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ABSTRACT 

ABSORPTION CROSS-SECTIONS 
OF SODIUM DIATOMIC. MOLECULG 

Zeng-Shevan Fong 
Old Doninion Universi ty ,  1985 

Thesis Advisor: Dr. Wyniord L. Harries 

The absorp t ion  cross-sect ions of sodium dlmers have been 

s t u d i e d  us- a wheat-pipew oven ope ra t ing  In the  @non-heat-pipew 

d e .  Three wavelength regions were observed. They are in t h e  red 

(A1 x$X1 E:), in t he  green-blue (B1 X u-X1 E:), and In 

t h e  near u l t r a v i o l e t  regions (C1 Xu-X1 x:) . The absorp t ion  

cross-section depends on the wavelength of the Inc iden t  l i gh t .  

Representa t ive  peak va lues  for the vW=O progression in the  red (ACX 

t r a n s i t i o n s )  and green-blue (BCX t r a n s i t i o n s )  r eg ions  are 2.5912 

(average va lue)  and 11.77%2 (Tave=624OK). The value  for the  

C C X  t r a n a i t i o n s  is s e v e r a l  t e n t h s  12. The cross-sec t ions  were 

measured from absorp t ion  spectra taken a8 a . f u n c t i o n  of temperature.  

In comparison with  published results, our va lues  agree with the 

paper  by L. K. Lam and h i s  co-workers, they agree approximately w i t h  

the  paper by R. D. Hudson but  are in disagreement with the  paper by 

N. A. Henesian. 
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CHBPTER I 

INTRODUCTION 

The study of solar pumped lasers was started by C. 0. Young in 

early 1965 C l l .  The purpose f o r  these s t u d i e s  is t o  use large solar 

c o l l e c t o r s  on orb i t ing  space s t a t i o n s  which transmit the co l lec ted  

energy using laser beams t o  the  ea r th  or t o  o the r  vehic les  in space 

missions. The goal of the  research is to  determine i f  the  s o l a r  

energy could be converted d i r ec t ly  i n t o  laser rad ia t ion ,  then the  

i n e f f i c i e n c i e s  in converting the energy through d i f f e r e n t  t ransducers  

could be avoided. Hence broadband o p t i c a l  pumping or photon 

exc i t a t ion  methods for producing the population inversion necessary 

for o p t i c a l  amplif icat ion a r e  invest igated.  The major f r a c t i o n  of 

the  solar spectrum l ies  in t he  long wavelength ( v i s i b l e )  region wi th  

a peak at  about 2 eV, and the  laser m e d i u m  should have a good 

absorption efficiency in t h i s  wavelength region. Gas lasers would be 

advantageous because of uniform media, and t h e i r  volume could be 

large (in space appl ica t ions ,  the size of the  laser would not be 

cri t ical) ,  and they are e a s i l y  constructed.  Here t h e  p o s s i b i l i t y  of 

using sodium vapor as the medium for s o l a r  pumped gas lasers used as 

energy converters  is examined. 

To convert s o l a r  energy by a gas laser t h e  following candidates 

have been recent ly  considered : 12,  B r 2 ,  Br2=C02-He, I B r  , 
-1- 



C3F7I ... etc.. Two kinds of lasers were studied theore t ica l ly .  

In t h e  first category: t h e  absorber and t h e  lasant were d i f f e r e n t  

materials such as a B r r C O r H e  laser. ( the  Br2 absorbed the  

photons and t ransfered  the energy t o  Cop, which lased) In t h e  

second category: only one material was used, such as an IBr laser; 

harever., t h e  theoretical solar power e f f i c i e n c i e s  in these  cases  

were low (0.5 and 1.2 percent respect ively)  121. 

I n  t h e  above caaes, the  absorbed photons produced excited atoms 

Br* o r  I@ (photo-dissociation) which then lased t o  the  ground 

atomic l eve l ,  but there are not many diatomic molecules t h a t  can be 

dissociated by l i g h t  near t h e  s o l a r  peak (around 450nm-550nm). The 

requirement of photo-dissocition limits t h e i r  absorbed wavelength 

range, resulting in a reduction in t h e i r  e f f i c i enc ie s .  However., 

there are a great many that can absorb a photon and then be raised t o  

one of the vibrat ion-rotat ional  l e v e l s  of an upper e l ec t ron ic  state 

without d i ssoc ia t ion .  Lasing could then occur as a t r a n s i t i o n  t o  one 

of the vibrat ion-rotat ional  l eve l s  of t h e  ground e l ec t ron ic  states. 

Recently a number of o p t i c a l l y  pumped dimer lasers (bound-bound) were 

l isted including the metal vapors L i z ,  Na2, K2, B i z ,  and 

Tep which lased without d i ssoc ia t ion  [31 141. 

A l k a l i  metal vapors interact very s t rongly  with l i g h t  

p a r t i c u l a r l y  in the v i s i b l e  region near t he  peak solar spectrum. 

Lasers made from these vapors have l o w  thresholds and high measured 

e f f i c i e n c i e s  and because absorption w i l l  occur near t h e  peak of t h e  

solar spectrum, the p o s s i b i l i t y  of using these vapors as s o l a r  energy 

converters  arises. The quoted device e f f i c i e n c i e s  were up t o  15 

percent [ 3 3 ,  but f o r  solar energy conversion t h e  o v e r a l l  e f f ic iency  

-2- 



should include the s o l a r  e f f ic iency  ( f r a c t i o n  of the  s o l a r  radiance 

used) which is usual ly  below 20 percent [SI. Vaporizing the metals 

would achieved by solar concentrators and the lasers would run a t  

temperatures of around 1000%. The high temperature would also 

reduce the  area requirement of the heat d i s s ipa t ion  surface,  an 

important f a c t o r  in the output power t o  weight ratio C61, and an 

advantage over the IBr [2], 12, and Brp lasers. The 

dimer/monomer ratios of a l k a l i  metal vapors are funct ions of 

temperature and the r a t i o  fo r  sodium vapor is t h e  highest  of a l l  

under certain temperatures [7]. I n  view of t h e  above considerat ions 

sodium is a good candidate for the m e d i u m  of a solar pumped laser. 

be 

For the  s a t i s f a c t o r y  operation of a laser system, the seif- 

absorption should a l s o  be low.  This  restricts t h e  choice of 

molecules and t r a n s i t i o n s  as self-absorpt ion becomes a p a r t i c u l a r l y  

important l o s s  mechanism f o r  emission from higher molecular bands. 

Hence emission wavelength should be chosen where there is l i t t l e  

self-absorption. Previous s tud ies  C31 C41 have shown t h a t  t h i s  is 

poss ib le  for sodium. It is important t o  measure t h e  absorption 

the  

spec t ra  for sodium vapoe, and a l s o  t o  obta in  absorption cross- 

sec t ions  f o r  k i n e t i c  s tudies .  

However for kinetic s tudies  it is e s s e n t i a l  f o r  the absolute  

value of t h e  cross-sections (as  funct ions of  wavelength) be known. 

Here the l i t e r a t u r e  shows v io l e t  disagreement. L. K. Lam, A .  

Gallagher and M. H. Hessels' data show values  of the  A I S $  

XlL t o  be 10-16 cm2 181, whereas M. A .  Henesian, R .  L .  

Herbst and R. L. Byerst r e s u l t s  show values  of cm2 C91. It 

is therefore  e s s e n t i a l  t o  measure t h e  absolu te  values. 

-3- 



As results of our experimental data showing the absorption 

spectra measured wi th  a heat-pipe operated i n  non-heat-pipe mode, t h e  
, 

absorption cross-section A1 Lu-X + 1  was obtained wi th  a 

magnitude of the  r ight  order -10’l6 om2 and BIXU-XII: 

was around -10°15 cm2 and C1 x u=X1x was around 

-10°17 em2. The absorption cross-sections for these bands are 

l a r g e  compared with 12, Brp, C&I, and IBr, whose absorption 

cross-sections are -10°19 c d  [5].  The experiments also showed 

that pho tod i s soc ia t ion  occurred easily. These reasons increase the  

po ten t i a l  of sodium metal vapor, as  t h e  material for a s o l a r  pumped 

. 

laser. 

