that simulate
auroral double layers (DL's).

An early analysis of DL's was performed by Block (1972). In his model four species of particles, reflecting/

passing electrons/ions, were incident upon a strong (eV > > kT) DL. The two fluid equations, an adiabatic equation

of state and Poisson's equation, led to two criteria on the drift velocities of ions and electrons incident on the high
and low field sides of the DL, respectively. These are called the Bohm criteria in analogy with the similar criterion

on ions in a plasma sheath (Bohm, 1949). In Block's model the drifts necessary to sustain the DL result in a net
current.

Using these criteria as a recipe, one could easily simulate a DL. Such simulations only required fixed poten-

tials at the boundaries to drive the necessary current or a floating potential (or even periodic boundary conditions)

with large enough drifts (i.e., a current) to satisfy the criteria. Although these conditions permit DL's, in auroral

regions, where DL's have been observed (Temerin and Mozer, 1984), such conditions may not be present.

Sato and Okuda (1980, 1981) performed a series of simulations with "more realistic" conditions. In one of

these simulations they assumed:

I. Udrift e _ Vthe

2. Te >> Ti

3. Floating self-consistent potentials.

This is the range of parameters for ion-acoustic instabilities, but avoids the large relative drifts which may cause the
two-stream instability.

Their model was that of the polar region field lines in a self-consistent circuit. Initial conditions included a

driving potential and an initial current. The subseuent potential and current were related by a fixed resistance con-

sistent with the initial conditions. One of the results shown in Figure 1 was obtained for Vde/Vte= 0.6, M/m = 100,

* Now at Air Force Office of Scientific Research.
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nkD = 100, WpeAt = 0.2. AS is apparent, the simulation resulted in multiple weak (eV _ kT) DL's about 1000 )k D

apart and with scale lengths _ - 50 ko. These DL's are unstable and propagate at near the ion-acoustic velocity but
recur at a rate such that approximately the same number of DL's are always present.

Hasegawa and Sato (1982) provided the mechanism for such DL's. Basically an ion hole is created which

cuts off the electron current. Formation of an adjacent electron hole follows. This yields a DL which decays on the
ion time scale.

Other authors have found different ways to relax the constraints imposed by the Bohm criteria. In particular,

Kan and Lee (1980) concluded that the condition on the electron velocity was unnecessary if trapped electrons were

present. Similarly Perkinsand Sun (1981) demonstrated that even currentless DL's could exist. Incidentally, their

analysis contrasts with that of Chiu and Schulz (1978) who computed the potential along a mirror magnetic field due

to multiple species of ions and electrons using the condition of charge neutrality.

A recent experiment further indicated the possibility for modifying the conditions necessary, for creation of
DL's. Stenzel et al. (1981) conducted an experiment with a dipole B-field which reflected an incident ion beam.

This experiment resulted in strong DL's for varying magnetic field strengths. These, too, were inherently current-
less DL's.

The previous investigations compelled us to simulate a flowing neutral plasma injected along a (fully) dipole

magnetic field. This model is meant to simulate the storm-generated flow from the reconnection region to the polar

auroral regions. Of course, such a flow would cause ions and electrons of the same temperature to have different

turning points. As the ions overshoot the electrons, a space charge potential could form and a DL would be present.
This model then substantiates a source of energetic electrons for an aurora.

Parameters for the region through which such substorms are supposed to develop are n = I0-1000 cm -3, B

= 103- i 04 % and Te _ Ti -- 100's eV. These values yield Wp_ - Wce- 105-106 rad/s and 13< < 1. In this parameter

regime the electrostatic approximation is appropriate (Krall and Trivelpiece, 1973).

RESULTS

Results for a one-dimensional PIC simulation with L/kD = Ng = 1024, M/m = 25, WpeAt = 0.25, and

Bmax/Bm_, _ 25 are shown. For boundary conditions we chose V = 0 at z = 0 (the "ionosphere") and using

symmetry, dV/dz = 0 at z = L (the "magnetosphere"). Figures 2a-c show the injection of plasma at approximately
0.8 Vthe. As the plasma drifts into the dipole field, a double layer is evidenced by the acceleration of ions and

electrons and by their relative charges at L = 600 hD for Wp_t = 1900 and L = 800 hD for Wpj = 2600. One notes

that the DL is unstable by the modulation (with h -- 25 hD) and the fact that the DL moves at a velocity 200

hD/7OO/wpe = 2/7 Vthe. This value is on the order of the ion-acoustic velocity.

The f-spectrum for different positions (Fig. 3) shows the presence of a mode at w = 0.15-0.2 Wpe % Wpiand

at w = 0.05-0.1 Wp_<< Wp_.Similarly the mode structure (Fig. 4) gives wavelengths most strongly peaked at h =
0 and h = 60 hD. The data are consistent with a two-stream instability (with w << wp0. Finally the scale length of

the DL is kT/eE - 50 kD >> hD.
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In the next panels (Figs. 5 a-d) are shown f(v +)-f(v.) for both electrons and ions at different positions. If there

were simply a B-field with no other interaction we would expect a snapshot of the loss cone for such a comparison.

Instead the panels clearly show that the electrons accelerate from Wpet = I000 to Wpet = 2800 as they pass over the
DL. Similarly the ions slow down and cool during this same time. (This cooling of ions may allow an ion-acoustic
instability.)

In the final panels (Fig. 6) we show the measured energies from the simulation. As can be seen in the first

panel, total energy is conserved to within less than 1 percent. One also sees that the ion kinetic energy is converted to

electron kinetic energy until the two are approximately equal. Surprisingly, the collective potential energy is a small
fraction of the total.

A theory for this model was derived by Serizawa and Sato (unpublished manuscript). Using an adiabatic
approximation, their kinetic analysis showed that eV _ KEi/(1 + Ti/Te) with small variations predicted for mass

ratios m/M << 1 and mirror ratios Bmax/Bmi n >> 1. A plot ofeV versus KE_ for varying KE_ confirms the linear
relation between these quantities (Fig. 7).

Similar results for ions and electrons streamed from both ends are obtained.

CONCLUSION

In conclusion, simulations have been undertaken to model aurorae under realistic conditions. The simula-

tion of ion acoustic DL's in a self-consistent circuit showed multiple DL's with eV/kT <_ 1. Currentless DL's with

eV > > kT have been demonstrated. Although not discussed here, these simulations furthered the theory of Fourier
transforms for bounded systems and successfully demonstrated the utility of a guiding center code for electrons.

Currently two-dimensional codes are being tested to verify the one-dimensional results and to study two-
dimensional instability mechanisms.
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CONDITIONS FOR DOUBLE LAYERS IN THE EARTH'S MAGNETOSPHERE

AND PERHAPS IN OTHER ASTROPHYSICAL OBJECTS

L. R. Lyons

Space Sciences Laboratory, M2-260

The Aerospace Corporation
P.O. Box 92957

Los Angeles, California 90009, U.S.A.

ABSTRACT

Double layers (i.e., electric fields parallel to B) form along auroral field lines in the Earth's magnetosphere.
They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field

E with V • E 4: 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the

conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines.

Astrophysical situations where V • E 4:0 is applied to a conducting plasma similar to the Earth's ionosphere are
potential candidates for the formation of double layers. The region with V • E 4_ 0 can be generated within, or along

field lines connected to, the conducting plasma. In addition to V. E, shear neutral flow in the conducting plasma can
also form double layers.

I. INTRODUCTION

Here I describe the large-scale, electrodynamical phenomena that give rise to the formation of double layers
in the Earth's magnetosphere. I point out what I believe are the important features which might be found in associa-

tion with other astrophysical objects, and which could produce double layers analogous to those associated with the
Earth.

In the laboratory, double layers form if one tries to drive a current through a plasma that is greater than that

which can be carried by the available charge particles in a plasma. The same situation occurs along auroral magnetic

field lines. When the magnetosphere-ionosphere system tries to drive a current with a density greater than can be

carried by the plasma available to flow along field lines, a field-aligned potential drop VII forms. This Vii accelerates
electrons toward the atmosphere, and the accelerated electrons form discrete auroral arcs.

In this discussion, I do not distinguish between double layers, where large VII'S occur across short distances,

and smoothly varying potentials, where VII'S are distributed over large distances along field lines. The overall
electrodynamics is the same for both situations.

II. CONDITIONS FOR DOUBLE LAYERS

Three critical features of the Earth's magnetosphere-ionosphere system are involved in the formation of

significant (>1 kV) VII'S along auroral magnetic field lines. These are listed in Figure 1.

First, it is necessary to drive a current with a non-zero divergence. In the magnetosphere, the large-scale,

convection electric E has V • E _: 0 across auroral field lines. This divergence in E maps along field lines to the
ionosphere.
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Second, the ionosphere has a layer of high conductivity perpendicular to the magnetic field B. This con-

ductivity results from collisions between ionospheric particles and the neutral atmospheric particles. Thus, an elec-
tric field with V • E # 0 in the ionosphere drives Pedersen (parallel to E) currents Ip in the ionosphere with V • Ip ¢

0. This divergence in Ip must be balanced by field-aligned currents to maintain current continuity in the ionosphere.

Third, if the intensity of the required field-aligned current density Jtl exceeds that which can be carried by

plasma flowing along field lines with Vii = 0, then a VII ¢ 0 must form.

Any astrophysical situation where an electric field drives a current I perpendicular to B, with V • I :_ 0, has

the potential for forming VII'S along B. A layer with significant conductivity perpendicular to B would be an attrac-
tive candidate for having currents with V • I ¢ 0.

To determine whether a Vii will form, we must evaluate the Jll versus Vii characteristics of magnetic field lines

for jll's of the magnitude expected from V • I. Currents associated with aurora on the Earth typically have Jll -- 1-10
i_A/m 2. Two particle populations can contribute to this current: the ionospheric plasma moving up along field lines,

and magnetospheric plasma (from the plasmasheet) which precipitates into the atmosphere. Onlymagnetospheric

particles within the loss cone contribute to Jll, since particles outside the loss cone mirror above the atmosphere.

Downward jll's can result from ionospheric electrons moving upward and from the precipitation of magneto-
spheric ions. However, ionospheric electrons can generally supply ajl I> 10 I.LA/m2 to a downward jlI, so that Wll'Sdo

not generally form for downward jll'S.

On the other hand, the maximum Jll that can be carried by ionospheric ions is generally < 1 _A/m 2. Thus, the

precipitation of magnetospheric electrons must be considered for upward Jll'S. For typical parameters of plasmasheet

electrons, the maximum Jllthat can be supplied by the precipitation of magnetospheric electrons is - 1 txA/m 2 for V41

= 0. However, increasing VIIincreases jl Iby enhancing the flux of electrons in the loss cone. The relation between jl I

and VII along auroral field lines was obtained by Knight (1973), and is shown in Figure 2.

Figure 2 shows Jll versus VII for an electron density n = 1 cm -3 and an electron thermal energy Kth = 1 keV,
values which are reasonable for the plasmasheet. Results for other values of n and Kth can be obtained from the

normalizations given in the figure. Curves are shown for various values of the ratio between the magnetic field in the

ionosphere B_ and the magnetic field Bv_,at the top of the region where significant potential variation exists along

field lines. Satellite obsevations (Gorney et ai., 1981) indicate that B_/Bv,, _ 30 is reasonable. Notice from Figure 2

that upward jH's -- 1-10 IxA/m 2 require the existence of Wll'S -- 1-10 kV. Such Wll'S are of the magnitude observed
over auroras.

Figure 3 illustrates a way in which an E with _7• E _ 0 develops in the Earth's magnetosphere. Both open,

polar-cap field lines connected with the interplanetary field and closed, lower latitude field lines are shown. Solar

wind flow across the open polar cap field lines forms a dawn-to-dusk electric field across the open field line region,

and the electric field changes direction across the boundary between open and closed field lines. The boundary is
thus charged as indicated in the figure. Mapping the electric field to the ionosphere gives _7. Ip < 0 and upward jll'S

on the dusk side, and _7. It, > 0 and downward jll's on the dawn side. The magnitude of_7 • It, gives large enough Jll's

on the dusk side to require a VII > 0.

Similar situations as shown in Figure 3 should occur in the magnetospheres of other magnetized, solar

system planets, and could exist in association with other magnetized, astrophysical objects. Also, regions of V • E

0 can be formed by plasma sources, such as Io, that move across field lines within a magnetosphere.

