\\\\7 o)T
RENSSELAER POLYTECHNIC INSTITUTE ~”
Qi e 3

o CENTER FOR INTERACTIVE o
COMPUTER GRAPHICS/CAM-1

? =< "f ‘

IWORKSHOP ON THE INTEGRATION
OF FINITE ELEMENT MODELING

IJITH GEOMETRIC MODELING

MAY 12, 1987

e .

" CFCMETRIC MODELIEG (Bensselaer Folytechnic
CSCL 09B Unclas
G3/61 0125786

Inst.) 330 p

. (NASA-CB-182515) WCRKSHOF Ck TEE N88-19111
INTEGRATION OF FINITE ELEBEMT BODELING WITH ~-~THRU~-~
N88-19125

CPNSEAN
‘er:;}é'fz
Bbf:ksglg‘.-

‘: =

9:30

10:10

10:30

11:00

11:30

Center for Interactive Computer Graphics
Rensselaer Polytechnic Institute
Troy, New York 12180-3590

WORKSHOP ON THE INTEGRATION OF FINITE ELEMENT
MODELING WITH GEOMETRIC MODELING

Room 4050: Center for Industrial Innovation (CII)
May 12, 1987
AGENDA

Introduction to the Integration of Geometric and Finite
Element Modeling
Mark S. Shephard, RPI

Integration of Geometric Modeling and Advanced Finite
Element Programming
Peter M. Finnigan, General Electric Corporate Research and

Development

Break

Integration Architecture of SDRC Geometry and Finite
Element Processors

Robert L. Haubrock, Structural Dynamics Research
Corporation

Finite Element Meshing of ANSYS Solid Models
F. Stanley Kelly, Swanson Analysis Systems 556/

Solid/FEM Integration at SNLA

Patrick F. Chavez, Sandia National Laboratories\j;,/
L

3:00

3:15

Lunch

Octree Based Automatic Meshing from CSG Models:;
Renato Perucchio, University of Rochester

Finite Octree Meshing Through Topologically Driven
Geometric Operators -
Kurt R. Grice, RPI

——

Y

Design Modeling for Shape Optimization 51/
Mark E. Botkin, General Motors Research Laboratories

Postprocessing Techniques for Three-dimensional Nonlinear
Structures ﬁ/;

Richard S. Gallagher, Hibbitt, Karlsson & Sorensen

Break

Geometric Versus Finite Element Modeling - Current and
shiv Bajaj, Northrop Corporation

Future Trends at Northrop 2
J/?/

Building F.E. Applications Using Nonmanifold Boundary
Operators, and the Generation of Idealized Models as Used
in FEM

Mark S. Shephard, RPI

Panel - Open discussion by the participants of the

workshop

Cocktail Reception (Faculty/Staff Dining Hall)

oIDs 7

.

WORKSHOP ON THE INTEGRATION OF
FINITE ELEMENT MODELING
WITH GEOMETRIC MODELING

INTRODUCTION TO WORKSHOP

Mark S. Shephard
Rensselaer Polytechnic Institute

Purpose of Workshop

To discuss the geometric modeling requirements of the
finite element modeling process and to better under-
stand the technical aspects of the integration of these
two areas.

Workshop Agenda

Introduction to the Integration of Geometric and Finite
Element Modeling; Mark S. Shephard, RP!I

Integration of Geometric Modeling and Advanced Finite
Element Preprocessing; Peter M. Finnigan, General
Electric Corporate Research and Development

Integration Architecture of SDRC Geometry and Finite
Element Processors; Lee Robie, Structural Dynamics
Research Corporation

Finite Element Meshing of ANSYS Solid Models; F.
Stanley Kelly, Swanson Analysis Systems

‘;/./'

Solid/FEM Integration at SNLA; Patrick F. Chavez,
Sandia National Laboratories

Octree Based Automatic Meshing from CSG Models;
Renato Perucchio, University of Rochester

Finite Octree Meshing Through Topologically Driven
Geometric Operators; Kurt R. Grice, RPI

Design Modeling for Shape Optimization; Mark E.
Botkin, General Motors Research Laboratories

Postprocessing Techniques for Three-dimensional
Nonlinear Structures; Richard S. Gallagher, Hibbitt, -
Karlsson & Sorensen

Geometric Versus Finite Element Modeling - Current
and Future Trends at Northrop; Shiv Bajaj, Northrop
Corporation

Building F.E. Applications Using Non-manifold
Boundary Operators, and the Generation of Idealized
Models as Used in FEM; Mark S. Shephard, RPI

Panel - Open discussion by the participants of the
workshop

TERMINOLOGY

To address the integration of geometric and finite element
modeling we must be familiar with some of the termi-
nology from both areas.

Some of the terms to be commonly used during the work-
shop are:

Geometric Modeling - A collection of procedures and rep-
resentations, assumed here to be computerized, for the
construction and description of the shape and spatial
relations of objects.

Wireframe Modeling - The collection of the curve
definitions for the edges of that bound an object.

Surface Modeling - The collection of curve and surface
definitions for the edges and faces that bound an
object.

Solid Modeling - The complete and unambiguous repre-
sentation of three-dimensional objects in a computerized
representation. There are six known tamilies of unam-
biguous schemes known.

Constructive Solid Geometry (CSG) - An approach to solid
modeling in which the object of interest is constructed
by applying Boolean set operators to simple, well un-
derstood, solids. The two common sets of simple ob-
jects are halfspaces and primitive shapes such as
blocks, cylinders, spheres, etc.

Boundary Representations (B-reps) - An approach to solid
modeling in which the boundary entities that enclose
the object, along with sufficient associativity information
to unambiguously define the object, are stored.

Topology (with respect to geometric modeling) - an
abstract representation of an object that contains the
associations of how they connect together. The topology
of an object does not contain information on the shape
of geometric entities.

Manifold (2-manifold) solid representations - every point on
a surface has a neighborhood which is homeomomor-

phic to a two-dimensional disk.

Non-Manifold Geometric Modeling - allows topological situ-
ations which are not 2-manifold. Neighborhood of a
point on the surface need not be flat. Allows wire
edges, dangling surfaces, and more than two faces to
an edge. :

Static Geometric Interface - A geometric interface in which
a standardized file format is used to store the
geometric representation of objects.

Dynamic Geometric interface _ A geometric interface
where both a description of the object as well as the
functionality of the geometric modeling system used to
define it are made available to application programs.

WIREFRAME

SURFACE

SOLID

Figure 3 — 1. Wireframe, surface, and solid modeling forms

FROM WEILER 1986

@ @ NON-MANIFOLD POINTS

MANIFOLD POINT

Figure 3 - 3. The 2-dimensional disk around points on a surface

=

NON-MANIFOLD RESULT FROM
f UNION OF TWO MANIFOLD OBJECTS

Figure 3 - 4. The Boolean union of two manifold objects yielding a non-manifold
result

FROM WEILER 1986

cutting

ce.nter section
line plane
center
":)/
MAYBE FOR
MAYBE FOR

BEAM ELEMENTS SHELL ELEMENTS

solid volume

Figure 3 - 2. Example of a non-manifold geometric modeling form

FROM WEILER 1986 i

Geometric Operator - A procedure which can be invoked
by an applications program to have a geometric model-
ing function performed.

Applications Interface Specification (CAM-I) - A specifica-
tion prepared by Computer Aided Manufacturing
International containing an extensive list of geometric
operators for use in the development of dynamic inter-
faces between geometric modeling systems and appli-
cation programs. Test-bed versions of these operators
have been implemented.

Augmented Geometric Model - A geometric representation
plus associated data added that defines analysis attrib-
ute information needed for an application. For example
the loads, material properties and boundary conditions
needed for a finite element analysis.

Idealized Model - This is the model that is discretized into
the finite element mesh that is then analyzed. This
model is constructed from the augmented model by
performing the geometric modifications desired to pro-
duce the model to be meshed.

Analysis Attributes - All information, past the base
geometric model, needed to describe a physical prob-
lem in mathematical physics.

Numerical Model Attributes - All information past the aug-
mented model specified needed to control the
generation of the discrete numerical analysis model.

Finite Element Modeling - The process of going from an
augmented geometric model to numerical solution
results based on the use of finite element analysis
procedures.

Discretization - The process of reducing a geometric object
into a set of discrete entities as needed for a numerical
analysis.

Mesh Generators - Procedures that can be used to discre-
tize a geometric model into a finite element mesh.

Adaptive Finite Element Procedures - Techniques that
employ solution results to determine where a finite ele-
ment discretization needs to be altered to provide the
desired degree of accuracy and the improvement of
that discretization.

A Posteriori Error Estimation - The use of finite element
solution results to estimate the discretization errors pre-
sent in the current solution.

Mesh Enrichment - The improvement of a finite element
model as dictated by the a posteriori error estimators
and associated error indicators.

Automated Finite Element Modeling - A combination of al-
gorithmic procedures capable of automatically perform-
ing the finite element modeling process, without used
intervention, to provide solution results to a prespecified
level of accuracy.

CAM-1 PROJECT ON DOCUMENTING
THE GEOMETRIC MODELING REQUIREMENTS OF
COUPLING GEOMETRIC MODELING SYSTEMS AND
FINITE ELEMENT MODELING
APPLICATIONS

CAM-| is supporting RPI to perform this effort.

This workshop and the questionnaires you have been sent
are being used as input to this effort

QUESTIONNAIRE ON THE INTEGRATION
OF GEOMETRIC MODELING AND
FINITE ELEMENT MODELING

Summary of questions

- Geometric modeling approaches

- Finite element meshing approaches

- Geometric modeling information and functionality
- Levels of integration

- Data used and saved

- Development of idealized models

Distribution of Responses to Date:

- 13 CAD/CAM Vendors
- 6 Research Groups
- 9 End User Groups

INITIAL QUESTIONNAIRE SUMMARY

Most responses indicated that they utilized a boundary
representation for modeling. Implicit and parametric stor-
age schemes were both popular.

Future choices of model representation also favored the B-
rep scheme. Some with current CSG approaches also
expect to handle B-rep.

Most responses indicated that they had an integration be-
tween a finite element preprocessing package and the
geometric modeler. In addition, most felt it was
inadequate.

Transfer schemes varied from IGES, tight integration with
the geometric modeler, and ad-hoc schemes developed
within their own organizations.

The finite element preprocessors dependence on a
topological data structure for the geometric modeler
(vertex, edge, etc.) was nearly unanimous, even for those
interfacing to CSG based model representations.

INITIAL QUESTIONNAIRE SUMMARY

Commercial preprocessing capabilities, in general, are still
dominated by the use of interactive mesh generators.

Future capabilities of preprocessors will utilize more auto-
matic techniques for generating numerical analysis
models.

The desire to link the finite element mesh back to the
geometric model was also apparent. This may put addi-
tional demands on modelers or interfacing techniques.
Typical reasons for this link were to allow for integrated
optimization techniques and adaptive analysis.

Attributes such as loads, boundary conditions, and mate-
rial conditions should be applied to the geometric model
and later 'sent off' to the analysis with the resulting mesh.

INITIAL QUESTIONNAIRE SUMMARY

One area of little response was the ability to define the
idealized models. As a finite element analysis vendor indi-
cated, the assumption is made that the model made was
specifically for meshing and that no unnecessary details
exist.

Current techniques to idealize the model are manual in
nature. Either by developing the model in a restricted
sense via some FEM commercial package, or by simply
eliminating the detail to be ignored within the solid
modeler.

Those that responded indicated a desire for some auto-
matic means of developing the idealized model.

N§8-19112 :

Mark S. Shephard

Center for Interactive Computer Graphics
Rensselaer Polytechnic Institute

Troy. NY 12180-3590

INTEGRATION OF FINITE ELEMENT MODELING WITH SOLID
MODELING THROUGH A DYNAMIC INTERFACE

Abstract. Finite element modeling is dominated by geometric modeling
type operations. Therefore. an effective interface to geometric modeling
requires access to both the model and the modeling functionality used to
created it. This paper discusses the use of a dynamic interface that ad-
dresses these needs through the use of boundary data structures and
geometric operators.

Introduction. The generation of numerical analysis models. typically finite element models.
is an important part of the computer-aided engineering (CAE) process. However. a dispro-
portionately large percentage of the design/analysis process is required to carry out this
task with the tools commonly available today. Over the past few years. substantial gains
have been make in the development of the algorithmic procedures needed to make this a
more automated process. To make effective use of these tools. specific consideration must
be given to the proper integration of the component parts. This paper presents a general
approach to performing the integration of the geometric modeling with advanced finite
element modeling tools.

Three technical areas of importance to the eventual automation of the finite element
modeling porcess are: geometric modeling. automatic mesh generation. and adaptive
analysis techniques. There is no possibility of automating a geometrically-based procedure
like finite element modeling if the geometric modeling procedures do not contain a com-
plete and unique representation of the object to be analyzed. Therefore. the advances in
geometric modeling based on solid modeling approaches is a prerequisite to automated
finite element modeling. The second functionality needed is the ability to automatically
discretize a geometric model into a finite element mesh. As is briefly reviewed in the next
section. the recently developed algorithmic approaches to automatic mesh generation are
addressing this need. The third area of development. adaptive analysis techniques. are not
needed to be able to automatically perform an analysis. however. they are needed if robust
automated finite element modeling procedures are to be developed. The goal of adaptive
analysis techniques is to automatically improve a finite element discretization until the
solution obtained yield results to a prescribed degree of accuracy. The next section also
indicated the status of the development of these procedures.

The integration of geometric modeling systems with automated mesh generators is not
completely addressed by the passing of a geometry file. Specific geometric modeling
functionality is also needed to support the operations carried out by the geometric model-
ing system. The third section discusses an approach to the integration of geometric mod-
eling and automatic mesh generation that supports these needs.

The fourth section discusses the question of controlling the process of going from the
original geometric model to the finite element model. Central to this discussion is the form
of data structure needed to support this process and the geometric modeling functionality
needed. In particular. consideration is given data structures that will support the evolution
of an original geometric model to the idealized geometric model that is to be discretized
and then supporting the actual discretization process in a general manner.

Automated Finite Element Modeling Tools. Historically. the generation of finite element
meshes has been dominated by the application of mapped mesh generators that produce
what are commonly referred to as structured meshes. They have the disadvantage of
requiring the domain to be meshed to be partitioned into a set of mappable regions which
vields the desired distribution of elements. The complexity of reducing the complex three-
dimensional domains available from today's geometric modeling systems into a set of
mappable regions has lead to an increased interest in the development of mesh generators
capable of automatically meshing the entire domain. For the purposes of this discussion.
an automatic mesh generator is an algorithmic procedure capabie of producing a valid
finite element mesh in a domain of arbitrary complexity, given no input past the
computerized geometric representation of the domain to be meshed.

It is important to emphasize the fundamental operational difference between mapped
meshing procedures and the automatic mesh generation techniques that have been
considered to date. When mapped mesh generators are used. the geometry of the object is
constructed by gluing together the individual. fixed topology. mesh patches. Therefore. the
geometric representation is explicitly defined in terms of those mesh patches. The map-
ping operators used to define the mesh within each of the mesh patches employ. in either
an explicit or implicit form. a set geometric representation for each mesh patch defined in
terms of the information available on the boundary of the mesh patch. The user is respon-
sible for defining a valid set of mesh patches. which implicitly define the geometric repre-
sentation and explicitly provide the geometry necessary for meshing to occur. The mesh
generators are. therefore. not concerned with the actual geometry of the object. This is.
however. not the case for an automatic mesh generator which is given a complete
geometric representation of the domain of interest and is responsibie for decomposing.
without a priori information of the shape of the domain. it into a valid set of elements.
Since an automatic mesh generator must determine the limits of the domain it is to mesh.
the most computationally intensive portion of these procedures are the carrying out of
geometric interrogations for-this purpose. Since mapped mesh generators need not carry
out these interrogations. it is not surprising to find they are much more computationally
efficient at the expense of user productivity. Another important difference between these
two approaches is that all of the current automatic mesh generators produce unstructured
meshes and are best suited to producing simplex element topologies. This means triangu-
lar elements in two dimensions and tetrahedronal elements in three dimensions.

The three-dimensional automatic mesh generators that have been developed can be classi-
fied as being based on one of the following algorithmic approaches:

1. point placement followed by triangulation [CAVES85]. [FEIL85). [FIEL86].
INGUYS82}.

2. removal of individual subdomains [WOQO084). [WORDS84].

3. recursive domain subdivision [SLUI82]. and

4, spatial decomposition followed by subdomain meshing [SHEP86]. [YERR84].
[YERRS8S5].

Although specific automatic meshing algorithms may overlap two of the approaches listed.
or may be implemented in specific steps where separate steps use different approaches to
carry out the appropriate operations. the above classification provides a reasonably funda-
mental separation of algorithmic approaches. (See [SHEP87] for a more complete review
of automatic mesh generation.)

A large number of two-dimensional mesh generators based on point placement followed by
triangulation have been developed (see [CAVE74], [LEES84]. [LO85] for example) using a
variety of approaches to place points and triangulate them into elements. The three-
dimensional procedures [CAVE85], [FEIL85], [FIEL86], [NGUY82] have followed a similar
development path. In each of these algorithms. specific heuristics are empioyed to place
points through the domain. The generation of the mesh using these points can either
employ a set of triangulation heuristics. or can employ the mathematical properties of
Delaunay triangulations {SIBS78], [WATS81] to develop the meshing algorithm. Although
Delaunay properties are ideal for two-dimensional mesh generation. they are not fully
satisfactory in the three-dimensional case. Therefore. three-dimensional mesh generators
using Delaunay based procedures must be augmented with an appropriate set of heuristics
to avoid possible problems [FIEL85], [FIEL86], [SHEP87].

Automatic mesh generators based on subdomain removal operate by removing individual
pieces form the domain one at a time until the domain is reduced to one remaining
acceptable piece. The majority of the algorithms of this type remove individual elements
(SADES0], (SHEP86a]. (WOO084|, (WORD84]. while others remove larger. but 'simple’
portions of the domain and then triangulate them using a different procedure [BYKA76].
[JOE86]. These procedures typically traverse the boundary of the object applving a set of
heuristic operators to identify and then remove portions of the domain one at a time.

Although they have been heavily published. the development of automatic mesh genera-
tors based on recursive domain subdivision is a popular approach under consideration by a
number of CAD vendors. In these approaches the mesh is created by recursively splitting
the domain [SLUI82], until the subdomains represent individual finite elements. A specific
set of heuristics and geometric test are used to identify the 'splits’ used to subdivide
objects. '

Mesh generators based on spatial decomposition employ some specific decomposition
procedure to decompose. in a controlled manner. the domain into a set of simple cells and
then to triangulate the individual cells in a manner such that a valid finite element mesh
is generated. The procedures developed to date have relied on quadtree structures in two
dimensions [BAEH87). [KELA86], [YERR83], and octree structures in three dimensions
[SHEPS6), [SHEP86a]. [YERR84]. [YERR85]. One of the key aspects of these procedures
is the manner in which geometric information is associated with those cells containing
portions of the boundary and how this information is used to generate the element mesh
in those cells [BAEH87]. [SHEPS86a].

The limited experience available to date indicates that the amount of computation needed
to generate a mesh of a few thousand elements for a general three-dimensional geometry
will be of the same order of magnitude as a linear analysis carried out on that system.
Therefore. the computational efficiency of these procedures is of critical importance. The
two measures of computational efficiency of importance are the time required by the given

algorithms to generate comparable meshes and. even more importantly. the computational
growth rate of the mesh generator. Tests run to date on complex two-dimensional
geometries indicates that the implementation of various approaches yields speed
differences that vary by more than an order of magnitude. (The test referred to are
proprietary to the company that ran the test and can not be presented here.)

The various algorithmic approaches also demonstrate different growth rates. The approach
with the greatest amount of theoretical results is Delaunay triangulation which in the
two-dimensional case indicate an Oi(n logilog n) . where n is the number of points. com-
putational time possible. {In two dimensions. the number of elements is of the same order
as the number of nodes [BOLS86].) Computational results of an implemented three-
dimensional algorithm gave O(n**5/3) computer times [CAVES85]. (In the three-
dimensional case. the number of elements can be from Oin) to Oin**2) [BOLS86].
However. it appears that in most practical cases the number of elements will be Oin).}

The best computational growth: rate obtained thus far is linear, Oin). [BAEH87]. [JOE86].
Joe and Simpson carried out a detailed study of the computational effort required for their
two-dimensional algorithm and demonstrated times that were linear and asymptotic with
one of the steps of the algorithm [JOES86]. The finite quadtree mesh two-dimensional
generator [BAEHS87] also demonstrates a linear growth rate with the number of elements.
It is also anticipated that the finite octree mesh generator can operate in linear time.
however. neither the analysis or numerical studies needed to confirm this have been
compieted.

As the finite element technique becomes more heavily used by designers who do not
possess extensive expertise in numerical analysis. there is not only a need to improve the
speed and robustness of the model generation procedures. but a need to insure that the
analysis results produced are of sufficient accuracy to be meaningful. As in the case of the
model generation process. increasing the robustness of the analysis to produce a prespeci-
fied degree of accuracy is best obtained through the development of automated procedures
for that purpose. This is the goal of efforts on the development of adaptive finite element
analysis procedures {see [BABU86] for a good overview of this area).

In an adaptive finite element analysis procedure. the solution results on a given mesh. in
combination with a knowledge of that mesh. are used to both estimate the accuracy of that
solution as well as how to best improve the mesh to efficiently obtain the level of accuracy
desired. The major components of such a system include:

1. finite element equation formulation and evaluation algorithms.

2. a posteriori error estimation techniques to estimate the discretization errors in
the current solution.

3. error indication. or alternatively. correction indicators to determine where and. in
the ideal case, how to improve the finite element discretization. and

4. mesh enrichment schemes to improve the finite element discretization as indi-
cated by the error or correction indicators.

Since adaptive finite element analysis employs a feedback procedure which requires solu-
tions to a sequence of related finite element equations. the techniques used for each of the
component portions of the system must be able to operate in an efficient manner. In

addition to being able to efficiently solve related sets of finite element equations. the
development of these systems must consider the most appropriate mesh generation and
update procedures to be used with the various adaptive analysis approaches.

Substantial gains in the development of adaptive finite element analysis techniques have
been made in the past few vears. However. it will be some time before they appear in
commercial systems. These procedures are critical to the future automation of finite ele-
ment modeling since they must be used to insure that the results obtained are meaningful.

Geometric Modeling Support for Automatic Mesh Generation. As indicated in the previous
section. automatic mesh generators are geometrically demanding. In particular. they re-
quire a large number of geometric interrogations. and. depending on the meshing al-
gorithm. a large number of geometric model modifications to operate. Therefore. they are
not well suited to a static interface with geometric modeling systems in which the only
information available to the mesh generator is an output file of the geometric representa-
tion (WILS87]. Assuming that a common format is used for this file. this approach has the
disadvantage of requiring that all the geometric modeling functionality needed by the
mesh generator be reproduced within the mesh generator. Assuming that this
functionality already exists within the geometric modeling system. which is typically the
case. the development of that capability in the mesh generator is a redundant effort that
has to be repeated for each new geometry form to which the mesh generator is interfaced.

An alternative approach is to employ a dynamic interface in which the mesh generation
algorithms can interact directly with a geometric modeling system through a set of proce-
dures. to be referred to as geometric communication operators. that can perform specific
geometric interrogations and modifications. The definition of geometric communication
operators is being considered for geometrically-based applications [CAMI86]. as well as
those needed specifically for mesh generation [SHEP85]. The discussion below assumes a
dynamic interface between the automatic mesh generators and the geometric modeling
system. See reference [SHEP85] for a more specific discussion of the geometric communi-
cation operators needed to support the various automatic mesh generation approaches.

The complexity of the interface of an automatic mesh generator with a solid modeler is a
function of the algorithmic approach underlying the mesh generator. Mesh generation
algorithms that operate through geometric interrogation only require a simpler set of
geometric communication operators than is used by mesh generators that must both
interrogate and modify the geometric representation during the mesh generation process.
In general. the majority of computational effort required for automatic mesh generation is
spent in carrying out geometric communication operations. Since geometric interrogations
typically require much less computation than geometric modifications. mesh generators
requiring geometric interrogation are typically more efficient. on a per element basis.

Two of the four algorithmic approaches to automatic mesh generation discussed above
require geometric interrogation only. point placement followed by trianguiation and spatial
decomposition followed by subdomain meshing. The other two. removal of individual sub-
domains and recursive subdivision. require both geometric interrogation and meodification.
To better see this differentiation. consider the comparison of the interactions with a
geometric representation for both an element by element removal algorithm and the finite
octree approach. In the element by element removal process. topological and geometric

interrogations are used to look for a candidate feature to be carved off: geometric interro-
gations are used to see if that removal is valid: and finally the feature is removed. Since
the next element removal must consider the geometry as it stands after the current
element is removed. the geometric model must be updated by the use of geometric modi-
fication operators to reflect this removal. In contrast. the primary geometry-related task in
the finite octree mesh generator is to determine how the boundary of the object interacts
with the appropriate sized octants in the tree. This information is obtained through
geometric interrogation only by intersecting the boundary entities of the object with the
appropriate boundary features of the octants. The only other geometric communication
operators needed for this process and the rest of the meshing process are the interrogation
operators of point classification. the conversions between parametric and real coordinates.
and the conversion from real to parametric coordinates.

Geometricallv-Based Finite Element Modeling. The first key to the integration of
geometric modeling and finite element modeling is the use of a general data structure that
can properly house various geometric forms. As indicated above. the transfer of only
geometric data into the finite element modeling system does not address the geometric
modeling needs of finite element modeling. Therefore. the second key aspect of this
integration is the use of a general set of operators to support the geometric modeling
demands of the entire finite element modeling process.

Before discussing the data structures and geometric modeling functionality needed. it is
necessary to understand the process of generating a finite element model. This process
consist of the:

definition of the domain to be analyzed.

specification of the partial differential equations to be solved.
specification of the analysis attributes.

specification of the numerical analysis control information.
specification of the mesh control information. and

generation of the finite element mesh.

R e

The first three steps are concerned with the specification of the problem to be analyzed
and are entirely independent of the numerical analysis procedures used. The last three
steps are concerned with the specification and generation of the numerical analysis model.
There are a number of advantages that can be gained by separating the modeling process
into these distinct steps. The most obvious is the increased levels of integration possible
between geometric and finite element modeling procedures. Possibly the most important.
but least obvious. is that increasing the level of automation of the finite element modeling
process is only possible if there is a strict separation of these steps.

When considering the development of integrated. geometrically-based finite element mod-
eling procedures. it is important to realize that the geometric representation that is ac-
tually discretized into finite elements is often not the same as the original geometric
description that defines the object. It is common in finite element analysis to ignore
geometric details that are deemed unimportant to the analysis. Common geometric simpli-
fications of this type include removing small fillets. and filling small holes and pockets. It
is also common in finite element analysis to represent specific portions of the model with

reduced dimension entities. Common examples are to use only the 'mid-surface’ of por-
tions of the model that are ‘smail’ in one direction compared to the other two. and to use
only the 'center-line’ of portions of the model which are ‘small’ in two directions. In these
cases. the finite element discretization is of those reduced order entities where the elimi-
nated dimensions are accounted for by the specification of 'section properties’.

There are two distinct steps in the finite element modeling process where these model
domain differences can be specified. They can be done during the specification of the
domain to be analyzed where the analyst would carry out the geometric modeling opera-
tions necessary to insure that the geometric representation used in the remainder of the
finite element modeling process is that which is discretized into a finite element mesh.
This is the approach commonly taken today.

The other step where the domain differences can be defined is during the specification of
the numerical analysis attributes. In this case. those portions of the domain that are to be
ignored or represented with reduced order elements are simply flagged with the appro-
priate attribute information defining how it is to be modeled in the numerical analysis
model. It is then the responsibility of the finite element discretization procedures to
perform the operations necessary to have the meshing procedures generate the mesh
accounting for the domain differences. Although not commonly used procedures taking
this approach can drastically reduce the amount of effort required for the generation of
finite element models for some classes of problems [GREG87]. '

The previous section introduced the concept of geometric communication operators to
support automatic mesh generators. In addition to the operators needed for this function
[SHEPS85). sets of operators are needed to define both the analysis and numerical model-
ing attributes needed for the completion of the analysis model (SHEP85a]. [SHEP86b].
Efforts are currently under way to identify the mapping from the specific operators de-
fined for finite element modeling [SHEP85], [SHEP85a} and those defined in the CAM-I
Applications Interface Specification [CAMI86]. The advantage of this approach is obvious.
it avoids the need to reproduce all the geometric modeling functionality of each geometry
type within the finite element modeling system. This advantage is absolutely necessary if
finite element modeling procedures are to be interfaced with the various geometric model-
ing systems.

The data structures used in a geometrically-based finite element modeling system play a
critical role in the operation of the system. Since all geometrically complete representa-
tions can produce a boundary representation [RIQU82] and a boundary representation
provides a level of abstraction that is independent of the specific geometric definition of
the boundary of the domain [WEIL85). WEIL86]. it is ideally suited for storing geometric
representations for finite element modeling.

The combination of the topological information in a boundary representation and an appro-
priate set of geometric communication operators provides a generalized approach to the
integration of finite element modeling capabilities with geometric modeling systems. The
input to the finite element modeling software would be the topological representation of
the object independent of the specific geometric definition of the topological entities.
Although the topology contains no 'shape’ information. it does contain a complete set of
connectivity information and also indicates the dimensionality of the portions of the

object. The finite element modeling functions can be easily structured to be controlled by
topological information calling the appropriate geometric communication operators to
carry out the specific geometric calculations and modeling operations needed. The applica-
tion of the geometric communication operators can also be keyed by topological informa-
tion. Therefore. the finite element modeling software can carry out all its tasks without
specific knowledge of the geometric representation.

There are a number of possible ways to group the finite element modeling data. The one
given herein represents the minimal number of data sets that provide a logical separation
of information needed for finite element modeling. The data sets include:

1. The MODEL data set
2. The ATTRIBUTE data set
3. The MESH data set .

The MODEL data set contains the topological data. and points to the geometric informa-
tion that defines the domain to be meshed. The ATTRIBUTE data set contains both the
analysis attribute data (e.g.. material properties. boundary conditions. etc.) and the
analysis model control data. The MESH data set contains the finite element mesh gener-
ated for the model. The data structures are related through a well defined set of pointers
which provide the mechanisms through which all non-MODEL data is tied to the MODEL
and thus each other [SHEPS6b].

The most fundamental data to the generation of a finite element model is the geometry.
As indicated above. a boundary-based MODEL data structure provides a general frame-
work for this data structure. There are a number of possible alternative boundary struc-
tures that can be considered [WEIL85},[WEIL86}, with the choice to be made based on a
trade-off between domain of geometries properly represented. storage. and need to search.
The most critical of these questions is domain of geometries represented. Since finite
element models commonly consist of combinations of three-dimensional (solid elements).
two-dimensional (shell elements). and one-dimensional (beam elements) it is desirable to
employ a MODEL representation that can house all three without the need for special
cases. The commonly used boundary representations for solid modeling systems can only
represent two-mainfold geometries which means that even a mesh of solid elements alone
would require special consideration. However, the recently developed radial-edge data
structure [WEIL86} can house combined solid. surface. and wireframe geometries in a
consistent manner. Therefore. it is ideally suited for the representation of the finite ele-
ment MODEL data structure [SHEP86b].

In addition to the hierarchy of geometric modeling entities. it is also desirable to employ a
hierarchy of finite element entities in the MESH data structure. It is used to define the
elements themselves. This is a departure from the way in which finite elements have
historically been defined (i.e.. an element of a specific type with a list of nodes which define
the connectivity). In such a hierarchy each finite element entity points to the lowest order
modeling topology entity which it is inherently a part [SHEP86b]. For example. a fe-edge
which is on the surface of a region would point to the face on which it lies. rather than the
region itself.

The MESH data structure. with its hierarchy of finite element entities. may seem too
elaborate. perhaps even wasteful of storage. However. on closer inspection some distinct
advantages emerge. The most powerful advantages come from the links to the other data
structures. The major benefits for linking the finite element hierarchy to geometry is as
follows:

1. It makes it possible to interrogate the finite element model using a geometric
entity as a key word for searching.

2. It provides a mechanism which supports mesh generation on the basis of topologi-
cally simple cells fie.. quadrilaterals. triangles. hexahedrons. etc.) providing a
direct procedure to represent all order elements without going back to the mesh
generator. All higher order fe-nodes can easily be placed precisely on the appro-
priate associated geometric entity.

3. It provides an organization for handling any type of finite element in a uniform
manner.

4. It provides direct access paths to higher order entities from lower order entities

; which make it very convenient to do such things as bandwidth minimization.

| postprocess the results of elements associated with a given set of nodes. etc.

Closing Remarks. The automated finite element modeling procedures currently under
development place severe demands on the interface to geometric modeling. It is no longer
satisfactory to simply pass a geometry file to the finite element modeling procedures. they
require a full set of geometric modeling functions. These needs can only be addressed by
the use of a dynamic interface of the type presented in the CAM-I Applications Interface
Specification [CAMI86]. To support such an approach in a general and modular sense.
future finite element modeling software should be driven by the topological information
available from a boundary representation. Since finite element models are typically non-
manifold. the boundary representation should be a complete non-manifoid representation
i like the radial-edge structure [WEIL86].

References

[BABU 86]

I. Babuska. O.C. Zienkiewicz. J. Gago and E.R. De A. Oliveria. Accuracy
| Estimates and Adaptive Refinements in Finite Element Computations. John
\ Wiley and Sons. Chichester. 1986.

[BAEH 87]

P.L. Baechmann. S.L. Wittchen. M.S. Shephard. K.R. Grice and M.A. Yerry”.
Robust Geometrically Based Automatic Two-Dimensional Mesh Generation”. TR-
86007. Center for Interactive Computer Graphics. RPL. Troy. NY. 1986. to
appear. Int. J. Num. Meth. Engng..

[BOLS 86}

J.D. Bolssonnat and M. Tellaud. "A Hierarchical Representation of Objects: The
Delaunay Tree”. Proc. Second Annual Symposium on Computational Geomerry.
ACM -89791-194-6/86/0600/260. 1986. pp. 260-268.

[BYKA 76]

A. Bykat. "Automatic Generation of Triangular Grids: I - Subdivision of General
Convex Subregions. II - Triangulation of Convex Polygons”. Int. J. Num. Meth.
Engng.. Vol. 10, 1976. pp. 1329-1342.

[CAMI 86]

” Applications Interface Specification (Restructured Version)”. CAM-I Report R-
86-GM-01, January 1986.

[CAVE 74]

J.C. Cavendish. "Automatic Triangulation of Arbitrary Planar Domains for the
Finite Element Method”. Int. J. Num. Meth. Engng.. Vol. 8. 1974. pp. 679-697.

[CAVE 85]

J.C. Cavendish. D.A. Field and W.H. Frey. “An Approach to Automatic Three-
Dimensional Mesh Genertion”, Int. J. Num. Meth. Engng.. Vol. 21. 1985. pp.
329-347.

[DWYE 86]

R.A. Dwyer. "A Simple Divide-and-Conquer Algorithm for Constructing Delaunay
Triangulation in O (n log log n) Expected Time”. Proc. Second Annual ACM
Symposium on Computational Geometry. ACM 0-89791-194/6/86/0600/276. 1986.
pp. 276-284.

(FIEL 85]

D.A. Field and W.H. Frey. ”"Automation of Tetrahedral Mesh Generation”.
Research Publication GMR-4967. General Motors Research Laboratories.
Warren. MI. 1985.

[FIEL 86]

D.A. Field. "Implementing Watson's Algorithm in Three Dimensions”. Proc.
Second Annual Symposium on Computa tional Geometry. ACM 0-89791-194-6/
86/0600/246. 1986, pp. 246-259.

[GREG 87]

B.L. Gregory and M.S. Shephard. "The Generation of Airframe Finite Element
Models Using an Expert System”, Engineering with Computers. to appear.

[JOE 86]

B. Joe and R.B. Simpson. “Triangular Meshes for Regions on Complicated
Shapes”. Int. J. Num. Meth. Engng.. Vol. 23. 1986. pp. 751-778.

[KELA 86]

A. Kela. R. Perucchio and H.B. Voelcker. "Towards Automatic Finite Element
Analysis”. Computers in Mech. Engng.. July 1986. pp. 51-71.

10

| ST

[LEE 84]

Y.T. Lee. A. de Pennington and N.K. Shaw. ”Automatic Finite Element Mesh
Generation from Geometric Models - A Point-Based Approach”. ACM
Transactions on Graphics. Vol. 3. 1984, pp. 287-311.

[LO 85]

S.H. Lo. "A New Mesh Generation Scheme for Arbitrarv Planar Domains”. Int.
J. Num. Meth. Engng.. Vol. 21. 1985. pp. 219-249.

INGUY 82]

Nguyen-Van-Phai. "Automatic Mesh Generation with Tetrahedron Elements”.
Int. J. Num. Meth. Engng., Vol. 18. 1982. pp. 273-289.

[RIQU 82]

A.A.G. Riquicha and H.B. Voelcker. "Solid Modeling: A Historical Summary and
Contemporary Assessment”, IEEE Computer Graphics and Applications. Vol. 3.
No. 2. 1982. pp. 9-24.

[SADE 80]

E.A. Sadek. "A Scheme for the Automatic Generation of Triangular Finite
Elements”. Int. J. Num. Meth. Engng.. Vol. 15, 1980, pp. 1813-1822.

[SIBS 78]

R. Sibson. "Locally Equiangular Triangulations”. The Computer Journal Vol. 21.
No. 3. 1978. pp. 243-245.

[SLUT 82]

M.L.C. Sluiter and D.L. Hansen., "A General Purpose Two and Three
Dimensional Mesh Generator”, Computers in Engineering. Vol. 3. L.E. Hulbert.
Ed.. Book No. G00217, ASME, 1982. pp. 29-34.

[SHEP 85]

M.S. Shephard, “Finite Element Modeling within an Integrated Geometric
Modeling Environment: Part I - Mesh Generation”, Engineering with Computers.
Vol. 1. pp. 61-71.

[SHEP 85a]

M.S. Shephard. “Finite Element Modeling within an Integrated Geometric
Modeling Environment: Part II - Attribute Specification. Domain Differences. and
Indirect Element Types”. Engineering with Computers. Vol. 1. pp. 72-85. 1985.

[SHEP 86}

M.S. Shephard. M.A. Yerry and P.L. Baehmann. "Automatic Mesh Generation
Allowing for Efficient A Priori and A Posteriori Mesh Refinements”. Computer
Mech. in Appl. Mech. and Engng.. Vol. 55. 1986. pp. 161-180.

[SHEP 86a]

M.S. Shephard. K.R. Grice and M.K. Georges. “Some Recent Advances in
Automatic Mesh Generation”. Modern Methods for Automating Finite Element
Mesh Generation. K. Baldwin. Ed.. ASCE. NY. 1986. p. 1-18.

11

[SHEP 86b]

M.S. Shephard and P.M. Finnigan. “Integration of Geometric Modeling and
Advanced Finite Element Preprocessing”. to appear. Finite Elements in Analysis
and Design.

[SHEP 87]

M.S. Shephard. ”Approaches to the Automatic Generation and Control of Finite
Element Mesh”. TR-87005. CICG. RPI. Troy. NY. submitted to Applied
Mechanics Review.

[WEIL 85]

K.J. Weiler. “Edge Based Data Structures for Solid Modeling in Curved-Surface
Environments”. IEEE Computer Graphics and Applications. Vol. 5. No. 1.
January 1985. pp. 21-40.

[WEIL 86]

K.J. Weiler. "Topological Structures for Geometric Modeling”. PhD Thesis.
CICG. TR-86032. Rensselaer Polytechnic Institute. Troy. NY. 1986.

[WATS 81]

D.F. Watson. ”"Computing the n-Dimensional Delaunay Tessellation with
Applications to Voronoi Polytypes”. The Computer Journal Vol. 24. No. 2. 1981.

[WILS 87]

P.R. Wilson, "Data Transfer and Solid Modeling”. Geometric Modeling for CAD
Applications. M.J. Wozny. H.W. McLaughlin and J.L. Encarnacao. Eds.. North
Holland. to appear.

[WOO 87]

T.C. Woo and T. Thomasa. "An Algorithm for Generating Solid Elements in
Objects with Holes”. Computers and Structures. Vol. 18. No. 2. pp. 333-342.

(WORD 84}

B. Wordenweber. “Finite Element Mesh Generation”, Computer-Aided Design.
Vol. 16. 1984. pp. 285-291.

[YERR 83]

M.A. Yerry and M.S. Shephard, "Finite Element Mesh Generation Based on a
Modified-Quadtree Approach”, IEEE Computer Graphics and Applications. Vol.
3. No. 1, 1983. pp. 36-46.

[YERR 84]

M.A. Yerry and M.S. Shephard. ”Automatic Three- Dimensional Mesh
Generation by the Modified-Octree Technique”. Int. J. Num. Meth. Engng.. Vol.
22. 1984, pp. 1965-1990.

[YERR 85]

M.A. Yerry and M.S. Shephard. ”Automatic Three- Dimensional Mesh
Generation for Three-Dimensional Solids”. Computers and Strucrures. Vol. 20.
1985. pp. 173-180.

12

N8§8§-19113

< APPROACHES TO THE AUTOMATIC GENERATION
AND CONTROL OF FINITE ELEMENT MESHES

Mark S. Shephard
Center for Interactive Computer Graphics
Rensselaer Polytechnic Institute
Troy, NY 12180-3590 USA

ABSTRACT

This review paper discusses the algorithmic approaches being taken to
the development of finite element mesh generators capable of
automatically discretizing general domains without the need for user
intervention. The paper demonstrates that because of the modeling
demands placed on a automatic mesh generator, all the approaches taken
to date produce —unstructured meshes. Consideration is also given to
both a priori and a posteriori mesh control devices for automatic mesh
generators as well as their integration with geometric modeling and
adaptive analysis procedures.

INTRODUCTION

The generation of finite element models has historically been one of
the drawbacks to the widespread use of the analysis technique. Over
the past fifteen years, code developers have addressed this deficiency
by producing stand alone finite element preprocessing systems for the
generatioh of finite element models.. These systems typically employ a
numbet of mesh generation techniques in an interactive graphic
framework that allows the user to define the domain and mesh for the
problem at hand. During that same period of time, other developers
were constructing interactive graphics-based geometric modeling
systems. The early versions of these systems simply computerized the
standard drafting processes and were used almost exclusively for
making engineering drawings for the shop floor. It was quickly

realized that there is a large potential for directly employing the.

information available in a geometric modeling system for a variety of

-1-

applications such as machining and engineering analysis. However, the
early systems that simply computerized the drafting process did not
contain all the geometric information needed to allow applications to
operate autométically. Therefore, the more recent geometric modeling
systems, commonly referred to as solid modelers [1-3], employ complete
and unique geometric representations. These systems contain all the
geometric information needed to allow any geometrically controlled

operation to be automated.

Since the generation of a finite element mesh is a geometrically
controlled process, it is possible to automate the mesh generation
process when the geometry of the object is defined in a solid modeling
system. There are three reasons why such capabilities are not yet
commonly available. The first is the lack of mesh generators capable
of discretizing general domains without the need for extensive user
interaction to partition the domain into meshable regions. The second
is the lack of the geometric modeling support capabilities needed by
automatic mesh generators to interrogate and, for some algorithms, to
modify the geometric representation of the solid. These modeling
capabilities typically exist within the modeling system itself, but
are not available in a form that they can be easily separated from the
modeler and used by an applications procedure such as a mesh
generator. The third reason is the inability of finite element
analysis programs to automatically modify the finite element
discretization so that the analysis results yield a prescribed level
of accuracy. This necessitates the need for current users to specify
mesh control information to yield the type of element distribution
that, based on their knowledge and experience, should yield the

desired accuracy.