-4- 



CHAPTER I1 

THEORY 

Before w e  examine molecules l e t  us first consider a co l l ec t ion  

of i den t i ca l  atoms having two e l ec t ron ic  l e v e l s  each. In t he  case 

of a t o m  there are three processes concerned with e lec t ron  

t r a n s i t i o n s  between two electronic  energy leve ls .  The first is 

absorption of a photon by an atom in the ground state which 

simultaneously undergoes a t r ans i t i on  t o  an excited state. The 

absorbing frequency is determined by the energy differenceAU between 

the excited state and ground state, AU=hY. The second process is 

spontaneous emission of a photon from an excited atom as it re tu rns  

t o  the ground state. The t h i r d  is the stimulated emission of a 

photon f r o m  an excited atom which is caused t o  re turn  t o  the ground 

state by an electromagnetic wave of  frequency correspondlng t o  the - 
t r a n s i t i o n  frequency. Both the original and emitted photons are 

coherent and also beoome the source to  induce o the r  excited atoms. 

The most important process in laser ac t ion  is the  t h i r d  example 

mentioned. If there are many atoms in excited states, t h e  st imulated 

emission can increase the in tens i ty  of r ad ia t ion  of t he  t r a n s i t i o n  

frequency wi th  a l l  the photons i n  t h e  same phase. This  is the  

p r i n c i p l e  of laser ac t ion  i n  atomic lasers. 

The process of l a s ing  is similar for molecules and atoms. 

-5- 



However the  case  of  atomic lasers ,  t h e i r  quantum e f f i c i e n c i e s  are 

low. Much higher quantum e f f i c i enc ie s  can be obtained w i t h  molecular 

lasers, e s s e n t i a l  for energy conversion using s o l a r  pumped lasers. A 

molecule has mqny energy l eve l s ,  and t o  study t h e  t r a n s i t i o n s  between 

those energy l eve l s ,  w e  study the  absorption spec t r a  of  molecules 

which can h e l p  us  design a dimer laser. 

1. The hydrogen molecule and the hydrogen-like molecules: 

The theoretical s i m p l i c i t y  of t he  a lkal i  metal atoms (one 

e l ec t ron  outs ide  an inert ionic core)  and molecules (two e l ec t rons  

ou t s ide  two inert ionic  cores)  makes them even more ideal; i n  a sense 

they are 'v i s ib le  hydrogen atoms and molecules 

L e t  u9 consider first the  hydrogen molecule. It is composed of 

fou r  p a r t i c l e s ,  two protons (A and B) and two e l ec t rons  (1 and 2 ) ( see  

Figure 1.). To determine t h e  energy of t he  e l ec t rons  i n  a molecule 

f o r  fixed values of  the nuclear coordinates,  tha t  is i n  the  adiabatic 

approximation, t h e  po ten t i a l  energy appearing i n  the Schrodinger's 

equation must take i n t o  account all t he  electrostatic in t e rac t ions  

between t h e  four  charged par t ic les .  The po ten t i a l  is 

Fortunately,  it is possible t o  s implify the problem by using 

the  approximate method of Born and Oppenheimer [ l l ] .  It states t h a t  

the  complete wave funct ion can be expressed as a product of  t h e  

e l ec t ron ic  wave funct ion and t h e  nuclear wave function. The 

-6- 
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Y Y 

A 

Figure 1 .  The hydrogen molecule. The protons are i n  
pos i t ions  A and B; the  e lectrons,  i n  1 and 2. 
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e lec t ron ic  wave funct ion depends on t h e  pos i t ion  of the nuclei ,  b u t  

no t  on t he i r  state of motion. The nuclear wave funct ion depends on 

t h e  whole e l ec t ron ic  configuration. The t o t a l  energy of t he  

molecule may be expressed, t o  a first approximation by t4e sum of  a 

nuclear  energy tern and an e lec t ronic  one. The e l ec t ron ic  energy is 

quantized as the  e l ec t ron ic  wave function. It depends a l s o  on t h e  

pos i t ion  of  the nuclei;  the  coordinates o f  t h e  nuc le i  are present as 

parameters in the  expression of each e l ec t ron ic  l eve l .  I n  the  

hydrogen molecule there are s i x  such coordinates. But if w e  are 

interested only in the  r e l a t i v e  pos i t ion  o f  t he  nuclei ,  and not i n  

their absolute  pos i t ion  in space, a single parameter suffices-namely 

t h e  in te rnuc lear  distance rm. The p o t e n t i a l  energy curves, f o r  

t h e  atoms in a cen te r  of  mass system as func t ions  of  rm and the i r  

va r i a t ion  follows the general  pa t t e rn  schematically represented i n  

Figure 2.. Curves E1 and E3 of  Figure 2. have a m i n i m u m  i n  t h e i r  

energy; in other caaes ( l i k e  E2) there is no m i n i m u m .  Curves E1 

and E3 correspond t o  two outer  e l ec t rons  where t h e  sp ins  are 

an t i -pa ra l l e l  and therefore  must be symmetric, and the  sp in  states o f  

the e lec t rons  is the s ingle t .  Curves E2 corresponds to  t w o  

e l ec t rons  whose s p i n s  are p a r a l l e l  and therefore  must be anti- 

symmetric and t h e  s p i n  state of t h e  e l ec t rons  is the  t r i p l e t  state. 

I n  E3 there is one e lec t ron  in t h e  first excited state. A value of 

the equilibrium in te rnuc lear  distance re and of the d i s soc ia t ion  

energy De, two very important s t r u c t u r a l  parameters of  t h e  molecule 

are indicated.  The same considerations apply t o  the Na2 molecule. 
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E 

Figure 2. Electronic energy l eve l s .  The energy is given 
as a function o f  the internuclear distance rm for 
three di f ferent  electronic states, El, E2, E3. 
E1 and E3 correspond to stable configuration. 
The equilibrium distance and the electron b ind ing  
energy in the ground state are indicated, 
respectively,  by re a d  D e .  
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2. Anharmonic v ibra t ions  of diatomic molecules: 

The exact form of t h e  poten t ia l  curve governing t h e  v ib ra t iona l  

motion of t h e  nuc le i  may be calculated.  It is the e l ec t ron ic  energy 

introduced by the Born-Oppenheimer theorem. It may a l s o  be 

constructed,  point  f o r  point ,  from t h e  observed v ib ra t iona l  and 

r o t a t i o n a l  leve ls .  The Horse f'unction U=De[ l-e-B(r-re) l2 1121 

is an acceptable approximation of t h e  ac tua l  po ten t i a l  curve of a 

diatomic molecule of type El, except f o r  r = O  where it has  a f ini te  

value and the t r u e  po ten t i a l  is infinite. For r=re t h e  equation 

becomes zero: t h i s  is the minimum value of t he  po ten t i a l  energy and 

occurs a t  the equilibrium position. When r + o o , U  approaches De, 

which is consequently the d issoc ia t ion  energy. There are three 

parameters De, re, and B which determine t h e  shape of a molecular 

po ten t i a l  curve. If the true po ten t i a l  is known, they w i l l  be  

adjusted t o  g ive  the  best overlap w i t h  t he  t r u e  poten t ia l .  After  t he  

parameters De, Fg, and B are  calculated, it is possible  t o  f i n d  

an exact so lu t ion  t o  the wave equation f o r  t h e  v ib ra t iona l  energy 

l e v e l s  of the molecule which are 

where v is t he  v ib ra t iona l  quantum number and We is t h e  zero-order 

v ib ra t iona l  frequency and WSe is t h e  anharmonicity constant.  

We and W& are related t o  De and B as follows: 



where is Planck's constant a n d p  is t he  reduced mass of the diatom 

and c is the speed of l i g h t .  The parameters De and B can be 

calculated when We and WeXe are known. Values of sodium dimmer 

are given in Molecular SDectra Stmture I V .  C- 

h 

3. Molecular t rans i t ions :  

A molecule, just as an atom, has many e lec t ron ic  l e v e l s  

corresponding t o  d i f f e ren t  d i s t r ibu t ions  of the e lec t rons  over t h e i r  

var ious o r b i t a l s  and t o  d i f f e ren t  o r i en ta t ions  of t he  e l ec t ron ic  

angular momenta. The spectra t h a t  arise in t r a n s i t i o n s  from one 

e lec t ronic  state t o  another are a series of l i n e s  which r e s u l t  from 

nuclear  vkbration and ro ta t ion .  