Figure 4 shows that the observed change in E across the dusk auroral zone can account for the observed

magnitude of auroral Wll'S and precipitation intensities. The observations (Gurnett and Frank, 1973) were from a
low-altitude satellite. An electric field of 0.12 V/m was observed across the auroral region, and the equation for
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currentcontinuityin theionospherewassolved(Lyons,1980)for anelectricfieldof magnitude0.06V/moneach
sideof thereversal.Theresultingvaluesof VII and precipitating electron energy fluxes are shown in Figure 4 as a
function of latitudinal distance. These can be seen to compare well in magnitude with values obtained from electron

observations on the satellite. The auroral observations in Figure 4 have more structure than that obtained from the

simple solution to the current continuity equation. However, this type of structure, which is typical of discrete

auroral arcs, can be explained as a result of more detailed structure in the magnetospheric electric field (Lyons,
1981 ; Chiu et al., 1981).

So far, the discussion here has been under the assumption that the velocity Vn of neutrals in the conducting

layer is zero. Including Vn, Ip may be written as the difference between the electric field drift velocity VE and V,:

Ip = Ep (-V E -_- Vn) X B ,

where _p is the layer-integrated Pedersen conductivity. Since jt I = -V. Ip, the above relation shows that shears in Vn,

as well as shears in VE, can cause field-aligned currents within a conducting layer.

Generally, thermospheric neutral winds in the conducting region of the Earth's ionosphere are not sufficient-
ly large to generate Vil's. However, this is not necessarily always the case. Recently, Lyons and Walterscheid (1985)

proposed that neutral wind shear can drive waves of aurora (omega bands), with VII > 0, that occasionally occur on

the poleward boundary of the post-midnight, diffuse aurora. In addition it has been proposed the neutral winds in the

photosphere and lower chromosphere of the Sun can generate Vil's (e.g., Kan et al., 1983).

III. SUMMARY

Figure 5 summarizes conditions that might exist in other astrophysical objects and which could lead to the

formation of significant Vil's in a manner analogous to what occurs in the Earth's auroral zones. A conducting layer

carrying current I perpendicular to B with V • I 4:0 will force field-aligned currents. If the required field-aligned

current density Jll exceeds the maximum Jll that can be carried along field lines by the available plasma with VII = 0,

then a Vll > 0 will form.

Two processes can drive Pedersen currents with V- Ip 4:0 within a collisional, conducting layer. The first is

sheared plasma flow (i.e., V • E ¢: 0) applied anywhere along the magnetic field lines connected to the conducting
layer. In this case, the sheared plasma flow will map along field lines to the conducting layer. The second process is

a neutral flow with shear within the conducting layer. Such flow can drive divergent Pedersen currents without an
electric field being applied to the system.

Acknowledgments. Preparation of this manuscript has benefitted from discussions with M. Schulz and J. F.

Fennell. The work was supported in part by NASA grants NAGW-853 and NASW-861 and by the Aerospace
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Figure 4. Comparison of the solution to the ionospheric current continuity equation (Lyons, !980)
with observations. The observations (Gurnett and Frank, 1973) were obtained over

the auroral zone from a low-altitude satellite near 1800 LT.
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V E V E

• CONVERGING Ip CAN BE DRIVEN BY:

1. SHEARED PLASMA FLOW V E APPLIED
ANYWHERE ALONG B

2. SHEARED NEUTRAL FLOW V n APPLIED
IN CONDUCTING LAYER

• IF JU > CRITICAL Jll, GET V u

Figure 5. Summary of conditions that could lead to the formation of significant VII'S in a
manner analogous to what occurs in the Earth's auroral zones.
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SOME ASPECTS OF DOUBLE LAYER FORMATION IN A PLASMA

CONSTRAINED BY A MAGNETIC MIRROR

W. Lennartsson
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ABSTRACT

The discussion of parallel electric fields in the Earth's magnetosphere has undergone a notable shift of em-

phasis in recent years, away from wave-generated anomalous resistivity toward the more large-scale effects of

magnetic confinement of current carrying plasmas. This shift has been inspired in large part by the more extensive

data on auroral particle distribution functions that have been made available, data that may often seem consistent

with a dissipation-free acceleration of auroral electrons over an extended altitude range.

Efforts to interpret these data have brought new vigor to the concept that a smooth and static electric field can

be self-consistently generated by suitable pitch angle anisotropies among the high-altitude particle populations,

different for electrons and ions, and that such an electric field is both necessary and sufficient to maintain the plasma

in a quasi-neutral steady state. This paper reviews and criticizes certain aspects of this concept, both from a general

theoretical standpoint and from the standpoint of what we know about the magnetospheric environment. It is argued

that this concept has flaws and that the actual physical problem is considerably more complicated, requiring a more

complex electric field, possibly including double layer structures.

I. INTRODUCTION

Few topics in space plasma physics have been as controversial as that of "parallel electric fields," that is

electric fields with a static or quasi-static component aligned along the Earth's magnetic field lines and strong

enough to substantially alter the velocity distribution of the charged particles. Much of this controversy has centered

on the interpretation of auroral particle data, especially the data on precipitating electrons, and has evolved along

with developments in measurement technology (e.g., Swift, 1965; Block, 1967; O'Brien, 1970; Evans, 1974;

Lennartsson, 1976; Papadopoulos, 1977; Hudson et al., 1978; Chiu and Schulz, 1978; Goertz, 1979; Lyons et al.,

1979; Smith, 1982; and references therein).

Possibly the first truly compelling evidence of parallel electric field was presented by Evans (1974), who

was able to account in a rather convincing fashion for the different parts of a typical auroral electron spectrum. The

type of data presented by Evans is illustrated in a condensed form in Figure l, which is taken from a more recent

study by Kaufmann and Ludlow (1981). The two principal parts of this spectrum are a virtually isotropic low-energy

part, including the central peak and most of the plateau, and a high-energy part on the flanks, which is essentially

isotropic in the downward hemisphere (positive vtl) but strongly reduced in the upward hemisphere (negative vii).

According to Evans' interpretation, only the high-energy part in the downward hemisphere consists of precipitating

primary electrons, accelerated by an upward parallel electric field at higher altitude. Only these primary electrons
can contribute to a field-aligned (upward) current at this point in space. The low-energy part consists of back-

scattered and energy-degraded primary electrons and of electrons of atmospheric origin, many of which are secon-

dary electrons generated by the impact of primary electrons. All of these low-energy electrons are trapped below the

electric field and cannot contribute to the field-aligned current. Any additional contribution must be from upward-

moving ions.

PRECEDING PAGE BLANK NOT FILMED
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As noted by Evans (and by other investigators before him) the primary electrons ("p") on the downward

flanks of the distribution typically have a velocity distribution fp that is reminiscent of a Maxwell-Boltzmann dis-

tribution that has been displaced in energy:

...9.

fp(v_) _ C exp[-(mlvl2/2 - U)/kT] , (1)

where C is a normalization constant, m the electron mass, kT a thermal energy, and the positive quantity U is

independent of _"and may be equated to a certain difference in electric potential energy eV:

U = eAV (2)

This quantity corresponds to the kinetic energy of the electrons on the downward edge of the plateau in Figure 1 and,

by inference, corresponds to primary electrons with zero initial energy (at high altitude).

If the distribution in Figure 1 is integrated {n terms of a net field-aligned current density itl, only the electrons

on the flanks make a significant contribution because of the near isotropy at energies smaller than U. If the dis-

tribution of these flank electrons fp ("primary electrons") is approximated by (1) at pitch angles ct _< Of.max (where
Otmaxis slightly larger than 90 ° in this figure) and approximated by zero at ot > am,x, then the integration of

-efp(_)vcoso_ readily yields:

ill _ --eC2'rr(kT/m)2sin2Ctmax (1 + U/kT) , (3)

which is a linear function of U for constant values of C, kT, and O/.max (the latter corresponding to a local atmospheric

"loss cone" angle of 180 ° ---'(Xmax). Some comparisons of auroral electron spectra with the associated field-aligned

currents (inferred from other data) have confirmed that the precipitating primary electrons do in fact account for a

large or dominant portion of upward field-aligned currents, and the current density is sometimes fairly well approxi-

mated by (3) (Burch et al., 1976; Lyons, 1981; Yeh and Hill, 1981).

Although the right-hand side in (3) can be derived on purely empirical grounds, as an approximation of

observed electron fluxes, the same type of expression can also be "predicted" if the primary electrons are assumed to

originate at high altitude (a few Earth radii, or more), with an isotropic Maxwell-Boltzmann distribution with a

temperature T, and fall through a static parallel electric field with a total potential difference AV = U/e (e.g.,

Knight, 1973; Lemaire and Scherer, 1974; Lennartsson, 1976, 1980; Lyons et al., 1979, Lyons, 1981; Chiu and

Schulz, 1978; Chiu and Cornwall, 1980; Stern, 1981 ). The electric field distribution is not uniquely defined by (3),

but to assure the maximum degree of isotropy of the precipitating electrons at low altitude, in accordance with

Figure 1, and thus the closest approximation of a linear dependence between ill and AV, it is necessary to assume that
the electric potential V varies with the magnetic field strength B in such a fashion that

V(B) - V(Bo) /> (B-Bo) AV/AB (4)

where o refers to the high-altitude origin of the electrons and AB refers to the total difference in magnetic field

strength between this origin and the low-altitude point of observation (Lennartsson, 1977, 1980). Among the

possible solutions of (4) are various double layer configurations, single or multiple.
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Thefactthat(3)canbederivedundersuchsimpleassumptionsandyetgiveafairapproximationof upward
field-alignedcurrents,at leastin somestudies,hashelpedin focusingattentionon thesubjectof magneticcon-
finementof currentcarryingplasmas.Thetheoreticalimplicationsof thisfactarestill obscure,however,andthere
isnoconsensusyetontheactualpropertiesof theparallelelectricfield.Thispaperreviewsafewaspectsof this
complexproblem,includingthepossibleroleof doublelayers.

II. NATURAL BOUNDARY CONDITIONS

A rather traditional approach to magnetospheric plasma dynamics at non-relativistic energies is to consider

adiabatic single-particle motion, assuming that at least the first adiabatic invariant is preserved for both ions and

electrons. This approach has proved fruitful in numerous applications but does have intrinsic problems in many

others. To illustrate the latter it is assumed that the particle dynamics is dominated by magnetic and electric force
fields, ]_ and E, respectively. To save space the symbols M and Q are used for the mass and charge, respectively, of

either ions or electrons. The first invariant (in MKS units) can thus be expressed as

I.L = MVg2/2/B _ constant , (5)

-9- -.--_/

where the gyro velocity Vg equals I_'±- E x B/B2[, apart from a small perturbations velocity vt defined by:

_1' = (M/Q/B2)(dEj_/dt + Vg 2(_ x VB)/2/B + vii2 B× (I/B)B.7(B/B) , (6)

where the time derivative is taken in the frame of reference of the moving particle (e.g., Alfvrn and F_ilthammar,

1963; Longmire, 1963). This velocity represents the mass and charge dependent part of the gyro center drift, which

is added to the common _ × B drift. The parallel velocity is likewise defined by

M (d_dt)ll _ QEII- MVg2(B._TB)/2/B 2 (7)

The intrinsic problem in these equations lies in the second and third terms on the right-hand side of (6),

which have opposite directions for ions and electrons and are generally non-zero in the Earth inhomogeneous mag-

netosphere. These terms thus translate into electric currents which flow across the magnetic field lines and must be

part of closed current loops in a stationary state. Otherwise the assumption in (5) cannot be a valid description of the
particle dynamics.

As far as (5) is valid, equations (6) and (7) should provide a valid description of the interaction between the

solar wind plasma and the Earth's magnetic field. In this case the currents associated with (6) can, at least in

principle, close through the Earth's ionosphere, as indicated schematically in Figure 2. The field-aligned portions of

such a current loop may be carried in part by terrestrial particles, but the flow density of these particles is limited by
the maximum possible escape rates (e.g., Lemaire and Scherer, 1974). This restriction is less severe for the down-

ward current, since the terrestrial electrons may escape at a higher rate than the ions if allowed to flow freely.
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If thedemandfor upwardcurrentexceedstheflow rateofterrestrialions,theadditionalcontributionmustbe
carriedbyprecipitatingsolarelectrons.Theflowdensityoftheseelectronsisontheotherhandlimitedbythe"mag-
neticmirror"forceontheright-handsideof (7),andcanonlybeincreasedbyaparallelelectricfield.In fact,if these
electronshaveaMaxwell-BoltzmanndistributionwithatemperatureTanddensityn,theflowdensityis limitedby
(3),whereU = eAVandC = nX/kT/(2a'rm)(Lennartsson,1980).Thisapproachthusleadsinanaturalfashionto
thesubjectof magneticconfinement.Thefactthatauroralelectronsareobservedto havea significantlyhigher
temperaturethansolarelectrons(cf. Fig. 1),maysuggest,however,that(5) is notentirelyvalid.