The purpose of this paper is to discuss the.progress that has been
made in addressing these three needs. The majority of the paper is
devoted to the algorithmic approaches to automatic mesh generation
that are currently under development, and the techniques available to
control the distributions of elements throughout the domain of the
object. As discussed in the third section,the integration with

-2-

geometric modeling systems is much more than the simple passing of .

geometric information, it also includes the geometric modeling
functionality needed for the automatic mesh generators to operate.
Consideration is also given to the use of these procedures in adaptive
finite element analysis. Adaptive analysis procedures promise to
provide the analysis functionality needed to assess and control finite
element discretizations to provide the level of accuracy prescribed.

ALGORITHMIC APPROACHES TO AUTOMATIC MESH GENERATION

In recent years, the generation of finite element meshes has been
dominated by the application of mapped mesh generators that produce
what are commonly referred to as structured meshes. These mesh
generators [4-7] have the advantage of being able to produce well
controlled meshes within the individual ’'patches’ passed to the mesh
generator. They have the disadvantage of requiring the domain to be
meshed be partitioned into a set of mappable regions which will yield
the type of mesh control desired. Since the majority of finite element
models constructed in the past were produced independently of any
computerized geometric model, it was convenient to define the object
in a bottom-up fashion in terms of mappable mesh patches. However, the
complexity of reducing the complex three-dimensional domains available
from geometric modeling systems into a set of mappable regions has
lead to an increased interest in the development of mesh generators
capable of automatically meshing the entire domain. For the purpose of
this discussion, an automatic mesh generator 1is an algorithmic
procedure capable of producing a valid finite element mesh in a domain
of arbitrary complexity given no input past the computerized geometric
representation of the domain to be meshed.

Before discussing the specific algorithmic approaches to automatic
mesh generation, it is important to emphasize the fundamental
operational difference between mapped meshing procedures and the
automatic mesh generation techniques that have been considered to
date. When mapped mesh generators are used, the geometry of the object
is constructed by gluing together the individual, fixed topology,

-3-

mesh patchés. Therefore, the geometric representation is explicitly
defined 1in terms of those mesh patches. The mapping operators used to
define the mesh within each of the mesh patches employ, in either an
explicit or implicit form, a set geometric representation for each
mesh patch defined in terms of the information available on the
boundary of the mesh patch. The user is responsible for defining a
valid set of mesh patches, which implicitly define the geometric
representation and explicitly provide the geometry necessary for
meshing to occur. The mesh generators are, therefore, not concerned
with the actual geometry of the object. This is, however, not the case
for an automatic mesh generator which is given a complete geometric
representation of the domain of interest and 1is responsible for
decomposing, without a priori information of the shape of the domain,
it into a wvalid set of elements. Since an automatic mesh generator
must determine the 1limits of the domain to be meshed, the most
computationally intensive portion of these procedures are the carrying
out of geometric interrogations for this purpose. Since mapped mesh
generators need not carry out these interrogations, it is not
surprising to find they are much more computationally efficient,
however, at the expense of user productivity.

Another important difference between these two approaches is that all
of the current automatic mesh generators produce unstructured meshes
and are best suited to producing simplex element topologies. This
means triangular elements in two dimensions and tetrahedral elements
in three dimensions. Although a number of algorithm developers have
successfully implemented two-dimensional algorithms to produce
acceptable quadrilateral meshes, it is not likely that procedures to
create acceptable all hexahedronal meshes for general
three-dimensional domains will be easy to produce. (There is a simple
subdivision procedure to convert a tetrahedral mesh into an all
hexahedral mesh [8], but the shape of the elements tend not to be
satisfactory.) Although some effort is under way to develop all
hexahedral meshes automatically, there are good reasons to assume they
are not going to be overly successful. It is because hexahedral
elements are reasonably sensitive to element shape and any automatic

—4-

mesh generator producing them is unlikely to be able to control the ‘
shape adequately. The other possibility is to generate a mesh with a
mixture of element types with as many hexahedronal elements as
possible. However, the need to match the faces of elements to insure
inter-element continuity means that a number of element shapes would
have to be used including a pyramid element and that the percentage of
hexahedron that would be produced in general geometries may not be
high. '

For some classes of problems analyzed by the finite element method,
the use of various polynomial order tetrahedron is considered gquite
acceptable. However, in other problem classes, particularly stress
analysis, users have a strong bias against these elements. The major
reason for this concern is that the majority of tetrahedral elements
in analysis packages were linear displacement, and thus constant
stress, elements which are well known to perform poorly in these
classes of problems. Recently, due primarily to the push for the
availability of automatic mesh generators, code developers have been
adding higher order tetrahedron elements to their element libraries.

Although not yet heavily tested, initial experience indicates that the
use of second order tetrahedron elements in conjunction with automatic
mesh generators will provide a cost effective means of performing
stress analyses of general geometries. Additional development of
tetrahedronal element types will be needed to fully address the use of
these elements for other analysis classes. For example, the use of
displacement-based tetrahedral elements for incompressible problems
leads to the application of too many constraint equations often
yielding a severely over constrained system of equations.

The automatic mesh generating procedures considered in this section

are fully three-dimensional or the extension from the existing ‘
two-dimensional procedure to a three-dimensional procedure appear
possible. Therefore, no attempt is made to provide a complete
bibliography of papers on automatic mesh generation, most of which are
two~-dimensional. Instead effort is concentrated on those papers that

consider three-dimensional techniques, making reference to selective

-5-

early papers that are relevant. For purposes of this discussion, the
algorithms that have been developed will be classified as being based
on one of the following algorithmic approaches;

point placement followed by triangulation,

removal of individual subdomains,
recursive subdivision of the domain, and

oW N
.

spatial decomposition followed by subdomain meshing.

Although specific automatic meshing algorithms may overlap two of the
approaches listed, or may be implemented in specific steps where
separate steps use different approaches to carry out the appropriate
operations, the above classification provides a reasonably fundamental
separation of algorithmic approaches.

Point Placement Followed by Domain Triangulation

In this approach, the generation of the element mesh is carried out in
two distinct steps. The first step is to place points throughout the
domain of interest in a manner such that during the second step, the
triangulation of the points into an element mesh, the desired mesh
gradations and Jrepresentation of the domain is obtained. As done in
the early survey on mesh generation [9]}, any mesh generation process
can be viewed as carrying out these two steps. However, this
subsection is only concerned with algorithmic approaches that contain
them as two distinct operational steps. '

The first attempts to develop mesh generation procedures using these
approaches concentrated on the automation of the second step on
two-dimension domains (10]. Even in today’s three dimensional
procedures (11}, this is the better understood of the two steps. The
early two-dimensional procedures [10,12] employed ad-hoc rules to
determine how to connect points together to create triangular
elements. A properly constructed set of rules is capable of producing
a well controlled mesh within a set of points, but the majority of the
early procedures required extensive searching and a large number of

~6-

checks, many more than needed in an optimal triangulation algorithm.‘

In addition, it was difficult to develop a set of triangulation rules
that would insure the elements generated satisfy a given shape
criteria. This would indicate that the extension to three-dimensions
could be difficult and likely to be computationally intensive. One
three-dimensional rule-based procedure (13], which is an extension of
the point surrounding concept presented in [10], has been developed.
In this approach, the concept of surrounding a given point with
triangular elements is replaced with surrounding a line between two
points with elements and then to move on to another line until the
mesh is complete. Given a line connecting two points this procedure
will find a near-by point to form a triangular plane. This triangular
plane serves as a face of a tetrahedron of the first element which is
defined by another near-by point selected to complete it. One of the
two triangular faces of the tetrahedron that use that edge is selected
as the base triangle for the next tetrahedron. This process is
continued until the line is surrounded at which time a new line is

selected for surrounding.

Most of the recent effort in the development of procedures to produce
elements given a set of points employ the properties of the geometric
constructs of Dirichlet tessellation and, more importantly for mesh
generation, the dual Delaunay triangulation of a given set of node
points. Cavendish, et al. [11] gives an interesting account of the
history of these procedures in the mathematics literature and their
more recent use for the purposes of finite element mesh generation.
The basic property of a Delaunay triangulation in two dimensions that
makes it appropriate for use in mesh generation is the resulting set
of triangles is as close to equilateral as possible [14]. More
specifically, the basic property of a Delaunay triangulation is that
there are no points inside the circum-circle defined by the three
corners of the triangles in two dimensions and no points inside the
circum-sphere defined by the four corners of the tetrahedron in three
dimensions. This distinction is of critical importance since this
property does correspond to well shaped, as compared to an equilateral

triangle, elements in two dimensions, but does not insure well shaped‘

-7-

elements in three dimensions, as compared to an -equilateral
tetrahedron. As indicated below, this does have an important impact on
the development of a Delaunay based three-dimensional mesh generator.

There are a number of algorithmic approaches to the construction of a
Delaunay triangulation. A currently popular approach is a version of
an algorithm proposed by Watson [15] based on the property that in a
Delaunay triangulation there are no node points on the interior of the
circle defined by the three nodes of any of the triangles. The mesh
generation algorithm of Cavendish, et al. [11] uses this property
directly by constructing the mesh by a node insertion procedure. Given
a Delaunay triangulation for a subset of the total set of nodes, one
of the remaining nodes is considered. The circum-circles of the
existing triangles are tested to see which contain the new node. These
triangles are flagged for deleting from the mesh (Fig. la) which
creates a unfilled polygon with a single internal node. It can be
shown that the Delaunay triangulation including the new node is simply
constructed by connecting all the vertices of the unfilled polygon to
the new node (Fig.lb) . This process is continued until the mesh is

complete.

It is important to note that the triangulation produced by a Delaunay
process represents the convex hull of the points used. This means

specific consideration must be given when the domain to be meshed in

not convex. This concern is easily addressed by rejecting elements
that are not within the domain of interest if the original set of
nodes are placed such that no element edges or faces are generated
that pierce the boundary of the domain. It is possible to do this by
the proper placement of points exterior to the domain when starting
the triangulation process [11].

The development of algorithmic procedures for the placement of points
such that the desired mesh gradations are created, and poorly shaped
elements are not created because of poor point placement, is an
important part of using a Delaunay procedure for finite element mesh
generation. Cavendish [12] has presented a good two-dimensional scheme

-8-

that spreads points based on node peoint density factors which are .
specified in user defined regions. Another scheme for point placement
based on the primitives in constructive solid modeling has been
presented by Lee, et al. [16]. In this algorithm, the points are
uniformly placed in each of the two-dimensional primitives used in the
definition of the object. Since the shape of a primitive is well
understood, this is a simple task. After the primitives are combined
through the Boolean operations, a procedure to selectively eliminate
selected points in the portions of the domain that overlap is applied
to insure the creation of a mesh of the desired mesh density. Recently
Lo [17) proposed the use of a simple ray firing technique in which
points are placed along the rays when the ray is interior to the
object and places nodes at the points where the rays enter and exit
the domain. It is important to note that whatever technique is used to
place points, it should properly consider the boundary of the domain,
placing points so that the resulting finite element model properly
represents the domain of the object.

Although the basic concept of Delaunay triangulation is directly
extendible to three, and higher dimensional domains, its use: for
automatic three-dimensional mesh generation requires special
consideration. This is because there 1is no guarantee that the
resulting elements will have a satisfactory shape in terms of the
ratio of volume to surface area. In fact it is possible to create zero
volume tetrahedron [11,18,19] within a three-dimensional Delaunay
trianqulation. Dealing with the unacceptable element shapes, referred
to as slivers [11,18,19], requires. special considerations, taking a
three-dimensional automatic meshing algorithm past that of basic
Delaunay procedure. As an example of a Delaunay-based
three-dimensional mesh generator that has considered these factors, a
brief summary of the one such procedure [18,19] is:

1. Define a bounding box for the domain of interest and £fill

it with regular icosahedron following a specific procedure

(18,19]. ‘

2. Discard all points belonging to that set of icosahedron

~9-

that fall outside the object to be meshed. The remaining
set of points are referred to as the preliminary nodes.

3. Use Watson’s algorithm to construct a Delaunay
triangulation of the preliminary nodes. Since the
triangulation defines the convex hull of the points,
discard all tetrahedron whose centroid is outside the
domain of the object.

4. Eliminate the nodes, and associated tetrahedron, that are
used to define any of the element face triangles that lie
on the exterior of the triangulation produced in step
three. (The exterior triangles are those that are used by
only one element.)

5. Generate a set of nodes on the boundary of the original
object. This includes nodes at model vertices, along model
edges and on model faces.

6. Using Watson’s algorithm, insert these nodes into the
Delaunay triangulation. Again discard any tetrahedron whose
centroid falls outside the domain of the object.

7. Calculate the shape measure for all elements within the
triangulation. A good measure is the ratio of the radius of
the inscribed sphere to circumscribed sphere, normalized to
the ratio of a regular tetrahedron (19]. '

8. Collapse out the unacceptable surface tetrahedron, slivers,
that can be eliminated.

9. Apply the sliver removal procedures described in [19] to
eliminate all remaining sliver elements.

Mesh Generation Based on Sub-Domain Removal

Automatic mesh generation procedures in this group operate by removing
individual pieces from the domain one at a time until the domain is
reduced to one remaining acceptable piece. The majority of algorithms
based on this approach remove individual elements one at a time
[20-24] while others remove larger, but ‘simple’ portions of the
domain and then triangulate these individual pieces using a different
procedure [25-27].

-10-

Sub-domain removal meshing procedures typically employ a boundary
representation of the domain and operate by searching for entities of
specific topological type that satisfy a set of connectivity and
geometric requirements. One of the set of entities that satisfy the
given requirements is used as the base entity for a geometric removal
operation that carves off a portion of the domain. The process of
looking for and removing a new piece is then again applied to the
domain remaining until it is reduced to a single acceptable piece.
Mesh generators based on this approach often employ a number of
operators, applied in a hierarchic manner, and attempt to consider the
influence of a current choice on future removal operation selections.

As an example, consider the two basic element removal operators used
by Woo and Thomasa [21] to mesh three-dimensional domains without

voids. (A third operator is wused if voids are present.) The first
operator, VERTEX REMOVAL is applied by searching the object for
vertices with only three edges coming into it. Any such vertex that
satisfies a set of geometric interference requirements is then removed
from the object. The removal of a vertex carves a tetrahedron from the
object (Fig. 2a). In cases where all vertices have more that three
vertices, a second operator, EDGE_REMOVAL, is applied. In this case, a
tetrahedron containing the selected edge is carved from the object
(Fig. 2b). Since this operation reduces the number of edges connected
to two of the vertices by one each, it eventually reduces the
complexity of the object wuntil the first operator can be applied

again.

A topologically-based element by element removal procedure appears
ideally suited for the construction of optimal h-p finite element
meshes where coarse, exponentially graded meshes are desired [28,29].
A procedure under development for the generation of such meshes [24]
employs four meshing operators to produce meshes in simply connected

two-dimensional domains (Fig. 3). The first operator,

SINGULARITY REMOVAL, is used to isolate the locations of all possible‘

singularities so that the proper set of elements can be placed around

-11-

the singularity. The remaining operators, VERTEX_REMOVAL,
VERTEX_ REMOVAL_WITH_EDGE_SPLIT, and EDGE_REMOVAL, are used to mesh the

rest of the domain.

Since the amount of computation required for the application of each
removal operation is high, these procedures are not computationally
efficient for the <creation of a fine mesh. However, the use of such
procedures to remove large pieces of the object which, can then be
quickly filled with with elements, can provide a computationally
efficient method to produce meshes to any 1level of fineness. An
example of such an approach is the algorithm of Joe and Simpson [26]
which first reduces a two-dimensional domain into simply connected
regions, and then reduces these to convex polygons. An optimal
quasi-uniform triangulation of each convex region can then be quickly

constructed.

The development of an algorithm that decomposes the domain into large
chunks by removing them one at a time is an attractive way to consider
the automation of the current methods of mesh generation where the
user interactively decomposes the domain of interest into mappable
regions and invokes a mapped mesh generator. The difficulty in
developing such an approach is the identification and implementation
of a set of rules that would examine a geometry to determine how to
decompose it into mappable regions that will yield the type of mesh
gradations desired as well as providing a satisfactory mesh topology.
An example of such an approach for two-dimensional geometries is shown
in figure 4. This procedure (an unpublished prototype program by the
author) first invokes a set of ’'rules’ to identify the regions the
should, based on the mesh control information and the geometry, be
removed as a mappable region. It then applies another set of rules to
decompose the remaining domain into acceptable shaped regions to be
filled by a mapped mesh generator. (Only the second set of rules were
used on the example in figure 4.) The main complexity in the
development of such an approach is the development of a set of rules
that can ’'look’ at the computerized representation of the entire
geometry and decompose it in a manner simular to that a human produces

-12-

when they look at the geometry on a screen. It is interesting to note .
that in the development of the program used to generate the simple
example shown in figure 4, several finite modeling experts were given
example geometries and asked to define, without actually meshing them,

the mesh regions they would define to mesh a given set of geometries.

In most cases, they laid out substantially different regions. An
attempt is currently under way [27] to develop a three-dimensional
procedure taking a similar approach. The work is using the concepts of
primitive identification and feature recognition as applied to
geometric modeling based on constructive solid geometry (csG) [1,2].

Mesh Generation by Recursive Subdivision

The recursive subdivision mesh generators [30,31] operate by the
repeated splitting of a domain into simplier parts until the
individual parts are single elements, or, possibly, simple regions in
which elements can be quickly generated. As in the sub-domain removal
procedures, this class of mesh generator typically operates off a
boundary representation of the domain to be meshed, looking for

candidate topological features meeting specific connectivity and
geometric requirements, selecting a specific splitting operation, and
updating the geometric and topological representations of the two
sub-domains created by the split.

A simplified description in the steps involved in the generation of a
three-dimensional finite element mesh by such an approach [30] is:

1. Reduce all the faces of the object to simply connected
faces by the introduction of splitting curves from interior
loops to the exterior loop. (Interior loops can connect to
other interior 1loops so long as one in the chain of
connected interior loops is then connected to the exterior
loop.)

2. Place node points along the various edges in the model in a
manner to reflect the mesh gradations desired.

Topologically this operation is equivalent to introducing

-13-

vertices at various locations along edges and splitting the

edges into multiple edges at those vertices.

3. Triangulate each of the surface patches into a set of

surface triangles employing the nodes introduced in step 2.

The surface triangulation is carried out by the recursive

splitting of the face as follows;

* a split line 1is introduced between two nodes on the
boundary of the face that validly splits the face into
two,

* nodes are introduced along this split line based on the
nodal spacing of the edges that it runs between,

* the splitting of all sub-faces is continued until they are
all reduced to individual triangles.

4. Using the element edges introduced on the faces, determine
a splitting face that splits the object into two
sub-objects.

5. Mesh the splitting face using Step 3.

6. Repeat Steps 4 and 5 until each of the remaining subdomains

‘represents a single element.

Spatial Decomposition Followed by Subdomain Meshing

The basic idea behind these approaches is to use an efficient
procedure to decompose, in a controlled manner, the domain of interest
into a set of simple cells and to then mesh the individual cells in
such a manner that the resulting mesh 1is valid. The one spatial
decomposition approach that has been applied to mesh generation is the
quadtree in two-dimensions [32-35] and the octree in three-dimensions
[24,36-38]. In an octree representation, an object is represented as
the wunion if a set of disjoint cubes of various size which are
derived from the recursive subdivision of parent cubes into eight
octants. The entire structure is stored in a hierarchic tree [39,40].
Since the size of octree cubes desired for use in finite element mesh
generatioﬂ are large with respect to the geometric details of the
object, it is necessary to deal in a specific manner with those octree
cubes that contain the boundary of the object and are neither fully

-14-

inside nor outside the object.

One approach to building a three-dimensional mesh generator using this
basic tree representation is the finite octree, formerly
modified-octree, technique [24,36-38]. (The paper by Baehmann, et al.
[34], although limited to the two-dimensional finite quadtree,
formerly modified-quadtree, gives the most complete description of the
approach outlined below.) Since the proper representation of the
topological features that define the boundary of the object is
necessary to insure the validity of the mesh, the finite octree is
defined by the insertion of topological entities hierarchically from
the bottom. The vertices are first inserted into the tree being placed
in the proper sized octants. Next the edges are inserted, in discrete

form, into the proper sized octants. Edge insertion is carried out by
traversing the edge starting from its first vertex, which already
exist in its apptbpriate sized octant. The intersection where the edge
leaves that octant is found and associated with that discrete segment
as well as a pointer back to the original edge it came from. The
intersection location where it exited the first octant is the starting
point of the discrete segment of the second octant, the size of which
is controlled by the mesh control information applied to the edge. The
intersection where it exits that octant 1is found and the segment
stored. This process is continued until the edge’s second vertex is
found. The faces of the object are then inserted in discrete form
using the existing edge information and the intersections of the sides
of octants with the surface patches making up the face. The definition
of the octants containing the boundary of the object, referred to as
cut octants, is completed by qualifying which side of the discrete
boundary existing in the octant is inside the object. This operation
requires a specific set of geometric checks. The interior octants
within the finite octree are then quickly filled by a simple tree

traversal process.

The finite element mesh is then generated within each of the octants
using the tree to pass octant face mesh information required to insure
a compatible mesh. The tetrahedronization scheme used for interior

-15-

octants need only deal with a shape that is topologically a cube with
nodes at the corner and the possibility of mid-side and mid-face nodes
if the neighboring octants are one level finer as is allowed in the
mesh generator. The tetrahedronization of the boundary octants is more
complex in that it employs the above information plus the discrete
boundary information and specific geometric interrogations of the
original description of those entities when needed. A nodal
repositioning procedure to improve the shapes of the elements can also
be invoked. Figure 5 shows an example mesh generated with this

procedure.
Speed of Automatic Mesh Generators

The limited experience available to date indicates that the amount of
computation needed to generate a mesh of a few thousand elements for a
general three-dimensional geometry will be of the same order of
magnitude as a linear analysis carried out on that system. Therefore,
the computational efficiency of these procedures is of critical
importance. The two measures of computational efficiency of importance
are the time required by the given algorithms to generate comparable
meshes and, even more importantly, the computational growth rate of
the mesh generator. Tests run to date on complex two-dimensional
geometries indicates that the implementation of various approaches
yields speed differences that vary by more that an order of magnitude.
(The test referred to are proprietary to the company that ran the test
and can not be presented here.)

The various algorithmic approaches also demonstrate different growth
rates. The approach with the greatest amount of theoretical results is
Delaunay triangulation which, 1in the two-dimensional case (41],
indicate an O(n log(leg n)), where n is the number of points,
computational time as being possible. (In two-dimensions the number of
elements is of the same order as the number of nodes [42].)
Computational results of an implemented three-dimensional algorithm
gave 0O(n**5/3) computer times [11]. (In the three-dimensional case,
the number of elements can be from O(n) to O(n**2) [42]. However, it

-16-

appears that in most practical cases the number of elements will be .
O(n).)

The best computational growth rate obtained thus far is linear, 0o(n),
[26,34]. Joe and Simpson carried out a detailed study of the
computational effort required for their two-dimensional algorithm and
demonstrated times that were linear and asymptotic with one of the
steps of the algorithm. The finite quadtree two-dimensional (34] and
finite octree three-dimensional mesh generators also demonstrates a
linear growth rate with the number of elements.

A Priori Control of Element Distributions

In addition to the ability to generate a valid mesh for any geometry,
automatic mesh generators must permit the types of mesh gradations
necessary to produce efficient finite element models. Ideally, the
mesh control devices available allow for the convenient specification
of both a priori and a posteriori mesh control information. A priori

mesh control devices are used to specify the distribution of elements
in the initial finite element model, while a posteriori mesh control
devices are used during an adaptive analysis process [43] to improve
the mesh as dictated by the results on the current mesh.

The devices available to control the distribution of elements
throughout the domain of an object is at least partly a function of
the mesh generation algorithm used. The ease with which particular
forms of mesh control can be exercised is a function of both the mesh
geheration algorithm and its implementation.

Since the basic input to an automatic mesh generator is a geometric
representation, any a priori mesh control device must be tied to the
geometric representation. This means that a priori mesh control can
also be a function of the particular geometric modeling approach used.
For example, mesh control information could be tied to the individual

primitives used 1is a constructive solid geometry modeling system and

thus stored as attribute information tied to that primitive in the

-17-

binary tree used to store the primitives and Boolean operations
carried out on them [1]. Although this may be a natural approach for
use with constructive solid geometries and mesh generators designed to
operate with such modelers [16], it is not general, and it most likely
does not provide the type of mesh control that users of a priori mesh
control devices would expect. A more general method to define mesh
control information 1is to tie this information to the model through
the topological entities in the boundary representation of the object.
This method has the advantage of allowing for convenient specification
of mesh gradations by assigning mesh control information to the
individual vertices, edges, faces and regions that make up the domain
to be meshed in such a manner that any type of mesh gradations that
are desired and can be handled by the mesh generator will be produced.
It is also a reasonably general approach since an object has a unique
boundary representation which can be produced from any of the
evaluatéd solid geometric modeling approaches (1,2,44,45]. 1In
addition, most of the geometric modeling systems provide the ability
to produce the boundary representation of the object no matter which

solid modeling approach is used.

Automatic mesh generators that operate by removal of individual
subdomains [20-26] and recursive subdivision [30,31] rely on boundary
information and are well suited to employ mesh control information
tied to the edges of the boundary. They are typically less suited for
mesh control information defined in terms of the faces and regions
that make up the domain of the object. However, it is possible with
the appropriate implementation considerations to reflect that type of
mesh control information in the mesh generation process.

The mesh control devices for automatic mesh generators that
triangulate a set of points in space [10-14,16] are used to control
the distribution of points in space. This has the advantage that any
spatially-based procedure to place points in space can be used to
control their distribution. The disadvantage is that, as indicated in
the previous section, good procedures to define points throughout
general three-dimensional domains are difficult to devise. It would be

-18-

desirable to construct procedures that are able to do this by
specifying mesh control information to the various boundary entities
of the object.

Mesh generators based on spatial decomposition also have the advantage
of easily reflecting spatially-based mesh control so long as this
information can be defined in such a manner that the decomposition can
properly be reflected. The ease with which this can be carried out is
a strong function of particular decomposition algorithm and its
implementation. Since the finite quadtree {33,34] and finite octree
[36,37] operate by inserting the boundary entities of the object into
the tree following the hierarchy of topological entities, they are
well suited for the specification of boundary-based a priori mesh
control information [38]). Figure 6a shows a uniform finite quadtree
mesh for an object when all the mesh control parameters for the
vertices, edges and regions are the same, while Fig. 6b shows a mesh
for the same object by simply changing the values of the mesh control
parameters for some of the vertices and edges (Fig. 6c). Figure 7
shows two finite octree meshes for the same object with the only
difference in mesh control parameters being the values along one edge.

INTEGRATION OF AUTOMATIC MESH GENERATORS WITH GEOMETRIC MODELERS

As indicated in the previous section, automatic mesh generators are
geometrically very demanding. In particular, they require a large
number of geometric interrogations; and, depending on the meshing
algorithm, a large number of geometric model modifications to operate.
Therefore, they are not well suited to a static interface with
geometric modeling systems in which all that is available to the mesh
generator from the geometric modeling system is an output file of the
geometric representation [46]. Assuming that a common format is used
for this file, this approach has the disadvantage of requiring all the
geometric modeling functionality needed by the mesh generator be
reproduced within the mesh generator. Assuming that this functionality
already exist within the geometric modeling system, which is typically
the case, the development of that capability in the mesh generator is

-19-

a redundant effort that has to be repeated for each new geometry form

to which the mesh generator is interfaced.

An alternative approach is td employ a dynamic interface in which the
mesh generation algorithms can interact directly with a geometric
modeling system through a set of procedures, to be referred to as
geometric communication operators, that can perform specific geometric
interrogations and modifications. The definition of geametric
communication operators is being considered for geometrically-based
applications ([47], as well as those needed specifically for mesh
generation [48]. One approach to effectively employing geometric
communication operators in a finite element modeling system is to have
the input information used directly by the finite element modeling
software be the topological description of the object. Topology
represents an abstraction that is independent of the specifics of the
geometric definition, but does contain the connectivity information
necessary to control finite element modeling software which operates
through a set of geometric communication operators. One topological
represeﬁtation well suited to this application is Weiler’s
non-manifold radial edge data structure (45]. A high level design of
such a system is contained in [49].

The discussion below assumes a dynamic interface between the automatic
mesh generators and the geometric modeling system. See reference [48]
for a more specific discussion of the geometric communication
operators needed to support the various automatic mesh generation
approaches.

The integration of an automatic mesh generator with a geometric
modeling system requires a substantially different set of geometric
communication operators than is needed for interactive finite element
model generation. The complexity of the interface of an automatic mesh
generator with a solid modeler is a function of the algorithmic
approach underlying the mesh generator. Mesh generation algorithms
that operate through geometric interrogation only require a simpler

set of geometric communication operators than needed by mesh

-20-

generators that must both interrogate and modify the geometric ‘
representation during the mesh generation process. In general, the
majority of computational effort required for automatic mesh
generation is spent in carrying out geometric communication
operations. Since geometric interrogations typically require much less
computation than geometric modifications, mesh generators requiring
geometric interrogation are typically more efficient, on a per element

basis.

Two of the four algorithmic approaches to automatic mesh generation
discussed above require geometric interrogation only. They are point
placement followed by triangulation, and spatial decomposition
followed by subdomain meshing. The other two, removal of individual -
subdomains and recursive subdivision, require both geometric
interrogation and modification. To better see this differentiation,
consider the comparison of the interactions with a geometric
representation for both an element-by-element removal algorithm and
the finite octree approach. In the element-by-element removal process,

topological and geometric interrogations are used to look for a
candidate feature to be carved off; geometric interrogations are used
to see if that removal is valid; and finally the feature is removed.
Since the next element removal must consider the geometry as it stands
after the current element was removed, the geometric model must be
updated by the use of geometric modification operators to reflect this
removal. In contrast, the primary geometry-related task in the finite
octree mesh generator is to determine how the boundary of the object
interacts with the appropriate sized octants in the tree. This
information is obtained through geometric interrogation only by
intersecting the boundary entities of the object with the appropriate
boundary features of the octants. The only other geometric
communication operators needed for this and the rest of the meshing
process are the interrogation operators of point classification, the
conversion from parametric and real coordinates, and the conversion

from real to parametric coordinates.

Although the algorithmic approaches to automatic mesh generation and.

-21-

the geometric modeling procedures are available, the sets of geometric
communication operators needed to properly integrate them are not
readily available. Since the wvast majority of these operators
represent operations that the geometric modeler must already support,
there is no major technical hurdles to be overcome to provide this

functionality for finite element modeling.

ADAPTIVE ANALYSIS AND A POSTERIORI MESH CONTROL FOR AUTOMATIC MESH
GENERATORS

As the finite element technique becomes more heavily used by designers
who do not possess extensive expertise in numerical analysis, there is
not only a need to improve the speed and robustness of the model
generation procedures, but a need to insure that the analysis results
produced are of sufficient accuracy to be meaningful. As in the case
of the model generation process, increasing the robustness of the
analysis to produce a prespecified degree of accuracy is best obtained
through the development of automated procedures for that purpose. This
is the goal of efforts on the development of adaptive finite element
analysis procedures.

In an adaptive finite element analysis procedure, the solution results
on a given mesh, in combination with a knowledge of that mesh, are
used to both estimate the accuracy of that solution as well as how to
best improve the mesh to efficiently obtain the level of accuracy
desired. The major components of such a system include;

1. finite element equation formulation and evaluation
algorithms,

2. a posteriori error estimation techniques to estimate the
discretization errors in the current solution,

3. error indication, or alternatively, correction indication
to determine where and, in the ideal case, how to improve
the finite element discretization, and

4. mesh improvement schemes to improve the finite element
discretization as indicated by the error or correction

-22-

indicators.

Since adaptive finite element analysis employs a feedback procedure
which requires a number of solutions to sets of related finite element
equations, the techniques used for each of the component portions of
the system must be able to operate in an efficient manner. In addition
to being able to efficiently solve related sets of finite element
equations, the development of these systems must consider the most
appropriate mesh generation and update procedures to be used with the
various adaptive analysis approaches. Since this paper is primarily
concerned with the automatic generation and control of finite element
meshes, this section is concerned with the use of various automatic
mesh generators and mesh update procedures appropriate for use with
them. It first introduces some of the basic concepts and terminology
of a posteriori error estimation to place the remainder of the section
into context. The reader interested in more detail on error
estimation, as well as the efficient solution of the evolving sets of
algebraic equations arising in such systems, should begin by
consulting t43] and the appropriate references sighted in the

remainder of this section.
Overview of A Posteriori Error Estimation

A critical aspect of an adaptive analysis process is the estimation of
the discretization errors present in a given solution as well as
determination of how to most efficiently improve the finite element
model to obtain the level of accuracy desired. Since a priori finite
element error estimates can only indicate the convergence rate [50],
useful error estimates must employ a posteriori techniques which use
the analysis results to estimate the overall discretization error in
one or more solution norms. The concepts and techniques used to
calculate a posteriori error estimates and to determine how to most
efficiently improve a finite element discretization have begun to
mature since the early pioneering works of Babuska and his co-workers

(see [51-53] for example).

~23-

Investigators in the area of adaptive finite element techniques
(43,54]) agree that the primary function of a useful a posteriori error
estimator, E, 1is to provide a convergent and accurate measure of the
discretization error, e, of a given finite element solution. The
commonly used measure of the accuracy of an error estimator is the
effectivity index, ©, which 1is defined for the 3jth mesh in a

convergent sequence of meshes, K, as:

. A
(kj)

||u‘uj|| (1)

where u is the exact solution and uj is the finite element solution on
mesh j. One required property of a wuseful a posteriori error
estimator is
le(k.) -1.0] »0as j» = : (2)
J
The practical measurement of the usefulness of an a posteriori
estimator is to apply it to a set of problems with known solutions

(either analytic or very accurate numerical solution) and to calculate
the effectivity indices for a sequence of adaptively refined meshes.

In addition to the necessary requirement that the effectivity index
for an a posteriori error estimator be close to one, there are two
additional desirable properties. The first is that the computations
of the error estimate, E, be an accurate approximate to the true
error, e, on as local a basis as pointwise evaluations. This allows
the estimate to be used to measure errors in any of a number of norms
as opposed to only integrated norms. The second property is that the
estimates, both local and global, be inexpensive to evaluate relative
to the effort required to calculate the finite element solution. These
two properties tend to work against each other. Estimates that are
computationally efficient, with a computational cost on the order of
n, where n is the number of unknowns in the finite element model, are
often accurate only for specific global norms defined in terms of
integrals over domain. On the other hand expensive estimates that
require the same order of computation as the original solution

-24-

(typically O(n‘), 1.5 ¢ « < 2) are more likely to give useful'

estimates for any norm.

To demonstrate some of the basic concepts of error estimation consider
a model elliptic [55] problem defined in two dimensions as

-%a%u + bu = - 3 (a du) - 3 (du) + bu = f(x,y), (x,y) €
ax 9x Yy Yy

(3a)

subject to

u(x,y) = 0 (x,y) € 391 (3b)
du
n = g (x,y) € 892 (3c)

I = 391 v 392

where .

Q is a bounded region in'R2

92 is the boundary of @

n is the unit outward normal to 23Q

a(x,y), b(x,y) and £f(x,y) are given functions meeting the necessary
smoothness criteria subject to a(x,y)>0 and b(x,y)20 ¥(x,y)eQ

The weak form of solution to this problem is to find ueH1 such that

A(u,v) = (£,v) + <q'v>392 ¥ veHi (4a)
where

A(u,v) = IQ[aVu.Vv + buv]de (4b)

(E£,v) = IQ fv de (4c)

<q, V>4 = Iaq qv ds (44d)

2 2

and Hlo is the set of all functions contained in Hl which are zero on‘
891. Recall that the space Hl contains all functions for which the

-25-

function and its first partials are square integrable over the domain.

A finite element approximation, UsStCHl to u is obtained by solving

A(U,V) = (£,V) + <q,V> ¥ Ves (5)
392 t
where the basis function selected for U and V are piecewise
polynominals defined over individual elements of the triangulation of
the domain 9 such that c®

maintained. This allows the integrals in equation (5) to be carried

inter-element continuity (50,56] is
out over the individual finite elements, %, and then properly summed.

After the system is solved for U, the goal to obtain a useful
approximation, E, to the actual error, e = u - U, measured in an
approximate norm. The most direct means to do this is to replace u by
U + e in equation (4) yielding

A(e,v) = (f,v) + <q,v>aQZ - A(U,v) ¥ veHi (6)

and to replace e and v by piecewise polynomial basis functions,

Eest*CHl, to yield the error estimate

* * * R x *
A(E,Vv) = (£,V) + <q,V > - A(u,Vv) ¥V e§
392 t

(7)

It is important to note that the space spanned by the basis function
* *
S, can not be just any set within Hl. For example, assume that S, =

St in which case
k4 * * %
A(E,V) = (frv) + <q:V >ag - A(U,V) = (f,V)
2

+ <q,V> - A(U,V) ¥ VeS
9

92 t

(8)

which is zero by equation (5). To provide useful estimates of the
errors St* must be a richer space than Sg- Oni possible choice is to
use polynomials of one order higher for St which is the approach
taken by a number of investigators including Babuska and Miller ([57]

-26-

who wused piecewise biquadric functions for E and v" when the finite‘

element solution, U and V employed bilinear functions. As stéted in
equation (8), the computational effort required to solve the error
estimation equations is on the same order as the original finite
element analysis. To reduce this computational cost additional
approximations are necessary. For example, Adjerid and Flaherty
[58,59] employed nodal superconvergence by neglecting the errors at
the nodes relative to that within the element to reduce the solution
of the error equations to the solution of a number of local Dirichlet
problems associated with the nodes.

Another approach to the derivation of the error equation is to replace
u by U + e in the equation (3) substituting this into the weighted

residual form and applying the divergence theorem which yields the
elemental level error expression [55,60]

A(e,v)Q = (f,v)Q + <q, V>0 - A(U,v)Q + <aun 'V a9 ¥ vsHé

i i 2i i i

(9)

A(u,v)Q - Ig [a9uVv + buv]d® (9b)

i i
(f,v)Q‘ = Ig, fv in {9¢c)
i i
<aUn 'V>agz Iagi aunv ds (9d)

where

Qe is the domain of the element, 3Q, is its boundary, uy, is the normal

derivative of u on the element boundary.

A key to the application of (9a) is the evaluation of the third term
on the right hand side since it contains the only unknown, uy,. A
possible approximation for measuring this term is to use the average
value obtained from the two elements sharing the boundary which, when

applied with a specific set of weight functions, V*, yields

-27-

* * + - *
. A(E,v*)gi- (f,v*)giq- <q,V >agi— A(U,V)Qi+ 1/2 <a(Un + Un), v >aQi
* %*
¥V eSt

(10)

where U+n and U_n denote the value of the normal derivatives on either

side of the edge.

An alternative form of the elemental error equation can be obtained by
integrating the third term on the right hand side of equation (9) by
parts to give

A(e,v)Qi - Ar(U'v)Qi + <q,v>aQZi - <aUn ,v>aQi + <aun ,v>aQi

1
¥ veHO

(1la)

where the first term on the right hand side of equation (lla) is the
‘ weighted integral of the residual over the element of the finite
element solution defined as)

1
Ar(U'v)Qi = Igi (v(avu)v - buv + fv) d@ ¥ veHo
(11b)

Again, a key aspect of working with this form, referred to as the
residual form, of the error estimate is dealing with the last term on
the right hand side of -equation . (1la) which is a function of the
unknown solution ﬁ. A more appropriate method to account for this
term in the residual form of the error estimate is to combine it with
the other boundary terms in equation (11a) producing the
so called jump term, <AaUn,v>aQQdefined as
1

<a(un - uh)’v>39i' agi ¢ 392
<AaUn 'V a0
‘ <(q - aUh)'v>39i' aszi € 892

(12)
-28-

where

a(u, - U) v ds

<a{u, - U = [
3Qi SQi n n

n n’ v>

<(q - aUn),v>aQi = Iagi (£ - aUn) v ds
Thus the jump term represents a weighted integral of the difference
between the normal derivatives of the exact and finite element
solutions for those portions of the element boundary upon which the
normal derivatives have not been defined, and a weighted residual of
the difference between the prescribed normal derivatives and the
normal derivatives of the finite element solution on the portions of
the element boundary upon which the normal derivatives are prescribed.
This form 1leads to a natural selection for an approximation to the
jump term when an estimate to the error is to be obtained. Selecting
a set of weighting function, V*, an approximation to the error is
obtained as

* %* * % %* *
A(E,V)Q = Ar(U,V)Q + <AaUn,V > 30 ¥V eSt
i i i
(13a)
where
(1/2<a(ut - vD),v"
<AaUn,V >39 = *
i <(q - aUn),V>aQ. ’ 391 € 392

i
(13b)

The term (Un+ - U
two elements.

n‘) represents the jump in normal derivatives between

A number of investigators [51,52,60-64] have used equation (13) with
various selections of finite subspace(s), St*’ for the functions, V*,
outlined above. It is interesting to note that in the application of
equation (13) with 1linear or bilinear finite elements the jump term
tends to dominate the a posteriori error estimator. This observation

-29-

has recently been confirmed by Babuska and Yu [62,63] who proved that
the discretization error for odd-order elements is primarily due to

the jump terms. They have also shown [(62,63] that when even order
elements are used, the interior residual, Ar(U,V*), dominates the
discretization error estimate. This allows one to neglect the jump

terms in these cases which means the error estimation process requires
only element integrals which can greatly reduce the programming
complexity of adaptive analysis procedures [64] by avoiding the need
to track and calculate the interelement boundary integrals.

Mesh Improvement in Adaptive Analysis

After an estimate to the total error is obtained, the next step is to
determine how to improve the finite element model such that the
desired level of accuracy is obtained. One method to do this is by the
uniform improvement of the entire mesh by either subdividing each
element into a number of new elements of the same type (h-refinement)
or increasing the polynomial order of all elements (p-refinement).
Although convergent, such an approach is unsatisfactofy from the
viewpoint of computational efficiency. It also turns out to be
unsatisfactory for wuse with many of the error estimation procedures
since the accuracy of the estimate often depends on the mesh having a
near optimum mesh distribution. Therefore, it is important to devise a
means to improve the finite element discretization is an optimal, or

near optimal, manner.

One approach to generating a near optimum mesh that yields the
requested degree of accuracy is to directly employ the information
generated during the error estimation process. This 1is a fairly
straight forward process since the majority of the error estimation
procedures calculate elemental 1level contributions to the overall
error estimate equations, equations (10) or (13) for example, and sum
them in an appropriate manner to obtain the global error estimate.
That is

- Q

(14)

-30-

where n, is the contribution from element i and is referred to an the
elemental error indicator, and the exponent « is set so that the
summation is proper, for example «=2 if the error is measured in the
energy norm. A simple strategy to the development of a near optimal
mesh is to improve the discretization within individual elements when

n;2 A maxj nj 0<X<1 (15)
Although simple, such an approach develops meshes in which the n;'s
are nearly equal in each element. It has been proven that the optimum
mesh for one dimensional elliptic problems is one in which the error
indicators are equal, in an asymptotic sense, for all elements [65].
It has also been demonstrated numerically that equilibrating the
error indicators in meshes in higher dimensions is a near optimal
strategy for elliptic problems. This property, although often used and
seemingly reasonable, is not likely to be optimal for parabolic or
hyperbolic problems where the influence of time must be considered.

If more that a single procedure for mesh enrichment is available, such
as selecting between element subdivision or increasing the polynomial
order of selected elements for example, the error indicators n; can
not tell which would be more effective for a selected element.
Although the error indicators will properly dictate mesh improvement
in the asymptotic sense, they may not lead to the best selections in a
practical sense. For example, assume the mesh improvement is carried
out by adding higher order polynomial shape functions and that the
error existing in the solution is orthogonal to that new term. In this
case, the addition of that term will not reduce the solution error. To
address this, the concept of a correction indicator, Yy has been
introduced [66]. The function of a correction indicator is to estimate
the amount of solution improvement that will be gained by the
application of a particular mesh enrichment procedure. By evaluating
several possibilities, one can select that which will yield the
greatest improvements. (It should be noted that most error indicators
are correction indicators for one particular enrichment method.) This
concept appears well suited for use with hierarchic mesh enrichment
-31-

procedures [66].

