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PREFACE

An international symposium with the theme “Double Layers in Astrophysics” was held at Marshall Space
Flight Center in March 1986. The symposium was sponsored by NASA and the Universities Space Research
Association (USRA). Participants from six countries came together for 3 days to discuss their latest research efforts
in the experimental, theoretical, and astrophysical application aspects of double layers.

This was the third such symposium. The other two were held at Riso National Laboratory in Roskilde,
Denmark, and at the University of Innsbruck in Innsbruck, Austria, in 1982 and 1984, respectively. Whereas, the
first two symposia concentrated on laboratory and numerical simulation studies of double layers, this symposium
placed emphasis on astrophysical application of double layers.

Most of the applications involved the magnetosphere-ionosphere plasma environment of the Earth because
of its accessibility to direct observatories. However, other astrophysical applications were discussed. These
included the heliospheric circuit, double radio sources, the solar prominence circuit, magnetic substorms, x-ray and
gamma ray bursts, cosmic ray acceleration, x-ray pulsars, and the critical velocity phenomenon.

Itis widely felt by the participants that much more work in double layer research needs to be done, especially
in the theoretical aspect. A particular area of concern are the effects of physical boundaries and boundary conditions
on the formation and nature of double layers.

A recommendation was made by the participants to adopt a standard symbol for the double layer when
shown in an electric circuit. This is discussed in more detail in the Recommendations Section of this report.
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KEYNOTE ADDRESS
H. Alfvén

Department of Plasma Physics, Royal Institute of Technology
Stockholm, Sweden
and
Department of Electrical Engineering and Computer Sciences
University of California, San Diego, California

ABSTRACT

As the rate of energy release in a double layer with voltage AV is P = IAV, a double layer must be treated as
part of a circuit which delivers the current I.

As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are
useless for treating energy transfer by means of double layers. They must be replaced by particle models (Lyons and
Williams, 1985) and circuit theory (Alfvén, in Chapter IIl of Cosmic Plasma, 1981 , hereafter referred to as CP).

A simple circuit (Fig. 1) is suggested which is applied to the energizing of auroral particles, to solar flares,
and to intergalactic double radio sources. Application to the heliographic current system leads to the prediction of
two double layers on the Sun’s axis which may give radiations detectable from Earth.

Double layers in space should be classified as a new type of celestial object (one example is the double radio
sources). It is tentatively suggested that x-ray and gamma ray bursts may be due tp exploding double layers
(although annihilation is an alternative energy source).

M. Azar has studied how a number of the most used textbooks in astrophysics treat important concepts like
double layers, critical velocity, pinch effects and circuits. He has found that students using these textbooks remain
essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for
half a century [e.g., double layers (Langmuir, 1929) and pinch effect (Bennett, 1934)]. The conclusion is that
astrophysics is too important to be left in the hands of the astrophysicists. The billion-dollar telescope data must be
treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course
with modern plasma theory. At least by volume the universe consists of more than 99 percent of plasma, and electro-
magnetic forces are 10°° times stronger than gravitation.

. GENERAL PROPERTIES OF DOUBLE LAYERS
A. Double Layers as a Surface Phenomenon in Plasmas

Since the time of Langmuir, we know that a double layer is a plasma formation by which a plasma — in the
physical meaning of this word — protects itself from the environment. It is analogous to a cell wall by which a
plasma — in the biological meaning of this word — protects itself from the environment.

If an electric discharge is produced between a cathode and an anode (Fig. 2) there is a double layer, called a
cathode sheath, produced near the cathode that accelerates electrons which carry a current through the plasma. A
positive space charge separates the cathode sheath from the plasma. Similarly, a double layer is set up near the
anode, protecting the plasma from this electrode. Again, a space charge constitutes the border between the double
layer and the plasma. All these double layers carry electric currents.



The lateral limitation of the plasma is also produced by double layers which reduces and slows down the
escape of the rapid electrons and accelerates the positive ions outwards so that an ambipolar diffusion is established
(no net currents). If the plasma is enclosed in a vessel, its walls get a negative charge and a positive space charge is
set up which, again, is the border between the double layer and the plasma. If the discharge constricts itself, the
walls can be taken away (without removing the space charge they carry). In these double layers the net electric
current is zero.

If the cathode itself emits electrons; e.g., if it is a thermionic or photoelectric emitter, the sign of the cathode
fall may be reversed, so that the double layer is limited by a negative space charge which acts as a “virtual cathode.”
The anode fall may also be reversed.

The lateral double layers may also change sign. This occurs in a dusty plasma if the dust is negatively
charged (e.g., by absorbing most of the electrons). In this case we have a “reversed plasma” in which the ions form
the lighter component. A magnetized plasma in which the Larmor radius of the ions is smaller than that of the
electrons may also be a reversed plasma.

If a plasma is inhomogeneous so that the chemical composition, density, and/or electron temperature differs
in different parts of the plasma, the plasma may set up double layers which split the plasma into two or more regions,
each of which become more homogeneous. For example, a Birkeland current flowing between the ionosphere and
the magnetosphere may produce one or more double layers in this way when they flow through regions with dif-
ferent densities.

There are innumerable variations and complications of the simple case we have discussed, in the same way
as biological cell walls show innumerable variations. If we try to increase the current by increasing the applied
voltage, the plasma may produce a double layer (see Fig. 2) which takes up part of the voltage so that the plasma
current density does not exceed a certain value. Hence, the plasma divides itself into two cells, analogous to what a
biological cell does when it gets a large energy input.

The voltage difference AV over a double layer is usually of the order 5 to 10 times the equivalent of the
temperature energy kT /e. However, if there are two independent plasmas produced by different sources, the double
layer which is set up at the border between them may be 100 or 1000 k T,/e or even larger (see Torvén and Anders-
son, 1979).

B. Noise in Double Layers

There is one property of a double layer which often is neglected: a double layer very often (perhaps always)
produces noise. By this we mean irregular rapid variations within a broad band of frequencies. Lindberg (1982)
studied the noise in a stationary fluctuating double layer and demonstrated what a profound influence it has. It
broadens the energy spectrum of the electrons and the plasma expands perpendicular to the magnetic field. The
electrons in the beam which is produced in the double layer are scattered much more by the noise than by collisions.

(Some people claim that noise is essential for the formation and sustenance of a double layer. This is actually a
“chicken-egg” problem.)

An analogy to this is that the “critical velocity” phenomenon also seems to be associated with noise. Noise
production is often associated with strong currents through plasmas.

The noise is such an important property of plasmas that theories which do not take it into consideration run
some risk of being irrelevant. It is difficult to include noise in numerical simulations of double layers, which means




that we should also regard the simulations with some scepticism. It is claimed that supercomputers are powerful

enough to treat a noisy plasma. With so many prominent theoreticians present, I believe that the noise problem will
be clarified.

C. Theoretical and Experimental Approaches

Since thermonuclear research started with Zeta, Tokamaks, Stellarators (not to forget the Perhapsotron!),
plasma theories have absorbed a large part of the energies of the best physicists of our time. The progress that has
been achieved is much less than was originally expected. The reason may be that from the point of view of the
traditional theoretical physicist, a plasma looks immensely complicated. We may express this by saying that when,
by an immense number of vectors and tensors and integral equations, theoreticians have prescribed what a plasma
must do, the plasma — like a naughty child — refuses to obey. The reason is either that the plasma is so silly that it
does not understand the sophisticated mathematics, or it is that the plasma is so clever that it finds other ways of
behaving, ways which the theoreticians were not clever enough to anticipate. Perhaps the noise generation is one of
the nasty tricks the plasma uses in its IQ competition with the theoretical physicists. I am confident that the promi-
ment theoreticians and the plasma will be reconciled before the end of this meeting.

One way out of this difficulty is to ask the plasma itself to integrate the equations; in other words, to make
plasma experiments. Confining ourselves to cosmic plasmas, presently there are two different ways of doing this.

1. By performing scale model experiments in the laboratory. This requires a sophisticated technique, which
in part we can borrow from the thermonuclear plasma physicists. It also requires methods to “translate” laboratory
results to cosmic situations (see CP, 1.2; Alfvén, 1986). Great progress has been made in this respect, but much
remains to be done.

2. By using space as a laboratory and performing the experiments in space. This is a fascinating new techno-
logy which is most promising, but somewhat more expensive. We shall shortly discuss the laboratory experiments
in later sections. There are a number of good surveys on the program of this meeting.

D. Field and Particle Aspects of Plasmas

Space measurements of magnetic fields are relatively easy; whereas, direct measurements of electric
currents are very difficult and in many cases impossible. (Roy Torbert is now developing a technique which makes
direct measurements of space currents possible.) Hence, it is natural to present the results of space exploration (from
spacecrafts and from astrophysical observations) with pictures of the magnetic field configuration. Furthermore, in
magnetohydrodynamic theories, it is convenient to eliminate the current (i = current density) by curl B. This
method is acceptable in the treatment of a number of phenomena (see Fig. 3).

However, there are also a number of phenomena which cannot be treated in this way, but which require an
approach in which the electric current is taken account of explicitly. The translation between the magnetic field
description and the electric current description is made with the help of Maxwell’s first equation
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in which the displacement current can usually be neglected. (However, it is sometimes convenient to account for the
kinetic energy of a magnetized plasma by introducing the permittivity € = €,[1 + (¢/Vyp)?], where ¢ and Vy, are
the velocities of light and of hydromagnetic waves (Alfvén, 1950, 3.4.4). If this formalism is used, the dis-
placement current is often large.)

Phenomena which cannot be understood without explicitly accounting for the current are:
1. Formation of double layers.
2. Energy transfer from one region to another.

3. The occurrence of explosive events such as solar flares, magnetic substorms, possibly also “internal
ionization” phenomena in comets (Wurm et al., 1963; Mendis, 1978), and stellar flares.

4. Double layer violation of the Ferraro corotation. Establishing “partial corotation” is essential for the
understanding of some features of the solar system.

5. Formation of filaments in the solar atmosphere, in the ionosphere of Venus, and in the tails of comets and
in interstellar nebulae.

6. Formation of current sheets which may give space a “cellular structure.”

Exploration of those plasma properties which can be described by the magnetic field concept has in general
been successful. However, this is not the case for those phenomena which cannot be understood by this approach.

E. Recent Advances

There is a rapidly growing literature concerning double layers and their importance for different cosmic
situations. Of special interest is the work of Knorr and Goertz (1974), Block (1978), and Sato and Okuda (1980,
1981). A balanced review of these achievements is given by Smith (1983). Further, to judge from the abstracts of
this present symposium, we can look forward to important new results.

As indicated by the title of the present lecture, I will concentrate my attention on the astrophysical applica-
tions of double layer theory. The development of the theory of double layers, including numerical simulation, is
covered by a number of other papers.

Il. LABORATORY EXPERIMENTS

A. Electrical Discharges in Gases

Toward the end of the nineteenth century electric discharges in gases began to attract increased interest.
They were studied in Germany and in England; and, as there were few international conferences, the Germans and
the English made the same discoveries independently. Later, a strong group in Russia was also active. The best
survey of the early development is Engel-Steenbeck, Theorie der Gasentladungen; see also Cobine (1958). Some
modern textbooks are those by Loeb (1961), Papoular (1963), and Cherrington (1974).




B. Birkeland

At the turn of the century geophysicists began to be interested in electrical discharges, because it seemed
possible that the aurora was an electrical discharge. Anyone who is familiar with electrical discharges in the labora-
tory and observes a really beautiful aurora cannot avoid noting the similarity between the multi-colored flickering
light in the sky and in the laboratory. Birkeland was the most prominant pioneer. He made his famous terrella
experiment in order to investigate this possibility (Birkeland, 1908). Based on his experiments and on extensive
observations of aurora in the auroral region, he proposed a current system which is basically the same as is generally
accepted today. However, the theory of electric discharges was still in a very primitive state, and the importance of
double layers was not obvious.

When Sydney Chapman began his investigations on magnetic storms and aurora one or two decades later, he
proposed a current system [the Chapman and Vestime system (Chapman and Vestine, 1938)] which was located
entirely in the ionosphere. His most important argument against Birkeland’s current system was that above the
atmosphere there was a vacuum, and hence there could be no electrons or ions which could carry any currents. [The
relation between Chapman and Birkeland is analyzed by Dessler (1983)].

C. Langmuir and Plasma

The interest in double layers made a great leap forward when Langmuir began his investigaitons. He introdu-
ced the term “plasma” in his paper “Oscillation in Ionized Gases” (Langmuir and Tonks, 1929a; see also Langmuir
and Tonks, 1929b). Curiously enough, he does not give any motivation for choosing this word, which was probably
borrowed from medical terminology. He just states: “We shall use the name ‘plasma’ to describe this region con-
taining balanced charges of ions and electrons.” His biographers do not give any explanation either. Langmuir also
made the first detailed analyses of double layers (Langmuir, 1929).

Irving Langmuir was probably the most fascinating man of the plasma pioneers. As his biographers describe
him, he was far from being a narrow-minded specialist. His curiosity was all-embracing, his enthusiasm indis-
criminate. He liked whatever he looked upon, and he looked everywhere. He was not far from the ideal which

Roederer, in a recent paper (1985), contrasts with the insulated specialists that dominate science today (see Section
VIII).

Langmuir once wrote, “Perhaps my most deeply rooted hobby is to understand the mechanism of simple and
familiar phenomena...” and the phenomena might be anything from molecules to mountains. One of his friends
said, “Langmuir is a regular thinking machine: put in facts and you get out a theory.” And the facts his always active
brain combined were anything from electrical discharges and plasmas to biological and geophysical phenomena.
Science as fun was one of his cardinal tenets.

From this one gets the impression that he was very superficial. This is not correct. He got a Nobel prize in
chemistry because he was recognized as the father of surface chemistry. He knew enough of biology to borrow the
term plasma from this science, and the mechanism of double layers from surface chemistry. Langmuir’s probes
were of decisive value for the early exploration of plasmas and double layers, and they are still valuable tools.

All magnetospheric physicists must regret that as far as is known, he probably never saw a full-scale auroral
display. Schenectady, where he spent most of his life, is rather far from the auroral zone, and he seems never to have
traveled to the auroral zone. If he had, his passion for combining phenomena in different fields might very well have
made him realize that the beautiful flickering multi-colored phenomenon in the sky was basically the same as the
beautiful flickering multi-colored phenomenon he had observed so many times in his discharge tubes. At a time



when Birkeland was dead he might have saved magnetospheric physics from half a century when it was a credo that
the road to magnetic storms and aurorae should go through a jungle of misleading mathematical formulae where
trees and trees prevented you from seeing the woods — but you can never reconstruct history.

In 1950 I published a monograph, Cosmical Electrodynamics (Alfvén, 1950), in which Chapter III deals
with electrical discharges in gases. Essential parts of this is devoted to plasma physics; I mention Langmuir only in
passing because a quarter of a century after his breakthrough the results were considered as “classical”: all experi-
mental physicists were familiar with his works on plasmas, double layers, probes, etc. However, many theor-
eticians were not; they had no knowledge of Langmuir’s work. They do not mention the word “plasma” and had no
idea that experiments in close contact with theory had shown that plasmas were drastically different from their
“jonized gases.” I tried to draw the attention to this by pointing out: “What is urgently needed is not a refined
mathematical treatment (referring to Chapman-Cowling) but a rough analysis of the basic phenomena” (referring to
the general knowledge of plasmas).

Today, 60 years after Langmuir, most astrophysicists still have no knowledge of his work. The velocity of
the spread of relevant knowledge to astrophysics seems to be much below the velocity of light (compare Section
VIII).

D. The Energy Situation in Sweden and Exploding Double Layers

In Sweden the waterpower is located in the north, and the industry in the south. The transfer of power
between these regions over a distance of about 1000 km was first done with a.c. When it was realized that d.c.
transmission would be cheaper, mercury rectifiers were developed. It turned out that such a system normally
worked well, but it happened now and then that the rectifiers produced enormous over-voltages so that fat electrical
sparks filled the rectifying station and did considerabl harm. In order to get rid of this, a collaboration started
between the rectifier constructors and some plasma physicists at the Royal Institute of Technology in Stockholm.

An arc rectifier must have a very low pressure of mercury vapor in order to stand the high back voltages
during half of the a.c. cycle. On the other hand, it must be able to carry large currents during the other half-cycle. It
turned out that these two requirements were conflicting, because at a very low pressure the plasma could not carry
enough current. If the current density is too high, an exploding double layer may be formed. This means that in the
plasma a region of high vacuum is produced: the plasma refuses to carry any current at all. At the sudden interrup-
tion of the 1000 km inductance produces enormous over-voltages, which may be destructive.

In order to clarify this phenomenon, a series of laboratory experiments were made, in close contact with
theoretical work on the same phenomenon. Nicolai Herlofson was the leader of this activity.

At low current densities, a drift motion vy << v is superimposed on the thermal velocity v of the electrons
in the plasma. If the current density increases so that v4 > v the motion becomes more similar to a beam, and an
instability sets in which is related to the two-beam instability. This produces a double layer which may be relatively
stable (although it often is noisy and may move along the tube.) If the voltage over the tube is increased in order to
increase the current, the higher voltage is taken up by the double layer and the current is not increased. However,
under certain conditions the double layer may explode.




A simple mechanism of explosion is the following. The double layer can be considered as a double diode,
limited by a slab of plasma on the cathode side and another slab on the anode side. Electrons starting from the
cathode get accelerated in the diode and impinge upon the anode slab with a considerable momentum which they
transfer to the plasma. Similarly, accelerated ions transfer momentum to the cathode slab. The result is that the
anode and cathode plasma columns are pushed away from each other. When the distance between the electrodes in
the diodes becomes larger the drop in voltage increases. This run-away phenomenon leads to an explosion.

Today the mercury arc rectifiers are long since replaced by semiconductors, but our work with them led to an
interesting spin-off in cosmic physics. We had since long been interested in solar physics and had interpreted solar
prominences as caused by pinching electric currents. With this as background, Jacobsen and Carlqvist (1964)
suggested that the violent explosions called solar flares were produced by the same basic mechanism as made the
mercury arc rectifiers explode. It drew attention to the fact that every inductive circuit carrying a current is intrinsi-
cally explosive.

Further consequences were:

1. The obvious connection between laboratory and space plasma led to a long series of plasma experiments
planned to clarify cosmic phenomena.

2. Itinspired Carlqvist (1969; 1982a,b,c) to work out a detailed theory of solar flares, and later to develop a
theory of relativistic DL’s.

3. Tt inspired Bostrom (1974) to develop a theory of magnetic substorms which, in important respects, is
similar to Akasofu’s theory (Akasofu, 1977).

In general, the connection between a technical difficulty and an astrophysical phenomenon led to what
Roederer (1985) calls an “interdisciplinarification,” which turned out to be very fruitful.

E. Extrapolation to Relativistic Double Layers

In most of the DL’s in the magnetospheres and those studied so far in the laboratory, the electrons and ions
have such low energies that relativistic effects are usually not very important. However, in solar flares, DL’s with
voltages of 10° V or even more may occur, and in galactic phenomena we may have voltages which are several
orders of magnitude larger.

Carlqvist (1969, 1982a,c¢) finds that in a relativistic double layer the distribution of charges Zn , (x) and n_(x)
can be divided into three regions: two density spikes near the electrodes and one intermediate region with almost
constant charge density. The particles are mainly accelerated in the spikes; whereas, they move with almost con-
stant velocity in the intermediate region. Examples are given of possible galactic DL voltage differences of 102 V.
This means that by a straightforward extrapolation of what we know from our cosmic neighborhood, we can derive
acceleration mechanisms which brings us up in the energy region of cosmic radiation.



. DOUBLE LAYERS AND FROZEN-IN MAGNETIC FIELD LINES

A. Frozen-In Field Lines — A Pseudo-Pedagogical Concept

In Cosmical Electrodynamics, 1 tried to give a survey of a field in which I had been active for about two
decades. In one of the chapters, I treated magnetohydrodynamic waves. I pointed out that in an infinitely conductive
magnetized fluid the magnetic field lines could be considered as “frozen” into the medium — under certain con-
ditions — and this concept made it possible to treat the waves as oscillations of the frozen-in medium.

The “frozen-in” picture of magnetic field lines differs from Maxwell’s views. He defined a magnetic field
line as a line which everywhere is parallel to the magnetic field. If the current system which produced the field
changes, the magnetic field changes and field lines can merge or reconnect. However, if the current system is
constant the magnetic field is also constant. To speak of magnetic field lines moving perpendicular to the field
makes no sense. They are not material.

In a detailed analysis of the motion of magnetic lines of force, Newgomb (l9_§8) has demonstrated that “it is
permissible to ascribe a velocity V to the line of force if and only if VX(E x vV x H) vanishes identically.”

I thought that the frozen-in concept was very good from a pedagogical point of view, and indeed it became
very popular. In reality, however, it was not a good pedagogical concept but a dangerous ‘“‘pseudo-pedagogical
concept.” By pseudo-pedagogical I mean a concept which makes you believe that you understand a phenomenon
whereas in reality you have drastically misunderstood it.

I never totally believed in it myself. This is evident from the chapter on “Magnetic Storms and Aurora” in the
same monograph. I followed the Birkeland-Stérmer general approach; but, in order to make that applicable to the
motion of low-energy particles in what is now called the magnetosphere, it was necessary to introduce an approxi-
mate treatment (the “guiding-center’” method) of the motion of charged particles. (As | have pointed outin CP, I11.1,
I still believe that this is a very good method for obtaining an approximate survey of many situations and that it is a
pity that it is not more generally used.) The conductivity of a plasma in the magnetosphere was not relevant.

Some years later criticism by Cowling made me realize that there was a serious difficulty here. According to
Spitzer’s formula for conductivity, the conductivity in the magnetosphere was very high. Hence the frozen-in con-
cept should be applicable and the magnetic field lines connecting the auroral zone with the equatorial zone should be
frozen-in. At that time (~1950) we already knew enough to understand that a frozen-in treatment of the magneto-
sphere was absurd, but I did not understand why the frozen-in concept was not applicable. It gave me a headache for
some years.

In 1963 Carl-Gunne Félthammar and I published the second edition of Cosmical Electrodynamics (Alfvén
and Filthammar, 1963). He gave a much higher standard to the book and new results were introduced. One of them
was that a non-isotropic plasma in a magnetic mirror field could produce a parallel electric field E;. We analyzed the
consequences of this in some detail and demonstrated with a number of examples that in the presence of an E;, the
frozen-in model broke down. On page 191 we wrote:

“In low density plasmas the concept of frozen-in lines of force is questionable. The concept of
frozen-in lines of force may be useful in solar physics where we have to do with high- and
medium-density plasma, but may be grossly misleading if applied to the magnetosphere of the
earth. To plasma in interstellar space it should be applied with some care.”



B. Magnetic Merging — A Pseudo-Science

Since then I have stressed in a large number of papers the danger of using the frozen-in concept. For ex-
ample, in a paper “Electric Current Structure of the Magnetosphere” (Alfvén, 1975), I made a table showing the
difference between the real plasma and “a fictitious medium” called “the pseudo-plasma,” the latter having frozen-
in magnetic field lines moving with the plasma. The most important criticism of the “merging” mechanism of
energy transfer is due to Heikkila (1973) who with increasing strength has demonstrated that it is wrong. In spite of
all this, we have witnessed at the same time an enormously voluminous formalism building up based on this obvi-
ously erroneous concept. Indeed, we have been burdened with a gigantic pseudo-science which penetrates large
parts of cosmic plasma physics. The monograph CP treats the field-line reconnection (merging) conceptinI.3,11.3,
and II.5. We may conclude that anyone who uses the merging concepts states by implication that no double layers
exist.

A new epoch in magnetospheric physics was inaugurated by L. Lyons and D. Williams’ monograph (1985).
They treat magnetospheric phenomena systematically by the particle approach and demonstrate that the fluid
dynamic approach gives erroneous results. The error of the latter approach is of a basic character. Of course there
can be no magnetic merging energy transfer.

I was naive enough to believe that such a pseudo-science would die by itself in the scientific community, and
I concentrated my work on more pleasant problems. To my great surprise the opposite has occurred; the “merging”
pseudo-science seems to be increasingly powerful. Magnetospheric physics and solar wind physics today are no
doubt in a chaotic state, and a major reason for this is that some of the published papers are science and part pseudo-
science, perhaps even with a majority for the latter group. .

In those parts of solar physics which do not deal with the interior of the Sun and the dense photospheric
region (fields where the frozen-in concept may be valid), the state is even worse. It is difficult to find theoretical
papers on the low density regions which are correct. The present state of plasma astrophysics seems to be almost
completely isolated from the new concepts of plasma which the in situ measurements on space plasma have made
necessary (see Section VIII).

I sincerely hope that the increased interest in the study of double layers — which is fatal to this pseudo-
science — will change the situation. Whenever we find a double layer (or any other E; # 0) we hammer a nail into
the coffin of the “merging” pseudo-science.

IV. DOUBLE LAYER AS A MECHANISM FOR ENERGY RELEASE

A. Double Layer as a Circuit Element
It is a truism to state that a DL which releases a power P = IAV is part of a circuit in which a current I flows.
We shall investigate the properties of such a circuit by starting with a conventional simple circuit and step by step

adopt it to cosmical conditions.

Figure 1 depicts a simple circuit which, besides the double layer DL, contains an inductance in which is
stored an energy (“circuit energy”).

W, == LI“=— } By°d 1
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where B, is the magnetic field produced by the current I and dr is a volume element.



If a magnetized plasma (field B,) moves with velocity V in relation to the circuit it produces an emf
V=f'\7xBo'ds )

- -
where ds is a line element in the direction of 1.

If V > 0 we have a generator transferring plasma energy IAV into the circuit; if V < 0 we have a motor
transferring circuit energy into kinetic energy of the plasma. In Figure 1 we have introduced a symbol © with the
arrow parallel to I torepresent a generator and a similar ©, but with the arrow antiparallel to I, to represent a motor.
Finally, the circuit may contain a resistance R which dissipates energy 1/2RI? into heat, etc.

An electrotechnical circuit like Figure 1 consists essentially of metal wires. Is it realistic to use this for
cosmic plasma problems? Apparently not. There are no metal wires in space. Further, if we want to use the circuitin
connection with a cosmic problem, most or all the circuit elements are distributed over cosmic distances. There have
been many detailed studies made concerning the relations between kinetic energy of a plasma and currents which
give a deeper understanding of these processes than our circuit approach.

However, our purpose is not to study the detailed problems but to get a general survey of energy transports in
cosmical physics. Is the circuit approach useful as a first approximation to such problems? Maybe.

A map of a city is useful in spite of the fact that it does not describe all the houses, or rather because it does
not attempt to do so. For calculating the motion of charged particles the guiding center method is often preferable to
the Stormer method even if it does not give the exact position of a particle at a certain moment, or rather because it
does not.

In space, charged particles move more easily parallel to B than perpendicular, and parallel currents are often
pinched to filaments. A wire is not too bad an approximation to a pinched filament. Moreover, the generators-
motors as well as the double layer are often confined to relatively small volume. Hence, with all these reservations
in mind we are going to apply the simple circuit of Figure 1 to a number of cosmical problems in Section VI.

However, the circuit representation could — and must — be developed in many respects. For example when
a current flows in large regions, the simple inductance L should be replaced by a transmission line (see Fig. 4).

We should also observe that a theory of certain phenomena need not necessarily be expressed in the tradi-
tional language of different equations, etc. It could also be expressed as an equivalent circuit. The pioneer in the
field is Bostrom who summarized his theory of magnetic substorms in the circuit shown in Figure 11. If this method

is developed, it is quite possible that it will be recognized as the best way to represent energy transfer in cosmic
plasmas.

B. Properties of the Circuit

Every circuit which contains an inductance L is intrinsically explosive (cf. Section II.D). The inductive
energy W, = 1/2 LI,? can be tapped at any point of the circuit. If we try to interrupt the current I,,, the inductance
tends to supply its energy to the point of interruption where the power P = IAV is delivered (AV = voltage over the
point of interruption and I the current at this point). This means that most of the circuit energy may be released in a
double layer, and if large, cause an explosion of the DL. (If the inductance is distributed over a considerable region,
there are transient phenomena during which I is not necessarily the same over the whole circuit.)
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In electro-technical literature in general, the resistors and inductances in the circuit may often be non-linear
and sometimes distributed over larger volumes. Similarly, the DL symbol may mean one double layer but also a
multiple DL. We should also allow this circuit element to represent other types of E,; for example, mirror-produced
fields. Hasagawa and Uberoi (1982) have shown that under certain conditions a hydromagnetic wave produces a
magnetic field-aligned electric field, which also should be included as DL. This means that DL stands for any
electric field parallel to the magnetic field.

C. Local Versus Global Plasma Theories

Consider a long, homogeneously magnetized uniform plasma. It is confined laterally by tube walls or by a
magnetic field. It carries no longitudinal current. Information/energy is transmitted in a time T from one end to the
other by sound waves or diffusion. Phenomena with a time constant << T can be treated by local theories (because
one end does not know what happens in the other). The Chapman-Cowling (1970) theory may be valid. However, if
a longitudinal current I flows through the plasma and returns through an outer wire (or circuit), the situation is
different. Except for rapid transients the current must be the same in the whole tube and in the wire. If the current is
modulated in one end, this information is rapidly transferred to the other end and to the wire. The current may
produce double layers which accelerate electrons (and ions) to kV, MV, GV, etc. It may pinch the plasma, produc-
ing filaments. These effects also produce coupling between the two ends of the plasma column and reduce the
coupling to its local environment.

Electrons accelerated in a DL in the plasma column may travel very rapidly from one end of the plasma
column to the other.

Hence, if there is a current through a plasma, we must use global theories, taking account of all the regions
through which the current through the plasma column flows. Local theories are not valid (except in special cases).

The theoretical treatment of a current-carrying plasma must start with locating the whole region in which the
current flows. It is convenient to draw the circuit and determine the resistances, the inductances, the generators, and
DL’s. These elements ae usually distributed and non-linear, and the circuit theory may be rather complicated.

The return current need not flow through a wire. It could very well flow through another plasma column. An
example of this is the auroral current system. As pointed out in Section VI. A the energy is transferred from the cloud
C to DL not by high energy particles nor by waves (and of course, not by magnetic reconnection!). Itis a property of
the circuit. A global theory is necessary which takes account not only of the plasma cloud in the equatorial but also
of the ionosphere and double layers which may be found in the lower magnetosphere. Another still more striking
example is given in Section VI.C.

V. TRANSFER OF KNOWLEDGE BETWEEN DIFFERENT PLASMA REGIONS

In CP it is pointed out that the basic properties of a plasma are likely to be the same in different regions of
cosmic plasmas. This is represented by Figure 5, called the Cosmic Triple Jump.

The linear dimensions of plasma vary by 10?7 in three jumps of 10°: from the laboratory plasmas ~0.1 m, to

magnetospheric plasmas ~10® m, to interstellar plasmas ~10'7 m, up to the Hubble distance ~ 10°°. Including laser
fusion experiments, brings us up to 10*7 orders of magnitude. New results in laboratory plasma physics and in situ
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measurements by spacecraft in the magnetospheres (including the heliosphere) make sophisticated plasma diagno-
sis possible out to the reach of spacecraft (~ 10'® m). Plasmas at larger distances should to a large extent be investi-
gated by extrapolation. This is possible because of our increased knowledge of how to translate results from one
region to another.

The figure shows us an example of how cosmogony (formation of the solar system) can be studied by
extrapolation from magnetospheric and laboratory results, supplemented by our knowledge about interstellar
clouds. When better instruments for observing the plasma universe in x rays and gamma rays are developed, we may
get more information from these than from visual observations.

Figure 6 contains essentially the same information as Figure 5. It demonstrates that plasma research has been
based on highly idealized models, which did not give an acceptable model of the observed plasma. The necessary
“paradigm transition” leads to theories based on experiments and observations. It started in the laboratory about 20
years ago. In situ measurements in the magnetospheres caused a similar paradigm transition there. This can be
depicted as a “knowledge expansion,” which so far has stopped at the reach of spacecraft. The results of laboratory
and magnetospheric research should be extrapolated further out. When this knowledge is combined with direct
observations of interstellar and intergalactic plasma phenomena, we can predict that a new era in astrophysics is
beginning, largely based on the plasma Universe model.

VI. EXAMPLES OF COSMIC DOUBLE LAYERS

In order to demonstrate the usefulness of the equivalent circuit methods, we shall apply it here to a variety of
different cosmical problems.

A. Auroral Circuit

The auroral circuit is by far the best known. It is derived from a large number of measurements in the
magnetosphere and in the ionosphere which were pioneered by the Applied Physics Laboratory at Johns Hopkins.

Zmuda and Armstrong (1974) observed that the average magnetic field in the magnetosphere had superim-
posed on it transverse fields which they interpreted as due to hydromagnetic waves. Inspired by discussions with
Filthammer, Dessler suggested that the transverse field components instead indicated electric currents essentially
parallel to the magnetic field lines (Cummings and Dessler, 1967).

This means that it was Dessler who discovered the electric currents which Birkeland had predicted. Dessler
called them “Birkeland currents,” a term which is now generally accepted and sometimes generalized to mean all
currents parallel to the magnetic fields. I think that it is such a great achievement by Dessler to have interpreted the

magnetospheric data in what we now know is the correct way that the currents should be called Birkeland-Dessler
currents.

In the auroral current system the central body (Earth and ionosphere) maintains a dipole field (Fig. 7). B, and
B, are magnetic field lines from the body. C is a plasma cloud near the equatorial plane moving in the sunward
direction (out-of the figure) producing an electromotive force

C,
v =f v x B) - ds

G
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which gives rise to a current in the circuit C,, a,, a,, C, and C,. The circuit may contain a double layer DL with the
voltage AV, in which the current releases energy at the rate P = IAV which essentially is used for accelerating
auroral electrons. The energy is transferred from C to DL not by high energy particles or waves (and, of course, not

by magnetic merging or field reconnection). It is a property of the electric circuit (and can also be described by the
Poynting vector, see Fig. 7).

B. Heliospheric Current
In a way which is described in CP, 11.4.2, we go from the auroral circuit to the heliospheric circuit (Fig. 8).

The Sun acts as a unipolar inductor (A) producing a current which during odd solar cycles goes outward
along the axes (B,) in both directions and inward in the equatorial plane B,. The current closes at large distances
(B3), but we do not know where. The equatorial current layer is often very inhomogeneous. Further, it moves up and
down like the skirt of a ballerina. In even solar cycles the direction of the current is reversed.

By analogy with the magnetospheric circuit we may expect the heliospheric circuit to have double layers.
They should be located at the axis of symmetry, but only in those solar cycles when the axial current is directed away
from the Sun.

No one has yet tried to predict how far from the Sun they should be located. They should produce high
energy electrons directed toward the Sun, and synchrotron radiation from these should make them observable as
radio sources. Further, they should produce noise. They may be observable from the ground, but so far no one has
cared to look for such objects.

C. Double Radio Sources

If in the heliospheric circuit we replace the rotating magnetized Sun by a galaxy, which is also magnetized
and rotating, we should expect a similar current system, but magnified by about 9 orders of magnitude (Fig. 9, CP,
I1.4). This seems to be a very large extrapolation, but in fact a number of successful extrapolations from the labora-
tory to the magnetosphere are by almost the same ratio. (Of course all theories of plasma phenomena in regions
which cannot be investigated by in situ measurements are by definition speculative!)

The emf is given by equation (2), taken from the galactic center out to a distance where the current leaves the
galaxy, which may be the outer edge. Inside the galaxy the current may flow in the plane of symmetry similar to the
current sheet in the equatorial plane of the Sun, but whether the intragalactic picture is correct or not is not really
important to our discussion here. The emf which derives from the galactic rotation is applied to two circuits in
parallel, one to the “north” and one to the “south” (see Fig. 9). As galaxies in general are highly north-south
symmetric, it is reasonable that the two circuits are similar. Hence, we expect a high degree of symmetry in the
current system (at least under idealized conditions).

In the magnetosphere, the current flowing out from the ionosphere produces double layers (or magnetic
mirror induced fields) at some distance from the Earth. Because of the similarity of the plasma configuration, we
may expect double layers at the axis of a galaxy and a large release of energy in them. It has been suggested that the
occurrence of such double layers is the basic phenomenon producing the double radio sources.

In the galactic circuit, the emf is produced by the rotating magnetized galaxy acting as a homopolar inductor,

which implies that the energy is drained from the galactic rotation, but from the interstellar medium, not from the
stars. By the same mechanisms as in the auroral circuit, it is transferred first into circuit energy and then to the
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double layers where the power P = IAV is released. In a single DL or a series of DL’s on each side of the galaxy, an
acceleration of charged particles takes place. From the magnetosphere, we know that layers are produced when the
current flows outward. (Whether double layers can be formed when the current flows inward is still an open ques-
tion.) If the same is true in the galactic case, there is a flow of thermal electrons to the layer from the outside and
when passing a series of double layers, the electrons are accelerated to very high energies. Hence, a beam of very
high energy electrons is emitted from the double layer along the axis toward the central galaxy. This process is the
same as the one which produces auroral electrons, only scaled up enormously both in size and energy. In analogy
with the current in the magnetotail, the current in the equatorial plane of a galaxy may also produce double layers,
which may be associated with large releases of energy.

Figure 9 shows a radio astronomy picture of a double radio source. It is essential in our model that the emf of
the galaxy has such a direction that the axial currents flow outward. The DL’s they produce should be located at the
outer edges of the strong radio source. When electrons conducting the currents outside the double layer reach the
double layer, they are accelerated to very high energies. Similarly, ions reaching the double layer on their outward
motion from the central galaxy will be accelerated outward when passing the double layers. The strong axial current
produces a magnetic field, which pinches the plasma, confining it to a cylinder close to the axis.

Although the electrons are primarily accelerated in the direction of the magnetic field, they will be scattered
by magnetic inhomogeneities and spiral in such a way that they emit synchrotron radiation. The accelerated
electrons will be more like an extremely hot gas than a beam. With increasing distance from the double layer the
electrons will spread and their energy, and hence their synchrotron emission, will decrease. This is in agreement
with observations. It is possible that some of them will reach the central galaxy and produce radio emission there. It
is also possible that the observed radio emission from the central galaxy is due to some other effect produced by the
current (there are several mechanisms possible). Such phenomena in the central galaxy will not be discussed here.

The ions passing the double layer in the outward directionn will be accelerated to the same energy as the
electrons. Because of their larger rest mass, they will not emit much synchrotron radiation, but there are a number of
other mechanisms by which they may produce the observed radio emission from the regions farther away from the
central galaxy.

It should be stressed again that, just as in the magnetosphere and in the laboratory, the energy released in the
double layer derives from circuit energy and is transferred to it by electric currents which essentially consist of
relatively low-energy particles. There is no need for a beam of high energy particles to be shot out from the central
galaxy (or plasmons). On the contrary, the central galaxy may be bombarded by high energy electrons which have
obtained their energy from the double layer.

A quantitative analysis of the double radio galaxies is given in CP. It is possible that some modifications are
needed.

D. Solar Prominence Circuit. Solar Flares

The circuit consists of a magnetic flux tube above the photosphere and part of photosphere (see Fig. 10). The
generator is in the photosphere and is due to a whirl motion in sunspot magnetic field.

Generator output increases circuit energy which can be dissipated in two different ways: (1) When current
density surpasses critical value, an exploding DL is produced in which most of the circuit energy is released. This
causes a solar flare. Hénoux (1985) has recently given an interesting study of solar flares and concludes that a
current disruption by DL’s is an appealing explanation of solar flares. (2) Under certain circumstances the electro-
magnetic pressure of the current loop may produce a motor which gives rise to a rising prominence (Alfvén and
Carlqvist, 1967; Carlgvist, 1982b).
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E. Magnetic Substorms

According to Bostrdm (1974) and Akasofu (1977), an explosion of the transverse current in the magnetotail
gives an attractive mechanism for the production of magnetic substorms (see Fig. 11). Bostrom has shown that an
equivalent magnetic substorm circuit is a way of presenting the substorm model. The onset of a substorm is due to
the formation of a double layer, which interrupts the cross-tail current so that it is redirected to the ionosphere.

F. Currents and Double Layers in Interstellar Space

As it is relatively easy to measure magnetic fields, it is natural that the first description of the electro-
magnetic state of interstellar and intergalactic space is based on a magnetic field description. However, as no one
claims — at least not explicitly — that the magnetic fields are curl-free, we must have a network of currents. As
investigations of DL’s (and quite a few other phenomena) require explicit pictures of electric currents, it is essential
to apply these pictures.

Filamentary structures were quite generally observed long ago, and may be observed everywhere where
sufficient accurate observations can be made. There are a number of processes by which they are generated. For
example, the heliospheric current system must close at large distances (cf. Fig. 8), and it is possible — perhaps
likely — that this is done by a network of filamentary currents. Many such filaments may produce DL’s, and some
of these may explode.

G. Double Layers as a New Class of Celestial Objects

The general structure and evolution of such a network of currents, including their production of DL’s, has
not yet been investigated. It is possible that under certain circumstances the final destiny of a set of currents is DL’s,
perhaps exploding DL’s. DL’s may be considered as a new class of celestial objects. We have already given an
example of this in the interpretation of double radio sources as DL’s.

H. X-Ray and Gamma Ray Bursts

When a number of explosions are observed, such as gamma ray and x-ray bursts, one may try to explain
them as exploding DL’s. However, another possible source of energy is annihilation (CP, VI.3). There is also a
possibility that they may be due to double layers in a baryon symmetric universe.

l. Double Layers as a Source of Cosmic Radiation

As pointed out in Section IL.E, relativistic DL’s in interstellar space may accelerate ions up to cosmic ray
energies (see Carlqvist, 1969; 1982a,c).
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VIl. DOUBLE LAYERS IN TEXTBOOKS

As has been pointed out many times (see e.g., CP I; Alfvén, 1982) in situ measurements in the magneto-
spheres and progress in laboratory plasma physics have caused a “paradigm transition” which means that a number
of old concepts have to be abandoned and a number of new phenomena must be taken into account. Michel Azar has
gone through some of the most generally used textbooks in astrophysics and listed in which of these the new con-
cepts have been presented to the student in astrophysics. The results are shown in Table 1. The table gives the

surprising and depressing resuli that the students in astrophysics still are kept ignorant of what has happened in
plasma physics.

Double layers were analyzed in detail by Langmuir (1929). The development described in Section III.A
demonstrated that there must be “double layers” in a generalized sense (= magnetic field-aligned electric field) so
the first decisive evidence for their existence in the magnetosphere dates from 1962. The real discovery of double
layers in the magnetosphere is due to Gurnett (1972), but still there are only 2 out of 17 textbooks which even
mention that anything like that could exist.

The critical velocity was postulated in 1942 in order to explain the band structure of the solar system. In a
series of experiments especially designed to clarify this and other cosmic plasma phenomena, the critical velocity
phenomenon was confirmed in the laboratory by Fahleson (1961), by Angerth et al. (1962), by Eninger (1965), and
by Danielsson (1973).

The use of “equivalent circuits” is discussed in Alfvén and Filthammar (1963) and further in a number of
papers. Bostrom (1974) has given the most interesting account of their use. Still, Akasofu is the only one in the list
who has understood the value of this in cosmic physics.

That parallel currents attract each other was known already at the times of Ampere. It is easy to understand
that in a plasma, currents should have a tendency to collect to filaments. In 1934, it was explicitly stated by Bennett
that this should lead to the formation of a pinch. The problem which led him to the discovery was that the magnetic
storm producing medium (solar wind with present terminology) was not flowing out uniformly from the Sun.
Hence, it was a problem in cosmic physics which led to the introduction of the pinch effect.

Today everybody who works in fusion research is familiar with pinches. Indeed, several big multimillion
dollar thermonuclear projects are based on pinches. Pinches in cosmical physics are discussed in detail in Alfvén
and Falthammer (1963) and further in a large number of papers; see CP, I1.4. However, to most astrophysicists it is
an unknown phenomenon. Indeed, important fields of research, e.g., the treatment of the state in interstellar
regions, including the formation of stars, are still based on a neglect of Bennett’s discovery more than half a century
ago. As shown in the table, present-day students in astrophysics hear nothing about it. A recent survey article in
Science described some “mysterious” threads which were claimed to be different from anything earlier discovered
(Waldrop, 1985). Published photographs indicated that these phenomena are likely to be common filamentary
structures; indeed, they have been well known since 1934,

In conclusion, it seems that astrophysics is too important to be left in the hands of theoretical astrophysicists
who have gotten their education from the listed textbooks. The multibillion dollar space data from astronomical
telescopes should be treated by scientists who are familiar with laboratory and magnetospheric physics, circuit
theory, and, of course, modern plasma physics. More than 99 percent of the Universe consists of plasma, and the
ratio between electromagnetic and gravitational forces is 10°°.
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VIll. ROEDERER'’S INTERDISCIPLINARIFICATION

A. The Roederer Syndrome

In his article “Tearing Down Disciplinary Barriers,” Juan G. Roederer (1985) points out the conflict
between the demand for “increased specialization on one hand and the pursuit of an increasingly interdisciplinary
approach on the other.”

This is important. Indeed, in the present state of science specialization is favored to such an extent that
science is split up into a number of increasingly small specialties. We lack the global view. This is evident from the
preceding section.

We should remember that there once was a discipline which was called “Natural Philosophy” (“‘reine Natur-
wissenschaft”). Unfortunately this discipline seems not to exist today. It has been renamed “science,” but science of
today is in danger of losing much of the Natural Philosophy aspect.

Roederer further discusses the psychological and structural causes for the loss of the global view, and points
out that one syndrome of cause is the “territorial dominance, greed, and fear of the unknown.” Scientists tend to
“resist interdisciplinary inquiries into their own territory...In many instances, such parochialism is founded on the
fear that intrusion from other disciplines would compete unfairly for limited financial resources and thus diminish
their own opportunities for research.”

B. Microscale Example

All this agrees with my own experience. When running a lab I found that one of my most important activities
was to go from room to room and discuss in depth the problems which a certain scientist or a group of scientists was
trying to understand. It often happened that one group reported that in their field they had a special problem which
they could not possibly understand. I told them that if they cared to open the door to the next room — it was not
locked! — just this special problem had been solved half a year ago, and if they injected the solution into their own
field, this would take a great leap forward. Often they were not at all happy for this suggestion, probably because of
the syndrome which Roederer has discussed, but when faced with “tearing down the disciplinary barriers” within
the laboratory they realized how important such action is for progress (cf. Section II.D). This may be considered a
mild case of the Roederer syndrome.

Such an example from the microscale structure of science supports Roederer’s general views, but examples
from the macroscale structure are much more important. Large parts of this lecture have been a series of examples of
the malady which Roederer describes.

The lack of contact between Birkeland’s and Langmuir’s experimental-theoretical approach on the one hand
and the Chapman-Cowling mathematical-theoretical approach on the other had delayed progress in cosmic plasma
physics by perhaps half a century. The many new concepts which came with the space age begin to be understood by
magnetospheric physicists but have not yet reached the textbooks in astrophysics, a delay of one or two decades,
often more as seen in the preceding section. Very few if any deny that (at least by volume) more than 99 percent of
the Universe consists of plasma but students in astrophysics are kept ignorant even of the existence of important
plasma phenomena like those listed in Table 1.

Dr. Roederer’s prescription for curing this serious disease is “tearing down disciplinary barriers,” indeed

“interdisciplinarification” of science. This seems to be wise. However, we must suspect that to many astrophysi-
cists this is bitter medicine. Can we find ways to sweeten it?
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SIMPLE CIRCUIT

DOUBLE
LAYER MOTOR
W Ll
S =
= SR =
% =
(dp] (an)
o I =
GENERATOR

CIRCUIT ENERGY W = 1/2 L I®

GENERATOR VOLTAGE Vg =[v x B - ds

L d

MOTOR VOLTAGE Vy = |V x B:ds
MOT

GENERATOR POWER Pg = IV,
MOTOR POWER Py, = IV,
DOUBLE LAYER VOLTAGE AV

POWER DELIVERED TO PARTICLES BY DL P, = IAV
ENERGY LOSSES IN RESISTANCES ETC. Pg = 1/2 RI®

Figure 3. Dualism in plasma physics (cf. CP, 1.3).
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OTHER SYMBOLS

IF INDUCTANCE IS DISTRIBUTED L SHOULD 8E REPLACED
BY TRANSMISSION LINE.

MAGNETIZED CELESTIAL
BODY ACTING AS
HOMOPOLAR INDUCTOR I I

\ 1

Figure 4. (Upper) In certain cases, e.g., if the circuit has large dimensions, the simple inductance L should be
replaced by a transmission line. (Lower) A rotating magnetized celestial body often acts as a homopolar inductor.
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Figure 7. Auroral circuit (seen from the Sun) (cf. CP, Figure II:17).
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Figure 8. Heliospheric circuit. The Sun acts as a unipolar inductor (A) producing a current which goes outward
along both the axes (B,) and inward in the equatorial plane C, and along the magnetic field lines B,. The current
must close at large distances (B3), either as a homogeneous current layer, or — more likely — as a pinched current.