III. A "CLASSICAL" APPROACH TO MAGNETIC CONFINEMENT

Since particles with different pitch angles mirror at different locations in an inhomogeneous static magnetic

field, the number density n of these particles is a function of B, unless the velocity distribution is completely

isotropic (according to Liouville's theorem). If the magnetic field strength has a single minimum Bo and increases
monotonically away from this minimum, in at least one direction, then the density n is known at any B > Bo, if the
distribution function is known at Bo. This is still true in the presence of a parallel electric field (assuming a one-

dimensional geometry), provided the electric field is also time independent:

dE/dt = 0 , (8)

and the electric potential is sufficiently monotonic, for example (Chiu and Schulz, 1978):

dV/dB > 0 (9)

d2V/dB 2 _< 0 (10)

The last condition is much stronger than (4); it precludes double layer structures and implies that the electron and ion

densities are very nearly equal at all points. Under these three conditions, and assuming that (5) holds and the ions

are all positive and singly charged, the quasi-neutrality may be expressed in a somewhat "classical" form as:

n¢ (V,B,feo) _ ni (V,B,fio) , (11)

where feo and f_oare the electron and ion distribution functions, respectively, at Bo. With a careful selection offeo and

fio this relation will yield a solution for V in the form V = V (B) (e.g., Alfvrn and F_ilthammar, 1963; Persson,
1963, 1966; Block, 1967; Lemaire and Scherer, 1974; Chiu and Schulz, 1978; Stern, 1981). Whether this also

yields a self-consistent solution of Poisson's equation is a rather intricate question, however.

A comparatively simple and analytically tractable case is illustrated in Figure 3, which is adapted from the

works of Persson (1966) and Block (1967). The shaded areas repesent the only populated regions of velocity space.
w;_.;_,,,u.,, _h_o_ul,_,_regions ,Lu,c........palUCle distributions are assumed to be isotropic but may have arbitrary functional

dependence on the energy and may be different for electrons and ions. The ions are also assumed to have energies
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larger than e(Va - V(B)), which ensures that no part of the ion energy distribution is entirely excluded from low

altitude (B _ Ba). The electron energies are only limited by the acceleration ellipsoid and by the loss hyperboloid.

As discussed by Persson and Block, these ion and electron populations can be made to have equal densities every-
where, n_ = ne, if and only if:

Ell = -((V a - Vo)/(Ba - Bo))dB/ds , (12)

where s is a distance coordinate running along B (downward). The conventional physical interpretation of this case

is the following (cf. Persson and Block): Since the ion distribution at B = Bo includes smaller pitch angles than the

electron distribution, the ion density tends to exceed the electron density at B > Bo, thereby creating an upward

electric field that drags the electrons along, modifies the electron and ion distributions, and maintains n i _ ne at all
Bo _< B < B a (and n_ = n e = 0 at B I> Ba).

Although this case may be considered more of a textbook example than a description of typical magneto-

spheric conditions, it has generally been thought to illustrate a sound physical principle. However, on closer

inspection this physical principle may not seem entirely sound. If the right-hand side in (12) is differentiated once

more with respect to s, assuming the magnetic field is a dipole field, it follows that:

dEii/ds < 0 (13)

Hence, the small net charge required to maintain ni _ ne cannot be provided by the ions. In fact, there is no net

positive charge at any location along the magnetic field line where ni > 0, and there are no ions to support the

electric stress at B/> Ba. It can thus be argued that this simple case rather illustrates the difficulty of satisfying all of
the conditions in (8)-(11) at the same time.

A much more elaborate and perhaps more realistic case has been presented by Chiu and Schulz (1978) and

Chiu and Cornwall (1980). Their case also considers an ion population at high altitude which is isotropic outside of

the loss hyperboloids in Figure 3, but the corresponding electron population is required to be anisotropic, with a

wider distribution in v± and in Vii (bi-Maxwellian). Their case further includes particles within the loss hyperboloids,
some of which have a terrestrial origin, and thus includes a net current. They reach the condition in (11) not by

analytical methods alone, but by iterative numerical approximations, and their solution is far too complex to be

evaluated here. A few comments with bearing on their case will be made below, however.

IV. POSSIBLE ROLE OF DOUBLE LAYERS

The studies of quasi-neutrality in a model magnetic mirror configuration show that it is mathematically

possible to satisfy ni _ ne in a time-independent parallel electric field that extends over large distances and does not

contain any double layer structures, provided the particle distribution functions are carefully designed. It is not clear

from these studies, however, that such electric fields are realistic, or even physically possible. One argument to that

effect was made in the preceding section, applied to a simple case where all particles are trapped by the combined

electric and magnetic fields. Other arguments to the same effect may be applied to the more general case where the
loss hyperboloids are also populated, and thus a current flows (e.g., Chiu and Schulz, 1978). In that case it can be

argued, for instance, that the parallel electric field is made subject to potentially conflicting conditions; on one hand
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themodelelectricfieldisdesignedto satisfyn__ neeverywhere,basedontheentirepitchangledistributionsof all

particles, while on the other hand the electric field in reality must also be subject to the external condition that the
current be of the appropriate magnitude, and the current only involves particles within the loss hyperboloids.

The aforementioned studies, however, do point to an unambiguous condition for the non-existence of elec-

tric fields; in order for the parallel electric field to vanish over a large distance along a magnetic flux tube, the pitch

angle distributions of ions and electrons, when integrated over all energies, must be identical (cf. Persson, 1963).

As a consequence, it may not be possible, given realistic particle distributions, to have the electric field entirely

contained within a single stable double layer, or even within multiple double layers. The double layers naturally

generate different pitch angle distributions for the ions and the electrons, and these in turn will affect the quasi-

neutrality at all other altitudes. In other words, a stable double layer may not be nature's replacement for an
extended electric field, but may perhaps be part of it (cf. Stern, 1981). Such a configuration cannot be modeled,

however, if the condition in (10) is part of the assumptions.

A possibly fundamental shortcoming of the classical approach to magnetic confinement is its disallowance

of temporal variations in the electric field, including rapid and small-scale fluctuations. The assumption in (8) is
needed to make a tractable problem, but may not be supported by data. Close scrutiny of Figure 1, for example, fails

to produce the sharp boundaries of Figure 3 (with B _ Ba). This and other published illustrations of auroral electron

spectra have in fact a rather blurred appearance, suggesting that the electrons have traversed a "turbulent" electric

field. Numerous reports of intense plasma wave turbulence at various altitudes along auroral magnetic field lines

(e.g., Fredricks et al., 1973; Gurnett and Frank, 1977; Mozer et al., 1980; and references therein) lend additional

support to that kind of interpretation.

Allowing the electric field to have temporal fluctuations of a small scale size may render an untractable

computational problem, but provides for a more realistic description of the collective behavior of the particles.

From a qualitative point of view this may also seem to make the magnetic mirror a more favorable environment for

the formation of double layers, as illustrated schematically in Figure 4. This figure assumes that the increase in

kinetic energy of individual electrons is not a unique function of location in space, but varies somewhat randomly

about an average increase, due to temporal fluctuations in the electric field. Only the average increase is a function
of location and has the sharp boundaries in velocity space. An electron that has a kinetic energy slightly inside of the

acceleration boundary when passing point P, either on the way down or after mirroring in the magnetic field below,

is likely to be trapped by the average electric field on the way up, thereby adding to the local concentration of

negative charge (during part of its oscillation), at the expense of the negative charge at higher altitude. This in turn
further widens the acceleration boundary in the transverse direction, enabling electrons with a larger perpendicular

energy to be trapped as well. Electrons inside the acceleration boundary may be removed again after a slight increase
in the energy, but the net diffusion is assumed inward as long as the density of particles is higher on the outside. A

conceivable end result may be some form of double layer, thin enough to harbor a significant charge imbalance in a

stable fashion (cf. Lennartsson, 1980).

Whether trapping of electrons between magnetic and electric mirror points will produce a stable double

layer, or merely add to the plasma turbulence, cannot be decided from this simplistic exercise alone. A redistribu-

tion of the electric field from higher to lower altitude carries with it a redistribution of the ion density as well, and
that is not considered. It is worth noting, however, that the shape and size of the electron acceleration boundary

depends on the angle of the double layer, and is the smallest for a double layer with the electric field nearly perpen-

dicular to _. In that case the boundary may be almost circular (cf. Figure 3 with B > > Bo), and can trap the fewest

number of electrons. This kind of structure is perhaps the most likely to materialize and is, in fact, reminiscent of

the "electrostatic shocks" commonly observed in the auroral regions (e.g., Mozer et al., 1977; see also Swift, 1979;

Lennartsson, 1980; Borovsky and Joyce, 1983). It also has a favorable geometry for satisfying (4), thus producing a

large electron current.

Ackowledgment. This work was supported by the National Science Foundation under grant ATM-8317710

and the Lockheed Independent Research Program.

280



REFERENCES

Alfv6n, H., and C.-G. F_ilthammar, Cosmical Electrodynamics, Fundamental Principles, Clarendon Press, Ox-

ford, 1963.

Block, L. P., Space Sci. Rev., 7, 198 (1967).
Burch, J. L., W. Lennartsson, W. B. Hanson, R. A. Heelis, J. H. Hoffman, and R. A. Hoffman, J. Geophys. Res.,

81, 3886 (1976).

Borovsky, J. E., and G. Joyce, J. Geophys. Res., 88, 3116 (1983).
Chiu, Y. T., and M. Schulz, J. Geophys. Res., 83, 629 (1978).

Chiu, Y. T., and J. M. Cornwall, J. Geophys. Res., 85, 543 (1980).

Evans, D. S., J. Geophys. Res., 79, 2853 (1974).

Fredricks, R. W., F. L. Scarf, and C. T. Russell, J. Geophys. Res., 78, 2133 (1973).

Goertz, C. K., Rev. Geophys. Space Phys., 17, 418 (1979).

Gurnett, D. A., and L. A. Frank, J. Geophys. Res., 82, 1031 (1977).

Hudson, M. K., R. L. Lysak, and F. S. Mozer, Geophys. Res. Lett., 5, 143 (1978).

Kaufmann, R. L., and G. R. Ludlow, J. Geophys. Res., 86, 7577 (1981).

Knight, S., Planet. Space Sci., 21, 741 (1973).
Lemaire, J., and M. Scherer, Planet. Space Sci., 22, 1485 (1974).

Lennartsson, W., J. Geophys. Res., 81, 5583 (1976).

Lennartsson, W., Astrophys. Space Sci., 51, 461 (1977).

Lennartsson, W., Planet. Space Sci., 28, 135 (1980).

Longmire, C. L., Elementary Plasma Physics, John Wiley and Sons, Inc., New York, London, 1963.

Lyons, L. R., D. S. Evans, and R. Lundin, J. Geophys. Res., 84, 457 (1979).

Lyons, L. R., J. Geophys. Res., 86, 1 (1981).
Mozer, F. S., M. K. Hudson, R. B. Torbert, B. Parady, and J. Yatteau, Phys. Rev. Lett., 38, 292 (1977).

Mozer, F. S., C. A. Cattell, M. K. Hudson, R. L. Lysak, M. Temerin, and R. B. Torbert, Space Sci. Rev., 27, 155

(1980).

O'Brien, B. J., Planet. Space Sci., 18, 1821 (1970).

Papadopoulos, K., Rev. Geophys. Space Phys., 15, 113 (1977).

Persson, H., Phys. Fluids, 6, 1756 (1963).
Persson, H., Phys. Fluids, 9, 1090 (1966).

Smith, R. A., Physica Scripta, 25, 413 (1982).

Stern, D. P., J. Geophys. Res., 86, 5839 (1981).

Swift, D. W., J. Geophys. Res., 70, 3061 (1965).

Swift, D. W., J. Geophys. Res., 84, 6427 (1979).

Yeh, H.-C., and T. W. Hill, J. Geophys. Res., 86, 6706 (1981).

281



-,51:

._o1_ T.2o6-2.