Once the portions of the mesh requiring improvement are determined,
the finite element discretization in that area must be improved. There
are a number of techniques available to carry out these improvements

including;

1. relocating the positions of nodes within a given finite
element mesh topology (r-refinement),

2. subdividing selected elements into smaller elements of the
same type (h-refinement),

3. increasing the polynomial order of selected elements
(p-refinement),

4. defining an entirely new mesh topology with an improved
distribution of elements,

5. wvarious combinations of two or more of the above
techniques.

Each approach has its advantages and disadvantages with the most
‘efficient approach being dependent of the class of equation being
solved, smoothness of the solution, dimension of the domain of the
solution, and the overall modeling and computing environment

available.

The earliest methods for adaptively improving finite element meshes
considered the .positions of the node points of a given mesh as
unknowns in the energy functionality governing the system [67,68]. The
resulting minimization problem, with appropriate constraints to insure
the domain and mesh topology remained unaltered, was then solved to
provide both the positions of the nodes and the values of the primary
unknowns at those nodes. Although the use of this approach, coupled
with a standard minimization procedure for nonlinear merit function
and constraints, is not commonly used for the solution of elliptic
equations, r-refinement techniques based on more direct node moving
criteria are being successfully used for the solutions to nonlinear
parabolic and hyperbolic problems. In these cases, the original

-32-

partial differential -equations are reduced to a set of ordinary.
differential equations (ODE’s) in time by the introduction of the
finite element discretization into an appropriately defined functional
which has the amplitudes of the functions at the nodes and the
velocity of the nodal positions as unknowns [69]. The functionality
used contains a specific penalty term to insure the mesh remains
valid. These problem types require time marching, and in the nonlinear
case, iteration. Therefore, the extra computation required to .
calculate improved positions for the nodes can be more than
compensated for by the fact that a much coarser overall mesh can be
used. In fact, it has been found [69] that very accurate results can

be obtained for some classes of problems by using r-refinement methods

on coarse meshes. A drawback of r-refinement methods is that since
these methods do not introduce new degrees of freedom into the system,
there is a limit on the solution accuracy possible which is dependent

of the number of elements and initial mesh topology. These methods
also require special care to maintain the validity and numerical
stability of meshes as the nodes move. The complexity of dealing with.
the mesh validity and numerical stability increases drastically as one

increases the dimensionality of the problem.

One of the most commonly used methods to increase the numbers of
degrees of freedom in a finite element mesh is to introduce more
elements of the same type into the mesh. In a feedback procedure, this
is typically done by subdividing selected elements into a new set of
elements of the same type, thus decreasing the size of the elements in
that area. This approach is referred to as h-refinement because the
mesh improvements are carried out by reducing the size of elements

which is typically measures in terms of a length parameter h.

There are a number of methods possible to subdividing selected
elements into new ones, however, care must be exercised in the
selection and application of procedures. An important consideration is
the control of the shape of the element, particularly if several

levels of refinement are applied is which case a refinement procedure

that causes deterioration in element shapes can lead to elements with

-33-

numerical conditioning problems. This concern leads to the use of
element bisection methods in which the subelements formed are similar
in shape to the parent element [70-73]. Figure 8 demonstrates the
application of element bisection of a single element 1in both a
quadrilateral and trianqular mesh. In each scheme, a subdivided
element is replaced by four subelements with nodes introduced at the
midpoint of each of the original element sides. If these new nodes lie
along the edge of an element that is not subdivided, such as nodes 7
and 8 in the quadrilateral mesh and node 6 in the triangular mesh,
constraint equations must be written to maintain the continuity
requirements along that edge. The handling of the constraints, as well
as the efficient solution of the sequence of meshes defined as the
process continues, can be addressed by the careful selection of data
structures and solution algorithms [35,71-75].

H-refinement procedures for triangles have been devised in which the
need for constraint equations are avoided [74-76]. This is done by
allowing elements neighboring subdivided elements to be split in a
manner that constraints are not needed to maintain continuity. This
splitting does reduce the shape quality of the element, however, it is
only applied for one level; and, in a temporary manner such that if
those elements are to be subdivided, the subdivision is applied to the

original element.

An advantage of the p-refinement method 1is that improvements in
solution accuracy are obtained by increasing the polynomial order of
selected elements without the need to alter the mesh topology. This
process is made even more effective by the use of hierarchic finite
element elements where the shape functions for an element of order p
is a subset of those for the element of order p+l (61,66,77] which
means the stiffness equations for an enriched mesh can be efficiently
generated by simply adding new terms to the previous stiffness matrix.
It is also possible to employ these shape functions in a manner that
avoids the need to write constraint equations to maintain
inter-element continuity when elements of different polynomial orders
neighbor each other. Another benefit of p-refinement procedures is

-34-

that the rate of convergence, in the energy norm when defined in terms ‘
of the number of unknowns, is better in elliptic problems with
singularities [79,80]. For these reasons, these approaches are

receiving considerable attention in the adaptive analysis literature.

Another feedback approach to the development of improved finite
element meshes is to use the results on the current mesh to guide the
generation of an entirely new mesh. Simplistically, this approach
could be considered a combination of r- and h-refinement which need
not suffer from the basic restrictions of either. That is, it can be
structured to allow the equivalent of node movement, but without the
restrictions of maintaining a fixed mesh topology, and it allows the
number of elements to be increased without the need to consider
constraint equations. The two questions that must be addressed in the
application of such an approach are; the information to dictate the
element distributions and how a new mesh will be generated based on
that information. One approach that has been developed plotted
contours of a specific solution parameter that gave the analyst an.
indication of how the mesh should be distributed and then allowed.
him/her to then interactively generate a new mesh that followed those
contours [81]. A more recent approach defines a mesh density function
over the domain of interest that is then used by an automatic mesh
generator to generate a new mesh that has an appropriate element
distribution to efficiently calculate a solution of the required level
of accuracy [82].

In addition to the individual application of the above mesh enrichment
schemes, it is possible to apply them in various combinations. For
some classes of problems, the proper combination of two techniques
appears quite appropriate. The first is the combination of r- and
h-refinement techniques for the solution of parabolic or hyperbolic
equations. In these problem types, it is often possible to obtain
greatly improved solutions with only a given amount of mesh motion.
However, since r-refinement methods do not allow for an increase in

the number of unknowns, it may not be possible to obtain the required

degree of accuracy with them alone. Therefore, the addition of

-35-

h-refinement where needed can supply the additional unknowns needed.

In the case of elliptic problems with singularities present, it has
been shown [28,29,80,83] that the proper combination of h- and
p-refinement can be an extremely efficient combination. In particular,
is has been shown that optimal hp-refinement procedures can give
exponential rates of convergence in the energy norm in terms of the

number of degrees of freedom.
Automatic Mesh Generators and A Posteriori Mesh Control

The various mesh enrichment $chemes indicated above can be combined
with automatic mesh generators to provide the mesh generation and
control needed for the development of automated £finite element
analysis systems. One aspect of combining the mesh enrichment
procedure directly with the functionality of an automatic mesh
generator is that the mesh refinement can be carried out such that the
mesh’s approximation to the domain being analyzed is improved as the
mesh is improved. For example, consider the use of h-refinement where_
the boundaries of the domaih are curved, but the initial, coarse mesh
consist of straight sided elements. If the element refinement is
carried out based on the element information only, the meshes
approximation to the boundary is never improved over that defined by
the initial mesh. However, if a close 1link back to the original
geometry is maintained through the mesh generator, the refinement
process can use the capabilities of the automatic mesh generator to
place new boundary nodes on the boundary of the object.

In general, there are specific combinations of algorithmic approaches
to automatic mesh generation and mesh refinement that are appropriate
for three-dimensional geometries. Mesh generation algorithms based on
Delaunay triangulation are well suited for use with h-refinement
schemes that avoid the need to apply constraint equations. This can be
done by using the error indicators to place additional points in those
portions of the mesh that are not fine enough. Then Watson’s algorithm
[15] can be wused to determine the affected elements to be removed,

-36-

thus creating new elements using the added node inside the element. .
Approaches of this type have been developed for two-dimensional
domains [84-85] in which minor alterations to the strict adherence to

a Delaunay mesh properties have been made. Since the basic Delaunay
mesh properties cause complications in the three-dimensional case,
similar modifications are likely.

The application of h-refinement in combination with mesh generators
based on spatial decomposition is an attractive combination since the
tree structure used to store the decomposition of the domain can be
used effectively in the adaptive process (35,38,76]. In this approach,
the mesh refinement would be carried out by the appropriate refinement
of the «cells of the decomposition based on the values of the error
indicators of the elements inside the cell. Since the tree used to
define the spatial decomposition can maintain pointers back to the
geometric entities located within it [24,38,76], the enrichment of the
mesh in that cell can efficiently account for any geometry
approximation improvements. This is an important feature in the

three-dimensional case since the amount of computation required for
the mesh generation process is high and any localization of the
process possible leads to substantial computational savings.

Approaches have been developed that combine h-refinement and sﬁatial
decomposition mesh generators that do [35] and do not [38,76] require
the application of constraint equations. In both cases, the tree
structure plays a critical role.

In the case where mesh refinement is carried out by cell bisection
only [35], it is necessary to apply constraints on the cell boundaries
when there is a 1level (cell size) difference. However, by the
appropriate use of the information in the tree structure, not only can
the need to apply constraints be quickly determined, but, with the
right combination of solution procedures, the finite element solution,
including constraints, can be efficiently calculated [35]. (Since an
adaptive analysis process requires a number of analyses, the

advantageous use of this tree structure to control the entire solution

-37-~

process can lead to substantial computational savings).

The need to apply constraint equations can be avoided by directly
employing all the features of the automatic mesh generator. For
example, procedures have been developed for the finite quadtree [34]
and finite octree mesh generators [24,37] that use the tree structure
to determine the cells that are affected by mesh refinement to re-mesh
only those cells, at their new levels, using the facilities of the
mesh generator (76]. This process is depicted graphically in Figure 9
for a finite quadtree example. The mesh before refinement is shown in
Fig. 9a, while Fig. 9b shows the area that is affected by the
refinement removed. The cells at their new levels are then defined,
Fig. 9c, and the mesh topology is created in those cells thus creating
the refined mesh shown in Fig. 9d. Figure 9d also demonstrated the
automatic improvement of geometry approximation gained by doing the
refinement through the functionality of the mesh generator. The
process is identical in the three-dimensional case. The same concepts
can be used to perform de-refinement in portions of the model where
the error indicators say the mesh is finer than needed. Such a
capability is particularly useful in time dependent problems where the
critical regions of the model change with time.

The generation of entirely new meshes based on the error indicators is
also possible with automatic mesh generators based on spatial
decomposition. In this case, all that is needed is information that
dictates the levels of the tree, and thus the cell sizes, for all the
cells. This process is in fact much the same as the local remeshing
procedures indicated above, except the entire mesh is redone instead
of refining and/or de-refining only portions of the model.

The use of automatic mesh generators for hp-refinement is another
possibility. Since the basic form of the mesh can be indicated in an a
priori manner based on the geometry and analysis attributes (loads,
material properties and boundary conditions) [24,28,29], the initial
mesh can be generated using the proper basic mesh topology. The
adaptive mesh updates then <consists of only some minor mesh

-38-

enhancements in 1local regions and increasing the polynomial order of.

selected elements. As indicated previously, not all automatic meshing
approaches can produce the coarse exponentially graded meshes needed
for these cases. However, a properly constructed element removal mesh
generator can produce the meshes needed. This mesh generator would
generate the initial mesh [24] by first invoking an operator that
isolates and removes all singularities. The remaining operators then
create the coarsest possible mesh in the rest or the domain (see Fig.
3 for such an example). An initial analysis can be carried out and the
results used to determine the number of layers of elements needed
around the singularity [28]. These can then be easily inserted and

adaptive analysis using p-refinement continued.

CONCLUDING REMARKS

This paper has reviewed the algorithmic approaches currently available
for the truly automatic generation of finite element meshes. Although
these approaches have been under consideration for a number of years
for two-dimensional domains, it is the recent efforts on
three-dimensional techniques, coupled with the geometric modeling
procedures needed to support them, that is making them an important
capability needed to improve the general usefulness of the finite
element method in engineering design. Mesh generators of the type
discussed in this paper are beginning to become available to the
finite element user community. By their nature, they will require
substantially more computational effort than other techniques.
However, the amount of user input required to use them will reduce the
amount of user time needed to generate a valid finite element mesh to
a small fraction of what is required using other techniques.

To be used most effectively, these mesh generation procedures must be
coupled with adaptive analysis procedures that can insure that the
final mesh yields the requested degree of accuracy. Without adaptive
analysis procedures based on reliable a posteriori error estimators,
the analyst will need to wuse a priori mesh control techniques to
generate the desired element distributions. However, more importantly,

-39-

the analyst will not know if the results produced insure the desired
level of accuracy. Although adaptive techniques to completely control
errors in any norm of interest are not yet available, the currently
available techniques do represent an important capability that can be
effectively used to produce much more reliable finite element results.

Increasing the 1level of automation ‘and reliability in the finite
element modeling process is necessary if finite element analysis is to
be a common part of engineering design. Ultimately, consideration need
be given to the complete automation of the finite element modeling
process.

ACKNOWLEDGEMENTS

The author would like to acknowledge the input of Professor Joseph E.
Flaherty for his review of the section on a-posteriori error
estimation and the efforts of Peggy L. Baehmann, Kurt R. Grice and
Marcel K. Georges for developing the programs used to generate most of
the finite element models shown in the figures.

The support of the National Science Foundation, under Grant
MSM83-05950 and DCM-8603025 and the Industrial Associates of the RPI

Center for Interactive Computer Graphics. Any opinions expressed in
this paper are those of the author and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

1. A.A.G. Riquicha and H.B. Voelcker, "Solid Modeling: A
Historical Summary and Contemporary Assessment", IEEE Computer
Graphics and Applications, Vol. 3, No. 2, 1982, pp. 9-24.

2. A.A.G. Riquicha and H.B. Voelcker, "Solid Modeling: Current
Status and Research Directions", IEEE Computer Graphics and
Applications, Vol. 3, No. 7, October 1983, pp. 25-37.

3. M.S. Pickett and J.W. Boyse, Eds., Solid Modeling by Computers:
From Theory to Applications, Plenum Press, 1984.

4. O0.C. Zienkiewicz and D.V. Phillips, "An Automatic Mesh
Generation Scheme for Plane and Curved Surfaces by
Isoparametric Co-ordinates", Int. J. Num. Meth. Engng., Vol. 3,

-40-

10.

11.

12.

13.

14.

15.

16.

17.

18.

No. 4, 1971, pp. 519-528.

wW.J. Gordon and C.A. Hall, "Construction of Curvilinear
Co-ordinates Systems and Applications to Mesh Generation", Int.
J. Num. Meth. Engng., Vol. 7, 1973, pp. 461-477.

J.E. Thompson, Numerical Grid Generation, North-Holland, 1982.

W.A. Cook, "Body Oriented (Natural) Co-ordinates for Generating
Three Dimensional Meshes", Int. J. Num. Meth. Engng., vol. 8,
1974, pp. 27-43.

R.B. Haber, M.S. Shephard, J.F. Abel, R.H. Gallagher, and D.P.
Greenberg, "A Generalized Two-Dimensional Graphical Finite
Element Preprocessor Utilizing Discrete Transfinite Mappings",
Int. J. Num. Meth. Engng., Vol. 17, 1981, pp. 1015-1044.

W.R. Buell and B.A. Bush, "Mesh Generation - A Survey", Trans.
ASME J. of Engng. for Industry, Vol. 95, pp. 332-338, 1973.

c.0. Frederick, Y.C. Wong and F.W. Edge, "Two-Dimensional
Automatic Mesh Generation for Structural Analysis", Int. J.
Num. Meth. Engng., Vol. 2, 1970, pp. 113-144..

J.c. cavendish, D.A. Field and W.H. Frey, "An Approach to
Automatic Three-Dimensional Mesh Generation", 1Int. J. Num.
Meth. Engng., Vol. 21, 1985, pp. 329-347.

J.Cc. cavendish, "Automatic Triangulation of Arbitrary Planar
Domains for the Finite Element Method", Int. J. Num. Meth.
Engng., vol. 8, 1974, pp. 679-697.

Nguyen-Van-Phai, "automatic Mesh Generation with Tetrahedron
Elements", Int. J. Num. Meth. Engng., vol. 18, 1982, pp.
273-289.

R. Sibson, "Locally Equiangular Triangulations", The Computer
Journal, Vol. 21, No. 3, 1978, pp. 243-245.

D. F. Watson, "Computing . the n-Dimensional Delaunay
Tessellation with Applications to Voronoi Polytypes", The
Computer Journal, Vol. 24, No. 2, 1981.

Y.T. Lee, A. de Pennington and N.K. Shaw, "Automatic Finite
Element Mesh Generation from Geometric Models - A Point-Based
Approach"”, ACM Transactions on Graphics, Vol. 3, 1984, pp.
287-311.

S.H. Lo, "A New Mesh Generation Scheme for Arbitrary Planar
Domains", Int. J. Num. Meth. Engng., vol. 21, 1985, pp.
219-249.

D.A. Field, "Implementing Watson'’s Algorithm in Three
Dimensions", Proc. Second Annual ACM Symposium on Computational

—41-

19.

20.

21.

22.

23’

24.

25.

26.

27.

28.

29.

30.

Geometry, ACM 0-89791-194-6,/86,/0600,/246, 1986, pp. 246-259.

D.A. Field and W.H. Frey, "Automation of Tetrahedral Mesh
Generation", Research Publication GMR-4967, General Motors
Research Laboratories, Warren, MI, 1985.

B. Wordenweber, "Finite Element Mesh Generation",
Computer-Aided Design, Vol. 16, 1984, pp. 285-291.

T.C. Woo and T. Thomasa, "An Algorithm for Generating Solid
Elements in Objects with Holes", Computers and Structures, Vol.
18, No. 2, 1984, pp. 333-342.

E.A. Sadek, "A Scheme for the Automatic Generation of
Triangular Finite Elements", Int. J. Num. Meth. Engng., Vol.
15, 1980, pp. 1813-1822.

F.T. Tracy, "Graphical Pre- and Post-Processors for
Two-Dimensional Finite Element Programs", Computer Graphics,
Transactions of ACM, Vol. 13, 1977, pp. 8-12.

M.S. Shephard, K.R. Grice and M.K. Georges, "Some Recent
Advances in Automatic Mesh Generation", Modern Methods for
Automating Finite Element Mesh Generation, K. Baldwin, Ed.,
ASCE, NY, 1986, 1-18.

A. Bykat, "Automatic Generation of Triangular Grid: I -
Subdivision of General Convex Subregions, II - Triangulation of
Convex Polygons", Int. J. Num. Meth. Engng., Vol. 10, 1976, pp.
1329-1342.

B. Joe and R.B Simpson, "Trianqgular Meshes for Regions on
Complicated sShapes", Int. J. Num. Meth. Engng., Vol. 23, 1986,
pp. 751-778.

P.F. Charvez, "Automatic Mesh éeneration and Optimization from
the Solid Model Database", Modern Methods for Automating Finite
Element Mesh Generation, K. Baldwin, Ed., ASCE, NY, 1986, pp.

29-42.

I. Babuska and E. Rank, "An Expert-System-Like Approach in the
hp-Version of the Finite Element Method", 1Institute for
Physical Science and Technology Lab. for Num. Analysis,
TN BN-1048., University of Maryland, 1986.

B.A. Szabo, "Mesh Design for the p-Version of the Finite
Element Method", Computer Meth. in App. Mech. and Engng., Vol.
55, 1986, pp. 181-197.

M.L.C. Sluiter and D.L. Hansen, "A General Purpose Two- and

Three-Dimensional Mesh Generator", Computers in Engineering,
Vol. 3, L.E. Hulbert, Ed., Book No. G00217, ASME, 1982, pp.

29-34.

-42-

31.

32.

33.

34.

35’

36.

37.

38.

39.

40.

41.

42.

43.

A.J.C. Schoofs, L.H.Th.M. Van Beukering and M.L.C. Sluiter, "a
General Purpose Two-Dimensional Mesh Generator", Advances in
Engineering Software, Vol. 1, No. 3, 1979, pp. 131-136.

M.A. Yerry and M.S. Shephard, "Finite Element Mesh Generation
Based on a Modified-Quadtree Approach", IEEE Computer Graphics
and Applications, Vol. 3, No. 1, 1983, pp. 36-46.

M.S. Shephard and M.A. Yerry, "Approaching the Automatic
Generation of Finite Element Meshes", Computers in Mech.
Engng., Vol. 1, No. 4, 1983, pp. 49-56.

P.L. Baehmann, S.L. Wittchen, M.S. Shephard, K.R. Grice and
M.A. Yerry", Robust Geometrically-Based Automatic
Two-Dimensional Mesh Generation", TR-86007, Center for
Interactive Computer Graphics, RPI, Troy, NY, 1986, to appear,
Int. J. Num. Meth. Engng..

A. Kela, R. Perucchio and H.B. Voelcker, "Towards Automatic
Finite Element Analysis", Computers in Mech. Engng., July 1986,
pp. 57-71.

M.A. Yerry and M.S. Shephard, "Automatic Three-Dimensional Mesh
Generation for Three-Dimensional Solids", Computers and
Structures, Vol. 20, 1985, pp. 173-180.

M.A. Yerry and M.S. Shephard, "Automatic- Three-Dimensional Mesh
Generation by the Modified-Octree Technique", 1Int. J. Num.
Meth. Engng., Vol. 22, 1984, pp. 1965-1990.

M.S. Shephard, M.A. Yerry and P.L. Baehmann, "Automatic Mesh
Generation Allowing for Efficient A Priori and A Posteriori
Mesh Refinements", Computer Meth. in Appl. Mech. Engng., Vol.
55, 1986, pp. 161-180.

C.L. Jackins and S.L. Tanimoto, "Octrees and Their Use in the
Representation of Three-Dimensional Objects", Compt. Graph.
Image Process., Vol. 14, 1980, pp. 249-270.

D. Meagher, "Geometric Modeling Using Octree Encoding”,
Computer. Graph. Image Process., Vol. 19, 1982, pp. 129-147.

R.A. Dwyer, "A Simple Divide-and-Conquer Algorithm for
Constructing Delaunay Triangulations in O (n 1log 1log n)
Expected Time", Proc. Second Annual ACM Symposium on
Computational Geometry, ACM 0-89791-194/6/86,/0600/276, 1986,
pp. 276-284.

J.D. Bolssonnat and M. Tellaud, "A Hierarchical Representation
of Objects: The Delaunay Tree", Proc. Second Annual Symposium
on Computational Geometry, ACM 0-89791-194- 6/86,/0600/260,
1986, pp. 260-268.

I. Babuska, 0.C. Zienkiewicz, J. Gago and E.R. De A. Oliveria,
-43-

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Accuracy Estimates and Adaptive Refinements in Finite Element

Computations, John Wiley and Sons, Chichester, 1986.

K.J. Weiler, "Edge Based Data Structures for Solid Modeling in
Curved-Surface Environments", IEEE Computer Graphics and

Applications, Vol. 5, No. 1, January 1985, pp. 21-40.

K.J. Weiler, "Topological Structures for Geometric Modeling",
PhD Thesis, Center for Interactive Computer Graphics, TR-86032,
Rensselaer Polytechnic Institute, Troy, NY, 1986.

P.R. Wilson, "Data Transfer and Solid Modeling", Geometric

Modeling for CAD Applications, M.J. Wozny, H.W. Mclaughlin and

J.L. Encarnacao, Eds., North Holland, to appear.

"Applications Interface Specification (Restructured Version)",
CAM-I Report R-86-GM-01, January 1986.

M.S. Shephard, "Finite Element Modeling within an Integrated
Geometric Modeling Enviroment: Part I - Mesh Generation",
Engineering with Computers, Vol. 1, 1985, pp. 61-71.

M.S. Shephard and P.M. Finnigan, "Integration of Geometric
Modeling and Advanced Finite Element Preprocessing”, Proc 4th

Chautauqua on Productivity in Engineering and Design...The

Quest for Quality, H. Shaeffer, E4d., PDA Eng., Los Angeles, CA,
1986, pp. 231-233.

G. Strang and G. Fix, An Analysis of the Finite Element Method,
Prentice Hall, 1973.

I. Babuska and W.C. Rheinboldt, "A Posteriori Error Estimate
for the Finite Element Method", Int. J. Num. Meth. Engng., Vol.
12, 1978, pp. 1597-1615.

I. Babuska, W.C. Rheinboldt, "Error Estimates for Adaptive
Finite Element Computations", SIAM J. Numer. Anal., Vol. 15,
No. 4, 1978, pp. 736-754.

I. Babuska, "A Posteriori Error Estimates and Adaptive
Approaches for Finite Element Modeling", Finite Element
Workshop 1980, Technical Note BN-940, I. Babuska, Ed.,
Laboratory for Numerical Analysis, U. of Maryland, May, 1980.

Proceedings of Int. Conf. on Accuracy Estimates and Adaptive

Refinements in Finite Element Computations, Vol. 1 and 2, Int.
Association of Computational Mechanics, 1984.

S. Adjerid and J.E. Flaherty, "Local Refinement Finite Element
Methods on Stationary and Moving Meshes for One-Dimensional
Parabolic Sytstems", to appear.

J.N. Reddy, An Introduction to the Finite Element Method,
McGraw-Hill Book Co., NY, 1984.

—44-

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

I. Babuska and A. Miller, "A Posteriori Error Estimates and
Adaptive Techniques for the Finite Element Method", Institute
for Physical Science and Technology, Laboratory for Numerical
Analysis, Tech. Note BN-968, University of Maryland, 1981.

S. Adjerid and J.E. Flaherty, "A Moving Finite Element Method
for Time Dependent Partial Differential Equations with Error
Estimation and Refinement", SAMI Numer. Anal., Vol. 23, pp.
778-796, 1985.

S. Adjerid and J.E. Flaherty, "A Moving Mesh Finite Element
Method with Local Refinement for Parabolic Partial Differential
Equations", Comp. Meths. Appl. Mech. Engng., 1986, pp. 3-26.

R.E. Bank, "Analysis of a Local A Posterori Error Estimate for
Elliptic Equations", Accuracy Estimates and Adaptive

Refinements in Finite Element Computations, I. Babuska, 0.C.
Zienkiewicz, J. Gago and E.R. de A. Oliveria, Eds., 1986, pp.
119-128.

0.C. 2Zienkiewicz, J. Gago and D.W. Kelly, "The Hierarchical
Concept 1in Finite Element Analysis", Computers and Strucutres,
Vol. 16, 1983, pp. 53-65.

I. Babuska and D. Yu, "Asymptotically Exact A Posteriori Error
Estimates and Adaptive Approaches for Biquadratic Elements",
Tech. Note BN-1050, 1Institute for Physical Science and
Technology, U. of Maryland, 1986.

I. Babuska and D. Yu, "A Posteriori Error Estimation for
Biquadratic Elements and Adaptive Approaches", to appear.

S. Adjerid and J.E, Flaherty, "Second-Order Finite element
Approximations and A Posteriori Error Estimation for
Two-Dimensional Parabolic Systems", Report No. 87-~1, Department
of Computer Science, Rensselaer Polytechnic Institute, 1987.

I. Babuska and W.C.l Reinboldt, "Analysis of Optimal Finite
Element Meshes in R™", Math. of Comp., Vol. 33, 1979, pp.

431-463.

0.C. Zienkiewicz and A. Craig, "Adaptive Refinement, Error
Estimates, Multigrid Solution and Hierarchic Finite Element
Method Concepts", Accuracy Estimates and Adaptive Refinements
in Finite Element Computations, I. Babuska, 0.C. Zienkiewicz,
J. Gago and E.R. de A. Oliveria, Eds., 1986, pp. 25-59.

D.J. Turcke and G.M. McNeice, "Guidelines for Selecting Finite
Element Grids Based on an Optimization Study", Computers and
Structures, Vol. 4, 1974, pp. 449-519.

C.A. Fillipa, "Optimization of Finite Element Grids by Direct
Energy Search", Appl. Math. Modeling, Vol. 1, September 1976,

—45-

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

pp. 93-96.

K. Miller, "Recent Results on Finite Element Methods with
Moving Nodes", Accuracy Estimates and Adaptive Refinements in
Finite Element Computations, I. Babuska, 0.C. Zienkiewicz, J.
Gago and E.R. de A, Oliveria, Eds., 1986, pp. 225-338.

R.J. Melosh and P.V. Marcal, "An Energy Basis for Mesh
Refinement of Structural Continua", Int. J. Num. Meth. Engng.,
Vol. 11, No. 7, 1977, pp. 1083-1092.

W.C. Rheinboldt and C.K. Mesztenyi, "On a Data Structure for
Adaptive Finite Element Mesh Refinements", ACM Transaction on
Maths. Software, Vol. 6, No. 2, June 1980, pp. 166-187.

W.C. Rheinboldt, "Adaptive Mesh Refinement Processes for Finite
Element Solutions", 1Int. J. Num. Meth. Engng., Vol. 17, 1981,
pp. 649-662.

R.E. Ewing, "Adaptive Mesh Refinements in Large-Scale Fluid
Flow Simulation", Accuracy Estimates and Adaptive Refinements
in Finite Element Computations, I. Babuska, 0.C. Zienkiewicz,
J. Gago and E.R. de A. Oliveria, Eds., 1986, pp. 229-314.

R.E. Bank, A.H. Sherman and A. Weiser, "Refinement Algorithms
and Data Structures for Regular Local Refinement", Scientific
Computing: Applications of Mathematics and Computing to the
Physical Sciences, R.S. Stepleman, Ed., North Holland, 1983,
pp. 3-17.

M.C. Rivara, "Algorithms for Refining Triangular Grids Suitable
for Adaptive and Multigrid Techniques", Int. J. Num. Meth.
Engng., Vol. 20, 1984, pp. 745-756.

M.S. Shephard, J.E. Flaherty and P.L. Baehmann, "Adaptive
Analysis for Automated Finite Element Modeling", to appear,
Proc. of The Mathematics of Finite Elements and Application,
1987.

A.G. Peano, "Hierarchies of Conforming Finite Elements for
Plane Elasticity and Plate Bending", Comp. Math. with appl.,
Vol. 2, 1976.

A. Peano, R. Riccioni, A. Pasini and L. Sardella, "Adaptive
Approximations in Finite Element Structural Analysis",
Computers and Structures, Vol. 10, 1979, pp. 333-342.

I. Babuska and B.A. Szabo, "On the Rates of Convergence of the
Finite Element Method", 1Int. J. Num. Meth. Engng., Vol. 18,
1982, 323-341.

I. Babuska and M. Dorr, "Error Estimates for the Combined h and
p Versions of the Finite Element Method", Numer. Math., Vol.
25, 1981, pp. 257-277.

-46-

81.

82.

83.

84.

85.

M.S. Shephard, R.H. Gallagher and J.F. Abel, "Synthesis of
Near-Optimum Finite Element Grids with Interactive Computer
Graphics", Int. J. Num. Meth. Eng., Vol. 15, 1980, pp.
1021-1039.

J. Peraire, M. vVahdati, K. Morgan and O0.C. Zienkiewicz,
"Adaptive Remeshing of Compressable Flow Computations",
Institute for Numerical Methods in Engineering, CR/R/544,/86, U.
College Swansea, Swansea, Wales, 1986.

B. Guo and I. Babuska, "The h-p Version of the Finite Element
Method - Part 1l: The Basic Approximation Results; Part II -
General Results and Applications", to appear, Computational
Mechanics.

W.H. Frey, "Selective Refinement: A New Strategy for Automatic
Node Placement in Graded Triangular Meshes", GM Research
Publication, GMR-5432, 1986.

J. Penman and M.D. Grive, "An Approach to Self-Adaptive Mesh
Generation"”, IEEE Transactions on Magnetics, Vol. MAG-21, No.
6, 1985, pp. 2567-2570.

-47-

FIGURE CAPTIONS

1.

Watson'’s Algorithm for inserting a point into a Delaunay
triangulation

Basic three-dimensional element removal operators

h-p mesh generated by element removal

Subdomain removal to decompose object into mappable regions
Finite octree mesh example

Finite quadtree mesh control

a) uniform mesh

b) graded mesh

c) mesh control parameters for graded mesh

Finite octree mesh control
a) uniform mesh
b) graded mesh

h-refinement by element bisection
a) quadrilateral element
b) traingqualar element

Finite quadtree mesh refinement by local remeshing
a) initial mesh

b) affected portion of mesh removed

c) refined quadrants

d) resulting refined mesh

-48-

e - node

X - element flagged
for deletion

@® - new node being
inserted

a) original mesh with new node inserted

FIG. 1.

b) resulting Delaunay triangulation

Watson’s Algorithm for insertin i ;
triangulation . 9 a point into a Delaunay

-49-

nlli

a) vertex removal

. &b

b) edge removai

FIG. 2. Basic three-dimensional element removal operators

FIG. 3. h-p mesh generated bi’element removal

-50-

\
AN

N\

NNNANAN

NN

.
p
e
vd

%

4%

%

s

%

%

%

-1

%

Ve

(seul} paysep) sauepunoq

' yojeq ysaw jesauab yum Anawoab jeuibuo (e

-51-

NS v, LN A VANA T
m AN

M —

FIG. 5. Finite octree mesh example

-52-

‘ 1011u0d> ysaw aaijpenb 83IUTd °9 -914 .

ysau papeib

(q

ysoaw papeiab 103
si1ajamered 1013U0D ysaw (D

ysau wio0JIun

(e

-53-

b) graded mesh

a) uniform mesh

Finite octree mesh control

FIG.7.

4

1

traingualar element

b)

2

9
5

.

a) quadrilateral element

h-refinement by element bisection

FIG. 8.

-54-

c)

a) initial mesh

refined quadrants

FIG. 9. Finite gquadtree mesh refinement by local remeshing

<
RO

ALA\A‘Q} 47
NN

» g
. o4

o'z W OS]
R AORE

3
, 4%

b) affected portion of mesh removed

-55-

d) resulting refined mesh

N88-19114

INTEGRATION OF GEOMETRIC MODELING AND
ADVANCED FINITE ELEMENT PREPROCESSING

By
Mark S. Shephard
Rensselaer Polytechnic Institute
and

Peter M. Finnigan

=

“2-¢/)
V5787
Af;g’

-

(X8

General Electric Corporate Research and Development Center

ABSTRACT

The structure to a geometry-based finite element preprocessing system is
presented. The key features of the system are the use of geometric operators
to support all geometric calculations required for analysis model generation,
and the use of a hierarchic boundary-based data structure for the major data
sets within the system. The approach presented can support the finite element
modeling (FEM) procedures used today as well as the fully automated procedures
under development.

1. INTRODUCTION

The generation of numerical analysis models is one of the major steps in the
computer-aided engineering (CAE) process. Of primary concern is the dispro-
portionate amount of the entire design/analysis process that is currently
dedicated to this task. If significant productivity gains are to be achieved
in CAE, this bottleneck must be reduced. In the long term, this means the
“automation of the entire finite element process, which would include such
things as adaptive analysis and optimization techniques. In the short term,
this means improving the basic model generation tools and developing prepro-
cessing systems that employ advanced geometric modeling and more powerful data
structures. This paper presents the overall design of a geometry-based FEM
system that will address today’s needs, as well as provide a foundation for
the fully automated systems of tomorrow.

The most obvious reason for a better integration of finite element and
geometric modeling is to avoid the need to redefine the geometry during finite
element modeling. The second is to make more direct use of the functionality
present in advanced geometric modeling systems. The third reason is the crea-
tion of a more unified design/analysis environment that employs a geometry-
based (object) problem description. This includes geometry-based analysis
attribute specification, which is not only a necessary part of an object-based
problem definition, but is the most efficient method of prescribing this
information. Finally, it is only with the close integration of geometric and
finite element modeling procedures, that FEM can be fully automated.

In addition to the requirements placed on a preprocessing system by the above
needs, it must give the analyst all the model generation functions needed to
efficiently create controlled element meshes. At this time, that requires the
system to support bottom-up, mapped, and fully automatic mesh generators such
that they can be used in various combinations in a consistent manner. This
also means that flexible, geometry-based mesh control specification techniques

be used.

The majority of the current finite element preprocessing systems have been
developed in an evolutionary manner, independent of geometric modeling sys-
tems. Interfacing, not integration, results between the two systems. With
the recent advances in geometric modeling procedures, there is a desire to
make more direct use of the geometry available for the generation of the fin-
ite element model. To date, there has been limited success in integrating
geometric and finite element modeling. The major factors deterring this
integration are:

1. Generally, finite element preprocessing systems are designed to con-
struct a finite element model by directly building the object’s
description in terms of topologically simple shapes (i.e., triangles,
quadrilaterals, tetrahedrons, hexahedrons, etc.). This approach is
not well suited for general geometric manipulation.

2. The data structures within a finite element preprocessor are designed
to house little more than the most basic of mesh construction infor-
mation and the mesh data (i.e., node point coordinates and element
definitions). They do not possess a general geometric data structure
to house the original geometric definition of the object, nor do they
maintain relationship information which explicitly couples the finite
elements themselves to the geometry from which they came.

3. The geometric modeling systems do not make their intrinsic geometric
manipulation capabilities readily available to other applications on
the system which require such functionality.

The majority of effort that has been expended on improving the level of
integration between finite element and geometric modeling has been aimed at
particular modeling systems. The finite element preprocessing developers have
added their own geometric modeling capabilities, or the geometric modeling
developers have extended their systems to include finite element model genera-
tion. Although these approaches represent improvements, they tend to lack
generality and represent a large duplication of software development effort.
In addition, they typically lead to systems that have lopsided strengths; such
as geometric modeling systems that are well suited for developing finite ele-
ment models but poor for other applications. The position taken in this paper
is that the developers of geometric modeling systems should concentrate on
providing advanced geometric modeling functionality, FEM developers should
concentrate on the advancement of finite element modeling, and that these two
groups work together to integrate their respective capabilities in a cohesive
manner.

A general integration of geometric and finite element modeling requires not
only the transfer of data but also the transfer of functionality from the
geometric modeling system to the finite element modeler. This paper presents
a methodology that addresses this need. It must be noted that the implementa-
tion of these methodologies requires a major expansion of the data structures
underlying the finite element modeling system, the strict adherence to
prespecified operators to interact with a geometric modeling system, and the
construction of those operators. The successful implementation of such a

system depends on:
1. Finite element modeling developers recognizing the need for change.

9. Finite element modeling developers working closely with geometric
modeling developers to better understand each others requirements and
limitations.

3. Geometric modeling developers providing the requisite modeling func-
tionality for FEM.

Section 2 indicates an approach to the modular integration of geometric and
finite element modeling. Section 3 indicates the type of data structures
required in a geometry-based finite element modeling system. Section 4 gives
a more specific indication of how the various finite element model generation
procedures would operate within such a system. Section 5 addresses the
remaining open questions of the development of a geometry-based finite element
modeling system.

2. APPROACH TO MODULAR INTEGRATION WITH GEOMETRIC MODELING

The first key to the development of a finite element modeling system that can
be efficiently integrated with various geometric modeling systems is the use

of a general data structure that can support various geometric forms. The
second key aspect of this integration is the use of a general set of geometric
communication operators [l]. A geometric communication operator is a pro-

cedure designed to perform a geometric function, given specific information
about the operation and the geometry involved. The operator would return the
result of the operation and/or modify the geometric representation to reflect
the invocation of the operation.

The information passed directly to the geometric communication operator has a
general structure. Any data, specific to a particular geometric modeling sys-
tem, would be extracted directly from its geometric database by a geometric
communication operator. Therefore, it is only necessary to provide a set of
geometric communication operators for each new geometric modeling system that
the finite element modeler is to be interfaced. No changes within the finite
element modeling system need be applied. The approach discussed in this sec-
tion is consistent with the CAM-I work on an applications interface for
geometric modeling [2,3]. The advantage of this approach is obvious; it
avoids the need to reproduce all the geometric modeling functionality within
the finite element modeling system. This advantage is absolutely necessary if
finite element modeling systems are to be interfaced with the various forms of
geometric modelers being developed. Once a set of geometric communication
operators are agreed on, the operators can be constructed by the developers of
a geometric modeling system. Hopefully, the majority of them can be extracted
directly from the modeling capabilities already present in the system.

The geometric communication operators needed for finite element modeling can
be grouped into the following five categories:

1. BASIC QUERY - A request for geometric information that is intrinsi-
cally a part of the geometric modeling database.

2. DERIVED DATA QUERY - A request for geometric information not directly
stored in its database. The determination of the requested data
requires the performance of geometric calculations. A DERIVED DATA
QUERY will not alter the contents of the geometric modeler’s data-
base. ,

3. GEOMETRIC MODELING OPERATION - A request is made that invokes one or
more geometric modeling operations such that the geometric model is
altered in the process.

4. ATTRIBUTE SPECIFICATION - The geometry-based specification, modifica-
tion, or deletion of the model’'s attributes.

5. GENERAL UTILITY - These would contain the operators that request gen-
eral, geometry independent information on a model.

A large number of geometric communication operators are needed for finite ele-
ment modeling. They will most likely be built in two levels. The low level
operators will represent atomic geometric operations such as Euler operators
[4] or specific Boolean operations [5]. The higher level operators, those
oriented toward finite element modeling, would be constructed primarily from
the low level operators. This approach has the advantage of insulating the
FEM system from changes in the geometric modeling system because only the
internals of the higher level layer would be affected. Thus, the FEM system
could be interfaced to a new geometric modeling system with relative ease
assuming it provided, in some form, the low level operators. It should be
noted, that since the type and amount of information stored in a geometric
modeler’s database is a function of modeling approach and implementation, an
operator that is a BASIC QUERY in one system may be DERIVED DATA QUERY in
another. A few example operators are listed below:

BASIC QUERY

1. RETURN_GEOMETRY_COEFFICIENTS - return the coefficients used in the
definition of a geometric entity.

2. RETURN_TOPOLOGICAL_ENTITY - return the definition of the requested
topological entity.

3. RETURN_ENTITY_ASSOCIATIVITY - return a specific set of associativi-
ties for a topological entity.

DERIVED DATA QUERY

1. DETERMINE DISTANCE BETWEEN - calculate the minimum distance between
two geometric entities.

2. POINT_CLASSIFY - determine if a given point is inside the object,
outside the object, or on the surface of the object.

3. DETERMINE INTERSECTIONS - calculate the intersections between two
geometric entities.

GEOMETRIC MODELING OPERATION
1. ADD_ENTITY - add a given entity to the geometric model.

2. SPLIT_ENTITY - break a given entity into multiple entities in a
prescribed manner.

3. PERFORM_BOOLEAN - carry out a Boolean operation between two specified
entities.

ATTRIBUTE SPECIFICATION

1. PLACE ATTRIBUTE - apply an attribute to a given entity.

2. MODIFY ATTRIBUTE - modify a given attribute on a given entity.
GENERAL UTILITY

1. GET_MODEL - retrieve a given model form the database.

2. SAVE_MODEL - store the current model in the database.

Although the concept of geometric communication operators represents the most
general method to tie the functionality of geometric modeling systems to
geometry-based applications, the geometric modeling systems available today do
not fully support this concept. This is expected to change over the next few
years. The move to more open architectures, the increased pressures from
applications, a maturing of gebmetric modeling systems, and specific research
on the creation of such operators are contributing to this change. Developers
of application software should expect the availability of specific sets of low
level operators in the near future.

3. DATA STRUCTURES IN A GEOMETRY-BASED PREPROCESSOR

This section first provides an overview of the data structures required in a
truly geometry-based preprocessor before discussing the details of a particu-
lar implementation. It is important to understand, in very general terms, the
data structures themselves and how they interact.