The energy of the molecule may be wr i t t en  as the  sum of three 

contributions: e lec t ronic ,  vibrat ional ,  and. ro t a t iona l ,  t h a t  is 

o r ,  i n  term values, 

where T and the o ther  quant i t ies  are expressed in cm-1. 
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For an e l ec t ron ic  t r a n s i t i o n  of a diatomic molecule we have 

where the 'single prime", Tt and the  "double prime", T" are 

respec t ive ly  the upper and lower energy l e v e l s  of a diatomic molecule 

with d i f f e ren t  e lec t ronic ,  v ibra t iona l ,  and r o t a t i o n a l  energies.  

If w e  consider one pa r t i cu la r  e l ec t ron ic  t r a n s i t i o n  WithPUe 

fixed, then a l l  possible  values of  AUr and AUv g ive  rise t o  a 

band system. The gaps between v ib ra t iona l  l e v e l s  are much l a r g e r  

than t h e  gaps between ro t a t iona l  l e v e l s  and the  t y p i c a l  values  f o r  a 

sodium dimer f o r  t h e  ro t a t iona l  gaps are around -0.5 cm-l and f o r  

the  v ib ra t iona l  gaps are around -150 cm'l. Under low reso lu t ion  

w e  can to  a first approximation neglect  AUr  and obta in  f o r  the  

bands of  an e l ec t ron ic  band system of a diatomic molecule 

the  band system can be considered e i t h e r  as cons is t ing  of  a number of 

v t  progressions or of a number of v" progressions. Unlike the  

harmonic o s c i l l a t o r ,  there is no r e s t r i c t i v e  s e l e c t i o n  r u l e  f o r  t he  
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v ib ra t iona l  quantum number v f .  The wave numbers w i l l  g ive  a great 

number of bands, when v f  and va are replaced by a r b i t r a r y  

non-negative integers. However the  absorpt ion or emission of a 

photon can only occur if the probabi l i ty  of t h e  t r a n s i t i o n  is high, 

for a given v l ,  vu. To start determining t h e  value of t h e  l e v e l  of 

v", we need to  consider the Franck-Condon pr inc ip le .  

4. Franck-Condon factors: 

The Franck-Condon p r i n c i p l e  1141 starts from the  assumption 

that because of the  l a r g e  difference between the nuclear and the 

e l ec t ron ic  masses, that the e lec t ronic  t r a n s i t i o n  takes place so 

rapidly,  that the nuc le i  in the moleeule cannot al ter t h e i r  r e l a t i v e  

pos i t i ons  nor t h e i r  r e l a t i v e  v e l o c i t i e s  s ign i f i can t ly .  Since t h e  

nuc le i  move in d i f f e r e n t  po ten t ia l  f i e lds  in d i f f e r e n t  e l ec t ron ic  

states, the  t r a n s i t i o n  of the e lec t rons  t o  a new state is usual ly  

accompanied by a subsequent change in t h e  equilibrium pos i t ions  of 

the  nuc le i  -and the frequencies of the  normal vibrat ions-  and t h i s  

leads t o  the simultaneous exc i ta t ion  of e lec t ron ic  and v ib ra t iona l  

states. The character of such exc i t a t ions  is determined by the  

dependence of t h e  e lec t ronics  states of t h e  molecule on the  

arrangement of t h e  nuclei .  For t h e  s imples t  case, the po ten t i a l  

energy of diatomic molecules depends on only one coordinate: t h e  

distance between the  nuclei .  

We have depicted qua l i t a t ive ly  in Figure 3. t h e  possible  

dependence on the distance betueen the  nuc le i  of t h e  energy of a 
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I 

diatomic molecule for two e lec t ronic  states. Case (a) corresponds t o  

two e l ec t ron ic  states for which the  m i n i m a  of t h e  funct ions % ( R )  

and E1(R) correspond to almost the same values of t h e  equilibrium 

distance, that  is, Ro-R1, In cases ( b )  and (c) ,  Ro#R1. The 

hor izonta l  l i n e a  in Figure 3. i nd ica t e  schematically -and not t o  

acale- the v ib ra t iona l  energy l e v e l s  in the two e l ec t ron ic  states. 

In  all three figures, t r ans i t i ons  will correspond t o  v e r t i c a l  l i n e s  

according to  the Franck-Condon p r inc ip l e  (no change in rgg). 

Furthermore, the v e r t i c a l  arrows start on t he  lower p o t e n t i a l  curve, 

and end on the upper po ten t ia l  curve. (Trans i t ions  can also occur 

which start f r o m  above t h e  lower po ten t i a l  curve -indicating some 

kinetic energy- and end a corresponding distance alone the upper 

p o t e n t i a l  curve, but they are  less l i ke ly  as a p a r t  from the vw=O 

leve l ,  the  molecule spends most time where the o s c i l l a t i o n  amplitudes 

are t h e i r  maximum, where the particles tu rn  around.) 

U e  shall assume tha t  i n i t i a l l y  the molecule is in t h e  

e l ec t ron ic  state IO>,  the  nucleus performs zero-point o s c i l l a t i o n s  

around the equilibrium posi t ion R,, and t h e  in i t ia l  energy of t h e  

moieoule is equal t o  &(R,), if w e  neglect  t h e  v ib ra t iona l  

zero-point energy. If now l i g h t  cauaes a t r a n s i t i o n  t o  t h e  

e l ec t ron ic  state Il>, during t h e  t r a n s i t i o n  the  nuc le i  w i l l  hard ly  

change the i r  posi t ion,  and the molecule goes over into a state with 

energy E1(Bo) .  The energy involved in t h e  t r a n s i t i o n  w i l l  thus  

be equal t o  b U = E 1 ( R , ) - E o ( R , ) .  I n  case (a) the  nuc le i  i n  t h e  

molecule perform zero-point o s c i l l a t i o n s  both i n  t h e  i n i t i a l  and in 

t h e  final states. Such a t r a n s i t i o n  can be called a pure e l ec t ron ic  

t r ans i t i on :  AU= AU,. I n  case (b )  the molecule h a s  gone after t h e  
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corresponding t o  a continuous spectrum. When a t r a n s i t i o n  t o  t h a t  

t r a n s i t i o n  i n t o  a state 11, a t  a=&, which is not a t  t h e  same 

equilibrium pos i t ion  R1 of a state 11). The nuc le i  in t h e  molecule 

w i l l ,  therefore ,  in t h i s  s t a t e  perform o s c i l l a t i o n s  around t h e  

equilibrium pos i t ion  with an energy G'(v')(equation ( 2 ) )  where v f  

corresponds t o  the quantum number determining t h e  exci ted v ib ra t iona l  

state, In t h a t  case,  the energy involved in the  t r a n s i t i o n  w i l l  be 

given by t h e  equation AU= AUe+G'(v')-G"(O), where AUe= 

E1 ( R 1  )-k(%) 
In case (c) the  quantum t r a n s i t i o n  leads t o  a state 

state takes place,  t h e  nuclei  of t h e  molecule can move to  i n f i n i t e  

distances f r o m  one another corresponding t o  a photo-dissociation of 

t he  molecule. 

Because of t h e  zero-point o s c i l l a t i o n s  of t h e  nuc le i  i n  t h e  

initial state, the  value R=R, is only t h e  most probable  one. Apart  

f r o m  t h e  t r a n s i t i o n s  indicated i n  Figure 3. by full-drawn arrows, 

there is also t h e  poss ib i l i t y  of  less probable  t r a n s i t i o n s  

accompanied by t h e  exc i t a t ion  of  o the r  v ib ra t iona l  states, f o r  

instance, those indicated by dashed arrows. We see thus  tha t  it is 

poss ib le  t h a t  there is n o t ' j u s t  one t r a n s i t i o n ,  but a whole series of 

t r a n s i t i o n s  corresponding t o  the  exc i t a t ion  of various molecular 

vibrat ions.  T h i s  gives  rise t o  an electronic-vibrat ional  band, which 

is still f u r t h e r  complicated by t h e  presence of  r o t a t i o n a l  states. 

In t h e  case shown in Figure 3. when t h e  t r a n s i t i o n  takes place t o  a 

state of  t he  continuum, the  band of  exci ted states is continuous. 

To obta in  a quant i ta t ive  p i c t u r e  of t h e  i n t e n s i t y  d i s t r i b u t i o n  

of El- t ransi t ions in t h e  electronic  spectrum, w e  must evaluate  t h e  
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matrix elements, 

of the  electrical dipole  t r a n s i t i o n  with respect t o  t h e  wave 

fbc t ions  of t he  adiabatic approximation, which are products of t h e  

e l ec t ron ic  wave functions p(r,R), in which the  nuclear coordinates R 

occur 85 parameters, and the wave funct ions k R )  describe the nuclear 

motion, and r is the  e lec t ronio  coordinate. 