- I L/ i,

6L
20 30 ' 4'0 ' 5b 60

V_, I0 e cm/sec

log f

c) _,_ T= 206-211

Figure 1. Contour and three-dimensional plot of auroral electron distribution function, in the energy range 25eV to

15 keV, measured from a rocket at about 240 km altitude. Downgoing electrons have positive vu. Curves of constant
f(_') on the contour plot are labeled by the common logarithm of f(_) in s3/km 6. This distribution is typical of

electrons producing discrete auroral arcs (from Kaufmann and Ludlow, 1981).
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Figure 2. Schematic magnetosphere-ionosphere current system. The dynamo current P, - P4 is assumed to be

caused by the differential drift of hot protons and electrons. The downward parallel current P4 - P3 may be carried

mainly by escaping ionospheric electrons, while the upward parallel current P2 - P_ is carried to a large extent by
downflowing hot electrons. Point P2 is at a high positive potential with respect to point P_, which enables the

downflowing electrons to overcome the magnetic mirror. The current P3 - P2 is a Pedersen current (from Lennar-
tsson, 1976).
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Figue 3. Hypothetical case of plasma confinement by a magnetic mirror in the presence of a parallel electric field,

directed away from the magnetic mirror (upward). Only the shaded regions are assumed populated (see text). The

loss boundaries (hyperboloids) are defined by (Ba/B - 1)v12 - vii2 = 2H (Va -- V), where the subscript a refers to

atmospheric (loss) altitude and H = e/me for electrons and H = -e/m_ for ions. The acceleration boundary (el-

lipsoid) is defined by ( I - Bo/B)vl 2 + vii2 = 2 (e/me) (V - Vo), where the subscript o refers to a high altitude (Bo <

B) (adapted from Persson, 1966).
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Figure 4. Hypothetical case of electron trapping by a locally enhanced electric field (right panel), associated with
diffusion in velocity space (left panel). The diffusion is assumed to result from small-scale fluctuations in the el-

ectric field. The acceleration boundary at point P refers to an average acceleration and is the combined effect of the

weak electric field at higher altitudes and the stronger field nearby (see text) (adapted from Lennartsson, 1980).
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ABSTRACT

At the interface between two plasma clouds with different densities, temperatures, and/or bulk velocities,

there are large charge separation electric fields which can be modeled in the framework of a collisionless theory for

tangential discontinuities (see Lemaire and Burlaga, 1976; Roth, 1980; Botticher et al., 1983).

Two different classes of layers have been identified: the first one corresponds to (stable) ion layers which are
thicker than one ion Larmor radius; the second one corresponds to (unstable) electron layers which are only a few

electron Larmor radii thick.

We suggest that these thin electron layers with large electric potential gradients (up to 400 mV/m) are the

regions where large-amplitude electrostatic waves are spontaneously generated. These waves scatter the pitch

angles of the ambient plasmasheet electron into the atmospheric loss cone. The unstable electrons layers can there-
fore be considered as the seat of strong pitch angle scattering for the primary auroral electrons.

I. INTRODUCTION

Lyons and Evans (1984) found direct evidence from coordinated auroral and magnetospheric particle obser-

vations that discrete auroral arcs are located along geomagnetic field lines mapping in plasmasheet regions where

significant spatial gradients in the magnetospheric particles velocity distribution are observed.

These observations as well as earlier theoretical calculations by Lemaire and Burlaga (1976) and Roth

( 1976, 1978, 1979, 1980) have motivated the present application of kinetic plasma theory to thin layers separating a

hot plasmasheet cloud from a cooler background or another cloud which is populated with ions and electrons of

different densities and temperatures. However, we do not simulate the magnetic field reversal region in the neutral

sheet of the magnetotail.

We briefly recall the basic features of the kinetic model as well as the boundary conditions in the next
section. The numerical results are presented in Section III; the discussion of this solution is given in the last section
with the conclusions.

_C,,KD|NG pAGE BLANK NOT FILMED
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II.
- _°4

FORMULATION OF THE MODEL AND BOUNDARY CONDITIONS

The kinetic model used below is an extension of that proposed by Sestero (1964) to describe collisionless

plasma sheaths in the laboratory. Although the plasmasheet is rarely in a stationary state, we assume that its struc-

ture does not change significantly over the characteristic period of time required for an Alfv6n wave to traverse the

transition layer.

Furthermore, it is assumed that the radius of curvature of the plasma sheath is much larger than its
characteristic thickness, which is of the order of a few ion gyroradii. Under these circumstances the plasma layer can

be considered as planar. Every physical quantity depends then on one space coordinate only, say x..

Since in general the magnetic field direction at the interface between plasmasheet diamagnetic irregularities

does not vary by more than 10° or 20 °, we consider that the direction of B, does not change nor reverse across the

transition layer, but that B remains always parallel to the z-axis. The partial electric current densities (j + "3 of the ions
( + ) and electrons (-) are then necessarily parallel to the y-axis. The electric field (as spatial gradient of the potential

qb) is in the x-direction. Indeed we assume that, in a frame of reference fixed with respect to the plasma layer, there is

no mass flow across nor toward the surface of discontinuity (Vx = 0).

In our kinetic model the ions and electrons from the left-hand side (i.e., side l) have velocity distributions

(f, + '-) which tend to an isotropic Maxwellian at x -- -_. The zero-order moment (i.e., the density: n, + "3 of these
distribution functions tends to an asymptotic density N, = N,- -- 0.5 cm -3, at x -- -_. The temperature of the ions

and electrons 0, + '- from side ! is determined by the second-order moments of f, + "-.When x tends to _0%0, + (x) tends

to T, + = 12 keV, and 0,-(x) tends to T,- = 2.5 keV.

When x varies from -_ to +_c we expect n, +'- to decrease to zero, and the velocity distributions f, + '- to

become depleted in the domain of the velocity space which is not accessible to the particles from side 1, i.e., for

those particles with the smallest velocities and therefore the smallest gyroradii.

In absence of Coulomb collisions and wave-particle interactions, these velocity distributions are solutions to

the collisionless Boltzmann-Vlasov equation. Any function of the constants of motion is then a solution. Following
Sestero (1964) we choose for f, + "-truncated distributions which tend to isotropic Maxwellians at x = __c,where n, + "-

and 0, +'- tend to the above given values for the densities and temperatures (N, +'- and T, +'-), respectively.

When x tends to + _c the domains of the velocity space where f, +'- differs from zero become vanishingly

small; n, + "- decreases then asymptotically to zero, as expected, because a smaller and smaller fraction of ions and

electrons from side 1 has large enough gyroradius to penetrate deep into region 2 on the opposite side of the transi-

tion layer. For details see Roth et al. (1986).

Region 2 is populated with electrons and ions of a different origin, i.e., with different temperature dis-

tributions 02 +'-(x) and different density distributions n2 +'- (x). In our numerical calculation we have taken the

following boundary conditions: 02+'-(_) = T2 +'- with T2 + = 3 keV and T 2- = 0.8 keV; n2 +'-(oc) = N2 +,- = 0,

15 cm -3 and n 2 +'-(-oe) = 0.

The velocity distributions f2 + "-of the ions and electrons originating from region 2 can again be any function

of the constants of motion. As above, truncated Maxwellian velocity distributions are adopted. They tend to
isotropic Maxwellians at x = + _, with densities and temperatures, respectively, equal to N2 + "- and T2 + '-. When x

tends to -_, f2+ "- 4 0 only for a decreasing number of particles from side 2 which has large enough velocities (and

gyroradii) to penetrate deep inside region !.
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Notethattheasymptoticbehaviorof theplasmadistributiondependsonlyontheasymptoticformof ft .2+"-
whenx goesto ± _. Theformof fl.2+'- for anyotherx inbetweenisresponsiblefor theshapeof thetransition
profiles.Thus,thestateof theplasmaat oneendof thetransitionregion(or atbothendsin ourcase)doesnot
uniquelydeterminetheplasmaandfield variationwithin thetransition.Thisresultsfrom thecollisionlessand
adiabaticnatureof theinteractionbetweentheplasmaparticles.In acollision-dominatedplasmawhenirreversible
processesareimportant,thiswouldnot,however,bethecase;thetransitionprofileisthenuniquelydeterminedby
theboundaryconditions.

Themomentsoff_.2+'-areintegralsoverthedomainofvelocityspacewheref1,2+"-isnotequalto zero.The
densitiesn_.2÷'-(x) arethezero-ordermomentsof f +'-" +.-1.2 , thepartialcurrentdensities(j_.2+'- = eZ+'- nl.2

+ ,-)• vl.2 are first-order moments, etc. These moments are analytical expressions depending on x through the elec-

tric potential +(x) and the magnetic vector potential a(x). Indeed, both +(x) and a(x) appear explicitly in the
+ "-and j l ÷'- are similar to thoseconstants of motion and consequently in f_.2 ÷ The analytic expressions for n_.2 .2

derived by Sestero (1964, 1966). They are given in the more detailed article by Roth et al. (1986).

The electric potential +(x) must satisfy Poisson's equation. However, in non-relativistic plasmas, where the

thermal velocity of the ions and electrons is much smaller than the speed of light, Sestero (1966) has shown that a

satisfactory first approximation for +(x) is obtained by solving, iteratively, the charge-neutral approximation of
Poisson's equation, i.e.,

nl + + n2 + = nl- + n2- (I)

Once +(x) has been determined for all x, the charge separation electric field, E(x), can also be evaluated as -d+/dx.

Finally, the Laplacian of +(x) (i.e., d2+/dx 2) can be calculated to estimate the value of the electric charge density

e(n ÷ - n-) associated with +(x). It is shown, a posteriori, that the actual charge separation relative density (n ÷ - n-)/n +

is indeed a small quantity throughout the whole plasma sheath; i.e., that (1) is a valid first approximation and

substitute for Poisson's equation.

In the next section we present numerical results corresponding to a solution of equation (1) for which the
electric potential +_ at x = -_ is equal to +2 at x = +_. A wider family of solutions for which +2 - +t = 0 is

discussed in Roth et al. (1986).

The partial current densities (j_.2 + '-) carried by the ions and electrons drifting in the electric field E(x) and

magnetic fields B(x) are also analytical expressions of +(x) and a(x). The currents produce diamagnetic effects

which determine the variation of a(x) and consequently of Bz(x), the z-component of curl a. The vector potential

a(x) is solution of Maxwell's euations:

Bz = da/dx anddB#dx = -IXo(jl + + j2 + -jl- + j2-) (2)

The standard predictor-corrector Hamin method for numerical integration of equation (2) can be used to

obtain the value of a(x) for all x, across the diamagnetic plasma layer (Ralston and Wilf, 1965). Since the magnetic

field does not change direction, a(x) is an increasing function of x; it varies from a = -_ at x = -_ to a = + _c at x =
-q-_.

289



III. NUMERICAL RESULTS

Figures la and Ib show the distributions of nt.2 +'% the partial ion and electron density distributions as a

function of x. The upper horizontal scale represents x in kilometers. The lower scale of the left-hand panels

corresponds to x in units of proton gyroradii. The x's in the lower scale of the right-hand panels are expressed in

electron gyroradii. Note in the left-hand side panels the smooth variation of the densities over distances of 2-3 ion

Larmor gyroradii, i.e., 500-800 km. In the middle of this broad transition region near x = 0, there is a much sharper

transition where all densities change significantly over distances of 2-3 electron Larmor gyroradii, i.e., 6-9 km (see

enlargement in the right-hand side panels).

Panels cl and c2 in Figure 1 show the total ion density, n + = nl +

neutral equation (l),is equal to the total electron density n- = nl- + n2-.

= n2 + , which according to the charge

Panels dl and d2 illustrate how 0 + "%the total ion and electron temperatures vary in the transition region: 0 + "-

= (nl + "-01 + '- + n2 + '- 02 + '-)/(nl + '- + n2 + "-). Note again the broader scale of variation in the left-hand side panels

and the much sharper decrease of 0- near x =, illustrated in the right-hand side panel.

The distribution of the magnetic field Bz(x) is shown in panels el and e2. The magnetic field intensity is
equal to 40 nT at x --- _oc;this is a typical value of B in the plasmasheet chosen as boundary condition on side I at x

= __c. The value of Bz(x) increases to 66.4 nT at x -- + w with an enhanced variation near x = 0 due to the

diamagnetic current contributed by the electrons in the thin electron sheath. It could be shown that the sum of the

magnetic pressure and kinetic pressure is precisely a constant throughout the plasma layer.

The electric potential distribution shown in panels fl and f2 is a continuous function of x. The potential

difference between x = -_ and x = + _ is equal to zero in the case considered. But similar continuous solutions

have been obtained for positive and negative values of _b2- _b_of the order of _+k T l,2 + "-/e (see Roth et al. 1986). The

gradient of the electric potential has a different direction in the electron layer near x = 0 than on both sides in the

proton layer. This is also illustrated in the next panels (gl and g2) showing the electric field intensity which is

perpendicular to the surface of the plasma layer: Ex has a large negative value of-220 mV/m in the middle of the thin

electron layer. This charge separation electric field accelerates the hotter and more numerous electrons from side 1

toward region 2. On both sides of the electron layer Ex has smaller positive values, not exceeding 2.5 mV/m. This
electric field tends to accelerate the hotter and more numerous protons of side 1 toward the cooler and less dense

region 2.