Analogous to the auroral circuit, there may be double layers which should be located symmetrically at the Sun’s
axes. Such double layers have not yet been discovered.
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GALAXY ACTING
YY AS UNIPOLAR
INDUCTOR

a) ‘b)

Figure 9. Galactic Circuit. (a) Observed radio emission of Cygnus A (by Hargrave and Ryle,1974) is attributed to
synchrotron emission by electrons accelerated in the double layer. (b) The heliospheric circuit is scaled up by a
factor 10° and the Sun replaced by a galaxy located almost exactly between the radio sources (cf. CP, 111.4.4).
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Figure 10. Prominence-solar flare circuit. Whirling motions in the photosphere act as a generator, feeding energy
into the circuit (which is similar to Figure 1). The circuit energy can be released either as a solar flare produced by an
exploding double layer and/or as a kinetic energy in a rising prominence.
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Figure 11. Bostrom (1974) has given a summary of his theory of magnetic substorms in the form of a circuit. Solar
wind energy produces a cross-tail current in the neutral sheet. The arrow indicates that this current can give rise to a
very large voltage. (In our terminology, it should be replaced by the DL symbol.) This causes the circuit energy to
be discharged over the ionosphere, where it is observed as a magnetic substorm. At substorm onset, the resistance of
the neutral sheet increases because a DL is produced and the tail current is redirected to the ionosphere.
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TABLE 1. CURRENT TEXTBOOKS DEALING WITH DOUBLE LAYERS

AND RELATED PHENOMENA*

Double
Layers

Critical
Velocity

Pinch
Effect

Circuits

Astrophysical Concepts
M. Harwit, 1973 (New York: John Wiley & Sons)

Theoretical Astrophysics
Ambartsumian, 1958 (New York: Pergamon Press)

Astrophysics: The Atmospheres of the Sun and Stars
L. H. Aller, 1963 (New York: The Ronalet Press)

Plasma Astrophysics
Kaplan and Tystovich, 1973 (New York: Pergamon Press)

Astrophysics and Space Science
A. J. McMahon, 1964.(Englewood Cliffs, NJ: Prentice-Hall)

Plasma Astrophysics, Vol. 2
D. B. Melrose, 1980 (New York: Gordon and Breach, Science Publ.)

Astrophysics and Stellar Astronomy
T. L. Swihart, 1968 (New York: John Wiley & Sons)

General Astrophysics with Elements of Geophysics
J. S. Stodolkiewiecz, 1973 (New York: Amer. Elsevier Publ.) )

Astrophysics
W. K. Rose, 1973 (New York: Holt, Rinehart & Winston, Inc.)

Cosmic Electrodynamics
J. H. Piddington, 1964 (New York: John Wiley & Sons)

Astrophysics 1 and 11
Bowers and Deeming, 1984 (Boston: Jones and Bartlett Publ.)

Solar Flare Magnetohydrodynamics
E. R. Priest, 1982 (Dordrecht, Holland: D. Reidel Publ. Co.)

Physics of the Solar Corona
L. S. Shkloviskii, 1965 (New York: Pergamon Press)

Solar Terrestrial Physics
S. I. Akasofu and S. Chapman, 1972 (London: Oxford University Press)

Introduction to Space Science
Haymes, 1971 (New York: John Wiley & Sons)

Introduction to the Physics of Space
Rossi and Albert, 1970 (New York: McGraw-Hill Book Co.)

Physics of Magnetospheric Substorms
S. I. Akasofu, 1977 (Dordrecht, Holland: D. Reidel Publ. Co.)

X

X

* X means that the field of research is at least mentioned. Blank squares mean that the student is kept ignorant of the fact that such a

field exists.
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FORMATION MECHANISMS OF LABORATORY DOUBLE LAYERS

Chung Chan
Center for Electromagnetics Research
and
Department of Electrical and Computer Engineering
Northeastern University
Boston, Massachusetts 02115, U.S.A.

ABSTRACT

The evolution processes of double layers have been studied in a series of laboratory experiments. It was
found that the existence of virtual cathode-type potential wells at the electron injection boundary was the dominant
triggering mechanism. The rapid growth of the potential well led to collisionless ion trapping and the establishment
of the necessary trapped ion population. For double layers with small potential drops, collisionless ion trapping
actually induced ion-ion streaming instabilities and the formation of ion phase-space vortices. In this regime, the
system often exhibited relaxation-type oscillations which corresponded to the disruption and the recovery of the
double layers.

I. INTRODUCTION

Much of our recent understanding of double layers has come from laboratory experiments and numerical
simulations which had rather limited system dimensions. The system boundaries are often in close proximity with
the double layer electric field, thus affecting almost all aspects of double layer physics. The situation is obviously
different in space plasmas where boundaries are not well defined and often far away from the regions of possible
double layer formation. In order to extrapolate the results from laboratory and computer experiments to the space
context, it is important to understand the role of the system boundaries on the formation of double layers.

Most double layers experiments (Quon and Wong, 1976; Leung et al., 1980; Singh and Schunk, 1983;
lizuka et al., 1979; Saeki, et al., 1980) have utilized the injection of a drifting electron species to trigger the forma-
tion process. It was found that a necessary condition for double layer formation is that the electron drift velocity v
exceed the thermal velocity v,. of the ambient electrons. This condition results in the belief that the Buneman in-
stability with an instability threshold of v4 = v,, was the triggering mechanism for double layers. However, double
layers with potential drops ® > T./e, the electron temperature divided by the electron charge, have been observed
(Hollenstein et al., 1980) experimentally with v4 as small as 0.2 v,.. Ion-acoustic turbulence instead of the Buneman
instability was expected to be the triggering mechanism for double layer formation in that experiment.

Numerical simulation (Sato and Okuda, 1980) of double layers with v4 < v, have found different results. No
double layers with ¢ > T./e were found. Rather, a new class of double layers with non-montonic potential profiles
and ¢ < T./e was found. These double layers were always preceded by negative potential pulses and associated with
current-driven, ion-acoustic turbulence. As such, these double layers have been identified as “ion acoustic” in order
to distinguish them from the conventional double layers. Since an electron drift velocity of v4 > v,. may not exist in
space (e.g., the auroral plasma), the ion-acoustic double layers have also become a subject of considerable interest.

In this talk, we will discuss previous (Hershkowitz etal., 1981) as well as new experimental results in order
to identify the formation mechanism of double layers in our triple plasma device. We begin with the roles of the
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boundaries on the steady state characteristics of double layers. It is shown that the drifting electrons provide the
initial space charge for double layer formation, while the trapped ions determine the evolution process and the shape
of the potential profile. It is also shown that the growth of virtual cathode-type potential wells at the electron injec-
tion boundary is the triggering mechanism for double layers. Collisionless ion trapping by the potential well is
found to be the main process for the establishment of the necessary trapped ion population.

Furthermore, double layers with ¢ < Te/e are shown to be unstable to the evolution of ion phase-space
vortices from ion-ion streaming instabilities. In this regime, the double layer potential profile has a strong resem-
blance to ion-acoustic double layers. This result may represent an alternative explanation of the small electric field
signatures observed in the auroral plasma.

Il. STEADY STATE EXPERIMENT

Tt is useful to first describe the operational characteristics of the triple plasma device in order to get some
insights into the sources of particles that support the double layer. The triple plasma device consists of two source
plasmas bounding a target plasma. Each source is separated from the target chamber by two grids. Plasma potential
in each chamber is determined by the bias voltages of the grid and the internal anode. The source plasmas are created
by filament discharge in argon gas (operating pressure P, < 1 X 10" Torr) with density ng = 10°>10'"°cm™ and T,
~ 2 eV. The ionizing electrons are trapped by surface multidipole magnetic fields in the region closed to the fila-
ments so that they cannot reach the target chamber and produce plasma there directly. We have also confined our
study on double layers with ¢ < 10 V. These procedures ensure that ionization effects are minimized in our double
layer experiment. A schematic of the triple plasma device is shown in Figure 1.

Stable double layers with & < 5 T./e can routinely be achieved using the boundary conditions shown in
Figure 2. We chose to investigate these smaller double layers in order to limit the accelerated electron beam energy
to below the ionization potential of argon. From the boundary conditions shown in Figure 2, we expect ions to only
come from the high potential source. These ions are usually pre-accelerated into the target chamber by the potential
difference between the high potential source plasma and the target plasma. These jons are further accelerated by the
double layer into the low potential side. These beam ions either exit the target chamber at the left boundary or they
charge exchange with neutrals and form cold ions (T; ~ 0.3 eV). The cold ions, once formed, are confined electro-
statically by the potentials of grids B and C. Although the charge exchange reaction rate is relatively low at our
operating neutral pressure, the cold ion density accumulates to a significant fraction of the beam ion density due to
their long confinement times.

Electrons which enter the target chamber from the high potential source are those in the tail of the Maxwel-
lian source distribution function. These electrons have almost no drift energy, thus becoming the thermal electron
species in the target plasma. This contrasts with the situation at the low potential end. There the tail of the source
distribution function, which is energetic enough to get over the barrier provided by grid A, is accelerated into the

target plasma. This results in an electron drift with the drift energy determined by the potential difference between
grid A and the target plasma.

The boundary conditions in this experiment are believed to play the following roles:
1. The high potential side boundary ensures that the ions will enter the target chamber with a flow velocity
u, > C,. This situation is quite similar to that of a sheath at a plasma boundary. Downward curvature of the plasma

potential requires an ion drift velocity u, > C. Since the high potential side electrons can be treated as approxi-
mately isothermal, the “Bohm sheath criteria” applies in this case for the double layer as well.
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2. Grid B acts as a potential barrier for the low potential source ions as well as for the charge exchange cold
ions which formed between the double layer and grid B. Since the height of the potential barrier of grid B is roughly
20 times the ion temperature (T; = 0.3 eV), no low potential source ions are expected to enter the target chamber. On
the other hand, the high potential source ions are at a much higher energy than grid B and can exit through grid B into
the low potential source. As such the only source of thermal ions in the target plasma appears to be that of the charge
exchange ions.

3. The low potential side boundary allows only electrons to drift in from the left. Such excess electron
space charge may be neutralized only by the ion beam and the charge exchange ions.

4. There is no externally applied electric field across the target plasma since grids B and C are at roughly the
same potential. The formation of double layers is a result of the particle flow rather than that of an external electric
field.

Using the experimental boundary conditions and the particle distributions at the sources, it is possible to
- determine the potential profile across the target chamber by solving the Vlasov-Poisson equations. The details of
such calculations have been described in an earlier paper (Hershkowitz et al., 1981) and will not be repeated here.
Rather we will point out some results which are relevant to our present discussion. A typical solution of the target
plasma potential profile and the boundary conditions employed is shown in Figure 3. The model has grid potentials
similar to those shown in Figure 2. The double layer is formed in the region x, < x < xg where &(x) = 0and d(xg)
= ¢p. Using the dimensionless variable s = ed/T., the density of the free ions n;; and trapped electrons n,, entering
from the high potential source are, respectively:

N (T./T) (Y- T |
nif(\l,):?e( e/ TPW2-¥) erfc /—e(wz- Y) M
T
and
( -
ng (1) =NV erfe /Uy @

The density of the free electrons entering from the low potential source is:

N u-
nef(¢)=7e¢ Y1 erfey/¥ - ¥y (3)

where s, §, and s, are, respectively, the low potential source, high potential source, and grid A potentials norma-
lized to the electron temperature. Both source particles are assumed to be Maxwellian distributed with equal density
N.
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The density of the charge exchange ions cannot be calculated from the boundary conditions, thus it can be
treated as a variable or:

—(T./T:
ny (V) =png (0)e (Te/TV (4)

and

=il © (5)
NONEE

B is a parameter which depends on the density ratio of the trapped ions to the beam ions and n.(0) is the total electron
density at y = 0.

We show the dependence of the double layer on the trapped ion density with § varying from 0 to 0.35 in
Figure 4. As the trapped ion density increases, the double layer becomes more detached from the low potential side
boundary. Since B = 0.35 corresponds closely to the potential profile in the experiment, it is possible that a signifi-
cant amount of charge exchange ions are trapped by the double layer at the low potential side; i.e., B = 0.35
corresponds to a trapped ion/beam ion density ratio of 54 percent. The trapped ions neutralize the excess negative
space charge created by the drifting electrons, thus maintaining a uniform plasma potential at the low potential
region of the double layer.

The contributions of the various particle species on the double layer space charge are shown clearly in
Figures Sa and 5b where the charge density profile and particle density profiles are plotted versus axial distance. As
discussed earlier, the ion beam provides the positive charge density for the downward curvature of the double layer
at the high potential side, while the drifting electrons supply the negative charge density for the upward curvature of
the double layer at the low potential side.

lll. THE FORMATION MECHANISM

In order to understand the triggering mechanism for the double layers in our experiment, we examine the
temporal evolution of the target plasma potential profile with vp < v,. and vp > V.. An extra grid is installed at the
low potential side to facilitate the pulsing of the drifting electrons. The boundary conditions for this experiment are
shown in Figure 6. A steady state target plasma with n, = 107 cm™ is extracted from the high side source, and the
target plasma potential is quite uniform axially with ¢ = 4 V. Low side source electrons and ions are normally
excluded from the target plasma by the potential barriers of grid B (biased at -30 V) and grid C (biased at + 12V),
respectively.
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Attime t = 0, grid B is switched to the ground potential and the low side source electrons are accelerated
into the target plasma by the potential difference between ¢ and ground, i.e.,

o1
e

When the un-neutralized electron stream enters the target plasma, the entire target potential decreases rapidly from 4
to 3 V in 10 s which results in vp = 1.2 v,.. The temporal evolution of the target plasma potential profiles, as
obtained with an emissive probe using Boxcar interferometer averaging technique, is shown in Figure 7. A potential
well begins to form near the electron injection boundary att = 50 ws. The potential well grows deeper and widens
into a double layer at t > 400 ws. The amplitude of the double layer is & = 1.1 T./e and appears to be quite stable.
This result can be interpreted as follows.

Electron injection from the low side source creates excess space charge at the injection boundary, and a
virtual cathode-type potential well is formed to limit the injected current. The growth of the potential well is accom-
panied by ion trapping in the potential well. As the density of the trapped ions increases, the double layer becomes
detached from the electron injection boundary, in agreement with our earlier result on the effects of trapped ions (see
Figure 3). Notice the double layer formation time of Tp,. < 400 ws is considerably shorter than the charge exchange
time of T., = 1 ms in this experiment. At such, the trapped ion population cannot come entirely from the charge
exchange ions which fall into the potential well. A more possible source is the neighborhood ions which fall into the
well during its growing phase. These ions will actually get accelerated down the potential well with energies
depending on their locations in the potential well.

We further decrease the drift velocity of the injected electrons by decreasing the target plasma potential to ¢
= 3 V. When the un-neutralized electron stream enters the target plasma, ¢ decreases from 3 to 1.5 Vin 10 ps. As
shown in Figure 8, a potential well is once again formed near the electron injection boundary at t = 50 ws when vp,
= 0.7 vie. Att > 75 ps, a small double layer with ¢ = 0.5 T./e has formed. However, in contrast with the earlier
experiment, the double layer decays into an ion hole-like potential well. Note the similarity between the potential
profile at t = 150 ws and an ion-acoustic double layer.

The time history of the plasma potential (¢ ) at an axial distance of x = 10 cm, the electron current flow
across the target chamber from the low potential source (I.y), and the ion saturation current (I;) at x = 15 cm are
shown in Figure 9 in order to illustrate the double layer formation processes. Att > 50 us, &y = 1 V,and vp = 0.7
Ve, the growth of the potential well corresponds to the abrupt decrease of ¢.. On the other hand, L., continues to
increase due to the injected electron current until ¢, becomes negative where L.y begins to decrease rapidly. As ¢,
reaches a minimum at -1.0 V, Ly returns almost to the level at t < 0. ¢ subsequently becomes slightly more
positive, and an intense low frequency noise appears in I;, which corresponds to the evolution of the ion hole-like
pulse.

A similar evolution process is observed when we increase vp, just slightly. As shown in Figure 10, the double
layer breaks into one or more ion hole-like pulses. The long time history of this experiment is shown in Figure 11.
The ion saturation current exhibits relaxation-type oscillations in time with a period roughly characterized by the
transit time of the ion hole-like pulses across the target plasma. The relaxation oscillation corresponds to the evolu-
tion of the double layer from virtual cathode potential well and the subsequent decay into ion hole-like pulses. When
the pulses reach the high side boundary (e.g., the ion-hole velocity is the order of the ion thermal velocity), the
process repeats itself.
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The breaking of the double layer into the ion hole-like pulses can be understood as follows. The magnitude
of the virtual cathode potential well ., is formed to limit the injected current. Since the potential well must become
a potential barrier to the injected electrons in order to limit the current, ¢, = (vp/V,.)” T/e. The potential drop of the
double layer & = &,; also, we have & = (vp/v)* Tele.

As shown in Figure 9c, the injected current L.y and vp, are reduced to very small values as a result of the
formation of the double layer. We believe the growth of the potential well and the double layer formation also
triggered bursts of counterstreaming ions which are accelerated down each side of the potential well with an average
velocity:

This results in a counterstreaming or “tuning fork” ion phase space configuration at the double layer front.
As reported in many numerical and experimental studies (Pécseli and Trulsen, 1984; Chan et al., 1984) of ion-
acoustic shocks and ion holes, the ion-ion two-stream region becomes unstable when v, =< C, and evolves into one or
more ion phase-space vortices.

As we have observed double layer formation with vp < v, it is doubtful that the Buneman instability plays
any roles in triggering the formation of double layers in these experiments. When vp < v,, no steady double layer
exists as a result of the ion two-stream instability and the evolution of ion phase-space vortices.

IV. DISCUSSION

We have reviewed results from a series of laboratory experiments concerning the formation of double layers
in a triple plasma device. In steady state, the double layer electric field is sustained by the negative space charge of
the drifting electrons and the positive space charge of the ion beam. The low potential boundary condition permits
the injection of an un-neutralized electron species which space charge is crucial for the initiation of the virtual
cathode potential well. The ion reflecting grid (grid B in Fig. 2) plays two roles; first, to prevent the low potential
source ions from entering the double layer and second, to confine the charge exchange cold ions in the low potential
side of the double layer. The charge exchange (trapped) ions are needed to neutralize part of the drifting electrons,
thus allowing the double layer to move away from the low potential boundary.

The formation phase of the double layers is associated with the growth of virtual cathode-type potential
wells at the electron injection boundary. The formation of the virtual cathode potential well is a result of the lack of
neutralizing ions at the electron injection boundary. As long as the injected electron density is sufficiently high, the
potential well will form independent of v, and it need not be associated with instabilities. We have clearly shown the
formation of double layers with v, < v,. which is below the threshold of the Buneman instability.

The movement of the double layer electric field away from the electron injection boundary is probably
caused by the accumulation of the trapped ion density at the low potential side of the double layer as demonstrated
by Figure 3. Since the double layer formation time is much shorter than the charge exchange time, the source of
trapped ions is more likely coming from ions in the neighborhood of the potential well during the growth of the well.
As such, these ions are accelerated down the potential well with a maximum velocity of:
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When the magnitude of the potential well ¢w < Te/e, the ions become two stream unstable because vy, < C,. As
such, the double layer decays into ion phase space vortices with potential structures that resemble ion acoustic

double layers. This situation is similar to the auroral plasma condition where small electric signatures (Temerin et
al., 1982) are often observed along with counterstreaming ions.

For the case of v > v, the depth of the potential well ¢,, > T./e and results in a stable double layer
formation. For the stable double layers, the charge exchange ions will be the main fueling source for the trapped ion

population in steady state. In that case, the main loss mechanism for the trapped ions is radial diffusion to the side
walls.
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Figure 3. A solution of Poisson’s equation d*{/dx*> = n.({) + ne () — ni{(¥)-n, (Y) where =
ed/Te; X = X/Ap; Nit, Ny, N, and n;, are given by equations (1) through (4), respectively.
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SOME DYNAMICAL PROPERTIES OF VERY STRONG DOUBLE LAYERS
IN A TRIPLE PLASMA DEVICE

T. Carpenter N87-23315

Department of Physics
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Iowa City, Iowa 52242, U.S.A.

and

S. Torvén
Department of Plasma Physics, Royal Inst. of Technology, Stockholm, Sweden

I. INTRODUCTION

Since double layers observed in space and in simulations are rarely if every static, considerable attention has
been given to studies of motions of double layers in the laboratory. Extensive reviews have recently been published
of the dynamical properties of very strong double layers (eV/kT, ~ 1000) in a Q machine (Sato et al., 1983; lizuka
et al., 1983) and strong double layers (eV/KT. ~ 10) in atriple plasma device (Hershkowitz, 1985). In both cases
the double layers were essentially planar. We report here on some of the dynamical properties of very strong double
layers (eV/kT, ~ 200) seen in a differentially pumped triple plasma device (Torvén, 1982). These double layers are
V-shaped. In particular, we discuss the following findings: (1) Disruptions in the double layer potential and in the
plasma current occur when an inductance is placed in series with the bias supply between the sources in the external
circuit. These disruptions, which can be highly periodic, are the result of a negative resistance region that occurs in
the I-V characteristic of the device. This negative resistance is due to a potential minimum which occurs in the low
potential region of the double layer, and this minimum can be explained as the self-consistent potential required to
maintain charge neutrality in this region. (2) When reactances in the circuit are minimized, the double layer exhibits
a jitter motion in position approximately equal to the double layer thickness. The speed of the motion is approxi-
mately constant and is on the order of 2 times the ion-sound speed. The shape of the double layer does not change
significantly during this motion. (3) When the bias between the sources is rapidly turned on, the initial phase in the
double layer formation is the occurrence of a constant electric field (uniform slope of the potential) for the first few
microseconds. The potential then steepens in the region where the double layer will eventually be formed and
flattens in regions above and below this. The double layer is completely formed after about 100 microseconds and
then engages in the jitter motion discussed above.

In the following we discuss first the apparatus used in all of the work and then consider each of the three
phenomena mentioned above. In the first case it is believed that the phenomenon is rather completely understood
and the situation is discussed at some length. The same cannot be said for the last two cases and limited discussion is
included. However, these two phenomena have characteristics which differ qualitatively from what is seen in Q
machines and these differences are identified.

Il. EXPERIMENTAL DETAILS

The experiment was performed in a triple plasma device (Torvén, 1982) consisting of a central chamber
with coaxial plasma sources located on either side as shown in Figure 1. Plasma was produced in the sources by
discharges in argon between heated tungsten filaments and the source chamber walls. The electrodes B1 and B2 can
also be used as anodes; but, for the present investigation, they were left floating. They, therefore, acquired poten-
tials approximately equal to the respective filament potentials. The sources were independent in the sense that
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discharge voltages and currents and gas flow rates could be varied independently in either source with unmeasurably
small effects on the plasma parameters in the other source. The potential between the anodes of the two sources was
determined by Uy, which was also taken as the difference in the plasma potentials in the sources. This assumption
was tested several times during the course of the experiments using collecting probes in the sources to measure the
potentials there and was found to be satisfied within the accuracy with which the potentials could be determined
from the probe characteristics, or about +0.5 volt, over a variation of Uy by more than 200 volts. Plasma diffused
into the central chamber from the sources through apertures Al and A2 in the end plates of the central chamber.
These apertures determined the diameter of the plasma column (3.0 cm) which was radially confined by a homogen-
eous magnetic field of up to 20 mT. Because of the small diameter of the apertures compared to the diffusion pump
(25 cm), it was possible to maintain sufficient pressure in the sources for their proper operation (10 to 100 mPa)
while restricting the pressure in the central chamber to about 1 mPa, thereby minimizing the importance of .
ionizing processes in the chamber. It is this property that allows the production of very strong double layers (poten-
tial drops up to 3 kV) in this device (Torvén, 1982).

Electric potentials were measured with electron emitting probes which could be moved both radially and
axially with electric motors. For low frequency measurements (from d.c. up to about 10 kHz), the probes were
operated essentially at their floating potential, which was measured using 100 mohm frequency-compensated volt-
age dividers. For a.c. signals which are not too large (cf. Torvén et al., 1985), the frequency response of the probe is
determined by the product of the dynamic resistance of the plasma near the floating potential and the distributed
capacitance of the probe and its heating circuit. This capacitance (about 100 pf) is dominated by the capacitance to
ground of the feed wires to the movable probe inside the vacuum chamber. The dynamic resistance of the plasma,
defined as the reciprocal of the slope of the probe characteristic, depends on the plasma density and the probe wire
temperature. For the present experiment it was on the order of 10 kohm.

lil. DISRUPTIONS WITH AN INDUCTIVE EXTERNAL CIRCUIT

When an inductor of sufficient size is placed in series with the bias source Uy, it is observed that periodic
disruptions of the plasma current and of the double layer potential occur. These disruptions have been previously
reported in detail (Torvén et al., 1985) and we review here only those aspects pertinent to the present work.

Figure 2 shows an example of the disruptions when the inductance was 0.1 Hy. The top oscilloscope trace
shows that the potential measured on the positive source varied from zero to 400 volts. For these runs Uy was 100
volts so there was a 300-volt inductive overvoltage. This overvoltage was given exactly by L dI/dt, where T is the
current flowing through the inductor. This current is shown by the bottom trace in Figure 2. The other traces are of
potentials measured by probes at fixed positions in the plasma and show that the potential drop does occur over a
limited spatial region, that is, in a double layer.

The disruptions are thus seen to be completely explained in terms of variations in the plasma current. The
plasma current, in turn, is controlled by the potential structure between the two sources. Figure 3 shows the potential
measured in the low potential region for various times during the disruption cycle. There is clearly qualitative
agreement between the minimum value of the potential, which should be the only feature of the potential structure
that influences the plasma current, and the plasma current. To test the quantitative sufficiency of this mechanism, a
series of experiments were performed with the inductance removed and with U varied slowly over the voltage range
of interest. Preliminary reports of these results have appeared (Carpenter and Torvén, 1984; Carpenter et al., 1984),
and a detailed account will appear (Carpenter and Torvén, 1986), but we will review the pertinent results here.
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To obtain I-V characteristics of the device, the potential Uy between the sources was slowly varied, either by
hand or by using a function generator to control the power supply with voltage-control programming, and the result-
ing plasma current measured using precision 1 ohm shunts. The data were taken using a calibrated X-Y plotter, or a
calibrated two-parameter transient digitizer. The emitting probes were used to measure both axial and radial poten-
tial profiles for different values of Uy. An example of the axial potential structure observed between the sources is
shown in Figure 4. For these data U, was 150 volts. A minimum in the potential is clearly seen at about 15 cm from
the left aperture. That the minimum is in fact quite well defined is seen more clearly with the expanded scale. The
magnitude of the minimum potential, V,,, was determined for values of U, between zero and 200 volts. For details
of how this was accomplished see Carpenter and Torvén (1986). An example of such a measurement is shown in the

lower half of Figure 5. The corresponding I-V characteristic is shown as the solid curve in the upper half of this
figure.

The purpose of these measurements, as mentioned above, was to test whether or not the variations in V,
could quantitatively explain the variations in the plasma current. For purposes of this discussion, consider only the
case where the right source is biased positive with respect to the left source. Plasma from both sources diffuses into
the central chamber. Since a potential minimum exists between the sources, the ion flow will not be affected, but the
electron current between the sources will be reduced because of reflection of electrons from both sources by an
amount that depends only on the differences between the minimum potential V,, and the plasma potentials in the
sources. These potential differences can be obtained from the data, and the I-V characteristics can accordingly be
calculated if the electron distribution functions are known.

Assume that the plasmas in the sources are Maxwellian with temperatures T, and T, and densities n; and n,,
where the subscripts p and n refer to the positive and negative sources, respectively. These symbols refer to the
electrons only. (Ion currents can be easily included, but they contribute much less than 1 percent of the total current
and so are ignored in order to simplify the notation.) Then the distribution function at a point where the potential is
V(x) is generally given by

f ( 2m)1/2 mV2 e(vo —Ye fo <y<oo
= —_ —— e —_—— r a
=0\ 7i1) XP " %T KT

(D
=0 for velocities outside this range

Here ny is the plasma density at a point where the potential is Vg, € is the magnitude of the electronic charge, m is the
electron mass, and k is the Boltzman constant. The lower velocity limit a is negative for points between the source
and the minimum, since reflected electrons exist in this region, and positive for points beyond the minimum. It is

exactly zero at the minimum, so the lower limit is the velocity such that the energy, which is constant, is just equal to
V. Thus,

a=t ;(%i) [V(x) - vm]f % ) (2)

The current is of course independent of the point x where it is evaluated. However, it is convenient to evaluate the
contributions to the total current from each source at the position of the potential minimum, since at this point the
distribution functions take on their simplest forms. The result is
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Here V, and V/, are the plasma potentials in the sources and the other quantities have been defined previously. As the
applied voltage Uy is increased, the current increases at first because of the decrease in the magnitude of the second
term. That is, V,, approximately follows U, and V,, stays approximately at ground. After U, increases to several
times kT,,, the second term will become negligible, and further changes in I can only occur if V,, changes relative to
Vo.

In order to test the sufficiency of this picture, we have used the measured variation of V,, with Uy, and
determined the values of the temperatures and densities that best fit the data with equation (3). That is, the value of
Vr, observed at Uy = V-V, is used in equation (3) to calculate I, and the results compared with the corresponding
observed currents L.,,. The parameters in equation (3) are varied in order to minimize the sum

v =Z (Iexp - Ifit)2 . “4)

The result of a typical fit is shown by the dashed line in the upper part of Figure 5. The main features of the
data are certainly rather well explained. However, the temperatures that give acceptable fits are larger than those
observed with probes in the sources. For example, the temperatures that give the fit shown in Figure 5 are 12.3 eV
for the left source and 21.5 eV for the right source. Measured values for the temperatures were about 8 eV in both
sources. However, the probe characteristics showed high energy tails of the type usually seen in discharge sources
corresponding to a significant population of ionizing electrons. If distributions corresponding to such electrons
were included in the model, the best-fit temperatures of the Maxwellian populations would certainly be reduced.
However, the number of parameters to be fit would be doubled, thereby reducing the significance of the small
improvement in the fit that might be expected. It is felt that the appropriateness of the model has been adequately
demonstrated without this refinement. Data were taken and fits performed in the manner described for 12 different
combinations of source parameters, such that the plasma density in both sources varied by an order of magnitude.
No unusual characteristics were observed and the fits obtained were in all cases comparable to that described above.

The model can also be used to provide some insight into the role of the potential minimum and its behavior.
The basic feature of the region of space below the double layer is its charge neutrality. That is, even though there are
variations in the potential here, they occur over many hundreds, even thousands, of Debye lengths, so the departure
of the ratio of electron-to-ion densities from unity is expected to be vanishingly small. Therefore, since the electron
and ion charge densities depend in different ways on the voltage applied between the sources, some self-adjusting
potential is needed between the sources in order to keep the region quasineutral. Mathematically, the requirement
that the net charge density at the minimum be zero will insure quasineutrality over a broad region near this point.
The electron densities were obtained by integrating the distribution functions given in equation (1) over the
appropriate velocity intervals. The ion densities were obtained in a similar way. The form of the distribution func-
tions was the same, but the velocity intervals were different since the ions were accelerated from the sources. The
equation giving zero net charge at the minimum is

VoV Vo=V Vo~V
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where the new subscripts i and e refer to the ions and electrons. This equation was solved by simply stepping V,,, in
successively smaller steps each time zero was crossed, until the step size was smaller than the accuracy desired. The
results are sensitive to the ion temperatures, about which we have little experimental information. Examples show-
ing how V, varies as Uy = V-V, is changed are shown in Figure 6 for three different sets of ion temperatures. The
plasma parameters used were typical of those observed experimentally in the two sources. It seems clear that a rather
good fit to the experimental curve of V,, versus U, could be obtained by adjusting the ion parameters, with possibly
some small adjustment of the electron parameters, but in view of the number of parameters involved and the fact that
the charge exchange ions have been neglected, such an effort hardly appears justified. However, the agreement with
the data of the trends shown in Figure 6 provides some confidence in the following explanation: As Uy is first
increased, the biggest change is the reduction in the number of electrons reaching the minimum region from the
positive source. To compensate, the minimum becomes less negative so more electrons from the negative source are
admitted. This continues until all electrons from the positive source are reflected. Competing with this effect is the
reduction of ion density from the positive source due to increasing ion velocity as U, increases and when the
electrons are eliminated, this effect becomes dominant. Thus, the minimum increases in depth to reduce the flow of
electrons from the negative source. It is exactly this last process that gives rise to the negative resistance region
according to this model.

The main features of the variation of V,,, with U, are obviously rather well explained by these considerations,
at least for cases where U, varies slowly with time. Thus, the negative-resistance region in the I-V characteristic is
explained, and it can be said that the low frequency disruptions are understood. It should be emphasized that in order
to observe disruptions of low enough frequency that this explanation applies without modification, additional
lumped capacitance must be added in parallel with the distributed capacitance between the sources (Carpenter et al.,
1984). At higher frequencies ion-transit times become significant and there is some delay in the charge neutrality
condition that can be expected to affect V,,. Although these effects have not been included, it seems clear that
careful consideration of the potential structure in the low potential region must be included in any complete theory of
double layers.

IV. JITTER MOTION

When the potential indicated by the emissive probe is monitored by a device capable of following high
frequency variations, such as an oscilloscope, it is observed that the signal fluctuates wildly when the probe is in the
vicinity of the double layer. Observations as the probe moves through the double layer lead quickly to the conclu-
sion that the fluctuations are due to the random motion of the entire potential structure around its equilibrium posi-
tion. The effect is shown in Figure 7. These data were recorded by plotting single sweeps obtained with a transient
digitizer on the same graph. Also shown is an overlay of the double layer obtained with an X-Y plotter during this
run. The sweeps were obtained with the probe fixed at the three positions marked A, B, and C on the double layer.
For all three sets of sweeps, horizontal lines are shown that correspond to the variation in potential which results
when the double layer makes an excursion with a total extent of 1.2 cm centered at each of the three points. Clearly
the various amplitudes of the fluctuations which are observed as the probe moves through the double layer are all
explained by movements of the structure by a constant amount. Also evident in these data are regions where the
potential changes with a constant slope for several microseconds. The velocity of the structure is apparently con-
stant during these times. Since the double layer provides a convenient conversion factor — distance required for a
given potential change — the velocity of the motion can be determined if we can determine the change in shape of
the double layer (the calibration constant) as it undergoes its random motion.

The X-Y plotter provides a potential profile which is time-averaged over the rapid jitter motion. To obtain
instantaneous profiles, a second stationary probe was mounted in the double layer slightly off-axis. The signal from
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this probe provided a trigger which gated the output of the moving probe used to map the potential structure. The
varying signal from the trigger probe corresponded to varying positions of the structure. Thus, different double
layer positions could be selected by choosing different trigger levels. Data obtained with three different levels are
shown in Figure 8. If any of the curves is displaced horizontally, it is seen to closely overlap the other two curves.
We conclude that the double layer moves with little, if any, change in shape. Another interesting implication of this
result should be mentioned. The fact that double layer shapes that have been previously reported are time averages
has been invoked by some authors to explain the apparent broadness of laboratory double layers. However, the
widths of the instantaneous profiles reported here, defined for example as the distance required for a change from 10
percent to 90 percent of the full height, are not significantly different from those obtained with an X-Y plotter. This
is the expected result if the structure between the 10 percent and 90 percent points was a straight line, the velocity
was constant, and the maximum excursion was equal to the double layer width, which seems to be approximately
the case.

The data in Figure 7 indicate that motion toward the negative source, corresponding to an increasing poten-
tial, occurs with a higher velocity than motion toward the positive source. However, this apparent difference is
entirely due to experimental effects associated with the distributed capacitance of the emissive probe to ground.
This was first suspected when it was noticed that the apparent difference was reduced when the emissive probe was
shunted with an external resistor. The distributed capacitance can easily be charged more positively by simply
emitting electrons. However, to become more negative it must collect electrons and it has insufficient area to do this
rapidly enough. Put another way, the time response of the probe is determined by its RC time constant, where C is
the distributed capacitance and R is the dynamic resistance of the plasma, defined as the reciprocal of the slope of the
probe’s I-V characteristic. The distributed capacitance is on the order of 100 pF and the dynamic resistance of the
probe normally is on the order of 10 kohms. Thus,RC is on the order of 1 microsecond and the probe can respond to
changes on the order of 1 MHz. However, when the probe is collecting electron saturation current, which would
happen if the plasma potential suddenly dropped, the dynamic resistance is on the order of a few megohms, giving
RC on the order of a tenth of a millisecond.

In order to overcome this effect, a special emissive probe was constructed in which the heating circuit, which
contributed almost all of the distributed capacitance, was mechanically disconnected from the potential measuring
circuit during the measurement time. The distributed capacitance during the measuring time was reduced to 10 pF
which gives an RC value of 10 microseconds even in the worse case. Some traces of the fluctuating potential taken
with this probe are shown in Figure 9. There is still a slight difference between the maximum rates of increase and
decrease, but it is small enough that it can be explained as a residual effect of the distributed capacitance of the
probe. The details of this probe and a further discussion of the effect of distributed capacitance on probe mea-
surements will appear elsewhere (Torvén, private communication, 1986).

The maximum rates of increase and decrease shown by overdrawn lines in Figure 8 are 36 and 24 volts per
microsecond, respectively. The central portion of the double layer observed for this case had a slope of 50 volts per
centimeter. Thus, the indicated velocities are 7.2 and 4.8 X 10° cm/s. As a comparison, the electron temperature
observed for this run was 7 eV so the ion-acoustic speed was 4.1 X 10° cmy/s.

Fluctuations are observed also in double layers formed in Q machines (lizuka et al., 1983; Satoetal., 1981).
In the case of double-ended operation, the mode most comparable to the triple plasma machine, nearly stationary
double layers are observed. The fluctuation consists of a more or less periodic variation of the slope of the double
layer with the knee at the high potential side remaining approximately fixed. Thus, the knee at the low potential side
shows a sort of roughly periodic motion which has been termed a “foot-point oscillation.”
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V. INITIAL FORMATION

In order to study the initial formation of the double layer, U, was replaced by a transistor-switched power
source capable of supplying 100 volts with a rise time on the order of 1 microsecond. Standard boxcar sampling
techniques were then used to measure the potential structure at various times after the bias voltage was switched on.
Typical results are shown in Figure 10. There is a small structure near the low potential source that seems to propa-
gate toward the high potential source, but the striking feature of the potential structure is that at early times the slope
is essentially a constant. As time progresses the slope steepens in the vicinity of the place where the double layer will
eventually form while it flattens in regions above and below this. The structure is nearly formed after 50 microse-
conds and completely formed after 100 microseconds. If one wants to think of the low potential foot-point as propa-
gating toward the high potential source, then its velocity of propagation is about 50 cm in say 100 microseconds or 5
X 10° cm/s, a speed which is somewhat supersonic and which seems to be typical of the propagation velocity of the
double layers in this device.

The initial formation of double layers has also been studied in a double-ended.Q machine (lizuka et al.,
1983). In this work it was observed that immediately following the application of the bias Voltage the potential rose
to the positive source potential over nearly all of the column, forming an ion-rich sheath near the cathode. This
condition persisted for about 100 microseconds, after which the double layer detached itself from the cathode and
propagated, as a completely formed structure, toward its final position. The velocity of propagation was approxi-
mately 3 times the ion-sound speed.

It has been suggested that the motion of laboratory double layers represents a sort of “hunting” for that
position where the Langmuir criterion (the square of the electron-to-ion current ratio equals the ion-to-electron mass
ratio) is satisfied (lizuka et al., 1983; Torvén, 1982). The basis for this explanation is that the ion flux at the double
layer should decrease as the length of the high potential region increases because of radial losses of ions along the
part of the column at high potential. It should be expected, then, that the larger these losses are, the smaller should
be the excursions from the equilibrium position. This may explain why the double layers seen with relatively weak
magnetic fields are more stable than those seen in the Q machines. It may also explain the lack of stability of double
layers seen in simulations where the use of periodic boundary conditions at the sides is equivalent to the total
removal of radial ion losses. In order to investigate this question, a systematic investigation should be made of the
motion of double layers as a function of the strength of the magnetic field and the planarity of the plasma column.
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PUMPING POTENTIAL WELLS

N. Hershkowitz, C. Forest, E. Y. Wang,* and T. Intrator
Department of Nuclear Engineering
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Madison, Wisconsin 53706, U.S.A.

ABSTRACT

Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady
state plasma potential wells separating regions having different plasma potentials are often found in laboratory
experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge
exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and
fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state
structures are found in which the wells do not fill up. This means that it is important to take into account processes
which “pump” ions from the well. As examples of ion pumping of plasma wells, we consider potential dips in front
of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma. Pumping is
provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case
the two-dimensional character of the problem is shown to be important.

l. INTRODUCTION

A variety of experimental measurements of double layer and double layer related phenomena have demon-
strated the presence of steady state plasma potential dips, at least in one dimension. Experiments range from glow
discharge plasmas (Biborosch et al., 1984), to unmagnetized collisionless laboratory plasmas (Leung et al., 1980),
to Q machine experiments (Sato et al., 1981), to fusion experiments (Hershkowitz, 1984). The general problem
with all such structures is the question — what prevents the dip from filling up with ions either by charge exchange
or by some kind of scattering? This problem has been identified as a key issue in maintaining “thermal barriers” in
tandem mirrors (Baldwin and Logan, 1979) for which several techniques have been proposed for “pumping” out
trapped ions. The only technique so far tested has been “neutral beam pumping” (Inutake et al., 1985; Grubb et al.,
1984) — they use charge exchange of trapped ions on energetic neutral beams injected into the thermal barriers.

Although a dip may be present in one-dimensional data, it is not immediately apparent that ions are electro-
statically confined in the dip in the perpendicular dimensions. Many structures have been found to have only
minima in the potential in one dimension, while, in the other dimension the potential might be a relative maximum.
In this case ions are not confined, pumping is not an issue, and potential variations in the perpendicular dimension
can dominate the self-consistent solution to the problem. It is clear that the double layer is the wrong structure upon
which to concentrate. This paper considers the problem of pumping steady state and slowly time varying potential
dips in a multidipole laboratory plasma.

Representative double layers with dip structures that have been previously reported are shown in Figures 1
through 4. The data in Figure 1 (Coakley et al., 1978) were obtained in a triple plasma device for which T; = 0.2
eV. The various steady state structures were obtained by varying the bias on a boundary grid on the low potential

*On leave from Southwestern Institute of Physics, Leshan, Sichuan, China.
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side. Note that potential dips as deep as 5 V, equal to 25 Ti/e,were achieved. For these data the pumping mechanism
was later identified to be ion leaks in the perpendicular dimension. Another example is a discharge tube double layer
shown in Figure 2 (Maciel and Allen, 1984). Examination of the associated radial potential profile also showed that
the potential minimum was a relative maximum in the perpendicular dimension and that ions could again leak out.

While the first two examples are ones for which the ions can easily leak out, the data shown in Figure 3
(Suzuki et al., 1984) give a different situation. In that case a double layer was found at a B field minimum in a
magnetized plasma. Ions trapped in the dip had to cross the magnetic field. In addition it was also found that the dip
was an absolute minimum in potential in the radial direction. As the neutral pressure was incresed to 7 X 107 from
1077 Torr, the dip was substantially reduced and eventually disappeared (as seen in Figure 4) (Suzuki et al., 1984).
The pumping mechanism of this dip is not yet understood, but it is possible that instabilities provided wave energy
which energized the trapped ions or that trapped ions were lost to the diagnostic used to determine the dips presence.

Il. EXPERIMENTAL RESULTS

Consider the potential near a positively biased plate (Forest and Hershkowitz, 1986). A copper plate, radius
= 3 c¢m, coated with a ceramic insulator on the back side and support, was introduced into an argon plasma with
plasma density n = 10® cm™ and electron temperature T, = 3.5¢eV. The plate was biased to +20 V and the chamber
walls were grounded. The plasma was produced in a conventional multidipole device (Leung et al., 1975).

The plasma potential measured with an emissive probe along the axis of the plate is given in Figure 5. Note
that a potential dip equal to Ad = 1.7 V is found a distance dyn from the plate and that the potential far from the
plate is only 3 V compared to the plate bias potential of 20 V.

We have also achieved a similar result (Wang et al., 1986) by looking at the potential on the axis of a set of
parallel plates mounted in the same device. One was grounded and one biased to an oscillating potential at 100 kHz
whose amplitude was approximately 12 V. The resulting plasma potential profiles at the maximum and minimum
part of the cycle are shown in Figure 6. Note that once again a potential dip is also apparent in front of the positively
biased electrode. In this case the backs of the plates were not insulated. The data shown in Figure 6 were taken using
a new technique based on differentiated time-averaged emissive probe I-V characteristics which has been described
elsewhere (Wang et al., 1986).

We can separate the interpretation of the results shown in Figures 5 and 6 into two issues. The first is the dip
characteristics and the second is the question of why the dip does not fill in. Figure 7a shows that the size of the
potential dip in Figure 5 scales linearly with electron temperature and is approximately equal to T./2. In Figure 7b it
is also shown that the dip separation dy;n from the plate decreases as the plasma density is increased. In Figure 8 we
compare the dip separation to the predictions of the Child-Langmuir law and show that there is good agreement.
This indicates that the self-consistent potential is established to make the electron loss from the plasma consistent
with space charge limited emission as only electrons from the plasma are present near the front of the plate.

The question of why the dip does not fill in requires a look at the two-dimensional equipotential contours for
a somewhat different case (shown in Figure 9) which also exhibits a dip (labeled 16). For that particular case,
contours are apparent (indicated by +4 - + 14) which are negative with respect to the potential dip. These were
identified as being associated with a fingerprint on the plate. These suggest that the presence of an insulator on the
surface could provide the necessary ion leaks. A careful examination of the contours near a cleaned plate is given in
Figure 10. The potential dip is still present. Note that the dip contours terminate on the edges of the plate at the
insulator which coats the back of the plate. The pumping is clearly provided by these leaks. Note also that the
contours are quite one-dimensional near the center of the plate and that the radius of the plate is equal to approxi-
mately 30 Debye lengths.
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We investigated the spatial profile near the plate as a function of neutral pressure and found that the dip is
reduced as the neutral pressure increased (as shown in Figure 11). This can be understood as the leaks out of the end
of the dips not being able to keep up with the charge exchange filling of the dip.

We believe that ion pumping is a necessary condition for the presence of the dip. We can test this conjecture
by removing the pumping from the system. For the static case, we removed the source of the pumping, i.e., the
insulator from the back of the plate. This resulted in a very different plasma potential axial profile shown in Figure
12. These data correspond to the same conditions as those shown in Figure 5. The only difference is that the insula-
tor on the back of the plates was not present for the data in Figure 12 but was present for the data in Figure 5. It is
apparent that when pumping is not present, the plasma potential is everywhere more positive than the plate. This
means that the self-consistent solution that the plasma finds is determined by the coating on the back of the plate, 30
Debye lengths from the center of the plate. This result strongly suggests that double layer potential profiles may be
determined by the presence of, for example, an insulating boundary on the edge of the device. We demonstrated that
the insulator must be in a location where it can pump the dip by removing the insulator from the plate while still
locating it within the plasma volume. In this case the plasma potential also remained more positive than the plate.

The data shown in Figure 7 indicate that a similar potential dip can also occur in front of a capacitor plate
during the part of the cycle that it is biased positively. However, in that case there is no problem with trapped ions
because such ions empty out during the part of each cycle when the plate is negatively biased.

lil. SUMMARY

We have shown that a plasma potential dip can exist in front of positively biased plates because of “ion
pumping” of trapped ions from the dip. The dips were located in front of a steady state positively biased plate and
also when the maximum positive bias was applied during an oscillating potential. Pumping was achieved by provid-
ing ion leaks, i.e., decreasing potential contours leading far from the structure that is usually measured, and in-
dicates that boundary conditions far from the axes of experimental devices may play key roles in determining mea-
sured structures. A similar plasma potential structure was found when an oscillating potential was applied to a plate
and no insulator was present. In that case ions were emptied from the dip by the time varying potential.

Acknowledgment. This work was supported by NASA grant NAGW-275.
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Figure 1. Stationary double layers showing potential dips on the low potential side. Axial potential
profiles are given as a function of the bias of a grid on the low potential boundary. Multidipole
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Figure 2. Triple layer axial potential profile obtained in a low pressure Hg arc discharge. This
solution was identified to depend only on the boundary conditions; i.e., it was found to be a BGK
solution.
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Figure 3. Schematic of the Q machine setup used by Suzuki et al. (1984) and the corresponding

axial magnetic field profile. The axial potential profiles corresponding to two ion flow speeds are
also shown.
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Figure 7. (a) The potential difference Ad between the plasma and the inflection point of the dip, as
a function of electron temperature. A straight line is drawn through the data. (b) The penetration of
the dip (d) as a function of plassma density. A smooth curve is drawn through the data.
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A LABORATORY INVESTIGATION OF POTENTIAL DOUBLE LAYERS

Philip Leung
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109, U.S.A.