The matrix element 

is a slowly varying function of the nuclear coordinates R, since the  

e lec t ronic  wave funct ion depends only weakly on R for small 

displacements R from the  equilibrium posi t ions.  We can thus expand 

M2l in a power series 

Subs t i tu t ing  this value i n t o  <2v t l r ( lva> ,  w e  get 

where 

of 

'takes place. The in t eg ra l  

v1 and va are the quantum numbers of t h e  two v ib ra t iona l  l e v e l s  

t he  upper  and lower electronic states between which t h e  t r a n s i t i o n  
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i s  called the overlap integral of the  wave funct ions describing the 

nuclear  motion. The absolute  square of t h i s  quant i ty ,  

determines the r e l a t i v e  inteasity of the  t r a n s i t i o n  between the  

states v)  and va,  that is w V t p  charac te r izes  t h e  i n t e n s i t y  

d i s t r i b u t i o n  in the band, corresponding t o  the e l ec t ron ic  t r a n s i t i o n  

1$2. We havexwvtva  =1, that is, the  t o t a l  t r a n s i t i o n  p r o b a b i l i t y  

from one v ibra t iona l  state of the initial state t o  a l l  v ib ra t iona l  

states of the f i n a l  state depends only on t he  p robab i l i t y  of t h e  

e l ec t ron ic  t r a n s i t i o n  which is proportional t o  IH21(R0) 1 2 .  If 

w e  know tha t  the overlap integral of t h e  wave funct ions is norkzero 

for a pa r t i cu la r  v' and va, t h i s  means t h e  t r a n s i t i o n  is allowed 

between these two energy levels.  From these two allowed energy 

levels, w e  can check the wavelength from o u r  experimental results. 
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CHAPTER I11 

KXPERIMENT 

To ca r ry  out  measurements of the  absorpt ion cross-sections,  it 

is necessary t o  confine a column of Na2 vapor between t ransparent  

windows, through which a beam of l i g h t  of given frequency is passed. 

For metal and metal-like elements, heat-pipe systems C151 [I61 are 

w e l l  su i t ed  to  generate  t h e  molecular vapor. Figure 4. shows a 

schematic of  a heat-pipe and w e  shall first d iscuss  operat ion in the  

"heat p i p e  mode'. 

In the heating zone the material is vaporized. The vapor 

streams to  the cooling zones, where it condenses and becomes l i q u i d  

and f i n a l l y  flows back within the m e t a l  mesh by capillary forces .  A 

buf fe r  gas is introduced as shown. The feed in has t o  be symmetrical 

a t  both ends and with su f f i c i en t  power in to  the  heating zone, t h e  

vapor pressure can be adjusted by the a p p l i e d  buffer gas pressure.  

The temperature Tp w i t h i n  the  vapor zone w i l l  be obtained f r o m  t h e  

vapor pressure versus  temperature curve (see Figure 5.). The buffer 

gas in the cooling zone and vapor in the vapor zone should be a t  the 

same pressure reading P, and a var ia t ion  of the  heating power changes 

the length of the vapor zone without changing Tp a t  constant  buffer 

gas pressure. The main advantage of a heat-pipe is t h a t  aggressive 

metal vapors are k e p t  away from the o p t i c a l  windows and the  
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Figure 4. Heat-pipe used i n  experimental studies .  
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parameters and 

be e a s i l y  changed. 

namely the length of o p t i c a l  path is d i f f i cu l t  t o  estimate. 

the kind of buffer gas and pressure of buffer  gas  can 

The problem is t h a t  t he  length of the vapor zone; 

To operate  a heat-pipe under i d e a l  conditions,  a s u f f i c i e n t  

amount of sodium is needed t o  wet t h e  wick of the  evaporator,  which 

iS inside t h e  pipe, one-meter-long and 2.5 cent imeter  diameter. The 

needed amount is 50-80 grams sodium cos t ing  $500-$800. To save 

sodium (10 grama sodium i n  our case), we operated a non-heat-pipe 

mode which indicated the temperature T was smaller than Tp. 

For T<Tp, which means t h e  heat-pipe was operated under a 

%on-heat-pipe8 mode, the NapNa vapor pressure reading a t  the  

center is lower than P which is the reading of buf fe r  gas  pressure I n  

t h e  cool ends of t h e  heat-pipe and which in tu rn  is the  t o t a l  

pressure in s ide  the complete heat-pipe. In t he  vapor zone the re  is a 

mixture of the  vapor w i t h  a partial pressure Pp(T) and buf fer  gas 

wi th  a p a r t i a l  pressure P-Pp(T). I n  our case w e  estimated T ( r , z )  

as a funct ion of posi t ion,  which then gave Pp(r ,z)  after t h e  system 

was settled into a steady state. A monochromator t h e  scanned the  

l i g h t  passing through the heat-pipe to  obta in- the  absorbed spectra 

versus  wavelength. We integrated t h e  dens i ty  of t h e  sodium dimers of 

t h e  pipe point  by po in t ,  and used Beer's l a w  t o  calculate t h e  

absorption cross-sections from those r e su l t s .  

1. Apparatus: 

The system, shown diagrammatically and pictured (Figure 6a. & 

b.), functionned almost l ike a Cary-14 spectrophotometer. The C a r y  
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recording spectrophotometer model 14 is designed f o r  automatic 

P e C O r d i q  of absorption spectra  in the wavelength region of 

186n~~+2,600nm w i t h  good resolving power and high photometric 

accuracy. Here, the heat-pipe was too ,b ig  t o  be  put i n t o  t h e  sample 

cell of a Cary-14, so w e  had to  bu i ld  our  own system. The l i g h t  

source was a 75 watt xenon high-pressure a r c  1amp.with a parabolic 

r e f l e c t o r ,  focal length 12.7 cm, which focused on t h e  entrance slit 

of the monochromator. A s h o r t  arc power supply made by P.E.K. inc.  

series 401A w i t h  20 v o l t s  and 10 amperes maximum output was the power 

source of the xenon arc lamp. The monochromator was a GCA/Mcpherson 

instrument model 216.5, 0.5 meter scanning monochromator/ 

spectrograph wi th  a grating of 1200 lines per  millimeter, used here 

aa a narrow band f i l t e r ,  the cen te r  frequency of  which could be 

changed by rotating the  angle of the grating. The entrance and e x i t  

slits uere  set t o  50 )M with the band width of the monochromator a t  

about 0.85g. For near u l t r av io l e t  spectra observation, a quartz  l e n s  

of 5 cm foca l  length was put in f r o n t  of the exit  slit  of t h e  

monochromator, ad jus ted  t h e  output l i g h t  t o  be parallel and to  

pass  through the heat-pipe. The photo-multiplier detector, RCA 7264, 

w i t h  a type Na-K-Cs-Sb photocathode, was put on the far s ide  of the  

heat-pipe. A high vol tage regulated D. C. power supply made by Power 

Designs Pacific inc. model 3K-40 with 3,000 v o l t s  and 40 mA maximum 

output provided the operating vol tage t o  t h e  photo-multiplier tube. 

Bn X-Y recorder, Hewlett Packard 70468, was used t o  p l o t  t h e  

intensi ty  of l i g h t  versus wavelength. 

which 

The heat-pipe,  shown i n  Figure 4., was constructed of  1-1/4 

inch O.D. alumina p ipe  w i t h  a 1/8 inch th i ck  wall 40 inches in 

-25- 



length, Ins ide  the p ipe  w a s  placed a wick constructed of 2-3 layers 

of 80 mesh stainless steel screen. The wick was used t o  move the  

l i qu id  sodium back to t h e  heated port ion of  the p i p e  by c a p i l l a r y  

ac t ioa ,  Because of the f r a g i l i t y  o f  t h e  alumlna pipe,  w e  could not 

Perform c u t t i n g  operat ions d i r e c t l y  on it. Accordingly two pieces of 

aluminum p ipe  about 3-l/2 inches long were added t o  both ends of t h e  

alumina p ipe  and joined by t o r r  seal. On the  ou t s ide  ends of  each of  

t h e  added p ipes  a notch was c u t  for t h e  purpose of pos i t ion ing  an 

O-ring. With the aid of O-rings, two quar tz  windows were attached t o  

both ends of the  heat pipe.  Holes were d r i l l e d  in t h e  s i d e  of t h e  

a l u m i n u m  p ipes  t o  connect with a copper tube to a Veeco vs-9 vacuum 

system in order to  keep a constant and balanced pressure o f  buf fer  

gas in each side.  