There are a number of possible ways to group the requisite preprocessing data.
The one listed below was selected because it uses the minimal number of data
sets that provide a logical separation of information needed for finite ele-
ment modeling. The data sets include:

e The MODEL data set

e The ATTRIBUTE data set
¢ The MESH data set

The MODEL data set contains the geometric and topological data that defines

the domain to be meshed. The ATTRIBUTE data set contains both the analysis
attribute data (e.g., material properties, boundary conditions, etc.) and the
mesh control data. The MESH data set contains the finite element mesh gen-
erated for the model. Each data set has its own structure tailored to meet
its special requirements. The data structures are related through a well
defined set of pointers which provide the mechanisms through which all non-
MODEL data is tied to the MODEL data. The information content of these data
structures and their relationships are described in more detail in the sec-
tions which follow.

3.1. Model Data Structure

The most fundamental data to the preprocessor is the geometry. The work
described in this paper uses the concept of a non-manifold geometric modeling
topology representation [4]. In a manifold representation, the area surround-
ing any point on a surface (in the 1limit) is "flat." 1In a non-manifold
representation, the "flatness" criterion is not a requirement.

Historically, solid modeling systems have employed manifold representations.
However, this has caused problems when non-manifold results would occur as a
natural part of the model building process. One major benefit of a non-
manifold representation is that it permits wire frame, surface, and solid
models to coexist in the same system concurrently. Relative to finite element
modeling, it appears that the developers have not appreciated the importance
of a well defined topological model and that the topology which does exist in
these systems has been evolutionary. Not unexpectedly, they are inadequate to
support major advances in automation.

.There is a close parallelism between finite element modeling and geometric
modeling with the three representations. That is, because of the abstractions
associated with FEM, all three geometric representations may be necessary
simultaneously. For example, many "real world" models are typically comprised
of a combination of solid, shell, and beam elements. Although not
exclusively, these element types lend themselves to being modeled with the
"corresponding" geometric representations. That is, the shell portion of the
model with a surface representation, the beam portions with a wire frame
representation, and of course, the solid elements with a solid representation.
The logical conclusion is that a non-manifold data structure that can support
the three forms of geometric modeling, can also support the geometric aspects
of finite element modeling. A single representation opens the possibility for
the finite element modeling system to make direct use of geometric operators
developed in support of the geometric modeling system.

The non-manifold geometry/topology hierarchical model used is depicted in Fig-
ure 1. In addition, the relationships between geometry and topology are
shown.

3.1.1. Model Data Definitions

This section provides a set of working definitions for the various geometric
and topological entities used for geometric modeling. In addition to the
basic definition being stored in the data structure, its origin or purpose
will also be stored. That is, if an entity originates from the geometric

modeler, or if an entity is added for the purpose of controlling the mesh or
applying a boundary condition, it will be so identified.

.1.1.1. Geometric Entities

There are four geometric entities which the system will support as defined
below:

e POINT -- A point is a geometric entity specified by a triple of numbers
representing its position in space.

e CURVE -- A curve is a geometric entity representing the trajectory of a
point through space. Curves can be infinite in extent.

e SURFACE -- A surface 1is a geometric entity representing a two-
dimensional locus of points. Surfaces can be infinite in extent.

e VOLUME -- A volume is a geometric entity representing a three-
dimensional locus of points.

It should be noted that in most geometric modeling systems, volumes in space
are defined in terms of a set of surfaces that enclose it. It is, however,
desirable to support the possibility of a specific volume geometric entity
which adds the ability to house volumes with internal definitions in the sys-
tem [10,11].

3.1.1.2. Geometric Modeling Topological Entities

The topological entities form a hierarchy which, when coupled with geometry,
provide a complete definition of the part. A brief description of each of the
geometric modeling topological entities to be used in the model data is given
below.

e VERTEX -- A vertex is the topological equivalent of a three-dimensional
point in space. It is typically used to bound an edge. There is
always a vertex at the joining of edges. Vertices may also be used as
a boundary of a face or shell.

e EDGE -- An edge is the topological equivalent of a geometric curve
(i.e., line, arc, spline). It is bounded by two vertices. An edge may
be closed, in which case the starting and ending vertices are the same.

e LOOP -- A loop consists of an ordered, closed, connected, set of edges.
A loop bounds a face.

e FACE -- A face consists of a portion of a shell. A face is bounded by
at least one loop, and may be internally bounded by further interior
loops (i.e., holes).

e SHELL -- A shell consists of a set of faces which bound a region. A
shell may consist of a connected set of faces which form a closed
volume or may be an open set of adjacent faces, a wire frame, a combi-
nation of these, or even a single point. In the case of a solid model,

one shell is required to define the external boundary and additional
shells are required to define voids within the solid.

¢ REGION -- A region is a volume of space. A region has one exterior
shell and one interior shell for each void contained within it.

¢ MODEL -- A model is a collection of regions. Regions within a model
may be distinct because of physical separation in space, or simply
because a user wishes to keep them logically distinct.

3.2. Attribute Data Set

Any form of numerical analysis, requires the following information:

1. A complete specification of the physics of the problem to be
analyzed.

2. Specification of the desired level of domain discretization.
3. The specification of the required analysis control parameters.

In general terms, this information is referred to as the attribute data for
the model.

The attribute data structure will contain all of the informationm, past the
geometric definition of the object, that is needed to complete the description
of the problem. Attribute data includes both geometric and non-geometric
information. Data which is geometric in nature must be tied to the original
geometric definition of the object.

A number of different modeling attribute types are needed for finite element
analysis. A partial list of these includes:

Analysis program control data.

Case information.

Finite element type declaration information.
Nodal (skewed) coordinate system data.
Material property data.

Physical property data.

Mesh control data

Essential boundary condition data

O~ OV W

- e.g., displacements in a 'stress problem or temperatures in a
heat conduction problem.
9. Natural boundary condition data

- e.g., pressures in a stress problem or fluxes in a heat conduc-
tion problem.
10. 1Initial condition data.

3.2.1. Classes of Attributes

Finite element modeling attributes can be categorized by class, depending on
how they interact with geometry. Three distinct classes of attribute data
have been identified, and are described below:

CLASS #1:

Attribute data in class #1 is characterized by data which is required for the
analysis to be performed but which it totally lndependent of the geometric
definition of the model.

CLASS #2:

Attribute data in class #2 is characterized as data which is attached directly
to geometric entity data, and which can be described completely in terms of
that geometric entity.

CLASS #3:

Attribute data in class #3 is characterized by data which is attached directly
to geometric entity data but which needs auxiliary geometric data (henceforth
known as attribute specification geometry) to help define the attribute. That
is, the attribute may not be conveniently described in terms of the geometric
entity to which it is attached, and thus two pieces of geometric entity data
are required; a piece of geometry data and a piece of attribute specification
geometry data.

The basic distinction between class #2 and class #3 data is that class #2 data
needs a single geometric entity to define both (a) the associativity of the
attribute with the model and (b) the attribute’s definition. Class #3 data,
on the other hand, requires a piece of geometric data to define its associa-
tivity with the model, and in addition, requires attribute specification
geometry to define the attribute.

As an aid to understanding class #3 data, consider the case of an arbitrarily
complex flat plate in the xy-plane. Suppose that the structure was subjected
to a normal pressure load which was linearly varying as a function of y. 1If
one attempted to describe this pressure solely in terms of pressure values
along the edges, one would not have a uniquely defined pressure surface, and
thus the pressures on individual elements could be evaluated incorrectly.
Alternatively, the pressure could very simply be specified by defining an aux-
iliary piece of geometry; in this case a rectangular face which covered the
entire 2-D domain and four pressure values, one at each of the corners. Pres-
sure on individual elements could then be evaluated in a totally unambiguous
manner.

3.2.2. Attribute Specification Geometry

Attribute specification geometry is simply geometry plus topology which is
used to help define the physics of certain attributes. It can be thought of
as being auxiliary to the part definition. It has no direct links to the
part’'s geometric data structure. The attribute specification geometry will be
an intrinsic part of the definition of the attributes. It is stored in the
MODEL data structure but is referenced through the attributes. The attribute

specification geometry maintains the same hierarchic structure as the models
geometry/topology.

The purpose of attribute specification geometry is twofold. First, it pro-
vides a mechanism for allowing simpler and more efficient specification of
attribute data. Secondly, it provides a means for evaluating attribute data
directly and unambiguously.

3.2.3. Attribute Data.Structure

The relationships between attribute data and geometry are as follows. The
model’'s topological entities point to attributes. An attribute contains its
definition along with two pointers. One pointer points back to the geometric
entity to which it is "tied." The other pointer points to the attribute
specification geometry which is used to help define the attribute. If this
geometry is, in fact, the same as the model’s geometry, then the attribute
specification geometry pointer is a null pointer. Figure 2 shows the general
data structure for a generic attribute data type. It indicates how attributes
are specified and associated with geometry/topology. The dimensionality of
the attribute topology can be the same or lower order as the model's topology
to which it points; it can never be of higher order. That is, an edge is a
one-dimensional entity. The permissible associated attribute’s topological
entities are "vertex" and "edge."

3.3. Mesh Data Structures

In addition to the hierarchy of geometric modeling entities discussed earlier,
there will also be a hierarchy of finite element entities, the MESH data
structure (Figure 3), which will be used to define the elements themselves.
This is a departure from the way in which finite elements have historically
been defined (i.e., an element of a specific type with a list of nodes which
define the connectivity).

The finite element entities have two types of data associated with them. The
first is the modeling topology data, and the second is the finite element
attribute data (i.e., material properties, physical properties, etc.). Each
finite element entity points to the lowest order modeling topology entity
which it is inherently a part. For example, a fe-edge which is on the surface
of a region would point to the face on which it lies, rather than the region
itself. It is this relationship that permits attribute data which is tied to
the geometry to be evaluated on an element by element or node by node basis.

Pointers from the geometry to individual element components (i.e., fe-nodes,
fe-edges, fe-faces, etc.) are also desirable for efficient postprocessing
activities. The storage penalties for maintaining these relationships are
easily offset by the performance gains which can be achieved.

3.3.1. Finite Element Entity Definitions

What follows is a set of working definitions for the various finite element
entities.

10

e FE-NODE -- A fe-node is a three-dimensional point in space. Typically,
it is used to define a fe-edge; however, it can also be used to help
define a finite element. For example, the mid-face node used in a
Lagrange parabolic element is not associated with a fe-edge, but rather
with the fe-face itself. In addition, a reference node used to define
the center of curvature or the plane in which a beam element lies would
point to the element rather than the edge of that element. Finally, a
fe-node could be used to define the element explicitly such as the con-
centrated mass element. A fe-node may lie on a vertex, an edge, a
face, or be completely contained within a region.

e FE-EDGE -- A fe-edge is a combination of topology plus implied
geometry. That is, the nodes used in the definition of an edge are
used to bound the geometric curve, and at the same time can be used to
define the geometry (i.e., straight line, parabola, or cubic) for the
element itself. A fe-edge can be used to define a fe-face, as with
planar or solid elements, or can be used to define the finite element
directly, as is the case with truss and beam elements. It may lie on
an edge, a face, or be completely contained within a region.

o FE-FACE -- A fe-face is bounded by fe-edges. It is either used to
define the surface of a "planar" finite element or is used in combina-
tion with other fe-faces to bound a solid finite element. Topologi-
cally, a fe-face will be either triangular or quadrilateral in nature.
It may lie on a face, or be completely contained within a region.

e FINITE ELEMENT -- Depending on the type, a finite element can be a fe-
node, a fe-edge, or a collection of fe-faces. It may be completely
contained within a region. However, it is true only for solid finite
elements that the entity "finite element" can point to a region because
other finite element types will have lower order entities which point
to various geometric entities.

3.3.2. Advantages of a Finite Element Entity Hierarchy

At first glance, the MESH data structure, with its hierarchy of finite element
entities, may seem too elaborate, perhaps even wasteful of valuable storage.
However, on closer inspection some distinct advantages emerge. The most
powerful advantages come from the links to the other data structures. These
relationships are discussed in the next section. Independent of the benefits
which accrue due to these links, a number of other benefits surface as
enumerated below:

e It provides an organization for handling any type of finite element in
a uniform manner.

e It provides direct access paths to higher order entities from lower
order entities which make it very convenient to do such things as
bandwidth minimization, postprocess the results of elements associated
with a given set of nodes, etc.

o It makes it possible to interrogate the finite element model using a
geometric entity as a key word for searching.

11

-2

¢ It provides a mechanism which supports mesh generation on the basis of
topologically simple cells (i.e., quadrilaterals, triangles, hex-
ahedrons, etc.) which corresponds to linear finite elements, providing
a direct path to upgrade to higher order elements without going back to
the mesh generator. All higher order fe-nodes can easily be placed
precisely on the appropriate associated geometric entity.

3.4. Relationships of the Three Data Structures

The power of the implementation is derived from two sources: the data struc-
tures themselves and the relationships between the structures. Figure 4 shows
the relationships which exist amongst the three data structures. It is, in
fact, these links that provide the necessary structure for claiming to be a
geometry-based system. These links provide a bond between the data structures
which permit the system to respond in a cohesive manner.

The links are automatically established during the model generation process.
The natural progression of events is something like this:

1. The part is generated via a geometric modeling session. The
geometric entities are loaded into the MODEL data structure.

2. Model attributes are defined and loaded into the attribute data
structure. Since the attributes are associated with the model’s
geometry, two-way pointers are established between the MODEL data and
the ATTRIBUTE data. In addition, any necessary attribute specifica-
tion geometry is generated and stored in the MODEL data structure.
Links are also established between the ATTRIBUTE data structure and
the attribute specification geometry.

3. One of the attributes is mesh control data. Having this information,
mesh generation can proceed, and the resulting node and element data
is stored in the MESH data structure. During the mesh generation
process, the associations which exist between the finite element mesh
data and the part definition are known, and thus pointers between the
MESH data structure and the MODEL data structure can be generated.

4. Since both the MESH data and the ATTRIBUTE data point to the MODEL
data, the attribute data can then be evaluated on a node by node or
element by element basis. The links between the MESH data and the
ATTRIBUTE data structures are established at this point.

This completes the model building process. It accomplishes what it was
intended for; to use a completely geometry-based approach to produce an
analysis model.

4. DESIGN OF A GEOMETRY-BASED PREPROCESSOR
The approaches and data structures outlined above form the basis on which an
advanced geometry-based preprocessing system can be built., The remaining

capabilities needed are the actual finite element model definition procedures
and the user interface.

12

The best form of user interface for this system is an interactive graphics
front end. This is obviously the most convenient form of interface for the
specification of geometry and geometry-based information. Even for those
cases where the geometry to be meshed is identical to that obtained from the
geometric modeler, and an automatic mesh generator is used, there is still the
need for the specification of the analysis attribute information in terms of
the geometric model. Until fully automatic, adaptive procedures are avail-
able, the system must support the entire range of finite element mesh genera-
tion procedures. These are most efficiently operated in an interactive graph-
ics mode.

Geometric operations within the system will be carried out making heavy use of
the capabilities of the geometric modeling systems to which it is interfaced.
It is important that geometric modeling functions be presented in a form
appropriate for finite element modeling. This may be different than the way
they are presented in the geometric modeling system. In addition, it must be
recognized that different geometric modeling systems will not provide the same
sets of geometric modeling functions. The two level approach to the implemen-
tation of the geometric communication operators provides a method to deal with
both of these concerns. The high level geometric communication operators for
finite element modeling would be designed to fit directly into the modules of
the preprocessing system. Since they are constructed by the combination of
the low level geometric communication operators, which represent the actual
tie to the geometric modeler, they need not necessarily be altered when a new
modeler is interfaced to the system. If a particular geometric modeler does
not provide specific low level operators used by a high level operator, it may
be possible to reconstruct the high level finite element operators by a dif-
ferent combination of low level operators.

The geometric modeling functions needed by a complete finite element prepro-
cessing system are extensive. They include a full set of high level opera-
tors, such as the Boolean operators, for the construction and modification of
geometry, as well as for use by automatic mesh generators to decompose the
geometry into a valid finite element mesh. A full range of geometric interro-
gation operators will be required for use by the mesh generation algorithms,
the mesh checking procedures, the geometric construction operations, and the
attribute specification procedures. Finally, a full range of bottom-up
geometric modeling functions are needed to allow the analyst to define all or
part of a geometry.

The attribute specification procedures in a geometry-based preprocessor must
give the analyst a high level of flexibility in the specification of the vari-
ous types of finite element attributes. The geometric specification pro-
cedures for defining analysis attributes, such as distributed loads, must
allow for the convenient description of the distribution of the loads, as well
as for defining the portions of the object on which they act.

Flexible procedures must be available to group attributes of the same type
into sets for simple manipulation during the specification of the actual load
cases to be analyzed. The reason for allowing the grouping of attributes is
partly to provide convenience to the analyst, but is mainly for the purpose of
allowing a greater degree of automatic validity checking in the system. By
only allowing the combination of attributes of one type into sets, automatic

13

validity checks on attribute combinations, which are based on attribute type,
can easily be done. The combination of attribute sets into analysis cases
allows the application of an additional set of checks which can only be made
after the analysis process control information has been indicated. Thus, the
user maintains a high degree of flexibility while affording the system a means
of performing validity checks at the appropriate levels.

A difficulty in the implementation of the mesh control attributes in a system
that allows a variety of mesh generation approaches is devising a procedure
that can operate from a single internal representation of mesh control infor-
mation. Since all attributes, including mesh control information, are
directly tied to entities in the geometric model, the most direct method of
dealing with this specification is to tie mesh control parameters to each of
the topological entities that define the object. The analyst can be given a
set of procedures that allow for geometry-based specification of the mesh con-
trol information and have it properly associated with the topological enti-
ties. Since it is possible to introduce geometric entities for the sole pur-
pose of attribute specification, this approach maintains the desired level of
flexibility. The remaining question is the selection of mesh control parame-
ters for the various topological entities that can always be meaningfully con-
verted to the specific parameters needed by the various mesh generators. The
simplest solution is to assign a single element size parameter to all enti-
ties. Although seeming simplistic, this tends to be acceptable for all enti-
ties except the edge. The reason for this is simply that most mesh generators
base all their mesh control on edge information, and those that use additional
parameters, typically use a single parameter per entity. The mesh control
information appropriate for edges should allow for the specification of the
number of elements along the edge, as well as biasing parameters to grade the
size of elements in a flexible manner.

As indicated above, the preprocessor should house a variety of mesh generation
procedures ranging from simple bottom-up meshing procedures through fully
automatic meshing procedures. It is anticipated that as automatic mesh gen-
erators become more robust, and as the geometric modeling capabilities needed
to support them continue to improve, they will tend to become the main mesh
generation tool. However, until fully automated finite element modeling sys-
tems become available, there will be a continued need to support the other
mesh generation approaches.

Bottom-up mesh generation will tend to be used for the quick construction of
both mesh and geometry (in terms of the finite elements) for very simple
objects, and for adding simple finite element entities to an object that does
not contain all the geometric entities in a form convenient for generation of
that portion of the finite element model. Although, these procedures will not
represent the major mesh generation workhorse, their presence in the system is
necessary.

Mapped mesh generators are the most popular mesh generation procedures
currently available. To some extent, they are more difficult to provide the
needed geometric communication operators than some of the automatic mesh gen-
eration approaches [l]. The system must contain procedures that allow the
analyst to easily define the supplementary geometry needed to define the boun-
daries of mesh patches and to be able to select the geometric entities that

14

define the specific mesh patches. The process of defining these mesh patches
in a geometry-based preprocessor that accepts a general geometric model as
input is substantially different from preprocessors where the geometry is
built in a bottom-up fashion in terms of mesh patches. The user tools needed
to efficiently decompose a general geometry into a set of valid mesh patches
are different from those that are efficient for defining a geometry in terms
of a set of mesh patches. The preprocessing system discussed here should sup-
port both sets of capabilities.

The selection of fully automatic mesh generation procedures to be included in
such a system must consider the following factors:

1. The ability of the mesh generator to produce the desired types of
meshes.

2. The ease of integration of the meshing procedure with geometry
through a set of geometric communication operators.

3. The computational efficiency of the mesh generator.

Since the level of complexity of geometric operators needed to integrate an
automatic mesh generator with a geometric representation varies greatly [1],
as does their computational efficiency, it is likely that these two factors
will dictate the selection of automatic mesh generators to be included in the
preprocessor.

5. OPEN QUESTIONS IN THE DESIGN OF A GEOMETRY-BASED PREPROCESSOR

The procedures presented in the previous sectiogs address the close coupling
of the geometric representation of an object and the finite element mesh used
to analyze it when there is an obvious correspondence of the finite elements
generated and the geometric entities in the model. The type of finite element
models that yield this correspondence are those where the finite elements are
dimensionally the same as the geometric entities, and when the domains spanned
by the geometric and finite element model are the same. However, it becomes
much less clear how to account for the coupling between the geometric and fin-
ite element models when the geometric model is simplified for purposes of fin-
ite element analysis or when the finite element mesh contains a mix of element
types of different geometric order representing various portions of a solid
model. Common examples of these cases include ignoring specific geometric
features deemed unimportant, and the use of shell or beam elements when one or
two of the geometric dimensions of specific portions of a geometric model are
small compared to the others. Element types of a dimensional order less than
the geometric entity they represent account for the small dimensions in terms
of element parameters such as thickness and moment of inertia. Elements of
this type will subsequently be referred to as indirect elements.

Historically, the concern for the proper representation of the differences
between the geometric model and the finite element model have not existed.
This is because the two modeling processes were carried out independently.
However, the desires to make direct use of the information in the original
geometric model, to maintain complete links for making model revisions easier,

15

and to maintain a clear history of the analysis modeling procedures used,
makes it necessary to address the question of how to define and account for
these differences.

A major portion of the answer to these questions lies in the data structures

to be used and the procedures employed to reflect the differences between the
models in the database. However, this is not the appropriate place to begin
to address these questions. One of the major factors that makes this a com-
plex question is the lack of analytic procedures, or even an agreed upon set
of rules for determining when and how these modeling differences should be
used. If this information were available, it would be possible to devise
algorithmic approaches to carry out these processes and it would become more
obvious as to the best method to account for the results of those processes.
Lacking such information requires that the approach taken to address these
questions be somewhat open ended, thus allowing users to carry out the opera-
tions associated with geometric simplification and the generation of indirect
element types in a flexible manner.

As an example of the range of possible approaches to geometric simplification,
three different approaches to account for domain differences are considered.
In all cases, the finite element analyst begins with the complete specifica-
tion of the geometric model. In approach one, the analyst generates the mesh
interactively with a mapped mesh generator. In this case, the finite element
model generation process consists of the analyst simplifying the geometric
model by performing specific geometric modeling operations during the con-
struction of the various mesh patches. With currently available finite ele-
ment modeling procedures, this is an appropriate method. However, this
approach does not readily lend itself to account for the specific geometric
-simplifications made to the model before mesh generation. Ever if the analyst
was required to make the geometric simplifications, independent of the defini-
tion of the mesh patches, accounting for the simplification would require the
explicit storage of both models or storing the list of modeling operations
carried out during the simplification, neither of which is convenient.

The second and third approaches require the availability of a fully automatic
mesh generation procedure that can ignore geometric features during the mesh-
ing process. With such a capability, the mesh generator can be passed the
entire geometric model. Geometric features to be ignored are flagged
appropriately. Accounting for the differences between the geometric and fin-
ite element models consist of simply examining the geometric model to see
which geometric features are flagged. The second approach would consist of
the analyst flagging the geometric details to be ignored while the third
approach would rely on adaptive analysis procedures to determine the features
to be ignored. Although the finite element modeling capabilities needed to
support these two approaches are not fully available, components of them are
currently being investigated. For example, the quadtree [6] and octree [7]
mesh generators operate on the basis of hierarchic insertion of the geometric
entities within an object’s boundary file into a tree structure. Therefore,
it is possible to simply identify those entities associated with the geometric
features to be ignored so they are represented in an approximate manner.
Although this approach may not be able to account for all desired forms of
geometric simplification, it should be able to easily handle a majority of
them. Efforts are currently underway to develop and test these capabilities.

16

The development of adaptive analysis procedures to automatically identify
geometric details to be ignored, is a much more complex issue. One possible
approach is to combine a set of rules employing analytic stress concentration
factors with the results from an initial analysis that ignored features in
order to estimate their influence [8] and to determine if they should be
included.

The controlled generation of, and accounting for, the use of indirect element
types is an even more complex process. The computerization of this process
could make effective use of artificial intelligence techniques to help convert
geometric representations to numerical analysis representations [9].

6. CLOSING REMARKS

There are a number of areas that must be addressed before fully automated fin-
ite element modeling becomes a reliable analysis tool that is an integral part
the computer-aided engineering process. This paper has addressed one of those
areas which is the framework of a preprocessing system that allows the com-
plete integration of finite element modeling with geometric modeling. The two
key aspects of the approach are the use of geometric communication operators
and the use of advanced data structures required to store the various data
sets needed in finite element modeling. The key to the data structures is the
use of a single hierarchic boundary-based geometric representation for both
the geometric model and the finite element model. To this, auxiliary data
structures (e.g., the attribute data structure) can be linked. A boundary-
based representation was selected because:

1. It is the most general form of geometric representation to which
other geometric forms can be converted.

2. It is a convenient framework on which new geometric and finite ele-
ment types can be quickly added.

3. It is the most natural form, since finite element modeling is dom-
inated by boundary information.

The major penalty for the added capability of this approach is the large
amount of data storage. This is wunavoidable if the goal of a general,
geometry-based system is to be achieved. The only way to reduce the amount of
information required is to reduce the level of integration with general
geometric modeling systems or to limit the number of finite element modeling
procedures that can be supported.

A final advantage of the approach presented here is that it can fully support
today’'s finite element modeling procedures while allowing the introduction of
ever increasing levels of automation as fully automatic mesh generators and
adaptive analysis procedures evolve. This is very important since current
preprocessing systems cannot support full automation and it is only through
automation of these procedures that finite element techniques can be made a
reliable tool for designers and not just the experts.

17

REFERENCES

1.

10.

11.

Shephard, M. S., "Finite Element Modeling Within an Integrated Geometric
Modeling Environment: Part I - Mesh Generation, Part II - Attribute
Specification, Domain Differences, and Indirect Element Types," Engineer-
ing With Computer, Vol. 1, 1985, pp. 61-85.

"CAM-1 Geometric Modeling Project Boundary File Design (XBF-2)." CAM-I
Report R-81-GM-02. 1, October 1982.

Wilson, P. R., I. D. Faux, M. C. Ostrowski, and K. G. Pasquill, "Inter-
faces for Data Transfer Between Solid Modeling Systems," IEEE Computer
Graphics and Applications, Vol. 5, No. 1, 1985, pp. 41-51.

Weiler, K., "Topological Structures for Geometry Modeling," PhD Thesis,
Rensselaer Polytechnic Institute, Troy, New York, 1986.

Requicha, A. A. G. and H. B. Voelcker, "Solid Modeling: A Historical
Summary and Contemporary Assessment," IEEE Computer Graphics and Applica-
Vol. 3, 1982, pp. 9-24.

tions,

Baehmann, P. L., S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A.
Yerry, "Robust Geometrically Based Automatic Two-Dimensional Mesh
Generation," TR-86007, Center for Interactive Computer Graphics, Rensse-
laer Polytechnic Institute, Troy, New York, 1986.

Yerry, M. A. and M. S. Shephard, "Automatic Mesh Generation for Three-
Dimensional Solids," Comput. Struct., Vol. 20, 1985, pp. 31-39.

Shephard, M. S. and M. A. Yerry, "Toward Automatic Finite Element Model-
ing for the Unification of Engineering Design and Analysis," Finite Ele-
ments in Analysis and Design, Vol. 2, 1986, pp. 143-160.

Gregory, B. L. and M. S. Shephard, "Design of a Knowledge Based System to
Convert Airframe Geometric Models to Structural Models," Expert Systems
in Civil Engineering, ASCE, New York, New York, 1986, pp. 133-144,

Casale, M. S. and E. L. Stanton, "An Overview of Analytic Solid Model-
ing," IEEE Computer Graphics and Applications, Vol. 5, No. 2, February
1985, pp. 45-56.

Farouki, R. T. and J. K. Hinds, "A Hierarchy of Geometric Forms," IEEE
Computer Graphics and Applications, Vol. 5, No. 5, May 1985, pp. 51-78.

18

LIST OF FIGURES

1. A NON-MANIFOLD GEOMETRY REPRESENTATION FOR FINITE ELEMENT MODELING
2. GENERIC ATTRIBUTE DATA STRUCTURE
3. MESH DATA STRUCTURE (A hierarchy of finite element entities)

4. RELATIONSHIPS OF THE DATA STRUCTURES

19

—
—» X3ILHIA — INIOd
o 3903 <w— —» 3IAHND
— 4001

10 0 10

30v4 —» 30V4uns

L 113IHS -

NOID3Y — 3IWNIOA
1300W
AD010d0L AH1IWO3D

ALILN3 TvOID010d40L
NOI11vD14103dS

JINBIHLLYY < HILNIOd AHI1IWOID ILNEIHLIV

HILNIOd AHLIWO3D 13AOW

uotjestjioads pu3l

uonesijoads uibag

v

viva 31ngiyLiv-e€— ALILNG

vI190710d401L

AH13IWO3O
NOI1VYOI4103dS
31N8IHLLV

viva 31ngidLly

viva 1300W

3

X31H3A
-
(s)uonipuod jentuyArepunog .) 3903
a1 walsAs aleuipiood 1epON 300N-34 AJ 30v4d
NOID3H
3943
(s)uopuod |enuyArepunog — 3 390334 I 30v4
NO193H
10 J0
(s) vonpuod jeiuyArepunog JOV4-3d - > 30vd
NOI9D3H
10
ay Auedoud feoisAud
a1 Auadoud euste
adA) juawa|3 _..V IN3IWI13 LN - | NOID3Y
viva 31n8idLiv viva
IN3W313 3LINIS AHOHVH3IH ALILNI ADO10dOL
Q31VIDOSSY INIW3T3 3LIN Q31VIDOSSY

<

JYNLONYILS
viva
31Naid1LvY

JHNIONYILS
viva HSIW

AH13IWO39
NOILVDI4103dS
31N8IH1L1LY

AH1IWO3O
1300NW

JHNLIONYLS viva 1300W

oot 7

Geometric Modeling in Transition

May 12, 1987

Lee Robie
SDRC
Milford, Ohio

Geometric Modeling in Transition

+ Application

Specific Tool - Limited Percent of the Total Job
Fatigue Analysis
NC Programming

Mechanism Simulation

. Utility

General Support Tool

Data Management
User Interface

Graphics

+ Transition Indicators

Need: General Applicability
Age

Consensus of Approach

"It is clear that solid modeling is increasingly being viewed as a tool
for creating a central database upon which most. applications may run”

-CAD/CIM Alert - October .31, 1986

Mechanical Product Definition

+ Complete Product Definition Data
Object Representation (Geometry + Topology)
Features |
Dimension and Tolerance
History and Heritage

Associated and Administrative Data

, Where is the Application - Utlity Dividing Line?
Varies with time
Object Representation
-Precise Boundary Representation
—~NURBS
Features
Associated Data

-Application Specific

-Generic

Features

+ Definition
An aspect of an object that is significant in some context

A closed volume with an implied boolean

+ Contents
Administrative Data
Geometric Association

Geometric Parameters

Application Data

Modification Rules

Recreation Procedure

+ Uses
Higher level of Information Content
User Interface
Design Rules
Geometric Abstraction

Shape Optimization

Downstream Functions

Fix

Variational Geometry

Developed at MIT in late *70’s

Relationships:
Angle Parallel Tangent
Distance Perpendicular Fit
Captures Design Intent - Improves Modification
Embryonic

Futures: Sculptured Geometry

Diameter

{ i >

Fit

Depth

Reference

Product Model Data Flow

Product
Model
|
l
I
L-—-==>
F =
l
I
l
|
|
I
L= =>»
f=————
I
|
|
I
|
|
L=

>

Design
Geometry
Features
Constraints

Associated Data

+ Structural Verification o
Select Material -
Define Loads
Mesh and Analyie
Modify

+ Manufacturing Engineering
Material Cost
Manufacturing Process and Cost
Modify

Single Copy Product Database

Product
Model

Station 1

| . g
Product E::-

Model 1

Station 2

——————[::- g
Product .

Model in

Station 3

Multiple Copy Product Database

Product
Model 1
I .
Station 1
I
aiatat > — ..
r - ' Product - g
| Model 2
[r——— A

——'-:'9
Product - g

Model 20
I .
Station 2
I
L - - = = >
r - Product
Model 3
| — *

——‘:‘9
Product .« g

Model 3
|
I :
Station 3
I
L - = === > | -
r - Product
: Model 4
|

Product Development Process

Concept 1 Concept 2 Concept 3 Concept 4

Concept 1’ Concept 2’ Concept 3’ Concept 4’
P

|

—_ —_ l —_ Decision —_— _—— _—

Prototype 1 Prototype 2

Prototype 1’ Prototype 2’
— —_ ‘ — — Decision

Product 1

Product 1’
—_ — —_ — — — Sign Off -

Final

Product

Design

Structural Verification Process

Product
Model

(Gs] -

Geometric
Abstraction
1

Accuracy Level

(MG

{ MG]

Discrete
Model 1

Discrete
Model 2

[FEA]

|

[FEA]

Discrete
Results 1

Discrete
Results 2

([IR

{ TR

Geometric
Results 1

Geometric
Results 2

|

(c1]

Geometric
Abstraction
lr

Accuracy Level

Mesh Density

FEA Results

Structural Optimization Process

Product
Model 1

[Gs] -

.‘-—[??]

Product
Model 2

Geometric
Abstraction

1

(s Vv]

Geometric
Abstraction

l’

Accuracy Level

[s 0]

Geometric
Abstraction

2

Accuracy Level

——— Mesh Density

‘— Results

Accuracy Level

(sV]

Geometric
Abstraction

2'

——— Mesh Density

Accuracy Level

——— Mesh Density

—— Results

U

Geometric Modeling in Transition

SDRC Direction

Geometry Data and Procedures as Utility to the MCAE System

Mechanical Product Definition

Increasingly Application Independent over time

Common Geometry

Product Development Process

Flexible Database

Structural Analysis

Use Geometric Model not the Finite Element Model
Geometric Abstraction
Mesh Generation

Result Interpolation

N88;19115 3 vavé/msfg
Finite Element Meshing of ANSYS® Solid Models /=~ ’

®)7

F. S. Kelley, Supervisor, General Development
Swanson Analysis Systems, Inc.

P. O. Box 65, Johnson Road

Houston, Pennsylvania 15342

: (4 -
Telephone: (412) 746-3304 ORIGINAL PAGE IS

OF POOR QUALITY,
Presentation at the Workshop on the Integration of
Finite Element Modeling with Geomaetric Modeling

Rennselaer Polytechnic Institute
May 1887

(All images are from ANSYS Revision 4.3)

1. INTRODUCTION - ANSYS AND SASI HISTORY

Swanson Analysis Systems, Inc. (SASI) was founded in 1970 by Dr. John A. Swanson to develop,
support, and market ANSYS, a large scale, general purpose finite element computer program.
ANSYS and the recently introduced ANSYS-PC products remain the only reasons for SASI's
existence. There is no engineering consuiting practice to distract attention away from the software
business. SAS! currently employs over 100 people at its office near Pittsburgh, Pennsylvania, and
there are thirty regional support distributors marketing and supporting ANSYS worldwide.

ANSYS was developed solely for the commercial market, with no government or university funding.
It has more than 1000 installations to date, including universities, but not PC’s.

2. PURPOSE OF ANSYS SOLID MODELING

ANSYS was perhaps the first commerciaily available program to offer truly interactive finite element
model generation. (In the late 1970's, there was confusion about what constitutes “interactive”

" processing. Some programs would simply prompt users for a fixed sequence of commands.)

ANSYS Revision 3, released in August 1978, contained PREP7. This processor allowed a user to
create. display, and modify a finite element mesh in whatever order desired.

ANSYS Revision 3 aiso contained a powerful 3-dimensionai automatic mesh generator called
PREP5. Based on keypoints, lines, areas, and volumes, this processor created brick modeis with
relative ease. It was also capable of automatic application of boundary conditions. PREPS was
never as popular for model creation as PREP7. However, some users were upsét when we
removed PREPS at Revision 4.0, released in 1982.

ANSYS Revision 4.0 (1982) introduced the PREP7 Mesh module, with powerful automatic
quadrilateral and brick meshing capabilities. The 4.0 MESH module was widely used for model
generation, but it could not handle irregular regions.

The ANSYS PREP7 MESH module was rewritten as a solid modeler for Revision 4.2 (1985), and
enhanced in Revision 4.3 (to be released in June 1987). This was done solely to aid ANSYS users
in the creation of finite element analysis modeis. SASI did not have to patch finite element
meshing into the ANSYS solid modeler as an afterthought. It was designed in from the beginning.

From SASI's point of view, any other benefits which may be derived from the creation of a solid
model in ANSYS (such as pretty pictures) are bonuses rather than primary objectives.

3. ANSYS REVISION 4.3 SOLID MODELS

ANSYS solid modeis are internally stored in several forms. The first of these has been well
documented in textbooks and papers. Lines, surfaces, and volumetric regions are defined by
Hermite cubic splines as shown below. The parameters r, s, and t vary from 0.0 to 1.0. See
figures 1 - 3.

X =Cl +C2 er +C3 er? +C4 r° (line)
Y = C5 + C6 er + C7 or2+C8 1‘3
Z-C3 +Cloer +Cller? +#cCl121°
X = Cl + C2 er + C3 orz + C4 r3 (surface)
+ (C5 +CB6 er +C7T or% +C8 1) (s)
+ (CO +ClO er +Cll sr? +Cl21°) (s)
+ (Cl13 + Cld or +C15 o2 +Cl6 1) (s%)
Y =Cl7 +Cl8 er + Cl9 or? +C20 r°
+ (C21 + C22 o + C23 o172 +C24 1°) (s)
4 (C25 + C26 o1 + C27 o2 +C28 r°) (s?)
+ (C29 + C30 o7 +C31 o2 +C32 1) (s¥)
Z =C33 +C34 er +C35 er> +C38r°
+ (C37 + C38 er +C39 o2 +C40 T°) (s)
+ (C41 + C42 e + C43 orz +C44r3)(52)
+(C45+C460r+c‘1;7orz +C48r3) (sa)
X = Cl + C2 er + C3 orz + C4 r3 (volumetric region)

H

(C5 +C6 o1 + C7 er + C8 (s)
2

+ (C3 +Cloer +Cll er2 +C127%) (s%)

+

+ (C13 +Clé o7 + C15 o2 +Cl6) (s?)

+ [Cl7 + Cl8 er + Cl9 or% +C20 r°

+(C21 + C22 or +C23 o172 +C241°) (s)

+ (C25 + C26 or + C27 o2 +C28 1Y) (s2)

+ (C20 +C30 er +C3L o2 +C327°) (s2)] (t)
+ [C33 + C34 o + C35 eT2 +C36 r°

+ (C37 + C38 or + C30 er? +C40 T7) (s)
+-((:41<1-C42-1'+C43-r2 +C44r3) (sz)

+ (CA5 + C46 e + C47 o2 +Ca8 1) (s3) 1 (t?]
+ [C49 + C50 er + C51 er® +C52 r°

+ (C53 + C54 e + C55 er2 +C56 £2) (s)

+ (C5T + C58 er + C50 er% +C80T°) (s2)

+ (CB1 + C62 or +CB3 o2 +C841°) (s3) 1 (t3)

(The equations for Y and Z are similar, using C85 through C192.)

—i

Figure 1 Hermite Spline Defining a Line

r

Figure 2 Bicubic Hermite Spline Defining a Surface Region

r

Figure 3 Tricubic Hermite Spiine Defining a Volumetric Region

ANSYS aiso allows the definition of degenerate Hermite regions (figures 4 and 5). This is very
important. There is no assurance that an arbitrary surface can be mapped by quadrilateral
regions, and even less assurance that an arbitrary 3-dimensional object can he mapped by
hexahedral regions. The degenerate forms give ANSYS a far more general modeling capability
than would be provided by the standard regions.

Figure 4 Degenerate Surface Region

r

Figure 5 DOegenerate Volumetric Region

New to ANSYS Revision 4.3 is the ability to define surface regions by a list of up to 200 cubic line
segments, and volumetric regions by a list of up to 200 bicubic surface regions (figures 6 and 7).
These alternate region types allow great flexibility in the modeling of complex structures. They also
make it difficult to classify the ANSYS solid modeler into one category, such as “B-rep” or
“CSG". Perhaps “hybrid CSG” is the best term to apply.

_L8
| i
-6
| 1
| \L7
T T4
s -

—_— —

Figure 8 Surface Region Defined by a List of Lines

Hermite
surface

/1/ patches

Figure 7 Volumetric Region Defined by a List of Surface Patches

Definition of solid models in ANSYS begins with the input of several “keypoints”. “Line segments”,
“areas”, and “volumes” may be defined by connecting keypoints. Lower order entities are
generated automatically as needed. Lines and areas follow the curvature of the “currently active
coordinate system” (figure 8). Transiation, rotation, and symmetry reflection operations are
available. Line segments may be rotated about an axis or dragged along a path to produce areas
(figure 9). Areas may be rotated about an axis or dragged aiong a path to produce volumes

(figure 10). ANSYS is command driven, with complete documentation available on-line via a menu
system. Cross hair and digitizing tablet input is alsc possible.

Line Segments

Velums

Areas

Yolume

Keypoints

Figure 8 ANSYS Keypoints, Line Segments, Areas, and Volumes

Rotation Axis

Line Segments

Figure 9 Rotation and Oragging of Line Segments tc Create Areas

Drag Path

Figure 10 Dragging of an Area to Create Volumes

4. SURFACE ACCURACY OF ANSYS SOLID MODELS

Accuracy of curved surfaces in cubic spline based solid modelers can be of concern. Circular
arcs and intersection lines cannot be represented exactly by Hermite splines. A circular arc of 90
degrees has a radius error of 0.03 % (figure 11). For an arbitrary region extending 90 degrees on
the surface of a cylinder, the radius error can be as much as 0.2 % (figure 12). Lines resuiting
from the intersection of arbitrary 90 degree regions can have a radius error of 0.4 % (figure 13).
Figure 14 shows the effect of a +/~ 0.5 % local perturbation of radius on the results of the analysis
of a flat plate with a hole. The maximum corner stress decreased by 0.8 % as a result of the
perturbation. For solid elements, the stress error appears to be of the same order of magnitude
as the geometric error. Figure 15 shows the effect of a +/- 0.5 % local perturbation of radius on
the results of the analysis of a pressurized spherical shell. The stress error introduced was
approximately 8 %. For shell elements, the stress error appears t0 be an order of magnitude
higher than the geometric error. The radius error in the ANSYS solid modeler is drastically
reduced if the line segments and areas are limited to spans of 45 degrees or less. Typical radius
errors are then 0.0005 % for line segments, 0.005 % for areas, and 0.03 % for intersection lines.

Radius error = 0.03%

Radius error = 0

Figure 11 Radius Error for a 90 Degree Line Segment

Area with desired constant
radius (shrunken for clarity)-
maximum error = 0.2%

Figure 12 Radius Error for Arbitrary 80 Degree Area

Intersection of cylinders -

// Maximum radius error = 0.4%

v A\

4 X 1

Figure 13 Radius Error for Intersection of 2 Arbitrary 30 Degree Areas

Radius = Constant Radius varies +/- 0.5%

Figure 14 Effect of Radius Error on Plane Stress Solution

Membrane Stress

/ \/ - // varies +/- 0.5%
~— ~)
/\ / \/ /\ P, Membrane Stress
/ /> varies +/- 8%

+ L\, Wi

7~ ey
Radius = Constant \ /‘/ 7
™>
/)7

Radius Varies
+/- 0.5%

Figure 15 Effect of Radius Error on Shell Stress Solution

5. FINITE ELEMENT MESHING OF AN ANSYS SOLID MODEL

The first step in meshing of an ANSYS solid model is to establish the mesh density. This is
accomplished by assigning a number of element divisions and a spacing ratio to every line
segment attached to the areas or volumes (figure 16). Commands are availablie for making the
assignments line segment by line segment or to a group of line segments at once. Divisions can
be computed based on line segment length and a desired element size and assigned
automatically. Spacing ratios can aiso be computed automatically for smooth mesh transitioning

(figure 17).