ABSTRACT

In a triple plasma device, the injection of electron current from the source chamber to the target chamber
causes the formation of a potential double layer. At a low current density, the space charge of the injected current
produces a virtual cathode-type potential double layer. This double layer is stable, and various wave instabilities are
observed to associate with this double layer. As the current density is increased, the double layer becomes unstable,
and a moving double layer results. As the current density is increased further, the enhanced ionization causes the
neutralization of the space charge of the electron beam, and the “beam plasma discharge” is ignited.

l. INTRODUCTION

The importance of potential double layers in astrophysical phenomena is well known (Alfvén, 1958). Theo-
retical work on potential double layers has indicated that wave instabilities may be responsible for the formation of
potential double layers. However, different theoretical models have predicted different instabilities in order for a
double layer to form. These instabilities include ion-acoustic (Sato and Okuda, 1980), ion hole (Schamel and Bujar-
barua, 1983), Langmuir turbulence (Levine and Crawford, 1978), and Buneman (Iuzuka et al. , 1979) instabilities.
This paper presents experimental measurements of the characteristics of instabilities associated with a potential
double layer. The double layers were produced in a conventional triple plasma device by the injection of an electron
current from the source chamber to the target chamber. Different types of wave turbulences were observed to be
associated with a stable double layer. Despite the presence of these wave instabilities, the virtual cathode-type
mechanism (Leung et al., 1980) associated with the space charge of the injection electron current was found to be
the single most important mechanism responsible for the double layer formation. Experimental data on the transi-
tion of the double layer phenomenon into the beam plasma discharge phenomenon (Bernstein et al., 1978) will also
be discussed. This transition was due to the transition from space charge-limited electron current flow to source
temperature-limited electron current flow. This transition further illustrates the importance of space charge effects
in the stability and formation of potential double layers.

Part Il of this paper describes the experimental setup, part I1I presents the measurements of wave instabilities

associated with a stable double layer, part IV discusses the transition of a stable double layer into the beam plasma
discharge phenomenon, and part V is the conclusion.

Il. EXPERIMENTAL SETUP

The experiments were performed in a modified triple plasma device. The details of this setup have been
described elsewhere (Leung et al., 1980). In most of the experiments, the system was operated as a double plasma
device. The diagnostics consist of a two-sided Langmuir probe and an emissive probe, both mounted on the same

% C-2

89



-

s A

probe shaft. This permits measurements of plasma potential and plasma electron distribution function simultane-
ously. An electron gun (5-9 keV, 100 nA) is available for electric field measurements. This gun provides a non-
perturbative diagnostic to verify the existence of a double layer. The ion dynamics are measured by an electrostatic
energy analyzer.

A shielded RF probe is used to measure the unstable wave spectrum. Wavelength measurements are made by
two probe correlational methods. In this series of experiments, the frequency of unstable waves ranges from 50 kHz
to 100 MHz.

ll. RESULTS

A steady state double layer is produced by operating the system in a double plasma device configuration.
The potential profile and the grid biases are shown in Figure 1. The plasma parameters associated with this double
layer are shown in Figure 2. In the high potential side, the electron distribution function is in the form of a bump-on-
tail distribution. In the low potential region, the electron distribution function is a modified drifting Maxwellian. In
the low potential region, counterstreaming ion beams are present; whereas, in the high potential region, only
thermal ions are present. These particle distributions are very important for the understanding of a potential double
layer since they are responsible for both the self-consistent potential profile and the wave instabilities.

The typical frequency spectrum associated with a stable double layer is shown in Figure 3. The frequency
spectrum can be divided into two regions: (1) the high frequency spectrum around the electron plasma frequency
and (2) the low frequency spectrum in the vicinity of the ion plasma frequency. The unstable waves at . only have
significant amplitude at the high potential side. This is because the bump-on-tail electron distribution on the high
potential side excites beam plasma instabilities. The cross-spectral intensity obtained by a two-probe correlation
method is shown in Figure 4a. The value of the wavelength derived from this interferometer trace indicates that the
waves propagate at approximately the same velocity as the electron beam that is present in the high potential region.
Consequently, the waves are excited by the beam-plasma (Schmidt, 1979) instabilities.

The waves around the ion plasma frequency range from 0.1 wp; to 3 o, where w; is the ion plasma fre-
quency. The amplitudes of these waves are significant only in the low potential region. Figure 4b shows a typical
cross-spectral density function obtained by the two-probe correlation measurement technique. The dispersion
relationship of these low frequency waves is shown in Figure 5. The data displayed in Figure 5 show that the phase
velocity of most waves is faster than Vy,, where Vy, is the ion beam velocity associated with the stable double layer.
Due to their fast phase velocity and the fact that the unstable waves are present above the ion plasma frequency, the
waves cannot be excited by the ion-beam plasma instabilities.

A theoretical model was developed to interpret the dispersion relationship shown in Figure 5. The details of
this model are discussed in a previous publication (Leung, 1980). The model indicates that the waves around the ion
plasma frequency are excited by a modified Buneman-type (Buneman, 1959) instability. The main interaction
mechanism is operating between the drifting electrons and the ion beam that is propagating at the same velocity as
the electron drift. In the stationary frame of the ion beam, the excited waves have Buneman-type properties. The
observed dispersion relationship is just the Buneman dispersion relationship after a transformation from the station-
ary frame of the ion beam to the stationary frame of the laboratory. The drifting electrons should also interact with
the ion beam that propagates in the opposite direction; however, the resuiting unstable waves will be subjected to
strong Landau damping. This is because the phase velocity of this unstable wave in the laboratory frame will be very
close to the velocity of the preceding (rightward in Figure 2) ion beam. Consequently, this mode was not observed 1n
the measurements. The theoretical model discussed in Leung (1980) predicts a very high growth rate. In our mea-
surements, the growth of the Buneman-type waves was not observed. This could be due to the fact that the high
growth rate caused the waves to saturate near the grid.
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IV. TRANSITION OF A STABLE DOUBLE LAYER INTO
THE BEAM PLASMA DISCHARGE

The current that flows from the source to the target region can be increased by increasing the grid bias. As the
grid bias is increased, the potential drop across the double layer also increases. This trend continues until the poten-
tial drop reaches 14 V, which is approximately the first ionization potential of argon. Beyond this point, a sudden
increase in the grid bias causes an abrupt increase in the current; and, at the same time, the double layer potential
profile collapses (Fig. 6). The plasma density in the target chamber increases by more than an order of magnitude
and the “beam plasma discharge” (Bernstein et al., 1978) is excited. The ignition of the beam plasma discharge
(BPD) phenomenon is characterized by abrupt increases in the following plasma parameters: (1) optical emission,
(2) plasma density, (3) plasma current (Fig. 7), and (4) wave turbulence (Fig. 8).

[t should be noted that before the ignition of BPD, the double layer becomes unstable, and large amplitude
potential fluctuations are observed. Figure 9a shows the fluctuations in the local electric field as measured by the
diagnostic electron beam. The electric field fluctuates at a frequency of approximately 1 kHz. Figure 9b shows the
signal detected by the Langmuir probe. The fluctuation in the probe current was due to the change in local plasma
potential induced by the moving double layer. The temporal change in potential profile was obtained by performing
a time sampling of the emissive probe trace. Figure 10 shows the time development of the potential profile. In this
figure, t = 0 is chosen arbitrarily. The data show that the double layer is no longer stable but is moving toward the
end of the chamber, i.e., away from the source. The velocity of propagation varies, but under most conditions it is
faster than the ion-acoustic speed. The data presented in Figure 10 indicate the significance of the space charge of the
electron current in double layer formation. Att = 150 s, the normalized potential of the low potential region has a
value of 2, and the amount of electron current that can flow from source chamber to target chamber is very large
(Figs. 11a,b). Att = 200 ps, the normalized potential has a value of 6, the flow of current from source to target is
severely limited, and the potential double layer is not well defined. The cycle for the formation and disappearance of
a potential double layer repeats itself. This is responsible for the observed fluctuation in the potential profile. A
detailed model (Leung et al., 1980) on double layer formation has been discussed elsewhere and will not be dis-
cussed in this article.

Referring again to Figure 10, at t = 150 ps, the current limitation by the space charge effect is at its
minimum. If the absolute potential of the low potential region is further reduced, the current flow is significantly
increased (Figs. 11a,b). This increase in current increases the rate of ionization in the high potential region. The
increase in the ion fluxes further reduces the space charge in the low potential region, and eventually the space
charge limitation of the electron current flow is eliminated. The uninhibited flow of current leads to the ignition of
the beam plasma discharge.

It should be noted that the transition from double layer (DL) to BPD is not a reversible process. By lowering
the bias, the BPD will not transform back to a DL immediately. A DL is formed only when the bias voltage is
lowered to a value such that the ionization cross-section is substantially reduced.

The injection of electron current from the source to the target chamber is very similar to the injection of an
electron beam from a rocket to the ionosphere. BPD has been observed in several rocket experiments (Hallinan et
al., 1978). In some of the beam injection experiments, large amplitude fluctuations (Winckler, 1980) in the electron
return current and in the optical emission were also observed. This type of fluctuation could be due to the excitation
of moving double layer-type potential structures in the ionosphere. The space shuttle and the future Space Station,
with its diverse sophisticated diagnostic instruments, should be able to provide a test bed for beam-excited double
layer structures in the ionosphere.
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V. CONCLUSIONS

This paper has discussed the instabilities associated with a stable double layer. The unstable wave spectrum
around the electron plasma frequency is due to the excitation of the beam plasma instabilities by the electron beam
that is present in the high potential region. The unstable waves around the ion plasma frequency are due to the
excitation of the Buneman-type waves by the electron current.

The data in our experiments show that as the grid bias is increased, there is a transition from a stable double
layer to a moving double layer, followed by the ignition of beam plasma discharge. This transition shows that the
space charge of the injected electron current plays a very important role in double layer formation. The role of
instabilities is not evident in our experimental measurements. Since wave instabilities are always associated with
double layers, their role in modifying the characteristics of DLs is undeniable and should be further investigated.
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Figure 2. The plasma parameters associated with a potential stable double layer. The plasma
parameters are normalized with respect to electron temperature T, and the electron density at the
high potential side. (a) Plasma potential profile. (b) One-dimensional phase-space representation of
electron distribution, W, = 1/2 m_v?, where W_ is the normalized electron energy. The numbers on
the curves indicate the normalized height of the distribution function. The negative values of W/
KT, represent velocity in the opposite direction, (c) Phase representation of the ion distribution
function, W; = 1/2 M;v2. (d) Relative electron density. N is the spatial density in the target region.
(e) Relative peak-to-peak density fluctuation.
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Figure 3. The power spectrum of unstable waves associated with a stable double layer, showing
the power level of different frequencies present at different points along the potential profile (top).
The power levels are divided into five arbitrary levels. The frequencies of unstable waves are
normalized to electron plasma frequency (w,) and ion plasma frequency (o).
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Figure 4. The cross power spectral density of the Langmuir wave and Buneman-type waves. The
potential profile is also shown here for reference.
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Figure 5. The dispersion relationship of the Buneman-type wave: x represents the experimental
data, and the solid line is the theoretical dispersion relationship.
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Figure 6. The change in potential drop of the double layer as the grid bias is increased. The beam
plasma discharge is ignited when the grid bias exceeds 13 V. The potential profile of the target
chamber before and after the ignition of the BPD is shown in the lower diagram.
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Figure 7. The injected electron current as a function of the grid bias showing the ignition of the
BPD.
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100




[ Ims FULL SCALE —

Probe Current

- Ims FULL SCALE —=

Figure 9. The top trace (a) shows the fluctuation in the local electric field as measured by the
diagnostic electron beam. The fluctuation is due to the motion of the double layer. The correspond-
ing fluctuation in the Langmuir probe current is shown in the bottom trace (b).
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EXPERIMENTAL OBSERVATION OF ION-ACOUSTIC DOUBLE LAYERS
IN LABORATORY PLASMA

Y. C. Saxena
Plasma Physics Programme
Physical Research Laboratory
Ahmedabad 380009, India

ABSTRACT

Computer simulations indicate existence of weak, electrostatic potential structure with eAd/kT, < 1, having
a negative potential dip on low potential side in a current carrying plasma (DeGroot et al., 1977; Sato and Okuda,
1980). These types of structures, known as ion-acoustic double layers, have been analytically correlated with the
ion-holes which are known to be nonlinear extensions of normally damped slow ion-acoustic modes (Schamel,

1979; Hasegawa and Sato, 1982). Ion-acoustic double layers have also been evoked for explaining recent satellite
observations (Hudson et al., 1983).

In this paper we present experimental results on the observation of ion-acoustic double layers in laboratory
plasma. In a double-plasma device, modified suitably to inject electron beam into the target plasma, modulation of
the beam through a step potential leads to excitation of ion-acoustic fluctuations. The fluctuations, growing away
from the separating grids, develop into weak asymmetric ion-acoustic double layers. The observations are com-
pared with the scenario emerging out of the computer simulations and analytical results on ion-acoustic double
layers.
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II. THEORY AND SIMULATION OF DOUBLE LAYERS
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A NEW HYDRODYNAMIC ANALYSIS OF DOUBLE LAYERS

Heinrich Hora
Department of Physics and Astronomy
and
fowa Laser Facility
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ABSTRACT

A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily
static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a
macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping.
Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced
cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as
in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description.
Results are the rotation of plasmas in magnetic fields and a new second harmonics resonance, explanation of the
measured inverted double layers, explanation of the observed density-independent, second harmonics emission
from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

I. INTRODUCTION

There is a close similarity between the double layers in the surface of laser-produced plasmas and a wide
class of astrophysical plasmas (Hora, 1975). In both cases a high temperature plasma is produced which expands
into vacuum or into gases of much less density. During this dynamic process, a separation of space charges will
happen at the plasma surfaces when the equithermal electrons with their much higher velocity than that of the ions
will expand much faster generating first a negatively charged cloud followed by a positively charged cloud of the
ions. Then the more or less homogeneous and space charge quasi-neutral plasma follows. The separation of the
electrons and ions with a net neutral charge is a double layer (DL) in which electric fields persist within these plasma
areas (Fig. 1). These fields were suggested for explaining phenomena in extraterrestric plasmas by Alfvén (1958)
not without hefty opposition of other plasma theoreticians. Even the more advanced presentation (Alfvén, 1981)
was commented by Kulsrud (1983) as “Alfvén’s electric fields whose origin is intuitively not clear.” These fields
and double layers were also suggested to be involved with the solar atmosphere (Alvén and Carlgvist, 1967,
Carlqvist, 1979, 1982; Torvén et al., 1985), in the ionosphere and magnetosphere of the Earth and the magneto-
sphere of Jupiter (Shawhan, 1976), and with the striated structure of the barium clouds when expanding in the
ionosphere (Haerendel et al., 1976).

In laser-produced plasmas, these double layers in the surface of the expanding plasma were thought to be
involved with the measured speeding up of the ions to multi-kiloelectronvolt energies as measured by Linlor (1963)
while the particle temperatures were 100 eV or less. However, the analysis of the double layer (Hora et al., 1967)
with a derivation of its thickness being of a Debye length (Hora, 1975) arrived at a number of accelerated ions which
was 10° times less than measured. A completely different acceleration mechanism had to be derived by nonlinear
forces (as a generalization of the ponderomotive forces) of nonthermal electrodynamic interaction of the laser radia-
tion with the plasma (Hora, 1969).
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The direct experimental proof of the double layer and high electric fields in laser-produced plasmas was
given by Mendel and Olson (1975) where the bending of an ion beam passing the double layer led to the mea-
surement of electric fields of 10 kV/cm. The generation of electrostatic potentials was measured by Pearlman and
Dahlbacka (1977), and a more detailed study using Rogowski coils (Eliezer and Ludmirsky, 1983), Figure 2, with a
high temporal resolution to 50 psec or less (Ludmirsky et al., 1985; Eliezer et al., 1986) arrived at the discovery of
the inverted double layers and spatially oscillating behavior of the double layers (Hora et al., 1984).

The first measurement of the double layers in space plasmas was not before 1977 (Mozer et al., 1977;
Temerin et al., 1982; Temerin and Mozer, 1984) using S3-3 satellite data. These results, together with the labora-
tory experiments on double layers as reviewed by Hershkowitz (1985), emerged from the initial theory on plasma
double layers by Langmuir (1929), Bohm (1949), Bernstein et al. (1957), and Knorr and Goertz (1974), and from
computer simulations by DeGroot et al. (1977) and Sato and Okuda (1980). Turbulence theory by Yabe et al. (1981)
arrived at electric fields inside of these turbulence areas and may be interpreted as some sort of a double layer
behavior. The laboratory experiments showed double layers in mercury discharges (Torvén, 1981; Stangeby and
Allen, 1973), Q machines (Sato et al., 1976), and triple devices where two plasmas at different electric potential are
connected through grids by a plasma which has then a double layer according to the difference of the voltages plus
the difference of the temperatures between the two outer plasmas (Coakley and Hershkowitz, 1981; Quon and
Wong, 1976; Leung et al., 1980). The geometry can be one-dimensional (Hershkowitz et al., 1981), two-
dimensional (Baker et al., 1981), or three-dimensional (Merlino et al., 1984).

A special motivation for studying the double layer in laser-produced plasma was given from the theory of the
nonlinear force (Hora, 1969, 1974, 1981; Lindl and Kaw, 1971; Peratt and Watterson, 1977, Peratt, 1979). The
electrodynamic, dielectrically caused acceleration of plasma by laser radiation is based on the force acting on the
high density electron gas in the plasma being pushed or pulled and the ion gas has to follow then by the electric fields
generated between the two fluids. When the essential properties of the nonlinear force were derived from the space
charge quasi-neutral plasma model (Hora, 1969), the mentioned fields were disguised by the presumptions of the
model. However, the existence of the fields of the description of the single electron motion (Hora, 1971) was
evident, and a search was overdue since the beginning of the work on the nolinear force in 1965.

While the treatment of the double layers and the high electric fields is essentially no problem on the basis of
the kinetic theory with the Vlasov equation (Knorr and Goertz, 1974), the inclusion of collisions for the conditions
of the high density laser-produced plasmas would have been necessary for which the complications of the collision
processes for the kinetic theory would be a problem. How important the collision processes are in laser-produced
plasma can be seen from several examples. Simply, the classical optical constants (Hora, 1981) can be evaluated
only by carefully watching the numerical problems close to a pole of the related functions where the change of the
real part or the imaginary part of the optical constant can be by a factor 10° or much more for a change of the plasma
temperature or the plasma density by less than 1 percent. Another drastic example is the theory of Denisov’s reson-
ance absorption (to distinguish from a new resonance found by Hora and Ghatak, 1985) where the derivation based
on the electric field by White and Chen (1974) arrived at a negative infinite pole of the function for the effective
dielectric function of the plasma was collisionless. Introducing a tiny little bit of absorption (collisions), however,
caused a swap of the pole from minus infinity to nearly plus infinity (Hora, 1979). Collisions are therefore essential
in laser-produced plasmas.

The use of N-particle simulation of the plasma (with N = 10°) by computers could again not be used as the
physics of the collisions could be covered yet only in a limited way and only first attempts have been done to
correctly treat Coulomb collisions now in a simplified way by using supercomputers (Yabe, 1985). The difficulties
in this macroscopic theory, however, are in the presumptions of space charge quasi-neutrality that could not at all be
used to treat the electric fields or double layers in plasmas. It even could not describe the coupling of the longitudinal
(“electrostatic”) Langmuir waves with transversal electromagnetic waves in plasma (Schamel, 1979).
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Il. THE GENUINE TWO-FLUID MODEL

The macroscopic hydrodynamic theory for the consequent description of the double layers and the generated
electric fields required the use of the complete two fluids for electrons and ions including collisions, viscosity,
equipartition of temperatures between ions and electrons, optical constants with the correct nonlinear dependence
on the laser intensity (about an incorrect formula, see e.g., Duderstadt and Moses, 1983), and including the general
expression of the nonlinear force apart from the thermokinetic force given by the gas dynamic pressure (Hora, 1969,
1981, 1985a). In one spatial dimension, the problem was then to solve the following seven quantities depending on
the spatial coordinate x and the time t for given initial and boundary values: the density, temperature and velocity (in
the x-direction) for electrons, the same for ions (n., T, v., n;, T;, v;) and the electric field E (in the x-direction)
differing from the external electric and magnetic fields E; and H; of the incident laser radiation. For the seven
functions, seven differential equations are available: the equations of continuity for electrons and ions, the
equations of motions for electrons and ions, the equations of energy conservation for electrons and ions, and the
Poisson (or better Gaussian) equation (Lalousis and Hora, 1983). For the whole three-dimensional description there
have to be added the two variables for the other components of the electron velocity and the same for the ion
velocities for which the four further velocity components of the equation of motion are accounted. Instead of the
longitudinal electric field component E of the one-dimensional case, all three components of E and that of the
magnetic field H generated in the plasma during the complex dynamics have to be included for which instead of the
Gaussian law in one dimension, the six components of the Maxwellian equations have to be used. All together, there
are 16 equations for the 16 quantities to be determined in space and time, automatically also reproducing the
complete development of the so-called spontaneous magnetic fields in the laser-produced plasmas.

The solution of the one-dimensional problem allowed for numerics is very complicated in this general
property of the plasma because the time steps have to be very much shorter than the shortest plasma oscillation time.
For the plasmas at irradiation with neodymium glass laser radiation, the time steps have then to be shorter than 0.1
fs. In order to arrive at physically detectable results in the picosecond scale, long computer runs have to go on,
where for each time step the Maxwellian equations also have to be solved for the incident laser radiation with the
correct conditions for the reflected wave. For the treatment of the reflection field, a very quick computation by a
matrix procedure was invented (Lalousis, 1983). The whole computation had to be using a very unusual Eulerian
code instead of the usual Lagrangian codes because of the appropriate inclusion of the description of the electric
fields produced inside the plasma. The basic problem of the boundary conditions in this case ran into instabilities,
and a special new method for a stable solution had to be discovered as derived by numerical experiments (Lalousis,
1983; Lalousis and Hora, 1984).

The results described in the following were attained by using a CD 7600 computer and a Cray 1. The stability
of the computation and the correctness of the output was confirmed after the runs up to the picosecond range by
checks of the conservation of energy. Also the fact that the gain or loss of energy of relativistic electrons, fired
through the then not longer static and conservative electric fields with potentials, but having the dynamic electric
fields E where

$ E-dx #0 (1)

resulted in reasonable numbers of the gain or loss of electron energies (Green et al., 1986), was a proof of the correct
computations.
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ll. ELECTRIC FIELDS, DL’'S, AND OSCILLATIONS IN PLASMA
WITHOUT LASER INTERACTION

When using the genuine two-fluid code, the appearance of strong electric oscillations was marked. For a
plasma without laser irradiation, the following initial condition was chosen; a fully ionized hydrogen plasma slab of
10 wm thickness with a linear increase of the electron density from 5 X 10°cm?atx = 0to 10?' cm> atx = 10 um
was taken at time = 0 with same ion density and an electron and ion temperature T, = T; = 10°eV att = 0. The
initial velocities were v, = v; = O everywhere att = 0 and, consequently, the electric field E = Qatt = 0. Working
with time steps of 1.5 X 1075 (1/30 of the shortest plasma period of S X 107" s)atx = 10 um, expanding plasma
showed a very strong oscillation of the electric field displayed by electrons moving down the ramp and being
returned. The field was always negative, never positive, because the electron cloud went back to the initial position
within the ions or less. At later times an “ambipolar” oscillation field was noted (Figs. 3 to 5) which decayed faster
when the initial plasma temperature was lower (higher collision frequency). The oscillations were damped out and a
bent profile of the electric field resulted, nearly unchanged along the whole expanding plasma profile. The field had
the highest negative values at x = 00f2.6 X 10° V/cm. This value was interpreted for a temperature of 10° eV and a
length of 10 cm, reaching a value of 3 X 10° V/cm, of a “potential” of 10® kT was assumed. As we have a
time-dependent evaluation of the field E due to the plasma dynamics, we have no longer a conservative field and
therefore no potential. These fields are then, strictly speaking, no longer electrostatic fields, and the generated
double layer is, strictly speaking, not an electrostatic double layer, though the result is close to the picture of one.

An analytical description of the numerically very general result is possible with some approximations: The
Poisson equation, which was formulated for a potential as an inhomogeneous differential equation to the homogen-
eous Laplace differential equation, is then only an approximation as the fields are, strictly speaking, no longer
conservative. The following Gauss law was used where n, and n; have to be considered as time-dependent. The
non-conservative character of these fields, equation (1), can be used to produce an acceleration or a stopping of
charged particles by manipulating the time dependence of n and n;. From the time-dependent electric field, we get
the Gauss law by time differentiation, substitution of the equations of continuity, and integration over the spatial
coordinate (without discussing the integration constant),

a
-E-E = 4re(ngvy - ZViny - ey

Further time differentiation, substitution by the equations of motion and re-arrangement of the terms with the colli-
sion frequency v results in

2 ) 4 0 i
zt2E +v a—E + 602E = Egupo? + _Eli = E L2 +H2)/8r + dmen(ngy; - Zyive) 3
e
where
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and
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n
w. 2= 4qe2 2 . (5)
po Il’le 1'1‘1l

The driving laser field E, and H, were used for the following section. Neglecting (3) for v << w, and assuming a
vanishing laser field (E. = H_ = 0), the local solution of (3) results in an electric field,

(6)

E= EO {l—exp (—;t) [cos <\/wp02 - p2t> + v sin ( wpoz - V2t>] }
2_,2
2\/‘*’po -v

which oscillates with a frequency close to the plasma frequency. These oscillations, however, are damped (ex-
ponentially decaying) by the collision frequency such that after a time t >> 2/v a nearly constant electric field E
remains, as seen numerically (Fig. 5). This field E is determined by the spatial gradients of the enthalpy of the ions
and electrons given in the brackets within the square bracket of equation (4) divided by the particle masses.

The (nearly static) electric field has an understandable order of magnitude at least for the early time of the
damping processes of an initially stationary inhomogeneous plasma where any electron and ion velocity is small and
from the big ratio of the ion to the electron mass. It follows,

4me d
Ex > ey 3nkT, Q)
Wpo Mg

or

1 d
N — — T .
eE e an 3nkT, @)

We see that the electric field E is simply caused by the gradients of the electron density and/or the temperature
temporally changing. Therefore the expression “inhomogeneity field” or “dynamic electric field” has been used. In
the stationary approximation (8) the inhomogeneity field corresponds to the (thermionic) work function for the
electrons that moved from the plasma interior to the vacuum (or an electrode) outside corresponding to the spread
Debye sheath (Hora, 1983).

This result of a quasi-potential value eE;2 = eV, = 3kT, corresponds to the measured 600 volts in a
tokamak of a maximum temperature of 200 eV where the missing factor 3 was mentioned as an unexplained result
(Razumova, 1983). If there are experimental conditions where, instead of a factor 3, a factor 10 (Eliezer and
Ludmirsky, 1983) has been measured from the electric fields in laser-produced plasmas with (spread) Debye lengths
over 10 to 100 times of its usual value, this may be explained for the more general conditions of the time developing
enthalpy in (4) which was simplified in (8). Higher values than a factor 3 were also measured in cases of double layer
experiments.
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IV. ELECTRIC FIELDS AND DL’S WITH LASER INTERACTIONS

For the case of incident laser radiation, the computer output of the following cases will be discussed (Hora et
al., 1984). A 25 pm thick plasma slab of initial 10° eV temperature and zero velocity with an ion and electron
density of symmetric parabolic shape very close to the value in Figure 6 for t = 0.5 ps is given. No laser interaction
occurs during the first 0.5 ps such that the minor thermal expansion does not change much of the initial density
profiles while this time is long enough to damp down the fast electric oscillations. Att = 0.5 ps, a neodymium glass
laser field incident from the left-hand side is switched on with a vacuum amplitude of 10'® W/cm?. The resulting
electric field density E, /8w averaged over a laser period is given in Figure 7 showing an exponential decay for x > 8
pm because of superdense plasma there. At several time steps up to 1.5 ps, the resulting densities (Fig. 6) and ion
velocity (Fig. 8) are given. The density (Fig. 6) shows a strong minimum (caviton) at x = 5 wm indicating the
predominance of the nonlinear force-driven ponderomotion. Plasma blocks with ion velocities up to 107 cm/s are
created in agreement with simplified estimates of the strong acceleration densities.

The resulting differences of the ion and electron densities are given in Figure 9. They cause fast changing

electric fields E given in Figure 10 reaching values beyond 10® V/cm. This value corresponds to the expected

numbers: the dielectrically swollen laser field E; in the plasma can be up to 10"' V/cm decaying to zero within 107
cm,

Using similar simplifying approximations as in equation (6), including the oscillating laser field, the long-
itudinal (dynamic electric) field E from (3) is given by

3 (3T 0 [3nekTe 19
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where the first term represents the former quasi-static field E, (4) with its damped-fast oscillations but modified by
the amplitude of the fast time-averaged laser field density E_? + H;* which is dominant before the gas dynamic
pressure nkT. acts. As E; 2 + H, ? changes fast (still very slow compared to the laser oscillation time), a quite
complicated result for E, can be seen in Figure 12, in which the exact result is given without the simplification of
equation (9). Considering the complicated time dependence of n;, n., T;, T, E;yand Hy, the term “potential” is no
longer applicable and E is a dynamic electric field following equation (1). Only at stationary conditions, the
pressure may be a potential or one may consider a ponderomotive potential.

The second and last terms in equation (9) oscillate quickly with twice the laser frequency. As E; is directed to
the x-direction, i.e., perpendicular to the E, of the laser field, we have — obviously for the very first time — the

coupling of the transverse electromagnetic wave with the longitudinal plasma waves which is made possibly only by

of microscopic model assumptions. The last term in equation (9) has a resonance denominator, causing a very steep
increase of the oscillation amplitude at 2w = w,. As we consider a case of purely perpendicular incidence without
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any surface rippling and no self-focusing, we have here a new type of resonance mechanism acting in the evanescent
part of the wave in a depth of 4 times the critical density, if there is still sufficient laser intensity. This resonance is
basically different from Denisov’s reesonance absorption which works at oblique incidence for p-polarization only
(Denisov, 1957). The new type of perpendicular incidence resonance can be significant (Hora and Ghatak, 1985) as
will be discussed in Section V with other phenomena.

The numerical result of Figure 9 can explain the inverted double layers in laser-produced plasmas if cavitons
are produced by the nonlinear forces. The existence of the electric fields in plasma surfaces had been shown directly
by electron beam probes and from electrostatic acceleration of a small number of the nonlinear force-accelerated
ions. A more systematic experiment was done by Eliezer and Ludmirsky (1983), Ludmirsky et al. (1985), and
Eliezer et al. (1986) where the temporal dependence of charge of the expanding plasma and the temporal change of
the target potential were measured. A very unexpected observation was that the plasma leaving the target was first
positively charged and then negatively charged. This was in contrast to the general expectation that an electron
cloud should first leave the plasma. The picture changes, however, if we look at all fields at the surface and in the
interior of the plasma in the genuine two-fluid model if a nonlinear force-driven caviton is generated. Figure 9
shows, near x = 25 pm, where no laser light acts, that a negatively charged plasma expands before the positively
charged plasma follows. Near x = 0, one sees that first a strong positively charged plasma is emitted and then a
negatively charged plasma before a nearly neutral plasma follows. This is the result of the caviton generation.
Though the experiment (Eliezer and Ludmirsky, 1983) was on the nanosecond time scale, the comparison with the
picosecond processes should be justified not only by the correct polarity of the plasma charges but also from other
experiments that showed the picosecond buildup of the cavitons (Briand et al., 1985). The experiment of Eliezer
and Ludmirsky (1983) is an indirect proof that they had also generated cavitons.

A further experiment which can be explained is the energy upshift of alpha particles from laser fusion
pellets. It was observed (Gazit et al., 1979) that the DT-alpha particles from laser fusion pellets had not the expected
maximum energy of 3.56 MeV but showed an upshift by Ae of up to 0.5 MeV. The exact description of the interac-
tion of the alphas with the spatially and temporally varying electric field E(x,t) in the (one-dimensional) plasma
corona is very complicated as the field is non-conservative. The velocity of the alpha particle, v, with an initial
velocity, v, and mass, m, is given by the complex integral equation,

t
2
v(X) = v, +2_ef E[x (f),t]dt ; x=v(t)dx . (10)
my, t)

For a very simplified estimate we use,
mg, )
d > v4] =2eE[x,t(x)]dx , (11
with an average value Eof E to give the increase of the alpha energy,
Ae =2EE Ax (12)

after acceleration along a length Ax of the plasma corona. Inorder to reach Ae = 0.5 MeV for Ax = 10 pm, we find
E = 2.7 x 10® V/em. Such fields for Nd glass laser pulses of 10'¢ W/cm? are possible only if the nonlinear force-
produced cavitons (Fig. 10) are present, since lengths very much larger than 10 wm are not realistic. Thermally
produced fields of up to 10° V/cm could not produce the measured upshifts of 0.5 MeV. Our results, theretore, are
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not only a rough explanation of the alpha upshift by the large electric fields in the cavitons but are also a clear
indication that no thermal electric field can cause the measured upshifts.

We have preliminary results on the exact numerical solution of equation (10) from E-values derived from
laser plasma dynamics (Green et al., 1985). It was discovered that broad E-maxima move within 0.3 to 0.9 of the
speed of light (Fig. 10). The correct phasing of the charged particles in the field does lead to an acceleration by
multiples of the estimate of equation (12). It can be shown how today available CO, lasers (Antares) with 80 TW
short laser pulses and a sequence of several pulses can shift electron clouds of GeV energy to TeV electron energy.
The caviton (nonlinear force) fields of the type in Figure 12 of 10'! V/cm act like the (non-conservative) pump fields
in the microwave cavities of an accelerator. The phasing of the nonlinear force field electron acceleration is an
extension of the concept based on many years of work on the nonlinear force and the then recent results on high
electric fields in plasmas (Clark et al., 1985).

V. DISCUSSION AND FURTHER RESULTS

Against all prior assumptions of space charge quasi-neutrality of plasmas, our analysis of genuine two-fluid
hydrodynamics has shown very high electric fields inside of plasmas. These are simply given by gradients of density
and/or temperature (inhomogeneity fields) modified by plasma oscillations due to changes in mechanical motion for
free expansion or due to the nonlinear force-produced block motion or cavitons. A consequence for laser fusion of
the resonance at perpendicular incidence may be significant, but it is only one of numerous anomalous and nonlinear
phenomena known. A more important consequence, however, is the fact that the electric fields in the double layers
change the thermal conductivity drastically. In order to fit experiments with too low temperatures of the interior of
the plasma-irradiated pellet and the low fusion neutron emission with the computations, fitting factors f for reduc-
tion of the thermal conduction were used since 1979 (Ding et al., 1983; Richardson et al., 1986) which were around
17100. The results of the double layers offer a quantitative theory for this reduction. This and further consequences
of the reviewed results will be discussed in this section (Hora, 1985b).

A. Double Layers and Reduction of Thermal Conduction

The generation of electric fields and double layers inside of plasmas at gradients of density and/or tempera-
ture can cause the inhibition (reduction) of thermal conductivity below the Spitzer-value for the plasma electrons.
This inhibition was detected indirectly from laser fusion experiments when the interior of the compressed pellet did
not reach the temperatures expected from electronic thermal conduction (Cicchitelli et al., 1984), expressed by a

reduction factor f. This can be understood simply from Figure 11 where a double layer is produced between a hot
laser-irradiated corona and the cold pellet interior.

The energetic electrons have left the positive area (causing a mostly negligible preheat), and the following
electrons are returned by the positive charges. If a total disconnection of the electron transport through the double
layer is considered because fo the return current of the electrons, only the ions can transport the heat. The thermal
conductivity k is then that of the ions, k; given by that of the electrons k.,

K = K = K,(m/my) s (13)

where m is the electron mass and m; is the ion mass. This gives the factor k/k, = 1/70 for the ion mass of deuterium

and tritium used in the experiments where a computation fit with a factor 1/100 was shown (Ding et al., 1983;
Richardson et al., 1986).
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This explanation of the reduced thermal conduction by the double layer does not take into account that the
electrons in the hot plasma may have a Maxwellian equilibrium distribution of their energy with a small number of
very fast electrons penetrating the double layer. The factor f of the thermal conduction by the fast electrons through
the double layer is given by the ratio of the energy flux density of the electrons (of temperature T) in the x-direction
Eouatx = x, in Figure 11 over the energy flux density E;, of the electrons incident from the left-hand side at x = X1,

f=E_ /B (14

Based on an equilibrium distribution n of the electrons with the velocity v = (vy; vy; V,)

m i my 2
n(vx,vy,vz) = (ﬁ) n, exp <—§ﬁ> , (15)

where n, is the (spatial) electron density, we find,

400
m
Ein = f Vx? vZn dvxdvydvz = 47rn0m(kT/21rn)3/ 2 (16)

The flux density E,, must take into account the fact that the energy of the electrons beyond the double layer is
reduced by the electric potential eV, of the layer and only electrons with a velocity component in the x-direction v,
> v,o = (2eVym)'"? will be transmitted. This results in,

+oo +co oo 5 ,
Eout = f f d"deZ f v (mv4/2 - eV n dvy an
+oo Y400

Vxo
18
= 4mn m(kT/2 m)3/2 exp(-a) (18)

where
o= eV /(kT). (19

The final result

f = exp(-eV /kT) (20)

is then a simple Boltzmann factor.

From the experiments (Eliezer et al., 1985) there may be good reasons that eV, is more than 5 kT up to at
least 10 kT. In this case f is less than 1/70 given from the thermal ion conduction for D-T plasma. If we, however,
work with the simple (one-dimensional) adiabatic relation eV, = 3kT, the factor f is 1/20, showing a well reduced
but electronically dominated thermal conduction.
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We conclude that the reduction of the thermal conductivity by the electrostatic double layer between hot and
cold plasma does not necessarily drop down to the low value of the ion conductivity, and a reduced electronic
thermal conduction by the energetic tail of the electron energy distribution may remain. For the analysis of future
experiments, these variables of thermal conductivity factors have to be taken into account if no further competitive
mechanisms (e.g., turbulence, classical thermal conductivity in inhomogeneous media) are taken into account.
With respect to the energetic (so-called “hot”) electrons in laser-produced plasmas, it has been found that there does
not exist a fast Maxwellian tail of the energy distribution (McCall, 1983) proving that these energies are due to
nonthermal quiver motion. These electrons would not be able to contribute to the thermal conduction mechanism
discussed here. Another indication that these energetic electrons are not of a thermal nature (very probably
representing the coherent quiver motion) is the very anistropic “butterfly” directivity of the x-ray emission.

The reduced thermal conductivity in the double layers at steep thermal or density gradients, as given by the
dynamic electric field strength E (inhomogeneity field), equation (9), is an important consideration in pellet abla-
tion-compression computations whether the driving is by particle beams or by lasers. As long as no nonlinear
forces, nonlinear optical response (absorption), and parametric effects are involved, there is a lot of similarity to the
laser driving where the computer evaluation of the hydrodynamics automatically results in a compression of the
plasma below the driver heated ablating corona. As a sufficient temperature is needed for the compressed plasma in
the pellet core, the heat transport between corona and core is essential. If the classical electronic conductivity is used
(without change by the inhomogeneity fields or the space charges of the double layers), it is no surprise that the laser
ablation resulted in high core densities well after the mechanical recoil, but the temperatures were too low (Yaakobi
etal., 1984) and the neutron gains from fusion were 10* times less than expected at this ablation mode (Hora, 1981).

It should be noted that the inhibition of electron transport by the double layer (Fig. 11) is valid also for the
energetic (erroneously called “hot”) electrons. Even if their energy is some 100 keV as in CO, laser-irradiated fusion
pellets, the number of electrons to produce a Debye layer only can move to the pellet interior to preheat the plasma.
The following electrons, especially if they have no fast Maxwellian tail of a distribution, cannot pass the 100 keV
DL. The usual electron preheat in pellets is then only a few mJ at some 100 J absorption of laser radiation.

B. New Resonance at Perpendicular Incidence

The only resonance phenomenon (to be distinguished from parametric instabilities) at laser-plasma interac-
tion is Denisov’s (1957) resonance absorption which only may work at oblique incidence of laser radiation for
p-polarization. White and Chen (1974) published the first derivation with the electric field description for a colli-
sionless plasma, showing a resonance maximum of the electric field component of the laser field in the direction
perpendicular to the surface at the critical density for laser light which is obliquely incident and p-polarized. The
resonance in this case is in the evanescent field region below the reflection point of the propagating radiation. When
generalizing this derivation (Hora, 1979) to the case with collisions, the pole of the effective dielectric constant
suddenly changes from minus infinity to a high positive value and the width of Denisov’s resonance maximum can
be directly calculated in a transparent way (Hora, 1981).

In difference to this, a resonance was found (Hora and Ghatak, 1985) at perpendicular incidence of the (laser
driven) longitudinal dynamic plasma field E (not the laser field) of such magnitudes that some phenomena at
perpendicular incidence may be explained now where Denisov resonance was mentioned hoping that density ripple
provides the necessary oblique incidence. This was questionable with respect to the low angle of incidence.

While the results on the numerical theory of the genuine two-fluid model were most general, the simplified
analytical evaluation of the equations was possible by neglecting terms because of the electrons to ion mass ratios,
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dropping discussions of integration constants and reducing to local differentiations and by coupling with Maxwell’s
equations. In a laser-irradiated plasma for perpendicular incidence, an inhomogeneous oscillation equation is then
derived (with driving terms) for the (longitudinally oscillating dynamic) electric field E which is perpendicular to
the driving laser field E;. (and H;). The solution of the differential equation resulted in equation (9).

The last term in equation (9) significantly indicated a resonance of w, = 2w (4 times the critical density).
This was noted approximatively before and evaluated roughly numerically (Hora et al., 1984; Hora and Ghatak,
1985). The more precise evaluation was performed by Goldsworthy et al. (1986). It is stressed again that in eval-
uating the last term in equation (9) before time averaging, the whole nonlinear force needs to be strong enough such
that the term proportional to sin(2wt) resonantly dominates. The coefficient of this term is

2vw e 2_

(wp2 - 40)2)2 + 161)20)2 2m 0x

Eg (EL2 +H{2) . @n

In order to get the solutions E; and H,_ from the inhomogeneous plasma we especially select the condition that the
electron density is increasing linearly in the region of the evanescent field. In this case, the wave equation can be
solved by Airy functions (Lindl and Kaw, 1971; Goldsworthy et al., 1986). The full resonance amplitude given in
equation (21) can now be evaluated numerically for any slope of the linear density profile and a constant temperature
(collision frequency) by numerically solving E,, deriving H; from Maxwell’s equations and calculation fi, and
using these values to compute the resonance amplitude Eg.

Numerical evaluation of the resonance phenomenon described in the previous sections was carried out for a
plasma irradiated by neodymium glass laser light.

In Figure 12 the value of Eg of the resonant field amplitude is plotted as a function of depth x where the zero
of the depth axis represents the critical layer. Noting that the resonant field depends linearly on the incident laser
intensity, only the results of the realistic case, an initial intensity of 10'® W/cm?, are discussed.

The electron collision frequency v is density dependent and is given by

n
€

312

p=2.72 X 107 fn A (22)

where n, is the electron density per cubic centimeter, T, is the electron temperature in electron volts (eV), and ¢n A
is the Coulomb logarithm.

Results have been obtained for several different plasma temperatures, of which the case for 1 keV is given in
Figure 12. The gradient of the density profile was varied as a parameter of the curves. The gradient is determined by
a,

o = @ng/ox) lwlc 23)

where the maximum of each curve is at such depth x where the density has reached 4 times the critical density.
Figure 12 shows the results for the conditions T, = 1 keV for different depths of the maxima. The density gradients
o? range from 140 to 240. T, is the effective temperature (chaotic plus coherent motion of the electrons) which can
well have the values of 10* eV at high laser intensities. Figure 13 evaluates the maximum field E,,,« of Egas Epax/EL
related to the amplitude of the laser field in vacuum for various plasma temperatures.
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Figure 13 shows that any strong resonance effect can be expected only when the profile has a very high
steepening such that 4 times the density is reached at one wavelength or less below the critical density. This high

steepening, however, is not unusual in cases where the nonlinear force is dominating the plasma dynamics
(Ahlstrom, 1982; and Montes and Willi, 1982).

For laser-plasma interaction at perpendicular incidence a resonance is analyzed which produces high electric
fields oscillating with the second harmonic perpendicular to the plasma surface (longitudinal oscillations). These
fields are found in the application of a new genuine two-fluid hydrodynamic theory which is not restricted by space
charge quasi-neutrality. For linear density profiles beyond the critical density, the resonance maxima are evaluated
on the basis of the Airy functions and reach considerably high values for such profiles which can be generated by
nonlinear force driving of the laser-plasma dynamics. Even the necessary high temperatures (appearing then as
quiver energy as in the theory of the optical constants) seem to be reasonable. This perpendicular resonance mech-
anism may possibly be distinguished from the ordinary nonlinear force acceleration by the appearance of electron
bursts.

C. Density Independent Second Harmonics Emission

A rather surprising phenomenon was reported by Mayer et al. (1982). Irradiating a plane target in vacuum by
a neodymium glass laser, a side-on time-integrated picture in the second harmonic frequency showed the large
plasma plume in nearly constant 2w intensity though the plasma density has been lower by orders of magnitudes in
the outermost parts of the plasma than in the focus. A similar observation was detected more precisely (Aleksan-
drova et al., 1985) from a 400 pm diameter pellet irradiated by a 2 ns rectangular neodymium glass laser pulse
(Delfin), where a nearly constant 2w radiation from a sphere of 2 mm diameter (to which the pellet corona had
expanded during the laser irradiation) was detected. The fact that the very low peripheric plasma density emits the
same 2w radiation as the inner part of the cut-off density can be explained by the middle term of equation (9). The
factor is nearly density-independent at low w, (w, << w), and the standing wave pattern may result in a constant
nonlinear force factor; therefore, this term of equation (9) should produce a spatially constant term of the dynamic
electric field E; as long as the laser is shining.

While this gives a qualitative explanation of the observation, a quantitative evaluation of the transfer of the
dipole oscillation of E into emission of electromagnetic radiation results in an emission power of about 10° watts
(Goldsworthy et al., 1986). The experimental evaluation of the calibration of the experimental results in a 2w-power
of about 10° watts (Fedotov et al., 1985).

D. E x B Rotation of Plasmas

Since the dynamic electric fields, e.g., (9), in plasmas are (apart from the oscillations, damping, and
transient effects of internal and/or external plasma dynamics) in a simplified way due to gradients of electron density
and/or temperature, their E X B interaction with external magnetic fields B may cause drift motion or rotation of
plasmas. We shall first discuss this as examples with plasmas without laser irradiation, e.g., with tokamaks and
stallarators, and then consider the extremely high E-fields by the nonlinear forces in laser-produced plasmas that
describe fast block acceleration of plasma. There is a similarity to the simple ambipolar field effects.

The consequences for dynamic inhomogeneity electric fields in tokamaks are not only the modification of
the thermal conduction but also the resulting basic change in the dynamics. The radial decay of density and tempera-
ture in any piasma column produces an inhomogeneity field in the radial direction which under stationary conditions
is given by equation (9)
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E =— —n kT, -« (24

This field combines with the toroidal magnetic field B and causes a drift with the velocity of the poloidal plasma
rotation in meters/second (Fig. 14)

Viot = 3T/B (25)

where the electron temperature is in electronvolts, the radius r of the plasma column is in meters, and B is in Tesla.

Measurements from tokamaks fully agree with the result of equation (25). Bell (1979) measured rotation
velocityv =2 X 10°m/s forr = 2 X 10?m,B = 0.5T, T, = 50 eV for which case equation (25) results inv =
2.4 X 10°* m/s. These plasma rotations were detected from the Doppler shift of Ha-lines, with similar agreement
with equation (25), by Sigmar et al. (1974) who did not interpret them as plasma rotation, but as an anomaly of hot
protons in the banana and plateau regimes. The agreement with equation (25), however, favors an interpretation of a
simple rotation.

The same is with the experiment at the stellarator W7, where the result of 1980 agrees with a rotation accord-
ing to equation (25). As this experiment was with tangential neutral beam injection, one would have had to exclude
the rotation of these neutrals, which is difficult. Recent measurements at W7 without neutral beam injection but
with plasma production by intensive microwave irradiation and heating (Thumm, 1985) result in exactly the same
rotation given by equation (25).
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Figure 1. Between the vacuum range A and the space charge neutral interior of homogeneous
plasma C, the plasma surface sheath is depleted by the escape of fast electrons until such a strong
space charge is built up that the following fast electrons from the plasma C are electrostatically

returned into C. The electric field E(x), due to the space charge density p(x),and the resulting
potential V are given schematically (Hora, 1975).
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Figure 2. Experiment for a laser-irradiated pellet whose potential and the field [by the Rogowski

coil I(t)] are measured.
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Figure 3. Time-dependent development of the longitudinal dynamic electric field E, along the
density with an initial ramp of linear plasma of initial temperature 10’ K of 5 X 10°cm>atx = 0
and 10*' cm™ at x = 10 wm (Lalousis and Hora, 1983).
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similar to its initial value. The energy maximum near x = 4 pm produces a caviton by nonlinear
forces.
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Figure 12. Resonance amplitude Eg of the longitudinal electric field, as a function of the depth x
below the critical density, for neodymium glass laser irradiation of 10'® W/cm? into plasma with a
temperature of 1 keV. The parameter for profile steepening a” ranges from 100 to 240. The critical

density n. corresponds to the axis x = 0.
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ION PHASE-SPACE VORTICES AND THEIR RELATION
TO SMALL AMPLITUDE DOUBLE LAYERS

Hans L. Pécseli
Association EURATOM-Riso National Laboratory
Physics Department, Riso National Laboratory
P.O. Box 49, DK-4000 Roskilde, Denmark

ABSTRACT

The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation
of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double
layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate
the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared
with similar results from one-dimensional numerical simulations of the problem.