The buffer  gas for t h i s  case was helium supplied by Linde Co. 

with  a pu r i ty  99.995, whose purpose was t o  p r o t e c t  the  quar tz  windows 

f r o m  coating by the sodium vapor. The same pressure a t  each s i d e  of 

t h e  p ipe  kept  the sodium vapor a t  center  of the p i p e  and also made 

the  temperature p r o f i l e  of the  p ipe  symmetrical. A Wallace & 

Tiernan's pressure gauge, wi th  a 200 to r r  f u l l  scale reading, 

monitored the pressure of  the  helium. 

The heating element was a 12-1/2 inches long oven having a 6.7 

O h  internal r e s i s t o r  from Marshall furnaces con t ro l s  products. A 

var iac  control led the  input  voltage t o  the  oven, and a d i g i t a l  

vol tage meter indicated how much power was a p p l i e d .  The temperatures 

were monitored w i t h  4 IC-type thermocouples (alumel-chromel) which 

were ca l ibra ted  by i c e  water and boi l ing  water before  starting t h e  

experiment. These themcouples  were placed in a row outs ide  t h e  

-26- 



p ipe  wi th  a l l  of them in direct contact. Three of them were ins ide  

the  oven a t  2 inches separat ion starting from the  cen te r  of the  

pipe. Only one thermocouple w a a  outs ide the  oven a t  a distance of 

6-7/8 inches from the  cen te r  of the  pipe. A mult iple  switch selected 

one of them at  a time t o  the Fluke 2lgOA d i g i t a l  thermometer. 

1 r O  .O 1 24065X2+3 1 . 959235X+302O -7489 

B =0.0089886X2+32. 1544541(+4310.1209 

2. Cdllbration: 

Mercury l i g h t  w a s  used as one of the reference lamps. The 

mercury lamp w a s  a pen ray lamp produced by t h e  Ul t r av io l e t  Products 

company and w a s  placed at the locat ion of the  xenon high pressure arc 

lamp . Scans were taken a t  the following wavelength ranges: 

30Onm=420nm, 430nna-550nm, and 560nm-680nm. The scan speed  w a s  

non-uniform. The only needed ca l ib ra t ion  was t h e  r o t a t i o n a l  speed of 

t h e  grating of the monochromator t o  obta in  a r e l a t i o n  between t h e  

t r u e  wavelength and the posit ion X of peaks in t h e  spectrum on t h e  

chart. We i n i t i a l l y  recorded the mercury l i g h t  spectrum E171 a t  t h e  

readings of the monochromator 3,0001, 4,3001 and 5,6001 and then 

established the following three equations (see Appendix A) .  

(16) 

where X is the distance from starting point  t o  measured p o i n t  in t h e  
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recorded figures (see Figure 7., 8. and 9.) and is measured in 

cent imeter  . 

3. Experimental process: 

After w e  aligned and ca l ibra ted  the system, we needed t o  bake 

the pipe a t  a high temperature around 5OO0C in vacuum in order  t o  

c l ean  the  pipe and also check t h e  system did  not have defects. 10 

grams sodium would be used i n  our case of  99.95% pur i ty ,  a product of 

t he  Alfa company. The sodium was contained in a glass-tube i n  argon 

gas. To place the sodium at t h e  cen te r  of t h e  heat-pipe the 

following s t e p s  were performed. F i r s t :  put the sodium on a holder,  

break the s i d e s  of  t h e  tube, and place them a t  the cen te r  of t h e  

heat-pipe with helium flowing out  t o  prevent a i r  f r o m  g e t t i n g  i n t o  

t h e  pipe.  Second: put back both end-windows of t h e  heat-pipe,  t u rn  

o f f  t h e  helium flow, pump the heat-pipe t o  vacuum, and heat t h e  

heat-pipe t o  150oC in order  to  m e l t  t h e  sodium. Third: because of 

t h e  adhesive force,  with the l iqu id  sodium still in t h e  glass tube, 

w e  needed t o  insert a helium-pipe into t h e  heat-pipe t o  blow sodium 

out  of  t h e  glass tube. After having removed t h e  glass and t h e  

holder,  w e  f i l led in the required amount of  helium and set the  var iac  

to  s u f f i c i e n t  power. The maximum temperature of  t h e  heat-pipe must 

be below 8000k, t o  avoid the fact t h a t  t h e  photo-multiplier tube 

detected t h e  black body rad ia t ion  from the  oven. On some runs a 

Corning colored f i l ter ,  s e r i e s  number 1-59, was used t o  f i l t e r  out  

t h e  infrared.  After heating f o r  e igh t  hours, t h e  temperature no 

longer changed. A t  t h i s  time, the heat-pipe oven was i n  a steady 
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state but not i n  t h e  heat-pipe mode. The xenon high pressure arc 

lamp was turned on and three time scans a t  t he  wavelength ranges were 

taken. The same process was then  repeated a t  d i f f e r e n t  temperatures. 

After t h e  temperature of t he  oven returned t o  t h e  room 

temperature, Sodium was s o l i d  

a t  r o o m  temperature and was not l o s t  wh i l e  w e  were using the vacuum 

system. Measurements were then made of t h e  absorpt ion versus 

wavelength f o r  d i f f e r e n t  pressures as w e l l  as temperatures. 

we changed the  pressure of buffer  gas. 
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CHAPTER I V  

THE CALCULATION OF THE ABSORPTION CROSS-SECTIONS 

Figure 10. t o  Figure 20. show i n t e n s i t y  of l i g h t  transmitted 

through t h e  pipe versus wavelength, a t  d i f f e r e n t  temperatures and a t  

d i f f e r e n t  buffer gas pressures. Comparing them with the  background 

figures which recorded the in t ens i ty  of  l i g h t  of the  xeon-lamp 

passing through the heat-pipe under very low sodium vapor pressure 

(wi th  temperature around 2OO0C i n s i d e  the cen te r  of  t h e  heat-pipe),  

w e  found some wavelengths were reduced in i n t ens i ty .  According t o  

Beer's law Cl81, i f  t h e  i n t ens i ty  of a collimated beam of 

monochromatic l i g h t  decreases from I$ t o  8 over a path length 

L-cm and the concentration o f t h e  absorbing material is N-number of 

part ic les  per  cubic centimeter, then the absorption cross-section 

S ( A )  is defined by 

The 

be 

value ofa (A)  which is a function of wavelengths is then found to  

v (X>=ln  I",$/(=) ..... cm 2 
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Sodium metal has a very low vapor pressure compared w i t h  o t h e r  

l i qu id  heat transfer media, even a t  temperatures as high as 5OO0C 

(932%) the vapor pressure is only 3 torr .  If w e  know the 

pressure-temperature r e l a t ion ,  the vapor dens i ty  can be obtained from 

sodium vapor pressure by employing t h e  ideal gas law. 

The complete temperature dependence of vapor pressure requi res  

a formula wi th  four  adjustable  parameters. Many formulas have been 

suggested but t he  one found most s a t i s f a c t o r y  by Nesemeyanoy C191 is 

log10 P = A-B/T+CT+DlogT. The four  ad jus tab le  parameters were 

obtained f r o m  S i t t ig ' s  book [20], and the t o t a l  pressure of atomic 

sodium vapor is 

i 

C and D are zeros. "8.14' is an adjusted value f o r  reducing error. 

Equation 19 is va l id  for  400=T95O0K. 

The p a r t i a l  pressure of sodium diatoms is 

loglo P N ~ =  4.340-5682/(T-43) . . . . . . .atm (20) 

C and D are again zeros,  and O 4 3 "  is an adjusted value fo r  reducing 

error. The range of v a l i d i t y  is 500°K t o  1025%. 

We estimated the maximum error by comparing equation (20) with 

t h e  experimental data indicated in Si t t ig ' s  book, t a b l e  A-9 [21]. 

The error percentage formula is theoretical value (equation ( 2 0 ) )  

minus experimental values,  divided by t h e  experimental value,  and 

times 100. In the  temperature range from 500°K t o  8OO0K, the 
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error is less than 5% (see Figure 21 .) . 
Since our heat-pipe w a s  operated in t h e  non-heat-pipe mode as 

mentioned in chapter  111, we needed to  know the  temperature 

d i s t r i b u t i o n  versus  pos i t ion  inside the  heat-pipe (see Figure 22.). 