The relative electric space charge density deduced from d2_b/dx 2 is given in panels h I and h2. It can be seen

that In + - n-[/n + is smaller than 2 percent within the electron layer; it is smaller than 3 x 10 -6 in the ion layer. This

confirms a posteriori that charge-neutrality is satisfied to a very good approximation. This confirms also that the

solution of equation (1) gives a satisfactory approximation _b(x) for the electric potential distribution throughout the
whole transition.

The average bulk speed of the protons and electrons is given in kilometers per second in the panels i 1 and i2:

V + "- = (nj + "- V_+ '- + n2 +'- V2 + '-)/(n_ + '- + n2 + '-). In the left-hand panel note the large ion jet velocity of more

than 500 km/s. V + is parallel to the plasma layer and perpendicular to the magnetic field direction. These large ion

jets (or ion beams) are spread over a distance of several hundred kilometers. Even more surprising is the narrow jet
sheath of electrons with a velocity of the order of 10,000 km/s near x = 0 (see panel i2). These bulk speeds result

from the acceleration of charges by the inhomogeneous electric field E(x) and from their deflection in opposite

direction by the non-uniform magnetic field B(x).

290



Panels j i and j2 give the value of A = (V + - V-)/U + across the plasma layer; U + is the average thermal ion

speed. When A is larger than unity, the plasma is unstable. Indeed A = I corresponds to the threshold for the

modified two-stream instability (McBride et al., 1972) also called the lower-hybrid drift instability. It can be seen

that in the ionic layer, outside the thin electron layer, A < l ; therefore, the parts of the plasma layer on both sides of
the electron layer are stable, at least with respect to the modified two-stream instability. However, the thin electron

sheath near x = 0 is highly unstable and consequently is a potential source for large-amplitude electrostatic waves.

These waves can then interact with the electrons, change their pitch angles, and fill the atmospheric loss cone.

As a result of wave-particle interactions, the initially anisotropic (truncated) electron velocity distribution

becomes more isotropic until A is equal to or lower than unity: the instability is then quenched. However, as long as
the velocity distributions of the electrons have not become isotropic everywhere between x = -_ and x = + _,
unstable electrons layers will form and generate electrostatic noise.

IV. DISCUSSION AND CONCLUSIONS

The results of the stationary kinetic model illustrated in this paper indicate a number of features pertinent to
the study of plasma layers which are associated with discrete auroral arcs.

1. First of all, for the boundary conditions considered (i.e., different densities and temperatures of the

electrons and ions on both sides of the plasma layer), the electric potential +(x) is not constant, although +(-_) and
qb(+ _) are imposed to be equal to zero at x = ____. This indicates that a plasma layer like that studied by Harris

(1962) and Alpers (1969), where it is assumed that +(x) = 0, is by no means a unique nor a general solution.

2. The characteristic scales of variation of the plasma and field variables are the average ion Larmor radius
for the broadest structure and the average electron Larmor radius for the thinner embedded electron sheath. If the

wider scale of variation is typically 500-800 km in the equatorial plane of the magnetosphere at L = 10, its extent
projected in the ionosphere is 30 times smaller, i.e., 15-30 kin. This corresponds almost to the extent of inverted-V

regions near discrete auroral arcs. It corresponds also to the region over which auroral field-aligned potential dif-
ferences vary significantly.

3. Superimposed on these broad regions of potential variation are often much narrower ones (only a few
hundred meters in extent) where sharp potential gradients are observed. We suggest that these thin regions with

large electric field intensities are associated with electron layers in the magnetosphere like that found in our kinetic

model calculation. The minimum thickness of these electron layers is 5-9 km in the plasmasheet. One can imagine
velocity distributions for which there are several electron sheaths embedded in one broader ion structure. The thick-

ness of 5-9 km is a minimum one; indeed electron sheaths are unstable with respect to the modified two-stream

instability or lower-hybrid drift instability. Therefore, pitch angle scattering or diffusion of the electrons as a result

of wave-particle interactions within these regions eventually tend to make the electron velocity distribution more

isotropic. As a consequence the electron sheath tends to broaden and eventually to disappear when the velocity

distribution of electrons has become isotropic within the plasma cloud and in the ambient background plasma.

4. Although in our one-dimensional model there is no proper atmospheric loss cone for the plasmasheet

electrons, one can easily imagine that for a three-dimensional plasma layer in the magnetosphere the modified

two-stream instability can similarly be a source for pitch angle scattering of the electrons and for filling of the
atmospheric loss cone. To aliment this source of auroral electron precipitation it is necessary, however, to maintain

the electron sheath unstable for the whole lifetime of the discrete auroral arc. Therefore, the plasma layer must

constantly be reforming for instance by convection of the plasma cloud "surfing" earthward in the ambient plas-
masheet background.
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5. The peak value of -200 mV/m for the electric field intensity obtained in our kinetic model calculation is

probably excessive. Indeed, the wave-particle diffusion mechanism mentioned above, will smooth irreversibly any

too large electric potential gradient. Furthermore, such large perpendicular magnetospheric electric fields (EMF),
when mapped down at ionospheric altitudes, must drive very large Pedersen and Hall electric currents through the

resistive ionosphere. The Joule dissipation of these currents increases the local plasma temperature. But the local

ionization density is then enhanced not only by the increased plasma temperature but also by primary auroral
electron bombardment. All these effects concur to enhance the local electric conductivity and to short-circuit the

ionospheric load. The large potential gradients applied across the magnetospheric plasma sheath are then dis-

charged as the ionospheric resistance becomes vanishingly small. Magnetospheric potential differences (EMF)

perpendicular to magnetic field lines then become field-aligned potential differences accelerating auroral electrons

downward along auroral arc magnetic field lines.

6. Ion beams streaming earthward and/or tailward are typical features in the plasmasheet boundary layer

adjacent to the tail lobe. These ion beams are observed from high energies of tens of keV to low energies of tens of

eV (Lui et al., 1983). Occasionally, these ion beams are found within the plasma sheet proper, near its outer

boundary where irregular magnetic field intensities are generally observed. Sugiura et al. (1970) have interpreted

these irregular B-field variations as being diamagnetic signatures of spatial plasma clouds for which 13is of the order

of unity or larger (see also Meng and Mihalov, 1972). Both the ion beam streaming and the change in the magnetic
field intensities are inherent in the kinetic model illustrated in Figure 1. It is suggested that ion beam streaming

observed at the outer edge of the plasmasheet results from the electric field acceleration and magnetic field deflec-

tion of charge particles in plasma layers separating a hot plasma cloud and the cooler ambient plasmasheet or two

adjacent diamagnetic plasma clouds of different densities, different temperatures, and different magnetizations, as
in our kinetic model.

7. Changing boundary conditions at x = ± _ (N_,z ÷ "-,T, 2,,, ÷ '-) and the choice of the velocity distributions
+.-f, .2 , one can generate a wide variety of different plasma and field distributions within the plasma layer. The plasma

layer shown in Figure I is only an illustrative example for a magnetospheric EMF source. From this case study one
can deduce orders of magnitudes for maximum electric potential gradients (i.e., charge separation electric field), as

well as for the maximum velocity of ion beams or jets expected in such plasma layers. By adjusting these boundary

conditions and by adequately choosing f, .2 ÷ '-, it is likely that such kinetic model calculations will be able to simulate

a variety of detailed plasma and field measurements across plasma layers or boundaries when available from instru-

ments with high enough time resolution.

The temperature 0(x) and density n(x) of each plasma species vary across the potential layer separating the

hot plasmasheet cloud at x = _ocfrom the cooler background magnetotail plasma at x = + _. The layers considered
here [for different values of qb2- qb, = qb(+ _c)] have boundary conditions listed in Table 1. Bsh denotes the value of

the magnetic field at x = -_, i.e., deeply inside the plasmasheet cloud. The lower indices sh and t refer to the

plasmasheet cloud and background magnetotail particles, respectively, while the upper indices (-) and ( + ) refer to

electrons and protons, respectively. The following notations are assumed: nsh ÷ '- (-_) = N_h ÷ "-;0sh÷ '- (-_) = Tsh + "-;

n, +.- (+_) = Nt+.-; 0t +,- (+o_) = Tt +,-

The plasma boundary conditions given in Table I correspond to two interpenetrated hydrogen plasmas with
+.-different characteristics. Therefore, n_h (+_) ----0 and nt +'- (_oc) = 0.

TABLE 1. BOUNDARY CONDITIONS

Nsh- Tsh- Nsh + Tsh + Nt- T t- N t + Tt + Bsh
cm -3 keV cm -3 keV cm -3 keV cm -3 keV nT

0.5 2.5 0.5 12 0.15 0.8 0.15 3 40
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Figure 1. Plasma and field distributions across a plasma layer with boundary conditions typical in the plasmasheet.

+(x) and B(x) are the electric potential and magnetic field intensity, respectively: qb varies from +(.oc) = 0 to

+(+ 2) = 0 (see panels fl and f2); the gradient of 4) determines the charge separation electric field E which is

normal to the surface of the plasma layer (see panels gl and g2); the relative electric space charge density remains

small (see panels hl and h2); the proton ( + ) and electron (-) densities n] ,2 + '- from side 1 (i.e., x = -2) and from side
2 (i.e., x = + 2) vary across the layer from n t+ ""= 0.5 cm "3, n2 + '- =- 0 at x = __cto nl + "-= 0, n2+ "- = 0,15 cm -3 at x

•- + 12 keV,= +_(seepanelsal,a2, bl,b2, cl,c2);theproton(+)andelectron(-)temperatures0 + varyfrom0_ =

0t- = 2.5 keV at x = -_ to 02+ = 3 keV, 02- = 0,8 keV at x = +2 (see panels dl and d2); the proton (+) and

electron (-) bulk velocities V ÷ '- have large peak values in the middle of the composite plasma layer (see panels i 1 and

i2). Note the very thin electron layer embedded near x = 0 within the broader ion layer extending over 4 average ion

Larmor gyroradii (see lower scales of left-hand side panels). Expanded views of the narrow electron layer (only 3 or
4 avcrage _'...... ' ........... '::_,_,._,_,,, ,_a,,,u, _;yru,,tu. in extent) are shown in the right-hand side panels. The distance x across the

planar surface of interface is also shown in kilometers by the upper scales. The thin electron layer is unstable with

respect to the modified two-stream instability. Indeed the instability threshold A (see panel j2) exceeds unity in this

narrow region where extremely large (and unstable) E-fields are generated.

294
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ABSTRACT

Two different kinds of double layers have been found in association with auroral precipitation. One of these

is the so-called "electrostatic shock," which is oriented at an oblique angle to the magnetic field in such a way that

the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found

at the edges of regions of upflowing ion beams and the direction of the electric field in the shock points toward the

ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to

produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfvrn
waves, which may accelerate electrons to produce flickering aurora. The flickering aurora provides evidence that

the electrostatic shock may have large temporal fluctuations.

The other kind of double layer is the small-amplitude double layer found in regions of upward flowing ion

beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in

these structures are comparable in magnitude. The associated potentials are a few eV, which is substantially less

than the energy of the measured particles. However, since many such double layers are found in regions of upward

flowing ion beams, the combined potential drop through a set of these double layers can be substantial.

Some important questions concerning double layers and their relation to parallel electric fields in the aurora
are:

1. What is the relation between small-amplitude double layers and electrostatic shocks?

2. What is the relation between electrostatic shocks and discrete arcs?

3. Are there strong double layers in the aurora?

4. What is the relation between ion conics and electrostatic shocks?

5. What are the parallel electric field magnitudes on auroral field lines?

6. Are there large parallel electric fields in the return current region?

7. How important are the dynamic properties of the parallel electric field on auroral field lines?

Here are some answers:

1. What is the relation between small-amplitude double layers and electrostatic shocks?

Small-amplitude double layers and electrostatic shocks are distinctly different phenomena. Electrostatic

shocks are large, greater than about 100 mV/m, mostly perpendicular electric fields that vary discontinuously when
measured at the 0.125 s resolution of the dc electric field detector on the $3-3 satellite below 8000 km altitude

(Mozer et al., 1977, 1980) (see Fig. 1 for examples). Small-amplitude double layers are several mV/m, mostly
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parallelelectricfields lasting for a few milliseconds as measured by the $3-3 satellite (Temerin et al., 1982; Mozer

and Temerin, 1983; Temerin and Mozer, 1984a,b) (Fig. 2). Electrostatic shocks occur in both upward and down-

ward current regions (Cattell et al., 1979) in association with both upflowing ion beams and ion conics (Redsun et

al., 1985) (Figs. 3 and 4). The electrostatic shocks associated with upflowing ion beams typically occur at the edges

of energetic (> 1 keV) upflowing ion beams (Temerin et al., 1981; Bennett et al., 1983; Temerin and Mozer, 1984a;

Redsun et al., 1985), and the potential drop through the electrostatic shock corresponds fairly well to the energy of

the upflowing ion beam. Small-amplitude double layers, on the other hand, occur within regions of less energetic

upflowing ion beams, and the potential drop through many small double layers may correspond to the total potential

drop along the field line. It is often difficult to determine on the basis of the $3-3 wave data whether small-amplitude
double layers occur in more energetic ion beams because of detector saturation problems associated with the large-

amplitude wave turbulence that occurs in the more energetic events.