I. INTRODUCTION

A plasma can support a large variety of stationary (or quasi-stationary) double-layer-like structures. The
proceedings (Michelsen and Rasmussen, 1982; Schrittwieser and Eder, 1984) of the first two double layer sumposia
at Riso and in Innsbruck contain an extensive summary of theoretical, numerical, and experimental investigations.
A number of these investigtions, however, refer to conditions with very carefully chosen initial or boundary condi-
tions imposed on the plasma. These conditions may often be highly idealized, or even unrealistic representations of
those met in, for example, ionospheric conditions. However, not all examples have this shortcoming. One of these
seems to be small amplitude double layers occurring in current-carrying plasmas. One possible mechanism for their
generation is reflection of electrons by a negative potential dip associated with an ion plasma-space vortex, which
consequently acts as a “seed” for the double layer (Sato and Okuda, 1980; Hasegawa and Sato, 1982; Nishihara et
al., 1982; Berman et al., 1985, Pécseli, 1984). This is a spatially localized process and thus independent of any
boundary conditions. The potential drop associated with one such double layer will be rather small. If, however, the
system is large and the ion phase-space vortices sufficiently frequently occur, many of these small double layers
may be generated and will eventually add up to a significant potential drop. With this scenario in mind, we found it
worthwhile to investigate the properties of the ion phase-space vortices in detail. These properties will be
summarized in the following paragraphs.

Il. ION PHASE-SPACE VORTICES IN ONE-DIMENSIONAL SYSTEMS

The properties of ion phase-space vortices are discussed in some detail in Berman et al., 1985, Pécseli,
1984, Burjarbarua and Schamel, 1981, Pécseli et al., 1984, 1984, and Trulsen, 1980. They represent one particular
type of Bernstein-Green-Kruskal (BGK) equilibria (Bernstein et al., 1957) which appear to be very stable. An ion
phase-space vortex thus represents a careful balance between trapped and untrapped particles maintaining a local
potential dip, resulting in a corresponding plasma density depletion. It was demonstrated (Bujarbarua and Schamel,
1981) that a simple analytical model, characterized by only three parameters, can be constructed for the ion velocity
distribution function. The electrons were assumed to be Boltzmann-distributed. In spite of its simplicity, this model
accounts very well for the properties of ion vortices. The analysis is formally very similar to that of electron holes
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(Bujarbarua and Schamel, 1981; Lynov et al., 1979, 1985) especially if electron modes in a strongly magnetized
plasma waveguide are considered (Pécseli, 1984). A particularly important result of the analysis (Bujarbarua and
Schamel, 1981) predicts that ion vortices cease to exist (i.e., their amplitude goes to zero) as the electron-to-ion
temperature ratio T./T; becomes smaller than ~3.5. This result was confirmed in a numerical particle simulation
(Pécseli et al., 1981, 1984; Trulsen, 1980).

The dynamic properties of ion phase-space vortices can be most conveniently accounted for by considering
them as quasi-particles. A simplified analysis demonstrates that an ion vortex can be assigned a negative charge and
a negative mass (Pécseli, 1984; Dupree, 1983). Numerical simulations (Pécseli, 1984; Bujarbarua and Schamel,
1981; Pécselietal., 1981, 1984; Trulsen, 1980) demonstrated that two ion vortices may coalesce into one when they
are sufficiently close in phase space, very much like electron vortices (Lynov et al., 1979, 1980). A detailed para-
meter study of this process remains to be carried out. Isolated ion holes, on the other hand, appeared to be very stable
(Pécseli et al., 1981, 1984; Trulsen, 1980) in a description where the electron component is assumed to be in
Boltzmann equilibrium at all times. This simplification becomes inappropriate in current-carrying plasmas, where
the interaction between ion vortices and individual electrons becomes important. In this case, the reflected electrons
give up a net momentum to the ion vortex, which consequently decelerates, since its effective mass is negative.
However, as its velocity is decreased, it can move into regions of increasing ion phase-space density. The result is a
slow increase in amplitude of the phase-space vortex, which consequently becomes more efficient in reflecting
electrons. The process is thus accelerated. The charge distribution of the reflected electrons gives rise to localized
double-layer-like structures. Eventually, the phase-space vortex is destroyed. The very simplified physical picture
outlined here is elaborated in more detail by Berman et al. (1985) and Dupree (1983) and also by Nishihara et al.,
(1982) and Pécseli (1984). In particular, Berman et al. (1985) describe very spectacular one-dimensional numerical
particle simulations, showing the slow time evolution of ion phase-space vortices under conditions like those dis-
cussed here. It is important to emphasize that the unstable growth of the ion vortices is due to a slowly growing
nonlinear instability, which can be excited for bulk electron flow velocities well below those giving the linear
two-stream instability. The only criterion for the nonlinear instability seems to be that long-lived ion vortices are
formed. In the simulations reported in Berman et al. (1985), this formation occurred for a rather wide class of initial
phase-space distributions of simulation particles. The formation of large ion vortices was investigated by Pécseli et
al. (1981, 1984) and Trulsen (1980). It could be analytically demonstrated that such vortices are formed in the
saturated stage of the one-dimensional ion-ion, two-stream instability of Pécseli and Trulsen (1982). Alternatively,
the formation could be due to ion bursts (which after all can be considered as a segment of an ion beam).

lll. ION PHASE-SPACE VORTICES IN THREE DIMENSIONS

The properties of ion phase-space vortices described in the previous section referred mainly to one-
dimensional investigations. The experimental investigation reported in Pécseli et al. (1981, 1984) and Trulsen
(1980) is of course three-dimensional, but it refers to very carefully chosen initial and boundary conditions. Numer-
ical investigations (Morse and Nielson, 1969) of electron phase-space vortices demonstrated that an ensemble of
these was very stable in one dimension, while the phase-space structures were very rapidly eroded in two or, in
particular, three spatial dimensions. In order to investigate the properties of ion vortices in three dimensions, we
performed a laboratory experiment where the vortices were generated by the ion-ion beam instability, which gives
linear instability for wave directions in a cone around the beam velocity.

Our investigations were carried out in the double-plasma device at the University of Tromso (Johnsen, 1986;
Johnsen et al., 1985). The vacuum vessel has an inner diameter of 60 cm and is divided into source and target parts
(length 40 cm and 80 cm, respectiveiy) by a fine meshed grid. The device was operated at a typical neutral argon
pressure of 1.5 X 10 Torr, with plasma densities in the range 2 to 10 X 10® cm™. The electron temperature was T,
=~2.5eV, while T; = 0.15eV in the absence of a beam. By adjusting the bias of the source, an ion beam was injected

into the target plasma. Typical beam energies were 4-8 eV. The density ratio between beam and background ions is
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adjustable in the setup and was chosen to be around one. The fluctuation level increases along the direction of beam
propagation (Z axis in the following, with Z = 0 corresponding to the position of the separating grid) and saturates
roughly at a distance of Z = 9 cm, with a density fluctuation level of fi/ny ~ 1-5 percent. The increase in noise level
is accompanied by a significant scattering of the incoming ion beam, as observed by using both conventional three-
grid and the novel directional electrostatic energy analyzers. It is not experimentally possible to obtain information
about spontaneously generated individual ion vortices. Instead, we performed a statistical analysis of the experi-
mental data. The turbulent plasma fluctuations in the frequency range 10 kHz to 1 MHz were investigated by the
fluctuations in electron saturation current to two movable Langmuir probes with an exposed spherical tip of I mm in
diameter. Realtime signal sequences of 800 ws duration were recorded with a sample rate of 2.5 MHz. At each
combination of probe positions, five such sequences formed the basis of a statistical analysis. With the realtime
signals avallable we thus performed a statistical analysis on a conditional basis. The signal n, from the fixed probe
(A) at position T was chosen as a reference. Choosing a certain value of the density perturbation, say n;, the
corresponding time records are subsequently searched for times t’, where the signal takes a value within the narrow
interval (n;,n; + A), where A is taken as the minimum amplitude resolution of the record. Each time this condition
on signal A is satisfied, the signal from the movable probe B is recorded in a certain prescribed time interval (t' — T, t’
+ 7). These conditionally chosen time series are then considered as independent realizations for the ensuring statist-
ical analysis. The analysis is repeated for varying positions T of probe B. The result is most conveniently expressed
in terms of the electrostatic potential by the relation fi/n, ~ e$/T., which is adequate for the relatively low fluctua-
tion level in the experiment. A record of 800 ws duration is sufficiently long to give an adequate representation of
many realizations in the ensemble. By the procedure outlined above, we thus obtained the conditional ensemble
average, where t’ is just a dummy variable for time stationary turbulence

¢ = <d@t+)dT ) = &> . (1)

This quantity has the followmg rather self-ewdent physical interpretation: given that a particle is located in a poten-
tial ¢, at a posmon T at time t’, then b= d)(r t+t') is the average potential variation it will experience in the
vicinity of ¥ at the same or at different times.

One important question to be discussed in the following is the lifetime T;_of a conditional structure (or eddy
for simplicity) described by equation (1), compared to the average bounce time Tg of a charged particle derived from
&. Thus, if 15 < 7, a small cloud of test particles releasedat (r’,t') will be likely to stay together with the trajectories
being correlated for a substantial time. Ions with velocities close to that of the eddy will, if ¢; < 0, be trapped, on
average, by the (average) potential, thus exhibiting the features of three-dimensional ion phase-space vortices. On
the other hand, if 7, is very short, the particles will disperse rapidly with a large probability, and vortex or “clump-
like” features will be immaterial for the description of the turbulent fluctuations in question. In our case, we find 7,
=~ 7g. In Figures la,b we show equipotential contours for ¢ in a rectangular cross-section of the plasma for two
different values of the reference potential ;. The position of the reference probe is indicated by ®. The full spatial
variation is obtained by rotating the figure around the Z axis. This symmetry was explicitly verified in the experi-
ment. For the region of measurements, we may consider the turbulence to be homogeneous and isotropic in the
plane perpendicular to the axis of the device. In particular we note that since full time records are available, it is
perfectly feasible to let t be negative, i.e., to consider the formation of the conditional eddy. Evidently the eddy
rapidly assumes a roughly spherical shape and propagates in the direction of the ion beam. A lifetime of 60 s for the
eddy is estimated for the present plasma conditions. By fitting a parabola to the local minimum of the conditional
spatial potential profile, we obtain an inverse angular ion bounce frequency wg™' = 8 ws for the largest eddy, indica-
ting that the trapping of ions is a significant dynamic process. The observed structures corresponding to large nega-
tive values of ¢, can thus be considered as evidence for quasi-static three-dimensional ion holes. Using the electro-
static energy analyzer, we verified (Johnsen et al., 1985) that there was indeed a significant number of ions in the
velocity range where they can be trapped by the conditional eddy. From measurements such as those summarized in
Figure 1, it is easy to deduce the eddy velocity.
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An eddy described by equation (1) and shown in Figure 1 is an average quantity. In each individual realiza-
tion we may find eddies which may deviate significantly from the average. However, we expect these to have little
statistical weight. This statement can be given support by a theoretical analysis.

Being particularly interested in ion-hole formation, we concentrated on negative values for ¢, in the present
summary of our results. Of course, positive values of ¢, can be chosen as well, where now the electrons can be
trapped. We found that the evolution of conditional structures corresponding to ¢, > 0 was somewhat similar to the
overall features given in Figure 1, with some deviations in the actual shapes and velocities. A more general account
of these results is in preparation.

IV. CONCLUSIONS

In this work we discussed experimental observations of conditional structures in ion beam driven turbul-
ence, presenting the actual variation of the average potential deduced from a conditional analysis of measured
fluctuations. Given the propagation velocity and lifetime of these structures, we obtained evidence for the formation
of quasi-stationary, ion phase-space vortices. We find it worthwhile to emphasize that the conditionally averaged
potential need not coincide with the most probably conditional potential variation. An analysis of this problem
requires investigations of the conditional amplitude probability distribution of potential in each spatial point as a
function of time. This (rather lengthy) investigation was also carried out. However, the differences between the
resulting spatial potential variations and those shown in Figure 1 were not sufficiently pronounced to necessitate a
separate figure here. Although we have obtained evidence for the formation of three-dimensional ion phase-space
vortices, it seems conclusive that their lifetime is much shorter than for those found in one-dimensional numerical
simulations (Pécseli et al., 1981, 1984; Trulsen, 1980, Pécseli et al., 1982). In particular, we find that the vortex
lifetime is too short to manifest coalescence of two vortices, which is a relatively slow process in units of bounce
time. Several reasons for this difference between one and higher dimensions can be found. First of all, a stability
analysis (Schamel, 1982) has demonstrated that one isolated vortex is unstable with respect to transverse perturba-
tions in three dimensions, although the growth rate of this instability is rather small for realistic conditions. Prob-
ably more important, however, is the possibility of two or many such vortices colliding at an angle in three dimen-
sions, thus destroying the simple trapped particle orbits. Finally, the interaction between ions and potential struc-
tures is rather different in one and in higher spatial dimensions, as illustrated in Figure 2. Thus, in one dimension
(Fig. 2a), an ion coming in from infinity may give up momentum to an isolated positive quasi-stationary potential
structure (top trace) while it only gives a transient perturbation to a negative potential variation (lower trace). In two
or three dimensions, an ion may give up momentum to both polarities of a potential variation as indicated in Figure
2b. We see no obvious method to discriminate between these effects in our experiment. Numerical simulations such
as those reported in, for example, DeGroot et al. (1977) and Barnes et al. (1985) may provide some insight into
these features. It is rather evident that the experimental conditions discussed here do not exactly match those met in
current-carrying plasmas. It seems fair, however, to assume that the properties of ion phase-space vortices are, at
least in a first approximation, independent of a small electron drift. The conclusion based on the results summarized
here will consequently be that the lifetime of ion vortices in three-dimensional unmagnetized systems is not suffi-
ciently long to allow an analysis in terms of quasi-particles interacting with individual electrons, in contrast to the
one-dimensional investigations discussed in Berman et al. (1985) and Dupree (1983). The growth of very small
vortices, or holes, from an initial low-level noise is thus improbable for a small electron drift. If, however, the
electron drift exceeds the threshold for the linear current-driven instability, a rapid growth of negative potential
spikes may occur (Barnes et al., 1985) which subsequently form ion vortices by particle trapping (Nishihara et al.,

1982). The instability may then evolve nonlinearly as described in Section II. Although the ion vortices have a
relatively short lifetime, they have in this case a large amplitude and are thus effective local barriers for the slow

e, HIc S LASC QG 1a uve 1Vvasr vaiiivi

electrons. One might expect that these conclusions should be modified for magnetized plasmas with electron drifts
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along B-field lines. However, the two-dimensional numerical simulations in Barnes et al. (1985) do not reveal any
particular variations of the results with the intensity of an externally applied magnetic field. Unfortunately, practical
limitations imply that most numerical simulations are restricted to at most two spatial dimensions.

Although ion phase-space vortices were discussed here with reference to one particular plasma
phenomenon, it may be worth mentioning that they present a nonlinear plasma mode which may be interesting also
in a different context {see, for instance, the discussion by Hershkowitz (1984)].
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Figure 1. Contour plots of conditional eddies for two different reference values ¢, in equation (1)
measured in units of the rms value of the potential fluctuations ¢,. The position of the reference

probe is Z = 9 cm measured from the separating grid of the double-plasma device. The spacing
between contours is 0.1 ¢ .
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ABSTRACT

The Earth’s auroral zone contains dynamic processes occurring on scales from the length of an auroral zone
field line (about 10 Rg) which characterizes Alfvén wave propagation to the scale of microscopic processes which
occur over a few Debye lengths (less than 1 km). These processes interact in a time-dependent fashion since the
current carried by the Alfvén waves can excite microscopic turbulence which can in turn provide dissipation of the
Alfvén wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis
on consequences for models of microscopic turbulence. In the second part of the paper a number of models of
microscopic turbulence will be introduced into a large-scale model of Alfvén wave propagation to determine the
effect of various models on the overall structure of auroral currents. In particular, we will compare the effect of a
double layer electric field which scales with the plasma temperature and Debye length with the effect of anomalous
resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field
strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility
of narrow, intense current structures.

I. INTRODUCTION

Auroral arcs and the auroral current structures which produce them occur in a variety of scale sizes and time
scales. While electrostatic models of auroral electrodynamics (Lyons et al., 1979; Fridman and Lemaire, 1980;
Chiu and Cornwall, 1980) have had success at describing the overall current-voltage relationship of the auroral zone
and in defining the scale size of the inverted-V precipitation signature, they are not well suited to describing the
dynamics of small-scale auroral arcs, multiple auroral arcs, and time-dependent auroral structures. In this realm a
fluid picture of auroral electrodynamics has advantages and can describe a number of auroral processes (Sato, 1978;
Goertz and Boswell, 1979; Miura and Sato, 1980; Lysak and Dum, 1983; Lysak, 1985, 1986). The difficulty with
the fluid models is that the kinetic processes which play an important part in defining the auroral potential drop must
be described by means of assumed transport coefficients which should be determined by a consideration of the
microscopic plasma processes.

The formation of parallel potential drops in laboratory and computer simulated plasmas has been covered in
many of the reviews in this workshop. The problem with applying most of these results to the auroral zone is the
high sensitivity of the results to the initial and boundary conditions which are imposed. In the auroral plasma, there
are no grids to be set to a certain voltage and, perhaps more fundamentally, the scale of the system is vastly larger
than the sizes of a thousand Debye lengths or so which are typical in laboratory and computer studies. Therefore a
description of the auroral potential drop should consider the large-scale dynamics of the auroral zone as well as the
microscopic processes which can directly produce parallel electric fields.

The remainder of this review will consist of two major sections. In the first, we will consider some of the
time-dependent aspects of auroral current structures and the implications these structures have for models of micro-
scopic plasma turbulence. In particular, we will argue that auroral currents are closely associated with Alfvén wave
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signatures that tend to define the current which flows along auroral field lines and that include a transient parallel
electric field which can set up the particle distributions necessary to support double layer structures. In the second
, part of the review, we will discuss some numerical experiments in which the form of the parallel electric field is
changed. We will consider two extreme cases. In the first, we assume a double layer model in which a potential drop
that scales with the electron temperature is distributed over distances which scale with the Debye length when the
current exceeds a threshold. We will compare this model with a model of nonlinear resistivity due to electrostatic
ion cyclotron turbulence in which the effective resistivity increases with the current over a threshold. These models
produce rather different overall current structures, since in the resistive model the current diffuses across the mag-
netic field producing broader structures, while in the double layer model narrow current structures can persist.

il. A BRIEF REVIEW OF AURORAL ELECTRODYNAMICS

The Earth's auroral zone is a region in which the ionosphere and the outer magnetosphere are coupled by
means of magnetic field-aligned currents which flow between the two regions. These currents must close across
field lines in the ionosphere and also somewhere in the outer magnetosphere. Ionospheric current closure is de-
scribed by the current continuity equation, which is generally integrated along the field line over the thin layer
(about 50 km) in which the ionospheric currents flow. To simplify the description, we will consider a two-
dimensional geometry in which variations in longitude are ignored. This assumption is well justified on the dawn
and dusk flanks of the magnetosphere, although it should be modified to take into account the more complicated

current structures at noon and midnight. With these approximations ionospheric current continuity can be expressed
as follows:

ol, a (N
| = e— = —— [ EX ,
)z ax ax [ P ]

where Zp is the height integrated Pedersen conductivity and the geometry is defined in Figure 1. Note that here a
positive current is parallel to the magnetic field line, i.e., downward in the northern hemisphere.

In the steady state and in the absence of parallel electric fields, the north-south electric field E, simply maps
along the field line, which, in the dipolar coordinates of Figure 1, means that it stays constant. (More details on the
dipolar coordinate system can be found in Lysak, 1985.) However, if we assume that a linear relationship exists
between the parallel current and the parallel potential drop:

. = K@ ~) , (2)

where ®; and ®, represent the potential in the ionosphere and in the equatorial plane, respectively, the perpendicular
field must change along the field line so that the curl of the total electric field vanishes. In this case, we can combine
equations (1) and (2) to relate the potential in the ionosphere to the equatorial potential:

Sp 0
[l—‘l'('a—xz]q’i = ¢, . (3)

This relationship indicates that large-scale potential structures in the equatorial plane, with sizes large compared to
L = VZp/K, will pass unattenuated to the ionosphere with no potential drop along the field line. On the other hand,
equatorial structures with sizes less than L will not be mapped to the ionosphere, and the resulting difference will
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appear as a parallel potential drop. For auroral zone parameters, this scale length L is about 100 km. This scale size
is appropriate for the largest scale auroral structures, but is large compared to the sizes of individual auroral arcs
which have a scale of about 1 km.

Consequences of this type of model in the steady state have been considered by Lyons etal. (1979), Chiu and
Cornwall (1980), and others. Two critical assumptions are made in these models. First, it is assumed that a linear
current-voltage relationship as in equation (2) is present. These authors associate such a relationship with plasma
sheet particle motion in the dipolar magnetic field, as was shown by Fridman and Lemaire (1980). As we shall see
below, such an approximate linear relationship is not restricted to these adiabatic models. A second assumption is
that the driving force in the outer magnetosphere is characterized by a fixed potential as a function of position
represented by the right-hand side of equation (3). Such a potential could be related to the E X B motion of the
equatorial plasma, in which case treating it as constant implies that the equatorial convection is not affected by
conditions on the field line which connects it to the ionosphere.

On the other hand, it has been known for some time that the ionosphere exerts a frictional influence on
magnetospheric convection due to the dissipation caused by the finite Pedersen conductivity (e.g., Vasyliunas,
1970; Sonnerup, 1980). Information on ionospheric conditions is transmitted to the equatorial region by means of
shear mode Alfvén waves which can propagate along the field line between the two regions, which have a travel
time from the ionosphere to the equator of about 30 s in the auroral zone, as is evidenced by the existence of Pi2
pulsations with periods of about 2 min (Southwood and Hughes, 1983), which would correspond to the travel time
from one ionosphere to the conjugate ionosphere and back.

The presence of Alfvén waves on auroral field lines should cause one to rethink the steady state model
presented above. For one thing, the steady state model assumes that currents perpendicular to the magnetic field
only exist at the ionosphere and in the equatorial plane, while Alfvén waves carry with them a polarization current
which depends on the rate of change of the perpendicular electric field. In a static structure, these currents will
vanish, but the possibility exists that a standing wave structure could be set up in which the polarization currents
could persist. Such a situation is shown in Figure 2, which shows results from a time-dependent, two-dimensional
MHD model of auroral currents (Lysak and Dum, 1983; Lysak, 1985). The contours in this figure represent flow
lines of the current for a case in which a potential structure is propagated across the field line. Alternatively, this
figure could be viewed as the current pattern produced by a potential structure in the presence of a north-south
component of plasma convection in the auroral zone. As can be seen, the multiple reflections of the Alfvén wave
pulses give rise to wave structure in which interference occurs between up- and downgoing waves. This wave
interference decouples the field-aligned currents which connect to the ionosphere from those which flow up to the
equatorial plane. In a structure such as this, which may be typical of multiple auroral arc structures, the steady state
model is clearly inappropriate.

This structure can be described by a generalization of the model given above by replacing the assumption
that a fixed equatorial potential structure is present by a more general assumption that a relation exists between the
electric field and the perpendicular currents. For the case of polarization currents, this relation involves the so-called
Alfvén conductance (Mallinckrodt and Carlson, 1978), 24 = c%/4mwV,, where V, is the Alfvén speed. If it is
assumed that the ionospheric currents close via these polarization currents, a relation with the form of equation (3)
results but with the scale length becoming:

L= EPEA 12 ) 4)
KEp+2,)
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The Alfvén conductance 3, is plotted along an auroral field line in Figure 3, where it can be seen that its value over
the field line is generally less than the Pedersen conductivity, which is typically over 1 mho. For the Case 2, <<
Sp, equation (4) shows that the scale length depends on the Alfvén conductance rather than the Pedersen con-
ductivity, leading to smaller scales than those predicted by equation (2). Thus, the 1-km scale size of discrete
auroral arcs may in fact be a result of current patterns such as those shown in Figure 2.

Another process which violates the steady state assumption is the enhancement of the ionospheric con-
ductivity due to the enhanced energetic electron precipitation produced by the parallel electric field. This can give
rise to a feedback instability (Sato, 1978; Rothwell et al., 1984; Lysak, 1986) in which traveling enhancements of
the conductivity and the field-aligned current occur (Fig. 4). Numerical modeling of this instability (Lysak, 1986)
shows periods of about 1 s which appear to be due to Alfvén wave reflections at altitudes of 2 Rg or less, so these
currents also close well before they reach the equatorial region. The structures shown in Figure 4 have scale sizes of
about 10 km, approaching the size of the discrete aurora.

The discussion above indicates that while the steady state model can describe the large-scale properties of
the aurora, time-dependent effects may be important at creating short-scale current structures on auroral field lines.
Parallel electric fields thus form in a current environment which can fluctuate on time scales as quickly as 1 s. On
these time scales, Alfvén waves carry changes in the field-aligned currents. Parallel electric fields form as a result
(Goertz and Boswell, 1979) of the current required to flow because of the magnetic perturbation associated with the
Alfvén wave. Plasma turbulence will form when the current exceeds the threshold for instabilities. The effect of this
turbulence will be examined in the following section.

. MACROSCOPIC EFFECTS OF PLASMA TURBULENCE

If plasma turbulence does develop, it can affect the development of the current structure which produced it.
Lysak and Carlson (1981) showed that the introduction of parallel resistivity modified the Alfvén wave dispersion
relation, producing a reflection and dissipation of the wave which reduces the current. From the point of view of the
MHD equations, this is the result of the well-known magnetic diffusion equation in the presence of resistivity.
Plasma turbulence in a strong magnetic field will most likely give rise to a non-isotropic conductivity. In the case of
double layer formation of electrostatic ion cyclotron turbulence, the dominant effect is that of parallel resistivity
(Lysak and Dum, 1983). It can be shown that this term gives rise to diffusion across the magnetic field:

dB 0 oB
gy = x [m —y] , (5)
X ox

in the geometry of Figure 1 with gradients in y ignored. Thus, the presence of plasma turbulence will in general lead
to a broadening of current structures and the reduction in the current strength.

In this section, we will compare three models of parallel electric fields caused by current-driven turbulence.
In order to incorporate these effects into a MHD model, a simple relationship between the fluid properties of the
plasma, such as density, drift velocity and temperature, and the parallel electric field, must be introduced. Clearly, a
satisfactory model of this type has not yet been found and, indeed, it is likely that the complexities of plasma

turbulence cannot be so easily parameterized. Nevertheless, some simple models of this type can be considered and
will serve to indicate some of the relevant effects.
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The first model we will consider will be based on simulations of current driven double layers (e.g., Sato and
Okuda, 1981; Kindel et al., 1981; Barnes et al., 1985). When the drift velocity in these models is about half the
electron thermal speed, double layers with amplitude e®/T, = 1 are produced and, in long enough systems, will
recur at intervals of the order of 1000 Debye lengths, where a Debye length is the order of a few meters in the auroral
plasma. Since the MHD model has a grid size along the magnetic field of about 500 km, it is appropriate to consider
the average electric field, which for the above numbers leads to:

E, = 0.001 [4wnT,]""? ©6)

Although the drifts in excess of the threshold cause these double layers to grow and decay more quickly (Barnes et
al., 1985), the average electric field over the time step of the MHD model (about 0.01 s) may remain roughly
constant. To avoid a discontinuity in the electric field, the parallel field is increased linearly [using the linear resisti-
vity given by equation (9) below] until the double layer electric field given above is reached. It should be noted that
double layer electric fields are not present when the plasma frequency exceeds the electron cyclotron frequency
(Barnes et al., 1985). This effect has not been explicitly included in the model; however, in the region in which the
critical current is the lowest, the plasma frequency remains below the cyclotron frequency.

As an alternate to the double layer model, we consider a model for electrostatic ion cyclotron (EIC) turbul-
ence due to resonance broadening (Dum and Dupree, 1970; Lysak and Dum, 1983). In this model, a resistive
potential drop is introduced whenever the current exceeds the threshold for the EIC instability, i.e., about 0.3 of the
electron thermal speed for T, = T;. The amplitude of the fluctuating electric field, and thus the effective resistivity,
increases quadratically as the current increases. Thus, the electric field becomes:

mv*
E, = — (o= je) » )
ne

where the effective collision frequency is:

Jo = Jerie}
vk = 0.4 Q, [1 + 0.1(2_ ‘) . )
Jcrit

Note that in this case the parallel electric field will scale with the strength of the background magnetic field through
the ion gyrofrequency €); = eB/mjc, in contrast to the double layer model described by equation (6).

These two models have very differing behavior in that the double layer model is electric field-saturated in the
sense that once the critical current is reached, the parallel electric field does not increase further. The nonlinear
resistive model described by equations (7) and (8) is in a sense current-saturated since the electric field rises very
rapidly after the critical current is reached. This enhances the diffusion of the current and reduces it to a lower level.
The third model that will be considered will be one in which an effective collision frequency is assumed as in
equation (7) but the collision frequency is independent of the current once the threshold is reached. Thus, equation
(8) is replaced by:

v = 04 Qi .
)
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when the drift velocity exceeds 0.3 of the electron thermal speed. This model will be referred to as the linear resisti-
vity model.

In order to assess the macroscopic consequences of these models, a series of runs were done with the MHD
model described earlier. In these runs, a current loop of a fixed magnitude and width is introduced on the field line,
propagates toward the ionosphere, and enters a region of parallel electric field described by one of the three models.
The ionospheric conductivity is taken to be fixed at 1 mho, and the density profile is of the form:

n@ = 100e™™ +50c-1" (10)

where n is measured in cm™, ris in Rg, the base altitude for the ionosphere is r, = 1.05 Rg, and the scale heighth =
0.1 Rg. The electron temperature is 1 eV and the upper boundary condition is taken to absorb Alfvén waves which
are incident upon it after being reflected from lower altitudes (Lysak, 1985). As the runs proceed, the maximum
potential drop and the field-aligned current at the ionosphere are monitored, as the system approaches a steady state.
Since the ionosphere is a very good conductor, the current of a reflected Alfvén wave is in the same direction as that
of the incident wave (Mallinckrodt and Carlson, 1978); thus, the final value of the current will be twice the injected
current in the limit of infinite ionospheric conductivity (£p >> X,) and no parallel electric field. Such a case is
shown in Figure 5 in which the injected current was 20 wA/m? and the final current of 36 p.A/m? is nearly double this
value. Because of the diffusion associated with the parallel electric field, the current reaching the ionosphere is
reduced when a parallel electric field is present. This effect is shown for the double layer model and the nonlinear
resistivity model in Figures 6 and 7, respectively. In these figures the injected current was 20 wA/m?. It can be seen
that the double layer model is much less diffusive than the resistive model, with the final currents being 30 wA/m?
and 6 wA/m? for the two runs.

The final current-voltage characteristics for a series of runs are shown in Figure 8. First of all, note that each
of the models produces potentials in the kilovolt range for currents of a few microamps per square meter. This is
significant since the parameters of the parallel electric field model were determined purely from the local properties
of the auroral plasma without any requirement that the global current-voltage relation come out right. Therefore,
none of the models can be ruled out on this basis.

Turning to differences in the models, we see that the double layer model exhibits the voltage-saturation
effect referred to earlier. As the current increases, more of the field line can support the formation of double layers,
leading to an increased total potential drop. Since it is assumed that the parallel electric field does not increase
further as the current increases, the addition of more current does not further increase the total potential drop.

The linear resistivity model produces a linear current-voltage characteristic. At first glance this may appear
obvious, but actually the situation is complicated by the scaling of the fields and currents along the field line. It was
shown by Lysak and Dum (1983), however, that these factors cancel when the resistivity scales with the magnetic
field strength, preserving the linear relationship between the total potential and the field-aligned current at the
ionosphere. The approximate linear relationship has been invoked by Lyons (1980) to support the nonlocal current-
voltage relationship based on adiabatic particle motions (e.g., Fridman and Lemaire, 1980). However, the present
argument shows that this interpretation is not unique.

The current limiting effect of the nonlinear resistivity model is apparent from Figure 8. Here an attempt to
increase the current simply causes an enhancement in the diffusion, leading to large potentials and a broader current
structure as is seen in Figures 9 and 10, which compare the field and current profiles for the double layer and
non-linear resistivity models. Here the enhanced diffusion due to the nonlinear resistivity is evident.
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Figure 11 shows the effective diffusion in the entire set of runs by plotting the ratio between final and input
currents against the input current. As discussed above, the maximum value of this ratio is 2 for the case of infinite
Pedersen conductivity. The open squares represent runs with no parallel electric field and a Pedersen conductivity of
1 mho. The small reduction from 2 in these cases represents the effect of ionospheric dissipation. Note that the linear
and nonlinear resistive models have comparable diffusion for small currents where the nonlinear part of the resisti-
vity is not important; but, at larger currents, the nonlinear model is more diffusive. The double layer model is
comparable to the other models at low currents, but an increase in the current decreases the effective diffusion since
the potential drop does not increase for increasing current.

In summary, the three models for a local current voltage relation produce results consistent with the
observed global relationship. Thus, this type of model cannot be distinguished from the kinetic models of parallel
potential drop on this basis. The double layer model allows for very strong currents to flow in a narrow channel since
the potential drop and thus the effective diffusion do not increase much as the current increases. The nonlinear
resistive model has the opposite effect in that the strong increase in the potential drop for an increase in the current
causes an enhanced diffusion which broadens the current channel, in effect causing the current to flow around the
region of parallel electric field.

IV. SUMMARY AND CONCLUSIONS

The simplified models of parallel electric fields presented here have provided some insight into the develop-
ment of the auroral potential drop, but are clearly limited in their applicability to the auroral plasma. Auroral con-
ditions can be quite varied, and the presence of turbulence along the field line can result in the heating of the plasma
as well as a decrease in the plasma density as transversely heated ions are expelled from the acceleration region.
Therefore, there is more to auroral dynamics than can be found in the simple cold plasma model used here.

Density decreases in the auroral zone serve to decrease the critical current necessary for the generation of
microscopic turbulence, and therefore will increase the total potential drop for a given level of current. Numerical
results indicate that this result is more important in the double layer model because of the “switch-on” nature of the
double layer electric field. Since the double layer electric field scales with the plasma pressure, the potential drop is
localized at the lowest altitudes at which the critical current is exceeded. This is in contrast with the resistive electric
field which depends on the excess current over the critical current, and thus maximizes at the point where the critical
current is lowest. A set of runs in which a current of 10 pA/m? is injected showed that the potential drop increased by
25 percent in the double layer model when the ionospheric scale height [see equation (10)] is reduced to 0.05 Rg
from the value of 0.1 R used in the other runs, while in the nonlinear resistivity model the increase was only 18
percent. Thus, the effect of a density cavity would be to produce an increase in the potential drop, especially in the
double layer model.

The temperature of the topside ionosphere can also vary under auroral conditions, and may be expected to
increase as the result of microscopic turbulence. Increases in the temperature will tend to decrease the extent of the
turbulent region since the critical current scales as the electron thermal speed. Thus, potential drops due to nonlinear
resistivity would be expected to decrease. A similar result is true in the double layer model; however, this effect is
counteracted by the increase of the average electric field due to double layers since this field scales with the square
root of the temperature. Runs at 10 wA/m? indicate that the potential drop in the nonlinear resistivity model
decreased by 35 percent when the temperature was raised by a factor of 10, while in the double layer model the
potential increased by 12 percent. Thus, the increase of temperature favors the double layer model, at least until the
point at which the current becomes sub-critical.
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In the actual auroral zone, these two effects will be necessarily connected. The transverse heating of ions
observed in the auroral zone can create density cavities since the heated ions are subject to the magnetic mirror force
that expels them from the low-altitude auroral zone. One can imagine a scenario in which the increase of the current
magnitude excites turbulence, leading to the heating of ions and the creation of the density cavity. This hot, low
density plasma would lead to conditions under which the formation of double layers could further accelerate
electrons into the atmosphere and ions out of the atmosphere. This would result in the density cavity progressively
extending to lower and lower altitudes, with a corresponding increase in the total potential drop along the field line.
While the existing numerical model is too crude to account for all these effects, this scenario seems plausible based
on the results above. A more complete model including the effects of the thermal evolution of the plasma will be the
subject of future work.

In conclusion, this work has shown first of all that models of the auroral potential drop based on microscopic
turbulence, whether due to double layrs or a nonlinear resistivity, can account for the correct magnitude of the
auroral potential drop for typical auroral currents. The two models differ in that the nonlinear resistivity model
limits the current density by spreading the current over a broader area. In contrast, the double layer model proposed
above has a limit to its total potential drop and can sustain currents with a high density. At such high current densi-
ties, however, this model will most likely be too simplified, since plasma heating and the formation of a density
cavity, effects not included in the cold plasma model presented here, will likely change the nature of the current-
voltage relation.

The oversimplified models presented here represent an attempt to incorporate kinetic effects of the plasma
into a fluid model. In order to model the global structure of the auroral zone, some such approximation must be
made since particle-in-cell or Vlasov models of any large volume of the auroral zone are technically not feasible
with present or anticipated computer resources. The question of a satisfactory parameterization of the kinetic effects
for use in a fluid model remains an open question, which can only be answered by a combination of fluid modeling
and kinetic modeling, as well as analytic theory of the auroral current region.

Acknowledgments. The authors would like to thank W. Lotko and D. S. Evans for useful discussions on this
work. This work was supported in part by NSF grants ATM-8451168 and ATM-8508949 and NASA grant NAGW-
809. Computing costs were supported by the University of Minnesota Supercomputer Institute.

154




REFERENCES

Barnes, C., M. K. Hudson, and W. Lotko, Phys. Fluids, 28, 1055 (1985).

Chiu, Y. T., and J. M. Cornwall, J. Geophys. Res., 85, 543 (1980).

Dum, C. T., and T. H. Dupree, Phys. Fluids, 13, 2064 (1970).

Fridman, M., and J. Lemaire, J. Geophys. Res., 85, 664 (1980).

Goertz, C. K., and R. W. Boswell, J. Geophys. Res., 84, 7239 (1979).

Kindel, J. M., C. Barnes, and D. W. Forslund, in Physics of Auroral Arc Formation, American Geophysical Union
Geophysical Monograph 25, edited by S.-I. Akasofu and J. R. Kan, p. 296, 198]1.

Lyons, L. R., J. Geophys. Res., 85, 17 (1980).

Lyons, L. R., D. S. Evans, and R. Lundin, J. Geophys. Res., 84, 457 (1979).

Lysak, R. L., and C. W. Carlson, Geophys. Res. Lett., 8, 269 (1981).

Lysak, R. L., and C. T. Dum, J. Geophys. Res., 88, 365 (1983).

Lysak, R. L., J. Geophys. Res., 90, 4178 (1985).

Lysak, R. L., J. Geophys. Res., accepted for publication, 1986.

Mallinckrodt, A. J., and C. W. Carlson, J. Geophys. Res., 83, 1426 (1978).

Miura, A., and T. Sato, J. Geophys. Res., 85, 73 (1980).

Rothwell, P. L., M. B. Silevitch, and L. P. Block, J. Geophys. Res., 89, 8941 (1984).

Sato, T., J. Geophys. Res., 83, 1042 (1978).

Sato, T., and H. Okuda, J. Geophys. Res., 86, 3357 (1981).

Sonnerup, B.U.O., J. Geophys. Res., 85, 2017 (1980).

Southwood, D. J., and W. J. Hughes, Space Sci. Rev., 35, 301 (1983).

Vasyliunas, V. M. in Particles and Fields in the Magnetosphere, edited by B. McCormac, p. 29, D. Reidel,
Hingham, Massachusetts, 1970.

155



156

I

Generator
/

Figure 1. A sketch of the dipolar coordinate system used in this paper. Here z is the coordinate
along the geomagnetic field, y is the longitude, and x is a coordinate proportional to the inverse of
the L value of the field line.
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Figure 2. A set of snapshots showing the evolution of a run in which a moving voltage pulse travels
across field lines (Lysak, 1985). The contour lines represent current flow lines ni the xz plane of
Figure 1. Note that the currents which reach the ionosphere close in the region between 3 and 4 Rg
where up- and downgoing waves interfere.
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CURRENT DRIVEN WEAK DOUBLE LAYERS

Gérard Chanteur
CRPE/CNET, 92131 Issy-les-Moulineaux, France

ABSTRACT

Double layers in plasmas can be created by different means. For example, a potential difference forms
between two plasmas with different temperatures (Hultqvist, 1971; Ishiguro et al., 1985), in a plasma jet flowing
along a converging magnetic field (Serizawa and Sato, 1984), in a quiescent plasma submitted to an external differ-
ence of potential, or in a turbulent plasma carrying an electric current. The first three cases can be current-free, but
not necessarily, although the numerical simulations have been made under such conditions for the first two points
(Ishiguro et al., 1985; Serizawa and Sato, 1984). Apart from the third case, which is mainly of interest for labora-
tory experiments, these double layers are good candidates for accelerating the auroral electrons to the few kiloelec-
tron volts observed.

I. INTRODUCTION

This paper is devoted to the fourth case, i.e., to weak double layers driven by an electric current. Two papers
have triggered the studies in this field: DeGroot et al. (1977) showed the formation of localized potential jumps in an
homogeneous plasma with a suprathermal electron drift; later, Sato and Okuda (1980) gave evidence for the forma-
tion of small double layers under ion-acoustic instability conditions, i.e., a large electron-to-ion temperature ratio
and a subthermal electron drift. Our present understanding of weak double layers built by electric currents has
mainly grown from the analysis of numerical simulations with either superthermal (DeGroot et al., 1977; Singh et
al., 1985; Singh and Schunk, 1984) or subthermal (Sato and Okuda, 1980, 1981; Kindel et al., 1981; Hudson and
Potter, 1981; Okuda and Ashour-Abdalla, 1982; Hasegawa and Sato, 1982; Nishihara et al., 1982; Chanteur et al.,
1983; Chanteur, 1984, 1986; Barnes et al., 1985) electron drifts, but always in linearly unstable conditions. The
formation mechanism seems to be different in these two cases; furthermore, it is likely to be sensitive to the
boundary conditions in the superthermal case. The basic mechanism which produces weak ion-acoustic double
layers is a current interruption caused by a negative potential spike. This fact was primarily recognized in one-
dimensional periodic simulations (Sato and Okuda, 1981; Kindel et al., 1981; Hasegawa and Sato, 1982; Nishihara
et al., 1982; Chanteur et al., 1983) and has been recently confirmed in the two-dimensional case with a strong
magnetic field and under various boundary conditions (Bames et al., 1985). The theoretical explanation given to the
appearance and the growth of a double layer (Hasegawa and Sato, 1982; Nishihara et al., 1982; Chanteur et al.,
1983; Chanteur, 1984) turns out to be more or less independent of the linear instability. The goal of this paper is to
specify this point, and it will be shown that small and localized differences of potential can be built by a partial
current interruption under linearly stable conditions. It has been demonstrated (Dupree, 1983; Berman et al., 1985;
Pécseli, 1984) that phase space holes can be unstable for electron drifts less than the critical value which destabilizes
the ion-acoustic modes. Although different from our work in many respects, it invokes the same physical basis, i.e.,
the reflection of the current carrying electrons by coherent structures. Section II gives an account of the formation of
weak ion-acoustic double layers under linearly unstable conditions. Section III is a first presentation of recent
simulations demonstrating that small double layers can be produced by a localized current interruption in a margi-

nally stable plasma. A more thorough presentation of these numerical experiments is in preparation (Verga et al.,
1986).
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Il. UNSTABLE CASE

Most of the numerical studies concerning ion-acoustic double layers have been made with electrostatic par-
ticle codes that allow for the existence of thermal fluctuations. Indeed, the relatively small number of particles per
Debye length (usually a few 10" or 10%) gives rise to an artifically high level of thermal fluctuations. Besides, the
probability of “big” fluctuations of the electric potential increases with the length of the system and should not be
dismissed. Since ion-acoustic waves are weakly dispersive, we can argue that a big and negative potential spike
present in the “initial” condition has a coherence time long enough to interact resonantly with the electrons. The
word “initial” deserves a short explanation: a particle run is usually started with particles regularly distributed in
space and attributing each particle a velocity given by a random number generator. The electric field usually taken
equal to zero everywhere at t = 0 is built self-consistently by the thermal motion of the particles in a few tens of time
steps. It appears that the “initial” condition on the field is determined by the microscopic details of the loading of the
particles. The longer the system, the greater the probability to find a negative potential spike sufficiently above the
thermal level to produce a persistent interruption of the current by reflecting the electrons. In a short and periodic
system without any externally applied electric field, this current interruption goes on for the transit time of the
electron flow through the system and a stable BGK state results with a large fraction of trapped electrons. If the
system is long enough for the establishment of this BGK state to be delayed and if the negative spike is not too close
downstream of another big spike, the evolution will be qualitatively different, giving rise to a weak and transient
double layer, as will be seen below. Increasing the length of the system, we increasee the probability of the large
fluctuations and delay the appearance of the BGK state; the combination of these two facts is likely to explain both
the reason why double layers have never been observed in short periodic systems and the reason for the mean
distance between double layers in very long systems. Instead, open boundary conditions not only provide a con-
tinuous input of energy into the system but new potential fluctuations are usually created near the input boundary
(i.e., where the incoming flux of electrons is greater) and propagate through the system, giving rise to the observed
temporal recurrence of double layers even in short open systems (Barnes et al., 1985). Consequently, the spatial and
temporal recurrences of double layers in open systems are mainly governed by the chosen injection process of the
particles at the boundaries. On the other hand, it has been shown (Barnes et al., 1985) that the formation mechanism
of a weak double layer reported in detail in Nishihara et al. (1982), Chanteur et al. (1983), Chanteur (1984, 1986),
and Barnes et al. (1985) is independent of the boundary conditions. Let us now recall the main features of this
process.

In a system driven unstable by an electric current, the perturbations propagating against the electron flow are
strongly damped, and the perturbations close to the most unstable wave number are rapidly selected among the other
ones. On the basis of the linear instability theory for an homogeneous plasma, we expect the turbulence to develop
homogeneously. Instead, it is observed that the evolution of long systems is dominated by one or few coherent
structures, as was shown initially by Sato and Okuda (1980). For example, Figure 1 shows a negative potential spike
(the figure in fact represents the potential energy of an electron), with ed/T. ~ 1 which has emerged from the
thermal noise in a one-dimensional electrostatic and periodic particle simulation with the following parameters:
length L = 512 \p, ion-to-electron mass ratio mym, = 100, electron-to-ion temperture ratio T,/T; = 20, and
electron drift to thermal speed ratio V4/Vy, = 0.8. As previously discussed, this pulse originates in a thermal fluctu-
ation present in the “initial” condition. This negative spike of potential is initially amplified by the linear instability
taken over by the nonlinear instability discussed in Nishihara et al. (1982) and Chanteur (1983). The electrons
having a Kinetic energy less than the height of the potential barrier are reflected on both sides of the pulse; yet, due to
the current, more electrons impinge on the left side of the barrier than on the right side and, consequently, more
electrons are reflected upstream of the barrier than downstream. This simple fact has important implications. First,
the resulting charge separation in the vicinity of the barrier develops a difference of potential between the two sides
of the pulse, as can be seen around x = 120 \p, in Figue 1, the low electric potential being on the upstream side of
the barrier (upstream with respect to the electron drift). Second, quasi-neutrality of the plasma being preserved
outside of the pulse, the electron density in excess on the upstream side is compensated for by an increased ion
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density. Thus, the deep density trough associated with the potential pulse separates the upstream region of inflated
plasma density from the depleted downstream region. Thgd, taking into account the velocity of the barrier, the
mechanism of the instability can be easily understood. Let V,, be the velocity of the barrier and V the velocity of an
incoming electron in the frame of reference moving with the barrier; assuming that the potential does not change
during the interaction with this electron (a reasonable assumption considering the time scales in the numerical
experiments), the collision is elastic and the part_i)cle legyes with a velocity _:V. The kinetic energy oghe particle in
the laboratory frame has changed from 1/2 m(V, + V)?to 1/2 m(V, — V)? i.e., an energy 2m, VO.V has been
transferred to the barrier. The potential barrier moving primarily in the direction of the electron flow receives more
energy from the electrons impinging on the upstream side than it gives the downstream side, and the field energy
locally grows! Detailed energy and momentum balances have been made theoretically (Nishihara et al., 1982;
Chanteur et al., 1983; Pecseli, 1984) and checked in the simulations (Chanteur et al., 1983).