Unfortunately, it w a s  d i f f i c u l t  t o  measure t h e  temperature in s ide  

t h e  tube d i r ec t ly .  The reason w a s  tha t  the sodium vapor would 

condense on t h e  thermocouple causing the reading t o  be incor rec t .  

However a simple theo re t i ca l  der iva t ion  of the  temperature 

d i s t r i b u t i o n  i n s i d e  t h e  tube was obtained. In t h e  steady state, the  

input  power must be equal to t h e  output power. This  means t h a t  the  

divergent energy flux must be equal to  zero. 

In cy l ind r i ca l  coordinates  ( r , e , z ) ,  there are three energy f lux  

components inside the oven. They are 

where K is the thermal conductivity of gases  in s ide  t h e  heat-pipe. 

A single gas has a coef f ic ien t  of heat conduction. K=(h' 

c'n'h)/3 where A,' is t h e  mean free path,  C' the  random 

veloc i ty ,  n' the gas densi ty ,  and C, the s p e c i f i c  heat of  the gas 

a t  constant  volume. The conduction is independent of the  pressure 

( gn*= constant)  and The 

transport of t h e  hot p a r t i c l e s  

c' h'/3; hence, for a mixture of 

-46- 
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2=Na, and 3=Na2, t he  resultant coef f ic ien t  K is C5l 

and S is defined as follows: 

(24) 

where n p  is molecular weight, C V , p  s p e c i f i c  heat a t  constant 

volume, un= c o l l i s i o n  cross-section. The coe f f i c i en t  is in terms 

of  KHe as He has  t h e  highest  conductivity. 

Then the equation of t h e  energy flux is 

To simplify equation (251, w e  consider  t h e  symmetry versus 

angle 0 and separa te  t h e  var iables  r and 2. 

We obta in  two d i f f e r e n t i a l  equations. 

Trw+Tr 9 /r+( Tf32T:+d?) T,=O (27) 

(28) 

where Ais the  separat ion constant. 
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where Jo is Besselts funct ion of the  first kind and of index zero, 

T-, 4, and A are three constants which match the boundary 

condi t ions of four measured temperature points on t h e  wall of the 

p ipe  (see Appendix C) .  

Equations and (30) g ive  values of temperature T versus  r and 2, 

which in t u r n  determine the p a r t i a l  pressure of Nap versus  

posi t ion.  

(29) 

The to t a l  pressure w i l l  of course be constant.  

According t o  the Maxwell-Boltzmnnn d i s t r i b u t i o n  l a w ,  t he  number 

of molecules dNe tha t  have a classical v ib ra t iona l  energy between E 

and M E  is p r o p o r t i a n a l  t o  e-(wkT) dE, where k is Boltzmann's 

constant and T is the  absolute  temperature. The funct ion 

e-(E/0*6952T), where E is expressed in cm-1 1 is represented 

graphically in Figure 23. for Nap T=500°K. 

Class ica l ly  there is no r e s t r i c t i o n  f o r  the  E values  (see 

Figure 23.). However according t o  quantum theory, only discrete 

values are possible  f o r  the energies of the  v ib ra t iona l  states. The 

number of molecules i n  each of t h e  v ib ra t iona l  states is again 

proport ional  t o  the BoltzmIlna f a c t o r  exp[-(E/kT)]= 

expl-CG(v)-G(O)]hc/O .6952~)= exp[-(Go(v)hc/0.6952T) I ,  where G(v) is 

the  energy in t h e  v ibra t iona l  l e v e l  v and is calculated by using 

equation ( 2 ) ,  and Go(v) is t h e  energy gap between the v ib ra t iona l  
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l e v e l  v and the zero l eve l .  The zero-point energy can be l e f t  out ,  

since t o  add t h i s  to  t h e  exponent would mean only adding a f a c t o r  

that is constant for .a l1  the v ibra t iona l  l e v e l s  ( including the zero 

l eve l ) .  

The ord ina tes  corresponding t o  the  discrete values  of t h e  

v ib ra t iona l  energy for the  -case of Na2 are indicated by broken 

lines in Figure  23. The spacing between the lines becomes small a t  

higher v (anharmonic o s c i l l a t o r )  and Go(v)hc= {G(v)-G(O) )hc= 

157 . 6732~-O . 7 2 5 4 ~ ~ .  It is seen from t h i s  f i g u r e  tha t  t he  number 

of molecules in t h e  higher v ibra t iona l  l e v e l s  fa l l s  off very rap id ly .  

The quant i ty  exp[-(G,(v)hc/kT)] g ive  the  r e l a t i v e  dens i ty  of 

molecules in t h e  d i f f e r e n t  v ibra t iona l  l e v e l s  referred t o  the  dens i ty  

of molecules in state v=O. We have to consider t h a t  n is 

proportional, w i t h  the same factor o f  propor t iona l i ty  as before,  t o  

the sum of the  d e n s i t i e s  i n  a l l  t h e  l e v e l s  n=nv, or the  sum of t h e  

Boltzmnnn f a c t o r s  over a l l  s t a t e s ,  t he  so-called state sum (or 

p a r t i t i o n  funct ion) ,  given by 

Therefore, the dens i ty  of molecules in t h e  v ib ra t iona l  state v is 

Successive 

25 terms for t h e  Nap -X'g state which was adequate. 

terms in equation (32) decreased very r ap id ly ,  and we took 

Because of the low resolut ion of t h e  monochromator, w e  
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s impl i f ied  the  case by neglecting t h e  thermal d i s t r i b u t i o n  of t h e  

r o t a t i o n a l  l e v e l s  and assuming J=O for  a l l  v ib ra t iona l  states. 

To calculate the  average dens i ty  of sodium diatoms i n  

v ib ra t iona l  l e v e l  v, we integrated over space using cy l ind r i ca l  

coordinates  (see Figure 4.1, and 

where Is, is t o t a l  number of sodium diatoms in v ib ra t iona l  l e v e l  v,  

nv(r ,8 ,z)  is t h e  dens i ty  of sodium diatoms i n  v ib ra t iona l  l e v e l  v 

at the point  (r,e,Z), and d'Z is an element of volume i n s i d e  the  

heat-pipe. 

Changing the dens i ty  t o  pressure by using the i d e a l  gas l a w ,  and 

combining equation (32). 

where R is the gas constant  and NA is Avogadro's number and 

temperature T is a funct ion of z and r (see equations (29) and ( 3 0 ) ) .  

The average dens i ty  of sodium diatoms i n  t h e  v ib ra t iona l  l e v e l  

v is given by 

&,= Nv/V= NV/2LcXr$ (35) 
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where V is t h e  volume of t h e  heat-pipe in t h e  vapor zone, L, is t he  

ha l f  length of the  oven, and rc is the  rad ius  of t h e  heat-pipe.  

Using Beer's law, equation (181, if w e  know the  d i s t r i b u t i o n  funct ion 

of dens i ty  of t he  sodium dimers versus pos i t ion  and in t eg ra t e  po in t  

by poin t  over t h e  o p t i c a l  path,  the absorption cross-section would be 

obtained. 

L~~ I 6 CM rc=i.mc* 
where S2= 1. 
T is equation (261, and PNa2 is equation ( 2 0 ) .  

P~a"T~e~p(-(Go(~)h~)/kT)'Qv'' r d r  dz,  

To estimate t h e  wavelengths and t o  match w i t h  the co r rec t  peaks 

i n  t h e  experimental figures, we needed the  values  of  the energy 

l e v e l s  and t h e  se l ec t ion  r u l e  of sodium diatoms. If the  

Franck-Condon f a c t o r  is non-zero, it impl ies  t h a t  the t r a n s i t i o n  is 

allowed between these two energy l eve l s .  

U. J. Stevens and M. H. Hessel and t h e i r  co-workers provided a 

t r a n s i t i o n  p r o b a b i l i t i e s  t a b l e  for A-X t r a n s i t i o n s  [22]. Even though 

the  table includes the  ro t a t iona l  t r a n s i t i o n s ,  t h e  Franck-Condon 

f a c t o r s  are slowly varying iunct ions of r o t a t i o n a l  l e v e l  J and t h i s  

table is still u s e h l .  P. Kusch and M. M. Hessels' published t h e  

Franck-Condon f a c t o r  table f o r  B-X t r a n s i t i o n s  1231. The e n t i r e  C+X 

system is provided by R. D. Hudon 1241 t o  be  a reference of our  data. 