Divisions Established -~

—
for All Line Segments .

Figure 16 Establishing Finite Element Mesh Density

Figure 17 Automatically Adjusted Line Divisions and Spacing Ratios

Meshing of areas with quadrilateral slements and volumes with brick elements is available in certain
cases. The most limiting restriction is that only the standard region shapes (four keypoints cn
areas, eight keypoints on volumes) are ailowed. Further, the number of element divisions
requested must match on opposing sides of areas (figure 18). The area corner angles must be
reasonable for quadrilaterai or brick elements. The maesh is mapped onto the natural coordinates
of the areas and volumes (figures 19 and 20). .

10

Matching Divisions

Matching Divisions

Figure 18 Matching Divisions on Areas Required for Quadrilateral or Brick Meshing

Figure 20 Brick Element Meshing of a Volume

11

Meshing with triangles is available for all areas, regular or not. Meshing with tetrahedra is available
for all volumes, regular or not. The elements of choice are the 6-noded trianguiar solid or shell
(figure 21) and the 10-noded tetrahedral solid (figure 22). ANSYS has these eslements available
for stress, thermal, electro-magnetic, or multi-field analysis. For planar, axisymmetric, or shell
applications, 6-noded triangles are good performers, giving resuits of equal or superior quality for
equal edge divisions when compared to 4-noded or 8-noded quadrilaterals. For 3-dimensional
solid applications, 10-noded tetrahedra perform well. (This element is a theoretically consistent,
completely conforming element which passes the patch test. Because tetrahedral meshes are
rarely symmetric, however, this eilement can develop localized spurious deformation modes. For
this reason, some theoreticians have refused to bless this element for general use. This is really
bad news if their fear is justified, since tetrahedral meshing is the oniy reasonable approach to
automated meshing of arbitrary 3-dimensional shapes. No conclusions can be reached, however,
until the stress analysis community has had ample opportunity to gain experience with tetrahedra.)
ANSYS uses the same algorithm for trianguiar meshing of areas and tetrahedral meshing of
volumes: an initial mesh is formed without regard to region shape and is then repeatedly
improved by operations which divide or combine elements, until all elements are nicely shaped or
until no operations available will improve the situation. This iterative scheme is computationally
intensive, but is highly reliable and produces well distributed meshes of well shaped elements.

Figure 21 6-Noded Triangle Element

Figure 22 10-Noded Tetrahedron Element

12

=

ﬂ@m /)
=S
A /
>
2
X

/‘4/"
pY

N

)
AN
>z ?
=
)
N

7\

N\ /
)
|
\
A7

1)
SIZY
S
? N AV?
SIS
N
T VAVA
VAV
i
Ik
HIYNS
(i
IS

O

i 4

Wy

Triangular Mesh on the Exterior of a Volume
Prior to Tetrahedron Meshing

Figure 23

We at SAS| have been asked on several occasions why we do not mesh areas with mixtures of
quadrilaterals and triangles, or mesh volumes with mixtures of bricks, wedges, and tetrahedra.
First, there is little evidence to suggest that such mixed meshes are likely to perform any better
than meshes consisting entirely of triangles or tetrahedra. Second, the algorithms to produce such
meshes appear to be at least as complex and compute intensive as the triangle and tetrahedron
algorithms, if they are to check element shape as thoroughly as they should. Finally, connecting
brick elements to wedges and tetrahedra is not a straightforward process if one wishes to avoid
displacement incompatibilities.

Meshing of adjacent areas or adjacent volumes in ANSYS will aiways produce compatible and
properly interconnected finite element meshes. This is possible because the triangle and
tetrahedron meshing aigorithms used do not have the “authority” to aiter the exterior of the mesh
of a region. As shown in figure 23, the tetrahedrai meshing of a volume starts with a fixed exterior
triangular mesh, which cannot change.

6. BOUNDARY CONDITIONS

The following boundary conditions may be defined directly on an ANSYS solid model.

imposed displacements at keypoints
imposed temperatures at keypoints
imposed voitage at keypoints

imposed magnetic potential at keypoints

(stress analysis)

"~ (thermal analysis)

(electrical analysis)
(magnetic analysis)

(constraints can be interpolated over attached line segments, areas, and volumes)

temperatures at keypoints
heat generation rates at keypoints

(stress analysis)
(thermal analysis)

(can be interpolated over attached line segments, areas and volumes)

13

applied forces at keypoints (stress analysis)

applied heat input at keypoints (thermal anaiysis)
applied current flow at keypoints (electrical analysis)
applied magnetic flux at keypoints (magnetic analysis)
pressures on line segments (2-0 stress analysis)
convections on line segments (2-D thermal analysis)
symmetry / antisymmetry (2-D solid or 3-D shaell
on line segments stress analysis)
pressures on areas (3-D stress analysis)
convections on areas (3-D thermal analysis)
symmetry / antisymmetry (3-D stress analysis)
on areas

Boundary conditions may be defined before or after finite element meshing, and can be displayed
on the solid model. They will be transferred to the finite element model automatically when
needed. (The transfer can be forced earlier if the user wishes to display them on the finite
element model.)

Even if boundary conditions are not applied directly to an ANSYS solid model, they can be
conveniently applied to a finite element model created by the solid modeler. Nodes and elements
associated with various mesh entities can be activated or deactivated as desired, making it easy to
specify where constraints or loadings belong.

7. ANSYS INTERFACE WITH CAD SYSTEMS

ANSYS accepts keypoint and line segment information from a number of other solid modeling
systems (see Table 1). A user can use this data to create areas and/or volumes and a finite
element model.

Table 1
Translations within Other Systems Having Some Interface
ANSYS with ANSYS
IGES ADAMS-DRAM CIS-MEDUSA PATRAN
MEDUSA ADVANTAGE DIAD Solid Modeler PDGS
FEMVIEW ANVIL ENGINEER WORKS PROF. CADAM
FEMGEN APPLICON EUCLID ROMULUS-D
NASTRAN AUTOCAD FEMAS SOLUTION 3000
SUPERTAB AXXYZ GRAFTEK UNIGRAPHICS
CADAM ICAD VERSACAD
CADKEY INTERGRAPH
CATIA ME30
CDS-4000 M.E. Workbench
CIMLINK MOLDFLOW

Even though ANSYS can accept nodes and elements created by other systems, we believe that in
most cases the user will be better off doing the finite element meshing step within ANSYS. First,
we have seen evidence (finite element models from other systems) that not all developers of
meshing software know what constitutes a good analysis modei. Badly shaped elements may give
poor quality analysis results. (it is far better to inform the user that meshing is not possibie with

14

the data supplied than to produce an unacceptable mesh.) Second, if the user has meshed in
another system, he or she may be reluctant to make any alterations to the model which may be
indicated by initial analysis resuits. Third, the required mesh may by load dependent. Finally,
nodes and elements brought into ANSYS from another system will not be associated with the solid
model, and boundary condition manipulation will be difficuit.

8. FUTURE DEVELOPMENT PLANS

In the short term (Revision 4.4, 1988), we plan improvements in the command structure for
defining ANSYS solid models. We hope to improve the speed and reliability of our meshing
algorithms. We plan to allow definition of contact surfaces. We plan to improve our interfaces
with other software packages.

In the long term (Revision 5, 1990), we want to address some or all of the following.

mapping analysis resuits back onto the solid model
adaptive mesh refinement

improved curved surface accuracy

improved user interface

9. EXAMPLES

Figures 24 through 31 show several examples of ANSYS solid models and resulting finite element
meshes. Tabie 2 shows the various statistics for these modeis.

Table 2
Example Statistics

Elapsed time* for creation

Number of Number of of solid model & finite
Model Commands Elements element model Computer
Block with two holes 159 3047 tetrahedra 183 minutes VAX 11/780
Helix 62 2856 tetrahedra 160 minutes Prime 9950
Pawn 60 819 triangles 19 minutes MicroVax
Knight 351 2427 tetrahedra 318 minutes MicroVax
Gear 279 1136 tetrahedra 31 minutes Prime 9950
Gear Submodet 186 2684 tetrahedra 138 minutes Prime 9850
Turbine Spacer : 403 1224 tetrahedra 75 minutes Prime 9950

*CP times are nearly identical

15

ORIGINAL PAGE IS
OF, POOR QUALITY,

Yt
PVE RG]
:‘__ \‘ “g

€
-

You X

o
3y

Figure 24 Tetrahedron Model of Block with Figure 25 Detail of Tetrahedron Model -
Two Hoies Block with Two Holes

Figure 26 Tetrahedron Model of Helix Figure 27 Triangle Model of Pawn

16

Figure 28

Figure 30

Tetrahedron Model of Knight

Stress Contours on Tetrahedron
Submodel of Gear

ORIGINAL PAGE IS
OFE POOR QUALITY

Figure 29 Stress Contours on Tetrahedron
Model of Gear

Figure 31 Stress Contours on Tetrahedron
Model of Turbine Spacer

17

S5-Cf

SAND87-0882A

N§8-19116 e
‘ SOLID/FEM INTEGRATION at SNLA # oA 7

Patrick F. Chavez
CAD Technology Division -
Sandia National Laboratories
Albugquerque, New Mexico 87185

This presentation will describe the effort at Sandia National
Laboratories Albuquerque with emphasis on the methodologies and
techniques being used to generate strict hexahedral finite element
meshes from a solid model. We utilize the functionality of the modeler
to decompose the solid into a set of non-intersecting meshable finite
element primitives. The description of the decomposition is exported,
via a Boundary Representation format, to the meshing program which
uses the information for complete finite element model specification.
Particular features of the program will be discussed in some detail
along with future plans for development which includes automation of
the decomposition using artificial intelligence techniques.

*This work performed at Sandia National Laboratories was supported by
the U.S. Department of Energy under contract DE-AC04-76DP00789.

Automatic Mesh Generation and Optimization
from the Solids Model Database
SAND85-2822C, CAD/CAM 031

Patrick F. Chavez *

A proposed system to generate finite element models directly from
the solids model database is presented. This system includes auto-
matic error analysis with adaptive gridding for equilibration of the
error estimator in use. The complete specification of the finite
element model including boundary conditions and material identifiers
i{s produced to a neutral output file. An illustrative example depict-
ing the state of {mplementation of the proposed system is contained
within. Current research is also briefly described.

Introduction

The advancing technology of computing hardware and software is well
represented by the current Computer Aided Design (CAD) systems employ-
ing solids modeling. These solids modeling systems, under development
by both universities and industry, have the obvious benefit for the
realistic visualization of three-dimensional (3-D) objects. The most
important benefits of solids modeling, however, do not lie in the
solid model itself, but in the subsequent applications which utilize
the valid and unambiguous geometric information available. In other
words, the advantage of solids modeling is not as a stand alone appli-
cation but as a means of creating a geometrical database to unify a
"number of applications. Indeed, users and vendors currently seem to
‘be concentrating their efforts at integrating the solids model data-
base in the areas of Finite Element Modeling (FEM) and Numerical
Control (NC) Programming. Solids modeling does appear to have the
potential for wunifying the design, engineering, and manufacturing
areas of industry.

At Sandia National Laboratories a unified geometric database 1is
expected to reduce design time and yield added reliability and
optimization of the designed systems. A joint effort between the
Engineering Sciences and the Computer Aided Design Departments has
been defined and is being pursued to integrate the Computer Aided
Engineering (CAE) activities of the Engineering Sciences Department
into the automated design and manufacturing process. The primary
vehicle for this effort is the utilization of improved model genera-
tion capabilities with emphasis on advanced geometric definition and
automatic mesh generation for FEM. In particular, the utilization of
the CAD geometrical data and hence the elimination of the error prone
reentry of such data is considered essential.

«Member of Technical Staff, CAD Technology Division 2814,
Sandia National Laboratories, Albugquerque, NM, 87185.

-1- Chavez

ORIGINAL PAGE IS
OE POOR QUALITY,

This paper describes the effort undervay at Sandia for
integration of FEM Mesh generation utilizing PADL-2 [BROW82), the
Constructive Solid Geometry (CSG) system produced at the University of
Rochester. In general, because of the commercially available and
locally developed finite element analysis codes in use at Sandia, a
requirement for the use of hexahedral elements in 3-D FEM exists.
This, coupled with the large number of nonlinear finite element
snalyses performed, prohibits us from considering the automatic
tetrahedralization work [CAVEB5] developed at General Motors Research
Labs or the modified-octree work [YERR84) performed at Rensselaer
Polytechnic Institute. The finite element mesh generation philosophy
we are pursuing 1is divided into two primary phases; 1) initial mesh
{nstallation utilizing the available CAD geometric data base and 2)
mesh optimization including mesh improvements based on geometrical
aspects of the initial mesh and automatic error analysis coupled wvith
node grading techniques to obtain uniformly reliable ansvers

throughout the domain of analysis.

The following sections of this paper describe in some detail the
relevant topics including 1) solids modeling, 2) application inter-
face, 3) initial mesh generation, 4) mesh ipprovements, 5) and error
analysis and adaptive gridding. An illustrative problem depicting the
state of implementation of these topics is included.

Solids Modeling - A Geometrical Basis for Applications

The classical geometrical CAD database is the so-called
*wireframe” format. To define wireframe, we introduce the notion of
an edge. For us, how an edge is actually represented within soue
computer database is unimportant. Only the idea that an edge results
from the intersection of two distinct surfaces matters. An edge is
one-dimensional in a parametric sense. That is-, although any point
-{x,y,z) on an edge {s in Euclidean 3-space it can be derived through
a system of equations depending on only one independent parameter of
the form ;

x=X(8) y=Y(s) z=2(s).

Here ¥, Y, and Z are functions of the independent parameter s vwhich is
bounded in the closed interval [s,,s]. A wireframe representation
then models a solid by simplistically specifying certain edges of the
solid. Typically, those edges defined for a given solid correspond to
the bounding edges of the domain being considered. Particular entity
specification, referred to as {nstancing, is accomplished through a
choice of a particular type of edge (say a line or circular segment)
with a rigid motion and any other necessary parameters (say curvature)
to complete the definition.

New geometrical modeling technologies are becoming popular. The
two wmost popular technologies are CSG and Boundary Representation (B-
Rep). CSG systems define solids as Boolean operations (union, aif-
ference, intersection) of simpler primitive solids (blocks, spheres,
wedges, cones) instanced by size and location. The B-Rep, on the
other hand, is a heirarchical extension of the wireframe format. In
the B-Rep, solids are described as a collection of instanced (by type,
size, and location) faces, each of which in turn are composed by a

-2- Chavez

nupber of edges. Explicit mathematical descriptions of both the faces
and edges are usually available. The user interface for the CSG and
B-Rep systems appear to be unifying with each other borrowing from the
others successes. Primitive instancing, once strictly a tool of the
CSG modeler, is found in several B-Rep modelers. Similarly, a sveep-
ing formulation of edges to create faces and the sweepiny of faces to
form volumes have begun to appear in some CSG formulations.

We are, of course, {nterested in utilizing an unambiguous and
valid description of a solid. The adjectives “unambiguous® and
*valid” are similar to the terms *one-to-one™ and "onto” as applied to
{nvertible functions. When wve say an unambiguous solid representation
we imply that for a given representation it should correspond to one
and only one solid. We do not have strict one-to-oneness since there
1s no unique representation for a given solid, but only a unique solid
for every representation. Indeed, in any of the currently available
geometrical modeling systems, there is mo unique representation for a
solid. There are as many definitions of a solid as there are users.
As for the term °“valid", we imply that for any representation ve
derive, it describes a solid although it need not be realizable from a
manufacturing point of view.

It 1is easy to imagine that wireframe representations are neither
unambiguous nor valid. Indeed, there are a myriad number of counter-
examples testifying to this. On the other hand, both CSG and B-Rep
systems have the ability to produce unambiguous and valid descrip-
tions. Our work in automatic finite element analysis has been based
on the unambiguous and valid geometric description available within
the CSG modeler PADL-2. The choice of PADL-2 has been more a matter
of convenience, since the source code and expertise are available at
Sandia, than a matter of preference of CSG over B-Rep. In fact, it
may be argued that the B-Rep facilitates certain applications, for
example FEM and NC programning, that are primarily surface oriented.

For our implementation of the mesh generation we use the B-Rep,
as supplied through a conversion routine available in PADL-2. These
conversion routines are generally well understood and details of the
PADL-2 implementation can be found in [HART81]. Our development thus
{s considered pgeneric in the sense that any solid modeler capable of
ultimately delivering a B-Rep, independent of its own internal repre-
sentation, would be able to utilize the capabilities we are develop-
ing.

We have realized the benefits of using a valid and unambiguous
solid model as neither the geometry nor the topology has to be sup-
plemented. For wireframe applications it is quite typical that either
additional topology or geometry has to be supplied before applications
are undertaken.

Application Interface - The Link Betwveen Geometry and Applications
The idea for using arbitrary solid modelers in conjunction with
various applications {s known under the broader category of

*application interface”. An application interface has been likened to
a “"software bus" enabling applications to communicate directly to

-3- Chavez

ORIGT™NAL PAGE IS
OF POOR QUALLITY,

solids modelers for the purpose of interrogating or modifying the
solid model. To date no standard application interface exists for the
available solids modelers although efforts [CAMIB6] to this end have
been underway for some time. Still, some solids modelers make
available to some extent the modeling operations required by locally
deseloped applications. Application interfaces can be thought of as
part of the solids modeler which make the internals of the modeler
transparent to the application.

We have been able to use a number of the available routines
within PADL-2 to facilitate the interface to the finite element mesh
generator. These include routines for identifying and utilizing the
geometric entities vithin the representation. For example, routines
pertaining to the storage management structure, the rigid motion
facility, and the computational geometry package have been used to
discretize the body for mesh generation. Other utilities necessary
for linking our application to PADL-2 have had to be defined and
developed. These include routines that format the B-Rep available in
PADL-2 for export to applications and the corresponding routines to
read the representation into the mesh generator. The mesh generator
also requires contiguous lists of edges and faces, called loops, which
PADL-2 does not require. These have been developed. Redundant edges
and faces are either necessary or add to the robustness of a solids
modeler, but are detrimental to mesh generation. Algorithms to
fdentify and eliminate redundant faces and edges have been
implemented. Finally, although PADL-2 contains routines usable to
discretize edges, none existed to discretize surfaces.

The above development has allowed the mesh generator to directly
create finite element models from a solids description while guaran-
teeing that all nodes defined for the mesh either lie in the body or
are exactly on the surface. This group of routines are necessary
‘within another solids modeler for our implementation of the finite
‘element mesh generator.

Mesh Generation - An Application for Solids Modeling

In this section the philosophy for generating hexahedral finite
element meshes from a solids model database is presented. We proceed
by briefly describing one technique for generating hexahedral meshes
that is representative of the classical methods used. The method we
are pursuing for mesh generation is an extension of these ideas im-
bedded in new technologies, namely solids modeling and feature recog-
nition.

A hexahedral mesh can be constructed through a coordinate trans-
formation in conjunction with higher order approximating functions.
More specifically, the geometry of the body is constructed using
hexahedral subregions each having six well defined faces and twelve
edges. The description of each hexahedron requires the coordinates of
eight corner points and one interior point of each edge for a total of
tventy points. During the construction of a particular hexahedron,
faces which are coincident with previously defined faces are identi-
fied. Thus, coincident nodes on coincident faces are assigned the
same node number, Finally, & consistent number of divisions along

Y AR have”y

three “mutually orthogonal® directions for each hexahedron is
specified.

A mesh of hexahedral elements can then be installed in each
hexahedral region in the following manner. The twenty points given on
each hexaheiral subregion are considered the images of the unit cube
S, where S = [(r.c.t):Ogr.:.tgl]. via maps given by x = X(r,s,t), ¥ =
Y(r.s,t), and z = Z(r,s,t). Here the usually polynomial functions X,
Y, and Z are of total degree three in each variable. The unit square
{s then subdivided into the specified number of divisions and the grid
so formed is transformed via the above maps to the physical domain.
If the interior points defined along the edges of the hexahedral are
placed closer to a corner point, a higher density of elements is
obtained in that portion of the subregion.

The mapping technique described above, usually referred to as an
isoparametric mapping, necessarily matches the body at only the twenty
interpolation points defined. A different mapping technique has been
utilized in our work. Our mapping technique {s related to the
transfinite mapping work of Haber et. al. (HABES1,HABEB2], in that a
non-denumerable set of points on the surface of the body can exactly
be matched. This mapping is derived by utilizing the paramatric
representation of the surfaces available in PADL-2 to locate the mesh
points on two *opposite” faces. The interior points of the mesh are
then generated through a lofting of the meshes on these faces. For
the simple subregions implemeted to date, these interior points are

aranteed to 1lie interior to the subregion. As more geometrically
complicated subregions are added, validity of the location of the
interior points will be checked through point classification, a capa-
bilitiy of the solids modeler PADL-2.

In the discussion of a classical hexahedron mesh generator, we
_described the geometric definition of the body as an assemblage of
.large hexahedra. This definition of a solid is overly restrictive.
This construction |is unnatural and inefficient when using general

solids modelers. Even for systems explicitly designed for this
purpose, this construction can be overly time consuming for all but
the simplest cases.

For our work, mno such resirictions on the geometry creation is
assumed. The full pover of the solids modeler is utilized. Our
philosophy for subregion definition {s that all the capabilities of
the solids modeler are used to decompose the body into a set of
regions within each of which a hexahedral finite element mesh can be
{nstalled. We term these subregions "finite element primitives®.
That 4s, the solid model {s decomposed using the primitives and
Boolean operations of the solids modeler into a set of finite element
primitives. The resulting set of finite element primitives need not
coincide with the pgeometric primitives of the solids modeler. The
finite element primitves to be supported include all the geometric
primitives plus all the topolologically equivalent entities. For
example, any volume defined by one surface, topologically equivalent
to a sphere, will be able to be meshed.

-5- Chavez

Alloving more general finite element primitives either
necessitates the definition of nev mapping techniques or a decomposi-
tion of each of the finite element primitives into a collection of
hexahedra. This last alternative is easily accomplished. Figure 1
shows the decomposition of the standard geometric primitives. This
decomposition of the finite element primitives will be asutomatic in
the solid modeler and transparent to the user.

The mesh generation 1is only automatic in each finite element
primitive. Presently human interaction is required for the primitive
decomposition. Work is beginning in the area of feature recognition,
as applied to recognizing the finite element primitives, to automate

this process.

Figure 1. Decomposition of the Standard Geometric
Primitives into Hexahedron.

Mesh Improvements - Assuring Ceometrically Good Meshes

In the previous discussion of the mesh generator ve did not
enumerate the characteristics of a "good™ mesh. We do so now. Some
characteristics of a good mesh are 1) gradually changing element
sizes, 2) gradually changing element shapes, and 3) as nearly rectan-
gular (even cubical) elements as possible. These characteristics have
important numerical consequences. For example, the third condition
assures us in practice of a vell defined (one-to-one and onto) coor-
dinate transformation during the stiffness matrix formulation. In
addition, all the above characteristics attempt to maintain the condi-
tion numbers of the stiffness matrices generated for two nearby ele-

ments to be similar.

-6- Chavez

Our approach to generating good meshes is an extension of the
i{deas incoporated in the two-dimensional (2-D) mesh generator QMESH
[JONE74]). Only the necessary details of these developments will be
given in this section. A more complete description of the 2-D im-
plementation can be found in the QMESH documentation.

In our mesh generator, like QMESH, the initial mesh i{s evaluated
and {improved through a series of processors vorking in tandem. The
processors have the capabilities to automatically reposition nodes,
delete elements, and rearrange the topology in an attempt to improve
the element geometry. The mesh improvements, as ve novw discuss, are
only concerned with the geometrical aspects of the mesh. The suffi-
ciency of the mesh with regard to accuracy is discussed in the next
section of this paper. The general concepts of the algorithms for
node smoothing, topology restructuring, and element deletion are now
described.

The node repositioner, or smoother, consists of attempting to
have the nodes equidistant and the elements having equal volumes.
Requiring the nodes to be equidistant i{s tantamount to requiring that
every node is at the average location of all its neighbors. Symboli-
cally wve have

(x,y.z) = %(Ixi.{yi.{zi)

where n is the number of neighboring points each with coordinate (x,,
Yy z,). This formula is the one applied in the smoothing code but
in a siightly altered fashion. The expression is rewritten as

(x,y,Z) - (XO'YO'ZO) + :’;(z(xi'xo)oz(yi.yo)'z(zi°zo))
or more succinctly -
(x,y,2) = (x3.¥9:29) *+ %211.

Here (x Yo 2) and (x,y.z) are tespectivil the old and updated
positions of "the node being moved and VL - ﬂi{i is the "lLaplacian”
movement vector.

Only a related form of the volume equilibratisr has been
considered to date. Instead of requiring the volumes for all elements
to be the same, we impose that each of the areas of the faces on all
the elements are equal. This has been proposed to more fully utilize
the capabilities already developed in QMESH. This requirement is
represented in the formula

A, A
Va -Z Af ib Vi
AjetAp

where V. {5 the "Area-Pull® movement vector (corresponding to Vi in
the node 'equidistribution) applied to the node in question. The A £

and A b refer to the areas of the face "in front” and "in bnck"of
the ngde. Again, more complete description of the formulation in the
twvo-dimensional setting can be found in {JONE74). The Laplacian and
Area-Pull moment vector for a node are incorporated through a convex

-7- Chavez

ORIGINAL PAGE IS
OF POOR QUALITY,

combination of the two. That is the moment vector for a given node is
taken as

Ve aVA + (l-u)VL

with ac[0,1] a user selectable parameter.

The next capability is the restructuring of the element topology,
1.e., the element connectivity. By this we mean the process of eras-
ing an interface plane and draving it differently to improve the
geometrical shape of the neighboring elements to the plane. To assess
the element shapes, three element evaluator functions referring to the
angle condition, the aspect ratio, and the product of these two have
been defined. These definitions are extensions to those developed by
Jones for QMESH.

The operation of the restructuring process is then the following:
the condition numbers for all the elements are evaluated and a list of
the twenty-five worst (largest) is saved. The processor attempts to
improve the worst element in the mesh. 1f no improvement is made in
any of the first ten worst elements, the processor quits. If a re-
structure is accomplished, the list of worst elements is updated and
the process {s continued so long as a restructure is performed among
the ten worst elements of the mesh.

The £inal processor contained is the element deleter. This
processor attempts to improve the mesh by deleting elements. Element
deletion is similar in nature to the restructuring processor. This
processor sweeps through the mesh to make a list of the five vorst
*rhombic” elements. The measure of how rhombic an element, termed the
R-nunber, is defined as the ratio of the length of the shorter diago-
_nal to the 1length of the longer diagonal. If the R-number of an
element is less than tan(V/2), vhere V is normally forty-five degrees,
the element is placed in the candidate list for deletion in ascending
order. The more rhombic an element is the smaller the R-number. The
tolerance parameter tan(V/2) is the R-number of a parallelogram with
opposite angles of V and {is not simply a measure of how sharp an
elexent {is. The program then starting with the worst (smallest) R-
number, attempts to eliminate the element. As soon as an element is
deleted, control returns to the calling program.

The sequence that the processors operate on can effect the out-
come of the mesh. A general method for specifying the sequence of the
processors has been implemented. The entire sequence is iteratively
performed until convergence (no more node smoothing, element restruc-
turing, or element deletion) i{s attained.

The full capability of the mesh {mprovement has not been imple-
mented to date. Only those capabilities corresponding to each of the
"lofting planes generated in the primitives are acted on. We can show
that for certain limited cases this is a partial implementation of the
entire algorithm for a true 3-D mesh improvement. Ve have observed
that the primary processor functioning is the smoother, attributing to
the initial quality of the meshes generated.

-8- Chavez

Error Analysis and Adaptive Gridding - Generating Computationally
Optimum Meshes

The topics of error analysis and adaptive gridding have attracted
considerable attention. For example, it is well known theoretically
that inserting degrees of freedom {nto the finite element method can
yield more accurate results. In practice, it has been verified that
often the error can be reduced vhen the number of degrees of freedom
are increased. In general. there are two ways of decreasing the error
by increasing the number of degrees of freedom in the finite element
space. The first method, usually referred to as the "p-method”,
{nvolves increasing the degree of the polynomial wused over each
element while leaving the total number of elements in the domain
fixed. This refinement, as usually implemented, has no effect on the
approximation of the geometry and hence the initial mesh should be
developed to include all the important geometrical aspects.

The second method of increasing the accuracy of the finite ele-
ment method is termed the "h-method®. In the h-method, the degree of
the approximating functions over each element is maintained while the
portion of the domain spanned by each element is decreased. In other
wvords, additional elements (and thus nodal points) are placed in the
region. Again, in practical applications of the h-method, no im-
provement of the geometrical model 1is attained. The theoretical
aspects of the h-method are probably more developed than those
pertaining to the p-method.

The difficulty with both the above approaches is that extensive
modifications are required for the finite element analysis codes in
use today to take advantage of these developments. A third alternma-
tive for adaptive gridding is possible. Errors in numerical methods
are pointvise dependent. That is, errors in an analysis usually vary
- from one element to another. One reasonable goal to strive for is a
‘uniformly reliable answer vith the same error associated with every
element. Thus, if elements are concentrated in the area where errors
are large while decreasing the number of elements where errors are
small, we can hope to produce such a result. In effect, we are trying
to automate the technical expertise applied by computational stress
analysts in achieving reasonable results.

The methodology currently being pursued is the latter approach
primarily because of the large investment in conventional FEM tech-
niques not involving the h- or p-methods of refinement. It may be
quite some time before software is readily available for applying
general h- or p-methods especially for the non-linear problems of
interest at Sandia. The question now arises: HOW do we introduce the
adaptive grading techniques {n our calculations? To answer this we
look at the composite parts of the problem. They are error evaluation
and node distribution.

The problem of finite element error evaluation has been studied
extensively. Sophisticated theoretical work has been done by Babuska
and Rheinboldt [BABU78a, BABU78b, BABUSO); K. Miller and R. Miller
[MILLBla]; K. Miller [MILL81b); and Babuska and A. Miller [BABU8Sl] on
error evaluation. To paraphrase their work without extensive techni-
cal details, an estimate of the local error in an energy norm at a

9. Chavez

given node is derived by considering the surrounding elements to that
node. Here the energy norm for a function f is defined as

NEligep,y = | pivei’ev.

The indicated {ntegration 1is carried out over the domain covered by
the neighboring elements of the node of interest and is notated by D.
It 15 assumed that the finite element solution, denoted by U to the
desired partial differential equation (PDE) is available.” A model
problem, perhaps mimicking the actual PDE being solved, with boundary
data corresponding to Y i{s then solved on D and denoted by w. It is
then reasonable to assume that the quantity . -w]] D
approximates the local energy error ||uh - ullgep where u E‘ zhe
exact (and usually unavailable) solution. Var?éug refinements and

extensions to this idea are the topics of the references cited.

The error indicator we are currently experimenting with is
different from the one presented above. Our error indicator is
simpler to evaluate and attempts to estimate the maximum pointwise
error in an element rather than a local energy error. Briefly, under
conditions which are usually satisfied, it can be shown that in the
paximum norm the finite element solution 1is the optimal solution
available from the span of the basis functions. Thus

Hu-w llp, <€Cmin [ju-Xil,
x:sh

where 1| * ||L denotes the maximum norm and S, denotes the finite
element subspaCe depending on the choice of the discretization h and
the approximating polynomials § used. Then, on an element k approxi-

mation theory yields
Ch-xl 1V uj IL. (K)

2,02
Che l1ID™ully . (k).

Here D2u denotes the generic second derivative wvhile is the
diameter of the element. In the case of linear elements we use the
first inequality replacing Yu by Vu . For quadratic elements the
second inequality can be used repla:Eng Dy with D . The maximum
norm is currently estimated at the quadrature points o the elements.

”u'“'h| 'lﬁ (X) <

This error indicator is conservative for problems with smooth
solutions. It does not take into account the full order of the

polynomial approximation for such problems. It i{s known that for

problems with,smooth solutions, the error using linear elements would
be of order h” and not3h. SimilaEIy for quadratic elements the error
would be of order h” and not h“. This error indicator may be more
suitable for non-smooth problems such as in shock calculations.
Again, the primary advantage of the proposed error indicator is its
computability and it is a pointwise estimate.

We now consider the problem of how to distribute the nodes to

equilibrate the error indicator and obtain a uniformly reliable
solution throughout the domain of anyalysis. This problem is easily

-10- Chavez

addressed with the developuent of the geometrical smoothing as dis-
cussed earlier. As noted, the movement vector as considered in the

Area-Pull and Laplacian smoother is given as
V= uvA+(1-u)vL.

It 4s Treasonable to expect that the new node movement vector defined
as

Ve °VA°A + (I-a)VLeL

vhere e. and e, rTepresent the errors associated with the Area-Pull
and the Laplac}an movement vector respectively, would cluster the
elements where errors are large. For example, e, could be defined as
the maximum error computed for the element corresponding to Vv while
e could be the average of the errors associated with all the elements
surrounding 1,. Overall, the node distribution for adaptive grading
{s taken as an error veighting of the geometrical node smoothing.

An Example - Current Capabilities

As an illustration of the procedure for creating a finite element
mesh and performing automatic error analysis and adaptive gridding, wve
consider a relatively simple but realistic problem. The problem
i{nvolves an L-bracket with a cylindrical hole in the bottom slab. The
part 1is constructed in the PADL-2 language through the union of two
properly instanced blocks and the difference of a properly instanced
cylinder. The solid is decomposed into six finite element primitives.
The solids model of the decomposed L-bracket is shown in Figure 2.
The four primitives surrounding the hole were created by first
defining a coordinate system with respect to the axis of the hole. A
properly {nstanced wedge with its apex parallel to the holes axis wvas

defined. Finally, four intersections of the bracket with the wedge
after appropriate rotations of the wedge about the holes axis yielded

the indicated finite element primitives. The two remaining finite
element primitives were obtained by intersecting appropriately
instanced blocks with the L-bracket.

The B-Rep of the decomposed bracket was transferred to the mesh
generator via several of the routines imbedded in the application
interface. For analysis purposes, the part is assumed to be of alumi-
num construction with a load applied to the right front vertical edge.
Discretization data supplied via the user interface in the mesh gene-
rator resulted in the mesh {ndicated in Figure 3. Appropriate mate-
rial indicators and boundary condition flags were specified, again
within the FEM user interface, before formatting the model into a
neutral format for analysis. Automatic translation of the neutral
formatted finite element model into SAP 1V (BATH74] format for a
linear elastic static analysis wvas accomplished. Typical results
showing the wminipum principal stress contours is shown in Figure 3.

Figure &4 shows the results of the automatic error analysis.
Areas of large error are {indicated as a high density of error contours
and corresponds to locations of high stress. This is intuitively
correct since the error measure is related to the calculation of the

-11- Chavez

ORIGINAL PAGE IS

OF POOR QUALITY
strains and hence proportional to the stresses. Finally, Figure 5
shows the adapted mesh and the analysis results on that msesh. In
general the error indicator has equilibrated to reasonable values and
the ansver is considered to be uniformly reliable in the domain of
interest for the number »f elements used.

Conclusions

We have presented in some detail the theory and development
behind a three-dimensional hexahedral finite element mesh generator
working directly from a solids model database. In conjunction with
the mesh generator are co-developments in automatic error analysis and
adaptive grading to produce uniformly reliable analyses.

Research and development pertaining to the overall system is
continuing. Development of the aesh improvement schemes and inclusion
of more topologically complex finite element primitives is proceeding.
The mesh generation phase is only automatic in each finite element
primitive. Full automation is impossible without automating the
finite element primitive decomposition. Research is underway in the
general area of feature recognition as applied to the process of
primitive decomposition. In addition, work is continuing in the areas
of automatic error analysis and adaptive grading. This work 1is
primarily seen to remain in the area of adaptive grading because of
the predominant nature of the commercially available finite element

analysis codes.

<% ; ot by
\ ' -

AV

N

Y
gx
L Oramwt ssth dmsw le

Figure 2. The Solid Model of Figure 3. The Minimum Principal
the Primitive Stress Contours on the
Decomposition Hexahedral Mesh

: Cenerated.

-12- Chavez

ORIGINAL PAGE IS
OE POOR QUALITY

iy § e gL Tl {RaT Rt R
TR e e =

PP E “%RE: Kiiw . S Rl

E '\-_.".S: E

Y Y

& &

Lot stth o Anse ie =t S ¢ tnes i ~ ey
Figure 4. Error Contours from the Figure 5. The Minimum Principal
Automatic Error Analysis Stress Contours After

Adaptive Gridding

References

- BABU78a

BABU78b
BABUBO
BABUS1

BATH74

Babuska, I., and Rheinboldt, W.C., P"Error Estimates for
Adaptive Finite Element Computations,® SIAM Journal of
Numerical Analysis, Vol. 15, pp. 736-754, 1978.

Babuska, 1., and Rheinboldt, W.C., »A-Posteriori Error
Estimates for the Finite Element Method,"” International
Journal of Numerical Mechanical Engineering. Vol. 12, pP.
1597-1615, 1978.

Babuska, 1., and Rheinboldt, W.C., "Reliable Error Estimates
and Mesh Adaptation for the Finite Element Method,"
Computational Methods in Nonlinear Mechanics, North Holland,
Amsterdam, pp. 67-108, 1980.

Babuska, I., and Miller, A., "A.Posteriori Estimates and
Adaptive Techniques for the Finite Element Method,” University
of Maryland, Institute for Physical Science and Technology,
Tech Note BN-968, 1981.

Bathe ,K.J., Wilson, E.L., and Peterson, F.E., "SAP IV - A
Structural Analysis Program for Static and Dynamic Response of
Linear Systems,” Earthquake Engineering Research Center,
College of Engineering, University of California, Berkeley,
California, 1974.

13- Chavez

BROWS2
CAMIB6

CAVESS

RABES1

HABES82

HARTS81
JONE74

MILL8la
MILL81b

YERRS84

Brown, C.M., °PADL-2: A Technical Summary,® IEEE Computer
Craphics and Applications, Vol. 2, No. 2, pp. 69-84, March
1982,

Computer Aided Manufacturing-International, *Application
Interface Specification-Volumes 1 and 11", Cranfield Institute

of Technology, January 1986.

Cavendish, J.C., Field, D.A., and Frey, W.H., "An Approach to
Automatic Three-Dimensional Mesh Generation,” International
Journal for Numerical Methods in Engineering, Vol. 21, pp.

329-347, 1985.

Haber, R., Shephard, M.S., Abel, J.F., GCallagher, R. H. and
Greenberg, D.P., "A General Two-Dimensional, Graphical Finite
Element Processor Utilizing Discrete Transfinite Mappings,®
International Journal for Numerical Methods in Engineering,

Vol. 17, pp. 1015-1044, 1981.

Haber, R. and Abel, “Discrete Transfinite Mappings for the
Description and Meshing of Three-Dimensional Surfaces Using
Interactive Computer Graphics,® International Journal for
Numerical Methods in Engineering, Vol. 18, pp. 41-66, 1982.

Hartquist, E.E., Peterson, D.P., and Voelker, H.B., *"BFILE/2:
A Boundary File for PADL-2," Technical Memo CGGM- 20,
University of Rochester, Rochester NY, March 1981.

Jones, R.E., *"QMESH: A Self-Organizing Mesh Generation
Program,* Publication N. SLA-73-1088, Sandia National
Laboratories, Albuquerque, N.M., 1974.

Miller, K., and Miller, R., *Moving Finite Elements-1," SIAM
Journal of Numerical Analysis, Vol. 18, pp. 1019-1032, 1981.

Miller, K., “"Moving Finite Elements-11," SIAM Journal of
Numerical Analysis, Vol. 18, pp. 1033-1057, 1981.

Yerry, M.A., and Shephard, M.S., *"Automatic Three-Dimensional
Mesh Generation by the Modified-Octree Technique,*
International Journal for Numerical Methods in Engineering,

Vol. 20, pp. 1965-1990, 1984.

«14- Chavez

WVWONOWVMEWN -

.

Key Words

Solids Modeling

Application Interface

Finite Element Mesh Generation
Mesh Optimization

Error Analysis

Adaptive Gridding

Finite Element Analysis
Computer Aided Design
Computer Aided Engineering

S¢ — ¢/

[18s. swt
J)25.7 72
7

OCTREE BASED AUTOMATIC MESHING FROM CSG MODELS

N88-19117 |

Renato Perucchio. Assistant Professor \
Department of Mechanical Engineering |
University of Rochester
Rochester, NY 14627

Abstract

Finite element meshes derived automatically from solid models through
recursive spatial subdivision schemes (octrees) can be made to inherit the
hierarchical structure and the spatial addressability intrinsic to the underly-
ing grid. These two properties, together with the geometric regularity that
can also be built into the mesh, make octree based meshes ideally suited
for efficient analysis and self-adaptive remeshing and reanalysis. Our pre-
sentation is focussed on the element decomposition of the octal cells that
intersect the boundary of the domain. The problem, central to octree based
meshing, is solved by combining template mapping and element extraction
into a procedure that utilizes both constructive solid geometry and bound-
ary representation techniques. Boundary cells that are not intersected by
the edge of the domain boundary are easily mapped to predefined element
topology. Cells containing edges (and vertices) are first transformed into a
planar polyhedron and then triangulated via element extractors. We also
analyze the modelling environments required for the derivation of planar

polyhedra and for element extraction.

PRODUCTION AUTOMATION PROJECT
College of Engineering & Applied Science
The University of Rochester
Rochester, New York 14627

GEOMETRICAL AND TOPOLOGICAL ISSUES
IN OCTREE BASED AUTOMATIC MESHING

by

Mukul Saxena and Renato Perucchio

to be presented at NAFEMS International Conference
on Quality Assurance and Standards in Finite Element Analysis

to be held

May 13-15, 1987

n

Brighton, England

The work described in this paper is supported by the companies in the P.A.P.’s Industrial
Associates Program. Any opinions, findings, conclusions, or recommendations expressed

in this paper are those of the authors and do not necessarily reflect the opinions of the .
industrial sponsors or the University of Rochester.

N§§-19118 { 7 -&

GEOMETRICAL AND TOPOLOGICAL ISSUES IN OCTREE .
BASED AUTOMATIC MESHING ol

Mukul Saxena and Renato Perucchio”’
Production Automation Project

and Department of Mechanical Engineering
University of Rochester

Rochester, N.Y. 14627, U.S.A.

SUMMARY

Finite element meshes derived automatically from solid models through recursive spatial subdivision
schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic
to the underlying grid. These two properties, together with the geometric regularity that can also be built
into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing
and reanalysis. This paper discusses the element decomposition of the octal cells that intersect the
boundary of the domain. The problem, central to octree based meshing, is solved by combining template
mapping and element extraction into a procedure that utilizes both constructive solid geometry and
boundary representation techniques. Boundary cells that are not intersected by the edge of the domain
boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are
first transformed into a planar polyhedron and then triangulated via element extractors. This paper
also analyzes the modelling environments required for the derivation of planar polyhedra and for element

extraction.