Due to the relatively small number of particles per Debye length, local diagnostics in phase space (for
example the distribution function of electrons at a given location) are poorly done in particle simulations. Instead,
Vlasov simulations are free of this limitation, but in return suffer, at least for this study, from the absence of thermal
noise. Starting with an initial condition strictly independent of x, a good Vlasov code can be run a long time before
truncation and round-off errors seed a potential instability. An initial perturbation has to be put, whether random or
not, in the system; an account of weak double layer formation under such circumstances has been given in Chanteur
(1984). For the present discussion, we just recall the simulation presented in Chanteur et al. (1983). This Vlasov run
was initialized with the same physical parameters as the aforementioned particle run, the initial perturbation being a
localized 10 percent density depression on both species. Although qualified “perhaps unphysical” in Borovsky
(1984), this initial condition reproduces what is built from the exaggerated thermal noise present in particle simula-
tions. In fact, the potential energy of an electron shown versus x and t in Figure 2 is strinkingly similar to the result of
the particle simulation (see Fig. 1). This temporal evolution of the system is not an artifact of the periodic boundary
conditions; doubling the length of the system while keeping the same physical parameters does not change anything.
On the other hand, this behavior is also observed in bounded systems and for different physical parameters (Barnes
et al., 1985). Thus, it is not due either to some numerical coincidence for a magic set of parameters; in turn, the
boomerange motion of the localized wave seems to be an artifact of one-dimensionality (Barnes et al., 1985). Figure
3 displays the electron phase space in the vicinity of the double layer at three different times during its propagation in
the direction of the electron flow. The reflections of the electrons are clearly visible on both sides of the structure,
and the electron holes are seen to be formed in the depleted downstream region [see also Chanteur (1984) and Barnes
et al. (1985)].

The slowing down and the late evolution of the weak double layer cannot be understood without taking into
account the ion dynamics (Chanteur et al., 1983; Chanteur, 1984). Figures 4a and b are local representations of the
ion phase space just around the double layer for the above-mentioned particle and Vlasov simulations, respectively.
It again emphasizes the similarity of the two runs. In the beginning, the negative pulse of potential is moving
subsonically (~ 0.8 c,) toward the right in Figures 1 and 2, consistently with the negative velocity perturbation seen
at times 320 and 340 in Figures 4a and b.. The pulse first undergoes a very faint slowing down (Chanteur et al.,
1983) of purely hydrodynamic origin because of the extremely small number of resonant ions. It has been
emphasized in Chanteur (1986) that resonant ions are by no means responsible for this slowing down and the point
can be stated in the following way. Weakly nonlinear ion-acoustic waves in a stable plasma with a large electron-to-
ion temperature ratio are well accounted for by assuming a cold fluid behavior of the ions and a Boltzmannian
distribution of the electrons in the electrostatic potential. The evolution of the potential is then determined by a
Korteweg-de Vries (KdV) equation, and the numerical integration of this evolution equation shows that a localized
and rarefactive ion-acoustic wave is very slightly slowed down, and simultaneously weakly damped by the radiation
of a dispersive tail on its trailing edge (Nishihara et al., 1982; Fornberg and Whitham, 1978; Okutsu and Nakamura,
1979). In the unstable case presently under investigation, the alteration of the pulse by the reflection of the electrons
has been incorporated in a dissipative KdV equation (Nishihara et al., 1982; Chanteur et al., 1983). The resulting
amplification strengthens the deceleration of the pulse caused by the quadratic nonlinearity ¢ (dd/0x) of the evolu-
tion equation (Nishihara et al., 1982). Of course, the validity of this dissipative KdV equation relying on a fluid
description of the ions progressively breaks down with the onset of the ion trapping. The growth of the potential
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pulse occurs on a time scale comparable to the transit time of the ion through the pulse; thus, the closer to resonance
the ions, the greater the non-adiabatic effect they suffer (which eventually traps them inside the pulse). The onset of
the trapping is visible in Figures 4a and b at times 448 and 512, respectively. The transfer of momentum to these ions
enhances the slowing down of the pulse, which in turn makes the trapping more efficient as the pulse velocity moves
toward the central part of the ion distribution, as shown in Figures 4a and b where the pulse velocity is indicated at
each time by a heavy horizontal line. The trapping is completed when the pulse velocity comes to zero, at times
around 600 in both simulations; yet, the trapped ions are not phase-mixed inside the pulse, and the highly asymmet-
ric trapped population is responsible for the backward acceleration of the pulse with the subsequent detrapping of
the ions. The burst of ions accelerated up to Cs is formed during this process (Fig. 4b) in the downstream region.
Such bursts up to 2 Cg are commonly observed in Vlasov simulations started with random initial conditions
(Chanteur, 1986). In a two-dimensional system, the trapping acts differently since the ions can enter sideways the
potential well, which leads to a trapped population much more symmetric than in one dimension. Barnes et al.
(1985) actually observed in two-dimensional simulations that the pulse does not move backward after it has
stopped. We can thus conclude that the observed boomerang motion of the structure is an artifact of one-
dimensionality.

Except for this rather secondary point, one- and two-dimensional simulations agree on the basic process
responsible for the formation of weak double layers driven by the ion-acoustic instability. This process recently
received an experimental confirmation in the laboratory experiment done by Sekar and Saxena (1985).

lil. AROUND THE MARGINAL STABILITY

It has been suggested in Chanteur (1986) and Pecseli (1984) that the formation mechanism discussed at
length in Section Il can work with electron drift velocities unable to destabilize the ion-acoustic mode. A series of
Vlasov simulations have been done to check that point. More generally, we have studied both subthermal and
superthermal drift cases, but always near or below the marginal stability of the plasma. The marginal stability
condition referred to is the classical one computed for an infinitesimal harmonic perturbation of the plasma and thus,
strictly speaking, is not of concern for the initial condition used to start the simulations. Nevertheless, it indicates
that the thermal noise, absent in the Vlasov simulation, would be marginally stable. We chose the same initial
condition previously used in Chanteur et al. (1983) and Chanteur (1984) and reported to in the preceding section,
i.e., a 10 percent density dip on both species. The drift motion of the electrons relative to the ions rapidly creates a
potential trough, the depth of which strongly depends on the drift velocity V4 and on the initial amplitude of the
density dip. It is worth noticing that the weak double layers triggered by initial density dips almost vanish when the
initial amplitude of these dips is reduced to 1 percent. Thus, under marginally stable conditions, the formation
mechanism of weak double layers needs a rather strong initial depression of the plasma density to be effective. In
this respect, the linear instability helps a lot in the unstable case. In the present case, the initial density dip has to be
produced by other means. The length of the system has been chosen equal to 1024 A, and 2048 A, in some cases to
prevent an early influence of the periodic boundary conditions in the circulating electrons. As said in the
introduction, we only present a small sample of our simulation results. A full account of these results will be given
in the paper by Verga et al. (1986), presently under preparation. The physical parameters of the five selected runs
are listed in Table 1. Figures 5 to 8 illustrate runs 1 to 4, respectively, each figure being composed of an upper panel
for the electric potential (averaged over two plasma periods) in unit T./e, and of a lower panel for the electron phase
space. The results are conveniently organized with respect to the ion-to-electron temperature ratio.
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TABLE 1. PHYSICAL PARAMETERS OF THE SELECTED RUNS

System
Linearly Length
Run Number Ty/T, VoV Vo'V Stable? (Ap)
1 0.30 0.55 0.50 yes 1024
2 0.30 0.55 0.60 no 1024
3 0.50 0.88 0.85 yes 1024
4 1.00 1.44 1.25 yes 1024
5 1.00 1.44 1.50 no 2048

Note: The mass ratio is my/me. = 100 for the five runs, and V. is the critical electron drift which destabilizes the
plasma.

The case of relatively cold ions (T/T. = 0.30) is illustrated by runs 1 and 2, which are linearly stable and
unstable, respectively, but both marginally, as appears from Table 1. The two upper panels in Figures 5 and 6 show
that the electric potential in the vicinity of the moving density depression has the same spatial variation as the one
discussed in Section II for strongly unstable cases. Only quantitative differences occur; the amplitude of the nega-
tive pulse and the difference of potential between the downstream (on the right of the figures) and upstream sides
which were of the order of one in the Section II cases are now reduced to 0.05 for run 1 and 0. 10 for run 2. It is worth
noticing that the linear instability, although weak, helps building a difference of potential which is twice the one of
the stable case. The electron phase spaces drawn with the same contour levels (lower panels in Figs. 5 and 6) show
the same enhancement of the structure; moreover, tiny electron holes are formed downstream of the double layer in
run 2. These electron holes can be associated one to one with the small positive pulses seen on the high potential side
(Fig. 6, upper part). Run 3 for T/T, = 0.50 differs from run 1 by the formation of electror holes, which are even
deeper than in run 2, as shown by the phase space (Fig. 7, lower part) and the associated pulses of potential, also
more pronounced than in case 2. The potential trough and jump have values twice those of the corresponding values
inrun 1. Going on to higher ion temperature with T;/T, = 1, a superthermal drift velocity is now required to get the
marginal stability of the plasma, and differences with the colder ion cases can be seen both on the potential and in the
electron phase space. First, the potential trough is not as sharp as in the previous cases. Second, the difference of
potential, although greater than previously, is much less steep, apart from the large pulses associated with very deep
electron holes. Correspondingly, the acceleration region of the electrons in the vicinity of the potential well (see
Fig. 8, lower part) is not as well defined as in the cold ion case. To briefly summarize the observations, we can say
that, except for very weak drift velocities, electron holes moving at velocities close to 0.5 Vu are recurrently formed
in the density depression which moves subsonically. The region of high potential extends between the density
depression and the leading electron hole.

Run 5 differs from run 4 by the initial condition, which is now made of two identical density depressions
separated by 512 Ap,. Snapshots of the averaged potential presented in Figure 9 show that the two structures evolve
independently, as long as they are disconnected, yet a blowup of the potential occurs when the two depleted regions
join together. This behavior has not yet been investigated in detail and needs to be confirmed for other sets of
parameters.
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IV. CONCLUSION

The physics of the formation of weak double layers by current interruption seems now to be satisfactorily
understood after a few years of both theoretical and numerical work. We have presented the first evidence of weak
double layer formation in stable conditions: they share conditions, except for those associated to the ion dynamics.
Their weakness explains why they have almost no effect in the ion phase space. An interesting point associated with
these structures is the recurrent formation of electron holes; we believe that it deserves further work, as well as the
blowup of the field observed during the coalescence of two depleted regions.
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Figure 4. Ion phase spaces around the double layer at different times. (a) Particle simulation;
(b) Vlasov simulation. The heavy horizontal line indictes the velocity of the localized wave.
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ABSTRACT

Various mechanisms for driving double layers in plasmas are briefly described, including applied potential
drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are dis-
cussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and
the currents through them undergo slow oscillations which are determined by the ion transit time across an effective
length of the system in which the double layers form. It is shown that a localized potential dip forms at the low
potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion,
whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient
magnetic field by contact potentials is also discussed. Two different situations have been considered; in one, a
low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current
sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces.
In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also
discussed when the current sheet thickness is varied. Finally, the generation of electric fields (parallel to an ambient
magnetic field) and double layers in an expanding plasmas is discussed.

I. INTRODUCTION

Since the early days of double layer (DL) research (e.g., Block, 1972), considerable progress has been made
in the understanding of the formation of DL’s and their dynamical features. The purpose of this summary is to
highlight some of the major findings on the generation of electric fields in collisionless plasmas and on the forma-
tion, dynamics, and structure of double layers. We define double layers as electrostatic potential structures that can
support localized electric fields in collisionless plasmas. The nomenclature “double layer” is derived from the fact
that the electric field is primarily supported by two layers of charges (positive and negative). Such potential struc-
tures can form in current carrying plasmas as well as in the absence of a current.

Figure 1 shows a summary of the various mechanisms that can create double layers in a plasma. Broadly
speaking, the mechanisms can be categorized as follows:

1. Applied potential drop across a plasma
2. Current through a plasma
3. Contact potentials

4. Plasma expansion.
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These mechanisms are not as distinct from each other as it may appear. For example, when a potential drop is
applied across a plasma, a current develops (Singh, 1980, 1982; Singh and Schunk, 1982a), or when a current is
drawn through a plasma, a potential drop develops (Singh and Schunk, 1982b, 1984a). The characteristics of
double layers driven by an applied potential drop and by a current through the plasma have been compared, and they
have been shown to be very similar (Singh and Schunk, 1983a).

Contact potentials develop when plasmas with different properties come into contact. The difference in the
jon and electron gyroradii plays an important role in creating perpendicular electric fields when the contact surfaces
are parallel to the ambient magnetic field. Typically, the scale length of such electric fields is of the order of the ion
Larmor radius. The potential structures associated with such electric fields appear as perpendicular or oblique
double layers. When the perpendicular electric fields are shorted out at some location away from the source region,
it is possible to generate two-dimensional potential structures with electric fields parallel to the ambient magnetic
field. Such two-dimensional potential structures are known to play an important role in auroral electrodynamics. It
is worth mentioning that the generation of a parallel potential drop by shorting out the perpendicular electric fields
away from their source region is, in a sense, equivalent to applying a potential drop. Here, the perpendicular poten-
tial drop becomes a parallel potential drop due to the conducting boundary condition.

Current sheets or filaments of a finite thickness in plasmas are examples where the plasma processes driven
by both the contact potential and the current take place. Multi-dimensional double layers form in such cases (Singh
et al., 1983, 1984, 1985, 1986).

When a high-density plasma expands along an ambient magnetic field into a low-density plasma or into a
vacuum, electric fields are set up. Near the expansion front, a double-layer type-charge separation occurs. Thus,
currentless double layers form in expanding plasmas (Singh annd Schunk, 1984b).

The purpose of this paper is to present a summary of our studies on the above mechanisms for generating
electric fields and double layers. These studies have been performed either with a one-dimensional Vlasov-Poisson
solver (Singh, 1980) or with a two-dimensional particle-in-cell (PIC) code (Singh et al., 1983, 1985).

Il. APPLIED POTENTIAL DROP

Basically, the process of DL formation is creating a potential drop. Thus, the application of a potential drop
across a collisionless plasma may drive a double layer along with a host of other plasma processes (Singh and
Schunk, 1982a). There are several laboratory experiments (Coakley and Hershkowitz, 1979; lizuka et al., 1983,
1985) and numerical simulations (Joyce and Hubbard, 1978; Singh, 1980, 1982; Singh and Thiemann, 1980a,b;
Singh and Schunk, 1982a,c, 1983a; Johnson, 1980) in which DL’shave been driven by applied potential drops.
Some of these experiments and simulations (Singh, 1982; Singh and Schunk, 1982a, 1983a) show remarkable
similarities in both the processes leading to the formation of a DL and its dynamics. It is found that these processes
are cyclic; the DL formation leads to current interruption, as the DL moves the currents recuperate, leading to the
reformation of a new DL. In connection with several space and cosmic plasma phenomena, Alfvén (1982) has
invoked the role of exploding double layers, which are cyclic. Thus, it is relevant here to discuss the cyclic behavior
of double layers as seen in laboratory experiments and simulations.

Here we illustrate some important plasma processes taking place during recurring DL formation by present-
ing results from one-dimensional Vlasov simulations (Singh, 1982; Singh and Schunk, 1982a,c, 1983a) in which

the dynamics of the plasma of length 0 < x < d is followed by solving the Viasov and Poisson equations after a
potential drop Ad is applied across the plasma. In Figure 2 we present a summary of a simulation in whichd = 100
No and Ad, = 30 kgTy/e, where A, is the plasma Debye length with T, as the electron and ion temperature.
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Applying a potential drop across a quasi-neutral plasma is equivalent to applying a uniform electric field E,
(see the potential profile att = 0in Figure 2a), whose strength depends on the applied drop Ady, and the length of the
system; Eq = Ado/d (Fig. 2a). This field accelerates electrons and ions in opposite directions. However, during very
early time ion acceleration is not important, but the electrons are accelerted to the extent that a current is set up in the
plasma which may exceed the current at the cathode boundary, x = 0 (Fig. 2b). When this happens a positive space
charge appears near the cathode (x = 0, in Fig. 2) modifying greatly the initial linear potential profile (Fig. 2a). This
potential perturbation evolves into an electron hole in the form of a positive potential pulse which propagates in the
direction of the initial electric field (Fig. 2a) and it is destroyed when it reaches the anode end. During the phase of
the electron hole propagation, counterstreaming electron beams form (Singh, 1982). After this phase the plasma is
subject to a strong high frequency turbulence, which modifies the plasma greatly. One important modification is the
expulsion of the plasma and creation of plasma cavity. In simulations with very short lengths (Singh, 1980) (& <
100 A\y,), the formation of an extended cavity is not seen. However, as the system length increases, the extended
cavity becomes an important feature of the plasma (Singh, 1982; Singh and Schunk, 1982a). Also, the ion flux into
the plasma from the anode boundary is totally disrupted; as a matter of fact, an outflux of ions occurs.

The potential step near the cathode evolves into a double layer (Figs. 2a, ¢, and d) self-consistently modify-
ing the electron and ion velocity distribution functions. Soon after its formation, the DL develops a potential dip
(potential profiles marked with “A” in Fig. 2e) at its low potential end which interrupts the electron current (bottom
panel in Fig. 2e) and it moves toward the anode (compare potential profiles “A” and “B” in Fig. 2¢). The moving
double layer sits on an expanding plasma density front moving approximately at the ion-acoustic speed (Singh and
Schunk, 1982b). The expanding plasma and the ion acceleration by the double layer produce counterstreaming ion
beams near the low potential end of the DL (Singh and Schunk, 1982a). In the frame of reference of the moving
double layer, the electron and ion current continuity conditions are maintained (Singh and Schunk, 1982a).

As the double layer moves, the ion flux (current) at the anode reverses from outflux to influx (Fig. 2¢). As
the ion current through the DL recuperates, so does the electron current approximately satisfying the Langmuir
condition (Singh and Schunk, 1982c). In the presence of the ion beam and the electron current on the low potential
side, any positive potential perturbation near the cathode triggers the reformation of the double layer and the above
plasma processes repeat in a cyclic fashion (Fig. 2e). The time constant of this cyclic process is the ion transit time
(7;) across the system or equivalently the transit time of the double layer across the system. The above cyclic
phenomenon of DL formation is summarized in Figure 3. The cyclic reformation of double layers has been seen in

simulations with applied potential drops reported by other authors (Joyce and Hubbard, 1978; Borovsky and Joyce,
1983).

Some of the cyclic processes seen in the simulations have also been seen in laboratory experiments (lizuka et
al., 1983, 1985). These experiments were carried out in a Q machine with both single- and double-ended opera-
tions. In the single-ended operation only the cathode plasma source was operative. On the other hand, in the double-
ended operation both the cathode and anode plasma sources were operative. lizuka et al. (1983) clearly show that in
both types of operations, cyclic behaviors were seen, but there were some differences between them as discussed
below. With the single-ended operation, the double layer formed near the cathode and subsequently moved toward
the anode and disappeared there, and with the applied potential drop persisting, a new double layer formed near the
cathode and moved away from it. Thus, the double layer appears to show a forward (toward anode) and backward
motion. However, the backward motion (toward cathode) was found to be so fast that the details of the plasma
processes during this phase could not be resolved in the experiments. From our simulations we find that the time
scale of the rise in the potential at the low potential end of the double layer, which eventually leads to the formation
of a new double layer (Fig. 2f), is roughly 7, < 100 wpo". For the plasma densities (~ 10® cm™) in the experiment, T,
= 0.1 s which is much smaller than the temporal resolution of about 1 ws in the experiments.

<3
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In double-ended operations, lizuka et al. did not see the motion of the whole double layer; instead, a back
and forth motion of the low potential end of the double layer was seen. In agreement with the single-ended opera-
tion, the backward motion was found to be so fast that it could not be resolved in the experiment while the forward
motion was slow. These motions were correlated with the oscillation in the current at a frequency determined by the
transit time of the low potential end during its forward motion. Such features of double layers seen in the Q machine
with the double-ended operations are common in simulations with very short system lengths (Singh, 1980; Singh
and Thiemann, 1980a).

The cyclic behavior seen in the simulations and laboratory experiments driven by applied potential drops
has also been seen in simulations (Singh and Schunk, 1982b, 1983a, 1984a) and experiments (Leung et al., 1980)
in which double layers were driven by current injections. .

It is important to assert here that the cyclic behavior seen in the simulations and experiments do not appear to
be an artifact of the boundary conditions. The primary cause of the cyclic behavior appears to be the fundamentally
different time scales associated with the electron and ion dynamics. The plasma processes which lead to the double
layer formation interrupt the ion flux into the double layer. Due to the lack of the ion flux, the double layer moves
and also the current through it disrupts according to the Langmuir condition (Singh and Schunk, 1982c). When the
ion flux recuperates slowly, so does the electron current. Some plasma fluctuations on the low potential side, after
the current recovery, start the process of double layer reformation. In the simulations, the fluctuations are found to
be growing electron holes, which appear to be caused by the rarefaction instability (Carlqvist, 1972; Block, 1972;
Singh, 1982).

The cyclic oscillations discussed above appear to be in accord with the theoretical work of Silevitch (1981),
who showed that in an unbounded plasma, strong double layers have a negative dynamic resistance. Thus, only
when the system (circuit), of which the double layer is a part, is sufficiently “lossy,” it is possible to create a steady
double layer. Otherwise, the double layer oscillates with a frequency determined by an effective ion transit time
(Silevitch, 1981).

It is worthwhile to mention that Smith (this proceedings) draws quite different conclusions from those drawn
here regarding the cyclic behavior of double layers as seen in simulations and experiments. His discussion on the
experimental results with the double-ended operation of the Q machine and the comparison of the results from
experiments (lizuka et al., 1983) with those from simulations (Singh and Schunk, 1982a,c) are misleading.

The cyclic behaviors of the double layer and the current through it, as discussed here, may be relevant to
some space and cosmic plasma phenomena such as magnetic storms, solar flashes, and solar flares, which are found
to be repetitive (Alfvén, 1982). It has been suggested that these phenomena may be caused by exploding double
layers (Alfvén, 1982) which are caused by the inductive effects in the current systems in the plasma. When the
double layer forms, the current interrupts. The decreasing current may induce large voltages which add to the
double layers. The repetitive feature appears because of the subsequent current recovery. The time scale (7.) of such
recovery may be determined by the circuit properties. If 7. << 7, the current recovery through a DL is dictated by
the time scale of the ion transit time. Otherwise (1. >> T;), the repetition time is determined by 7. For a given space
or cosmic situation it is possible to make rough estimates of T; (Singh and Schunk, 1982c), but it is difficult to
estimate 7. because of the distributed nature of the circuit properties associated with the currents.

As an illustrative example, let us consider the auroral circuit. If we assume that circuit length parallel to the
geomagnetic field is & =~ R., the Earth radius, the transit time of an ionospheric hydrogen ion with thermal energy ~
1 eV isT; = 500 s. For an auroral circuit, Alfvén (1982) estimated the inductance L = 30 H. Assuming the resistance
in the circuit to be R = 0.1 ohm, 7. = 300 s. However, we note that these numbers are highly tentative. It is noteven
certain that for the auroral double layer, which exists in extended auroral cavity, the transit times across or along the
field lines are relevant (Singh and Schunk, 1982c¢).
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lll. CURRENT INJECTION

The above cyclic process leading to double layer reformation has been seen in laboratory experiments
(Leung et al., 1980) and simulations (Singh and Schunk, 1982b, 1984a) when electron current is injected into the
plasma. However, there are some important differences in the formation processes of the double layers driven by
current injection or applied potential drop. In the former case when the electron drift velocity is sufficiently large the
Buneman instability leads to the double layer formation. In the early stage of the Buneman mode relatively small
scale waves grow (see early time (t < 1920) plots Fig. 4a). During the nonlinear stage of the instability the small
scale oscillations transform into long wavelength ones (1920 < t <2000; Fig. 4a). Further evolution of the waves
leads to formation of solitary pulses (t = 2000; Fig. 4a). The double layers evolve from these pulses by self-
consistent modification of the electron and ion distributions.

IV. DOUBLE LAYER STRUCTURE

During their temporal evolution, double layers undergo considerable modification in their potential dis-
tribution which critically depends on the current through the double layers. In this section we illustrate this through
an example in which the plasma was driven by a current as discussed in Section III. However, it is important to note
that the features discussed here are quite general. Figure 4b shows the temporal evolution of the double layer poten-
tial profile after the initial evolution shown in Figure 4a. The corresponding temporal evolutions of the average
electron drift (V,,), electron thermal velocity (V,), electron current (J.), and electron temperature (T.), all quan-
tities being on the low potential side (X = 50), are given in Figure 4c. At early time (t < 2340), when the current
density is large (|J.| > 1.5), multiple double layer formations with typical double layer dimension 2p. = 20 A, are
seen. On the other hand, when the current interrupts suddenly at t = 2345, the double layer develops a localized
potential dip at its low potential side. At such times Vg, < V... The sudden electron current interruption is seen to be
accompanied by a disruption in the ion influx caused by the strong solitary pulse at t = 2345. Figure 4d shows the
structure of the double layers with a dip by plotting the electron and ion density profiles along with the potential
profile. Considering the charge separation (Fig. 4d) we note that the potential distribution is a triple layer. However,
its predominant nature, as determined by the large electric field, is still of double layer type. The dip plays the role of
a current interruptor to adjust the electron current in accordance with the ion influx so that the Langmuir condition is
met.

The formation of a dip at the low potential end of a weak ion-acoustic (IA) double layer has been known
since its first observation in numerical simulations (Sato and Okuda, 1981). The interesting fact to note is that the
formation of an IA double layer itself depends on such dips (Hasegawa and Sato, 1982). On the other hand, we have
shown here that in the case of an already existing double, whether weak or strong (Singh et al., 1985), the current
interruptions lead to the formation of such dips.

V. DOUBLE LAYER SCALE LENGTHS

Several simulations and laboratory experiments have indicated that for strong double layers the scale length
L is given by (Joyce and Hubbard, 1978, Singh, 1980),

L=6 (eA(I)DL/kBTO)UZ ) (1)
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This scaling has been empirically derived from simulations based on applied potential drops. We find that when
double layers evolve from waves or wavelets, such as the electron holes (Fig. 4b), the double layer scale length is
typically of the order of the scale length of the perturbations from which the DL evolves.

VI. CONTACT BETWEEN DIFFERENT PLASMAS

The existence of contact potentials (electric fields) near the contact surface between two materials having
different electrical properties is a well-known phenomenon. In plasmas, the existence of such potentials has been
investigated in connection with plasma confinement (e.g., see Sestero, 1964). In space plasmas, the studies related
to the structure of the magnetopause indicate that this is a region where contact potentials can develop (e.g., see
Whipple et al., 1984 and references therein). Several years ago, Hultqvist (1971) suggested that the contact between
the hot plasma in the plasma sheet and the cold ionospheric plasma may create magnetic field-aligned (parallel)
electric fields which could account for the observed precipitating energetic ions along the auroral field lines. More
recently, Barakat and Schunk (1984) suggested that the contact between the cold polar wind electrons and the hot
polar rain electrons may create parallel electric fields.

It is now clear that electric fields perpendicular to the geomagnetic field are an important feature of the
auroral plasma. However, the mechanisms for creating such fields have not been well established. It is possible that
they are supported by discontinuities in the plasma properties (such as particle temperatures and densities) across
magnetic field lines. Such discontinuities, in which the normals to the plane of the discontinuities are perpendicular
to the magnetic field lines, are known as tangential discontinuities.

Even though the existence of perpendicular electric fields in the auroral plasma is well established, the
nature of the plasma discontinuities (associated with the fields), if they exist, remains virtually unexplored.
Recently, however, Evans et al. (1986) have presented observational evidence that tangential discontinuities do
occur in association with discrete auroral arcs. They also conducted one-dimensional steady-state calculations on
the generation of perpendicular electric fields through the contact of a high-density hot plasma with a low-density
relatively cold plasma. They obtained electric fields having scale lengths of both the electron and ion Larmor radii.
This is expected because in their model the electrons were not highly magnetized; they used {)/w,. < 1/3, where (),
and wy, are the electron-cyclotron and electron-plasma frequencies, respectively. However, in the auroral plasma,
where the large perpendicular electric fields have been observed, typically () >> w,., implying highly magnetized
electrons.

Motivated by the observations of large perpendicular electric fields in the auroral plasma, we have pursued
two different approaches for creating perpendicular fields by contact potentials as follows:

1. When a low-density containing sufficiently hot ions is sandwiched by high-density cold plasmas, it is
possible to generate electric fields having strengths comparable to those observed in the auroral plasma.
In such a situation the electric fields occur near the edges of a cavity in the plasma density as it is
sometimes the case in the auroral plasma (Mozer and Temerin, 1983).

2. Upward field-aligned currents are a well-known phenomenon in the auroral plasma. These currents can
occur in the form of thin sheets or filaments. We study such a situation by driving currents through a
background plasma. The currents flow in sheets of finite thicknesses. The contact between the plasmas
inside and outside the sheet produces perpendicular electric fields.

By means of numerical simulations, we have studied the above mechanisms for the generation of perpen-
dicular electric fields. We briefly summarize our studies in the following two subsections.
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A. Perpendicular Electric Fields Near the Contact Surface Between Hot and Cold Plasmas

Figure 5 shows the geometrical scheme of our simulations. Using a standard particle-in-cell code (Morse,
1970), we simulate a two-dimensional plasma of size L, X L,. The magnetic field B is along the y-axis. It is
assumed that all field quantities and plasma properties are invariant along the z-axis. In order to study the generation
of the perpendicular electric fields, the plasma is stratified along the x-axis. The simulation plasma is divided into
regions I, I1, and ITI, which are initially (time t = 0) filled with plasmas with different properties. For this study, the
plasmas are as follows. In region I, n;; = n,; = n,, where n denotes density and subscripts e, i, and 1 refer to
electrons, ions, and region I, respectively; the electron temperature T.; = T, and the ion temperature T;, is varied in
the different simulations. In regions II and III, the plasma properties are the same: n; = n., = n;3 = nezand T;; =
T., = Ti3 = Tez = T.. The temporal evolution of the plasmas for t > 0 is followed by calculating the particle
dynamics with the self-consistent electric fields.

In our simulations we use the electrostatic approximation. Thus, the electric fields are calculated by solving
the Poissson equation with the following boundary conditions: ¢(x = -L,/2,y) = &(x = L,/2,y) = 0. Note that
these are the Dirichlet conditions on the electric potential ¢. Along y we use a periodic boundary condition, imply-
ing d(x,y = 0) = &d(x,y = L,). The electric field E is obtained from E = V.

In the simulations described here, we ignore the magnetic fields generated by the plasma currents, which
flow near the plasma interfaces. Thus, the ambient magnetic field remains unperturbed. Such an assumption
appears justified at altitudes up to a few Earth radii, where the geomagnetic field is strong and the particle pressures
are much smaller than the magnetic pressure.

We use the following definitions and normalizations: density i = n/n,,; temperture T = T/T,, where n, and

T, are the initial (time t = 0) dens1ty and electron temperature in region I; distance X = x/Aq,; velocity V = VIV,

time t = tw,,; electric potential d> = ed/kgT,; electric field E = E/E,; currentJ = J/(n,eV,,), where V,, = (kgT/

m.)"?, Wpo = N€ 2/MeEq, Ao = Vio/Wpo, Eo = kgTo/€N 4o, kg is Boltzmann’s constant, and m, is the electron mass. In
the simulations we use an artificial ion mass, m; = 64m,.

The results described in the following sections are taken from simulations in which L, X L, = 64 X 64 Ndo2s
d = 32 Mg, Qe/wp, = 4, where (). is the electron cyclotron frequency, and where the number of electrons and tons
per cell of dimension A4,% was 4 in region I and 16 in regions II and III.

When the plasma properties change along a direction perpendicular to the magnetic field, as in Figure 5, the
ions play a crucial role in creating the contact potential near the interfaces between the different plasmas. As long as
the ion temperature T; > (m./m;)""*T,, where T, is the electron temperature, the ion Larmor radius p; > p., the
electron Larmor radius. Thus, ions from the neighboring plasmas penetrate the interface more effectively than do
the electrons. Thus, depending on the relative densities and the ion temperatures in the neighboring plasmas, a
contact potential may develop.

There are numerous possibilities for choosing the relative densities and temperatures in region I to III of
Figure 5. In this study, we were primarily motivated by the observations of perpendicular electric fields near the
edges of density cavities (Mozer and Temerin, 1983). Thus, we chose fi, = fi; = 4and ii; = 1. We assumed that the
dense plasmas in regions II and III were cold and that they had the same temperature T, < T,. On the other hand, the
electrons and ions in region I were assumed to be warmer than those in the other two regions. We present results on
the effect of the variation of the warm ion temperature on the perpendicular electric fields that developed near the
contact surfaces.
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Figure 6 shows the distributions of the electric potential, the perpendicular electric field, and the plasma
density as functions of X att = 100forT. = 0.2T,, and T;, = 20 T,. Recall that T.; = T,. Thus, in the low-density
plasma of region I, the ions are hotter than the cold ions in regions II and III by a factor of 100. We note that the
average Larmor radius of the hot ions py =~ 9 Ago. The quantities shown in Figure 2 are time-averaged over a time
interval of At = 50 centered at t = 100.

Figure 6a shows that a negative potential valley develops in region I (|| < 16). The large perpendicular
electric fields develop near the contact surfaces, where sharp gradients occur in the density (Fig. 6b). The maximum
magnitude of the electric fields is approximately E, = 0.6 and the scale length of the electric field near each
interface is about py = 9 Ag,.

We find that such large electric fields develop only when the ions in region I are sufficiently warm. In order
to show this we carried out simulations by varying the hot ion temperature T;;. For T;; = T,, we did not find any
enhancement in E, near the interfaces. As the ion temperature T; was increased, bipolar electric fields developed
near the interfaces; for T,;/T, = 5, E max ~ 0.2. It was found that for T;;/T, > 10, E .« does not increase
indefinitely, but for the parameters used in the simulation it is limited to about E max < 0.6.

A noteworthy feature was found that is that the electric fields maximize just inside the low-density plasma
and not at the interface (Fig. 6). This happens because the gyrating cold ions in the high-density plasmas of regions
IT and HI partially neutralize the space charges created by the hot gyrating ions near the interfaces. In Figure 6 the
magnitude of the hot ion Larmor radius py is indicated. The electric fields at the interfaces have scale lengths of the
order of the Larmor radius.

The temporal evolution of the potential drop A¢ = $(x = 0) in the simulations show that at early times (t<
20) the potential drop grows and afterward undergoes a slow oscillation, with time-averaged values depending on
the hot ion temperature T;,. It is worth mentioning that the time constant (7 .y, for the development of the contact
potential (Ad) is approximately given by

Teont ~ 20 wpo'l ~ Q0 (2)

where €, is the ion-cyclotron frequency ({); ~ eB/m;). By varying {)./w,,, we found that the above scaling of Tcon
with ; is generally valid. Thus, the contact potential sets up with a time constant that is associated with the ion
cyclotron motion.

The slow oscillations occur at the ion-plasma frequencies of the plasmas in regions I and II. Comparing the
relative amplitudes of E, and E; associated with the oscillations, we find that E, >> E,. Thus, these oscillations are
not of the ion-acoustic type, but are associated with the lower hybrid frequencies in regions I to II.

It is important to note that the geometry of our simulations does not allow the excitation of drift modes
propagating in the direction of the diamagnetic currents near the interfaces at x = *d/2. These currents flow along
the z-axis. We have assumed in our simulations that all physical quantities are invariant with respect to z. Thus, no
wave modes are allowed to propagate in this direction.

The contact potential develops because the hot ions in region I, while gyrating, penetrate into the neighbor-
ing plasmas of regions II and I1I. In order to show this, the ion velocity distribution function (F) is plotted in Figure 7
as a function of the x-component of the ion energy, W, = 172 mV,?> = 32 V,%kgT,, at several locations for the
simulation with T;/T, = 15. The distribution at x = 0 (center of region I) clearly matches the initial Maxwellian
distribution with a temperature T;; = 15, as shown by the asymptote marked with this temperature. On the other
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hand, at X = 32 (near the end of region III) the ion population is cold. At X = 24, we see that the hot and cold ions
have mixed together. The average ion Larmor radius for the hot ions in region I for T, = 15is Py =~ 8. Thus, we
expect the penetration of a large number of hot ions from region I(|%| < 16) into region III up to a distance of about X
~ 24. This is verified by the distribution function at X = 24. The distribution at X = 16 is near the initial interface,
where we see that compared to the numbers of ions in the cold and hot populations at X = 24, the number of ions in
the cold population has decreased, while that in the hot population has increased.

We summarize this section by noting that when a low-density plasma containing hot ions comes into contact
with a high-density cold plasma with the contact surface being parallel to the magnetic field, it is possible to create
perpendicular electric fields. The time constant for creating such fields is roughly ;"' and the scale length is appro-
ximately py, the Larmor radius of the hot ions.

The above results indicate that when the hot ion temperature T;; > 10 T,, a rough estimate of the strength of
the perpendicular electric field is

E, ~05E, |, 3)

where the normalizing electric field E, critically depends on n, and T,. When n, varies from 1 to 10 cm™ and T,
varies from 1 to 100 eV, the strength of E; ranges from several tens to several hundreds of mV/m. Satellite observa-
tions indicate that the electric fields associated with electrostatic shocks (Mozer et al., 1980) have a similar strength.
For example, if we assume that the hot plasma in region I is of plasma sheet origin and the electron temperature T, =
100 eV, then it is possible to create perpendicular electric fields of several hundreds of mV/m if the hot ion tempera-
ture T;; > 1 keV, which is common in the plasma sheet. For T, = 100 eV, the cold plasma temperature assumed in
our simulations is T. = 20 eV. We find that when T, is reduced below 0.2 T,, as assumed here, this does not
significantly affect the electric fields. Thus, the cold plasma may originate in the ionosphere.

However, the question of how the stratification of the plasma assumed in our simulations (Fig. 5) is created
in space plasmas still needs to be answered. It now appears that plasma blobs and clouds are created in the magneto-
tail region. When these blobs of plasma move closer to the Earth where a colder plasma exists, the stratification of
the plasma assumed in our simulations may be created.

In this section we were mainly concerned with the generation of perpendicular electric fields. In the near
future we will study the creation of parallel electric fields, the formation of double layers, the parallel acceleration of
electrons and ions, and the generation of parallel currents that occurs when the perpendicular electric fields gener-
ated by contact potentials are shorted out by a conducting boundary. Such studies will complement our previous
studies on current sheets as summarized in the next section.

B. Double Layer Structures Associated with Current Filaments or Sheets

There are evidences that the current systems in space and cosmic plasmas are filamented (e.g., see Alfvén,
1982 and references therein). Thus, there is a need to study double layer structure in filamentary currents. The
available temporal and spatial resolutions for the plasma measurements in the auroral region indicate that the field-
aligned currents are highly structured in the form of current sheets with north-south thicknesses of a few kilometers
(Dubinin et al., 1985). Probably even thinner sheets exist but they have not been resolved.

Here we briefly summarize our recent efforts on simulations of double layers driven by current sheets (Singh
et al., 1983, 1984, 1985; Thiemann et al., 1984). Figure 8 shows our simulation scheme. A two-dimensional
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plasma of size L, X L, is driven by a magnetic field-aligned current sheet having a current density J,,. Initially the
simulation region is filled with a plasma of density n, and temperature T,. At later times, particles are injected both
at the top and lower boundaries. Electrons and ions injected at the top boundaries have temperature T, and T;, (Ty)
while those at the lower boundary T;¢ and T.g. Various simulations were performed by varying these temperatures
using a standard particle-in-cell (PIC) code. The electron current is set up in the sheet by injecting electrons at the
top of the current sheet at rates to produce desired current (flux) densities. These electrons were also given a down-
ward drift Vg.. Overall, charge neutrality of the simulation plasma was maintained by counting the number of
electrons and ions and injecting an appropriate number of the deficient particles at the lower boundary. The electro-
static boundary conditions are as follows; the plane y = 0 is assumed to be conducting, d(x,y = 0) = 0; at the top
boundary we set E,(x,y = L,;) = 0 and a periodic boundary condition was used in x.

We use the following definitions: Ay, is the Debye length based on the temperature T, and on the initial
density of n, = 4 particles per cell, (). is the electron-cyclotron frequency and wpo2 = n,e’/me,, where &, is the
permittivity of free space and m is the electron mass. The ion-electron mass ratio was chosen to be M/m = 64. In the
analysis that follows, we use the following normalizations: distance § = y/\4,, time t = topy,, velocity V = V/V,,
potential d = ed/kgT,, electric field E = E/E,, E, = (kgTo/ey,), and current density J = J/(en,V,,), where V,, =
(kg T/m.)""?. The numerical technique used here has been previously described in much greater detail by Singh et al.
(1985).

Figure 9 shows an example of the potential structure as seen in a simulation in which ¢ = 12 Xy, pu = 9 Mo
Pig = 4 Ngo» /0y, = 2,3, =125 TwT,=5,Tg = Tig = T,,and L, X L, =64 X 128 Aao’> Where py and pig
are the Larmor radii of the ions injected at the top and bottom of the simulation plasma, respectively. The potential
structure is illustrated by plotting (a) equipotential surfaces, (b) contours of constant E, , the component of the
electric field perpendicular to the magnetic field, and (c) contours of constant E, in x — y plane. The current sheet
edges are indicated by the arrows at the bottom of each panel. The solid and broken line contours show positive and
negative values of the quantities. A V-shaped potential structure is evident from panel (a); a negative potential
valley develops in the upper portion of the current sheet. Panel (b) shows the occurrence of a large bipolar perpen-
dicular electric field near the edges of the current sheet at the top of the simulation plasma. The perpendicular
electric fields develop due to the contact between the high-density plasma inside the sheet with a low-density plasma
around it (Kan and Akasofu, 1979; Wagner et al., 1980; Singh et al., 1983). The hot ion Larmor radius determines
the perpendicular scale length of the electric fields. The V-shaped potential structure develops when the perpen-
dicular electric fields originating near the top of the simulation plasma are shorted out by the conducting surface at y
= (, thus, creating a parallel potential drop.

Panel (c) of Figure 10 shows the localized parallel upward electric fields as indicated by the *“H” inside the
current sheet. These parallel fields are of double layer type. There are three double layers stacked on top of each
other inside the current sheet. The existence of these double layers can also be inferred from the equipotential
surfaces in Figure 9a. Typically the maximum electric field strength in the double layers is about E = 0.25. The
scale length of the double layers along the magnetic field is found to be about 10 A4, while they fill the entire width of
the current sheet.

The double layers shown here are not dc, but they undergo considerable temporal variations at time scales
ranging from electron to ion-plasma periods. Figure 10a shows the temporal variation in the double layer potential
profile after averaging out the fast electron oscillations. Note the considerable changes in the potential profile and as
well as in the magnitude of the net potential drop across the double layer. The temporal variations in Ejand E, at the
point (0, 100) in the region of double layer formation, are shown in Figure 10b. Even at the times when E; has a dc
component, there are considerable fluctuations in both E; and E, . These fluctuations appear to have frequencies
ranging from below the ion-cyclotron frequency to above the lower hybrid frequency. In addition, E; is found to
have high frequency oscillations up to electron-plasma frequency and its harmonic which are averaged out in Figure
10b. The high frequency oscillations are not seen in E, .
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In a narrow current sheet, as discusssed above in context of Figures 9 and 10, it is difficult to distinguish
clearly between the double layers inside the current sheet and the large perpendicular electric fields occurring near
the edges of the sheet. On the other hand, in wide sheets (2 >> py), the double layers inside the current sheets are
well separated from the large E| occurring near the edges. Figure 11 shows an example of a potential structure
associated with a current sheet of thickness £ = 32\ 4., and #/py = 10. Panel (a) shows the equipotential surfaces in
the x — y plane, panel (b) shows the perpendicular distributions of E| (x) and ¢(x) aty = 120 A4, and panel (c)
shows the perpendicular distribution of Ji(x) at y = 120 A4,. In this simulation maximum possible value of the
upward current in the sheet is J, =~ 0.6 n,eV,,. Note that only weak potentials (~ kgT,/e) develop inside the sheet,
and the regions exterior to the sheet near the top (panel a) are highly positive. The perpendicular potential profile in
the sheet is quite flat (panel b). Thus, E| is mostly confined near the edges. In the region of large E, near the edges
we find that E, >> E,, which is an important feature of the electrostatic shocks observed in the auroral plasma
(Mozeretal., 1980). On the other hand, inside a wide sheet where double layers from E; ~ E; and both E, and E; are
considerably smaller than the perpendicular electric field near the edges. It is found that near the edges

E, ~E,~E, . 4)

We note that E, depends on n, and T,; when n, varies from | to 10 cm™ and T, from 1 to 100 eV, E, ranges from
about 100 to 1300 mV/m. Thus, the large perpendicular electric fields occurring near the edges of the current sheets
resemble the phenomenon of electrostatic shocks observed in the auroral plasma Mozer et al. (1980).

Whether or not the double layers are well separated from the large E| near the current sheet edges, it is found
that

EpL << E, . 5)

Depending on n,, and T,,, Ejp; may range from a few mV/m to several tens of mV/m. So far only weak double layers
(E; < 15 mV/m) have been observed in space plasmas (Temerin et al., 1982).

We find that in the case of wide sheets it is possible to develop relatively large downward parallel electric
fields outside the current sheets (panel a, Fig. 11). These fields drive downward return currents (panel c).

In these simulations we have seen both parallel and perpendicular accelerations of ions (Singh et al., 1986).

Most energetic ions are seen to be at pitch angles near 90°. Ion beams are seen only in narrow sheets with thicknesses
2 < pu-

It is found that the double layers play a key role in electron acceleration, even though, all the features of the
accelerated electrons cannot be explained by a simple picture of electron acceleration by dc double layers. The

double layers act as a trigger mechanism for a host of plasma processes, which determines the velocity distribution
function of the accelerated electrons.
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Vil. PLASMA EXPANSION

Plasma expansions have been studied since the pioneering work of Gurevich et al. (1966), who studied the
expansion of a plasma into a vacuum using the quasi-neutrality approximation. In this case the plasma equations
allow self-similar solutions. However, this approximation breaks down in the low-density region where the local
plasma Debye length becomes comparable to the scale length in the density gradient. Thus, a positive-negative
charge separation occurs like in a double layer (Singh and Schunk, 1984b). However, it is worth noting that there is
no current through such a double layer. The charge separation is supported by a relative smooth variation in the
electron density while the ion density has a sharp density jump creating an ion density front. The plasma expansion
is preceded by such a density front, behind which the self-similar solutions are found to be valid.

When a high-density (n;) plasma expands into a plasma of low density (ny;), the expansion properties criti-
cally depend on the density ratio R = ny/ny (Mason, 1971). An example of such a dependence is shown in Figure 12,
in which we have compared the potential profiles associated with expanding plasmas as the ratio R is varied from R
= 0.001 to 0.2. The potential profiles shown in this figure are obtained as follows. We consider that initially (time t
= 0) the high- and low-density plasmas occupy the regions I (x < 300 Ay;) and II, respectively. At times t > 0, the
expansion is studied solving Vlasov equations for the ions in a self-consistent electric field obtained by solving the
Poisson equation. The electrons are assumed to obey the Boltzmann law. In the calculations presented here we
assume that the electron temperature T, = 10 T;, where T; is the initial ion temperature in regions I and II. The
potential profiles shown in Figure 12 are att = 60 w,;', where w,; is the ion-plasma frequency in region I and \y; =
V.i/wy; with V; being the ion thermal velocity. The different curves shown in Figure 12 are for different values of R
as marked.

The noteworthy feature of the potential profile shown in Figure 12 is that as the density in region II is
increased, the potential profiles steepen over a localized region in the expansion zone. When R is increased from
0.001 to 0.01, we note the formation of a “knee” in the potential profile near x ~ 625 A4. When R is increased
further this “knee” steepens and forn = 0.1 and 0.2 we note the presence of two sharp transitions in the potential
profiles; one occurs in region I in which the rarefaction wave propagates in the backward direction, and the other
occurs in the expansion region II. Near the transitions localized electric fields, like that in a double layer, occur. It is
important to note that the sharp transitions in the potential profiles (double layers) occurring in regions I and Il move
in opposite directions. With increasing time the potential profile in region I becomes less and less steep while that
near the sharp transition in region II maintains its profile giving a localized electric field nearly constant with time.
The features associated with occurrence of localized electric fields also occur when a multi-ion plasma expands into
a vacuum (Singh and Schunk, 1983b).