From Figure 10. t o  Figure 20., w e  measured t h e  Io&, A X  r a t i o s  

a t  the wavelengths which correspond t o  the vw=O progression and for 
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which the  Franck-Condon f ac to r s  for A-X, B-X, and C-X are not  zero. 

For example, t h e  peak number 47 of the BfX curve in Figure 10. has 

Xn17.98 cm. By using equation (16), w e  go t  t h e  value of wavelength, 

4891.26778 and compared t h i s  value with o the r  wavelengths which had 

been ca lcu la ted  by using equation (9) and two energy l eve l s ,  vw and 

v', are allowed transitions ( the Franck-Condon factors are 

non-zero.) . The wavelength 4896,Od (vw=O + vf  r l  ) is the co r rec t  

wavelength f o r  t h e  47. We had measured I$/It=6.65/2.93 and the 

absorption cross-section a t  wavelength 4896 .Od is 9 .40712. 

Fina l ly ,  w e  used the Dec-10 computer t o  compute t h e  cross-section 

f r o m  our  experimental data. The absorption cross-sections of sodium 

dimers under d i f f e r e n t  buf fer  gas pressures  and temperatures are 

listed in next two pages: \ 
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Table 1 . For vw=O, absorption cross-sections (a2) of ACX 
transitions for pressure of buffer gas, helium, 20 torr. 

I average temperature I 
0- ~ ~ 0 0 ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 0 ~ 0 ~ . 0 ~  

I 
-0- 

1 v' I wavelength (1) I 624'K I 652OK I 688'K I 711% I 
- - - o - u I u I  - o - - - - - - ~ - - ~ I ~ ~ I I ~ ~ ~ o o ~ o o ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~  

I 4 I 6612.90 I 1 1.370 I 2.099 I 1.590 I 
I 5 I 6563.53 I I 2.425 I 2.319 I 1.796 I 
I 6 I 6515.19 I 2.608 I 2.321 I 2.603 I 1.942 I 
I 7 I 6467.85 I 1.497 I 2.285 I 2.633 I 1.982 I 
I 8 I 6421.49 I 1.998 I 1.828 I 2.354 I 1.802 I 
I 9 I 6376.08 I 2.257 I 2.410 I 2.906 I Z.1-f-f i 
I10 I 6331.59 I 2.028 I 2.095 I 2.606 I 2.065 I 
I11 I 6288.00 I 3.358 I 2.584 I 3.016 I 2.343 I 
112 I 6245.27 I 3.274 I 2.136 I 2.880 I 2.291 I 
113 - I 6203.40 1 2.580 I 1.594 I 2.658 I 2.158 I 
-0 o - - o - ~ ~ o o I I I I I o ~ I ~ ~ o ~ ~ o o o ~ ~ ~ ~ ~ ~ o ~ o ~ ~ ~ ~ ~  

Table 2. For v%O, absorption cross-sections (it2) of &X 
transitions for pressure of buffer gas, helium, 30 torr. 

-56- 



I v' I wavelength (1) 1 648OK 1 678OK I 

I 0 I 4925.67 I 7.780 I 6.544 I 
I 1 I 4896.02 I 9.407 I 7.500 I 
I 2 I 4867.09 I 9.662 I 7.280 I 
I 3 I 4838.87 I 9.014 I 7.090 I 
I 4 I 4811.33 I 9.307 I 6.840 I 
I 5 I 4784.46 I 7.903 I 6.304. I 
I 6 I 4758.26 I 6.645 I 5.981 I 
I 7 I 4732.72 I 5.555 I 6.076 I 
I 8 I 4707.82 I 5.394 I I 

I-.-.--o..-III.I-.-----.----..-.---------.-.-.- 

----I----...--....--.------. 

Table 3. For va=O, absorption cross-sections (It2) of B4X 
t r a n s i t i o n s  f o r  prbssure of buffer  gas, helium, 20 t o r r .  

I average temperature I 

I v' I wavelength (1) I 624OK I 652'K I 688'K I 711OK I 

I 0 I 4925.67 I 7.236 I 7.617 I 6.187 I 4.825 I 
I 1 I 4896.02 I 11.45 I 10.26 I 7.289 I 5.056 I 
I 2 I 4867.09 I 11.77 I 10.31 I 7.103 I 5.130 I 
I 3 I 4838.87 I 10.09 I 9.345 I 6.625 I 4.799 I 
I 4 I 4811.33 I 9.454 I 9.222 I 6.365 I 4.787 I 
1 E 1 k7Rh I46 ! R . f i s ; l l  I S - l Q ?  I 5.926 I 4.287 I 

I 7 I 4732.72 I I I 5.304 I 4.118 I 

---.---w-..I..--.--HI....---.-... 

I - 
------~-.---.u------o~ 

i 6 i 4758.26 I 6.319 I 7.105 I 5.634 I 4.247 I 

-------.-.- .---.---...-..---------..~.------ 
Table 4. For v%O, absorption cross-sectiona (I2) of BCX 

t r a n s i t i o n s  f o r  pressure of buf fe r  gas, helium, 30 t o r r .  

Table 5. For v%O, absorption cross-sections (I2) of  C C X  
t r a n s i t i o n s  for pressure of buffer  gas ,  helium, 30 t o r r .  
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CHAPTER V 

DISCUSSION AND CONCLUSION 

TO measure t h e  absorption cross-section, 6abs(x), the  usual 

p rac t i ce  is to  l e t  l i g h t  pass through a certain length of  uniform 

absorbing material, by operating a heat-pipe in =heat-pipew mode. A 

r e l a t i v e l y  large amount of sodium would be used in t h e  heat-pipe,  and 

besides  the o p t i c a l  path is d i f f i c u l t  t o  measure. Here we used a 

d i f f e r e n t  technique, and operated t h e  heat-pipe in %on-heat-pipeW 

mode. dens i ty  of t h e  sodium dimers became non-uniform over t h e  

o p t i c a l  path. By calculating t h e  d i s t r i b u t i o n  funct ion of  dens i ty  of 

t h e  sodium dimers versus  posi t ion and in t eg ra t ing  poin t  by p o i n t  

alone the o p t i c a l  path,  the r a b s ( X )  was obtained (see equation 

The 

(36) 1 

A K-type thermocouple (alumel-chromel) in the  temperature range 

5300F-23000F has an error k0.752. The 'error of  t he  vapor 

pressure formula, equation (a), is related t o  the  temperature (see 

Figure 21.). Combining these e r ro r s ,  the  error o f  concentrat ion of 

sodium dimer a t  800% ranges f r o m  +10.5% t o  -135 and its error a t  

623% is +16$ to  -10%. The to t a l  systematic error is roughly 

estimated to  be k201. 

The absorption cross-section for BCX t r a n s i t i o n s  decreasd w i t h  

increasing temperature ( see  Figure 24.) i n  approximately a l i n e a r  

fashion. The absorption cross-section, 6 a b s ( x )  for ACX t r a n s i t i o n s  
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s l i g h t l y  decreased as temperature increases (also see Figure 24.). 

The measured dabs(h) w a s  independent of  t h e  pressure of  buf fer  gas, 

helium, (see Table 3. ,  column 3, and Table 4. , column 4,) ,  because 

the thermal conductivity w a s  independent of  t h e  pressure [SI, and the  

changing the pressure should not have altered the temperature. 

The ove ra l l  absorption cross-section was a funct ion of wave- 

length and a l s o  related t o  the  Franck-Condon f a c t o r ,  I<vl lvW>l2. 

( *abs(X) I<V1 , where x is t h e  wavelength of  the 

absorbing photon determined by equation (91, and I<vl lvW>l2 is t h e  

Franck-Condon factor given by equation (151.1 We plo t ted  the 

absorption cross-sections (&X) taken f r o m  t he  table 4. column 1 

versus  wavelength (see Figure 25.). I n  Figure 25., the  absorpt ion 

band has a ( I S )  bandwidth of 571101, f r o m  521.6nm t o  464.6nm. The peak 

is a t  wavelength 4867.094 which is the  v ib ra t iona l  t r a n s i t i o n  from 

vw=O to  v102 and also has the  biggest Franck-Condon f ac to r ,  

Im17~!2rn-717 f211- in the vm=O Dronression. The envelope of  the 

absorption band f o r  BCX t r ans i t i ons  resembles a Gaussian absorption 

curve 1251. The full width a t  ha l f  maximum approximates t o  28nm. 