2. What is the relation between electrostatic shocks and discrete arcs?

It has previously been argued that electrostatic shocks are associated with discrete arcs (Torbert and Mozer,

1978; Kletzing et al., 1983). It is clear from the data that, as described in 1 above, some electrostatic shocks are

associated with upflowing ion beams and inverted-V events. Other electrostatic shocks are associated with conics

and counterstreaming and field-aligned electron events (Temerin and Mozer, 1984a). These latter electrostatic

shocks would then not be associated with discrete arcs. It should be noted that upflowing ion beams and inverted-V
electron events associated with electrostatic shocks have the -10 km to over 200 km latitudinal width normally

associated with inverted-V electron events (Lin and Hoffman, 1979a; Redsun et al., 1985). This is typically larger

than the latitudinal width of the electrostatic shock and implies that the electrostatic shock makes an oblique angle

with respect to the magnetic field over part of its altitudinal extent.

3. Are there strong double layers in the aurora?

Whether there are strong double layers in the aurora depends to some extent on one's definition of a strong
double layer. If by a strong double layer one means a potential drop the order of a significant fraction of the total

auroral zone potential drop over a few Debye lengths, then the parallel electric field should be in excess of 1 V/m.

Boehm and Mozer (1981) searched the $3-3 electric field data and found no convinncing parallel electric fields

greater than 250 mV/m in association with inverted-V events. They concluded that strong double layers are not
associated with inverted-V events but could be associated with narrow discrete auroral arcs since the statistics were

not good enough to rule out strong double layers if they were confined to narrow regions. This begs the question of

whether there is any qualitative difference between narrow discrete arcs and inverted-V electron events with respect

to the auroral potential structure. The problem of narrow discrete arc scales was raised by Maggs and Davis (1968)

who reported that discrete arcs had scales down to 70 m. It has become popular to contrast such scales with inverted-

V scales which are known to be much larger. However, the observation of 70 m scales was made by image orthicon

television cameras that tend to emphasize small contrasts (Davis, 1978). Rocket observations indicate that typically

the smallest gradients in the downward auroral electron energy flux are an order of magnitude larger (D. Evans,

private communication). One should also keep in mind that inverted-V scales can be quite small. Lin and Hoffman
(1979a), using AE-D data, reported that the largest number of inverted-V events had scales close to the minimum

resolution of 0.2 ° or about 20 km in the ionosphere. The smallest paired electrostatic shock structure, which in-

cludes the region of smaller electric field between the large electric fields of the paired shock, and the smallest

resolvable inverted-V structure on $3-3 map to about 5 km in the ionosphere (e.g., the first paired shock structure in

orbit 209 in Fig. 1). In addition, one should keep in mind that smaller scale structures, such as field-aligned electron

fluxes at the edges of inverted-V events (Arnoldy et al., 1985; McFadden et al., 1986) and field-aligned electron

structures within inverted-V events, do not seem to correspond to larger overall potential as measured by the
monoenergetic peak in the electron distribution function (Lin and Hoffman, 1979b). Thus, it seems consistent to

regard narrow discrete arcs as narrow inverted-V events with the smallest scale structure within the arc as either due
to relatively small changes in the field-aligned potential or enhanced field-aligned electron fluxes not directly

related to changes in the potential. If this is the case, it could be that there are no strong double layers associated with

the aurora. More data are needed to answer the question definitively.
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4. Whatis therelationbetweenionconicandelectrostaticshocks?

It hasbeenproposedthatelectrostaticshocksproduceionconics(YangandKan,1983;Greenspan,1984;
Borovsky,1984).Figures3 and4 showthatmanyelectrostaticshocksareindeedassociatedwith ion conics.
However,theideathatelectrostaticshocksproduceconicsdoesnotexplainthecleardistinctionbetweenelectro-
staticshocksassociatedwithionbeamsandelectrostaticshocksassociatedwithionconics,nordoesit explainthe
productionof conicsinregionswheretherearenoelectrostaticshocks.Evenin regionswherethereareelectrostatic
shocks,theconicoccursin amuchbroaderregionthantheelectrostaticshock.Modelsfor thegenerationof ion
conicsby electrostaticshocksshowthatthethicknessoftheelectrostaticshockandtheangleit makeswith the
magneticfielddeterminetherelativeperpendicularandparallelacceleration.Onewouldthenexpectacontinuous
transitionbetweenconicsandionbeams.In factthereisalmostalwaysat $3-3altitudes(<8000km)acleardis-
tinctionbetweenionbeamsandionconics,and,exceptforsomegeneralheatingof theiondistribution,ionbeams
areconsistentwithaccelerationpurelyparallelto themagneticfieldwhileionconicsareconsistentwithaccelera-
tionpurelyperpendiculartothemagneticfield.Asmentionedpreviously,energeticionbeamsareclearlyassociated
withelectrostaticshock.Thisimpliesthatelectrostaticshocksassociatedwithionbeamsarequasi-staticontheion
transittimescalebutthatelectrostaticshocksassociatedwithionconicsarenot.A morecorrectmodelof ionconic
accelerationin regionsof electrostaticshockswouldneedtotakeaccountofthefluctuationsintheelectricfieldand
thegeneralelectricfield turbulencein theregionsurroundingtheelectrostaticshocks.In regionsof ion conics
"electrostaticshocks"arenotnecessarilyelectrostatic(TemerinandMozer,1984a).

5. Whataretheparallelelectricfieldmagnitudesonauroralfieldlines?

Theparallelelectricfieldcanbemeasureddirectlyor inferredfromparticlemeasurements.Measurements
of ionbeamsandelectronlossconesindicatethatpotentialdropsof 10kV or largercansometimesoccurbelowthe
$3-3satelliteat altitudesof 6000to 8000km. Sincetheupwardpointingelectricfield regionhasneverbeen
observedon$3-3to extendbelow3000km andisusuallylimitedto above5000km,theaverageparallelelectric
fieldin aninverted-Vaccelerationregionmustatleastsometimesbetheorderof 5to 10mV/mandthemaximum
parallelelectricfield shouldbesubstantiallylargersinceit isnotlikelythattheelectricfieldisuniformthroughout
theregion.Directmeasurementsin electrostaticshocksindicateparallelelectricfieldsup to about100mV/m
(Mozeretal., 1980;Mozer,1980).However,inmostcases,theparallelelectricfieldis lessthan25mV/mevenin
electrostaticshocksassociatedwithupwardflowingionbeams(TemerinandMozer,1984a).

6. Aretherelargeparallelelectricfieldsin thereturncurrentregion?

Therearealsolargepotentialdropsin thereturncurrentregion.Theelectricfieldpointsdown,whichis in
thedirectiontoaccelerateionsintotheionosphereandelectronsintothemagnetosphere.Someofthebestevidence
for downwardpointingelectricfieldsisshowninFigure5,whichdisplayssomerecentrocketdata,courtesyof C.
Carlson,J. McFadden,andM. Boehm.At 760s intotheflight, therewasanalmostcompletedropoutin theen-
ergeticelectronscorrelatedwithanenhancementin theprecipitatingionsflux overanarrowenergyrangeaten-
ergiesbetween5and10keV.At thesametime,theeastwardcomponentof themagnetometerwasconsistentwitha
downwardfield-alignedcurrent.Thesedataimplyapotentialdropin thereturncurrentregioninexcessof 5 kV.
Largedownwardelectricfieldscanalsobe inferredfromtheobservationsof blackaurora(Davis,1978).Black
auroraappearasnarrowstreaksofdarkskyin regionsofotherwisediffuseillumination.Broaderregionsofweaker
parallelelectricfieldscanbe inferredfromthe $3-3andDE 1 observationsof upwardflowing field-aligned
electrons.Onewouldexpectthatthenarrowregionsof downwardpointingelectricfieldswouldcorrespondto
pairedelectrostaticshockswith theelectricfieldsin thepairedshockpointingawayfromtheregionof parallel
acceleration.Examplesof sucheventsare,however,comparativelyrarein the$3-3data.
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7. Howimportantarethedynamicpropertiesof theparallelelectricfield onauroralfield lines?

Ontheiontransittimescalethefluctuatingportionof theparallelelectricfieldmustbeseveraltimeslarger
thanthedcportion.Thisisclearfromtheparallelvelocitydistributionof theupflowingionbeam.Typically,there
isobservableflux inanionbeamatenergiesfour timeslargerthantheenergyof themaximumflux. Thisimplies
thatin theframeofreferencemovingwith theenergeticiontheelectricfield is four timeslargerthantheaverage
field.Thesefieldsmaybeprovidedbythesmall-amplitudedoublelayersandtheparallelelectricfieldcomponents
of theelectrostaticioncyclotronwavesthatareassociatedwith theupflowingion beams.

Anotherinterestingdynamicpropertyof auroralaccelerationis flickeringaurora.Recentdataandtheoreti-
calmodels(Temerinetal., 1986)showthatanobliquelypropagatingioncyclotronwave,whichmaybeproduced
byanoscillatingdoublelayeroroscillatingparallelelectricfield, canproducetheoscillatingfield-alignedelectron
flux in theflickeringaurora.
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0006.
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BEAMED EMISSION FROM GAMMA-RAY BURST SOURCES

R. Epstein

Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

Gamma-ray bursts are intense fluxes of radiation in the 100 keV to several MeV energy range which

typically persist for between a fraction of a second and several seconds. The observed spectral shapes of these bursts

suggest that the radiation is emitted as highly collimated beams emanating from neutron stars. This inference is

based on the lack of significant gamma-gamma absorption (which indicates that photon paths do not cross at large

angles) and by the dirth of x-ray energy photons (which are produced when gamma rays interact with stellar

surfaces). The gamma-ray beams may be a consequence of particle acceleration in double layers in neutron star
magnetospheres.
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DOUBLE LAYERS AND PLASMA-WAVE RESISTIVITY IN EXTRAGALACTIC JETS:

CAVITY FORMATION AND RADIO-WAVE EMISSION

Joseph E. Borovsky "

Space Plasma Physics Group

Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

ABSTRACT

For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and

electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within

self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave

resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron

beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-
stream instabilities.

I. INTRODUCTION

Extragalactic jets are collimated radio-luminous plasmas that are thought to be supersonic outflows from the

nuclei of elliptical galaxies, the jet plasma traveling long distances through the intergalactic medium before being

stopped (Begelman et al., 1984). Often, the length of a jet is much larger than the size of its parent galaxy.

The internal plasma pressures of some extragalactic jets are thought to exceed the plasma pressures in the
external media. This had led to the hypothesis that these jet plasmas are radially confined via electric-current

pinching, the electrical current flowing axially through the column of jet plasmas (Alfv6n, 1977, 1978; Benford,

1978), as depicted in Figure 1. The hypothesis that jets carry currents is also supported by electrodynamic models of

jet-plasma acceleration (Lovelace, 1976). The presence of currents opens the important possibility that large
amounts of energy are being transported down the jets via electrical processes. If electrical currents are in fact

present, then electric fields are also expected to be present.

In this report, a model of the electric field that may reside within an extragalactic jet is described. The model

involves a plasma double layer or a multiple of plasma double layers in series, each one residing within a density
cavity that is created by the action of the double-layer-emitted particle beams.

In section II, the properties of extragalactic jets are reviewed and the Coulomb-collision resistivities and the

plasma-wave resistivities within the jets are discussed. In Section III, the double layer model is described. InSection

IV, some consequences of the double layer model are discussed, including radio-wave emission from the double-

layer-emitted electron beams via a collective bremsstrahlung process, and in Section V, some double layer topics
that need further research are pointed out.