1 INTRODUCTION

In this paper, we describe an approach for resolving the geometrical and topological issues that arise
when a recursive spatial subdivision scheme (octree) is used to generate automatically a FEM mesh
from a solid model. Amongst the various schemes that have been proposed for automatic mesh genera-
tion from solid models [WOO84, WORDS4, CAVESS, SHEP85, YERRS5) recursive spatial subdivision
schemes have been found to offer an efficient avenue for automatic mesh generation as well as for self-
adaptive remeshing and reanalysis because of two intrinsic properties: hierarchical structure and spatial
addressability [KELA86]. To understand the importance of these two properties consider the subdivision
rule and the associated tree structure illustrated - for a 2-D example - in Figure 1.1. The recursive
subdivision rule can be concisely described as follows: (i) the solid domain is “boxed” and the box is
decomposed into quadrants (octants in 3-D); (ii) quadrants are classified with respect to the domain:
when a quadrant is totally inside or outside of the object, the decomposition ceases; when a quadrant is
neither wholly inside nor outside, it is further subdivided into quadrants; (iii) the process continues until
some minimal resolution level is reached. The resulting quaternal or octal tree can be thought of as a
hierarchical cataloging structure for data describing particular regions of space. The lowest level of the

* Research Assistant and Assistant Professor, respectively

1

tree (the “resolution” level) contains the smallest spatial regions and the ordinary finite elements. At
higher levels the regions become larger and the finite elements become substructures (“superelements”)
with associated assembled stiffness matrices. As shown in [KELAS6], such a hierarchical organization is
ideally suited for self-adaptive mesh refinement and incremental analysis. Furthermore, if the quadrant
or octant cells are numbered systematically, then the index of any cell in the hierarchical tree can be
quickly computed from its size and position, and conversely the size and position of a cell can be directly
derived from its index. This property, called spatial addressability, permits direct access to pertinent
geometrical and analytical data during both global mesh generation and localized mesh refinement.

QUADRANT
OBJECT NUMBERING NODE STATUS
TS
120l I ‘ «ls B 1 e
l"‘ /,_.‘ 213 OSM
;, ,‘:(:\—/ : [] ® = o= the boundary (N10)

(»)

G) Q NGO
oooooo’ooo{oooo}o
() ()) (B) (6) (D (1) (1) () ()), () () (H
ﬂo 00 G‘“ Oﬁ (E)n 0" 00 00 0n 00 00 (‘-c @w

U (D
Q) L ()
0 0 () (B (L (B (B B 0 (1) (D (5) 0 B (&) (S

FIGURE 1.1: Quadrant aumbering scheme for a 2-D decomposition.

The octree-based scheme presented here is a direct extension of the work in 2-D meshing and adaptive
analysis reported in [KELA86). The scheme involves two stages of meshing. In the first stage the
interior of the domain is meshed with a geometrically regular grid of hexahedral elements that includes
all the inside octree cells. In the second stage the mesh is extended to the boundary of the domain by
inserting finite element topologies in the 3-manifolds formed by the intersection of the octree cell with the
bounding surface of the solid. While for 2-D problems the manifolds are cut quadrants that can be easily
decomposed into quadrilateral and triangular elements via template matching, the 3-manifolds associated
to boundary intersecting octree cells are far more complex structures that cannot be handled by templates
alone. Furthermore, to enforce continuity of the field variable and to maintain the geometrical regularity
of the interior mesh, the ‘nterface between each 3-manifold and neighboring hexahedral elements must
be a square. Since tetrahedral elements are essential for the decomposition of the cells intersected by

2

the boundary, the interface requirement can be satisfied only by introducing pentahedral (“pyramid™)
elements to provide the transition between triangular and square faces.

In essence, the crucial problem of octree based meshing is to decompose the cells on the boundary into
valid element assemblies while maintaining the hierarchical structure, the spatial addressablity, and the
geometrical regularity associated with the underlying octree grid. In the following sections we discuss
the meshing scheme in general terms and then we focus on the decomposition of 3-D boundary cells.

2 AN OCTREE BASED MESHING SCHEME

We begin by describing the object in 8 modelling system based on Constructive Solid Geometry ' which
provides all the basic geometric operators for spatial decomposition and meshing. The idea underlying the
octal decomposition scheme is to approximate the object to be meshed with a union of disjoint, variably
sized cells (cubes) [JACK80). However, such an approximation cannot be directly mapped onto a finite
element mesh for two crucial reasons: (i) adjoining elements corresponding to octal cells of different
size violate the connectivity rules between firiite elements, and (ii) the union of orthogonal surfaces that)
approximates the boundary of the solid contains re-entrant vertices and edges which introduce artificial
singularities in the FEM model. We modify the octal decomposition scheme to yield a valid FEM
discretization according to the following two-stage strategy.

First stage of Meshing

The object S is enclosed in a “box” and the box is recursively decomposed into octal cells which are
classified as being “IN”S, “OUT” of S or neither in nor outside (“NIO”). For IN cells subdivision ceases
and the octant is mapped directly on to a finite element substructure. OUT cells are discarded and NIO
cells are further subdivided and classified until a pre-specified level of subdivision (the “resolution” level)
is reached and no cell contains more than one connected boundary segment of S. IN cells at resolution
level are mapped onto finite elements. The collection of IN cells forms the interior octree of the solid.

Figure 2.1 shows the interior octree for a solid part — a bracket modelled in the PADL-2 domain [HART83].
The classification procedure used in this stage of meshing is described in [LEEB2].
Second stage of Meshing

During the second stage the interior octree is extended to the boundary of S, §S. This requires associating
each of the NIO cells (more precisely the intersection of the solid S and the octant) to valid finite element
topologies. The NIO cells that do not contain edges of S are classified as Simple (“SNIO”) and their
finite element topologies are easily derived through template association.

For the NIO cells that contain edges and vertices of S, decomposition through templates is not feasible
because of the large number of possible configurations for the edge-cell intersection. These cells, labelled
“Complex” NIO (CNIO), are decomposed through a set of element extractors that operate recursively on
the topological and geometrical description of the cell. The starting point for recursive element extraction
is a valid boundary representation of the polyhedron ®., formed by the intersection of the CNIO cell and
the cutting planes on 5S. These operators are discussed in detail in the following section.

! Constructive Solid Geometry (CSG) exploits the notion of “a.dding” and “subtracting” simple building
blocks (“primitives”) via set-union and set-difference operations.

3

0)
'.'o'

\

SN sNNANENE)

FIGURE 2.1: A bracket and its interior octree.

The finite element mesh is complete at the end of second stage. The interior of the mesh consists of
identical hexahedral elements and substructures associated with IN cells at resolution and higher levels,
respectively. Also, the mesh inherits the hierarchical structure and the spatial addressability of the

underlying octree decomposition.

As shown in [KELAS86, 87), the regularity of the interior mesh together with the spatial addressability of
the entire model provides the basis for a very powerful procedure for doing analysis as well as remeshing
and reanalysis. Briefly, stiffness matrices are built and stored for all the non-QUT cells in the hierarchi-
cal tree (for identical interior elements and substructures they are copied into storage from precomputed
values). This is done from the bottom up by assembling son matrices and condensing-out the interior
degrees of freedom to build parent matrices at each level. A preliminary study on a 2-D implementation
reported in [KELA8T7] suggests that this substructuring procedure is asymptotically more efficient than
direct Gaussian reduction. For adaptive remeshing and reanalysis, spatial addressability allows efficient
localized mesh modification. The reanalysis proceeds incrementally: the new stiffness matrices are in-
serted in the appropriate tree location and are combined with the stiffness of the unmodified elements
and substructures.

In conclusion, the strict adherence of the FE mesh to the underlying octree structure offers some unique
advantages for the analysis and, as such, is worth preserving. Therefore, stage 2 of the meshing procedure
is designed in such a way as to leave intact the interior octree and the spatial addressability of the mesh.

2.1 Decomposition of 2-D NIO cells

The approach to 2-D NIO cells decomposition described in {[KELA86, 87] is based on deriving finite
element topologies exclusively through templates. In this case the number of required templates is small
because of the following constraints imposed on the topology of the 2-D NIO cells:

4

(1) each NIO cell can be traversed by bS only once, such that

NIO N S = x' (1-D simply connected polyhedra); (1)

(2) each NIO cell can contain at most one “vertex” node of bS;

(3) each edge of the NIO cell can have at most one intersection with bS.

AN\

(a) (b)

(c) (d) (e)

FIGURE 2.2: Valid (a,b) and invalid (c,d,e) 2-D NIO cells.

Valid and invalid 2-D NIO cells are shown in Figure 2.2. As shown in Figure 2.3, the derivation of
element topologies, based on the above constraints, is simple. When the NIO cell does not contain any
vertex, the element topology may be derived by traversing the boundary of the quadrant and counting
the intersections with the object boundary. If the intersections are encountered on alternate edges,
a quadrilateral element is mapped on to this cell. If the intersection takes place on adjacent edges,
triangular elements are generated by comnecting the intersection points to the appropriate cell node
classified as IN.

For the case of NIO cells containing a vertex of bS, the vertex becomes a finite element node and triangles
are generated by connecting this node to all the intersection points and the cell nodes that are inside the
domain.

This simple decomposition approach — #nd the topological constraints on which it is based — cannot be
extended to 3-D NIO cells because a 3-D bS contains edges. In this case, unless one imposes overly

5

No Vertex Inside Vertex Inside

FIGURE 2.3: Derivation of finite element topologies for 2-D NIO cells.

restrictive conditions on the way a bS edge is permitted to intersect a NIO cell, decomposition solely via
template matching is infeasible.

An important property of the decomposition procedure described above is that each 2-D NIO cell contains
all the topological information necessary to associate a finite element structure to the cell such that the
continuity of the field variable across the cell boundary is ensured. Thus each 2-D NIO cell can be meshed
independently from neighboring cells.

To prove this property we note that the interface between neighboring 2-D elements is an edge (1-D
polyhedron). Therefore, to ensure continuity across the interface, the edge shared must be topologically
identical, i.e., the edges must have the same bounding vertices (nodes) in both elements. Along the
boundary of the NIO cell FE nodes are inserted only at the intersection points and at the cell vertices
classified as IN. Because of this condition, any finite element topology introduced in the NIO cell contains
only elements that have the correct interface with neighboring elements associated to either IN or NIO
cells. Also, the insertion of triangular elements in a NIO cell does not disrupt the regularity of the mesh
of square elements associated with the interior quadtree.

For 3-D problems, neighboring elements have a face in common (a 2-D polyhedron) and continuity requires
that the shared face have the same set of bounding edges in both elements. In this case, the insertion of
nodes on the NIO cell boundary only at the intersection points and at the cell vertices is not sufficient
to ensure that 3-D NIO cell meshed independently will satisfy continuity across the interface. We shall
expand on this problem later.

3 DECOMPOSITION OF 3-D NIO CELLS

The NIO cells are classified as SNIO or CNIO, based on the topological description of the associated

polyhedron, R, defined as
® = NON°S. (2)

Here N* denotes a regularized intersection [REQUSS]‘ If R does not contain any vertex or edge of 4S, the
cell is classified as SNIO. In this case, R,, the polyhedron associated with the SNIO cell, can be simply
described as an octal cell in which a number of vertices have been shaved off by a single cutting surface,
ie.,

R, = Octant @ H; (3)

where octant indicates an octal cell at resolution level, @ a regularized boolean operation and H, is the
cutting surface. Figure 3.1 shows a typical SNIO cell and its corresponding location in the solid part.
Note that the associated polyhedron R, is a cube with four corners shaved off. '

N

FIGURE 3.1: A SNIO cell and its location on the solid part.

If R contains vertices or edges of bS, the cell is classified as CNIO. Since a vertex is always defined by three
or more intersecting surfaces and an edge by exactly two, the associated polyhedron can be represented
as

R, = Octant @H\ & Hy...® Hy (4)

where H,, Ha,...H, are cutting surfaces. Figure 3.2 shows a CNIO cell which contains three edges and

a vertex of 4S.

Veortex o

Boundary Surfaoce

Edge

Boundory Surface Boundary Surface

FIGURE 3.2: A CNIO cell and its location on the solid part.

3.1 Decomposition of SNIO cells

Since only seven different FE topologies are required for all possible SNIO cell configurations, the cell is
decomposed by first selecting the appropriate template and then mapping the mesh from the template
onto R,. The template is chosen by counting the number of vertices shaved off by the cutting surface.

Figure 3.3 shows four cases of SNIO cells and the associated template derived meshes. The remaining

three cases of possible SNIO cells, not illustrated in this figure, are the complements of (a), (b) and (c).
The templates shown are based on linear hexahedral, pentahedral, wedge and tetrahedral elements®. The
quadrilateral faces of the pentahedral and wedge elements mapped on to the square sides of the NIO cell
ensure continuity along the interface between the NIO cell and the interior mesh. The union of the finite
elements represents a planar approximation of the actual geometry with all the non-planar segments of
bS intersected by the NIO cell replaced by triangular and quadrilateral bilinear patches. Finally, we
note that most of the NIO cells are classified as SNIO cells and their decomposition through template
matching is computationally inexpensive.

3.2 Decomposition of CNIO cells

The element “extractors”, shown in Figure 3.4, are a modified version of the operators presented in
[WOO084]. The operators ; and 7; produce tetrahedral elements while 73 extracts pentahedra based on
the square faces of . that correspond to the original faces of CNIO cell. These operators work as follows.

? Linear pentahedral, wedge and tetrahedral elements can be generated by collapsing a standard isopara-
metric brick element [BATHS82).

FIGURE 3.3: SNIO cells and associated templates.

FIGURE 3.4: Element extractors for CNIO cells.

1) m scans the boundary representation of R, searching for convex trivalent vertices. When such
a vertex is found 7, extracts a tetrahedron by introducing a single cut in the domain (this

corresponds to the “slicing” operation in [(WOO084)).

2) 7, is applied when all the convex trivalent vertices are exhausted. This operator uses a convex
edge to extract a tetrahedron by introducing two cuts in the domain - referred to as “digging”
into the domain in [WOO84].

3) 73 looks for faces of R, that correspond to original cell faces and extracts a pentahedron by
introducing multiple cuts that vary according to the location of the apex vertex. The choice
of the apex vertex is based on interference considerations. The operator 73 is applied before 7
and 7 in order to preserve all the original cell faces contained in R..

Ty appled to trivalent
convex vertex v will
extract tetrahedron
that passes edge

and vertex interference
tests.

FIGURE 3.5: Pathological case for the interference test in [WOO84].

Before each extraction the validity of the candidate tetrahedron or pentahedron is checked through a
series of tests. As in [WOOB84], the vertices and edges of R. are checked for interference with the faces of
the candidate element. More precisely, the interference test ensures that: (i) no vertex of R, lies on any
of the faces of the candidate element, and (ii) no edge of R. intersects any of the faces of the candidate
element. This test is not enough, however, to ensure the validity of the element - see the exemplary
pathological case illustrated in Figure 3.5. To remove the ambiguity, an additional check is performed by
classifying the centroid of each face of the candidate element against R.. If all centroids are classified as
ON or IN the element is valid.

The implementation of the element extractors and the geometric checks described above requires a
point-membership classifier (PMC) — a function that returns the classification of a point p with re-
spect to the polyhedron R, as

PMC(p,R.) = (In,On,Out). (5)

The PMC developed for the present work operates on planar polyhedra and is based on ray casting
algorithms [KALAS82].

The boundary representation (BRep) structure used for maintaining and updating the topology of R.
has two graphs imbedded in it: (i) Face — Edge — Vertex and (ii) Vertex — Edge — Face. This
double structure provides greater flexibility while manipulating the BRep for the polyhedron, because
it reduces the number of scans required to retrieve the necessary information about the boundary. The
PMC permits the classification of the edges and the vertices in the BRep as convex or concave. This
piece of information is crucial for element extraction and must be updated after each element removal.

10

All the operators used for element extraction preserve the differential form of the Euler-Poincare formula

[BAUMT2]
VF—VE+VV = 0 (6)

where F is the number of faces, E is the number of edges and V the number of vertices in the polyhedron.
Provided that the initial polyhedron is valid, the satisfaction of equation (6) ensures that the validity is

maintained at each stage of the extraction.

Figure 3.6 shows different stages of the element extraction on the R, associated with the CNIO cell in
Fig. 3.2. The operator 73 is applied to extract a pentahedral element whose base is the original cell
face. This is followed by the recursive application of the operator m; until all trivalent convex vertices
are exhausted. Operator m; takes over until one or more trivalent convex vertices become available and
71 can be applied again. This progressively reduces the domain to a single tetrahedron.

Po 75

FIGURE 3.6: Element extraction on a CNIO cell: ry extraction of a pentahedron (a), a tetrahedron extracted
via r; (b) and m (c), the complete element topology.

The computational cost for deriving the BRep of R. and decomposing it through element extraction
is considerably higher than that associated with SNIO cell decomposition. We note, however, that the
number of CNIO cells is relatively small.

11

ORIGINAL PAGE TS

OE POOR QUALI
4 BOUNDARY EVALUATION FOR CNIO CELLS TY,

In the preceding section we indicated that a boundary representation of the polyhedron R, is needed
for the element extraction. The standard approach to derive the boundary for solids described in a
CSG environment is to intersect the faces of all the primitives that constitute the CSG definition of the
object and classify the resulting edges against the combinatorial tree (this operation is called boundary
merging [REQUS85)). Since this merging process involves all the primitives, boundary evaluation for a
CSG described solid is in general a computationally expensive procedure’.

The polyhedron R, is formed by the intersection of the CNIO octant and the original solid, i.e.,
| R, = CNIOM" §)
and therefore its boundary evaluation appears to require the boundary merging of the complete solid S
} and the CNIO cell. We note, however, that generally the cell under consideration is spatially localized,

i.e., each CNIO cell intersects only a limited number of primitives. In this case the boundary of R, can
be obtained by merging only the boundary of the primitives which interfere with the cell.
i [the following way. At the last level of the octree decomposition every NIO cell is classified against each of
/, the primitives in the CSG tree. When the cell is classified “ON” a primitive, the primitive is added to the
|, incidence information carried with the cell. Hence, at the end of the classification, each NIO cell points
: to the subset of the CSG primitives that “interact” spatially with the cell. As indicated in [TILO81),
/ | ’ primitive incidence leads to “pruning” of the CSG tree and, consequently, reduces the computational cost
I of boundary merging.

L ;/ The primitive incidence information required to generate the necessary set of tentative edges is produced
/

" The boundary of R. is necessarily contained in the boundary of the CNIQ cell and of the primitives
incident upon the cell. Therefore the tentative set of edges generated merging the incident primitives and
‘ (the cell suffices for building the boundary representation of R.. Since several CNIO cells may be incident
‘ upon a small number of primitives, exploiting primitive incidence may save considerable computational
, time during mesh generation. Fig. 4.1 illustrates tree pruning for the CNIO cell shown in Fig. 3.2.

———

5 DISCUSSION

As indicated in the previous sections, by adhereing to the underlying octal cell decomposition the mesh

acquires hierarchical structure, spatial addressability and interior geometrical regularity. We consider

! these three properties central to the automation of finite element analysis. Therefore our approach to

\ octree based automatic meshing is focussed on preserving a tight correspondence between the finite

i element and the cell structure. In particular, this requires embedding a finite element topology in the
\ NIO cells without disrupting the global structure and addressability of the mesh as well as the regularity
\ of the interior octree.

We treat NIO cells in a selective way: element extractors are used only for those - relatively few - cases
\ for which template matching is infeasible. Template controlled decompostion is appealing because it is

‘ ’ The asymptotic time complexity for boundary evaluation ranges between O(n® log n) and O(n*), where n
‘. is the number of primitives [TILOS1].

\ \ :
B! A . . 12 v s o\’ \\‘ EA AN -\\ v
RS TR N R i S ' e

\ “i ¢ . . L’ - {,_,_*_v *\, :\-\ \11—7; loc'/lr\
U I R T —

PN

—

FIGURE 4.1: Tree pruning for a CNIO cell. (A, B, C, D are primitives; m,, m; are motions; U*,N*,~° represent
regularized Boolean operations; Q indicates the application of a motion.

computationally inexpensive and allows a good degree of control on the elements which are inserted in the
NIO cell. Conversely, element extractors require building and maintaining a sophisticated data structure
and provide a very limited amount of control on the mesh. The exclusive use of mapping or element
extraction on all the boundary cells - as proposed in [YERR84] and [YERR8S], respectively - is either
too limited for handling complex geometries (the former) or computationally too demanding for practical
implementation (the latter). The selective use of the two algorithms based on the preliminary NIO cell
classification described in this paper results in a flexible approach designed to exploit the advantages of
both types of decomposition.

The algorithms discussed here are currently being implemented in an experimental code built on the
PADL-2 modelling system. PADL-2 provides the utilities for modelling the solid and extracting the octree.
Also, the geometric routines contained in the modeller are used extensively to perform the operations
required for the SNIO/CNIO cell classification, the SNIO template mapping and the derivation of the
CNIO boundary representation. In particular, boundary evaluation is done by first pruning the CSG tree
and then using the PADL-2 incremental boundary evaluator [HART85]. The CNIO cell decomposition is
carried out in an independent modelling environment based on the BRep structure described in Section
3. The implementation of the element extractors is built on a specialized point-membership classifier
that operates on planar polyhedra.

To complete the implementation of our meshing algorithm we have to resolve some specific issues related
to interfacing CNIO cells with IN and SNIO cells. Our plans are the following. The CNIO/IN interface
is generally taken care of by using pentahe.ral elements. Whenever that is not possible, the propagation
of triangular faces is contained within the adjacent IN cell with a two-step procedure: (i) decompose

13

the IN cell into 6 identical pyramids with the apex at the cell centriod and (ii) split the pyramid on
the interface into two tetrahedral elements. The interface between SNIO/CNIO cells can be modelled
by either embedding the edges on the SNIO face into the BRep associated with the CNIO cell, or by
modifying locally the SNIO mapped mesh to reflect the entities on the CNIO face. Note that the task of
identifying the two cells sharing a face is considerably simplified because of the spatial addressability of

the cell (and element) structure.

In conclusion, the approach presented here resolves efficiently the geometrical and topological issues
related to octree based automatic meshing and - in analogy with the quadtree structures described in
[KELAB86) - opens a promising avenue for self-adaptive analysis.

ACKNOWLEDGEMENTS

Herbert Voelcker of Cornell Univeisity, Ajay Kela of General Electric Company, and Aristides Requicha
of the University of Southern California contributed to this research. The figures were produced on equip-
ment donated by Tektronix, Inc. Other Industrial Associate companies of the Production Automation
Project provided sustaining support. The findings and opinions expressed here do not reflect the views

of the sponsors.

REFERENCES

[BATHS2] K. J. Bathe, Finite Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall,
1982.

[BAUMT72] B. G. Baumgart, “Winged edge polyhedran representation”, STAN-CS-320, Stanford Arti-
ficial Intelligence Project, Stanford University, October 1972.

[CAVESS] J. C. Cavendish, D. A. Field and W. H. Frey, “An approach to automatic three-dimensional
finite element mesh generation”, /nternational Journal for Numerical Methods in Engineer-

ing, vol. 21, pp. 329-347, 1985.

(HARTS3] E. E. Hartquist, “Public PADL-2", IEEE Computer Graphics and Applications, vol. 3, no.
7, pp- 30-31, October 1983.

[HARTS5)] E. E. Hartquist, “PP2/2.N Boundary Evaluator”, Incremental Boundary Evaluator Doc.
No. 4, Production Automation Project, University of Rochester, December 1985.

[JACKB80] C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in representing three-dimensional
objects”, Computer Graphics & Image Processing, vol. 4, no. 3, pp. 249-270, November
1980.

[KALA82] Y. E. Kalay, “Determining the spatial containment of a point in general polyhedra”, Com-
puter Graphics & Image Processing, vol. 19, no. 4, pp. 303-334, August 1982.

(KELA86] A. Kela, R. Perucchio and H. B. Voelcker, “Toward automatic finite element analysis”,
ASME Computers in Mechanical Engineering, vol. 5, no. 1, pp. 57-71, July 1986.

14

. S

[KELA87] A. Kela, “Automatic finite element mesh generation and self-adaptive incremental analysis
through solid modeling”, Ph.D. Dissertation, Dept. of Mechanical Engineering, University
of Rochester, January 1987.

[LEE82] Y. T. Lee and A. A. G. Requicha, “Algorithms for computing the volume and other integral
properties of solids: Part II - A family of algorithms based on representation conversion
and cellular approximation”, Communications of the ACM, vol. 25, no. 9, pp. 642-650,
September 1982.

[REQUS5] A. A. G. Requicha and H. B. Voelcker, “Boolean operations in solid modelling: Boundary
evaluation and merging algorithms”, Proceedings of the IEEE, vol. 3, no. 1, pp. 30-44,
January 1985.

[SHEP85] M. S. Shephard, “Finite element modeling within an integrated geometric modeling envi-
ronment: Part I - Mesh generation”, Engineering with Computers, vol. 1, pp. 61-71, 1985.

(TILO81] R. B. Tilove, “Line/polygon classification: A study of the complexity of geometric com-
putation”, IEEE Computer Graphics and Applications, vol. 1, no. 2, pp. 75-88, April
1981.

(WOO084] T. C. Woo and T. Thomasma, “An algorithm for generating solid elements in objects with
holes”, Computers & Structures, vol. 18, no. 2, pp. 333-342, 1984.

[VV@RD84] B. Wordenweber, “Finite-element analysis for the naive user”, in M. S. Pickett and J. W.
Boyse, Eds., Solid Modelling by Computers. New York: Plenum Press, 1984, pp. 81-102.

[YERR84] M. A. Yerry and M. S. Shephard, “Automatic three—dimensional mesh generation by the
modified—octree technique”, International Journal for Numerical Methods in Engineering,
vol. 20, pp. 1965-1990, 1984.

[YERRS85] M. A. Yerry and M. S. Shephard, “Trends in engineering software and hardware - Automatic
mesh generation for three-dimensional solids”, Computers & Structures, vol. 20, no. 1-3,
pp- 31-39, 1985.

15

I o
B4/ N§8-19119
/;_6'7?}/

AR Production Automation Project

" College of Engineering & Applied Science

4 The University of Rochester
Rochester, New York 14627

A HIERARCHICAL STRUCTURE FOR AUTOMATIC
MESHING AND ADAPTIVE FEM ANALYSIS

by

Ajay Kela, Mukul Saxena and Renato Perucchio

(November 1986)

submitted for publication in
a special issue of
Engineering Computations

The work described in this paper was supported by the National Sci-
ence Foundation under Grants ECS-8104646 and DMC-8403882 and by
companies in the P.A.P.’s Industrial Associates Program. The findings and
opinions expressed here are those of the authors and do not necessarily
reflect the views of the various sponsors.

A HIERARCHICAL STRUCTURE FOR AUTOMATIC MESHING
AND ADAPTIVE FEM ANALYSIS

Ajay Kela®
Corporate Research and Development
General Electric Company
Schenectady, N.Y. 12301

&

Mukul Saxena and Renato Perucchio "
Production Automation Project
and Department of Mechanical Engineering
University of Rochester
Rochester, N.Y. 14627, U.S.A.

SUMMARY

This paper deals initially with a new algorithm for generating automatically, from
solid models of mechanical parts, finite element meshes that are organized as spatially ad-
dressable quaternary trees (for 2-D work) or octal trees (for 3-D work). Because such
meshes are inherently hierarchical as well as spatially addressable, they permit efficient sub-
structuring techniques to be used for both global analysis and incremental re-meshing and
re-analysis. The paper summarizes the global and incremental techniques, and presents
some results from an experimental closed loop 2-D system in which meshing, analysis, error
evaluation, and re-meshing and re-analysis are done automatically and adaptively. The
paper concludes with a progress report on a 3-D implementation.

* former Research Assistant, Production Automation Project
** Research Assistant and Director, respectively

Kela, Sazena & Perucchio

1 INTRODUCTION

Interactive computer graphics has reduced the cost of using the Finite Element
Method (FEM) to analyze mechanical parts and structures [PERU82]. However, interactive
mesh generation still requires the guidance and ingenuity of an expert analyst to produce
a valid FEM model, to interpret computed results and to modify the model when results
are questionable. Thus analysing a fixed design is usually an iterative process; moreover
as design itself is iterative, the current use of the FEM requires continued human guidance
within a doubly iterative process. It is obvious that automatic mesh generation, followed
by adaptive mesh refinement would dramatically reduce the cost of the design process. Two
newly available tools - solid modelling systems [REQU83] and algorithms for a posteriori
error analysis [BABU78,PEAN79,KELL83,GAGO83] — make this goal reachable.

< Figure 1l >

Figure 1 illustrates the architecture of an automatic analysis system. The user
defines an initial geometrical domain in the Solid Modelling System (SMS) together with
such attributes as boundary conditions, loads, material properties, and analysis related
parameters. The mesh generator produces a discretized model — the FEM mesh - from the
geometric definition and the attribute specification (attributes may determine, for example,
the locations of some nodes). The FEM analysis processor computes primary and secondary
field variables (in general, the displacements vector at nodal points and the stress tensor
within the elements) from the initial FEM model. The error evaluator compares global
error estimates derived from the analysis output with pre-specified error-tolerances to either
accept the results or request a new analysis based on a modified mesh. In the feed-back
loop, the analysis control process indicates regions of refinement in the current model for
the next cycle of mesh generation and analysis. In case of reanalysis, mesh generation
and mesh analysis proceed through localized mesh refinement and incremental re-analysis,
i.e. the use of previous unaltered regions of the mesh as well as intermediate analysis
computations to derive new results. This approach to automatic FEM analysis is embodied
in an experimental 2-D system whose underlying principles are explained below. All meshes
and analytical results that appear in later sections were produced with the experimental

system.

1

Kela, Sazena & Perucchio

The next section opens with a discussion of automatic mesh generation focussed
mainly on a particular approach — hierarchical grids - that fosters spatial addressability (an
important property explained below). Later sections discuss algorithms for (1) generating hi-
erarchical grid-based meshes, then (2) analyzing such meshes, (3) refining and re-analyzing,
and finally (4) extending meshing and analysis to 3-D work. The paper concludes with a

short discussion of the strengths and weaknesses of the approach.

2 AUTOMATIC MESH GENERATION

Most “automatic” meshing facilities in contemporary CAD systems operate from
wireframe descriptions of objects, via mapping algorithms. The user must partition the
domain, which is represented by a collection of edges, into a set of topologically simple
subdomains in which meshes can be generated automatically. This approach is unsuitable
for a fully automatic meshing procedure because it depends on human judgement both to

guide meshing per se and to resolve ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an unambiguous represen-
tation of the object to be analyzed, and thus some form of solid modelling system (SMS)
is a primary utility. Nearly all current SMS’s are based internally on either a Constructive
Solid Geometry (CSG) Representation or a Boundary Representation, or both [REQUSS|.
CSG exploits the notion of “adding” and “subtracting” (via set-union and set—difference
operations) simple solid building blocks. Boundary schemes describe solids indirectly, via
sets of faces which are represented by sets of edges that bound finite regions of surfaces.

The various schemes that have been proposed for automatic mesh generation may
be catalogued for present purposes into three families: triangulation, element extraction and
recursive spatial subdivision (quadtree and octree) schemes. We shall discuss the first two

family briefly and then focus on the third.

Originally limited to 2-D problems, triangulation algorithms require some level of
interactive user control to generate irregular assemblies of triangular elements [SUHAT2].
Recently, however, Cavendish and co-workers [CAVEBS] have developed a two-stage ap-
proach to automatic triangulation of solid domains. In the Cavendish method, points are

injected into the domain, and then a solid triangulation is induced in which the points

2

Kela, Sazena & Perucchio

become nodes of tetrahedral elements. The main working tool of the second-stage triangu-
lation is a Delaunay algorithm that generates valid meshes of tetrahedral elements within
convex hulls of node points. Automatic algorithms are still being sought for (a) inserting
points in the procedure’s first stage, (b) removing elements that are generated outside the

domain, and (c) representing the domain’s boundary correctly.

Meshing schemes based on element extraction also result in decomposing the do-
main into a irregular collection of tetrahedral elements [WO084, WORDS84. Elements are
extracted by recursively applying a set of operators that work on the topological and geomet-
rical description of the domain. The tetrahedral meshes that result are coarse and usually
contain distorted elements that must be refined for analytical use. Also, existing operators

for element extraction are not robust as required for a truly automatic implementation.

In both of these family of approaches, mesh refinement is done by splitting existing
elements. Because refinement is driven from a FEM mesh rather than from the original
solid model, refinement does not improve the geometric approximation of the original solid.

Also, the meshes are not spatially addressable.

The idea underlying recursive spatial subdivision schemes is to approximate the
object to be meshed with a union of disjoint, variably sized rectangles (in 2-D) or blocks (in
3-D); these are generated by subdividing recursively a spatial region enclosing the object,
rather than the object itself. Figure 2.1 provides a 2-D example. The object — a bracket
with a hole — is “boxed” to establish a convenient minimal spatial region, and then the box
is decomposed into quadrants. When a quadrant can be classified as wholly inside or outside
of the object, subdivision ceases; when a quadrant cannot be so classified, it is subdivided
into quadrants and this process continues until some minimal resolution level is reached. (In
3-D, the decomposition proceeds by octants.) Approximations produced in this manner can
be represented by logical trees whose nodes have four or eight sons (see Figure 2), hence the
popular names quadtree and octree [JACK80].

< Figure 2 >

Inside cells of a spatial decomposition can be converted easily into FEM elements or sub-

structures, but Boundary cells require further processing to produce valid elements that
approximate closely the object’s boundary.

Recursive spatial decompositions have two intrinsic properties — hierarchical struc-
ture and spatial addressability — that are central to the mesh refinement and incremental

3

Kela, Sazena & Perucchso

analysis techniques described later. These intrinsic properties, briefly presented here, are

fully discussed in [KELA87].

The tree structure in Figure 2 can be regarded as an organizing or cataloging

structure for data describing particular regions of space. At the lowest level of the tree
one finds the smallest spatial regions and simplest finite elements. As one ascends the tree,
the regions become larger (encompassing multiples of four or eight elemental regions) and
the finite elements become super—elements with associated (“assembled”) stiffness matrices,
collected constraints, and so forth. As we shall see later, such an organization is ideally

suited to mesh refinement by subdivision and incremental mesh analysis.

The diagram in Figure 2 suggests the classical approach to accessing the data struc-
ture associated with the tree: represent a tree with a linked-list in which nodes are addressed
indirectly through downward pointers to sons and perhaps lateral pointers to siblings. Thus
one accesses data by following pointers downward from the root of the tree. Alternatively,

a recursive spatial decomposition can be viewed as a directly addressable hierarchical grid

in which the number of cells in each linear dimension is an integer power of two. The key
notion here is a systematic scheme for numbering all possible nodes of the underlying tree.
In Figure 2, “1” represents the enclosing box, “2” — “5” represent specific quadrants of “17,
“6 — “9” would represent quadrants of “2”, and so on. Thus to access the spatial data for
a particular node in the underlying tree, one merely calculates an array index through a
simple formula and follows the single pointer stored there. This is usually much faster than

the pointer-following method noted above, but it carries a storage penalty [KELAS87].

Suppose finally that we know the geometric size and spatial position of the “1” cell
(the overall box) in Figure 2. We can compute quickly the index of any cell in the hierarchy
from its size and position, and conversely from an index we can compute quickly the size
and position of the associated spatial cell. We have already seen that cell indices allow
access through a single pointer to data associated with the cell, and thus we can associate,

without searching, spatial regions with stored data, and stored data with spatial regions.

This is what is meant by spatial addressability.

4

Kela, Sazena & Perucchio 5

3 AN AUTOMATIC MESHING PROCEDURE .

The procedure described below produces a spatially addressable FEM mesh em-
bedded in the lowest level of a hierarchical grid. Higher levels of the grid are used during
construction of the mesh and, as explained later, when the mesh is analyzed, refined, and
incrementally re-analyzed. The procedure starts with a representation in a Solid Modelling
System of the object to be meshed, and operates in two stages. The first stage meshes the
interior of the object by spatial subdivision, and the second extends the mesh to the object’s
boundary. Each stage is described and illustrated below.}

We wish to note that the use of quadtree/octree methods for automatic mesh gen-
eration was pioneered by Shephard & Yerry [YERR83,YERR84]. Our work is similar to
theirs, but the differences are real and important.

STAGE 1: Interior Meshing See Figure 3. The object S is enclosed in a box which is recur-

sively subdivided into a grid whose smallest cell size determines the element size (or element

density) of the initial FEM mesh; this minimal size is determined by subdividing cells until
no cell contains more than one connected boundary segment of S. As the subdivision pro-
ceeds the cells are classified as being In S (“IN”), Out of S (“OUT”), or Neither In nor Out
(“NIO”). Cells classified as IN at higher levels in the hierarchy are subdivided to the final
grid size without further classification. The collection of IN cells constitutes the interior

mesh of S.
< Figure 3 >

The main computational utility used for cell classification is the modified cell clas-

sification procedure

ModClassCell(cell, solid) = (“IN”, *OUT”, “7"),
which is described fully in [LEE82].

STAGE 2: Boundary-Region Meshing

The task here is to fill the region between the boundary of the interior mesh (denoted
bIS - see Figure 4a) and the boundary bS of the solid S. Observe that

bS C (U NIO cells) UbIS

1 The discussion here and in the next several sections is cast in 2-D; 3-D extensions are .
discussed in section 8.

Kela, Sazena & Perucchio

Thus bS usually is contained in the NIO cells and special element-building operations are
required, but sometimes segments of bS coincide with bIS (as at the top of Figure 4a) and no
special processing is needed. Thus we can mesh the inter-boundary region by visiting each
NIO cell and creating elements that link the bS segment passing through it to the interior

of the solid.
< Figure 4 >

There are three main technical issues involved in this process: devising a systematic
way to insure that all NIO cells are visited, creating nodes on bS, and associating bS-nodes
with existing bIS-nodes to form valid elements. We shall discuss each of these issues briefly.

All NIO cells can be visited by an exhaustive scan of the lowest-level grid, or by tree
traversal, or by traversing bS. Since no single approach seems to offer substantial advantages
over the others, we use grid-scan for generating the initial mesh and, because operations

tend to be more localized, tree-traversal for re-meshing and re-analysis.

Figure 4a shows exemplary bS nodes (P1, P2, P3 in Figure 4a) that are created as

follows.

e Vertices of bS within each NIO cell (e.g. P2 in Figure 4a) are tagged as such and

are always used as finite element nodes. -

e Additional bS nodes are created by intersecting bS with the boundaries of the NIO
cells (P1 and P3 in Figure 4a).

The generation of valid elements within an NIO cell is straightforward if the cell
does not contain bS-vertices (corner-nodes): nodes on bS and bIS belonging to the same
NIO cell are simply linked to form quadrilateral and triangular elements (see the lower left
portion of Figure 4b). When a corner is present, the corner node is linked to bS and bIS
nodes within the cell and templates are used to form a web of triangular elements — see
Figure 4b. To avoid generating elements with poor aspect ratios, the distances between
nodes are checked by using a node-neighborhood test, and closely spaced nodes are merged
into single nodes on bS. Figure 5 provides an example of this process.

< Figure 5 >

The FEM mesh is complete at the end of Stage 2. A regular mesh of quadrilateral
elements in the interior results from a direct mapping of IN cells. On the boundary, NIO cells
are associated with quadrilateral and triangular elements. It is important to note that, the

6

Kela, Sazena & Perucchio

FEM mesh inherits the spatial addressability and structure of the hierarchical grid because
elements and substructures are associated with the quadrants of the original decomposition.
Figure 6 shows an example of a mesh generated by our automatic procedure.

< Figure 6 >

The Shephard-Yerry (S-Y) boundary-region meshing algorithm performs in/out
tests on the mid—points and quarter—points of the edges of NIO cells, and then maps each
NIO cell into one of a finite number of cut—quadrant forms; each cut—quadrant is then
meshed. (We avoid such geometric appraximations by computing exact points of intersection
on bS.) The final stages of the S-Y algorithm move nodes in NIO cells to the boundary, and
then eliminate ill-formed elements by using a Lagrangian relaxation procedure to smooth a
triangulated version of the entire mesh. This last operation destroys the uniform quadrilat-
eral interior mesh and also spatial addressability — because elements are not constrained to

remain in their original cells.

4 ANALYSIS OF HIERARCHICAL MESHES

This section summarizes a FEM analysis procedure that exploits the properties of
the hierarchical, spatially addressable meshes described above. Recall that data specifying
the finite elements in the initial mesh are accessed through the lowest level of the hierarchical
grid.

One analytical simplification is immediately obvious: because the interior mesh
elements are uniform, their stiffness matrices are identical if the material properties are
homogeneous and thus only one stiffness matrix need be computed for all of the interior
elements. Other, more important analytical simplifications accrue during both assembly
and solution of the system of equations, because the hierarchical grid — which has provided
spatial substructuring for meshing - can serve also as a multi-level analytical substructuring
mechanism.

Assembly Procedure

Most FEM analysis procedures build a single stiffness matrix to cover the whole
domain. Our Assembler builds and stores stiffness matrices for every non- OUT cell in the
hierarchical grid. This is done bottom-up - see Figure 7 — by assembling son-matrices and

condensing-out interior d.o.f.’s to build parent-matrices at each level. The parent nodes of

7

Kela, Sazena & Perucchio

the interior mesh with identical sons (uniform) yield identical substructures, hence need be
assembled only once. (The mesh generator tags identical interior-mesh nodes at all levels of

the tree to facilitate this.)
< Figure 7 >

Figure 4.2 shows an initial mesh and substructures at various levels in the assembly
process. Note in Figure 4.2 a that the initial mesh contains some higher-level substructures;
these arise not from assembling lowest-level IN —elements, but from intermediate-level cells
that were classified as IN and tagged as substructures during Stage—1 meshing. (The identi-
cal stiffness matrices for lowest—level IN —cells are needed in the assembly process only when
IN —elements must be assembled with elements in NIO cells.)

< Figure 8 >

Solution Procedure

Figure 9 illustrates various stages in the solution process. After loads and boundary
conditions are attached to the root structure, the Solver computes the displacements of all
nodal points on the boundary (i.e. the nodal points of the root substructure - see Figure
9a) and then traverses down the tree, recovering displacements of substructure nodes at
each level. The displacements at all levels are saved-in data records accessed through the
hierarchical grid, and the lowest-level displacements are used to compute the stresses in the
elements.?

< Figure 9 >

Remarks on the Assembly and Solution Procedures

Our experience to date with this substructuring approach to analysis indicates the

following.

e The hierarchical grid used for mesh generation has almost all of the data manage-
ment facilities needed for analytical substructuring.

e The computing time and storage requirements for internal-element assembly are

substantially reduced.

e We conjecture that our substructuring technique is asymptotically more effecient
than the methods used in standard solvers. Preliminary result that support our
conjecture will be reported in [KELAS7].

7 Al analysis presented here are linear-static, based on linear isoparametric elements.

f

8

Kela, Sazena & Perucchio

e Substructuring based on trees lends itself naturally to parallel (computer) process-

ing.

More broadly our particular approach to substructuring seems promising for non-—
linear as well as linear analysis. In many practical problems (e.g. contact problems, fracture
mechanics, localized plasticity), non-linear behavior occurs in isolated regions, and spatially
localized analytical methods should prove to be efficient. (For example: during analysis
regions that become non-linear can be tagged in the grid and handled specially.) In other
types of problems one may want displacements and stresses only in small critical regions,

and here again spatially localized methods seem very appropriate.

5 SELF-ADAPTIVE INCREMENTAL ANALYSIS

In this section we discuss first the techniques used for managing mesh refinement

and incremental analysis, and then an error—driven algorithm for closing the feed-back loop

in Figure 1.

5.1 Refinement and Re—Analysis

Assume that (1) a mesh has been constructed at the lowest level of the grid, (2) the
mesh has been analyzed and the results stored in the grid and (3) evaluation of the results
(discussed in the next subsection) has indicated that refinement is needed in a particular

spatial region.

Two avenues for refinement are available: h-refinement and p-refinement. In p-
refinement successively higher—order shape functions are assigned to the element formulation.
To refine a particular element, the old stiffness matrix for the element is invalidated and a
new matrix is computed from the new shape function. No new tree-nodes are generated,

but the size of the stiffness matrix increases.

In h-refinement, existing elements are subdivided into smaller elements of the same
type. To improve the geometric accuracy, localized h-refinement is done on the origina!
geometric model rather than on the current finite element appraximation. Thus to refine a

particular element, one deletes the element, creates and classifies new vertices and nodes, and

9

Kela, Sazena & Perucchso

inserts the smaller new elements into the grid. Discontinuities of displacements along edges
where smaller elements abut on larger elements are avoided by using constraint equations.
< Figure 10 >

Figure 10 shows examples of localized refinement. Note that successive h-
refinements improve the geometric approximation of the original solid. A maximum cross-

element grading of 2:1 is maintained during refinement.