VIIl. CONCLUSION

We have presented a brief summary of our studies related to the generation of electric fields in plasmas.
Some of the mechanisms we discussed are as follows. When a potential drop is applied across a plasma, localized
electric fields in the form of double layers occur. Double layers also form when a current is drawn through a plasma.
The dynamical feature of such a double layer shows a cyclic behavior with a frequency determined by the transit
time of the ions across an effective length of the system, in which the double layer forms. The formation of a
potential dip at the low potential end of a DL and the current interruption are intimately related phenomena.
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We have also discussed the generation of electric fields perpendicular to the ambient magnetic field in a
plasma. Such fields can be generated by contact potentials near discontinuities in plasma properties. It was found
that ion gyration plays an important role in generating the fields. The cases presented indicate that the scale length of
the perpendicular electric field is of the order of the ion Larmor radius. Two complementary situations, in which
perpendicular electric fields can be generated, were discussed. In one situation, we considered a low-density hot
plasma sandwiched between high-density cold plasmas. It was shown that even if the hot ion density is low these
ions are effective in creating electric fields of the magnitude observed in the auroral plasma. In the other situation,
we considered a current sheet in a plasma. The density gradient across the sheet created the perpendicular electric
fields. The formation of double layers in the sheet were studied.

The generation of electric fields in expanding plasmas was briefly discussed. It was shown that when a
high-density plasma expands into a low-density plasma, the nature of the spatial distribution of the electric field
critically depends on the density ratio of the two plasmas. A currentless double layer forms near the expanding
plasma front.
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Figure 2. Double layer formation and dynamics as seen in one-dimensional Vlasov simulations. In the simulation,
the plasma occupied the region 0 < x < 100 \,,, where X, is the Debye length in the initial plasma (t = 0) across
which a potential drop of Ad, = 30(kgT,/e) was applied, where T is the initial plasma temperature. We used the
following normalizations: & = x/A,, velocity V = V/V,, time t = top,, temperature T = T/T,, potential o =
ed/kgT,, current J = JneV,, where V,, = (kgTo/me)'?, o, is the electron plasma frequency with the initial
density n,, kg is the Boltzmann constant, m, is the electron mass, and my/m, = 64, with m; the ion mass; (a) temporal
evolution of the potential profile, (b) temporal evolution of the current density profile, J.(%), (c) double layer poten-
tial profile att = 150, (d) density profiles and space charges supporting the DL in (c), and () recurring DL forma-
tion (top) and electron and ion current interruptions and recovery (bottom). The arrows indicate the times of the
potential profiles; the arrows originating from the potential profiles marked with “A” indicate that these profiles
correspond to the early stages of the electron current interruptions and to the beginning of the ion influx into the
doubie layer during the three cycles of the double layer formation. Note the dip at the low potential end. The
potential profile marked with “B” corresponds to the current recovery stage during the first cycle. (f) Potential
profiles during a reformation of the DL; att = 400 there is a DL, a positive potential perturbatlon near x = QO 1is seen
att = 500; at later times this perturbation grows and eventually a new DL forms at t ~ 610.
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CYCLIC NATURE OF DOUBLE LAYERS

Apply a Potential Drop
U

Uniform Electric Field

U

Accelerate Electrons (eardy time)

U

— Jp > J,, (near cathode boundary)

U
Positive Spacecharge Near Cathode Boundary

4

Electron Hole & Propagation

Counterstreaming Electrons

Plasma Modification/Expulsion

Cavity Formation

Distruption of lon Flux from the Anode Boundary

U

DOUBLE LAYER (DL)
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DL Propagation/Plasma Expansion from Cathode
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Potential dip Formation at the Low Potential Side
U

lon Influx Resumption at Anode (lon or DL Transit Time Effect)
U

Current Recovery

U

Instabilities on the Low Potential Side

U

Positive Potential Perturbation near the Cathode

Figure 3. Summary of the various plasma processes occurring during the formation and

reformation of a DL when a potential drop is applied across a plasma.
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Figure 4. (a) Double layer evolution from the Buneman instability. Spatial profiles of the electric field E are shown
at different times. At early times, 1880 < t < 2000, small wavelength waves grow. At later times, in the nonlinear
regime, these waves coalesce into long wavelength oscillations, which evolve into solitary pulses and double
layers. {(b) Tcmporal evolution of the doubie layer potential profile, (c) the corresponding temporal evolutions of the.
electron current J, electron drift velocity V., thermal velocity V., and temperature T, at X = 50, and (d) spatial
profiles of the electron and ion densities and the potential profile for a DL with a dip at its low potential end. The
charge separation indicates the presence of a triple charge layer.
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Figure 5. Geometry of the simulation scheme. A two-dimensional plasma of size L, X L, is simulated. Initially (t
= 0), regions I to Il are filled with plasmas. In the simulations described in this paper, the plasma in region I (—d/2
< x < d/2) is assumed to be hot, while the plasmas in regions II and III (|x| > d/2) are assumed to be cold and have
similar properties. The B field is along the y-axis. The particles leaving the simulation plasmas at y = 0 and L, are
recirculated according to a periodic boundary condition, while those leaving at x = *L,/2 are replaced from

plasma reservoirs at the boundaries.
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(b) plasma density as a function of x from a simulation with T;; = 20. The average
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(a) Temporal evolution of the double layer potential profile along the axis of the current shown
in Figure 8 and (b) fluctuations in E; and E | in the region of the DL formation.
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Figure 11. (a) Potential structure associated with a wide current sheet, with = 32 Ay, pu = 3 Ago, and J, = 0.6
n.eV,,. The current sheet edges are indicated by the arrows at the top of the panel. Equipotential surfaces are shown.
(b) Perpendicular distribution of E| and ¢ near the top (§ = 1120) of the potential structure in (a). Note that E, is
primarily confined near the edges of the current sheet. (c) Perpendicular distribution of the parallel current density
J;;; note the positive (upward) current inside the sheet, while outside the sheet the current is negative (downward).
The downward current is caused by the upward acceleration of the electrons by the downward (parallel) electric field

(see the potential distribution outside the sheet in (a)).
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ELECTRON ACCELERATION IN STOCHASTIC DOUBLE LAYERS

William Lotko
Dartmouth College, Hanover, New Hampshire 03755, U.S.A.

ABSTRACT

Transversely localized double layers evolve randomly in turbulent regions of strongly magnetized plasma
carrying current along the magnetic field. Results from numerical simulations and spacecraft observations in the
auroral plasma indicate that the parallel electric field in such regions is microscopically intermittent or stochastic.
The implications of stochastic double layer fields on electron acceleration will be discussed here in terms of a
statistical process involving ensemble averages over test particle motion. A Fokker-Planck equation can be derived
for the electron phase space density, which depends on the mean and rms amplitudes of the double layers, the mean
double layer density, and the initial electron velocity distribution. It is shown that the resulting electron acceleration
is very sensitive to the ratio of the initial electron energy to the rms double layer amplitude. When this ratio is large,
the acceleration process differs little from that expected in a dc electric field. When it is small, stochastic “heating”
competes with directed acceleration. Evidence for both cases can be found in the auroral ionosphere in association
with so-called inverted-V precipitation and collimated edge precipitation.
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ANOMALOUS TRANSPORT IN DISCRETE ARCS AND SIMULATION OF
DOUBLE LAYERS IN A MODEL AURORAL CIRCUIT

Robert A. Smith
Plasma Physics Division
Science Applications International Corporation
McLean, Virginia 22102, U.S.A.

ABSTRACT

The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel
current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of
the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is
effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This
process provides the limiting constraint on the double layer potential. The flank charging may be represented as that
of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a
nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to
give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function
of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

I. INTRODUCTION

A vast body of ground-based, rocket, and satellite observations reveals that auroral-zone acceleration
processes occur in a hierarchy of latitudinal scale widths. On the scale of the inverted-V region (AA > 1°) parallel
electric fields are observed in narrow, soliton-like structures interpreted as weak or ion-acoustic double layers
(DL’s) (Temerin et al., 1982). Assuming statistical homogeneity of the distribution of these weak DL’s over an
altitude range comparable to 1 R., one infers a total potential drop of up to a few kV, typical of the inverted-V
region. On smaller spatial scales (AA < 0.1°) more energetic precipitation is observed in discrete arcs, which have
projected widths ~1 km in the ionosphere. Discrete arcs (DA’s) are associated with electrostatic shocks (Torbert
and Mozer, 1978; Kletzing et al., 1983). We adopt the hypothesis that electrostatic shocks constitute the nearly
field-aligned “flanks” of the paradigmatic U-shaped potential structure of a strong double layer. Although this
hypothesis seems plausible, many questions exist concerning the conditions under which DL’s may exist in space,
their dynamics, and their structure. These questions are vital for understanding the complex observational morphol-
ogy of fields and particles in the auroral zone. At present, investigations of such questions must to a large extent be
motivated by and proceed from consideration of the fast-growing literature on experiments and simulations,
although usually the applicability of these situations to DL’s in space is indirect (Smith, 1985, 1986a).

In this paper, we first discuss theoretically the question of what limits the potential of DL’s in auroral arcs,

and report results of recent simulations of DL’s in a model circuit. Somewhat more detailed expositions are given by
Smith (1986b, c).

°RECEDING PAGE BLANK NOT FILMED
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il. THEORY

Experiments and simulations (Goertz and Joyce, 1975; Coakley and Hershkowitz, 1979) reveal a scaling

law for the DL potential in terms of its length 25, and the electron density n.x on the low potential (cathode:K) side;
we write this law as

~ Nek Lo ) 2
bpL(kV) = 300 ( T Cm_3>( Tk N

where 2 = ép/max|E||. In space, &, is not limited a priori and, absent other constraints, equation (1) implies
that the potential may grow to much larger values than the observed limit on the auroral precipitation energy, which
is a few tens of keV.

This dilemma is resolved by considering how the field-aligned flanks of the arc become charged during the
evolution of the DL’s. We adopt as a starting point the basic idea of the recent MHD models discussed by Haerendel
(1983) and Goertz (1985, 1986) in which the DL evolves in the parallel current sheet of a kinetic Alfvén wave. This
scenario limits the thickness of the sheet a priori to a few times the ion gyroradius at an energy representative of the
distant plasma population in the generator region. Taking this energy to be ~1 keV, we may estimate j; by

¢ dB
jy = neUg ~ — —l

Using n ~ 10? cm?, B, ~ 0.05 G, 8B . ~ 103 G, and assuming a current sheet of a few kilometers thick, this
equation gives a relative drift velocity U,; greater than the electron thermal velocity V.. At such a relative drift
velocity, the current sheet is unstable to a variety of instabilities, including the ion cyclotron and Buneman
instabilities. We expect the instability to be triggered at some altitude z. where the density and magnetic field
profiles first combine such that U,; exceeds the threshold drift. In addition, experiments reveal that the U-shaped
structure, with the field-aligned flanks curved toward the low potential side as is required for Earthward-directed
Poynting flux (Smith, 1986a),requires w, < €, where o, and (. are the electron plasma frequency and gyro-
frequency, respectively. This is just the condition for strong magnetization (w./€Q. = R./\.), and is fulfilled in a
limited altitude range along the auroral field lines (Gurnett, 1974).

Simulations show that DL’s evolve from current-driven instabilities when the current is interrupted by trap-
ping (Smith, 1982a, b). Trapping creates local regions of macroscopic non-neutrality; in the finite-thickness current
sheet, the plasma tends to expel charge in the transverse direction in an attempt to neutralize the local electric field
(Fig. 1). Electrons are tightly magnetized and cannot be expelled very far, but the ion motion is essentially ballistic
(the evolution time scale is <€;"'), and ions are accelerated in the transverse direction out to some distance greater

than their gyroradius. Owing to mirror forces, the expelled charge spreads upward, providing the initial charging of
the flanks.

The charging mechanism described above operates in the transient phase. The characteristic time scale of the
evolution is Tp, ~ &p /Uja, Where U;4 > C the ion inflow velocity in the frame of the DL. The charge spreads along
the flank at velocity ¢/ Ve, , where e | is the dielectric constant. In the MHD limit, € = c?/V A2, but we shall see later

— ~2I\T

that€) <c?V,?in the DL flank. In any case, however, we find that the time 7,4 = Jdsc/Ve 1 ?Ic for the charge to
spread along the field lines back to the generator region (Fig. 2) is long compared to Tpp. < t < Tj,q, the spreading
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charge would thin out along B and the flank would not sustain the DL potential; then the DL would discharge. This
would occur in a time short compared with the typical lifetime of discrete arcs. Therefore,
asymptotic stability of the DA requires a transport mechanism producing a cross-field current density J,(¢), which
persists as ddp/dt - 0.

If such a mechanism exists, then in the time-asymptotic regime, the density n.x in equation (1) is determined
by current continuity and is of the form

Nek(Z+) = Newo — g [o dz T (d,2) Q)

where g is a constant. Substituted in equation (1), equation (2) provides the physical constraint on the DL potential,
which is transparently self-stabilizing for J,, a monotonically increasing function of ¢.

A mechanism to maintain a distributed J, in the time-asymptotic regime is discussed by Smith (1986b). The
mechanism is based on anomalous transport due to lower hybrid waves which are driven by the inhomogeneous
structure of the flank itself. The discussion above implies that the initial scale length ¢; of the perpendicular electric
field E, in the flank is & > R;. As this field is established along B, the electrons acquire the local polarization drift
velocity cE,/B,. The ions, however, encounter an inhomogeneous electric field over the scale of their gyroradius,
and so their drift orbit is modified by finite-Larmor-radius (FLR) effects. For 2; > R, the ion drift speed is approxi-
mately given by the first non-vanishing order of the phase-averaged FLR correction:

_ 1 o0 Ex R?\ co- (3)
VDi—(l +ZR,V) Bo_ (] _W Bo,Qf

Then there is a relative drift

R/ cd
Uei = Vpe = Vp; aTE <'B_SX> ;

if Ug; > V;, this relative drift drives the electrostatic modified two-stream instability (MTSI) studied by McBride et
al. (1972). (Other instabilities are also possible, of course, but for simplicity we consider only the MTSI.) The most

unstable mode has frequency o ~ oy = wi/(1+ w.*/Q.?)"?, with growth rate y ~ wy y, and parallel wave numberk;
~ (m/M)"? k.

The salient property of the MTSI for our purposes is that it saturates by trapping ions in the perpendicular
drift direction and electrons in the parallel direction; in the saturation process, the ions and electrons are heated to a
fraction a? of the relative drift energy:

T.Li = T"e = (szUciz/Z .

From simulations, McBride et al. (1972) find a = 0.5, with a wave energy density W at saturation of
W/nMU,®> ~ a few percent.
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Motivated by these results, Smith (1986b) postulates a self-scaling model in which the flank is assumed to be
always at saturation (marginal instability) with respect to an instability such as the MTSI. The model characterizes
the instability by two parameters o,(, defined by

V)i = a (EJBy) ; Uesi =B (cEy/By) )

where U, is now the threshold drift speed and E, ~ &/%. Using equations (3) and (4), we find the self-similar
scalings

Riz/gf = (XB 5 T_Li/Teo = ((X3B)”2 (e¢DL/Teo) 5

Vg, = EEl _ (E)m (£>1/2 <e¢DL)U2 : <2)1/4 (M)nz (% (ed)DL)”z ; s
Bo Q M Teo B m Qe Teo

where Aeo, Teo, and we, are reference values of the electron Debye length, temperature, and plasma frequency.

Owing to momentum conservation, there is a wave-modulated friction between the electrons and ions,
which may be described by an anomalous collision frequency (Davidson and Krall, 1977) v« = €w_n, where € =
W/nMUS,;>. Thus, the electron and ion fluids are acted on by volume forces Fy; = —Fye, leading to an F X B drift
velocity in the x-direction, i.e., opposite to E, (the coordinate system is defined by Fig. 3). This drift velocity is
given by V,. = V,; = V, (n.,dpL), where

12 12
v, = 35yl4 (M) OLH (ed)DL) v 6
€ (a B ) (M) Qi Teo eo ) ( )

and V., = (Teo/m)" 2 Thus, above the DL, plasma is transported from the center of the arc to the flanks, concentrat-
ing the parallel current there (Fig. 3). Although V,. = V,;, there is a net current J, because above the region of
strong E; in the DL, we expect an extended region of small charge density p which sustains a weak parallel density
field Ey driven by beam-plasma instabilities. Then the continuity equation is

8),/02 = — 01,/9x = — d(pV,)/dx

>

Upon solving and integrating along the field line, we obtain (Smith, 1986b)
J,() — J,(0) = C(at,B) (dpr/ 2.)"® )

where C(a,) is aconstant and &, is the perpendicular scale length of the arc (Fig. 3). Thc? RHS of equation (7) is just
the term [ J,dz in equation (2). Assuming J,(0) << J,(), equation (7) gives a scaling law
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dpL S (J(0)e)*P 0,2 . (®)

For typical auroral-zone parameters equation (8) yields ¢p_ ~ 10kV for £, ~ 1 km, in general accord with observa-
tions.

lil. SIMULATION

In the context of the above discussion, the flank may be modeled as a transmission line with local potential
= E, %, where & ~ ¢"2. Once the DL potential has reached a threshold value ¢ xrequired to drive the MTSI, the
transmission line is charged by the distributed (in z) perpendicular current J, = pV, of equation (7). We shall report
elsewhere on simulations in which the transmission-line equations (Smith, 1986¢) are solved simultaneously with a
one-dimensional simulation of the DL evolution; this procedure provides the necessary self-consistent boundary
condition on the current density J; (t) at the simulation boundaries. In this paper, we replace the transmission line
with a simple model circuit.

If the flank were uniform between the DL (z = zx = 0) and the generator, the transmission line would appear
to the DL as a pure impedance over the evolution time of the DL, with value Zr = (Li/Cp)'?, where Ly = 24/4mc?,
Cr = 4me, /%;. We model the impedance by the same form, with variable 24 ). We thus adopt the model circuit
shown in Figure 4 where the diode symbol represents the DL and the variable resistor R(¢) represents leakage
current in the flank; this term is modeled by using the same form for J, as derived above, but over the perpen-
dicular scale length £ instead of £,, by integrating J, ~ n'?(z) over the length z(t) = ct/Ve | . The dielectric
constant is defined by

€ = 1 + (0707 + (@77 [(1-aB)® + o®(1+70)] 9)

where v, = T /T ;.

The heuristic definition [equation (9)] is such that the total energy stored in the dielectric is € | E,%/8: the
first term in [] represents the reduced ion drift speed, while the second term accounts for ion and electron heating by
saturation of the self-scaled modified two-stream instability.

For the purpose of testing the scaling of ¢p; with 2, and «, we adopt the philosophy that owing to the
separation between the perpendicular scale lengths £, and &, the flank may be represented by these circuit elements
while the DL will evolve in an essentially one-dimensional fashion in the central region of the arc. The DL evolution
is simulated with the one-dimensional Vlasov code described by Smith (1982b), replacing the circuit used there by
that of Figure 4. The boundary condition on the current density Jp,( (t) is then given by

Is dpL(t) 1 ] ]
ou(®) a Y [Zr(¢DL) + R(bpL) {10

where Ig is the constant source current and

Zr = [o/B]" (Yie["®) (Veo/) @/1'2) dpL'? (11
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172 2/3 1/4
R = (M Teo) (YSZ a) d)DL (12)

2 Ty) @B [-exp(-KoZy(0)/2]

p = m/M, K, is defined in Smith (1986b) Y = ®.o/Qeo, Veo = ®Weoheo, and all lengths and time scales are norma-
lized to the nominal upstream quantities A, and o, respectively; also ¢p ~ edp/Te,. The term in [] in equation
(10) replaces the physically derived I, of equation (8). This term is valid only after the threshold potential ¢« has
been attained, and so is turned on adiabatically for ¢ > ¢4. Therefore, the circuit model does not accurately
describe the initial dynamics in the linear instability phase of the evolution. In addition, the lumped circuit of Figure
4 cannot represent the distributed nature of the flank charging, and so we cannot construct a circuit topology that
allows for inductive fields. Therefore, we cannot model the acceleration of the inflowing (injected) distributions by
inductive effects.

For the parameters we use (see below), we estimate that the effect of neglecting inductive effects is small. As
for the first limitation, the transient charging mechanism vanishes as d¢dp; /0t - 0. Thus, we expect the model to be
adequate for our present objective of studying time-asymptotic scalings.

We show results for five runs. For all cases, the injected distributions are drifting Maxwellians with drift
speeds in the simulation frame of U, = 2 V., U; = -0.5 V,,. The forms of these distributions are held fixed (up to
normalization). The threshold drift parameter 8 is held equal to 2, and M/m = 16. Holding 2./A. = 60, we use
values of a = 0.05, 0.02, 0.50. Fixing a = 0.50, we use £,/A\. = 20, 40, 60. Initialization and other im-
plementations are as described by Smith (1982b).

Figure 5 shows the scaling of ¢p;. with a, the fundamental parameter of the self-scaling marginal stability
model of the MTSI discussed earlier. In the circuit equation (10), the principal effect of a is contained in the depen-
ence of the impedance Zr on the dielectric constant € B In terms of the circuit equation (10), the DL scaling law
equation (1) becomes in dimensionless notation

(13)

_ (t)DL]/2 - (bDL?’/4
ZJ. RJ. |~

dp = G [l

where Z1($) = Z,$"?, R(d) = R,d"*. The RHS (13) has the form of a large factor GJ, ¢y, % times a small factor
[...], and the upper bound for ¢p, is obtained from setting [...] = 0. Because Z, << R,, equation (13) implies ¢
~ Z,2. In Figure 5 we also plot the dependence of Z,? on «, which agrees well with the plotted points.

Figure 6 confirms the scaling ¢p;. ~ 2,2 found above. Again, this result is contained in equation (13) through
the dependence ¢p ~ Z,? (the results of Fig. 6 are all for a = 0.5, where Z, << R,).

Because the speed of light ¢ is introduced in the impedance, the choice of V/c yields a physical scaling of
velocities. Because Y = /() is a parameter, we obtain physical values of the length scales for an assumed value
of either B, or n.,. All runs discussed here are for T, = T, = 1 keV, typical of the plasma sheet population (note
opL scales independently of T,,). The scaled ¢p, is then given in kV as shown in the right-hand scale of Figure 6.
Similarly, if we adopt a nominal value of B, = 0.05 G (f.. = 250 kHz) for the acceleration region, the top scale of
Figure 6 gives arc thickness projected into the ionosphere of the order 1 km, which is the correct order of magnitude.
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The power flows (Id) through the various parts of the circuit are shown for one case in Figure 7; for this case
bpL = 42.5kV. In the steady state, only 10 percent of the power flows goes through the DL, and about 90 percent
goes into charging the flanks. The physical scale on the right shows the power dissipated per 1000 km extent of the
arc in the E-W direction. Arcs are generally observed in systems of parallel bands, quasi-periodic in the N-S direc-
tion; for the parameters of this example, each DA in such a system would dissipate about 10'' W, compared with a
typical substorm power of ~ 10'> W.

The scalings in a and £, have straightforward physical intepretations. The increase of ¢py with o has t\yo
related aspects. First, the efficacy of the anomalous transport mechanism reported in Smith (1986b) increases with
«, which is a measure of the strength of the MTSI. Second, in this self-scaling model the ratio Ri(¢)/2{$) ~ a2, so
that as « increases, finite-Larmor radius effects lead to decreasing ion drift speed; hence, a higher ratio of electro-
static to kinetic energy is stored in the flank “dielectric” for a given charge. The factor ¢, in Z, [equation (6)]
originates in the current balance (I; = J; %), and because the flank is charged from the interior of the arc the charge
available increases with 2,. The quadratic scaling ¢p;. ~ ¢, derives from the self-scaling of the transport model
because ¢ ~ 2.

IV. DISCUSSION

We have shown that basic considerations of DL evolution and stability require anomalous transport
processes to divert the uniform upstream current to the flanks of a DA even after the parallel electric field has
evolved to a steady state. The transport model we have discussed, albeit highly simplified, yields an estimate [equa-
tion (8)] for the arc potential in general accord with observations. Other important consequences of the model are
also in accord with satellite and rocket observations of DA’s and laboratory DL experiments. These include: (1) the
density in a DA is substantially depleted relative to the ambient density (Benson and Calvert, 1979; Alport et al.,
1986); and (2) concomitant with the depletion of the arc is that the current is diverted to the flanks, so that the highest
current density is at the edges (Bruning, 1983; Burke, 1984).

Besides the simple transport mechanism discussed here, there are many other mechanisms which are prob-
ably important in DA’s. We are presently investigating models including ion-cyclotron modes.

In terms of the simple circuit model, the potentials, perpendicular length scales, and power flows physically
scale to correct orders of magnitude. For the nominal parameters we have chosen, the potential ranges from 5 to 42
kV, while the length scales are consistent with the observational bound of =3 km on the latitudinal scale projected
in the ionosphere (Boehm and Mozer, 1981). These quantities scale as n, and n.,"'’2, respectively. We adopted B,
= 0.05 to correspond to the frequency of peak intensity of the auroral kilometric radiation, and chose /), as the
marginal limit of strong magnetization (0./Q, = R./\.), which experiments reveal to be a requisite for strong DL
formation with Earthward-directed Poynting flux (Smith, 1986a). (Recall that n,, is the ambient density before DL
formation, not that of the evacuated arc.) Thus, our choice of v., = )., is an upper bound; smaller values lead to
lower potential, larger widths, and lower power flows.

In future publications we shall report on refinements and extensions of the simulation concept, including a
model in which the simplified circuit used here is replaced by the transmission-line equations.
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Figure 1. Schematic illustration of initial charging of the DL flanks by expulsion of charge from the localized,
rapidly changing non-neutral region (shaded: stippled region p > 0, cross-hatched p < 0) where onset of current-
driven instabilities occurs in the parallel sheet of a kinetic Alfvén wave.
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Figure 2. Schematic of the double layer flank spreading along B from the double layer toward the generator (here
for illustration taken to be in the plasma sheet).
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Figure 3. Left side: Schematic of the current diversion in the discrete arc. Right side: Definition of the scale lengths
of the arc (£,) and flank (2¢) and the associated scale factors which are used in the text to replace perpendicular
derivatives. Also shown is a sketch of the inhomogeneous electric field E,, which produces relative drift between
the electrons and ions owing to finite-Larmor-radius effects, and the definition of the xyz coordinate system. The
magnetic field B, = -Be,.
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Figure 4. Model circuit used to provide the current density boundary condition in one-dimensional DL simulation.
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Figure 5. Scaling of the DL potential ¢ with the fundamental parameter o of the anomalous transport mech-
anism. The dashed curve is arbitrarily normalized to the point at « = 0.2.
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Figure 6. Scaling of ¢p;. with the perpendicular scale width £, of the arc model. The bottom and left scales are
dimensionless. The right scale shows the potential in kV for assumed T., = 1 keV; the top scale shows the arc
dimension (2%,) projected into the ionosphere, for the given ambient parameters (before DL formation).
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Figure 7. Time history of power flows through the various circuit elements for run 8606 (edpp /T, = 42.5). TL -
transmission line (flank) impedance; DL — double layer; AR — anomalous resistivity (leakage) in flank. The right-
hand scale shows the physically scaled power for an arc extended 1000 km in the E-W direction.
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ABSTRACT

Previous work on the evolution of weak double layers in a hydrogen plasma has been extended to include H™*
and O™ with relative drift. It has been shown (Bergmann and Lotko, 1986) that the relative drift between hydrogen
and oxygen ions due to a quasi-static parallel electric field gives rise to a strong linear fluid instability which
dominates the ion-acoustic mode at the bottom of the auroral acceleration region. This ion-ion instability can
modify ion distributions at lower altitudes and the subsequent nonlinear evolution of weak double layers at higher
altitudes in the ion-acoustic regime. We have found that ion hole formation can occur for smaller relative electron-
ion drifts than seen in previous simulations, due to the hydrogen-oxygen two-stream instability. This results in local
modification of the ion distributions in phase space, and a partial filling of the valley between the hydrogen and
oxygen peaks, which would be expected at higher altitudes on auroral field lines. It is shown that the observed
velocity diffusion does not necessarily preclude ion hole and double layer formation in hydrogen in the ion-acoustic
regime. These simulation results are consistent with the experimentally measured persistence of separate hydrogen
and oxygen peaks, and the observation of weak double layers above an altitude of 3000 km on auroral field lines.

I. INTRODUCTION

Weak double layers with potential jumps comparable to the electron thermal energy have been observed to
form in one-dimensional (Sato and Okuda, 1980) and two-dimensional (Barnes et al., 1985) electrostatic particle
simulations; the double layer formation is driven by an electron drift relative to ions which is unstable to the ion-
acoustic mode but is less than the electron thermal speed. Such weak double layers have been observed in space in
the auroral particle acceleration region (Temerin et al., 1982), and in laboratory plasmas (Chan et al., 1984; Sekar
and Saxena, 1985; Chan, 1986). Thus far, theoretical efforts at understanding weak double layer formation have
focussed on a single ion species, while it is known from space observations that weak double layers occur in regions
of upward flowing hydrogen and oxygen of ionospheric origin. A quasi-static parallel electric field has been postu-
lated to explain the observed particle distributions (Chiu and Schulz, 1978; Lyons, 1980). While the existence of
such a field will remain a zeroeth order assumption in the present paper, we will also examine non-adiabatic mod-
ifications of the particle distributions at the bottom of the acceleration region which may affect weak double layer
evolution further up the field line, and the stability of the assumed quasi-static field.

We will first briefly review previous work on weak double layer evolution in a hydrogen plasma, and then
extend our simulations to include a relative drift between hydrogen, oxygen, and electrons which occurs, for
example, in a mirror-supported parallel electric field. Our purpose is to examine the nonlinear effects of the result-
ing hydrogen-oxygen two-stream instability (Bergmann and Lotko, 1986) on the particle distributions, and con-
sequences for double layer formation further up the field line.
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lll. WEAK DOUBLE LAYER FORMATION IN A HYDROGEN PLASMA

Barnes et al. (1985) showed in a series of one- and two-dimensional, bounded and periodic particle simula-
tions that weak double layers with potential jumps comparable to the electron thermal energy form when the system
is driven by an electron drift relative to ions which is less than the electron thermal speed, e.g., V4 = 0.5-0.7 a,,
and an electron to ion temperature ratio T./T; >> 1. The electron drift was maintained by injection of electrons from
the boundaries at a continuous rate in bounded runs, and by applying a weak electric field uniformly across the
system in periodic runs.

Sato and Okuda (1980) first studied the occurrence of weak double layers in a one-dimensional periodic
system in which electrons are given an initial drift that subsequently decays. They found that it was necessary to use
a long system, L > 256 \p (Debye lengths), in order for weak double layers to form in periodic runs. Our subse-
quent interpretation (Barnes et al., 1985) is that long periodic systems are required to prevent electron recycling
from the low to high potential side, which neutralizes the double layer. Electron injection boundary conditions
eliminate this problem in bounded simulation runs, and a weak applied electric field acts to impede electron
recycling in periodic runs; both of these simulation techniques allow shorter system lengths.

Figure 1 from Barnes et al. (1985) shows the temporal evolution and recurrence of weak double layers in a
one-dimensional system with electron injection boundaries. Ion-acoustic turbulence evolves, for Vy = 0.5 a. and
T./T; = 50, into a discrete localized pulse which propagates into the system initially at the sound speed. The pulse is
characterized by a negative potential dip which amplifies by momentum exchange with reflected electrons (Lotko,
1983; Chanteur et al., 1983); the asymmetic reflection of electrons results in a potential jump downstream. As the
negative potential dip grows, it traps ions, slowing down the pulse via mass loading until an effective Bohm
criterion for existence of the double layer potential jump is no longer met. The latter requires that ions flow into the
high potential side at or near the sound speed (Chen, 1974), achieved here by motion of the pulse in the ion frame.
The potential jump then decays and ion holes (Chan, 1986) or ion-acoustic solitons (Sato and Okuda, 1981) propa-
gate away from the high potential side to seed new double layer formation. The decaying ion hole, still apparent in
phase space, recoils backward as it moves downward through the ion distribution.

Barnes et al. (1985) examined the persistence of weak double layers in two-dimensional magnetized simula-
tions. Electron injection boundary conditions produce one-dimensional double layers which are roughly uniform
across the system in the direction perpendicular to B. To examine the transverse scale, a doubly periodic system
with a weak electric field imposed uniformly along B was employed. The magnitude of the electric field was such
that the corresponding potential drop across the system was less than the electron thermal energy, or eE,/T, =
0.6/160 A\p. Figure 2 shows transverse localization of weak double layers for strongly magnetized electrons (wce/wpe
= 3 is the ratio of electron gyro to plasma frequency). The transverse dimension appears to decrease with increasing
magnetic field strength, scaling with VVAp? + p,, where \p, is the Debye length and p; is the ion gyroradius at the
electron temperature. The parallel scale length remains the order of tens of Debye lengths, as in one-dimensionality.
Ion-acoustic turbulence becomes homogeneous and does not evolve into localized weak double layers in weakly
magnetized (/0. < 1) periodic systems. One therefore might expect to see such structures in the auroral acceler-
ation region, but not, for example, in the solar wind.
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IV. ION HOLES IN MULTIPLE ION SPECIES PLASMAS

To the double layer evolution problem we would now like to add the effects of multiple ion species, H* and
O™, with relative drift. This introduces an important complication noted by Bergmann and Lotko (1986). A quasi-
static parallel electric field produces a relative drift between ionospheric hydrogen and oxygen ions which have been
accelerated through the same potential drop, such that V;/Vo = VMo/My = 4. This situation is fluid unstable for
parallel propagating modes when the relative H*-O * drift exceeds a minimum, determined primarily by ion Landau
damping, up to a maximum value that is less than about twice the hydrogen sound speed C; = VT./My. This
indicates that the ion two-stream instability (for parallel propagating waves) will be confined to the bottom of the
acceleration region, since at higher altitudes the relative drift will exceed the upper bound for instability. It is likely,
although it has not yet been demonstrated, that obliquely propagating modes may still be unstable for drifts exceed-
ing this upper bound. The growth rate for the ion two-stream instability is larger than that for typical (electron-ion)
current-driven instabilities, and one might expect significant modifications of the hydrogen and oxygen dis-
tributions to occur. In particular, the unstable ion two-stream waves have phase velocities lying between the
hydrogen and oxygen distributions, and one might expect some quasi-linear filling, that is to say, formation of tails
on the high and low velocity sides of oxygen and hydrogen, respectively. This quasi-linear filling could, in turn,
affect the ion-acoustic instability and double layer evolution at higher altitudes, when ion drifts relative to electrons
become a significant fraction of the electron thermal speed, as required for double layer formation in hydrogen
plasma simulations. The instability analysis and simulations require knowledge or assumptions about the electron
distribution in the region of interest. Bergmann and Lotko (1986) have integrated the electron distribution func-
tions, F(vy, v, ), in the Chiu-Schulz (1978) equilibrium model of a mirror-supported electric field to obtain an effec-
tive one-dimensional distribution, f(v|). These electron populations include precipitating magnetospheric
electrons, primary and secondary backscattered electrons, and those electrons which are trapped between the mag-
netic mirror below and retarding electrostatic potential above. At an altitude relevant to the ion two-stream
instability, the bulk of ionospheric electrons has been retarded at lower altitudes by the potential drop which
produces the relative ion drifts. The sum of the remaining electron populations, shown in Figure 3, is essentially a
stationary Maxwellian with a precipitating electron tail. Also shown in the figure is a Maxwellian fit for the first
three moments as described by Bergmann and Lotko.

We would like to examine the spatial evolution of the ion distribution functions along the geomagnetic field
line at various distances above the bottom of the acceleration region (nominally at an altitude of 2000 km in Chiu and
Schulz, 1978), including the ion two-stream unstable regime near the bottom on up to altitudes where the ion drifts
become comparable to the electron thermal speed, and where double layers have been observed (>3000 km alti-
tude). Since our computer resources limit the simulation system to lengths less than or the order of 1000 Debye
lengths, we examine instead a temporal evolution problem which differs from the spatial evolution problem in at
least one respect. In the spatial evolution case, the ratio of the H* /O * bulk drift velocity is V Mgp/My, as oxygen and
hydrogen are accelerated to the same energy as a function of potential at a given altitude. In steady state at a fixed
altitude there will be a continuous flow of oxygen and hydrogen whose drifts differ by a factor of 1 to 4, respec-
tively, but the hydrogen and oxygen ions passing that altitude at a fixed time will not leave the bottom of the
acceleration region simultaneously, since hydrogen flows up the field line faster. This follows from the relation

eb = 12My V> = 12MoVo® (D

which holds at any given altitude where the potential is ed. Alternatively, in a simulation system evolving in time
with a uniformly applied E,, the ion velocity varies as
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which results inan H*~O™* velocity of Mo/My, rather than (Mo/My)"/?. Furthermore, depending on the strength of
the applied electric field E,, the ions may accelerate so rapidly that the upper limit on the relative drift for the ion
two-stream instability may be exceeded before nonlinear saturation can occur. In such a case, we would not see the
full effects of wave-particle interactions on the ion distributions.

With these caveats in mind, we performed a series of one-dimensional electrostatic simulations using the
particle code ES1 (Birdsall and Langdon, 1984), ina periodic system of length 240 \p, using 16,000 hydrogen and
16,000 oxygen ions and 32,000 electrons. We varied the uniform applied electric field from eE/T. = 0, 1.2/240 \p
to 2.4/240 \p and applied it only to the ions in order to simulate the approximately stationary electron Maxwellian
(Fig. 3) through which the outflowing ions accelerate. We did initial value runs with Vi = Vo = Oatt = O and
runs which were initiated with V; and Vg in the range where the ion two-stream growth rate peaks.

Figure 4 shows the nonlinear evolution of the ion two-stream instability for initial drifts Vi = 1.2 C;and Vo
= 0.3 C, and a uniform applied electric field eE,/T, = 2.4/240 . The electron-to-ion temperature ratio is To/T; =
20 and the mass ratios are Myy/M, = 50 and Mo/My = 8. The choice of drifts Viy/Vo = 4 is intermediate between
the spatial evolution case where Vy/Vo = VMo/My = 2V/2 and the temporal evolution case where Vy/Vo =
My/My; = 8 for our mass ratio. Variations about this set of parameters are discussed below. One observes the
formation of a localized fluctuation in the potential similar to that seen in the previously described (single ion)
simulations at a time when the hydrogen drift relative to electrons is Vi = 0.2-0.3 a.. This drift is smaller by a factor
of 2 than in the single ion runs previously shown. The localized wave is a result of the nonlinear evolution of the ion
two-stream instability which occurs at lower relative drifts (Vg-Vo) than the current-driven, ion-acoustic
instability. The potential pulse is subsonic in the ion frame, and appears to propagate with the ions out the right-hand
boundary and re-enter on the left. Periodicity of the system allows one to see that the pulse is continuous from the
right through the left boundary of an adjacent frame, since the pulse has not moved much from frame to frame. (The
frames are separated in time by 60 w,.'".) A significant localized potential jump ed/T, > 1 develops, but does not
persist as far downstream as in cases where the relative electron-ion drift is larger (Fig. 11). We therefore hesitate to
call this structure a double layer when the system is in the ion two-stream unstable regime, although its features are
very similar to those shown in Figure 1, when translated to a frame in which electrons are stationary and ions drift.
One sees trapping of hydrogen and oxygen on the sides of the distribution functions corresponding to the phase
velocities of the (ion two-stream) unstable waves, namely the low velocity side of hydrogen and the high velocity
side of oxygen. It seems appropriate to call this structure an ion hole.

We observed ion hole formation in the ion two-stream unstable regime for a range of parameters summarized
in Table 1. The ion two-stream instability was observed over a broader range of parameters (Bergmann and Lotko,
1986) than was ion hole formation, which apparently requires large amplitude waves and occurs only for sufficient-
ly rapid linear instability. Recall that the ion two-stream instability is limited in duration as the electric field
accelerates ions into and out of the range of linearly unstable drifts. Ion hole formation did not occur in runs 2-4 until
the hydrogen bulk was accelerated to 0.2-0.3 a,. In run 6, with no applied electric field but the same initial drifts as
run 3, ion hole formation was not observed. In run 7, also with no electric field, but with initial drifts in the range
produced by the electric field in run 3 at the time ion hole formation was observed, an ion hole forms. Sato and
Okuda (1980) saw weak double layer formation in a system 256 A, long but not in one 128 Ap long. Our system
length of 240 \p, is marginally long enough to allow a double layer to form in the absence of an applied electric field
before periodic electron cycling neutralizes the evolving double layer space charge. We also did a run (8) using a
bounded one-dimensionai eiectrostatic code, PDW1 (Lawson, 1984), with constant particle injection maintained
by an external circuit and floating potential at both ends of the system, but with parameters otherwise the same as in
run 7. Ion hole formation in runs 7 and 8 is comparable, as shown in Figure 5.
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In order to address the temporal evolution question, we performed two runs (9 and 10) with two different
values of the applied electric field, eE/T, = 1.2, 2.4/240 \p, no initial ion drifts, and periodic boundary con-
ditions. Ion hole formation was evident but weaker for the larger electric field (run 9) than in the initial drift case
(e.g., run 3), and absent for the weaker electric field (run 10) when compared at time such that C; < Vy-Vo < 2 C,.
Some ion heating occurs in the initial value runs (9 and 10) before the relative drifts are comparable to the initial drift
runs, i.e., optimum for ion two-stream instability. In initial value runs the hydrogen and oxygen ion distributions
separate more quickly than in the case of spatial evolution, and so spend less time in the range of unstable relative
drifts, Vi - Vo < 2 C,. The maximum growth rate of the two ion-stream instability is the order of y/w,. ~ 1072
(Bergmann and Lotko, 1986, Fig. 3) for the k modes in our simulation system of length 240 A, and grid size 0.5 \p.
Both initial value (run 9) and initial drift (run 3) cases remain in the range of unstable drifts Vy-Vg ~ 1.2-2 C, a
number of e-folding times, but there appears to be some difference between initializing the system in the linearly
unstable regime and evolving through it. In the auroral problem, one expects spatial evolution and weaker electric
fields, discussed below, to separate the drifts more slowly relative to the linear growth time.

The question arises whether ion heating by the ion two-stream instability, evident in Figure 4, will affect
double layer evolution at higher altitudes where the ion drift relative to electrons is larger. Figure 6 shows the initial
ton and electron distributions for runs 9 and 10. Figure 7 shows the same distributions for run 9 at the time an ion
hole is beginning to form, while Figure 8 shows the same distributions at a later time when the hydrogen drift is
becoming significant relative to electrons. Figure 9 shows the particle distributions in the weaker electric field case
at a time when the drift is the same as Figure 7. We would conclude from this set of figures tht there is no major
modification of the hydrogen and oxygen distributions by the ion two-stream instability, which is present in runs 9
and 10. There is some heating on the low velocity side of hydrogen and the high velocity side of oxygen, as
expected, in the range of unstable ion two-stream phase velocities. Figure 10, a similar plot for run 3 which showed
ion hole formation at large trapping amplitudes (ed/T. ~ 1), indicates more heating between the hydrogen and
oxygen distributions. This plot exhibits distribution functions which are spatially averaged across the whole
system, and it is the case that the plateau evident in hydrogen (and oxygen) is due primarily to the spatially localized
ion hole evident in Figure 3. It is questionable to call this heating versus localized ion trapping since it is not uniform
across the system. It therefore seems reasonable to conclude that in our simulation system the hydrogen and oxygen
average distributions are not so greatly modified by the ion two-stream instability as to preclude ion-acoustic
instability and double layer formation at larger ion drifts relative to electrons.

IV. ION-ACOUSTIC DOUBLE LAYERS IN AN O*-H* PLASMA

As hydrogen and oxygen continue to accelerate up the geomagnetic field line out of the region of ion two-
stream instability, hydrogen eventually acquires a drift relative to electrons comparable to the electron thermal
speed. If the hydrogen velocity distribution has not been too greatly modified by the ion two-stream instability, as
our preceding results indicate, we might expect double layers to evolve from the electron-hydrogen acoustic
instability, as described by Barnes et al. (1985), as long as oxygen and hydrogen remain well separted. To test this,
we did a series of simulations at large electron drifts (0.7-0.9 a.) in the oxygen frame with hydrogen drifting at -0.2
C;. Electron injection boundary conditions were employed as in Barnes et al. (1985), in a system 512 \p long,
containing 8000 ions of each species and 16,000 electrons. More realistic mass ratios, My/M, = 1000 and Mg/My
= 10, were used. Oxygen was kept cold relative to electrons, T/To = 100, and two cases were examined for
hydrogen: T/Ty = 20 corresponding to no significant heating of hydrogen by the ion two-stream instability at
lower altitudes, and T/Ty; = 2 where significant heating has occurred. The assumption that electrons are hotter than
ions is justified by the altitude where weak double layers have been observed (>3000 km), since the large scale
parallel electric field restricts colder electrons to lower altitudes. No electric field was applied in these bounded
runs.
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Figure 11 shows the hydrogen and oxygen distributions and potential at a time when one and possibly a
second double layer are forming with hole(s) evident in hydrogen phase space. Oxygen responds more slowly and
appears to play a passive role in the double layer formation, but eventually forms a hole in ion- phase space by the
time hydrogen has undergone significant heating and the double layer is disappearing (Fig. 12). Ina similar run with
T./Ty = 2, a hole does not appear to form in hydrogen but is evident in oxygen at later times. This result is con-
sistent with Schamel’s (1982) criterion that ion holes do not form for T./T; < 3.5 (see also Hudson et al., 1983). An
oxygen ion hole and weak double layer appear to form when the hydrogen is heated too much to support such a
structure. Should the hydrogen be significantly heated and the oxygen remain cool, a hole can still form in oxygen in
association with an electron -O* drift instability at phase velocities between the electron and O peaks.

V. APPLICATION TO THE AURORAL REGION

A number of caveats are in order before applying the foregoing simulation results to the auroral particle
acceleration region. We have examined separately two regimes: (1) where the two ion-stream instability operates at
low relative ion drifts (<2 C,) produced by a quasi-static parallel electric field near the bottom of the acceleration
region, and (2) ion-acoustic double layer formation at higher altitudes where relative electron-ion drifts are larger
and the ion distributions will have undergone some heating at lower altitudes. We have restricted our analysis to
parallel propagating modes and one-dimensional simulations in the present paper. It is likely that oblique modes
will affect the ion distributions. Kaufmann et al. (1986) have examined the stability of hydrogen and oxygen beams
measured by the $3-3 and DE 1 satellites and concluded that oblique modes are unstable. It may also be the case that
the upper limit on relative drift for the ion two-stream instability is relaxed for oblique modes, since k- (Vy-Vo) <2
C, for larger relative ion drifts when k is oblique. The linear instability of oblique modes is under investigation by
Bergmann (private communication, 1986). Barnes et al. (1985) showed that ion-acoustic double layers evolve in the
presence of oblique (EIC) modes in two-dimensionality with behavior similar to the one-dimensional case. We plan
to extend the present multi-ion studies to two-dimensional in the future.

Another qualification to our conclusions is the strength of the electric field used in the initial value simula-
tions. The values of eE/T, = 1.2-2.4/240 \p, correspond to 5-10 mV/m for A\p = 10 m, T, = 10eV, andn. = 10
cm3. These are not large parallel electric fields compared with observations in the acceleration region (Temerin,
private communication, 1986), but are larger than the mirror-supported fields calculated by Chiu and Schulz (1978)
which maximize at E, < 0.5 mV/m near the bottom of the acceleration region.

It is somewhat difficult to extrapolate from the temporal evolution approach taken in this paper to the spatial
evolution of ion distributions along auroral field lines. Nonetheless, with the neglect of oblique modes and use of
somewhat large electric fields, and/or initializing the simulations with unstable drifts, and preheated ions in the ion
acoustic regime, we find the following:

1. Ton holes form in the ion two-stream unstable regime at relatively low drifts compared with those requi-
red to form ion-acoustic double layers. They occur in systems with and without an applied electric field, but over a
narrow range of relative hydrogen-oxygen drifts.

2. The ion two-stream instability does not appear to greatly modify the ion distributions, except locally in
the presence of a large amplitude (ed/T. ~ 1) ion hole.

3. Double layer evolution should proceed at higher altitudes as previously described in the ion-acoustic
regime, with holes forming in hydrogen, and oxygen responding passively.
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There are two pieces of experimental evidence supporting our conclusion that hydrogen and oxygen dis-
tributions are not so greatly modified at lower altitudes by the ion two-stream instability as to preclude double layer
formation at higher altitudes.The first is the set of particle measurements from the S3-3 and DE 1 satellites analyzed
by Kaufmann et al. (1986) showing well separated H* and O* peaks, with a slight filling in between the two. The
second is the observation of what have been identified as weak double layers by Temerin et al. (1982), also Temerin
and Mozer (1986), at altitudes >3000 km in regions of upward ion flows. These observations indicate that the
heating of the ion distributions that occurs at lower altitudes is not as great as the relative acceleration, nor enough to
make T./T; ~ 1, which would preclude ion-acoustic double layer formation.