The peak value decreases  (see Figure 24.) and the w i n g s  widen as the 

temperature increases .  It is d i f f i c u l t  t o  estimate the bandwidth of  

C+X transitions and ACX t r ans i t i ons  but i n  order  of  magnitude the  

f u l l  width at  half  maximum values are 15nm (Taye=688OK) and 60nm 

(Tave=65-) The reason for the  uncertainty is t h a t  the 

s i g n a l h o i s e  r a t i o  is small a t  both wavelength ranges. 

Comparing our  data wi th  L. K. Lam, A. Gallagher and M. M. 

Hesselsl data 181 and M. A. Henesian, R. L. Herbst and R. L. Byersl 

results [SI, our r e s u l t s  agree with the  former group. L. K. Lam and 
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his par tne r s  obtained the value of t h e  absorption cross-section a t  

wavelength 670nm (ACX t r ans i t i ons )  , -2.6410'16 om2, a t  

temperatures -800%. H. A. Henesian and h i s  co-workers 

obtained 6,bS=3 .004i0-12C~2 a t  the same wavelength under the  

condi t ion that the temperature of t h e i r  oven was 6OO0C (873OK). 

There is a huge d i f fe rence  of lo4 between of  these two data. Our 

data ind ica t e  b a b s  is 2.26410'16cm2 (average value) a t  651.5nm 

and according t o  reference [SI, dabs is around 3.0*10'16cm2. 

For Cabs of t he  WX t r a n s i t i o n s  a t  Tave=688'K, our  values are 

approximately 4.5 times bigger than Hudon's 1241. 

In conclusion the absorption cross-sections of t h e  sodium 

dimers for the vw=O progression in the  red, v i s i b l e  and near  

u l t r a v i o l e t  have been measured and related t o  t h e  Franck-Condon 

fac tors .  The three peak values for t h e  vw=O progression AcX 

t r a n s i t i o n s  are 2.5912 (average value) ,  f o r  the vw=O progression 

BCX t r a n s i t i o n s  are 11.7712, and t h e  vw=O progression CCX 

t r a n s i t i o n s  are 0.682 (Tavet6889).  The peak values  occur a t  

628.81111 (&XI, 486.711~1 (BCX), and 331.5nm (WX) respect ively.  The 

f u l l  width a t  half  maximum values are ACX, 60nm, and WX, 28m, and 

CCX, 15=* 

-6 2- 



BIBLIOGRBPHT 

123 W. L. Harries and U. E. Neador, Space Solar Power Review,4,pp. 
189-202,1983 

[3] B. Wellegehausen, IEEE J. of Quantum Electronics, 
QE-I 5, pp. I 108-1 130,1979 

[SI B. Uellegehauaen, S, Shahdin, D. Friede, and H. Welling, Appl. 
phys., 139PP.97-99,1977 

[SI W. L. Harries and J. W. Wilson, Space Solar  Power Rev., 
2, PP 367-381,i 981 

[6] W. L. Harries, J. of Propulsion and Power, 1 ,pp.411-413,1985 

[7] M. Lapp and L. P. Earries, J. Quantum. Spectry, Radative 
Transfer,pp. 169-179,1966 

181 L. K. Lam, A. Gallagher, and M. M. Hessel, J. chem. phys., 
66 9 PP 3550-3556 9 I977 

[g] M. A. Henesian, R, L. Herbst, and R. L. Byer, J. Apple PhYs., 
47 pp 151 5-1 5 18,1976 

1111 M. Born and J. R. Oppenheimer, Ann. d. physik 84,457,1927 

[12] P. M. Horse, phys. Rev.,34,~~.57-64, 1929 

1131 K. P. Huber and G. Herzberg: -tra 

Comp.,N.Y.,1979 
e, of L-, Van Nostrand Reinhold 

1141 A.S. Davydov, Quantum, Pergamon Press Ltd.,N.Y.,1965 

1151 C. R. Vidal and J. Cooper, J. Appl. phys.,40,pp.3370-3374,1976 

[16] S. U. Chi, Beat Pine 'beorv , McGraw-Hill book 
Comp.,N.Y.,1976 

1181 R. P. Bauman, SD-, John Wiley h Sons, 
Ins. ,  N.Y., 1962 

-63- 



E191 M. W. Zemansky, -, p.360, M c G r a w - H i l l  book 
Comp . i n c  . , N . Y . , 1 937 

E201 M. Si t t i g ,  S0dium~p.434, Renhold Pub. Corp.,N.Y., 1956 

1211 M. Si t t i g ,  S~diylp~pp.478-486, Renhold Pub. Corp. , I .Y.  , 1956 

1221 W, J. Stevens and M. H. Hessel and P. J. Bertoncini and A. C. 
Uahl, J. chem. phys.,66,pp.1477=1482,1977 

E231 P. Kusch and H. M. Hesael, J. chem. phys. ,68,pp.2591=2606,1978 

E241 R. D. Hudson, J. chem. ph~s.,43~pp.l790=1793t 1965 

1251 U. L. Harries, Technical Report PTR 84-1 for  NASA, Langley 
Research Center, p5, Jan. 1984 

-6 4- 



APPENDIX A 

Assuming that the  wavelength and the pos i t ion  X of  the peaks in 

t he  spectrum obeyed the re la t ionship  g=a+X2+b*X+c, and t h a t  the 

mercury l i g h t  spectrum, wavelengths are 3,136.83911, 3,650.1533%, and 

4,046.56302, w e  measured the distances X of these peaks from the 

starting point.  These dis tances  were 3.64 cm, 19.56 cm, and 31.72 

cm. The so lu t ions  for a, b, and c were at0.0124065, b=31.959235, and 

0=3,020 ~ 4 8 9  . 
Next the wavelengths 4,358.32778, 5,073.034& and 5,460.7348x 

were found to correspond t o  the distances 1.50 cm, 23.57 cm, and 

35.43 cm. The so lu t ions  were a=0.0089886, b=32.154454, and 

~=4,310.1209. 

For t he  wavelengths 5,769.598d, 5,790.66301, and 6,263.0971, 

t h e  distances were 5.18 cm, 5.84 cm, 20.02 cm. The so lu t ions  were 

a=O .096799, b=30 . 829959 , and c=5 , 607 -2507 . 
We list a t a b l e  as follows: 
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APPENDIX B 

In the r direct ion 

Trw+Tr'/r+(T'32T:+ d 2 ) T r = 0  

C h a n g i n g  the variable: 

L e t  U=Tr'/Tr, TJO, and Tr'#O (temperature will not become 

zero . ) ,  then equation (B-1) becomes 

Changing the variable again: 

Let W=rU 

l e t  W=2rnt/3n and n40 

We have an exact B e s s e l ' s  equation. 



C1 and Cp are 

from divergence. 

two constants  and Cp is zero t o  keep the funct ion 

It follows: 

2r 
3 
- 

2 Ur 
J m  

dr 

I n  the  z d i rec t ion  

L e t  T,=exp(C@z) and inserting in to  equation (B-6) 

where A t  and B1 are constants. 

the maximum temperature a t  t h e  center  of t h e  heat-pipe. 

a t  z=O, T -T 3 A'=-B' 2- max 

where A=='. Values of A t  and d a r e  given in Appendix C. 
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APPENDIX C 

The heat-pipe was heated around 130 watts and fi l led wi th  

helium to  30 t o r r .  After heating seve ra l  hours, fou r  temperature 

readings were obtained. They were 622.75OK, 6 1 1.45OK, 

560.45%, and 399.15OK. From t h i s  boundary condition, w e  would 

estimate three constants ,  T-, 4, and A for equations (29) and 

( 3 0 ) .  Since the thermocouples were d i rec t ly  contacted w i t h  t h e  wall 

By using equation ( C - l ) ,  The temperature a t  the cen te r  of t he  

heat-pipe, z=O c m  

To get the constants, A and 4, w e  must use two temperature readings 

a t  2~10.16 cm and 2~17.46 cm and equation ((2-1) and so lve  it. The 

so lu t ion  were 8~22.61898424 and 0(= 0.209478879 (see Figure 22.). 

These values  were changed only by t h e  input power. 
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