Storage for the new entities created by h-refinement could be provided by adding
a whole new bottom layer to the grid, but this would be wasteful unless very extensive
h-refinement is needed. If the h-refinements are sparse, small localized explicit schemes or

linked-list methods are more efficient.

Assume now that the original mesh has been refined in a few regions using the
methods just described, that the affected elements have been tagged, and that the refined
mesh is to be re—analyzed. Cléarly one wants to do incremental analysis, i.e. to use partial
results from the earlier analysis insofar as possible. These results are available through the

hierarchical grid; for example, a tree of K-matrices will exist — see Figure 7.

The incremental Assembler traverses the tree and by examining the sons of each
parent node, detects new offspring and computes the appropriate stiffness matrices (Fig-
ure 11). Stiffnesses for unmodified elements are recovered from storage, and new and old
stiffnesses are combined to form a modified substructure. If a node has no new offspring,
the complete old substructure is reused. The incremental Solver works similarly, inspecting
tags on data to distinguish valid and invalid old results and reusing the former whenever

possible.

5.2 Self-Adaptive Algorithm

Our current algorithm for controlling self-adaptive incremental analysis operates
as follows (see Figure 1). After a mesh (either initial or refined) has been analyzed, error
indicators are computed for each element together with an estimate of the global error. If
the global error exceeds a pre-specified limit, the systems calls for refinement and reanalysis
in regions having large local errors. This process continues automatically until the global

error estimate falls below the pre-specified limit.

Thus far we have done little research on errors per se, and our current error measures
are crude. As in [KELL83], our element error-indicator (¢;) is merely the average of the

10

Kela, Sazena & Perucchio

11

stress jumps (J, : normal and tangential) across each of the element’s edges with dimension ‘

(h) and assuming linear isoparametric elements

1-v h
2 _1=vh [5
“TTE 24/,,"“1’

normalized by the strain energy of the displaced model. Our global error estimator is simply
the sum of the element error indicators. Figure 10c shows the computed values of the element
error indicators for a sample problem. Note that, in the vicinity of the hole and around the
re-entrant corner the data imply high stress gradients because the error indicators are high.
Figure 10d shows an automatic refinement resulting from this set of error indicators.

An obvious improvement to the current algorithm: replace the single global error
indicator with a hierarchical series of regional error indicators. These can be computed
bottom-up in the tree, and should force selective refinement in cases where the overall
(average) error is small but errors in small regions are &igh.

6 AUTOMATIC MESHING FOR 3-D PROBLEMS

In this section we present the algorithms that we are currently developing to ex-
tend to 3-D problems the automatic meshing procedure described in Section 3. Since
our work is based on the octree generator built in the PADL-2 solid modelling system
[HART83,KELA84], stage 1 of meshing — which includes (i) boxing the domain, (ii) subdi-
viding the box into octal cells, (iii) classifying the cells as IN, OUT and NIO, and (iv) further
subdividing and reclassifying NIO cells until a minimal level of subdivision is reached - is
virtually completed. Figure 11 shows the interior octree for a PADL defined solid.

< Figure 11 >

Stage 2 involves associating each of the NIO cells (represented by the intersection
of the solid with a grid-level octant) to a valid finite element topology. Before being decom-
posed into elements, NIO cells are classified as Simple (SNIO) or Complex (CNIO). SNIO
cells, formed by the intersection of the grid-level octant with a single “cutting” surface, are
topologically simple, as shown in Figure 12. CNIO cells, on the other hand, intersect the
boundary surface and also contain vertices and edges coming from the solid’s boundary. A
typical CNIO cell is illustrated in Figure 13. Due to the differences in their geometry and
topology, the decomposition of SNIO and CNIO cells proceeds along two different avenues.

Kela, Sazena & Perucchio

< Figure 12 >
< Figure 13 >

Decomposition of SNIO cells

Since the number of possible configurations of SNIO cells is inherently limited,
SNIO cells can be decomposed into finite elements by associating the cell to an appropriate
template containing a mesh topology. Specifically, the number of possible cases is restricted
to seven (the number of vertices of the original octant shaved off by the cutting surface
identifies the appropriate template — Figure 14).
< Figure 14 >

The topolgies embedded in the templates are not unique and include hexahedral,
wedge, pyramid and tetrahedral isoparametric linear elements. However, as explained fur-
ther on in this section — care has been taken in producing mesh topologies that, whenever
possible, associate each uncut octant faces to a quadrilateral face of a hexahedral, wedge or
pyramid element. We note, finally, that (a) in general, most of the NIO cells are classified
as SNIO, and (b) SNIO decomposition is computationally inexpensive.

Decomposition of CNIO cells

The topological description of CNIO cells is not confined to a limited number of
possible configurations. Hence, in this case mapping is of little use and the automatic
decomposition of the cells can be done only by recursive element extraction. We are currently
implementing a family of operators — based on the approach in [WOO084], Figure 15 -
that works on the boundary representation (Brep) of the polyhedron associated with the
CNIO cell. Because of the complexity of the operations involved - (i) scan the topological
information contained in the Brep to identify a candidate element, (ii) verify the validity of
the element, and (iii) extract the element and update the Brep - CNIO decomposition is
considerably more expensive than template matching.

< Figure 15 >

Elements for 3-D analysis

The family of linear isoparametric elements used in the above decomposition schemes
can be generated by collapsing a standard 8-node isoparametric brick element. Note that
the use of pyramids is mandated by the necessity of preserving a regular interior mesh of
hexahedral elements, whenever tetrahedral elements are introduced in the proximity of the

12

Kela, Sazena & Perucchio

boundary. Pyramids allow interfacing triangular sides belonging to tetrahedral or wedge
elements with quadrilateral faces of hexahedral elements without introducing discontinuities

in the displacement field.

7 DISCUSSION

Advantages

The main advantage we see is that mesh generation and mesh analysis are integrated
and, in effect, collaborate under the control of the error evaluator. Thus the mesher only
refines regions where refinement is needed, and the analyzer only computes “what’s new”
about a refined mesh. This type of efficient adaptive behavior is, in our opinion, the key to

efficient automatic finite—element analysis.

Hierarchical substructuring is the driving principle in both the mesh generator and
mesh analyzer.® It seems to be a very powerful principle of divide—and—conquer genre, in
that it enables hard problems (object decomposition, equation-set solution) to be decom-

posed into smaller, tractable problems via spatial partitioning.
Open Issues
We cite four sets of issues that will require extensive theoretical work.

1. Error measures and indicators: measures better than the ones we use currently are

needed, especially for 3-D work.

2. Adaptive convergence: the convergence behavior of the self-adaptive process must

be investigated (strong convergence properties are required for a truly automatic

system).

3. Computational complexity: preliminary results let us conjecture that hierarchical
substructuring techniques are asymptotically more efficient than the methods used

* The hierarchical tree might be viewed as a generalisation of the structure described in

[RHEIS0]. However, the latter is applied in subdomains that are mapped to regular figures (squares
and triangles), and Rheinboldt’s tree addresses the element partitioning induced in the regular
figures. By avoiding mapping we are able to use the same structure for both meshing and analysis;
further, the regularity of our structure permits systematic cell numbering and, hence, data access
through calculated addresses rather than through searching or table lookup.

13

Kela, Sazena & Perucchio 14

in standard solvers, but an in-depth study is needed to prove/disprove our conjec-

‘ ture.

4. Non-linear analysis: our approach to substructuring appears promising for non-

linear analysis.

While the issues above are certainly important in the long term, in the immediate
future one other issue — completing the extension of our meshing and analysis system to
3-D problems - is more pressing. The current status of 3-D work is as follows :

e The 2-D spatial substructuring techniques for managing analysis and adaptive re—
meshing and re-analysis extend gracefully to 3-D, and indeed most of the 2-D

control code is directly usable in 3-D.

e The major open issues lie in Stage 2 of the automatic meshing procedure, specifically
in decomposition of CNIO cells. A promising approach, based on a family of element

extractors, is currently being implemented.

In summary , we believe that hierarchical substructuring as embedded in the experi-
. mental system described here represents an important contribution on the road to genuinely

automatic finite element analysis.

ACKNOWLEDGEMENTS

Herb Voelcker, former director of the Production Automation Project and currently
at Cornell University, contributed extensively to this research. Also we acknowledge the
contribution and the encouragement of John Goldak, of Carleton University, and of Vic
Genberg, of the Eastman Kodak Company. The computer—output displays were produced
on equipment donated by Tektronix, Inc., and other Industrial Associate companies of the
Production Automation Project provided both equipment and funds for the work. Sustaining
support was provided by the National Science Foundation under Grant(s) ECS-8104646 &
DMC-8403882. The findings and opinions expressed here those of the authors and do not
necessarily reflect the views of the various sponsors.

REFERENCES

[BABU78|] 1. Babuska and W. C. Rheinboldt, “A-posteriori error estimates for the finite el-
. ement method”, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS
IN ENGINEERING, vol. 112, pp. 1597-1615, 1978.

[CAVESS]

(GAGO83]

[HARTS3]

[JACK80]

[KELA84]

[KELA87]

[KELL83]

[LEES2)

[PEANT9]

Kela, Sazena & Perucchio

J. C. Cavendish, D. A. Field and W. H. Frey, “An approach to automatic three-
dimensional finite element mesh generation”, INTERNATIONAL JOURNAL FOR
NUMERICAL METHODS IN ENGINEERING, vol. 21, pp. 329-347.

J. P. De S. R. Gago, D. W. Kelly, O. C. Zienkiewicz and 1. Babuska, “A poste-
riori error analysis and adaptive processes in the finite element method: Part II
- Adaptive mesh refinement”, INTERNATIONAL J OURNAL FOR NUMERICAL
METHODS IN ENGINEERING, vol. 19, pp. 1621-1656, 1983.

E. E. Hartquist, “Public PADL-2", IEEE COMPUTER GRAPHICS & APPLICA-
TIONS, vol. 3, no. 7, pp. 30-31, October 1983.

C. L. Jackins and S. L. Tanimoto, “Oct—trees and their use in representing three-
dimensional objects”, COMPUTER GRAPHICS & IMAGE PROCESSING, vol. 4,
no. 3, pp. 249-270, November 1980.

A. Kela, “Programmers guide to the PADL-2 octree processor output system”,
INPUT/OUTPUT GROUP MEMO. No. 15; Production Automation Project, Uni-
versity of Rochester; January 1984.

A. Kela, “Automatic finite element mesh generation and self-adaptive incremental
analysis through solid modeling”, Ph. D. Dissertation, Production Automation
Project, University of Rochester, 1987.

D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz and 1. Babuska, “A posteriori
error analysis and adaptive processes in the finite element method: Part I - Er-
ror analysis”, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN
ENGINEERING, vol. 19, pp. 1593-1619, 1983.

Y. T. Lee and A. A. G. Requicha, “Algorithms for computing the volume and other
integral properties of solids: Part Il — A family of algorithms based on representation
conversion and cellular approximation”, COMMUNICATIONS OF THE ACM, vol.
25, no. 9, pp. 642-650, September 1982.

A. G. Peano, A. Pasini, R. Riccioni and L. Sardella, “Adaptive approximation in

finite element structural analysis”, COMPUTER & STRUCTURES, vol. 10, pp. .

332-342, 1979.

15

[PERUS?2)

[REQUSS3]

[RHEISO]

[SUHA74)

[WOO084]

(WORDS4]

[YERRS83]

[YERRS84)

Kela, Sazena & Perucchio

R. Perucchio, A. R. Ingraffea and J. F. Abel, “Interactive comuter graphic prepro-
cessing for three-dimensional finite element analysis”, INTERNATIONAL JOUR-
NAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 18, pp. 909-926,

1982.

A. A. G. Requicha and H. B. Voelcker, “Solid modelling: Current status and research
directions”, IEEE COMPUTER GRAPHICS & APPLICATIONS, vol. 3, no. 7, pp.
25-37, October 1983.

W. O. Rheinboldt and C. K. Messztenyi, “On a data structure for adaptive finite el-
ement mesh refinements®, ACM TRANSACTIONS ON MATHEMATICAL SOFT-
WARE, vol. 6, no. 2, pp. 166-187, June 1980.

J. Suhara and J. Fukuda, “Automatic mesh generation for finite element analysis”, in
ADVANCES IN COMPUTATIONAL METHODS IN STRUCTURAL MECHAN-
ICS AND DESIGN, J. T. Oden, R. W. Clough and Y. Yamadoto eds., Univ. of
Alabama Press, pp. 607-624, 1974.

T. C. Woo and T. Thomasma, “An algorithm for generating solid elements in objects
with holes”, COMPUTERS & STRUCTURES, vol. 18. no. 2, pp. 333-342, 1984.

B. Wordenweber, “Finite element mesh generation”, COMPUTER-AIDED DE-
SIGN, vol. 16. no. 5, pp. 285-291, September 1984.

M. A. Yerry and M. S. Shephard, “A modified quadtree approach to finite element
mesh generation”, [IEEE COMPUTER GRAPHICS & APPLICATIONS, vol. 3, no.
1, pp. 3946, January/February 1983.

M. A. Yerry and M. S. Shephard, “Automatic three-dimensional mesh generation
by the modified—octree technique”, INTERNATIONAL JOURNAL FOR NUMER-
ICAL METHODS IN ENGINEERING, vol. 20, pp. 1965-1990, 1984.

16

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

LIST OF FIGURES

1 An automatic finite element analysis system.
2 A quadtree approximation
3 First stage of the automatic meshing algorithm.

4 Second stage of the meshing algorithm (a) generation of bS nodes and
(b) linking bS and bIS nodes.

5 Node relocation to get well-formed elements.

6 Example of automatically generated 2-D FEM mesh.

7 Assembly via multi-level substructuring.

8 Substructures at various levels during assembly.

9 Nodal displacement at stages of the solution process. .
10 Refinement driven by error indicators.

11 Solid domain with interior octree produced by PADL-2

12 Typical Simple NIO cell.

13 Typical Complex NIO cell.

14 Template driven decomposition of SNIO cells.

15 Element extractors for CNIO cells.

ﬁﬁﬁﬁﬁﬁﬁ

7 2andty

N TONTONTNTONTN/ANTON/ OV 6\ ®

SEESERSREE®E® O OGS

(&) (&) () (9

(OIN) £sepunoq ayj uo = g
wisine = 0 K
wew =1 |

SNLVLS AAON HNTHAAINNN 10drdo
INVIAVNO

NIO-celis

I-cells

Ils

Yy O

C

RInTAL PAGE 1S

¥ rOOR QUALITY]

'

L J
»~° '
o]
o '
o]
c' J
e]
N ’
' '
cTeoowesocee

(b)

(a)

™
()]
Y]
=
a0

o

<)

Siq

2an3dty

T

OE POOR QUALITY

2
£
&)
<
P>
&
Qo
e
o

sapou §q

sepou SIq

SIpOU JIWI0I

. "bIS" node moved
to the boundary

ill-formed elements

)

(24 \\\\\\

2

ill-formed elements

T XV
stemet
sawal
<L L1 1
ZV T1T 1T IR
A TTT T IN

T
-m!li'li%

as 2|
TVTTIPKAL N
QeeseaarZ
S

17 |
11]
oee

(d@andyy

:

!

*——0—9¢

S\ ¢ ™~ o

boo ¢ 0 b

o—o—o

6ly 82y ley 9%y STy Wiy iy Ty

NP

(P)

(®)

e

Figure 9

01 2an314

L}

| SRV S 3
[.

D

9

(q)

L 4

L 2

L]

(@)
13 [] r1} €2 € [[]
3
L]] | st &L 1 »
b | . 4
2 | 4 9 [.3 48 o€
4 A
] [4 3 [] [X (] [-
b | 4
[] [4 s o [1) "’
4
[) € [» [1) at 9
* ¢
€ é &L
3
8 o2 (T4
x» 4
(®)

5 «wﬁw. .a. ¢ 0y
m».ﬂmk@ ...’.:m- .n!\:t&
Q .nb’ M-c.r.-.f. %ﬁhhvwzvt b %4;
_.::w..}m./.@m, ﬁ

3 v: rﬂ%atﬂréi
.0..‘ .:4-.?..34.:

TN AN
PR

|
|
il
|
l--J

111

Figure 11

\

0

\ |
.

OOOOOO

Figure 13

\< \
\|

=

)
o
=
Z
wn

3
&o
Q

S
&

3

[

Fxy

o
L

=
o

o
g

i
a,
g

3

14

Figure

e Extraction of tetrahedra :
} ' Operators 7; and 72 (Woo & Thomasma, 1983).

B STV Y1200

7

e Extraction of pyramids : operator 7s.

A

Figure 15

ORIGINAL PAGE IS
OF POOR QUALITY,

N88-19120

\

l
|
|

The essence of mechanical design is nterplay between

human creativity and incisive analysis. The procedure for i

designing a critical component or structure typicaily runs as:
|. Prepare a candidate design.
> Analyze the design using the finite element (FE) meth-
od.
(a) Model the designed structure and its loading and
constraints.
(b) Analyze the loaded model.
(c) Assess the validity of the analytical results.
(d) Repeat steps 2(a—<) until acceptable analytical
results are obtained.
3. Assess the candidate design.
4. Repeat steps 1—3 until the design is acceptable.
Thus the design process is doubly iterative because cur-
rent FE techniques are not single-shot blackbox tools with

:: guaranteed reliability; they require human judgement and

“tuning.”” It follows that the (injefficiency of the inner
analysis loop is a strong determinant of the quality of the
final design when the cost of design matters, as is usually the
case. If analysis can be made cheap, fast, and reliable, more
alternatives can be considered and better designs will resuit.

Let's look more closely at the analysis procedure. During
step 2(a), the design is modeled as a properly connected
mesh of suitably sized and shaped elements (triangles.

; quads. etc.) from an element library. Its loading and con-

straints are modeled by assigning suitable constants (e.g.
displacement and load values) to particular nodes of the
mesh. The operative words here are “suitably sized and
shaped™” and "‘properly connected’". If the elements are too

. large or have bad aspect ratios. or if the mesh as a whole

does not obey the combinatorial sharing rules of FE mesh
decompositions, inaccurate and inconsistent resuits will
accrue because the mathematical conditions underlying the
FE method will have been violated. In the early days of FE
analysis, the analyst was wholly responsible for mesh and
element integrity. Today, computer graphics preprocessors
help ensure proper connectivity. but the selection, piace-
ment. and sizing of elements are still the user’s responsibil-
ities.

Step 2(b), analysis of the loaded model, is usually per-
formed by using a standard code such as Nastran and Ansys.
This step is largely automatic, and the popular codes are well
debugged though sometimes expensive 1o run.

For step 2(c), assessing the validity of the results, there
are no standard methods and the analyst’s judgement plays a
critical role. In the early days, when “results’’ were huge
tables of numbers, assessment was largely a black art.
Graphics postprocessors, which can display colored contour

plots of stresses, temperatures, and so forth. enable experi-

Computers In Mechanical Engineering/July 1986:57

vl S no 1

Object definition

Solid modeling system with attribute facilities

Analysis
processor

d

FE mesh

el

Attribute definition

\

f

: Results
Anatysi re OK
re: T:;S e gl :tror stresses
u vaiu displ. etc.

Refinement
region

tic finite el

Fig. t An aut t analysis system.

enced analysts to identify trouble spots (such as regions with
high cross-element gradients) quite effectively.

During step 2(d), the analyst refines the mesh by subdivid-
ing troublesome regions into smaller elements, and then
reanalyzing the whole.

Obviously, automation of the whole process will make
design more systematic and efficient by replacing the ana-
lyst’s judgement with mathematical criteria. Two new tools
make automation of the FE mesh feasible:

® Solid modeling technology {1. 2] enables designers to
create and store in CAD systems informationally complete
‘‘master models’’ of mechanical parts and products. From
there, one should be able to generate FE meshes automati-
cally.

o New algorithms for analyzing errors in a finite element
analysis [3—7] systematic means to automate the results
assessments of step 2(c).

One more tool is needed: a good method for using error
indicators to refine the FE mesh automatically. Another
tool, while not essential, is also very desirable: a method for
analyzing refined meshes selectively or incrementally so that
results already computed for unmodified regions of a mesh

can be reused rather than recomputed.

Figure | shows a design for an automatic analysis system. .
In this system. the user defines the structure to be analvzed
in the Solid Modeling System (SMS) together with attributes :
such as boundary conditions. loads. matenial properties. and
certain analytical parameters. The mesh generator produces
a discretized model (the FE mesh) from the geometric !
definition and attribute specifications. (Attributes can deter-
mine., for example. the positions of some nodes.) The
analysis processor performs FE analysis: it computes prima-
ry and secondary field variables (in general. the dispiace-
ments vector at nodal points and the stress tensor within the
elements) for the loaded and constrained FE mesh. Finally.
the error evaluator compares error estimates derived from
the analysis output with specified tolerances. and either
accepts the results or requests a new analysis of a modified *
mesh. In the latter case, the error evaluator indicates the
regions in the current model that require refinement. The :
inner mesh-generation loop and mesh-analysis loop in Figure °
I connote localized mesh refinement and incremental reanal- .
ysis.

This approach to automatic FE analysis has been embod- ¢
ied in an experimental 2-D system whose underlying princi-

Solid

, e L
' — 1IN

7%

ORIGINAL PAGE i8S
CF POCR QUALITY]

i

Boundary representation

¢ N i
i’ Jdi=>

© Fig. 2 Two unambiguous representation schemes for solids.

58/July 1986/Computers in Mechanical Engineering

ORIGINAL PAGE IS
OF POOR QUALITY

Object

numbering Node status

D | = inside
. O = outside

[T] @ = on the boundary (NIO:

.,(3}.,\0\30

0 0 0 0 0 0
Fig. 3 Aw«momxmﬂon.

(e) 8

oloJolofo)oRoJoRokc |

of\lc o‘o of |\of|{el\ 0\
@\ oooo

® o ® ® ‘© ;

ples will be explained. (Our actual implementation is some-
what different than Figure 1 for reasons of computational
efficiency.) All meshes and analytical results that appear in
this article were produced with this experimental system.
This article summarizes a moderately complicated topic: for
technical details, see [8].

Automatic Mesh Generation

Most *‘automatic’* meshing utilities in contemporary CAD
systems actually operate from wireframe descriptions of
objects via mapping algorithms. The user must partition the
domain, which is represented by a collection of edges. intoa
set of topologically simple subdomains in which meshes can
be generated automatically. This approach is unsuitable for a
fully automatic meshing procedure because it depends on
human judgement both to guide meshing and to resolve
ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an
unambiguous representation of the object to be analyzed,
and thus needs some form of SMS. Nearly all current SMS
systems are based internally on one or both of the represen-
tation schemes illustrated in Figure 2 [1, 2]. Constructive
Solid Geometry (CSG) exploits the notion of ‘*adding’’ and
“subtracting"* simple solid building blocks (via set-union and
set-difference operations). Boundary schemes describe so-
lids indirectly via sets of faces which are represented by sets
of edges that bound finite regions of surfaces. The vanous
schemes that have been proposed for automatic mesh gener-
ation can be divided into two families: recursive spatial
subdivision (quadtree and octree) schemes, and triangulation
and other schemes. After a brief discussion of the second
family, we will focus on the first.

Triangulation and Other Schemes

Wordenweber [9] and Cavendish [10] have developed two
different two-stage approaches to automatic triangulation of
solid domains. Wordenweber's procedure first does surface

triangulation of the boundary of the solid. and then performs 5
solid triangulation in the interior. The tetrahedral meshes
that result are coarse and usually contain distorted elements |
that must be refined to be useful for analysis. i

In the Cavendish method. points are injected into the
solid. and then a solid triangulation is induced in which the |
points become nodes of tetrahedral elements. The main :
working tool of the second-stage triangulation is a Delaunay '
algorithm that generates valid meshes of tetrahedral ele-
ments within convex hulls of node points. Good methods are
still being sought for inserting points automatically dunng
the procedure’s first stage.

In both of these approaches, mesh refinement is done by
splitting existing elements. Because refinement is driven :
from an FE mesh rather than from the original solid model.
refinement does not improve the geometric approximation of
the original solid. Also, the meshes are not spatially address- 1
able. L

A few commercial CAD systems claim automatic meshing
facilities that can involve triangulation but the principles are -
proprietary. Lee's method [11], which has been described
publicly and implemented in 2-D, exploits the decomposition
inherent in CSG representations rather than triangulation or
spatial subdivision. Briefly, Lee generates *‘natural’’ distn-
butions of points in each CSG primitive and then induces a
uniform spatial distribution of points over the whole object
by *'thinning’" points in regions where primitives overlap: a !
mesh of quadrilateral and triangular elements is then grown l
over the points in the object. \'

|

We approximate the object to be meshed with a union of
disjoint, variably sized rectangles (in 2-D) or blocks (in 3-D). "

Recursive Spatial Subdivision

These are generated by recursively subdividing a spatial

region enclosing the object, rather than the object itself. |

Figure 3 shows a 2-D exampie. (
The object (a rounded plate with a hole) is “boxed™ 10 |

Computers in Mechanicai E gineering.July 198669

ORIGIN

¥
E

record record record record
i. (a)

ORIGINAL PAGE IS
‘CRt POOR QUALITY

data
recora

12

E
|

-
prrg d---cb oot i. \ 2t
O | ' ‘1 i
=)
F oo] | i \
s - -r
T ! < ,_/ V/
\'~
{(a) {b} {c) (d) (e}
Cell: Vertex: Ecige: Element: Node:
1,0, NIO 1,0.0ON L O. type.) 9 4
bS, bIS basis
{b}
[N
‘ Fig. 4 Mierarchical structure for the PE medel.

[

<] |
]
4ot

(fi

Properties:

mat’y, load.

constraints,
K], .D:

4D Sy
”

WL - R e L

G ltiat e AR (D

Pig. 8 Directly addressabie hierarchical grid.

establish a convenient minimal spatial region. and ther the
box is decomposed into quadrants. When a quadrant can bc
classified as wholly inside or outside of the object. subcivi-
sion ceases: when a quadrant cannot be so classified. 1t is
subdivided into quadrants. So this process continues ur::
some minimal resolution level is reached. (In 3-D. the
decomposition proceeds by octants.) Approximations pre-
duced this way can be represented by logical trees who-:
nodes have four or eight sons (see Figure 3). hence t:c
popular names *‘quadtree’’ and “‘octree™ [12].

As we will explain, inside cells of a spatial decompositiur
can be easily converted into “‘nice’’ mesh elements. tu.
boundary cells require further processing lest their litera:
translations into mesh elements introduce bogus high-gra.:-
ent stress regions in the analytical results. We'll deal wiin.
boundary-cell processing later; for the moment. assume tf.”
the **B’" cells in Figure 3 are somehow reshaped into va.i¢
mesh elements that closely approximate the object’s boun..
ary. '

Recursive spatial decompositions have two intrinsic pror-
erties. hierarchical structure and spatial addressability. tha:
are central to the mesh refinement and incremental analys:is
techniques described later. These intrinsic properties. plus
an extrinsic (engineered) property called logical addressabi-
lity. warrant discussion.

Hierarchical structure. The tree structure in Figure 2
results from the subdivision rule used to produce the asom.-

position, and one can think of the tree as an orgamizing or .

cataloging structure for data describing particular regions of
space.

Figure 4(a) illustrates this notion by showing a data record

associated with each node of the tree: Figure 4(b) show s data

pertinent to automatic mesh generation that might be stored
within such a record. These include classification of the
spatial region represented by the node as inside, outside. or
on the boundary (Figure 3); shape functions for a few

and properties associated with the finite elements. such as
one or more stiffness matrices, external constraints, and so
forth.

At the lowest level of the tree one finds the smallest spatial

_(typically one) finite elements associated with the region; '

regions and simplest finite elements. As one ascends the tree

the regions become larger (encompassing multiples of four or

eight elemental regions) and the finite elements become ;
superelements with associated (*‘assembled’’) stiffness ma-

trices, collected constraints, and so forth. Such an organiza-
tion is ideally suited to mesh refinement by subdivision and
incremental mesh analysis.

Logical addressability. Given the notion of a tree as an '

organizing structure for hierarchical spatial data, how should .

such a structure be mapped into computer storage as a data
structure. and how does one gain access to it to store and
retrieve data? The tree diagrams in Figures 3 and 4 suggest
the classical approach: represent a tree with a linked list in

! which nodes are addressed indirectly through downward

pointers to sons and perhaps lateral pointers to siblings. The

data record associated with each node is addressed through a

80/July 1986/Computers in Mechanical Engineering

special pointer stored with the node. Thus one has access to
data by following pointers downward from the root of the
tree.

Alternatively. a recursive spatial decomposition can be
viewed as a directly addressable hierarchical grid (see Figure
5) in which the number of cells in each linear dimension is an
integer power of two. The key here is a systematic scheme
for numbering all possible nodes of the underlying tree. In
Figure S(a), *'1'" represents the enclosing box, 2—5 repre-
sent specific quadrants of **1,” **6"'—""9"" represent quad-
rants of **2," and so on. The underlying relation, which can
be applied recursively, is:

The four sons of a parent node Pare [4 =P — 2,4« P-1,
4+P,4«P ~ 1], and the parent of Pis (P + 2) div 4.

These numbers can be used as indices for a single array of
pointers to data records, as shown in Figure 5(c). Thus, to
access the spatial data for a particular node in the underlying
tree. one merely calculates an array index through a simple
formula and follows the single pointer stored there. This is
usually much faster than the pointer-following method noted
above but it carries a storage penalty. Specifically. the
pointer array in Figure 5 (¢) must be large enough to
accommodate all possible nodes in the tree.

If the lowest-level grid in Figure 5 (a) requires N*N*K
units of storage (N*N*N*K in 3-D) for pointers and data
records. one needs:

K - (20 » (1l
20 -
units of storage for the worst-case whole tree. where D is the
dimension of the space and *‘log’ is log-2. Thus a 2-D
hierarchical grid requires at most about 33 percent more
storage than the N*N*K units needed for its lowest level: in
3-D only about 14 percent more storage is needed.

- log\y _

1)

Spatial addressability. Suppose that we know the geomet-
ric size and spatial position of the **1" cell (the overall box)
in Figure S5(a). We can quickly compute the index of any cell
in the hierarchy from its size and position. and conversely
from an index we can quickly compute the size and position
of the associated spatial cell (an example is in Table I). We
have already seen that cell indices allow access through a
single pointer to data associated with the cell, and thus we
can associate, without searching, spatial regions with stored
data and stored data with spatial regions. This is what is
meant by spatial addressability.

In practical terms, if a particular region of an object proves
troublesome either in mesh generation or mesh analysis, one
has direct access to pertinent mesh and analytical data to
take localized corrective measures.

An Automatic Meshing Procedure
Based On Spatial Subdivision

This procedure produces a spatially addressable FE mesh
embedded in the lowest level of a hierarchical gnd. Higher
levels of the grid are used during construction of the mesh
and when the mesh is analyzed. refined. and incrementally

SMS of the object to be meshed. and operates in two stages.
The first stage meshes the interior of the object by spatial
subdivision and the second extends the mesh to the object’s
boundary. The following descriptions are in 2-D: 3-D exten-
sions are in the final section.

The use of quadtree and octree methods for automatic
mesh generation was pioneered by Shephard and Yerry [13.
14]. Our work is similar to theirs but important differences
will be noted as we go along.

Stage 1: interior meshing. The object S. Figure 6ta). is
enclosed in a box, Figure 6(b). which is recursively subdi-

contains more than one connected boundary segment of S.
As the subdivision proceeds the cells are classified as being
“IN"* S, **OUT" of S, or neither in nor out (""NIO™. Cells

. . . !
reanalyzed. The procedure starts with a representation in an |

vided into a grid whose smallest cell size determines the |
element size (or element density) of the initial FE mesh. This -
minimal size is determined by subdividing cells until no cell

—

S

" (gablel

This sure-
~wize of cofl P when the enclosing box (P=1) is
. has size (boxsz) and is-centered at (bx, by). The
 procedure is iovoked 8: - 3
(}

_where collx, celly are the x.y coordinates of the center
- of the osil and cellszis I half-size of the cefi; awiic
. celly, and csllsz are inliaized respectively as bx, by,
. and baxs22.0. The following aigorithm is based onthe
..cell numbering achems shown in Figure 5. :

- procedure GetPoesition (P, ceilx, celly, oslisz);

{Traverse tree upwards 0 root-node, from coll (P)
-marking ail ancestors of the ceil.} s

= . ColiNo:=P;, =
_-’W.-t:

3 m=m+ah:aly-m
. - ond; {case } - L
o flor} - =" DRIGINAL PA

{ GetPosition }

smrew ol

L

OF POOR QUALITY

Computers in Mechanical Engineering July 1986 61

ORic.iviss YAGE IS S
OE POOR QUALITY] /

Icells NIO-cells

NN

/1
[
N

b i

Fig. ¢ First stage of the sutomatic meshing algorithm.
classified as IN at higher levels in the hierarchy ar: supdi-

ﬁ P1 vided to the final grid size without further classificaticr. The

{ ‘ bS . C . . . L

: \ e collection of IN cells constitutes the interior mesh ¢ ¢

: ‘ bIS The main computational utility used for cell class:iication

P2 is the modified cell classification procedure:
ModClassCell(cell, solid) = ("IN™", "OUT™".*
“

. = which is described in [15].

R &) ModClassCell tests a cell to determine if it is enurely
inside the solid. entirely outside. or undetermined. iz ~*?"
cells are further subdivided and tested. Stage | en.i: w:th
special operations that reclassify final-sized **?"" cell~ - IN.

]

N

L

:'t" 7 Qenersation of bS nodes in stage 2 of the meshing aigo-
hm.

Y
L~
blS nodes
r
/
bS nodes J/
Fig. 8 Eiement generation via linking bS and b/S nodes.

OUT. or NIO. (Some might think that **?** cells must alwavs
be NIO. but this is not true for Lee's efficient use ¢! the !

classification procedure. which assumes a CSG reprerenia-
tion of the solid S [15]. Although CSG implementatior~ can
be designed to insure that **?"° cells are NIO. an. tre
procedure can be used for solids represented in boundan
format. both approaches are computationally expens: ¢

Specifically, the vertices of each final *?*" cell are clas<-
fied: if one to three vertices are OUT, the cell is NIC. In
cases where all four vertices have the same classification the

cell is classified as:

if (Cell N* S = 0) then ""OUT"’
eise if (Cell N* S = Cell) then "IN’
else “*NIO™

where N* is the regularized intersection operater [16].
Methods for performing the tests above are described in (8],

We note that the Shephard-Yerry cell classification proce-

dure [13. 14] is based on in/out tests of cell vertices. with
some special operations performed on vertices of cells .
having uniform vertex classifications. In/out tests on veru-

ces are insufficient because cells containing holes or thin
sections might be misclassified.

§

82/July 1986'Computers in Mechanical Engineering

" ill-formed elements
b bIS node moved
to the boundary

L

ﬁ

ORIGINAL PAGE IS |
OE POOR QUALITY

ey

{il-formed siements

(RN YR T LU A R

Stage 2: boundary-region meshing. The task here is to fill
the region between the boundary of the interior mesh

N‘:.‘::_ﬁs\ i (denoted bIS in Figure 7) and the boundary 4§ of the solid .
- Observe that: i

- > bS C (U “NIO"™ cells) U bIS

- = Thus bS is usually contained in the NIO cells and special i
o —_ — * \ element-building operations are required. but sometimes
| - -+ - segments of bS coincide with bIS. as at the top of Figure
s ‘7"\—’—’—*—‘—‘—\ 6(b). and no special processing is needed. We can mesh the
v *—f interboundary region by visiting each NIO cell and creating
— ‘ elements that link the bS segment passing through it to the
— ——\ ' interior of the solid.

E — - V A% There are three main issues in this process: to devise a
'\ + «—f systematic way to insure that all NIO cells are visited. to
j — - - create nodes on bS. and to associate bS nodes with existing
! - — bi1S nodes to form valid elements.

— . . j All NIO cells can be visited by an exhaustive scan of the

% BB /]

e 'SBEHUIDEDEEBETZ
.!===='iil‘d======“ 1 ' ' =i.
zSe=gesygiasns

|
! |

|
l
|
ll Fig. 10 Examples of automaticaily generated FE meshes.

Computers in Mechanical Engineering July °22¢ 63

OR

I

GINAL PAGE IS
POOR QUALITY.

Fig. 11 Assembly via multi-leve!l substructuring.

K
I‘v
;

lowest-level grid, or by tree traversal, or by traversal of bS.
Since no single approach seems t0 offer substantial advan-
tages we use grid-scan for generating the initial mesh and,
because operations tend to be more localized. tree-traversal
for remeshing and reanalysis.

Figure 7 shows bS nodes P1, P2, P3 that are created in the
following manner. Vertices of b$S within each NI1O cell (e.g.
P2 in Figure 7) are tagged as such and are always used as
finite element nodes. The vertices of bS are available explic-
itly if § is represented in boundary format. If only a CSG
representation is available. as in our system. a limited form
of boundary evaluation [17] must be performed. In 2-D. the
CSG primitives that intersect an NIO cell are themselves

Fig. 12 Substructures at various levels during assembly.

intersected to generate candidate bS§ vertices; the candaidates
are then classified to identify true bS vertices. The anz.ogous
3.D .operations amount {0 constructing a wireframe repre-
sentation from a CSG representation. Additional bS nodes

are created by intersecting bS with the boundaries of the

NIO cells (P1 and P3 in Figure 7).

The generation of valid elements within an NIO cel.
straightforward if the cell does not contain bS§ vertices
(corner nodes): nodes on bS and biS belonging to the same
NIO cell are simply linked to form quadrilateral and triangu-
lar elements (see the lower left portion of Figure 8). The
treatment is more involved when a corner is present.

is

a

detailed explanation is in [8]. Briefly. the corner node is

linked to bS and b/S nodes within the cell to form a web of

triangular elements (Figure 8). To avoid generating elements

with poor aspect ratios. the distances

between nodes are -

checked by using a node neighborhood test. and closely .
spaced nodes are merged into single nodes on bS. Figure 9 |

provides two examples of this process.

The FE mesh is complete at the end of stage 2 of the 3

design procedure. A regular mesh of quadrilateral elements

in the interior results from a direct mapping of IN cells. On

the boundary, NIO cells are associated with quadrilateral
and triangular elements. It is important to note that the FE
mesh inherits the spatial addressability and structure of the
hierarchical grid because elements and substructures are
associated with the quadrants of the original decomposition.
Figure 10 shows two examples of meshes generated by our
automatic procedure.

The Shephard-Yerry (SY) boundary region meshing algo-
rithm performs in/out tests on the midpoints and quarter- '

points of the edges of NIO cells, and then maps each NIO

cell into one of a finite number of cut-quadrant forms: each

cut quadrant is then meshed. (We avoid such geometric
approximations by computing exact points of intersection on

bS.) The final stages of the SY algorithm move nodes in NIO
cells to the boundary, and then eliminate ill-formed elements |
by using a Lagrangian relaxation procedure to smooth a
triangulated version of the entire mesh. This last operation

84/July 1986/Computers in Mechanical Engineering

destrovs the uniform quadrilateral interior mesh and also
spatial addressability. because elements are not constrained
to rematn in their original cells.

Anilysis Of Hierarchical Meshes

We will now summarize a mesh-analysis procedure that
. for mesh generation has almost all of the data management

exploits the properties of the hierarchical. spatially address-
able meshes already described. Recall that data specifying
the finite elements in the initial mesh are accessed through
the lowest level of the hierarchical grid: Figure 4(b) shows
the types of data that are carmied.

One analvtical simplification is immediately obvious: be-
cause the interior mesh elements are uniform. their stiffness
matrices are identical if the material properties are homoge-
neous and thus only one stiffness matrix need be computed
for all of the interior elements. Other more important analyti-
cal simplifications accrue during both assembly and solution
of the system of equations because the hierarchical gnrid.
which so far has provided spatial substructuring for meshing.
can serve also as a multilevel analytical substructuring

; mechanism.

e

Assembly procedure. Most FE analysis procedures build a
single stiffness matrix to cover the whole domain. Our
assembler builds and stores stiffness matrices for every non-
OUT cell in the hierarchical gnd. This is done from the
bottom up (see Figure 11) by assembling son matrices and
**condensing out” interior degrees-of-freedom to build par-

' ent matrices at each level. The parent nodes of the interior
mesh with identical (uniform) sons to yield identical sub-

“structures and need be assembled only once. The mesh

generator tags identical interior-mesh nodes at all levels of
the tree to allow this.

Figure 12 shows an initial mesh and substructures at
various levels in the assembly process. Note in Figure 12(a)
that the initial mesh contains some higher-level substruc-
tures: these arise not from assembling lowest-level IN ele-

{ ments, but from intermediate-level cells that were classified
" as IN and tagged as substructures during stage 1 meshing.

(The identical stiffness matrices for lowest-level IN cells are
needed in the assembly process only when IN elements must
be assembled with elements in NIO cells.)

Solution. Figure 13 illustrates various stages in the solution
process. After loads and boundary conditions are attached to
the root structure, the FE solver computes the displace-
ments of all nodal points on the boundary, i.e., the nodal
points of the root substructure as in Figure 13(a), and then
traverses down the tree, recovering displacements of sub-

 structure nodes at each level.

The displacements at all levels are saved in data records
accessed through the hierarchical grid. and the iowest-level
displacements are used to compute the stresses in the
elements. Figure 14 shows the displacements and average
value per element of a stress component. The displacements
in Figure 15 are exaggerated for clarity. All analyses here are
linear-static, based on linear isoparametric elements. For
nonlinear analysis. where displacements can be large. spatial

addressability is still maintained via a backward mapping
that associates each displaced element to the onginal grid.

Remarks

Our experience with this substructuring approach to anal-
ysis leads to some conclusions. The hierarchical gnd used

facilities needed for analytical substructunng. The comput-
ing time and storage requirements for internal-element as-
sembly are substantially reduced. We have not yet compared
the solution efficiency of our tree-traversal method with that

/
J

e b et

» e
M

. e

. ey et et
-
"
"
- .

Fig. 13 Nodal dispiacements at stages of the solution process. I

|

.
& H
-za |
-73

Fig. 14 Average value per element of & stress component. i

Computers in Mechanical Engineering July 1986 65

1758

441

-867

a stress component 1s aiso shown

Fig. 15 A bicycie spanner in action. The four nodes on the right-side notch are totally constrained to model engagement with a nut. The average vaiue of

of standard solvers. in part because we have made no effort
to optimize our code. However. the incremental reanalysis
facilities described later clearly outclass standard solvers
when it comes to adaptive analysis. Note that solution via
tree traversal does not require the normally expensive global
element- or node-numbering schemes used by standard
solvers to minimize bandwidth or wavefront. Finally. sub-
structuring based on trees lends itself naturally to parallel
processing.

In general. substructuring has proven to be efficient [18]
and our particular approach to substructuring seems promis-
ing for nonlinear as well as linear analysis. In many practical
problems (e.g. contact problems. fracture mechanics. and
localized plasticity). nonlinear behavior occurs in isolated
regions. and spatially localized analytical methods should
prove to be efficient. For example, during analysis, regions
that become nonlinear can be tagged in the grid and specially
handled. In other types of problems one might want dis-

placements and stresses only in small cntical regions. and
again spatially localized methods seem very appropniate.

Self-Adaptive Incremental Analysis

level of the grid; the mesh has been analyzed and the resuits
stored in the grid (e.g. **f"" in Figure 4): and evaluation of the
results (discussed next) has indicated that refinement is
needed in a particular spatial region, say that represented by
the mesh fragment in Figure 16(a).

Two avenues for refinement are available. h-refinement
and p-refinement. In p-refinement. illustrated in Figure
16(b). successively higher-order shape functions arc as-

ed and a new matrix is computed from the new shape
function. No new tree nodes are generated, but the size of
the stiffness matrix increases.