A number of questions remain to be addressed: Can one design a temporal evolution simulation which better
models the spatial evolution problem within the constraints of computer time and memory, e.g., by moving one ion
species with an electric field which differs from the other by V My/Mg to mimic the spatial case in an initial value
problem? What effects do oblique modes and two-dimensionality introduce in the problem? Is it possible to use
weaker electric fields and follow the evolution from the ion two-stream through the ion-acoustic double layer
regime. These and other questions remain to be addressed in future work on the evolution of weak double layers in
the multi-species auroral plasma.

TABLE 1. ION HOLE FORMATION IN THE ION TWO-STREAM

UNSTABLE REGIME
Vo(0) Vu(0) Vu-Vo t
Run (ap) (a.) (Cy) eE/T. be (@pe™) hole
1 0 0.17 1.2 2.4 per 0 no
2 0.035 0.17 0.95 2.4 per 0 yes
3 0.042 0.17 0.91 2.4 per 0 yes
4 0.049 0.17 0.86 2.4 per 0 yes
5 0.06 0.17 0.78 2.4 per 0 no
6 0.042 0.17 0.91 0 per 0 no
7 0.06 0.30 1.7 0 per 0 yes
8 0.06 0.30 0 bnd 0 yes
9 0 0 0 2.4 per 0 marginal
10 0 0 0 1.2 per 0 no

Note: Units of eE,/T, are (240 \p)™'; bnd and per refer to bounded and periodic boundary conditions (bc).
Acknowledgments. This research was supported by NSF grant ATM-8445010, the University of California
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Figure 1. Time series plots of ion-phase space (left) and electrostatic potential (right) for a bounded one-
dimensional run with M/m = 2000, TJ/T; = 50, and Vi = 0.5 a,. The snapshots are taken at intervals of 360 mpe"
(8 wpi") beginning at 1080 wpe“ 24 wpi") (from Barnes et al., 1985).
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Figure 2. Magnetized doubly periodic system with o../0, = 3 and a weak uniform applied electric field pointing
to the left, eBy/T. = 0.6/160 \q. (a) Potential profiles are averaged over 4 wpi“
displayed in each of four bands in y. v, is in units of a.. The most prominent double layers are inband 1 at x = 120 Ap
and band 3 at x = 40 Ap.
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Figure 3. Reduced electron distribution function f(V) for Chiu and Schulz (1978) Model W, at ed/T. = 110, where
T, is the cold ionospheric electron temperature. This represents a sum of contributions from magnetospheric,
primary and secondary backscattered and trapped electrons, with ionospheric electrons negligible at this value of
the mirror potential measured from zero at an altitude of 2000 km (adapted from Bergmann and Lotko, 1986).
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Figure S. (a)Potential for run 7 at w,,. At = 900; (b) Potential for run 8 at wp, At = 900. Parameters in (a) and (b) are
the same, except that (a) was periodic, using ES1, and (b) was bounded using PDW 1, with particle injection main-
tained constant as initialized (Vi = 0.30, Vo = 0.06, V. = 0 in units of a.) by an external circuit. All potential
plots shown are averaged over 30 o,
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Figure 6. Initial (a) electron, (b) hydrogen, and (c) oxygen distribution functions for runs 9 and 10.
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Figure 7. Same plots as Figure 6 for the stronger electric field case eE/T, = 2.4/240 \p, at the time an ion hole is
beginning to form, w,. At = 900. The potential averaged over 30 wpe' is also shown in (d).
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Figure 8. Same plots as Figure 6 for run 9 at . At = 2160 when Viy = 0.44 a_ is becoming comparable to Figure

1.
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Figure 9. Same plots as Figure 6 for the weaker electric field case, run 10, with eE/T. = 1.2/240 \p, at o, At =
1800, corresponding to the same amount of ion acceleration as Figure 7.
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Figure 10. Same plots as Figure 6 for run 3, at the end of the time series shown in Figure 4.
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Figure 11. (a) Hydrogen and (b) oxygen distributions, and (c) potential averaged over 67.5 0, at @, At = 540.
One or more double layers are apparent.
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PARTICLE SIMULATION OF AURORAL DOUBLE LAYERS

Bruce L. Smith* and Hideo Okuda
Princeton Plasma Physics Laboratory
Princeton, New Jersey 08544, U.S.A.

ABSTRACT

We report on our work to simulate auroral double layers (DL’s) with “realistic” particle-in-cell models. An
early model simulated weak DL’s formed in a self-consistent circuit but under conditions subject to the ion-acoustic
instability. More recent work has focused on strong DL’s formed when currentless jets are injected into a dipole
magnetic field.

INTRODUCTION

For several years we have been simulating space plasmas using “realistic” models. These models have
included both numerical MHD and particle-in-cell (PIC) codes. Here we discuss two PIC models that simulate
auroral double layers (DL’s).

An early analysis of DL’s was performed by Block (1972). In his model four species of particles, reflecting/
passing electrons/ions, were incident upon a strong (eV >> kT) DL. The two fluid equations, an adiabatic equation
of state and Poisson’s equation, led to two criteria on the drift velocities of ions and electrons incident on the high
and low field sides of the DL, respectively. These are called the Bohm criteria in analogy with the similar criterion
on ions in a plasma sheath (Bohm, 1949). In Block’s model the drifts necessary to sustain the DL result in a net
current.

Using these criteria as a recipe, one could easily simulate a DL. Such simulations only required fixed poten-
tials at the boundaries to drive the necessary current or a floating potential (or even periodic boundary conditions)
with large enough drifts (i.e., a current) to satisfy the criteria. Although these conditions permit DL’s, in auroral
regions, where DL’s have been observed (Temerin and Mozer, 1984), such conditions may not be present.

Sato and Okuda (1980, 1981) performed a series of simulations with “more realistic” conditions. In one of
these simulations they assumed:

I Ugrift e < Vine
2. T.>> T,
3. Floating self-consistent potentials.

This is the range of parameters for ion-acoustic instabilities, but avoids the large relative drifts which may cause the
two-stream instability.

Their model was that of the polar region field lines in a self-consistent circuit. Initial conditions included a
driving potential and an initial current. The subseuent potential and current were related by a fixed resistance con-
sistent with the initial conditions. One of the results shown in Figure 1 was obtained for v4./v,, = 0.6, M/m = 100,

* Now at Air Force Office of Scientific Research.
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nAp = 100, wy.At = 0.2. As is apparent, the simulation resulted in multiple weak (eV < kT) DL’s about 1000 Ap
apart and with scale lengths & ~ 50 Ap. These DL’s are unstable and propagate at near the ion-acoustic velocity but
recur at a rate such that approximately the same number of DL’s are always present.

Hasegawa and Sato (1982) provided the mechanism for such DL’s. Basically an ion hole is created which
cuts off the electron current. Formation of an adjacent electron hole follows. This yields a DL which decays on the
ion time scale.

Other authors have found different ways to relax the constraints imposed by the Bohm criteria. In particular,
Kan and Lee (1980) concluded that the condition on the electron velocity was unnecessary if trapped electrons were
present. Similarly Perkins and Sun (1981) demonstrated that even currentless DL’s could exist. Incidentally, their
analysis contrasts with that of Chiu and Schulz (1978) who computed the potential along a mirror magnetic field due
to multiple species of ions and electrons using the condition of charge neutrality.

A recent experiment further indicated the possibility for modifying the conditions necessary for creation of
DL’s. Stenzel et al. (1981) conducted an experiment with a dipole B-field which reflected an incident ion beam.
This experiment resulted in strong DL’s for varying magnetic field strengths. These, too, were inherently current-
less DL’s.

The previous investigations compelled us to simulate a flowing neutral plasma injected along a (fully) dipole
magnetic field. This model is meant to simulate the storm-generated flow from the reconnection region to the polar
auroral regions. Of course, such a flow would cause ions and electrons of the same temperature to have different
turning points. As the ions overshoot the electrons, a space charge potential could form and a DL would be present.
This model then substantiates a source of energetic electrons for an aurora.

Parameters for the region through which such substorms are supposed to develop are n = 10-1000 cm>, B
= 10%-10%y, and T, < T; ~ 100’s eV. These values yield W, ~ wce ~ 10°-10° rad/s and << 1. In this parameter
regime the electrostatic approximation is appropriate (Krall and Trivelpiece, 1973).

RESULTS

Results for a one-dimensional PIC simulation with L/Ap = N, = 1024, M/m = 25, w,.At = 0.25, and
B,.ax/Bmin = 25 are shown. For boundary conditions we chose V.= O atz = 0 (the “ionosphere”) and using
symmetry, dV/dz = O atz = L (the “magnetosphere”). Figures 2a-c show the injection of plasma at approximately
0.8 V. As the plasma drifts into the dipole field, a double layer is evidenced by the acceleration of ions and
electrons and by their relative charges at L = 600 Ap for Wy t = 1900 and L = 800 Ap for wyt = 2600. One notes
that the DL is unstable by the modulation (with X ~ 25 \p) and the fact that the DL moves at a velocity 200
Ap/700/Wpe = 2/7 Vihe. This value is on the order of the ion-acoustic velocity.

The f-spectrum for different positions (Fig. 3) shows the presence of amode at w = 0.15-0.2 wy,e < wy,; and
atw = 0.05-0.1 wye << wy;. Similarly the mode structure (Fig. 4) gives wavelengths most strongly peaked at )\ =
0and A = 60 \p. The data are consistent with a two-stream instability (with w << wy,). Finally the scale length of
the DL is kT/eE ~ 50 Ap >> Ap.
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In the next panels (Figs. 5 a-d) are shown f(v , )-f(v ) for both electrons and ions at different positions. If there
were simply a B-field with no other interaction we would expect a snapshot of the loss cone for such a comparison.
Instead the panels clearly show that the electrons accelerate from wp,.t = 1000 to wy.t = 2800 as they pass over the
DL. Similarly the ions slow down and cool during this same time. (This cooling of ions may allow an ion-acoustic
instability.)

In the final panels (Fig. 6) we show the measured energies from the simulation. As can be seen in the first
panel, total energy is conserved to within less than 1 percent. One also sees that the ion kinetic energy is converted to
electron kinetic energy until the two are approximately equal. Surprisingly, the collective potential energy is a small
fraction of the total.

A theory for this model was derived by Serizawa and Sato (unpublished manuscript). Using an adiabatic
approximation, their kinetic analysis showed that eV =~ KE;/(1 + T;/T.) with small variations predicted for mass
ratios m/M << 1 and mirror ratios B,,,x/Bmin >>> 1. A plot of eV versus KE; for varying KE; confirms the linear
relation between these quantities (Fig. 7).

Similar results for ions and electrons streamed from both ends are obtained.

CONCLUSION

In conclusion, simulations have been undertaken to model aurorae under realistic conditions. The simula-
tion of ion acoustic DL’s in a self-consistent circuit showed multiple DL’s with eV/kT < 1. Currentless DL’s with
eV >> kT have been demonstrated. Although not discussed here, these simulations furthered the theory of Fourier
transforms for bounded systems and successfully demonstrated the utility of a guiding center code for electrons.
Currently two-dimensional codes are being tested to verify the one-dimensional results and to study two-
dimensional instability mechanisms.
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CONDITIONS FOR DOUBLE LAYERS IN THE EARTH'S MAGl:lETOSPHERE
AND PERHAPS IN OTHER ASTROPHYSICAL OBJECTS

L. R. Lyons
Space Sciences Laboratory, M2-260
The Aerospace Corporation
P.O. Box 92957
Los Angeles, California 90009, U.S.A.

ABSTRACT

Double layers (i.e., electric fields parallel to B) form along auroral field lines in the Earth’s magnetosphere.
They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field
E with V - E # 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the
conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines.
Astrophysical situations where V - E # 0 is applied to a conducting plasma similar to the Earth’s ionosphere are
potential candidates for the formation of double layers. The region with V - E # 0 can be generated within, or along
field lines connected to, the conducting plasma. In addition to V - E, shear neutral flow in the conducting plasma can
also form double layers.

I. INTRODUCTION

Here I describe the large-scale, electrodynamical phenomena that give rise to the formation of double layers
in the Earth’s magnetosphere. I point out what I believe are the important features which might be found in associa-
tion with other astrophysical objects, and which could produce double layers analogous to those associated with the
Earth.

In the laboratory, double layers form if one tries to drive a current through a plasma that is greater than that
which can be carried by the available charge particles in a plasma. The same situation occurs along auroral magnetic
field lines. When the magnetosphere-ionosphere system tries to drive a current with a density greater than can be
carried by the plasma available to flow along field lines, a field-aligned potential drop V| forms. This V| accelerates
electrons toward the atmosphere, and the accelerated electrons form discrete auroral arcs.

In this discussion, I do not distinguish between double layers, where large Vs occur across short distances,
and smoothly varying potentials, where V|’s are distributed over large distances along field lines. The overall
electrodynamics is the same for both situations.

Il. CONDITIONS FOR DOUBLE LAYERS
Three critical features of the Earth’s magnetosphere-ionosphere system are involved in the formation of

significant (=1 kV) V/’s along auroral magnetic field lines. These are listed in Figure 1.

First, it is necessary to drive a current with a non-zero divergence. In the magnetosphere, the large-scale,
convection electric E has V - E # 0 across auroral field lines. This divergence in E maps along field lines to the
ionosphere.
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Second, the ionosphere has a layer of high conductivity perpendicular to the magnetic field B. This con-
ductivity results from collisions between ionospheric particles and the neutral atmospheric particles. Thus, an elec-
tric field with V - E # O in the ionosphere drives Pedersen (parallel to E) currents I in the ionosphere with V - Ip #
0. This divergence in Ip must be balanced by field-aligned currents to maintain current continuity in the ionosphere.

Third, if the intensity of the required field-aligned current density j; exceeds that which can be carried by
plasma flowing along field lines with V;, = 0, then a V| # 0 must form.

Any astrophysical situation where an electric field drives a current I perpendicular to B, with V - T # 0, has
the potential for forming V|’s along B. A layer with significant conductivity perpendicular to B would be an attrac-
tive candidate for having currents with V - I # 0.

To determine whether a V| will form, we must evaluate the j; versus V| characteristics of magnetic field lines
for j;’s of the magnitude expected from V - I. Currents associated with aurora on the Earth typically have j ~ 1-10
wA/m?. Two particle populations can contribute to this current: the ionospheric plasma moving up along field lines,
and magnetospheric plasma (from the plasmasheet) which precipitates into the atmosphere. Only magnetospheric
particles within the loss cone contribute to jj, since particles outside the loss cone mirror above the atmosphere.

Downward j;'s can result from ionospheric electrons moving upward and from the precipitation of magneto-
spheric ions. However, ionospheric electrons can generally supply a j; > 10 pwA/m? to adownward jj, so that Vs do
not generally form for downward j;’s.

On the other hand, the maximum j; that can be carried by ionospheric ions is generally <1 wA/m?. Thus, the
precipitation of magnetospheric electrons must be considered for upward j;’s. For typical parameters of plasmasheet
electrons, the maximum j; that can be supplied by the precipitation of magnetospheric electrons is ~ 1 nwA/m? for V
= 0. However, increasing V| increases j; by enhancing the flux of electrons in the loss cone. The relation between j;
and V| along auroral field lines was obtained by Knight (1973), and is shown in Figure 2.

Figure 2 shows j; versus V| for an electron density n = | cm™ and an electron thermal energy Ky, = 1 keV,
values which are reasonable for the plasmasheet. Results for other values of n and Ky, can be obtained from the
normalizations given in the figure. Curves are shown for various values of the ratio between the magnetic field in the
ionosphere B; and the magnetic field By, at the top of the region where significant potential variation exists along
field lines. Satellite obsevations (Gorney et al., 1981) indicate that Bi/BVu == 30 is reasonable. Notice from Figure 2
that upward j;’s ~ 1-10 pA/m?” require the existence of V|’s ~ 1-10 kV. Such V|’s are of the magnitude observed
OVer auroras.

Figure 3 illustrates a way in which an E with V - E # 0 develops in the Earth’s magnetosphere. Both open,
polar-cap field lines connected with the interplanetary field and closed, lower latitude field lines are shown. Solar
wind flow across the open polar cap field lines forms a dawn-to-dusk electric field across the open field line region,
and the electric field changes direction across the boundary between open and closed field lines. The boundary is
thus charged as indicated in the figure. Mapping the electric field to the ionosphere gives V - Ip < 0 and upward j;'s
on the dusk side, and V - Ip > 0 and downward j;'s on the dawn side. The magnitude of V - Ip gives large enough j's
on the dusk side to require a V; > 0.

Similar situations as shown in Figure 3 should occur in the magnetospheres of other magnetized, solar
system planets, and could exist in association with other magnetized, astrophysical objects. Also, regions of V - E
# 0 can be formed by plasma sources, such as Io, that move across field lines within a magnetosphere.

Figure 4 shows that the observed change in E across the dusk auroral zone can account for the observed

magnitude of auroral Vs and precipitation intensities. The observations (Gurnett and Frank, 1973) were from a
low-altitude satellite. An electric field of 0.12 V/m was observed across the auroral region, and the equation for
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current continuity in the ionosphere was solved (Lyons, 1980) for an electric field of magnitude 0.06 V/m on each
side of the reversal. The resulting values of V| and precipitating electron energy fluxes are shown in Figure 4 as a
function of latitudinal distance. These can be seen to compare well in magnitude with values obtained from electron
observations on the satellite. The auroral observations in Figure 4 have more structure than that obtained from the
simple solution to the current continuity equation. However, this type of structure, which is typical of discrete
auroral arcs, can be explained as a result of more detailed structure in the magnetospheric electric field (Lyons,
1981; Chiu et al., 1981).

So far, the discussion here has been under the assumption that the velocity V, of neutrals in the conducting
layer is zero. Including V,,, I, may be written as the difference between the electric field drift velocity Vg and V,;:

Ip =2, (-Ve + V) X B,

where 25 is the layer-integrated Pedersen conductivity. Since ji = -V - Ip, the above relation shows that shears in V,,
as well as shears in Vg, can cause field-aligned currents within a conducting layer.

Generally, thermospheric neutral winds in the conducting region of the Earth’s ionosphere are not sufficient-
ly large to generate V|'s. However, this is not necessarily always the case. Recently, Lyons and Walterscheid (1985)
proposed that neutral wind shear can drive waves of aurora (omega bands), with V; > 0, that occasionally occur on
the poleward boundary of the post-midnight, diffuse aurora. In addition it has been proposed the neutral winds in the
photosphere and lower chromosphere of the Sun can generate V’s (e.g., Kan et al., 1983).

lll. SUMMARY

Figure 5 summarizes conditions that might exist in other astrophysical objects and which could lead to the
formation of significant Vs in a manner analogous to what occurs in the Earth’s auroral zones. A conducting layer
carrying current I perpendicular to B with V - I # 0 will force field-aligned currents. If the required field-aligned
current density j; exceeds the maximum jy that can be carried along field lines by the available plasma with V, = 0,
then a V, > 0 will form.

Two processes can drive Pedersen currents with V- I # 0 within a collisional, conducting layer. The first is
sheared plasma flow (i.e., V - E # 0) applied anywhere along the magnetic field lines connected to the conducting
layer. In this case, the sheared plasma flow will map along field lines to the conducting layer. The second process is
a neutral flow with shear within the conducting layer. Such flow can drive divergent Pedersen currents without an
electric field being applied to the system.

Acknowledgments. Preparation of this manuscript has benefitted from discussions with M. Schulz and J. F.
Fennell. The work was supported in part by NASA grants NAGW-853 and NASW-861 and by the Aerospace
Sponsored Research Program.
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— — Observations (Gurnett and Frank, 1973)

—— Theory (E;=0.06 V/m, Ky, = 500 eV,
n=lcm?, B;/By,=10)
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Figure 4. Comparison of the solution to the ionospheric current continuity equation (Lyons, 1980)
with observations. The observations (Gurnett and Frank, 1973) were obtained over
the auroral zone from a low-altitude satellite near 1800 LT.
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manner analogous to what occurs in the Earth’s auroral zones.
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SOME ASPECTS OF DOUBLE LAYER FORMATION IN A PLASMA
CONSTRAINED BY A MAGNETIC MIRROR

W. Lennartsson
Lockheed Palo Alto Research Laboratory
Palo Alto, California 94304, U.S.A.

ABSTRACT

The discussion of parallel electric fields in the Earth’s magnetosphere has undergone a notable shift of em-
phasis in recent years, away from wave-generated anomalous resistivity toward the more large-scale effects of
magnetic confinement of current carrying plasmas. This shift has been inspired in large part by the more extensive
data on auroral particle distribution functions that have been made available, data that may often seem consistent
with a dissipation-free acceleration of auroral electrons over an extended altitude range.

Efforts to interpret these data have brought new vigor to the concept that a smooth and static electric field can
be self-consistently generated by suitable pitch angle anisotropies among the high-altitude particle populations,
different for electrons and ions, and that such an electric field is both necessary and sufficient to maintain the plasma
in a quasi-neutral steady state. This paper reviews and criticizes certain aspects of this concept, both from a general
theoretical standpoint and from the standpoint of what we know about the magnetospheric environment. It is argued
that this concept has flaws and that the actual physical problem is considerably more complicated, requiring a more
complex electric field, possibly including double layer structures.

l. INTRODUCTION

Few topics in space plasma physics have been as controversial as that of “parallel electric fields,” that is
electric fields with a static or quasi-static component aligned along the Earth’s magnetic field lines and strong
enough to substantially alter the velocity distribution of the charged particles. Much of this controversy has centered
on the interpretation of auroral particle data, especially the data on precipitating electrons, and has evolved along
with developments in measurement technology (e.g., Swift, 1965; Block, 1967; O’Brien, 1970; Evans, 1974;
Lennartsson, 1976; Papadopoulos, 1977; Hudson et al., 1978; Chiu and Schulz, 1978; Goertz, 1979; Lyons et al.,
1979; Smith, 1982; and references therein).

Possibly the first truly compelling evidence of parallel electric field was presented by Evans (1974), who
was able to account in a rather convincing fashion for the different parts of a typical auroral electron spectrum. The
type of data presented by Evans is illustrated in a condensed form in Figure 1, which is taken from a more recent
study by Kaufmann and Ludlow (1981). The two principal parts of this spectrum are a virtually isotropic low-energy
part, including the central peak and most of the plateau, and a high-energy part on the flanks, which is essentially
isotropic in the downward hemisphere (positive v) but strongly reduced in the upward hemisphere (negative vj).
According to Evans’ interpretation, only the high-energy part in the downward hemisphere consists of precipitating
primary electrons, accelerated by an upward parallel electric field at higher altitude. Only these primary electrons
can contribute to a field-aligned (upward) current at this point in space. The low-energy part consists of back-
scattered and energy-degraded primary electrons and of electrons of atmospheric origin, many of which are secon-
dary electrons generated by the impact of primary electrons. All of these low-energy electrons are trapped below the
electric field and cannot contribute to the field-aligned current. Any additional contribution must be from upward-
moving ions.
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As noted by Evans (and by other investigators before him) the primary electrons (“p”) on the downward
flanks of the distribution typically have a velocity distribution f;, that is reminiscent of a Maxwell-Boltzmann dis-
tribution that has been displaced in energy:

£,(V) = C exp[-(m|v[/2 - UYKT] (1

where C is a normalization constant, m the electron mass, kT a thermal energy, and the positive quantity U is
independent of ¥V and may be equated to a certain difference in electric potential energy eV:

U = eAV . (2)

This quantity corresponds to the kinetic energy of the electrons on the downward edge of the plateau in Figure 1 and,
by inference, corresponds to primary electrons with zero initial energy (at high altitude).

If the distribution in Figure 1 is integrated in terms of a net field-aligned current density iy, only the electrons
on the flanks make a significant contribution because of the near isotropy at energies smaller than U. If the dis-
tribution of these flank electrons f, (“primary electrons”) is approximated by (1) at pitch angles o < o, (Where
Qmax 18 slightly larger than 90° in this figure) and approximated by zero at a > o, then the integration of
—efp(?/’)vcosa readily yields:

i) = —eC2m(kT/m)%sin*onax (1 + UKT) 3)

which is a linear function of U for constant values of C, kT, and a.,,,x (the latter corresponding to a local atmospheric
“loss cone” angle of 180° —a,,,x). Some comparisons of auroral electron spectra with the associated field-aligned
currents (inferred from other data) have confirmed that the precipitating primary electrons do in fact account for a
large or dominant portion of upward field-aligned currents, and the current density is sometimes fairly well approxi-
mated by (3) (Burch et al., 1976; Lyons, 1981; Yeh and Hill, 1981).

Although the right-hand side in (3) can be derived on purely empirical grounds, as an approximation of
observed electron fluxes, the same type of expression can also be “predicted” if the primary electrons are assumed to
originate at high altitude (a few Earth radii, or more), with an isotropic Maxwell-Boltzmann distribution with a
temperature T, and fall through a static parallel electric field with a total potential difference AV = Ule (e.g.,
Knight, 1973; Lemaire and Scherer, 1974; Lennartsson, 1976, 1980; Lyons et al., 1979, Lyons, 1981; Chiu and
Schulz, 1978; Chiu and Cornwall, 1980; Stern, 1981). The electric field distribution is not uniquely defined by (3),
but to assure the maximum degree of isotropy of the precipitating electrons at low altitude, in accordance with
Figure 1, and thus the closest approximation of a linear dependence between iy and AV, it is necessary to assume that
the electric potential V varies with the magnetic field strength B in such a fashion that

V(B) — V(B,) = (B-B,) AV/AB , 4

where o refers to the high-altitude origin of the electrons and AB refers to the total difference in magnetic field
strength between this origin and the low-altitude point of observation (Lennartsson, 1977, 1980). Among the
possible solutions of (4) are various double layer configurations, single or multiple.
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The fact that (3) can be derived under such simple assumptions and yet give a fair approximation of upward
field-aligned currents, at least in some studies, has helped in focusing attention on the subject of magnetic con-
finement of current carrying plasmas. The theoretical implications of this fact are still obscure, however, and there
is no consensus yet on the actual properties of the parallel electric field. This paper reviews a few aspects of this
complex problem, including the possible role of double layers.

Il. NATURAL BOUNDARY CONDITIONS

A rather traditional approach to magnetospheric plasma dynamics at non-relativistic energies is to consider
adiabatic single-particle motion, assuming that at least the first adiabatic invariant is preserved for both ions and
electrons. This approach has proved fruitful in numerous applications but does have intrinsic problems in many
others. To illustrate the latter it is assumed that the particle dynamics is dominated by magnetic and electric force
fields, B and ﬁ, respectively. To save space the symbols M and Q are used for the mass and charge, respectively, of
either ions or electrons. The first invariant (in MKS units) can thus be expressed as

p = Mv,%/2/B = constant |, &)

. d 2.3 2
where the gyro velocity v, equals |v | —EXB/B

, apart from a small perturbations velocity ;1’ defined by:
v/ = (MIQ/B)(E, /dt + vABx VBY2/B + v Bx (1/B)B-V(B/B) , ©6)

where the time derivative is taken in the frame of reference of the moving particle (e.g., Alfvén and Filthammar,
1963; Longmire, 1963). This _\_')elocity represents the mass and charge dependent part of the gyro center drift, which
is added to the common E X B drift. The parallel velocity is likewise defined by

M (dVidt), = QE, ~ Mv,2(B-VB)/2/B? . @

The intrinsic problem in these equations lies in the second and third terms on the right-hand side of (6),
which have opposite directions for ions and electrons and are generally non-zero in the Earth inhomogeneous mag-
netosphere. These terms thus translate into electric currents which flow across the magnetic field lines and must be
part of closed current loops in a stationary state. Otherwise the assumption in (5) cannot be a valid description of the
particle dynamics.

As far as (5) is valid, equations (6) and (7) should provide a valid description of the interaction between the
solar wind plasma and the Earth’s magnetic field. In this case the currents associated with (6) can, at least in
principle, close through the Earth’s ionosphere, as indicated schematically in Figure 2. The field-aligned portions of
such a current loop may be carried in part by terrestrial particles, but the flow density of these particles is limited by
the maximum possible escape rates (e.g., Lemaire and Scherer, 1974). This restriction is less severe for the down-
ward current, since the terrestrial electrons may escape at a higher rate than the ions if allowed to flow freely.
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If the demand for upward current exceeds the flow rate of terrestrial ions, the additional contribution must be
carried by precipitating solar electrons. The flow density of these electrons is on the other hand limited by the “mag-
netic mirror” force on the right-hand side of (7), and can only be increased by a parallel electric field. In fact, if these
electrons have a Maxwell-Boltzmann distribution with a temperature T and density n, the flow density is limited by
(3), where U = eAV and C = n'VKT/(2mwm) (Lennartsson, 1980). This approach thus leads in a natural fashion to
the subject of magnetic confinement. The fact that auroral electrons are observed to have a significantly higher
temperature than solar electrons (cf. Fig. 1), may suggest, however, that (5) is not entirely valid.

ll. A “CLASSICAL” APPROACH TO MAGNETIC CONFINEMENT

Since particles with different pitch angles mirror at different locations in an inhomogeneous static magnetic
field, the number density n of these particles is a function of B, unless the velocity distribution is completely
isotropic (according to Liouville’s theorem). If the magnetic field strength has a single minimum B, and increases
monotonically away from this minimum, in at least one direction, then the density n is known at any B > B,, if the
distribution function is known at B,. This is still true in the presence of a parallel electric field (assuming a one-
dimensional geometry), provided the electric field is also time independent:

dE/dt = 0 , (&)
and the electric potential is sufficiently monotonic, for example (Chiu and Schulz, 1978):

dV/dB >0 C))

d’V/dB2 <0 . (10)

The last condition is much stronger than (4); it precludes double layer structures and implies that the electron and ion
densities are very nearly equal at all points. Under these three conditions, and assuming that (5) holds and the ions
are all positive and singly charged, the quasi-neutrality may be expressed in a somewhat “classical” form as:

N (V’B9fe0) =1 (V9B’fio) s (11)

where f., and f,, are the electron and ion distribution functions, respectively, at B,. With a careful selection of f., and
fi, this relation will yield a solution for V in the form V = V (B) (e.g., Alfvén and Falthammar, 1963; Persson,
1963, 1966; Block, 1967; Lemaire and Scherer, 1974; Chiu and Schulz, 1978; Stern, 1981). Whether this also
yields a self-consistent solution of Poisson’s equation is a rather intricate question, however.

A comparatively simple and analytically tractable case is illustrated in Figure 3, which is adapted from the
works of Persson '(1966) and Block (1967). The shaded areas repesent the only populated regions of velocity space.

Within o~ Ao s ot 1. 3 . T . . - o . .
Within thesc regions the particie distributions are assumed to be isotropic but may have arbitrary functionai
dependence on the energy and may be different for electrons and ions. The ions are also assumed to have energies
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larger than e(V, — V(B)), which ensures that no part of the ion energy distribution is entirely excluded from low
altitude (B = B,). The electron energies are only limited by the acceleration ellipsoid and by the loss hyperboloid.
As discussed by Persson and Block, these ion and electron populations can be made to have equal densities every-
where, n; = n., if and only if:

Ej = (V4 — Vo)(B, — By))dB/ds (12)

where s is a distance coordinate running along B (downward). The conventional physical interpretation of this case
is the following (cf. Persson and Block): Since the ion distribution at B = B, includes smaller pitch angles than the
electron distribution, the ion density tends to exceed the electron density at B > B,, thereby creating an upward
electric field that drags the electrons along, modifies the electron and ion distributions, and maintains n; = n, at all
B,<=B<B,(andn; = n. = 0 at B = B,).

Although this case may be considered more of a textbook example than a description of typical magneto-
spheric conditions, it has generally been thought to illustrate a sound physical principle. However, on closer
inspection this physical principle may not seem entirely sound. If the right-hand side in (12) is differentiated once
more with respect to s, assuming the magnetic field is a dipole field, it follows that:

dE”/dS <0 . (13)

Hence, the small net charge required to maintain n; = n, cannot be provided by the ions. In fact, there is no net
positive charge at any location along the magnetic field line where n; > 0, and there are no ions to support the
electric stress at B = B,. It can thus be argued that this simple case rather illustrates the difficulty of satisfying all of
the conditions in (8)-(11) at the same time.

A much more elaborate and perhaps more realistic case has been presented by Chiu and Schulz (1978) and
Chiu and Cornwall (1980). Their case also considers an ion population at high altitude which is isotropic outside of
the loss hyperboloids in Figure 3, but the corresponding electron population is required to be anisotropic, with a
wider distribution in v; and in v (bi-Maxwellian). Their case further includes particles within the loss hyperboloids,
some of which have a terrestrial origin, and thus includes a net current. They reach the condition in (11) not by
analytical methods alone, but by iterative numerical approximations, and their solution is far too complex to be
evaluated here. A few comments with bearing on their case will be made below, however.

IV. POSSIBLE ROLE OF DOUBLE LAYERS

The studies of quasi-neutrality in a model magnetic mirror configuration show that it is mathematically
possible to satisfy n; = n, in a time-independent parallel electric field that extends over large distances and does not
contain any double layer structures, provided the particle distribution functions are carefully designed. It is not clear
from these studies, however, that such electric fields are realistic, or even physically possible. One argument to that
effect was made in the preceding section, applied to a simple case where all particles are trapped by the combined
electric and magnetic fields. Other arguments to the same effect may be applied to the more general case where the
loss hyperboloids are also populated, and thus a current flows (e.g., Chiu and Schulz, 1978). In that case it can be
argued, for instance, that the parallel electric field is made subject to potentially conflicting conditions; on one hand
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the model electric field is designed to satisfy n; = n. everywhere, based on the entire pitch angle distributions of all
particles, while on the other hand the electric field in reality must also be subject to the external condition that the
current be of the appropriate magnitude, and the current only involves particles within the loss hyperboloids.

The aforementioned studies, however, do point to an unambiguous condition for the non-existence of elec-
tric fields; in order for the parallel electric field to vanish over a large distance along a magnetic flux tube, the pitch
angle distributions of ions and electrons, when integrated over all energies, must be identical (cf. Persson, 1963).
As a consequence, it may not be possible, given realistic particle distributions, to have the electric field entirely
contained within a single stable double layer, or even within multiple double layers. The double layers naturally
generate different pitch angle distributions for the ions and the electrons, and these in turn will affect the quasi-
neutrality at all other altitudes. In other words, a stable double layer may not be nature’s replacement for an
extended electric field, but may perhaps be part of it (cf. Stern, 1981). Such a configuration cannot be modeled,
however, if the condition in (10) is part of the assumptions.

A possibly fundamental shortcoming of the classical approach to magnetic confinement is its disallowance
of temporal variations in the electric field, including rapid and small-scale fluctuations. The assumption in (8) is
needed to make a tractable problem, but may not be supported by data. Close scrutiny of Figure 1, for example, fails
to produce the sharp boundaries of Figure 3 (with B = B,). This and other published illustrations of auroral electron
spectra have in fact a rather blurred appearance, suggesting that the electrons have traversed a “turbulent” electric
field. Numerous reports of intense plasma wave turbulence at various altitudes along auroral magnetic field lines
(e.g., Fredricks et al., 1973; Gurnett and Frank, 1977; Mozer et al., 1980; and references therein) lend additional
support to that kind of interpretation.

Allowing the electric field to have temporal fluctuations of a small scale size may render an untractable
computational problem, but provides for a more realistic description of the collective behavior of the particles.
From a qualitative point of view this may also seem to make the magnetic mirror a more favorable environment for
the formation of double layers, as illustrated schematically in Figure 4. This figure assumes that the increase in
kinetic energy of individual electrons is not a unique function of location in space, but varies somewhat randomly
about an average increase, due to temporal fluctuations in the electric field. Only the average increase is a function
of location and has the sharp boundaries in velocity space. An electron that has a kinetic energy slightly inside of the
acceleration boundary when passing point P, either on the way down or after mirroring in the magnetic field below,
is likely to be trapped by the average electric field on the way up, thereby adding to the local concentration of
negative charge (during part of its oscillation), at the expense of the negative charge at higher altitude. This in turn
further widens the acceleration boundary in the transverse direction, enabling electrons with a larger perpendicular
energy to be trapped as well. Electrons inside the acceleration boundary may be removed again after a slight increase
in the energy, but the net diffusion is assumed inward as long as the density of particles is higher on the outside. A
conceivable end result may be some form of double layer, thin enough to harbor a significant charge imbalance in a
stable fashion (cf. Lennartsson, 1980).

Whether trapping of electrons between magnetic and electric mirror points will produce a stable double
layer, or merely add to the plasma turbulence, cannot be decided from this simplistic exercise alone. A redistribu-
tion of the electric field from higher to lower altitude carries with it a redistribution of the ion density as well, and
that is not considered. It is worth noting, however, that the shape and size of the electron acceleration boundary
depends on the angle of the double layer, and is the smallest for a double layer with the electric field nearly perpen-
dicular to B. In that case the boundary may be almost circular (cf. Figure 3 with B >> B,,), and can trap the fewest
number of electrons. This kind of structure is perhaps the most likely to materialize and is, in fact, reminiscent of
the “electrostatic shocks” commonly observed in the auroral regions (e.g., Mozer et al., 1977, see also Swift, 1979;

Lennartsson, 1980; Borovsky and Joyce, 1983). It also has a favorable geometry for satisfying (4), thus producing a
large electron current.
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Figure 1. Contour and three-dimensional plot of auroral electron distribution function, in the energy range 25eV to
15 keV, measured from a rocket at about 240 km altitude. Downgoing electrons have positive v;. Curves of constant
f(\73 on the contour plot are labeled by the common logarithm of f(v) in s>km®. This distribution is typical of
electrons producing discrete auroral arcs (from Kaufmann and Ludlow, 1981).
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Figure 2. Schematic magnetosphere-ionosphere current system. The dynamo current P, — P, is assumed to be
caused by the differential drift of hot protons and electrons. The downward parallel current P, — P; may be carried
mainly by escaping ionospheric electrons, while the upward parallel current P, — P, is carried to a large extent by
downflowing hot electrons. Point P, is at a high positive potential with respect to point P,, which enables the
downflowing electrons to overcome the magnetic mirror. The current P; ~ P, is a Pedersen current (from Lennar-

tsson, 1976).
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Figue 3. Hypothetical case of plasma confinement by a magnetic mirror in the presence of a parallel electric field,
directed away from the magnetic mirror (upward). Only the shaded regions are assumed populated (see text). The
loss boundaries (hyperboloids) are defined by (B,/B - l)vl2 - v"2 = 2H (V, — V), where the subscript a refers to
atmospheric (loss) altitude and H = e/m, for electrons and H = —e/m; for ions. The acceleration boundary (el-
lipsoid) is defined by (1 —=By/B)v, > + v;* = 2 (e/m,) (V - V,), where the subscript o refers to a high altitude (B, <
B) (adapted from Persson, 1966).
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Figure 4. Hypothetical case of electron trapping by a locally enhanced electric field (right panel), associated with
diffusion in velocity space (left panel). The diffusion is assumed to result from small-scale fluctuations in the el-
ectric field. The acceleration boundary at point P refers to an average acceleration and is the combined effect of the
weak electric field at higher altitudes and the stronger field nearby (see text) (adapted from Lennartsson, 1980).
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ABSTRACT

At the interface between two plasma clouds with different densities, temperatures, and/or bulk velocities,
there are large charge separation electric fields which can be modeled in the framework of a collisionless theory for
tangential discontinuities (see Lemaire and Burlaga, 1976; Roth, 1980; Botticher et al., 1983).

Two different classes of layers have been identified: the first one corresponds to (stable) ion layers which are
thicker than one ion Larmor radius; the second one corresponds to (unstable) electron layers which are only a few
electron Larmor radii thick.

We suggest that these thin electron layers with large electric potential gradients (up to 400 mV/m) are the
regions where large-amplitude electrostatic waves are spontaneously generated. These waves scatter the pitch
angles of the ambient plasmasheet electron into the atmospheric loss cone. The unstable electrons layers can there-
fore be considered as the seat of strong pitch angle scattering for the primary auroral electrons.

I. INTRODUCTION

Lyons and Evans (1984) found direct evidence from coordinated auroral and magnetospheric particle obser-
vations that discrete auroral arcs are located along geomagnetic field lines mapping in plasmasheet regions where
significant spatial gradients in the magnetospheric particles velocity distribution are observed.

These observations as well as earlier theoretical calculations by Lemaire and Burlaga (1976) and Roth
(1976, 1978, 1979, 1980) have motivated the present application of kinetic plasma theory to thin layers separating a
hot plasmasheet cloud from a cooler background or another cloud which is populated with ions and electrons of
different densities and temperatures. However, we do not simulate the magnetic field reversal region in the neutral
sheet of the magnetotail.

We briefly recall the basic features of the kinetic model as well as the boundary conditions in the next
section. The numerical results are presented in Section III; the discussion of this solution is given in the last section
with the conclusions.

PHECEDING PAGE BLANK NOT FILMED
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il FORMULATION OF THE MODEL AND BOUNDARY CONDITIONS

The kinetic model used below is an extension of that proposed by Sestero (1964) to describe collisionless
plasma sheaths in the laboratory. Although the plasmasheet is rarely in a stationary state, we assume that its struc-
ture does not change significantly over the characteristic period of time required for an Alfvén wave to traverse the
transition layer.

Furthermore, it is assumed that the radius of curvature of the plasma sheath is much larger than its
characteristic thickness, which is of the order of a few ion gyroradii. Under these circumstances the plasma layer can
be considered as planar. Every physical quantity depends then on one space coordinate only, say x. -

Since in general the magnetic field direction at the interface between plasmasheet diamagnetic irregularities
does not vary by more than 10° or 20°, we consider that the direction of B, does not change nor reverse across the
transition layer, but that B remains always parallel to the z-axis. The partial electric current densities (j * ") of the ions
(+) and electrons (-) are then necessarily parallel to the y-axis. The electric field (as spatial gradient of the potential
&) is in the x-direction. Indeed we assume that, in a frame of reference fixed with respect to the plasma layer, there is
no mass flow across nor toward the surface of discontinuity (v, = 0).

In our kinetic model the ions and electrons from the left-hand side (i.e., side 1) have velocity distributions
(f; ) which tend to an isotropic Maxwellian at x = -, The zero-order moment (i.e., the density: n, * ) of these
distribution functions tends to an asymptotic density N; = N,” = 0.5 cm™, at x = -, The temperature of the ions
and electrons 6, * -~ from side 1 is determined by the second-order moments of f; **. When x tends to -, , * (x) tends
toT," = 12keV, and 0,(x) tends to T;” = 2.5 keV.

When x varies from - to + we expect n, " to decrease to zero, and the velocity distributions f, """ to
become depleted in the domain of the velocity space which is not accessible to the particles from side 1, i.e., for
those particles with the smallest velocities and therefore the smallest gyroradii.

In absence of Coulomb collisions and wave-particle interactions, these velocity distributions are solutions to
the collisionless Boltzmann-Vlasov equation. Any function of the constants of motion is then a solution. Following
Sestero (1964) we choose for f, * " truncated distributions which tend to isotropic Maxwellians at x = -2, wheren, ¥~
and 6, tend to the above given values for the densities and temperatures (N, * " and T, ™), respectively.

When x tends to + = the domains of the velocity space where f, " differs from zero become vanishingly
small; n, * - decreases then asymptotically to zero, as expected, because a smaller and smaller fraction of ions and
electrons from side 1 has large enough gyroradius to penetrate deep into region 2 on the opposite side of the transi-
tion layer. For details see Roth et al. (1986).

Region 2 is populated with electrons and ions of a different origin, i.e., with different temperature dis-
tributions 6, (x) and different density distributions n,* " (x). In our numerical calculation we have taken the
following boundary conditions: 6, * (<) = T,*~ with T,* = 3keVand T, = 0.8keV;n, () = N,*~ = 0,
15 cm™ and ny " () = 0.

The velocity distributions f, "~ of the ions and electrons originating from region 2 can again be any function
of the constants of motion. As above, truncated Maxwellian velocity distributions are adopted. They tend to
isotropic Maxwellians at x = + o, with densities and temperatures, respectively, equal to N, " "and T, " . When x

tends to -, f, "+~ # 0 only for a decreasing number of particles from side 2 which has large enough velocities (and
gyroradii) to penetrate deep inside region 1.
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Note that the asymptotic behavior of the plasma distribution depends only on the asymptotic form of f, ,*
when x goes to *£oc. The form of f, ;™ for any other x in between is responsible for the shape of the transition
profiles. Thus, the state of the plasma at one end of the transition region (or at both ends in our case) does not
uniquely determine the plasma and field variation within the transition. This results from the collisionless and
adiabatic nature of the interaction between the plasma particles. In a collision-dominated plasma when irreversible
processes are important, this would not, however, be the case; the transition profile is then uniquely determined by
the boundary conditions.

The moments of f; , ™ are integrals over the domain of velocity space where f, , ™ is not equal to zero. The
densities n, " °(x) are the zero-order moments of f, ,*7; the partial current densities (j, "~ = eZ* " n,, "~
* vy 2 7)) are first-order moments, etc. These moments are analytical expressions depending on x through the elec-
tric potential ¢(x) and the magnetic vector potential a(x). Indeed, both &(x) and a(x) appear explicitly in the
constants of motion and consequently in f; ,* . The analytic expressions forn, , "~ and j, ,* ~ are similar to those
derived by Sestero (1964, 1966). They are given in the more detailed article by Roth et al. (1986).

The electric potential b(x) must satisfy Poisson’s equation. However, in non-relativistic plasmas, where the
thermal velocity of the ions and electrons is much smaller than the speed of light, Sestero (1966) has shown that a

satisfactory first approximation for ¢(x) is obtained by solving, iteratively, the charge-neutral approximation of
Poisson’s equation, i.e.,

mt4+n"=n"4+n . (1

Once ¢(x) has been determined for all x, the charge separation electric field, E(x), can also be evaluated as -dd/dx.
Finally, the Laplacian of ¢(x) (i.e., d®$/dx?) can be calculated to estimate the value of the electric charge density
e(n* —n’) associated with ¢(x). Itis shown, a posteriori, that the actual charge separation relative density (n* -n’)/n*
is indeed a small quantity throughout the whole plasma sheath; i.e., that (1) is a valid first approximation and
substitute for Poisson’s equation.

In the next section we present numerical results corresponding to a solution of equation (1) for which the
electric potential ¢, at x = - is equal to &, at x = 4. A wider family of solutions for which &, - &, = 0 is
discussed in Roth et al. (1986).

The partial current densities (j; » 7 ) carried by the ions and electrons drifting in the electric field E(x) and
magnetic fields B(x) are also analytical expressions of ¢(x) and a(x). The currents produce diamagnetic effects
which determine the variation of a(x) and consequently of B,(x), the z-component of curl a. The vector potential
a(x) is solution of Maxwell’s euations:

., = da/dxanddB,/dx = -puo(Gi " + T -j i) - )

The standard predictor-corrector Hamin method for numerical integration of equation (2) can be used to
obtain the value of a(x) for all x, across the diamagnetic plasma layer (Ralston and Wilf, 1965). Since the magnetic
field does not change direction, a(x) is an increasing function of x; it varies froma = -xatx = -©toa = +xatx =
+ 0,
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Ill. NUMERICAL RESULTS

Figures la and 1b show the distributions of n, ,* ", the partial ion and electron density distributions as a
function of x. The upper horizontal scale represents x in kilometers. The lower scale of the left-hand panels
corresponds to x in units of proton gyroradii. The x’s in the lower scale of the right-hand panels are expressed in
electron gyroradii. Note in the left-hand side panels the smooth variation of the densities over distances of 2-3 ion

Larmor gyroradii, i.e., 500-800 km. In the middle of this broad transition region near x = 0, there is a much sharper
transition where all densities change significantly over distances of 2-3 electron Larmor gyroradii, i.e., 6-9 km (see
enlargement in the right-hand side panels).

Panels cl and c2 in Figure 1 show the total ion density, n* = n;* = n,", which according to the charge
neutral equation (1),is equal to the total electron density n” = n;” + n;".

Panels d1 and d2 illustrate how 6 * -, the total ion and electron temperatures vary in the transition region: 6 * -
=M "0, " +n, " 0,7)/(n, " + ny" ). Note again the broader scale of variation in the left-hand side panels
and the much sharper decrease of 6 near x =, illustrated in the right-hand side panel.

The distribution of the magnetic field B,(x) is shown in panels el and e2. The magnetic field intensity is
equal to 40 nT atx = -oo; this is a typical value of B in the plasmasheet chosen as boundary condition on side 1 at x
= -2, The value of B,(x) increases to 66.4 nT at x = + o with an enhanced variation near x = 0 due to the
diamagnetic current contributed by the electrons in the thin electron sheath. It could be shown that the sum of the
magnetic pressure and kinetic pressure is precisely a constant throughout the plasma layer.

The electric potential distribution shown in panels f1 and f2 is a continuous function of x. The potential
difference between x = -® and x = +® is equal to zero in the case considered. But similar continuous solutions
have been obtained for positive and negative values of &, - ¢, of the orderof =k T, ,* /e (see Roth et al. 1986). The
gradient of the electric potential has a different direction in the electron layer near x = 0 than on both sides in the
proton layer. This is also illustrated in the next panels (gl and g2) showing the electric field intensity which is
perpendicular to the surface of the plasma layer: E, has a large negative value of -220 mV/m in the middle of the thin
electron layer. This charge separation electric field accelerates the hotter and more numerous electrons from side 1
toward region 2. On both sides of the electron layer E, has smaller positive values, not exceeding 2.5 mV/m. This
electric field tends to accelerate the hotter and more numerous protons of side 1 toward the cooler and less dense
region 2.