PRECEDING PAGE 6LAPJK NOT FiLI_ED
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II. COLLISlONAL AND PLASMA-WAVE RESISTIVITIES IN JETS

Subject to great uncertainties, extragalactic jets and the plasmas within them have the following properties

(Begelman et al., 1984). The lengths of the jets vary from L -- 104 Pc to L -- 10 6 Pc, where 1 Pc = 3.1 x 1018 cm,

and the radii of the jets vary from r -- 102 Pc close to the galactic centers to r -- l0 3 Pc further out; typical diameters

of galaxies are 104 to 105 Pc. The jet plasma is believed to be of low density, n -- 10-6 - 10-4 cm -3 and warm Te _ Ti

105 K, with an additional population of relativistic synchrotron-emitting electrons. The luminosity of the jet plasma

is non-uniform, implying higher densities of relativistic electrons and/or stronger magnetic fields in localized hot

spots. Estimates of the magnetic field strength yield B - 10-5 - 10 -4 gauss. For a few jets that reside in the centers of

clusters of galaxies, the ambient plasma is detectable via its x-ray bremsstrahlung, and pressure estimates for these
ambient media can be obtained. In some of these instances, the pressures of the jet plasmas are believed to exceed

the pressures of the ambient plasmas, and z-pinching of the jets by electrical currents may be acting to confine the

jets. Estimates of the total amount of current needed to z-pinch the jets are I -- 1017-10 TM Amp, implying current

densities j _ 10-23-10 -21 Amp/m 2. If these currents are carried by drifts between the ion and electron distributions,

then typical drift velocities are 10-5-10 -2 cm/s.

These jet plasmas are very nearly collisionless; for a plasma with n = 10 -4 cm -3 and T = 105 K, the

Coulomb-collision conductivity is tYll -----1.8 x 1013 s-1. For a current densityjl I = 1.0 x I0 -2_Amp m-2, the electric
field along the jet required to drive the current is Ell = 4.9 x 10 -7 W/cm. For a jet 105 Pc in length, this amounts to a

total potential drop A_b of a mere 1.5 x 10 -3 V. By almost all standards, the jet is a perfect conductor.

Electrostatic plasma-wave instabilities that are driven by relative drifts between Maxwellian ions and

electrons require an electron-ion relative drift velocity Vo that is comparable to Vte (Papadopalous, 1977). As
mentioned above, the relative drift within an extragalactic jet is typically Vo _ 10-5-10 -2 cm/s. This drift speed is

orders of magnitude lower than the electron thermal velocity. Thus, electrostatic microinstabilities driven by

electron-ion relative drifts will not provide electrical resistivities in current-carrying extragalactic jets.

Neither will electromagnetic plasma-wave instabilities that are driven by relative drifts between Maxwellian

ions and electrons produce resistivity in extragalactic jets. For a uniform-current-density z-pinched jet in equi-

librium, no electromagnetic waves with wavelengths shorter than the jet diameter are unstable (Borovsky, 1986).

Hence, no resistivity can be produced.

Note that since anomalous-resistivity processess might not occur in the jet plasma, the jet plasmas might be

truely ohmic, at least for the current densities envisioned to z-pinch the jets.

III. THE DOUBLE LAYER MODEL

Some of the properties of strong plasma double layers are as follows (Michelsen and Rasmussen, 1982;
Schrittwieser and Eder, 1984). The thicknesses of double layers are AL -- 10L105 h D, the double layers being

thicker if the potential jump A_b across them is greater. The current density within and near the double layer is

independent of the local electric field strength; therefore, the plasma containing the double layer is non-ohmic. Ions
that drift into the high potential edge of the double layer are accelerated to form a fast, cold beam in the low potential

plasma, and electrons that drift into the low potential edge of the double layer are accelerated to form a fast, cold

beam in the high potential plasma. The efficiency of turning electrical energy into the kinetic energy of high-energy

particles in the double layer is 100 percent. These beams drive space charge waves in the adjacent plasmas

(Borovsky and Joyce, 1983), the electron beam drives Langmuir waves and electrostatic electron-cyclotron waves

in the high potential plasma, and the ion beam drives ion-acoustic and electrostatic and ion-cyclotron waves in the

low potential plasma. If the double layer has a large enough potential drop Aqb, then Langmuir waves and electro-

static electron-cyclotron waves will also be driven by the ion beam in the low potential plasma.
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Double layers are also characterized by Bohm criteria at their high and low potential edges. For steady-state

double layers, these criteria require the ion-inflow drift velocity to exceed Cs and the electron-inflow drift velocity

to exceed vte. As was the case for electrostatic plasma-wave instabilities, these required inflow velocities imply

large current densities. However, the Bohm criteria may be satisfied without large current densities if a density

cavity is formed by the action of the double-layer-emitted beams. When the potential drop Aqb of a double layer is

large enough to produce highly relativistic electron beams, the growth length for two-stream electrostatic waves in
the high potential plasma is

)kgrowth/)kDe _--- 2.1 × 10 -3 Te4/3(eA_b/kaT)

and if the potenial jump is large enough to produce a highly relativistic ion beam, then the growth length for high-

frequency electrostatic plasma waves in the low potential plasma is

hgrowth/_De _--- 4.8 X 10-5 Tea/3(eA_b/kBT)

(Borovsky, 1986). Because the phase and group velocities of the growing waves are in the direction of the beams,
these waves will propagate away from the double layer, leaving regions of calm plasma near the double layer.

Beyond these calm regions, however, plasma waves will be present with very large amplitudes (Fig. 2). In the fields

of waves on either side of the double layer, the effective collision frequency may approach tOr_.Since the mobilities
of charged particles in these regions are small, they require long periods of time to transit to the double layer;

accordingly, their number densities are high within these regions. When a particle leaks out of one of these turbulent

regions and passes into a calm region near the double layer, it drifts without scattering; this drift being at the thermal

velocity, the number density is low (see Fig. 3, top and middle). Thus, the double layer produces electron and ion

beams which create two regions of plasma turbulence removed from the double layer itself, these regions acting to

keep the plasma density high away from the double layer and creating a cavity around the double layer. It is in this

density-cavity region that the Bohm criteria for the double layer can be met; these high drift velocities do not

produce high current densities because they occur only in regions where the particle density is low. The current

density is conserved throughout the region (Fig. 3, bottom). This cavity production can also be described as the

outwardly directed double-layer-emitted beams driving plasma waves that transfer the beam momentum to the
ambient plasma, pushing open a cavity and maintaining it with beam pressure.

In order for current to be driven through the regions of electrostatic turbulence near the double layer, resis-

tive electric fields will arise, adding to the potential of the double layer. Note that in this model the anomalous
resistivity regions are required, not for their resistive potential drops, but for the reduction of the particle mobility

that they cause.

A laboratory example of a double-layer-driven cavity is contained in Figures 9 and 10 of Guyot and Hollen-

stein (1983), reproduced here as Figure 4. In the first panel of Figure 4, the double layer is clearly visible at x _ 50

cm. Note also that there is a region of resistive potential drop in the high potential plasma adjacent to the double

layer. In the second panel, a density cavity around the double layer is visible. In the bottom panel, the electron drift
speed is seen to increase within the cavity. Electrostatic turbulence is detected on both sides of the double layer.

Another example of a cavity formed around a laboratory double layer appears in Figure 3 of Sato et al. (1981).
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Multiple double layers may occur in a series, each double layer surrounded by regions of beam-driven
turbulence that maintains density cavities. The double layers must be separated by distances large enough for their

emitted electron and ion beams to thermalize, the thermalized beam particles constituting plasma sources between

the double layers.

IV. CONSEQUENCES OF THE MODEL

If they are of relativistic energies, the double-layer-produced beams of electrons will undoubtedly emit

synchrotron radiation, making the high potential plasmas near double layers radio luminous. More important,
however, the relativistic electron beams will rapidly emit polarized radio waves via a collective-bremsstrahlung

process (Kato et al., 1983). The electron-electron two-stream instability that produces the electrostatic waves in the

high potential plasma causes the beam electrons to bunch up and the background-plasma electrons to bunch up. The
beam electrons are accelerated by random electric fields as they pass through the charge-bunched background

plasma, causing them to emit electromagnetic radiation. Because the beam electrons are charge-bunched, they emit

coherently. Thus, this emission is like a collective bremsstrahlung, with charge clumps in the beam radiating as they

scatter off charge clumps in the background plasma. As observed in the laboratory, the electron beams emit electro-

magnetic waves with frequencies of approximately _/2O_p_(Kato et al., 1983), where _/is the relativistic factor of the
beam.

It is reasonable to anticipate that a radio hot spot would be associated with a double layer or a series of double

layers within a jet, since most of the energy dissipated by the double layer appears as an energetic electron beam that

is capable of radiating. Further, if multiple double layers are separated by distances great enough, then the in-

dividual radio striations in the jet might be resolvable.

A model that proves to be very similar to this model was developed by Langmuir (1929) to describe the

current flows in partially ionized gases. In that model, the inflow of plasma to a double layer was described as an

ambipolar diffusion down density gradients. A similar approach may be taken in the present model, with only a

change in the nature of the diffusion coefficient.

The double layers envisioned here have many features in common with auroral zone double layers

(Shawhan, 1978; Borovsky, 1984). Auroral double layers accelerate electrons to energies of 1-10 keV, the

electrons following the terrestrial magnetic field lines to the upper atmosphere where they produce visible auroral

arcs. The auroral double layers also accelerate ions upward where they are believed to drive the large-amplitude

electrostatic ion-cyclotron waves. The energetic beam electrons are believed to drive Langmuir and electrostatic

electron-cyclotron waves, and are also believed to drive collective radio emissions (Anderson, 1983).

V. FUTURE RESEARCH IN DOUBLE LAYERS

There are many topics that must be researched before the double layer model discussed in Sections III and IV

is complete.

Two topics important to this model are relativistic double layers and double layers in finite-13 plasmas, the

stability and dynamics of both types of double layers having yet to be examined. For relativistic double layers,

stability factors may favor particular values for the potential jump, such as eA+ = m,c 2 or eA+ = m:c 2. For finite-_

double layers, beam-driven electromagnetic-wave turbulence may provide another cavity-forming mechanism.

Laboratory diagnostics will be difficult to construct for relativistic double layers, and very large plasma chambers

will be required to magnetize the particles for finite-J3 double layer experiments.
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Another important topic is the dynamics of multiple double layers. In most laboratory devices, the system
potential drops are limited to the ionization potentials of the gases used, and the ions are Coulomb-collisional. To

investigate multiple double layers via computer simulation, very large numerical systems must be used to resolve

the large-scale phenomena (beam thermalization), the small-scale phenomena (double layers), the fast time scales

(Langmuir waves), and the slow time scales (beam evolution). A further goal would be to understand the pre-

sheaths at the edges of the double layers. Unfortunately for the theoretical approach, pre-sheaths in collisionless

plasmas probably involve electric field fluctuations, and, unfortunately for laboratory experiments, these weak
electric field structures are very difficult to observe.

In order to understand the inflow of plasma through the regions of electrostatic turbulence, diffusive flows
driven by density gradients and fluctuating electric fields need to be studied.

The spatial evolution of double-layer-emitted electron beams is also a topic for future study. Since these

electrons scatter and lose energy as they travel, there will be a spatial dependence of the collective bremsstrahlung
spectra. A knowledge of this spectral evolution matched against the spectra of radio hot spots will provide a direct

test for the presence of double layer energy dissipation within jets.
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It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of

an electric current. In this paper we argue that a double layer may be present in the accretion column of a neutron star

in a binary system. We suggest that the double layer may be the predominant deceleration mechanism for the accret-

ing ions, especially for sources with x-ray luminosities of less than about 1037 erg s-_. Previous models have

involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the

energy of the infalling matter.
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ABSTRACT

The formation of a double layer is proposed as the mechanism which produces the critical velocity

phenomenon. We examine this hypothesis, qualitatively, and find that the double layer can be a very efficient

mechanism for transferring the kinetic energy of the neutral gas into the kinetic energy of electrons which, in turn,
will ionize the neutral gas if the critical velocity has been reached or exceeded.

I. INTRODUCTION

In a study of the mass distribution of secondary bodies in the solar system, Alfv6n (1954) noted that these

bodies were arranged in discrete bands surrounding the central object. The particular location of the band in which

each body appeared was found to be dependent upon the chemical composition of the dominant elements of the

body. To explain this band structure, Alfv6n proposed that a strong coupling suddenly occurs between a neutral gas

and a magnetized plasma whenever their relative velocity reaches the critical velocity, Vcrit, given by

Vcrit = (2 e Vr/mn) 1/2 (I)

Here, V_ is the ionization potential of the neutral gas and m. is the mass of one of the neutral particles. The proposed

interaction has to have the effect of prohibiting the relative velocity from exceeding this critical velocity in order to
explain the band structure.