The relative electric space charge density deduced from d’d/dx? is given in panels h1 and h2. It can be seen
that [n* - n}/n" is smaller than 2 percent within the electron layer; it is smaller than 3 x 107 in the ion layer. This
confirms a posteriori that charge-neutrality is satisfied to a very good approximation. This confirms also that the
solution of equation (1) gives a satisfactory approximation ¢(x) for the electric potential distribution throughout the
whole transition.

The average bulk speed of the protons and electrons is given in kilometers per second in the panels il and i2:
V& =™ V" + n" "V, )/(n, " + n,™ ). In the left-hand panel note the large ion jet velocity of more
than 500 km/s. V" is parallel to the plasma layer and perpendicular to the magnetic field direction. These large ion
jets (or ion beams) are spread over a distance of several hundred kilometers. Even more surprising is the narrow jet
sheath of electrons with a velocity of the order of 10,000 km/s near x = O (see panel i2). These bulk speeds result
from the acceleration of charges by the inhomogeneous electric field E(x) and from their deflection in opposite
direction by the non-uniform magnetic field B(x).
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Panels j1 and j2 give the value of A = (V™ - V)/U™ across the plasma layer; U™ is the average thermal ion
speed. When A is larger than unity, the plasma is unstable. Indeed A = 1 corresponds to the threshold for the
modified two-stream instability (McBride et al., 1972) also called the lower-hybrid drift instability. It can be seen
that in the ionic layer, outside the thin electron layer, A < I; therefore, the parts of the plasma layer on both sides of
the electron layer are stable, at least with respect to the modified two-stream instability. However, the thin electron
sheath near x = 0 is highly unstable and consequently is a potential source for large-amplitude electrostatic waves.
These waves can then interact with the electrons, change their pitch angles, and fill the atmospheric loss cone.

As a result of wave-particle interactions, the initially anisotropic (truncated) electron velocity distribution
becomes more isotropic until A is equal to or lower than unity: the instability is then quenched. However, as long as
the velocity distributions of the electrons have not become isotropic everywhere between x = - and x = +,
unstable electrons layers will form and generate electrostatic noise.

IV. DISCUSSION AND CONCLUSIONS

The results of the stationary kinetic model illustrated in this paper indicate a number of features pertinent to
the study of plasma layers which are associated with discrete auroral arcs.

I. First of all, for the boundary conditions considered (i.e., different densities and temperatures of the
electrons and ions on both sides of the plasma layer), the electric potential ¢(x) is not constant, although ¢(-) and
¢(+ ) are imposed to be equal to zero at x = +oo. This indicates that a plasma layer like that studied by Harris
(1962) and Alpers (1969), where it is assumed that d(x) = 0, is by no means a unique nor a general solution.

2. The characteristic scales of variation of the plasma and field variables are the average ion Larmor radius
for the broadest structure and the average electron Larmor radius for the thinner embedded electron sheath. If the
wider scale of variation is typically 500-800 km in the equatorial plane of the magnetosphere at L = 10, its extent
projected in the ionosphere is 30 times smaller, i.e., 15-30 km. This corresponds almost to the extent of inverted-V
regions near discrete auroral arcs. It corresponds also to the region over which auroral field-aligned potential dif-
ferences vary significantly.

3. Superimposed on these broad regions of potential variation are often much narrower ones (only a few
hundred meters in extent) where sharp potential gradients are observed. We suggest that these thin regions with
large electric field intensities are associated with electron layers in the magnetosphere like that found in our kinetic
model calculation. The minimum thickness of these electron layers is 5-9 km in the plasmasheet. One can imagine
velocity distributions for which there are several electron sheaths embedded in one broader ion structure. The thick-
ness of 5-9 km is a minimum one; indeed electron sheaths are unstable with respect to the modified two-stream
instability or lower-hybrid drift instability. Therefore, pitch angle scattering or diffusion of the electrons as a result
of wave-particle interactions within these regions eventually tend to make the electron velocity distribution more
isotropic. As a consequence the electron sheath tends to broaden and eventually to disappear when the velocity
distribution of electrons has become isotropic within the plasma cloud and in the ambient background plasma.

4. Although in our one-dimensional model there is no proper atmospheric loss cone for the plasmasheet
electrons, one can easily imagine that for a three-dimensional plasma layer in the magnetosphere the modified
two-stream instability can similarly be a source for pitch angle scattering of the electrons and for filling of the
atmospheric loss cone. To aliment this source of auroral electron precipitation it is necessary, however, to maintain
the electron sheath unstable for the whole lifetime of the discrete auroral arc. Therefore, the plasma layer must
constantly be reforming for instance by convection of the plasma cloud “surfing” earthward in the ambient plas-
masheet background.
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5. The peak value of -200 mV/m for the electric field intensity obtained in our kinetic model calculation is
probably excessive. Indeed, the wave-particle diffusion mechanism mentioned above, will smooth irreversibly any
too large electric potential gradient. Furthermore, such large perpendicular magnetospheric electric fields (EMF),
when mapped down at ionospheric altitudes, must drive very large Pedersen and Hall electric currents through the
resistive ionosphere. The Joule dissipation of these currents increases the local plasma temperature. But the local
jonization density is then enhanced not only by the increased plasma temperature but also by primary auroral
electron bombardment. All these effects concur to enhance the local electric conductivity and to short-circuit the
ionospheric load. The large potential gradients applied across the magnetospheric plasma sheath are then dis-
charged as the ionospheric resistance becomes vanishingly small. Magnetospheric potential differences (EMF)
perpendicular to magnetic field lines then become field-aligned potential differences accelerating auroral electrons
downward along auroral arc magnetic field lines.

6. Ton beams streaming earthward and/or tailward are typical features in the plasmasheet boundary layer
adjacent to the tail lobe. These ion beams are observed from high energies of tens of keV to low energies of tens of
eV (Lui et al., 1983). Occasionally, these ion beams are found within the plasma sheet proper, near its outer
boundary where irregular magnetic field intensities are generally observed. Sugiura et al. (1970) have interpreted
these irregular B-field variations as being diamagnetic signatures of spatial plasma clouds for which 8 is of the order
of unity or larger (see also Meng and Mihalov, 1972). Both the ion beam streaming and the change in the magnetic
field intensities are inherent in the kinetic model illustrated in Figure 1. It is suggested that ion beam streaming
observed at the outer edge of the plasmasheet results from the electric field acceleration and magnetic field deflec-
tion of charge particles in plasma layers separating a hot plasma cloud and the cooler ambient plasmasheet or two
adjacent diamagnetic plasma clouds of different densities, different temperatures, and different magnetizations, as
in our kinetic model.

7. Changing boundary conditionsatx = =% (N, ," ", T),,,, " ) and the choice of the velocity distributions
f, » ", one can generate a wide variety of different plasma and field distributions within the plasma layer. The plasma
layer shown in Figure 1 is only an illustrative example for a magnetospheric EMF source. From this case study one
can deduce orders of magnitudes for maximum electric potential gradients (i.e., charge separation electric field), as
well as for the maximum velocity of ion beams or jets expected in such plasma layers. By adjusting these boundary
conditions and by adequately choosing f; ,* ", it is likely that such kinetic model calculations will be able to simulate
a variety of detailed plasma and field measurements across plasma layers or boundaries when available from instru-
ments with high enough time resolution.

The temperature 8(x) and density n(x) of each plasma species vary across the potential layer separating the
hot plasmasheet cloud at x = -oc from the cooler background magnetotail plasma at x = + . The layers considered
here [for different values of ¢, - d; = &(+ )] have boundary conditions listed in Table 1. By, denotes the value of
the magnetic field at x = -, i.e., deeply inside the plasmasheet cloud. The lower indices sh and t refer to the
plasmasheet cloud and background magnetotail particles, respectively, while the upper indices (-) and (+ ) refer to
electrons and protons, respectively. The following notations are assumed: ng, " (-¢) = N, 704,77 () = Ty, "7
nT (%) = NTGOTT () = T

The plasma boundary conditions given in Table 1 correspond to two interpenetrated hydrogen plasmas with
different characteristics. Therefore, ng, ™~ (+%) = 0 and n," " (-%) = O.

TABLE 1. BOUNDARY CONDITIONS

Nsh— Tsh- Nsh M Tsh N Nl_ T(— N( M Tl M Bsh
cem™ keV cm keV cm keV cm? keV nT
0.5 2.5 0.5 12 0.15 0.8 0.15 3 40
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Figure 1. Plasma and field distributions across a plasma layer with boundary conditions typical in the plasmasheet.

&(x) and B(x) are the electric potential and magnetic field intensity, respectively: ¢ varies from ¢(-©) = 0 to

&(+) = 0 (see panels fl and f2); the gradient of ¢ determines the charge separation electric field E which is

normal to the surface of the plasma layer (see panels g1 and g2); the relative electric space charge density remains

small (see panels h1 and h2); the proton ( + ) and electron (-) densities n, ,*~fromside 1 (i.e., x = -©) and from side
2(i.e., x = + ) vary across the layer from nt " =0.5 cm>, n,"” =0atx = -cton," =0, n, - =0,15 cm>atx

= +oo(see panelsal,a2,bl, b2, cl, c2); the proton (+ ) and electron (-) temperatures ot varyfrom0," = 12keV,
9, =25keVatx = -2t06," =3keV,0, = 0,8keVatx = + (see panels d1 and d2); the proton (+)and
electron (-) bulk velocities V * have large peak values in the middle of the composite plasma layer (see panelsil and
i2). Note the very thin electron layer embedded near x = 0 within the broader ion layer extending over 4 average ion
Larmor gyroradii (see lower scales of left-hand side panels). Expanded views of the narrow electron layer (only 3 or
4 average electron Larmor gyroradii in exieni) are shown in the right-hand side paneis. The distance x across the
planar surface of interface is also shown in kilometers by the upper scales. The thin electron layer is unstable with
respect to the modified two-stream instability. Indeed the instability threshold A (see panel j2) exceeds unity in this
narrow region where extremely large (and unstable) E-fields are generated.
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DOUBLE LAYERS ABOVE THE AURORA
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ABSTRACT

Two different kinds of double layers have been found in association with auroral precipitation. One of these
is the so-called “electrostatic shock,” which is oriented at an oblique angle to the magnetic field in such a way that
the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found
at the edges of regions of upflowing ion beams and the direction of the electric field in the shock points toward the
ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to
produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfvén
waves, which may accelerate electrons to produce flickering aurora. The flickering aurora provides evidence that
the electrostatic shock may have large temporal fluctuations.

The other kind of double layer is the small-amplitude double layer found in regions of upward flowing ion
beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in
these structures are comparable in magnitude. The associated potentials are a few eV, which is substantially less
than the energy of the measured particles. However, since many such double layers are found in regions of upward
flowing ion beams, the combined potential drop through a set of these double layers can be substantial.

Some important questions concerning double layers and their relation to parallel electric fields in the aurora
are:

1. What is the relation between small-amplitude double layers and electrostatic shocks?

2. What is the relation between electrostatic shocks and discrete arcs?

3. Are there strong double layers in the aurora?

4. What is the relation between ion conics and electrostatic shocks?

5. What are the parallel electric field magnitudes on auroral field lines?

6. Are there large parallel electric fields in the return current region?

7. How important are the dynamic properties of the parallel electric field on auroral field lines?

Here are some answers:

1. What is the relation between small-amplitude double layers and electrostatic shocks?

Small-amplitude double layers and electrostatic shocks are distinctly different phenomena. Electrostatic
shocks are large, greater than about 100 mV/m, mostly perpendicular electric fields that vary discontinuously when

measured at the 0.125 s resolution of the dc electric field detector on the S3-3 satellite below 8000 km altitude
(Mogzer et al., 1977, 1980) (see Fig. 1 for examples). Small-amplitude double layers are several mV/m, mostly
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parallel electric fields lasting for a few milliseconds as measured by the S3-3 satellite (Temerin et al., 1982; Mozer
and Temerin, 1983; Temerin and Mozer, 1984a,b) (Fig. 2). Electrostatic shocks occur in both upward and down-
ward current regions (Cattell et al., 1979) in association with both upflowing ion beams and ion conics (Redsun et
al., 1985) (Figs. 3 and 4). The electrostatic shocks associated with upflowing ion beams typically occur at the edges
of energetic (>1 keV) upflowing ion beams (Temerin et al., 1981; Bennett et al., 1983; Temerin and Mozer, 1984a;
Redsun et al., 1985), and the potential drop through the electrostatic shock corresponds fairly well to the energy of
the upflowing ion beam. Small-amplitude double layers, on the other hand, occur within regions of less energetic
upflowing ion beams, and the potential drop through many small double layers may correspond to the total potential
drop along the field line. It is often difficult to determine on the basis of the S3-3 wave data whether small-amplitude
double layers occur in more energetic ion beams because of detector saturation problems associated with the large-
amplitude wave turbulence that occurs in the more energetic events.

2. What is the relation between electrostatic shocks and discrete arcs?

It has previously been argued that electrostatic shocks are associated with discrete arcs (Torbert and Mozer,
1978; Kletzing et al., 1983). It is clear from the data that, as described in 1 above, some electrostatic shocks are
associated with upflowing ion beams and inverted-V events. Other electrostatic shocks are associated with conics
and counterstreaming and field-aligned electron events (Temerin and Mozer, 1984a). These latter electrostatic
shocks would then not be associated with discrete arcs. It should be noted that upflowing ion beams and inverted-V
electron events associated with electrostatic shocks have the ~10 km to over 200 km latitudinal width normally
associated with inverted-V electron events (Lin and Hoffman, 1979a; Redsun et al., 1985). This is typically larger
than the latitudinal width of the electrostatic shock and implies that the electrostatic shock makes an oblique angle
with respect to the magnetic field over part of its altitudinal extent.

3. Are there strong double layers in the aurora?

Whether there are strong double layers in the aurora depends to some extent on one’s definition of a strong
double layer. If by a strong double layer one means a potential drop the order of a significant fraction of the total
auroral zone potential drop over a few Debye lengths, then the parallel electric field should be in excess of 1 V/m.
Boehm and Mozer (1981) searched the S3-3 electric field data and found no convinncing parallel electric fields
greater than 250 mV/m in association with inverted-V events. They concluded that strong double layers are not
associated with inverted-V events but could be associated with narrow discrete auroral arcs since the statistics were
not good enough to rule out strong double layers if they were confined to narrow regions. This begs the question of
whether there is any qualitative difference between narrow discrete arcs and inverted-V electron events with respect
to the auroral potential structure. The problem of narrow discrete arc scales was raised by Maggs and Davis (1968)
who reported that discrete arcs had scales down to 70 m. It has become popular to contrast such scales with inverted-
V scales which are known to be much larger. However, the observation of 70 m scales was made by image orthicon
television cameras that tend to emphasize small contrasts (Davis, 1978). Rocket observations indicate that typically
the smallest gradients in the downward auroral electron energy flux are an order of magnitude larger (D. Evans,
private communication). One should also keep in mind that inverted-V scales can be quite small. Lin and Hoffman
(1979a), using AE-D data, reported that the largest number of inverted-V events had scales close to the minimum
resolution of 0.2° or about 20 km in the ionosphere. The smallest paired electrostatic shock structure, which in-
cludes the region of smaller electric field between the large electric fields of the paired shock, and the smallest
resolvable inverted-V structure on S3-3 map to about 5 km in the ionosphere (e.g., the first paired shock structure in
orbit 209 in Fig. 1). In addition, one should keep in mind that smaller scale structures, such as field-aligned electron
fluxes at the edges of inverted-V events (Arnoldy et al., 1985; McFadden et al., 1986) and field-aligned electron
structures within inverted-V events, do not seem to correspond to larger overall potential as measured by the
monoenergetic peak in the electron distribution function (Lin and Hoffman, 1979b). Thus, it seems consistent to
regard narrow discrete arcs as narrow inverted-V events with the smallest scale structure within the arc as either due
to relatively small changes in the field-aligned potential or enhanced field-aligned electron fluxes not directly
related to changes in the potential. If this is the case, it could be that there are no strong double layers associated with
the aurora. More data are needed to answer the question definitively.
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4. What is the relation between ion conic and electrostatic shocks?

It has been proposed that electrostatic shocks produce ion conics (Yang and Kan, 1983; Greenspan, 1984;
Borovsky, 1984). Figures 3 and 4 show that many electrostatic shocks are indeed associated with ion conics.
However, the idea that electrostatic shocks produce conics does not explain the clear distinction between electro-
static shocks associated with ion beams and electrostatic shocks associated with ion conics, nor does it explain the
production of conics in regions where there are no electrostatic shocks. Even in regions where there are electrostatic
shocks, the conic occurs in a much broader region than the electrostatic shock. Models for the generation of ion
conics by electrostatic shocks show that the thickness of the electrostatic shock and the angle it makes with the
magnetic field determine the relative perpendicular and parallel acceleration. One would then expect a continuous
transition between conics and ion beams. In fact there is almost always at S3-3 altitudes (<8000 km) a clear dis-
tinction between ion beams and ion conics, and, except for some general heating of the ion distribution, ion beams
are consistent with acceleration purely parallel to the magnetic field while ion conics are consistent with accelera-
tion purely perpendicular to the magnetic field. As mentioned previously, energetic ion beams are clearly associated
with electrostatic shock. This implies that electrostatic shocks associated with ion beams are quasi-static on the ion
transit time scale but that electrostatic shocks associated with ion conics are not. A more correct model of ion conic
acceleration in regions of electrostatic shocks would need to take account of the fluctuations in the electric field and
the general electric field turbulence in the region surrounding the electrostatic shocks. In regions of ion conics
“electrostatic shocks” are not necessarily electrostatic (Temerin and Mozer, 1984a).

5. What are the parallel electric field magnitudes on auroral field lines?

The parallel electric field can be measured directly or inferred from particle measurements. Measurements
of ion beams and electron loss cones indicate that potential drops of 10 kV or larger can sometimes occur below the
S3-3 satellite at altitudes of 6000 to 8000 km. Since the upward pointing electric field region has never been
observed on S3-3 to extend below 3000 km and is usually limited to above 5000 km, the average parallel electric
field in an inverted-V acceleration region must at least sometimes be the order of 5 to 10 mV/m and the maximum
parallel electric field should be substantially larger since it is not likely that the electric field is uniform throughout
the region. Direct measurements in electrostatic shocks indicate parallel electric fields up to about 100 mV/m
(Mozer et al., 1980; Mozer, 1980). However, in most cases, the parallel electric field is less than 25 mV/m even in
electrostatic shocks associated with upward flowing ion beams (Temerin and Mozer, 1984a).

6. Are there large parallel electric fields in the return current region?

There are also large potential drops in the return current region. The electric field points down, which is in
the direction to accelerate ions into the ionosphere and electrons into the magnetosphere. Some of the best evidence
for downward pointing electric fields is shown in Figure 5, which displays some recent rocket data, courtesy of C.
Carlson, J. McFadden, and M. Boehm. At 760 s into the flight, there was an almost complete dropout in the en-
ergetic electrons correlated with an enhancement in the precipitating ions flux over a narrow energy range at en-
ergies between 5 and 10 keV. At the same time, the eastward component of the magnetometer was consistent with a
downward field-aligned current. These data imply a potential drop in the return current region in excess of 5 kV.
Large downward electric fields can also be inferred from the observations of black aurora (Davis, 1978). Black
aurora appear as narrow streaks of dark sky in regions of otherwise diffuse illumination. Broader regions of weaker
parallel electric fields can be inferred from the S3-3 and DE 1 observations of upward flowing field-aligned
electrons. One would expect that the narrow regions of downward pointing electric fields would correspond to
paired electrostatic shocks with the electric fields in the paired shock pointing away from the region of parallel
acceleration. Examples of such events are, however, comparatively rare in the S3-3 data.
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7. How important are the dynamic properties of the parallel electric field on auroral field lines?

On the ion transit time scale the fluctuating portion of the parallel electric field must be several times larger
than the dc portion. This is clear from the parallel velocity distribution of the upflowing ion beam. Typically, there
is observable flux in an ion beam at energies four times larger than the energy of the maximum flux. This implies
that in the frame of reference moving with the energetic ion the electric field is four times larger than the average
field. These fields may be provided by the small-amplitude double layers and the parallel electric field components
of the electrostatic ion cyclotron waves that are associated with the upflowing ion beams.

Another interesting dynamic property of auroral acceleration is flickering aurora. Recent data and theoreti-
cal models (Temerin et al., 1986) show that an obliquely propagating ion cyclotron wave,which may be produced
by an oscillating double layer or oscillating parallel electric field, can produce the oscillating field-aligned electron
flux in the flickering aurora.
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BEAMED EMISSION FROM GAMMA-RAY BURST SOURCES

R. Epstein
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

Gamma-ray bursts are intense fluxes of radiation in the 100 keV to several MeV energy range which
typically persist for between a fraction of a second and several seconds. The observed spectral shapes of these bursts
suggest that the radiation is emitted as highly collimated beams emanating from neutron stars. This inference is
based on the lack of significant gamma-gamma absorption (which indicates that photon paths do not cross at large
angles) and by the dirth of x-ray energy photons (which are produced when gamma rays interact with stellar

surfaces). The gamma-ray beams may be a consequence of particle acceleration in double layers in neutron star
magnetospheres.
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DOUBLE LAYERS AND PLASMA-WAVE RESISTIVITY IN EXTRAGALACTIC JETS:
CAVITY FORMATION AND RADIO-WAVE EMISSION

Joseph E. Borovsky
Space Plasma Physics Group
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

ABSTRACT

For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and
electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within
self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave
resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron
beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-
stream instabilities.

I. INTRODUCTION

Extragalactic jets are collimated radio-luminous plasmas that are thought to be supersonic outflows from the
nuclei of elliptical galaxies, the jet plasma traveling long distances through the intergalactic medium before being
stopped (Begelman et al., 1984). Often, the length of a jet is much larger than the size of its parent galaxy.

The internal plasma pressures of some extragalactic jets are thought to exceed the plasma pressures in the
external media. This had led to the hypothesis that these jet plasmas are radially confined via electric-current
pinching, the electrical current flowing axially through the column of jet plasmas (Alfvén, 1977, 1978; Benford,
1978), as depicted in Figure 1. The hypothesis that jets carry currents is also supported by electrodynamic models of
jet-plasma acceleration (Lovelace, 1976). The presence of currents opens the important possibility that large
amounts of energy are being transported down the jets via electrical processes. If electrical currents are in fact
present, then electric fields are also expected to be present.

In this report, a model of the electric field that may reside within an extragalactic jet is described. The model
involves a plasma double layer or a multiple of plasma double layers in series, each one residing within a density
cavity that is created by the action of the double-layer-emitted particle beams.

In section II, the properties of extragalactic jets are reviewed and the Coulomb-collision resistivities and the
plasma-wave resistivities within the jets are discussed. InSection III, the double layer model is described. InSection
IV, some consequences of the double layer model are discussed, including radio-wave emission from the double-

layer-emitted electron beams via a collective bremsstrahlung process, and in Section V, some double layer topics
that need further research are pointed out.

PRECEDING PAGE BLANK NOT FiLMED
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Il. COLLISIONAL AND PLASMA-WAVE RESISTIVITIES IN JETS

Subject to great uncertainties, extragalactic jets and the plasmas within them have the following properties
(Begelman et al., 1984). The lengths of the jets vary from L ~ 10* Pc to L ~ 10° Pc, where 1 Pc = 3.1 X 10'® cm,
and the radii of the jets vary fromr ~ 10? Pc close to the galactic centers to r ~ 10> Pc further out; typical diameters
of galaxies are 10* to 10° Pc. The jet plasma is believed to be of low density, n ~ 10— 10 cm™ and warm T, ~ T,
10° K, with an additional population of relativistic synchrotron-emitting electrons. The luminosity of the jet plasma
is non-uniform, implying higher densities of relativistic electrons and/or stronger magnetic fields in localized hot
spots. Estimates of the magnetic field strength yield B ~ 1075 — 10 gauss. For a few jets that reside in the centers of
clusters of galaxies, the ambient plasma is detectable via its x-ray bremsstrahlung, and pressure estimates for these
ambient media can be obtained. In some of these instances, the pressures of the jet plasmas are believed to exceed
the pressures of the ambient plasmas, and z-pinching of the jets by electrical currents may be acting to confine the
jets. Estimates of the total amount of current needed to z-pinch the jets are I ~ 10'"-10'® Amp, implying current
densities j ~ 102-102' Amp/m?. If these currents are carried by drifts between the ion and electron distributions,
then typical drift velocities are 10°-107 cmy/s.

These jet plasmas are very nearly collisionless; for a plasma with n = 10* cm™ and T = 10° K, the
Coulomb-collision conductivity is o, ~ 1.8 X 10'3s". For a current density jy = 1.0 X 10”' Amp m™, the electric
field along the jet required to drive the current is E; = 4.9 x 107 V/cm. For a jet 10° Pc in length, this amounts to a
total potential drop Ad of a mere 1.5 X 10 V. By almost all standards, the jet is a perfect conductor.

Electrostatic plasma-wave instabilities that are driven by relative drifts between Maxwellian ions and
electrons require an electron-ion relative drift velocity v, that is comparable to v,. (Papadopalous, 1977). As
mentioned above, the relative drift within an extragalactic jet is typically v, ~ 10°-10" cr/s. This drift speed is
orders of magnitude lower than the electron thermal velocity. Thus, electrostatic microinstabilities driven by
electron-ion relative drifts will not provide electrical resistivities in current-carrying extragalactic jets.

Neither will electromagnetic plasma-wave instabilities that are driven by relative drifts between Maxwellian
ions and electrons produce resistivity in extragalactic jets. For a uniform-current-density z-pinched jet in equi-
librium, no electromagnetic waves with wavelengths shorter than the jet diameter are unstable (Borovsky, 1986).
Hence, no resistivity can be produced.

Note that since anomalous-resistivity processess might not occur in the jet plasma, the jet plasmas might be
truely ohmic, at least for the current densities envisioned to z-pinch the jets.

Il. THE DOUBLE LAYER MODEL

Some of the properties of strong plasma double layers are as follows (Michelsen and Rasmussen, 1982;
Schrittwieser and Eder, 1984). The thicknesses of double layers are AL ~ 10'-10° AP, the double layers being
thicker if the potential jump A across them is greater. The current density within and near the double layer is
independent of the local electric field strength; therefore, the plasma containing the double layer is non-ohmic. Ions
that drift into the high potential edge of the double layer are accelerated to form a fast, cold beam in the low potential
plasma, and electrons that drift into the low potential edge of the double layer are accelerated to form a fast, cold
beam in the high potential plasma. The efficiency of turning electrical energy into the kinetic energy of high-energy
particles in the double layer is 100 percent. These beams drive space charge waves in the adjacent plasmas
(Borovsky and Joyce, 1983), the electron beam drives Langmuir waves and electrostatic electron-cyclotron waves
in the high potential plasma, and the ion beam drives ion-acoustic and electrostatic and ion-cyclotron waves in the
low potential plasma. If the double layer has a large enough potential drop Ad, then Langmuir waves and electro-
static electron-cyclotron waves will also be driven by the ion beam in the low potential plasma.
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Double layers are also characterized by Bohm criteria at their high and low potential edges. For steady-state
double layers, these criteria require the ion-inflow drift velocity to exceed C, and the electron-inflow drift velocity
to exceed v,.. As was the case for electrostatic plasma-wave instabilities, these required inflow velocities imply
large current densities. However, the Bohm criteria may be satisfied without large current densities if a density
cavity is formed by the action of the double-layer-emitted beams. When the potential drop Ad of a double layer is

large enough to produce highly relativistic electron beams, the growth length for two-stream electrostatic waves in
the high potential plasma is

)\growth/)\De = 21X 10-3 Te4/3(eA¢/kuT) .

and if the potenial jump is large enough to produce a highly relativistic ion beam, then the growth length for high-
frequency electrostatic plasma waves in the low potential plasma is

Ngrow/Ape = 4.8 X 10°° T, **(eAd/ksT)

(Borovsky, 1986). Because the phase and group velocities of the growing waves are in the direction of the beams,
these waves will propagate away from the double layer, leaving regions of calm plasma near the double layer.
Beyond these calm regions, however, plasma waves will be present with very large amplitudes (Fig. 2). In the fields
of waves on either side of the double layer, the effective collision frequency may approach wy,. Since the mobilities
of charged particles in these regions are small, they require long periods of time to transit to the double layer;
accordingly, their number densities are high within these regions. When a particle leaks out of one of these turbulent
regions and passes into a calm region near the double layer, it drifts without scattering; this drift being at the thermal
velocity, the number density is low (see Fig. 3, top and middle). Thus, the double layer produces electron and ion
beams which create two regions of plasma turbulence removed from the double layer itself, these regions acting to
keep the plasma density high away from the double layer and creating a cavity around the double layer. It is in this
density-cavity region that the Bohm criteria for the double layer can be met; these high drift velocities do not
produce high current densities because they occur only in regions where the particle density is low. The current
density is conserved throughout the region (Fig. 3, bottom). This cavity production can also be described as the
outwardly directed double-layer-emitted beams driving plasma waves that transfer the beam momentum to the
ambient plasma, pushing open a cavity and maintaining it with beam pressure.

In order for current to be driven through the regions of electrostatic turbulence near the double layer, resis-
tive electric fields will arise, adding to the potential of the double layer. Note that in this model the anomalous
resistivity regions are required, not for their resistive potential drops, but for the reduction of the particle mobility
that they cause.

A laboratory example of a double-layer-driven cavity is contained in Figures 9 and 10 of Guyot and Hollen-
stein (1983), reproduced here as Figure 4. In the first panel of Figure 4, the double layer is clearly visible at x ~ 50
cm. Note also that there is a region of resistive potential drop in the high potential plasma adjacent to the double
layer. In the second panel, a density cavity around the double layer is visible. In the bottom panel, the electron drift
speed is seen to increase within the cavity. Electrostatic turbulence is detected on both sides of the double layer.
Another example of a cavity formed around a laboratory double layer appears in Figure 3 of Sato et al. (1981).
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Multiple double layers may occur in a series, each double layer surrounded by regions of beam-driven
turbulence that maintains density cavities. The double layers must be separated by distances large enough for their
emitted electron and ion beams to thermalize, the thermalized beam particles constituting plasma sources between
the double layers.

IV. CONSEQUENCES OF THE MODEL

If they are of relativistic energies, the double-layer-produced beams of electrons will undoubtedly emit
synchrotron radiation, making the high potential plasmas near double layers radio luminous. More important,
however, the relativistic electron beams will rapidly emit polarized radio waves via a collective-bremsstrahlung
process (Kato et al., 1983). The electron-electron two-stream instability that produces the electrostatic waves in the
high potential plasma causes the beam electrons to bunch up and the background-plasma electrons to bunch up. The
beam electrons are accelerated by random electric fields as they pass through the charge-bunched background
plasma, causing them to emit electromagnetic radiation. Because the beam electrons are charge-bunched, they emit
coherently. Thus, this emission is like a collective bremsstrahlung, with charge clumps in the beam radiating as they
scatter off charge clumps in the background plasma. As observed in the laboratory, the electron beams emit electro-
magnetic waves with frequencies of approximately v, (Kato et al., 1983), where 1y is the relativistic factor of the
beam.

It is reasonable to anticipate that a radio hot spot would be associated with a double layer or a series of double
layers within a jet, since most of the energy dissipated by the double layer appears as an energetic electron beam that
is capable of radiating. Further, if multiple double layers are separated by distances great enough, then the in-
dividual radio striations in the jet might be resolvable.

A model that proves to be very similar to this model was developed by Langmuir (1929) to describe the
current flows in partially ionized gases. In that model, the inflow of plasma to a double layer was described as an
ambipolar diffusion down density gradients. A similar approach may be taken in the present model, with only a
change in the nature of the diffusion coefficient.

The double layers envisioned here have many features in common with auroral zone double layers
(Shawhan, 1978; Borovsky, 1984). Auroral double layers accelerate electrons to energies of 1-10 keV, the
electrons following the terrestrial magnetic field lines to the upper atmosphere where they produce visible auroral
arcs. The auroral double layers also accelerate ions upward where they are believed to drive the large-amplitude
electrostatic ion-cyclotron waves. The energetic beam electrons are believed to drive Langmuir and electrostatic
electron-cyclotron waves, and are also believed to drive collective radio emissions (Anderson, 1983).

V. FUTURE RESEARCH IN DOUBLE LAYERS

There are many topics that must be researched before the double layer model discussed in Sections III and IV
is complete.

Two topics important to this model are relativistic double layers and double layers in finite-B plasmas, the
stability and dynamics of both types of double layers having yet to be examined. For relativistic double layers,
stability factors may favor particular values for the potential jump, such as eAd = m.c? oreAd = myc?. For finite-3
double layers, beam-driven electromagnetic-wave turbulence may provide another cavity-forming mechanism.
Laboratory diagnostics will be difficult to construct for relativistic double layers, and very large plasma chambers
will be required to magnetize the particles for finite-@ double layer experiments.
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Another important topic is the dynamics of multiple double layers. In most laboratory devices, the system
potential drops are limited to the ionization potentials of the gases used, and the ions are Coulomb-collisional. To
investigate multiple double layers via computer simulation, very large numerical systems must be used to resolve
the large-scale phenomena (beam thermalization), the small-scale phenomena (double layers), the fast time scales
(Langmuir waves), and the slow time scales (beam evolution). A further goal would be to understand the pre-
sheaths at the edges of the double layers. Unfortunately for the theoretical approach, pre-sheaths in collisionless
plasmas probably involve electric field fluctuations, and, unfortunately for laboratory experiments, these weak
electric field structures are very difficult to observe.

In order to understand the inflow of plasma through the regions of electrostatic turbulence, diffusive flows
driven by density gradients and fluctuating electric fields need to be studied.

The spatial evolution of double-layer-emitted electron beams is also a topic for future study. Since these
electrons scatter and lose energy as they travel, there will be a spatial dependence of the collective bremsstrahlung
spectra. A knowledge of this spectral evolution matched against the spectra of radio hot spots will provide a direct
test for the presence of double layer energy dissipation within jets.
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electrostatic potential ¢, the number density n, and the electron drift velocity v, are
plotted as functions of distance in the top, middle, and bottom panels, respectively.
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ACCRETION ONTO NEUTRON STARS WITH THE PRESENCE
OF A DOUBLE LAYER

A. C. Williams, M. C. Weisskopf, R. F. Elsner, and W. Darbro
Space Science Laboratory
NASA Marshall Space Flight Center
Huntsville, Alabama 35812 U.S.A.

and

P. G. Sutherland
Department of Physics, McMaster University
Hamilton, Ontario L8S4M1, Canada

It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of
an electric current. In this paper we argue that a double layer may be present in the accretion column of a neutron star
in a binary system. We suggest that the double layer may be the predominant deceleration mechanism for the accret-
ing ions, especially for sources with x-ray luminosities of less than about 10°7 erg s”'. Previous models have
involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the

energy of the infalling matter.
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THE FORMATION OF A DOUBLE LAYER LEADING TO THE
CRITICAL VELOCITY PHENOMENON

A. C. Williams
Space Science Laboratory
NASA Marshall Space Flight Center
Huntsville, Alabama 35812, U.S.A.

ABSTRACT

The formation of a double layer is proposed as the mechanism which produces the critical velocity
phenomenon. We examine this hypothesis, qualitatively, and find that the double layer can be a very efficient
mechanism for transferring the kinetic energy of the neutral gas into the Kinetic energy of electrons which, in turn,
will ionize the neutral gas if the critical velocity has been reached or exceeded.

I. INTRODUCTION

In a study of the mass distribution of secondary bodies in the solar system, Alfvén (1954) noted that these
bodies were arranged in discrete bands surrounding the central object. The particular location of the band in which
each body appeared was found to be dependent upon the chemical composition of the dominant elements of the
body. To explain this band structure, Alfvén proposed that a strong coupling suddenly occurs between a neutral gas
and a magnetized plasma whenever their relative velocity reaches the critical velocity, v, given by

Verit = (2eVi/mn)|/2 . (l)

Here, V; is the ionization potential of the neutral gas and m, is the mass of one of the neutral particles. The proposed
interaction has to have the effect of prohibiting the relative velocity from exceeding this critical velocity in order to
explain the band structure.

In the rest frame of the plasma, equation (1) implies that when the kinetic energy of the neutral particles is
equal to the ionization potential, a strong coupling occurs between the neutral gas and the plasma. Such a coupling
would be expected if, for example, the gas suddenly begins to be ionized at this relative velocity. Then the magnetic
field, which is threading the plasma, will interact strongly with the newly formed ions and electrons. However,
ionization is not expected to become prominent when the relative velocity is equal to the critical velocity because the
cross section for ionization due to binary collisions between neutral particles and plasma ions is essentially zero for
the energy transfer needed at this relative velocity (assuming negligible random kinetic energy). For equal mass
particles the maximum energy transfer is one-half the kinetic energy. Furthermore, the energy of electrons with a
velocity equal to the critical velocity is orders of magnitude smaller than the ionization energy.

Hence, traditional classical plasma physics seems to be unable to explain why an enhanced interaction
should occur between a neutral gas and a magnetized plasma when the relative velocity reaches the critical value.
However, laboratory experiments have verified the critical velocity phenomenon and the validity of equation (1)
(see Danielsson, 1973, and Raadu, 1981, for reviews). Subsequently, theories have been proposed to explain the
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experiments (see Sherman, 1973, and Raadu, 1978, for reviews). The present theoretical situation, nevertheless, is
that there is no one theory that satisfactorily explains the phenomenon over the wide range of parameters (magnetic
field, density of the gas, etc.) that have been demonstrated in the laboratory. Hence, the general consensus has been

that different physical processes occur, depending upon the parameters, to give the one result — the critical velocity
phenomenon. '

In this paper, however, a simple mechanism is proposed to explain the critical velocity phenomenon. This
mechanism appears to be applicable over the entire range of experimental parameters examined to date. This mech-
anism invokes the formation of a double layer. Double layers form in a plasma, usually when a current exceeding a
certain threshold value is passed through the plasma (see Block, 1978, for a review).

Il. THE FORMATION OF A DOUBLE LAYER

On a macroscopic level, a double layer can be defined as a local discontinuity surface in a plasma; but,
microscopically, it consists of two equal but oppositely charged space-charge layers. The electric field within the
double layer is very strong, but it is essentially zero outside this region. The spatial extent of the double layer is
roughly of the order of the Debye length, although experimental results have shown that the double layer can be as
thick as 1000 Debye lengths (Chan et al., 1984; Sato and Okuda, 1981). The electric potential for the type of double
layer that we will be considering (the strong double layer) is monotonic and has the general form as that shown in
Figure 1.

The double layer, once formed, separates the plasma into two sections with a potential difference across
them. Years of laboratory research on the formation and stability of double layers have revealed that they form
easily either by utilizing density gradients or by introducing a potential difference across the plasma (or across a
segment of the plasma by inserting a charged electrode), or by some other method. Regardless of how the double
layer is formed, the determining factor as to whether it will remain depends upon the distribution functions of the
various types of charged particles that will be accelerated, decelerated, or reflected by the double layer.

To understand why a double layer should be expected to form when a neutral gas is incident upon a mag-
netized plasma, consider Figure 2. Here, the neutral gas is incident from the left. The magnetic field of the plasma,
for simplicity, is assumed to be uniform, and in order to simulate the experimental situations where the critical
velocity phenomenon has been observed, the magnetic field is taken to be almost perpendicular to the incoming
neutral beam velocity vector. Even before the velocity of the neutral atoms reaches the critical velocity, a limited
amount of ionization will naturally take place due mainly to impact and charge exchange collisions. Suppose that an
atom is ionized at point O in Figure 2. The electron and ion will then be influenced by the magnetic field which is
threading the plasma. Because of differences in magnetic moments, the ions will penetrate more deeply into the
plasma than the electrons; i.e., both will spiral about the field lines but the ions with much large radii. This will
result in a charge separation in the plasma which, in turn, will force the plasma to react in order to maintain charge
neutrality. We expect the plasma to respond through the formation of a double layer, just as in the laboratory. The
potential difference across the double layer will be essentially the kinetic energy of the newly formed ions since it is
these ions that must be stopped in order to maintain charge neutrality. These ions, though, will have approximately
the same energy as the original neutral atoms. Hence, the potential energy of the double layer is expected to be equal
to the kinetic energy of the neutral gas.

This scenario also dictates the length scale of the double layer. It must have a width which is intermediate
between the electron and the ion gyro radius. This is precisely the scale length associated with the leaky ionization

fronts which have been observed in the experimental investigations of the critical velocity phenomenon (see e.g.
Petelski, 1981).
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The double layer will decelerate the newly formed ions. It will also accelerate the newly formed electrons as
well as any electrons of the background plasma which drift into the double layer region. On the high potential side of
the double layer, then, there will be some energetic electrons moving anti-parallel to the magnetic field. These
electrons will be available for ionizing more neutral atoms through impact collisions. This process, in turn, will tend
to establish a second double layer. This process could then be repeated and result in a series of double layers in the
plasma. However, as mentioned previously, the charged particle distributions determine whether the double layers
are stable. Although it may be possible that the conditions are favorable for the formation of several double layers,
we speculate these double layers dissipate after they are formed. In this case, we have the equivalent to a single
double layer moving through the plasma. Moving double layers are observed to occur in laboratory plasmas when
the particle fluxes do not satisfy what is referred to as the Langmuir condition for a stable double layer (Block,
1978). In the laboratory, these moving double layers propagate to the end of the physical system confining the
plasma where they disappear, and a new double layer appears at the opposite end.

The process described above may take place whenever a neutral gas beam is incident upon a magnetized
plasma, regardless of the relative velocity of the beam. Laboratory experiments, as well as theoretical con-
siderations, indicate that the thermal speed of the plasma particles makes the formation of a double layer possible.
However, when the relative velocity becomes equal to the critical velocity, the picture we have presented leads to
the conclusion that predicts a strong interaction should occur. This follows from the fact that the potential energy
difference across the double layer and, hence, the energy of the accelerated electrons, is equal to the kinetic energy
of the neutral atoms. When this energy is equal to the ionization energy of the atoms, the electrons will then have
precisely the amount of energy needed to ionize the atoms. Consequently, when the relative velocity is equal to, or
higher than, the critical velocity, the effect of the moving double layer (or a stationary double layer if appropriate) is
to establish an ionization front which ionizes the neutral beam. This explains the observed connection between the
critical velocity and ionization. This also implies that energetic electrons will be produced with velocity vectors
directed anti-parallel to the magnetic field. This conclusion, in turn, is consistent with laboratory studies of the
critical velocity phenomenon (see e.g. Danielsson and Brenning, 1975).

lll. THE ORIENTATION OF THE MAGNETIC FIELD

In all of the laboratory experiments that have studied the critical velocity phenomena, the magnetic field has
been more or less perpendicular to the velocity vector of the incoming neutral beam. In our explanation of the
critical velocity phenomenon, we must require that the angle between the two vectors is not precisely 90°. This
requirement is necessary in order to have both a component of the electron’s velocity paraliel to the magnetic field
line and also traverse through the double layer region. In Figure 3, this departure from 90° is given by the angle 8. To
examine the minimum value that 3 may have, we consider the experimental arrangement of Danielsson and Bren-
ning (1975). The effective physical confines of the plasma region in this experiment was 5 cm X 5 cm. Therefore
the length (along an equipotential surface) of the double layer was 5 cm. The width of the double layer, of course,
can be no more than 5 cm, but its value will be determined mainly by the electron and ion gyro radii. The width, a, of
the double layer satisfies the condition

re<<a<<r , (2)

where r. and r; are the corresponding gyro radii of the electrons and ions. The exact value of a, of course, depends
upon the particle densities. For the Danielsson and Brenning experiment, typical parameters were B = 0.18 Tand v
= 400 km/s, resulting in r, == 13 wm and r; = 10 cm. Hence, the width of the double layer, a, was of the order of 1
mm. For this value of a, Figure 3 implies that the minimum value of & is 1.2°, which is hardly a stringent
requirement. Hence, it can be concluded that the magnetic field vector can be essentially perpendicular to the rela-
tive velocity vector within our model.
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IV. COMPARISON WITH OTHER THEORIES

Some theorists have examined the consequences of building up space charge by the trapping of electrons by
the magnetic field. In particular, Piel et al. (1980) proposed the formation of a sheath similar to the double layer, but
they considered only the E X B drift motion in the sheath. They considered the possibility that the drift motion
would lead to a modified two-stream instability which, in turn, would heat the electrons. This would then provide a
feedback mechanism to produce the ionization, and thus explain the critical velocity phenomenon. As is the case
with essentially all of the theoretical models, this particular approach explains a subset of the experimental observa-
tions of the phenomenon, but it fails in other cases (see e.g. Haerendel, 1982).

Lehnert (1967) analytically examined the potential structure that could form consistent with the Vlasov and
Poisson equations. Assuming that collisions are negligible over scale lengths, of the order of the ions gyro radius,
and a potential gradient in the plasma, he found that an oscillatory-type potential structure could be supported. The
spatial extent of each cycle in the potential, naturally, turned out to be comparable to the gyro radius of the ions. The
formation mechanism for this charge separation, however, requires that the electric field within the sheath be direc-
ted in the same direction as the velocity vector of the incoming neutral beam. This is precisely in the opposite
direction of the field of the double layer in our picture. Because of the direction of the electric field in Lehnert’s
model, it is difficult for him to utilize it to energize the electrons. He, thus, relies on collisions to accomplish this
(Danielsson and Brenning, 1975). Nevertheless, if the particle distributions in the plasma are such that a series of
double layers would be stable, then the potential structure of the present model would be similar to Lehnert’s model
except for the oppositely directed electric field. The electric field of the present model is properly oriented for direct
electron acceleration.

Varma (1978) also examined a possible consequence of charge separation upon the ionization of a marginal
amount of the neutral gas. However, his analysis was directed mainly at explaining the direct interaction experi-
ments (Danielsson, 1970, 1973; Danielsson and Brenning, 1975). Since these experiments provided evidence for
electron acceleration parallel to the magnetic field, Varma suggested that a density gradient in the direction parallel
to the magnetic field, due to the finite size of the experimental apparatus, would cause a potential well to form which
could accelerate the electrons in the required direction. Again, this is a theoretical model which is very dependent
upon the experimental parameters. Hence, it does not explain the general critical velocity phenomenon.

V. SUMMARY

In this paper, we have proposed that the formation of a double layer leads to the critical velocity
phenomenon. The role of the double layer is to transfer the energy of the neutral particles to electrons which, in turn,
ionize the neutral particles when the critical velocity is reached or exceeded. This mechanism is expected to operate
under a wide variety of conditions as has been verified by double layer observations in the laboratory.

Although we have only described the model qualitatively here, it is evident that such a mechanism is a viable
candidate for explaining the critical velocity phenomenon. It remains for future work to carry out computer simula-
tion studies to investigate the formation and stability of double layers under the conditions where the critical
velocity phenomenon has been observed.

Acknowledgments. 1would like to thank H. Alfvén for a very fruitful discussion which led to looking at this
solution to the critical velocity phenomenon. I also wish to express my indebtedness to N. Brenning and M. Raadu
of Stockholm for providing some very helpful comments on an earlier version of this paper. M. C. Weisskopf also
provided helpful suggestions which are reflected in the final version of the paper.
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Figure 3. The orientation of the magnetic field vector of the plasma with respect to
the equipotential surfaces of the double layer.

326




RECOMMENDATIONS

One noteworthy outcome of the symposium was the adoption of a circuit symbol for the double layer. This
symbol was proposed by H. Alfvén, and the participants agreed to adopt it and use it in future papers dealing with
double layers. The symbol is shown in Figure 1. An example of a circuit with a double layer is the prominence-solar
flare circuit where an exploding double layer is assumed to be responsible for the flare. Such a circuit was presented
at the symposium by Alfvén and is shown in Figure 2.

Although it is possible to have a plasma double layer without a net current, many applications will have a net
current. In these applications the “L” in the double layer symbol would be most appropriately oriented so as to show
the direction of the current. This is illustrated in Figure 3.

Since the double layer will accelerate and decelerate particles depending upon their charge and direction of

travel, power will be delivered to, as well as taken from, charged particles passing through it. The net power
delivered to the charged particles passing through the double layer is the equation

P = 1AV

where I is the net current and AV is the potential difference across the double layer. In the case of no net current, the
double layer simply serves as an energy transfer mechanism. It transfers energy from one species of charged
particles to another. Applications of this type of double layer were discussed in the symposium by Williams.

It is hoped that researchers in this field, as well as all who refer to the double layer, will join with the
participants of the symposium in adopting the double layer symbol in Figure 1 in all future references.
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Figure 2. An example of an astrophysical circuit where a double layer plays
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Figure 3. A diagram showing how the double layer symbol can indicate
the direction of the current.
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