In the rest flame of the plasma, equation (1) implies that when the kinetic energy of the neutral particles is

equal to the ionization potential, a strong coupling occurs between the neutral gas and the plasma. Such a coupling

would be expected if, for example, the gas suddenly begins to be ionized at this relative velocity. Then the magnetic
field, which is threading the plasma, will interact strongly with the newly formed ions and electrons. However,

ionization is not expected to become prominent when the relative velocity is equal to the critical velocity because the

cross section for ionization due to binary collisions between neutral particles and plasma ions is essentially zero for

the energy transfer needed at this relative velocity (assuming negligible random kinetic energy). For equal mass

particles the maximum energy transfer is one-half the kinetic energy. Furthermore, the energy of electrons with a

velocity equal to the critical velocity is orders of magnitude smaller than the ionization energy.

Hence, traditional classical plasma physics seems to be unable to explain why an enhanced interaction

should occur between a neutral gas and a magnetized plasma when the relative velocity reaches the critical value.

However, laboratory experiments have verified the critical velocity phenomenon and the validity of equation (1)

(see Danielsson, 1973, and Raadu, 1981, for reviews). Subsequently, theories have been proposed to explain the
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experiments (see Sherman, 1973, and Raadu, 1978, for reviews). The present theoretical situation, nevertheless, is

that there is no one theory that satisfactorily explains the phenomenon over the wide range of parameters (magnetic

field, density of the gas, etc.) that have been demonstrated in the laboratory. Hence, the general consensus has been

that different physical processes occur, depending upon the parameters, to give the one result - the critical velocity

phenomenon.

In this paper, however, a simple mechanism is proposed to explain the critical velocity phenomenon. This

mechanism appears to be applicable over the entire range of experimental parameters examined to date. This mech-

anism invokes the formation of a double layer. Double layers form in a plasma, usually when a current exceeding a

certain threshold value is passed through the plasma (see Block, 1978, for a review).

II. THE FORMATION OF A DOUBLE LAYER

On a macroscopic level, a double layer can be defined as a local discontinuity surface in a plasma; but,

microscopically, it consists of two equal but oppositely charged space-charge layers. The electric field within the
double layer is very strong, but it is essentially zero outside this region. The spatial extent of the double layer is

roughly of the order of the Debye length, although experimental results have shown that the double layer can be as

thick as 1000 Debye lengths (Chan et al., 1984; Sato and Okuda, 1981). The electric potential for the type of double

layer that we will be considering (the strong double layer) is monotonic and has the general form as that shown in

Figure 1.

The double layer, once formed, separates the plasma into two sections with a potential difference across
them. Years of laboratory research on the formation and stability of double layers have revealed that they form

easily either by utilizing density gradients or by introducing a potential difference across the plasma (or across a

segment of the plasma by inserting a charged electrode), or by some other method. Regardless of how the double

layer is formed, the determining factor as to whether it will remain depends upon the distribution functions of the

various types of charged particles that will be accelerated, decelerated, or reflected by the double layer.

To understand why a double layer should be expected to form when a neutral gas is incident upon a mag-

netized plasma, consider Figure 2. Here, the neutral gas is incident from the left. The magnetic field of the plasma,

for simplicity, is assumed to be uniform, and in order to simulate the experimental situations where the critical

velocity phenomenon has been observed, the magnetic field is taken to be almost perpendicular to the incoming

neutral beam velocity vector. Even before the velocity of the neutral atoms reaches the critical velocity, a limited
amount of ionization will naturally take place due mainly to impact and charge exchange collisions. Suppose that an

atom is ionized at point O in Figure 2. The electron and ion will then be influenced by the magnetic field which is

threading the plasma. Because of differences in magnetic moments, the ions will penetrate more deeply into the

plasma than the electrons; i.e., both will spiral about the field lines but the ions with much large radii. This will

result in a charge separation in the plasma which, in turn, will force the plasma to react in order to maintain charge

neutrality. We expect the plasma to respond through the formation of a double layer, just as in the laboratory. The

potential difference across the double layer will be essentially the kinetic energy of the newly formed ions since it is

these ions that must be stopped in order to maintain charge neutrality. These ions, though, will have approximately

the same energy as the original neutral atoms. Hence, the potential energy of the double layer is expected to be equal

to the kinetic energy of the neutral gas.

This scenario also dictates the length scale of the double layer. It must have a width which is intermediate

between the electron and the ion gyro radius. This is precisely the scale length associated with the leaky ionization

fronts which have been observed in the experimental investigations of the critical velocity phenomenon (see e.g.
Petelski, 1981).
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The double layer will decelerate the newly formed ions. It will also accelerate the newly formed electrons as

well as any electrons of the background plasma which drift into the double layer region. On the high potential side of

the double layer, then, there will be some energetic electrons moving anti-parallel to the magnetic field. These

electrons will be available for ionizing more neutral atoms through impact collisions. This process, in turn, will tend

to establish a second double layer. This process could then be repeated and result in a series of double layers in the

plasma. However, as mentioned previously, the charged particle distributions determine whether the double layers

are stable. Although it may be possible that the conditions are favorable for the formation of several double layers,

we speculate these double layers dissipate after they are formed. In this case, we have the equivalent to a single

double layer moving through the plasma. Moving double layers are observed to occur in laboratory plasmas when
the particle fluxes do not satisfy what is referred to as the Langmuir condition for a stable double layer (Block,

1978). In the laboratory, these moving double layers propagate to the end of the physical system confining the
plasma where they disappear, and a new double layer appears at the opposite end.

The process described above may take place whenever a neutral gas beam is incident upon a magnetized

plasma, regardless of the relative velocity of the beam. Laboratory experiments, as well as theoretical con-

siderations, indicate that the thermal speed of the plasma particles makes the formation of a double layer possible.

However, when the relative velocity becomes equal to the critical velocity, the picture we have presented leads to

the conclusion that predicts a strong interaction should occur. This follows from the fact that the potential energy

difference across the double layer and, hence, the energy of the accelerated electrons, is equal to the kinetic energy
of the neutral atoms. When this energy is equal to the ionization energy of the atoms, the electrons will then have

precisely the amount of energy needed to ionize the atoms. Consequently, when the relative velocity is equal to, or

higher than, the critical velocity, the effect of the moving double layer (or a stationary double layer if appropriate) is
to establish an ionization front which ionizes the neutral beam. This explains the observed connection between the

critical velocity and ionization. This also implies that energetic electrons will be produced with velocity vectors

directed anti-parallel to the magnetic field. This conclusion, in turn, is consistent with laboratory studies of the

critical velocity phenomenon (see e.g. Danielsson and Brenning, 1975).

IIh THE ORIENTATION OF THE MAGNETIC FIELD

In all of the laboratory experiments that have studied the critical velocity phenomena, the magnetic field has

been more or less perpendicular to the velocity vector of the incoming neutral beam. In our explanation of the

critical velocity phenomenon, we must require that the angle between the two vectors is not precisely 90 °. This

requirement is necessary in order to have both a component of the electron's velocity parallel to the magnetic field

line and also traverse through the double layer region. In Figure 3, this departure from 90 ° is given by the angle 8. To

examine the minimum value that _ may have, we consider the experimental arrangement of Danielsson and Bren-

ning (1975). The effective physical confines of the plasma region in this experiment was 5 cm x 5 cm. Therefore

the length (along an equipotential surface) of the double layer was 5 cm. The width of the double layer, of course,

can be no more than 5 cm, but its value will be determined mainly by the electron and ion gyro radii. The width, a, of
the double layer satisfies the condition

re << a << ri , (2)

where re and raare the corresponding gyro radii of the electrons and ions. The exact value of a, of course, depends

upon the particle densities. For the Danielsson and Brenning experiment, typical parameters were B = 0.18 T and v

= 400 km/s, resulting in re" 13 ptm and r_ _, l0 cm. Hence, the width of the double layer, a, was of the order of 1

mm. For this value of a, Figure 3 implies that the minimum value of 8 is 1.2 °, which is hardly a stringent

requirement. Hence, it can be concluded that the magnetic field vector can be essentially perpendicular to the rela-
tive velocity vector within our model.
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IV. COMPARISON WITH OTHER THEORIES

Some theorists have examined the consequences of building up space charge by the trapping of electrons by

the magnetic field. In particular, Piel et al. (1980) proposed the formation of a sheath similar to the double layer, but

they considered only the E x B drift motion in the sheath. They considered the possibility that the drift motion
would lead to a modified two-stream instability which, in turn, would heat the electrons. This would then provide a

feedback mechanism to produce the ionization, and thus explain the critical velocity phenomenon. As is the case

with essentially all of the theoretical models, this particular approach explains a subset of the experimental observa-

tions of the phenomenon, but it fails in other cases (see e.g. Haerendel, 1982).

Lehnert (1967) analytically examined the potential structure that could form consistent with the Vlasov and

Poisson equations. Assuming that collisions are negligible over scale lengths, of the order of the ions gyro radius,

and a potential gradient in the plasma, he found that an oscillatory-type potential structure could be supported. The

spatial extent of each cycle in the potential, naturally, turned out to be comparable to the gyro radius of the ions. The
formation mechanism for this charge separation, however, requires that the electric field within the sheath be direc-

ted in the same direction as the velocity vector of the incoming neutral beam. This is precisely in the opposite

direction of the field of the double layer in our picture. Because of the direction of the electric field in Lehnert's

model, it is difficult for him to utilize it to energize the electrons. He, thus, relies on collisions to accomplish this

(Danielsson and Brenning, 1975). Nevertheless, if the particle distributions in the plasma are such that a series of

double layers would be stable, then the potential structure of the present model would be similar to Lehnert's model

except for the oppositely directed electric field. The electric field of the present model is properly oriented for direct
electron acceleration.

Varma (1978) also examined a possible consequence of charge separation upon the ionization of a marginal

amount of the neutral gas. However, his analysis was directed mainly at explaining the direct interaction experi-

ments (Daniel sson, 1970, 1973; Danielsson and Brenning, 1975). Since these experiments provided evidence for

electron acceleration parallel to the magnetic field, Varma suggested that a density gradient in the direction parallel

to the magnetic field, due to the finite size of the experimental apparatus, would cause a potential well to form which

could accelerate the electrons in the required direction. Again, this is a theoretical model which is very dependent

upon the experimental parameters. Hence, it does not explain the general critical velocity phenomenon.

V. SUMMARY

In this paper, we have proposed that the formation of a double layer leads to the critical velocity

phenomenon. The role of the double layer is to transfer the energy of the neutral particles to electrons which, in turn,

ionize the neutral particles when the critical velocity is reached or exceeded. This mechanism is expected to operate

under a wide variety of conditions as has been verified by double layer observations in the laboratory.

Although we have only described the model qualitatively here, it is evident that such a mechanism is a viable

candidate for explaining the critical velocity phenomenon. It remains for future work to carry out computer simula-

tion studies to investigate the formation and stability of double layers under the conditions where the critical

velocity phenomenon has been observed.
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the equipotential surfaces of the double layer.
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RECOMMENDATIONS

One noteworthy outcome of the symposium was the adoption of a circuit symbol for the double layer. This

symbol was proposed by H. Alfv6n, and the participants agreed to adopt it and use it in future papers dealing with

double layers. The symbol is shown in Figure 1. An example of a circuit with a double layer is the prominence-solar
flare circuit where an exploding double layer is assumed to be responsible for the flare. Such a circuit was presented

at the symposium by Alfv6n and is shown in Figure 2.

Although it is possible to have a plasma double layer without a net current, many applications will have a net

current. In these applications the "L" in the double layer symbol would be most appropriately oriented so as to show

the direction of the current. This is illustrated in Figure 3.

Since the double layer will accelerate and decelerate particles depending upon their charge and direction of

travel, power will be delivered to, as well as taken from, charged particles passing through it. The net power

delivered to the charged particles passing through the double layer is the equation

P = IAV

where I is the net current and AV is the potential difference across the double layer. In the case of no net current, the

double layer simply serves as an energy transfer mechanism. It transfers energy from one species of charged

particles to another. Applications of this type of double layer were discussed in the symposium by Williams.

It is hoped that researchers in this field, as well as all who refer to the double layer, will join with the

participants of the symposium in adopting the double layer symbol in Figure 1 in all future references.
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the direction of the current.
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