Assume that a mesh has been constructed at the lowest

signed to the element formulation. To refine a particular
element. the old stiffness matrix for the element is invalidat- -

r—o—¢ ¢
® ®
*—o—»

(a)
Fig. 16 Schemes for mesh refinement.

P-refinement (b)

H-refinement (c)

66/July 1986/Computers in Mechanical Engineering

p—t——
- ™~
'/ \
~ i
] D s . . .
l 4 N
|
po / * . PR Y
/ \
| . s . -8 . s - . -
} {
! ’ - s . - - . [
P
/
; \
. o } e ey
\ L /
. . . ¢« -~ .-
' X /
{ \ '
~
“\./"/
)
- PN S, - /_-,N._‘\.
- ~. " ~
i ,r/ . s . . . \\ 1/—‘ . a4 —a —e \
s Y .
¥ y / \
b T . . . ' . . 3 FIE } » . —- e -e -« s .
/ \ / ‘ ‘
/ v 3
$ - . +——9 —+——@ ¢ + .] ¥] P~ P ———— - e _e ' '
/ \ ! .
" ¢ —+—— —s & \ ’ ¢ s—+—- & | b
[e R S B B . . T e 6 +es0ePeees & 3 —e— I
* s = S = o] ‘
\ o —o—2 7 A SRR f ‘ o -—s— 08 - -——O / I
LA \ - e [
: § - 8 —s e >e-—4 3 . r} F] H] . - - —9—8 o —8- -8 — N 3 i
\ / \ >)—-‘ /)
! . o & - o 2 8 ; . - -¢ oot o— -+—O
! \ . / \ PP IR Y /
. v s @-—3 s—e- s & & -4 . - . 4 T 2 0 000t -9 o+ — & s 8 [
/ 1
E \‘\ ®» . —a L] / \ [} — 4 "E
; \:\\ + @ <+ 9— s . . //r \l\:c o ¢ 9———— 98— - !
’ 3 .
~. _ - ~ e { I
~— e — <
|
PR

Fig. 17 Two stages of h-refinement.

In h-refinement existing elements are subdivided into
smaller elements of the same type, as in Figure 16(c). To
improve the geometric accuracy, localized h-refinement is
done on the original geometric model rather than on the
current finite element approximation. Thus, to refine a
particular element. one deletes the element. creates and
classifies new vertices and nodes, and inserts the smaller
new elements into the grid. Discontinuities of displacements
along edges where smaller elements abut on larger elements
are avoided by using constraint equations. These are indicat-
ed by the circled nodes in Figure 16(c).

Figure 17 shows examples of localized refinement. Note
that successive h-refinements improve the geometric ap-
proximation of the original solid. A maximum cross element

grading ratio of 2:1 is maintained during refinement.

Storage for the new entities created by h-refinement could
be provided by adding a whole new bottom layer to the gnd,
but this would be wasteful unless very extensive h-refine-
ment is needed. If the h-refinements are sparse, small
localized explicit schemes or linked-list methods are more
efficient.

Now assume that the original mesh has been refined in a
few regions using the methods just described. that the
affected elements have been tagged. and that the refined
mesh is to be reanalyzed. Clearly one wants to do incremen-
tal analysis. i.e., 10 use partial results from the carlier
analysis as much as possible. These results are available :
through the hierarchical grid. for example. using a tree of lS

Computers in Mechanical Engineering. July 1986.67

Original level

' Modified substructure

Fig. 18 Incremental reassembly.

New offsprings

O Unmodified substructure

matrices as in Figures 11 and 18.

The incremental FE assembler (Figure 1) traverses the
tree and by examining the sons of each parent node, detects
new offspring and computes the appropriate stiffness matn-
ces (Figure 18). Stiffnesses for unmodified elements are
recovered from storage. and new and old stiffnesses are
combined to form a modified substructure. If a node has no
new offspring. the complete old substructure is reused. The
incremental solver (Figure 1) works similarly. inspecting
tags on data to distinguish valid and invalid old results and
reusing the former whenever possible.

Self-adaptive algorithm. Our current algorithm for control-
ling seif-adaptive incremental analysis operates as follows
(see Figure 10). After a mesh (either initial or refined) has
been analvzed. error indicators are computed for each
element together with an estimate of the global error. If the
global error exceeds a specified limit, the system calls for
refinement and reanalysis in regions having large local
errors. This process continues automatically until the global
error estimate falls below the specified limit. This rather
simplistic control strategy seems to work in the cases we
have tested, but it is crude and some needed improvements
will be noted.

Considerable research has been conducted on the sources
and nature of errors in FE analysis, and on their relationship
to mesh refinement schemes [3—7]. Research pertinent to p-
refinement has vielded stgnificant results, whereas results on
h-refinement have been based mainly on 1-D studies and are
fairly primitive.

Thus far we have done little research on errors and our
current error measures are crude. As in (5], our element
error indicator (;) is merely the average of the stress jumps
(J, normal and tangential) across each element’s edges with
dimension (#) and assuming linear isoparametric elements:

s_1-voh 2
€= T 2 J: ‘ Jidr
normalized by the strain energy of the displaced model. Our

global error estimator is simply the sum of the element error
indicators. Figure 19 shows the computed values of the
element error indicators for a sample problem (a plate with a
hole under traction). Note that. in the vicinity of the hole.
the data imply high stress gradients because the error
indicators are high. Figure 19(b} shows an automatic refine-
ment resulting from this set of error indicators.

An improvement of the current algorithm would be 1o
replace the single global error indicator, which now serves as
a simple refine/don't refine switch. with a hierarchical series
of regional error indicators. These can be computed bottom-
up in the tree. and should force selective refinement in cases
where the overall average error is small but errors in small
regions are high. Additional improvements can be expected
as more is learned about the nature of errors in FE analysis.
Such research should also generate the information needed

to study the convergence properties of seif-adaptive

schemes.
Advantages and Disadvantages

~The main advantage of our approach is that mesh genera-
tion and mesh analysis are integrated and in effect collabo-

rate under the control of the error evaluator. Thus, the |

mesher only refines regions where refinement is needed. and
the analyzer only computes ‘‘what’s new'’ about a refined

mesh. This type of efficient adaptive behavior is, in our

opinion, the key to efficient automatic FE analysis.

Some can argue that mesh generation and mesh analysis

should not be integrated because integration precludes
“mixing and matching’’, i.e. being able to analyze. through
simple interface translators, a mesh from ‘“*any’’ CAD sys-
tem or preprocessor using ‘‘any’’ popular analysis package.
We believe that by the 1990s, however, the benefits of
integration will outweigh those of mixing and matching.
Spatially localized substructuring is the driving pnnciple
in both the mesh generator and mesh analyzer. This principle
derives from recursive spatial subdivision and is manifested

in our hierarchical grid and its underlying tree. The tree

68-July 1986.Computers in Mechanical Engineering

-

w
u
n

M

!
e

—

Fig. 19 Refinement driven by error indicator.

i
¢

might be viewed as a generalization of the structure de-
scribed in {19]. However. the latter is applied in subdomains
that are mapped to regular figures (squares and triangles),
and Rheinboldt's tree addresses the element partitioning
induced in the regular figures. By avoiding mapping we are
able to use the same structure for both meshing and analysis;
further, the regularity of our structure permits systematic
cell numbering and. hence. data access through calculated
addresses rather than through searching or looking in tables.
This *‘divide-and-conquer’" principle enables hard prob-
lems (such as object decomposition and equation-set solu-
tion) to be decomposed into smaller, tractable problems via
spatial partitioning. We note that spatially localized sub-
structuring. and spatial addressability in general. provide
powerful mechanisms for coupling FE methods and results
to other applications (e.g.. manufacturing process modeling)
through master data bases based on solid modeling.
Certain technical details already described. such as the

regularity of the interior mesh elements. are also advantages ;‘

of this approach.

Limitations. The main limitation of spatial subdivision
methods is that they produce meshes that are dependent on
orientation and position if the initial enclosing box is not
tight.

This is most easily seen in simple objects that have a
single, natural orientation. As such objects are rotated in z

fixed set of subdivision axes the induced meshes change.
often dramatically. Figure 20 is an example with a simplc |
object meshed in a nonstandard orientation. Skilled analysts 1
call such meshes “‘unnatural.”” and note that they usually

contain more elements than ‘‘hand-made’” meshes.

Spatial subdivision can be applied in non-Cartesian do- |

mains. For example. predominantly circular 2-D objects can

be meshed efficiently in polar coordinates by subdivision of :

(r.6). The meshes so produced can be managed through the

i
i
!
I
1
i
|
|

Computers in Mechanical Engineering July 198669

-
-
[

Fig. 20 Orientation and position dependence of meshes derived by spatia!l subdivision.

same hierarchical grid as is used for Cartesian subdivision
[20). Various schemes have been proposed for mixing subdi-
vision strategies to cater to objects having both circular and
rectilinear regions. but none seem promising [20].

The essential counter arguments are that ‘‘unnatural™
meshes will produce valid results if the elements are valid,
and that these results should converge under adaptive re-
meshing and reanalysis to a single set of (correct) results that
is independent of position and orientation. Experimental
evidence indicates that our approach exhibits such qualities.

Still To Be Resolved

Over the long term. four areas will require extensive
theoretical work to make truly automatic FE analysis possi-
ble:

® Error measures and indicators. Better measures than the
ones we use currently are needed. but they need not be
optimal if adaptive convergence can be guaranteed.

® Adaptive convergence. We have seen no experimental
evidence of divergence in the self-adaptive process. but
automatic analysis systems like ours will require human
monitoring to guard against divergence until strong conver-
gence properties can be guaranteed.

® Computational complexity. We think that spatial sub-
structuring techniques are asymptotically more efficient than
the methods used in current solvers. but we have no results
to prove or disproveé “this. Complexity and convergence
analyses. when coupled, should provide bounds on the
inherent cost of finite element analysis.

® Nonlinear analvsis. Thus far we have confined our efforts
to linear analysis but our approach to substructuring appears
promising for nonlinear analysis as well.

Two other issues are currently more pressing: extending
the systems to 3-D problems and handling loads and con-
straints automatically.

We have done 3-D work in parallel with our 2-D work. An
efficient publicly available interior mesher (octree generator)

has been created for solids describable in the PADL-2 solid -
modeling system [21. 22]. Figure 21 shows an example. The .
2-D spatial substructuring techniques for managing analysis. .
adaptive remeshing, and reanalysis extend gracefully to 3-D.
and indeed most of the 2-D control code is directly usabie in
3-D. The major unresolved problems are in stage 2 of the
automatic meshing procedure. i.e.. in the handling of NIO °
cells. Promising methods for resolving these probiems are
being studied.
The handling of loads and constraints is the only aspect of
2.D linear FE analysis that we have not yet automated. At !
present, loads and constraints are applied manually when the ?
assembler has completed its initial pass and the solver is
about to begin its initial pass. i.e.. at the transition between '
Figures 12(d) and 13(a). This raises two different questions.
First, there are no fundamental barriers to automating the .
application of loads and constraints at this stage of the
solution procedure. The problems are strictly of an engineer-
ing nature. Essentially, what mechanisms should be provid-
ed in a solid modeler to support the declaration of loads and
constraints (see Figure 1), and how should declarations be |
translated into mesh-node vector values? The translation
problem is straightforward given a good solution to the
declaration problem, and an experimental system with
enough power to handle load and constraint declarations 1%
already running under 3-D PADL-2 [23]. ‘
The second question is deeper. Should loads and con-
straints be applied at the outset, where they will influence
construction of the initial mesh, rather than after an initial
mesh has been built? This is certainly the case when meshex
are constructed manually, and part of the analyst’s skili s in
knowing how fine a mesh should be in a loaded or con-
strained region. Should our mesher be modified to mimic this |
skill? The only possible gain we see is efficiency and this
might be marginal because the current system alread) re-
fines meshes automatically to reflect loads and constraints .
but only after it has passed from initial mesh anal\sis to
adaptive remeshing and reanalysis.
In conclusion. we believe that the experimental system .

70/July 1986:Computers in Mechanical Engineering

OKiGiNAL PAGE IS
OE POOR QUALITY,

only the IN octree ceils are dispiayed

Fig. 21 Automaticaily derived octree decomposition of “Gehause” (a standard benchmark part for solld modeling systems). Here

|
l
\
|

|
v
i

described here and its underlying principles represent a
milestone on the road to truly automatic finite element

analysis.]
| .
ﬁcknowlodgmonts

John Goldak of Carleton University contributed to this
research and to the education of its authors. Victor Genberg
of Eastman Kodak Company provided advice and encour-
agement. The plots were produced on equipment donated by
Tektronix. Inc. Other industrial associate companies of the
Production Automation Project provided both equipment
and funds. Sustaining support was provided by the National
Science Foundation under grants ECS-8104646 and DMC-
8403882. The findings and opinions expressed here do not
reflect the views of the sponsors.

References

1 Requicha. A.A.G. and Voelcker. H.B.. **Solid Modeling: A
Historical Summary and Contemporary Assessment,”” JEEE Com-
puter Graphics and Applications. Vol. 2, No. 2. pp. 9-24, March
1982.

2 Requicha. A.A.G. and Voelcker. H.B..*Solid Modeling: Cur-
rent Status and Research Directions. ' IEEE Computer Graphics and
Applications, Vol. 3, No. 7. pp. 25-37, Oct. 1983.

3 Babuska. I. and Rheinboldt. W.C., **A-posterior Error Esti-
mates for the Finite Element Method," International Journal For
Numerical Methods In Engineering. Vol. 112, pp. 1597-1615, 1978.

4 Peano. A.G.. Pasini. A.. Riccioni. R.. and Sardella, L., **Adap-
tive Approximation in Finite Element Structural Analysis,”” Com-
puter and Structures. Vol. 10, pp. 332-342. 1979.

§ Kelly. D.W., Gago. J.P.. Zienkiewicz, O.C.. and Babuska, I..
“ A Posteriori Error Analysis and Adaptive Processes in the Finite
Flement Method: Pant I. Error Analysis.”’ International Journal For
Numerical Methods In Engineering. Vol. 19. pp. 1593-1619. 1983.

6 Gago. J.P.. Kelly. D.W.. Zienkiewicz. O.C. and Babuska. L.,
A Posteriori Error Analysis and Adaptive Processes in the Finite
Element Method: Part I1. Adaptive Mesh Refinement.”* Internation-
al Journal For Numerical Methods In Engineering. Vol. 19. pp.
1621-1656. 1983.

7 Zienkiewicz. O.C.. Gago. J.P.. and Kelly, D.W.. “'The Hierar-
chical Concept in Finite Element Analysis,* Computers and Struc-
rures. Vol. 16, No. 1—4. pp. 53-65. 1983.

8 Kela. A.. "Automatic Finite Element Mesh Generation and
Seif-Adaptive Incremental Analysis Through Solid Modeling.’" Dis-
sertation. Production Automation Project. University of Rochester.

1986 (in preparation).

9 Wordenweber. B.. ‘'Finite Element Mesh Generation.”” Com-
puter-Aided Design. Vol. 16. No. 5. pp. 285-291. Sept. 1984.

10 Cavendish. J.C.. Field. D.A.. and Frey. W.H..''An Approach
to Automatic Three-Dimensional Finite Element Mesh Genera-
tion."* International Journal For Numerical Methods In Engineer-
ing. Vol. 21. pp. 329-347.

11 Lee. Y.T.."Automatic Finite Element Mesh Generation
Based On Constructive Solid Geometry.' Dissertation. Mechanical
Engineering Dept.. University of Leeds. England. April 1983.

12 Jackins. C.L. and Tanimoto, S. L.. *‘Octrees and Their Use in
Representing Three-Dimensional Objects.”" Computer Graphics and
Image Processing. Vol. 4. No. 3. pp. 249-270. Nov. 1980.

13 Yerry. M. A. and Shephard, M. S.. "'A Modified Quadtree
Approach to Finite Element Mesh Generation.”” [EEE Computer
Graphics and Applications. Vol. 3. No. 1. pp. 39—46. Jan./Feb.
1983.

14 Yerry. M. A. and Shephard. M. S.. **Automatic Three-
Dimensional Mesh Generation by the Modified Octree Techmque.™
International Journal For Numerical Methods In Engineering. Vol.
20. pp. 1965-1990. 1984.

15 Lee. Y.T. and Requicha, A.A.G.. ** Algorithms for Computing
the Volume and Other Integral Properties of Solids: Part 1I. A
Family of Algorithms Based On Representation Conversion and
Cellular Approximation.”” Communications of the ACM. Vol. 25,
No. 9. pp. 642-650, Sept. 1982.

16 Requicha. A.A.G., *‘Representations for Rigid Solids: The- .

ory. Methods, and Systems,” ACM Computing Surveys. Vol. 12,
No. 4, Dec. 1980.

17 Requicha. A.A.G. and Voelcker, H.B.. **Boolean Operations ;
in Solid Modeling: Boundary Evaluation and Merging Algorithms.”

Proceedings of the IEEE. Vol. 73, No. 1, pp. 3044, Jan. 1985.

18 Dodds Jr.. R. H. and Lopez. L.A., “*Substructuring in Linear

and Nonlinear Analysis."” International Journal For Numerical
Methods In Engineering. Vol. 15, pp. 583-597. 1980.
19 Rheinboldt, W.O. and Mesztenyi. C.K., **On a Data Structure

for Adaptive Finite Element Mesh Refinements.”” ACM Transac-

tions On Mathematical Software. Vol. 6, No. 2, pp. 166—187. June
1980.

20 Kela. A., “*Approaches to Automatic Finite Element Mesh
Generation From CSG Representations of Solids.™ ITM No. 43,
Production Automation Project. University of Rochester. July 1983

21 Hanquist. E. E.. “Public PADL-2,” IEEE Computer Graph- |
ics and Applications. Vol. 3, No. 7, pp. 30-31, Oct. 1983.

22 Kela. A.. "‘Programmer’s Guide to the PADL-2 Octree Pro- |
cessor Output System.”" Input/Output Group Memo No. 15: Produc-
tion Automation Project, University of Rochester. Jan. 1984,

23 Requicha, A. A. G. and Chan. S. C.."Representation of
Geometric Features, Tolerances. and Attributes in Solid Modelers
Based On Constructive Geometry,” ITM No. 48. Production Auto- ‘»,

mation Project. University of Rochester, Oct. 198S. i

i

Computers in Mechanical Engineering July 1986 kA

N88-19121 | _
- Y

aryad
g7

WORKSHOP ON
THE INTEGRATION OF FINITE ELEMENT MODELING
WITH
GEOMETRIC MODELING
12 MAY 1987

FINITE OCTREE MESHING
THROUGH
TOPOLOGICALLY DRIVEN
GEOMETRIC OPERATORS

Kurt R. Grice

Center for Interactive Computer Graphics
Rensselaer Polytechnic Institute
Troy, New York

OCTREE TECHNIQUE

HIERARCHIC STRUCTURE
PROVIDES POWERFUL DATA STRUCTURE

SPATIALLY ADDRESSABLE
REGULAR HEXAHEDRA (PARALLELEPIPED)

FINITE INFORMATION
DISCRETE PORTION OF THE MODEL

FINITE OCTREE

FINITE OCTREE - OVERVIEW

DISCRETIZATION OF SPACE

- EACH TERMINAL CELL (OCTANT) CONTAINS
SPECIFIC DISCRETE MODEL INFORMATION.

- THE DISCRETE INFORMATION IS
TOPOLOGICALLY CORRECT, BUT
GEOMETRICALLY INCOMPLETE.

- EACH DISCRETE ENTITY CONTAINS
POINTERS BACK TO THE MODEL, SO ALL
GEOMETRIC AMBIQUITIES CAN BE
RESOLVED.

THESE TERMINAL OCTANTS ARE FURTHER BROKEN
UP INTO ELEMENTS.

THE ELEMENTS ARE THEN SUBMITTED TO AN
ANALYSIS PACKAGE.

IF NEEDED, TERMINAL OCTANTS CAN BE EITHER
RECOMBINED, OR FURTHER SUBDIVIDED IN AN
ADAPTIVE TECHNIQUE.

GEOMETRIC
MODELER

FINITE OCTREE
MESH GENERATOR

FINITE
ELEMENT
ANALYZER

FINITE ELEMENT SYSTEM

MODELER REQUIREMENTS

BOUNDARY REPRESENTATION -

CONTAIN VERTEX, EDGE, FACE AND
REGION ENTITIES ALONG WITH THE
ADJACENCY INFORMATION.

ALL COMPLETE AND UNIQUE GEOMETRIC
REPRESENTATIONS CAN BE CONVERTED TO
A B-REP.

ANALYSIS ATTRIBUTES ARE DOMINATED BY
INFORMATION ASSOCIATED WITH THE
BOUNDARY.

PROVIDES A GENERAL, ABSTRACT MEANS
REPRESENTING NON-MANIFOLD
STRUCTURE, ORIGINATING PERHAPS FROM
AN IDEALIZATION OF THE MODEL

GEOMETRIC COMMUNICATION OPERATORS -

RESTRICTED SET OF QUERIES ON BOTH
THE TOPOLOGICAL ADJACENCY AS WELL
AS THE UNDERLYING GEOMETRIC
DEFINITION.

SIMILAR IN APPROACH TO THE CAM-|
APPLICATION INTERFACE SPECIFICATION
(AIS).

PROVIDES MEANS OF INTERFACING TO
VARIETY OF MODELERS.

MODELER REQUIREMENTS

EACH TOPOLOGIC ENTITY HAS A CORRESPONDING
GEOMETRIC ENTITY ASSOCIATED WITH IT.

- REGION TO VOLUME
- FACE TO SURFACE

- EDGE TO CURVE

- VERTEX TO POINT

VOLUME, FACE AND EDGE ENTITIES CAN BE
PARAMETERIZED

IDENTIFICATION OF EACH ENTITY IS UNIQUE

OCTREE DISCRETIZATION

ONE COULD VIEW THE COMPLETE DISCRETIZATION
OF A MODEL AS POINT (OCTANT CORNERS) AND
CELL (BOUNDARY INTERSECTIONS WITH OCTANTS)
CLASSIFICATIONS.

THIS CLASSIFICATION AND THE ASSOCIATION WITH
THE OCTANTS WILL PROVIDE THE DATA FOR
GENERATING THE FINAL MESH.

POINT AND CELL CLASSIFICATION TECHNIQUES
ARE EXTREMELY GEOMETRY INTENSIVE AND MAY
REQUIRE EXTENSIVE QUERIES.

THESE CAPABILITIES MUST BE CAREFULLY
IMPLEMENTED FOR USE IN A GENERAL MODELING
ENVIRONMENT.

FROM A MODELING STAND POINT:

- IN NON-IMPLICIT REPRESENTATIONS, POINT
CLASSIFICATION (IN/OUT/ON TESTING) IS
NOT EFFICIENT.

FROM A FINITE OCTREE PERSPECTIVE:

- CLASSIFICATION OF AN 'ON’ POINT IS MOST
IMPORTANT (DETERMINATION OF A
BOUNDARY).

- RESOLVE COMPLICATIONS OF THE MODEL
AS EARLY AS POSSIBLE, INCLUDING
CONTRIBUTIONS FROM ANALYSIS
ATTRIBUTES.

- RESOLUTION OF NON-MANIFOLD
REPRESENTATIONS COULD BE VERY
COSTLY (ex: hanging faces).

- ONCE A DISCRETE REPRESENTATION OF
THE BOUNDARY OF THE MODEL IS
COMPLETE, IT IS A TRIVIAL MATER TO
IDENTIFY THE INTERIOR NODES.

OCTREE DISCRETIZATION

GENERAL METHOD

- INSERT TOPOLOGICAL ENTITIES OF THE
MODEL FROM THE LOWEST ORDER UP

. VERTEX, EDGE, FACE, THEN INTERIOR (IF
ANY)

UTILIZE SPECIFIC GEOMETRIC
COMMUNICATION OPERATORS, AVOID 'EX-
PENSIVE' OPERATIONS

ASSOCIATE THE DISCRETE ENTITIES BACK TO THE
MODEL AND THE MODEL TO THE DISCRETE
ENTITIES.

- ALLOWS FOR RESOLUTION OF GEOMETRIC
AMBIGUITIES

- ALLOWS FOR THE ASSIGNMENT OF
GEOMETRICALLY ASSIGNED LOADS ON TO
THE DISCRETE ENTITIES

GEOMETRIC COMMUNICATION
OPERATORS

TWO TYPES CALLED BY THE FINITE OCTREE
PROGRAM:

- 8 EXPECT INFORMATION ON TOPOLOGICAL
ADJACENCY OR ATTRIBUTES APPLIED TO
THE TOPOLOGY.

- 10 EXPECT SPATIAL DATA AS A RESULT OF
A COMPUTATION USING THE UNDERLYING
GEOMETRY OF THE MODEL.

- ALL ARE TYPICALLY AVAILABLE IN
GEOMETRIC MODELERS.

GOES BEYOND THE STATIC FILE TRANSFER
SCHEMES SUCH AS IGES, AND INTO A DYNAMIC
INTERFACE WITH THE MODELER ITSELF.

GEOMETRIC COMMUNICATION
OPERATORS RETURNING
TOPOLOGICAL ASSOCIATIVITY

GET A LIST OF MODEL ENTITIES, SUCH AS
VERTICES, EDGES, OR FACES FOR INSERTION INTO
THE TREE.

GET THE MESH CONTROL ATTRIBUTE ON THE
MODEL ENTITIES.

GET LOWER ORDER ENTITIES ASSOCIATED WITH A
SPECIFIED ENTITY. (ex: vertices of on edge)

GET HIGHER ORDER ENTITY ASSOCIATED WITH A
SPECIFIED ENTITY. (ex: regions on either side of a
face)

VERIFY WHETHER AN ENTITY IS ASSOCIATIED WITH
ANOTHER. (ex: edge in face)

GEOMETRIC COMMUNICATION
OPERATORS RETURNING
SPATIAL DATA

RETURNED DATA IS ALWAYS BASED ON POINT
INFORMATION: COORDINATES, PARAMETER
VALUES, NORMALS, DISTANCES.

| EXAMPLES:
GET_COORDINATE_OF VERTEX
INTERSECT PLANE_WITH_EDGE
INTERSECT LINE WITH_FACE
GET NORMAL_TO FACE

>I| lllllllll
/\ A
/\ /\
/o /o
/ \ / \
/ \ / \
/ \ / \
/ \ /
ﬁllllJIlllJA
/) S I/Illll
/

\ / \ /
\ / \ /
\ / \ /

\ \ 7
\ / \ /
\ / \ /

- - Vv

/\ A
/\ / \
/o /o
/ \ / \
\ \ / \
/ / / \
R —
\ e ——
\ / \
\ / \ /
\ / \ /
\ \
\ / \ /
\/ \ /
v v

/\
/A N
\ /\
\ /\
\ —
\ \ \
\ \ \
— VA \ \ \
VAR ..w -a v\ \
\ \ YA | vln'lu' — lllv
/ / ; ;
/D /

CAPABILITIES OF A FINITE
OCTREE BASED MESHING
PROCEDURE

ADAPTIVE ANALYSIS TECHNIQUES WITH LOCAL
REMESHING.

AUTOMATED METAL FORMING USING REMESHING
CAPABILITIES.

R ——

JUAWIYD AUl ¥

juosponb 10144X3 O
juosponb J012JU] @

juouponb Kiopunog ¢

PR K
W 0 B B
:;ﬁnvez'y;vgg?z';"‘a=‘
N NSNS
S AVAVAVAZAVy, 2 IAN g

ANNATALS

"avs
v,v," 5 G

KRS T<]
\J

[" "
- ‘.‘ \1 “:: ="':=
a'a"A a's 4;." ""é
VATAN A ATAY, vy, v,
NSNS NDK

VAVAVATav v
“VAVAY!AVAVAVAVAQVQ:

%AVJV S
AVAVAVQ%»EQF,%%

ARSI TR
Y v,y

AVAVAN;: 5
AVAVAY,
AVavav.iN

H 1

(VAVAVA::

]

MO
/A““‘h‘th‘i‘i

/ AN A
THORE
VA AT
e,i;;lg%ﬁé%‘l’f
IS\ \VIESE
SL— SN

44444444
. - —

a) original geometry b) geometry during forging

X7

[11

c¢) mesh for orizinal geometry d) mesh for current geometry

Figure 3. Modeling of forging process

WORKPIECE WITH ELEMENTS

DIE

ORKPIECE WITH ELEMENTS

Figure 4.

Volume control through geometric checks

SUMMARY

ADVANTAGES OF BOUNDARY REPRESENTATION

ADVANTAGES OF GEOMETRIC COMMUNICATION
OPERATORS

IMPLEMENTATION PLAYS AN IMPORTANT ROLE IN
THE INTEGRATION WITH A VARIETY OF GEOMETRIC
MODELERS

CAPABILITIES OF CLOSED LOOP PROCESSES
WITHIN A COMPLETE FINITE ELEMENT SYSTEM

ELEMENT GENERATION

PERFORMED ON AN OCTANT BY OCTANT BASIS

- EACH OCTANT REPRESENTS ONE OR MORE
DISCRETE REGIONS OF THE MODEL, EACH
DISCRETE REGION BOUNDED BY DISCRETE
FACES

. TOPOLOGICALLY CORRECT, BUT
GEOMETRICALLY INCOMPLETE

- GEOMETRIC COMMUNICATION OPERATORS
ARE STILL NECESSARY

THE ELEMENTS ARE CREATED BY BREAKING THE
DISCRETE REGION INTO A COLLECTION OF SIMPLEX
ELEMENTS (TETRAHEDRONS)

CREATING THE ELEMENTS REQUIRES BOTH THE
TRIANGULATION OF THE DISCRETE FACES AS WELL
AS THE TETRAHEDRONIZATION OF THE DISCRETE
REGIONS

ELEMENT GENERATION

FACE TRIANGULATION

SINGLE LOOP OF CONNECTED POINTS IN 3-
SPACE IS BROKEN INTO A SET OF SIMPLEX
ENTITIES (TRIANGLES)

CRITERIA FOR TRIANGULATION BASED ON
VALIDITY AND QUALITY

NEITHER OF THESE CRITERIA CAN BE
RESOLVED BASED ON THE TOPOLOGY OF
THE LOOP, THE GEOMETRY OF THE MODEL
MUST BE QUERIED

REGION TETRAHEDRONIZATION

BASED ON THE WORDENBER VOLUME
TRIANGULATION TECHNIQUE

OPERATIONS ARE EDGE REMOVAL AND
VERTEX REMOVAL

EACH REMOVAL MAY CREATE ADDITIONAL
ENTITIES THAT MAY INTERFERE WITH THE
GEOMETRIC MODEL, CAUSING INVALID
ELEMENTS

IN SHORT, THE TOPOLOGY SUPPLIED BY THE
DISCRETE REPRESENTATION, IS SIMPLY NOT
SUFFICIENT FOR TETRAHEDRONIZATION,
GEOMETRIC QUERIES ASSURE A CORRECT AND
APPROPRIATE MESH

N88-19122 |~w/-c/
5 7

/'mi?

L

DESIGN MODELING FOR SHAPE OPTIMIZATION

M.E. Botkin
Engineering Mechanics Department
General Motors Research Laboratories
Warren, MI 48090-9057

ABSTRACT

Some important aspects of design modeling for shape optimization
will be discussed for both stamped sheet metal components and cast
solid components. For stamped components the basis for the model-
ing approach is a boundary design function. Design parameters
control the shape of two-dimensional regions. For more complex,
folded plate components, the two-dimensional regions can be
assembled using translation and rotation operations. The analysis
model is automatically created using a mesh generation procedure
requiring only boundary data. For less complex solid components,
it was found that this approach is not suitable. For these struc-
tures, the finite element models are typically created using very
sophisticated graphical modeling systems. A new approach which
overlays a parameterized surface design model on an existing
analysis model is described. To summarize, the future needs for
solid shape design will be described in terms of an extension of
the previously described two-dimensional capability.

5757

Design Modeling for Large-Scale Three-Dimensional
Shape Optimization Problems

R. J. Yang and M. J. Fiedler
Engineering Mechanics Department
General Motors Research Laboratories

ABSTRACT

Modeling three-dimensional automotive components for
shape optimization is described. Shape optimization differs
from sizing optimization in the type of structure, type of de-
sign variable, and sensitivity analysis employed. The key el-
ement of the shape optimization design model is the parame-
terization of the geometry by which the optimizer controls the
structure dimensions. Efficient generation of the design model
is very critical in the design process. A quick generation of a
good optimization model combined with an efficient optimiza-
tion system will result in a drastic design time saving. In this
paper, three approaches to generating the design model are
discussed. Emphasis will be placed upon a special modeling
technique which overlays the design model onto an already ex-
isting finite element model. This technique is incorporated in
a modular three-dimensional shape optimization system which
uses NASTRAN for analysis. A realistic automotive steering
control arm is used as an example to demonstrate the use of
the technique.

INTRODUCTION

Optimization techniques have emerged as useful design
tools in recent years. Structural optimization for sizing vari-

ables has been treated extensively in the literature. The prob- -

lem of designing the shape of a structure for minimum mass
constitutes another important class of optimization problems.
Shape optimization differs from sizing optimization in sev-
eral ways. First, sizing design variables are generally dimen-
sions which do not affect the geometric configuration of the
structure, such as cross-sectional dimensions of beam mem-
bers (thickness, width, height, moment of inertia, etc.). Shape
design variables define the geometry of two-dimensional plate
and three-dimensional solid structures. As a result, shape de-

sign sensitivity analysis is much more complicated. In shape
optimization, the boundary of the structure is variable, so pa- -
rameterization of the geometry is the most important aspect
of the shape design model. Modeling for shape optimization

is more difficult because both the analysis and design mod-

els must completely describe the structure geometry. The de-
sign and analysis models for sizing optimization are inherently
loosely coupled because there is little duplication of informa-
tion. For an existing large analysis model whose surface is not
parametrized, generating the design model is not trivial.

In the past, most effort has been put on shape design sen-
sitivity analysis and most problems solved are limited to two-
dimensional problems [1-4]. The importance of automatic cre-
ation of the design model was seldom found in the literature.
Botkin et. al. [5] used computer graphics to generate shape
design models for two and three-dimensional stamped struc-
tures. Only a limited amount of work has been accomplished
in three-dimensional shape optimization using solid finite ele-
ment analysis [5-7]. Refs. 6 and 7 generated design models
manually and as a result, only simple geometries (cantilever
beam, engine bearing cap, etc.) were optimized. Ref. 5 used
an automatic mesh generator to create the design model and a
more complicated engine connecting rod was optimized. How-
ever, connecting design variables to the geometry was still done
manually. In the real world, three-dimensional problems are of-
ten complex and require large finite element analysis models.
To be most effective in impacting the design process, the de-
sign model must be efficiently generated through an interface
to a CAD system.

Many graphics oriented finite element preprocessors are

-available which can generate very complex finite element mod-

els. Unfortunately, these models cannot be used directly for
optimization, since they offer no means of parameterizing the
shape of the structure. Ideally, for shape optimization, the de-
sign and analysis models should be generated simultaneously
using a CAD system. An alternative to this approach is an

‘optimization system which generates the analysis model auto-

matically from the the design model description of the struc-
ture. The major disadvantage to both approaches is that the
present state-of-the-art in mesh generation is not of a level

‘where they would be robust enough to function in a real world
‘design environment. However, finite element analysis is an

n::_:gpte_d_a.nd established part of the design process. For im-

mediate impact, a shape optimization system should be able
to take advantage of this fact. Hence, the third approach to
design modeling which is presented in this paper is one which
tilizes an already existing finite element model as the basis
r the geometry description. A parameterization of key di-
mensions, edges, and surfaces is then overlayed on the finite
element mesh.

In this paper, different design modeling approaches are first
discussed. A new approach which can handle large-scale prob-
lems initially generated as analysis problems only is presented.
A steering control arm is used as an example to demonstrate
the use of the design modeling approach.

DESIGN MODELING APPROACHES

When evaluating any modeling approach, the robustness
of the technique and the difficulty of integrating the system
into the design process are the two major criteria. A robust
design model will be general enough to include every possible
shape which will satisfy the design constraints. At the same
time, the constraints must be flexible enough to eliminate the
consideration of any impractical designs from a manufacturing
standpoint. It is also important that the coupling between the
design and analysis models be of & nature that maintains the
integrity of the finite element analysis through the iterations
of the optimization process.

Two design modeling approaches were found in the litera-
ture: a boundary design element concept, and a design element
approach or a generic model approach. The present approach

h generation while our approach uses mesh manipulation.

. differs from both of these in that they both use some form of

The boundary design element concept was first proposed
by Bennett and Botkin [8] for two-dimensional plates and
by Botkin and Bennett (9] for three-dimensional folded plate
structures. The basic idea of this approach is to parameterize
a boundary segment with several design variables, assemble all
segments to form the whole part, and generate a finite element
mesh within this boundary. The key to the success of this ap-
proach is the availability of a two-dimensional fully automatic
mesh generator [10]. With this capability, a more advanced
step which considers the accuracy of finite element analysis
with mesh refinement was made possible [8]. This approach is
probably the most robust and attractive as the creation of the
finite element mesh is transparent to the designer. However,
the boundary description format cannot be extended to three-
dimensional solids because a fully automatic mesh generation
(11] which relies on surface data is not developed to the point
where it can be routinely used in an automated fashion.

The design element approach for two-dimensional elastic-
ity problems was first used by Botkin) [13] and also used
by Braibant and Fleury (18], who employed Bezier and B-
spline functions for boundary geometry. The design element
or generic modeling scheme for three-dimensional shape opti-
mization was used in Refs. 5-7. This approach can be thought
of as a volume design element concept. In this approach, the
geometry is described by design elements whose key dimensions
are associated with the geometric design variables. The finite
element mesh for analysis is then generated within each design
element by an isoparametric mapping technique. The advan-
tages of this approach are that no discontinuity exists at the

—

- /

element interface, relatively few design variables are needed,
and interior points are automatically adjusted when a bound-
ary moves. The main disadvantage of this method is the rel-
atively inflexible mesh generation scheme. Mesh gradation is
completely controlled by the number of generic elements and
the mapping technique used. Since the generation technique
creates a very uniform mesh, refinement in a local region can
only be accomplished by adding more design elements. For
complex geometries which cannot be modeled with a coarse
mesh, the density of the generic model quickly approaches that
of the analysis model. In effect, the designer has to generate
a full-scale finite element model anyway. With increased com-
plexity of the mesh, the number of necessary design variables
also increases. Although the finite element mesh generation is
largely transparent in this approach, the quality of the mesh
may not satisfy the designer who is used to generating finite
element models with a graphics preprocessor. One other draw-
back to this method is that the designer will be restricted to
using the finite element types permitted by the mesh generator.

PRESENT APPROACH

In the present approach, the original finite element model
is employed as the basis for the design model. There is a one-
to-one correspondence between the finite element analysis and
design model geometry descriptions. That is, the node num-
bers and locations for both models are identical. The design
model attaches design variables to the node locations stored in
the analysis model. As the optimizer changes the design, the
analysis model is updated to reflect the change in node coor-
dinates, and the design model is updated to reflect the change
in the design variables.

All the additional data needed to describe the shape opti-
mization model is stored in a single DESIGN flle. The present
model contains two key elements. The first is a list of design
variables with upper and lower limits. When the optimiza-
tion is performed, the design variable vector moves toward the
optimal design. The second key element of this model is the
type of geometric operators which give these numbers physical
significance by relating them to actual part dimensions. This
is done by manipulating the coordinates of the nodes which
describe the finite element mesh. Three types of operators are
included in the design model. LINK functions form the most
direct relationship between the design variables and the part
geometry. Each LINK function references a design variable
or a linear combination of any number of the design variables
as specified by the user. This dimension is then used to po-
sition a list of dependent nodes relative to some independent
reference. The type of reference depends on the type of LINK
function specified. For example, if a cylinder function is used,
all the dependent nodes are positioned relative to an axis. Un-
like LINK functions, POLY and GRID functions do not ex-
plicitly reference design variables. Therefore, they allow the
designer to minimize the number of design variables necessary
to completely describe a problem. Like LINK functions, both
of these functions position nodes in a specified list relative to
some independent nodes. POLY functions do this by putting a
polynomial curve through the independent nodes and interpo-
lating the dependent nodes onto it. GRID functions set chosen
coordinates of the dependent nodes to a value determined by

a linear combination of the independent node coordinates.

ORIGINAL PAGE IS
OF POOR QUALITY

The most time-consuming and tedious part of this ap-
proach is locating and identifying the independent and depen-
dent nodes used in the geometric functions. To expedite this
process, an interface with a CAD system should be developed.
With such a graphical system, the business of determining and
attaching the node labels to the geometric functions would be
transparent to the user. The designer would have to select the
nodes graphically off the screen, while the computer internally
stores the appropriate numbers and builds the DESIGN file. A
key feature of the shape design modeler, which will be imple-
mented in the future, is the ability to animate the geometric
functions. This will allow the designer to instantly see the
effect changing an individual design variable has on the part
geometry.

The main advantage of this method is that it is applicable
at any point in the design process. The designer does not have
to sacrifice the time already invested in building the analysis
model if he decides to run an optimization. Also, this method
has been shown to work on real problems with technology that
is currently available.

MODULAR SYSTEM FOR SHAPE OPTIMIZATION

The design modeling technique described in the previous
section is incorporated with a three-dimensional modular shape
optimization system which uses MSC/NASTRAN for finite ele-
ment analysis [5,14]. The system flow chart is shown in Figure
1. Each step is an independently executable module. CONMIN
[15] is called as a subroutine from SENSTY. A fifth module
(not shown) forms the link between STEP 4 and STEP 1. Ter-
mination is controlled by an iteration counter and can occur
after STEP 2 or after STEP 4, as specified by the user. Steps
2 and 4 can be run independently to test the design model
without running an analysis. In STEP i, a NASTRAN static
analysis is run using superelement formulation. The nodal co-
ordinates, internal/external node label list, and displacements
are written to an output file for use in the next steps. In STEP
2 (ADJLOD), stress and displacement constraints are evalu-
ated. For those constraints which are active, adjoint loads are
calculated. In STEP 3, each adjoint load is submitted as a
separate load case in a restart on the analysis performed in
the first step. Displacements from this analysis are written to
an output file and used in the next step to calculate sensitivi-
ties. In STEP 4 (SENSTY), the gradients of the cost function
and active constraints with respect to the design variables are
evaluated. This information is fed to CONMIN, which forms
Taylor series approximations of these functions and performs
an optimization to arrive at the next design iteration. The
grid coordinates are updated to reflect the new design vari-
ables. Then a Laplacian smoothing operation is carried out

on all interior corner grids to minimize element distortion. Fi-
nally, the midside grids are linearly interpolated between their -
respective corner grids, except those on the boundary surfaces -

. The new coordinates and design variables are written to the
NASTRAN and DESIGN flles, respectively.

STEERING CONTROL ARM

The forged steel steering control arm shown in Figure 2

was optimized. The arm is subjected to a single 9000 N steer- .

ing load applied through a ball stud as shown. Constraints are
applied around the strut tube on the upper and lower surfaces

of the arm to simulate the welds. The NASTRAN model con- .

../

STEP 1: NASTRAN
(actual loads)

NASTRAN
DATA BASE

STEP 2. ADJLOD
(cost, constraints,
and adjoint loads)

9
STEP 3: NASTRAN RESTART
(adjoint loads)

v
STEP 4: SENSTY
(design sensitivity analysis
and CONMIN optimization)

Figure 1. System flow chart

sists of 190 HEXA elements, 8 PENTA elements, and 30 BAR
elements (used to model the ball stud). There are 1497 grids
in the model which corresponds to roughly 4300 DOF. Young’s
modulus, Poisson’s ratio, and the allowable octahedral shearing
stress are 2.07x10°M Pa, 0.3, and 250M Pa, respectively. The
optimization model shown in Figure 3 uses 12 design variables,
31 link functions, 15 polynomial interpolating functions, and 21
grid link functions. The numbered arrows represent the design
variables. The lettered points are key node locations and the
dashed lines are movable boundaries. The design variables are
described in Table 1. Design variable 5 is actually fixed, but is
needed to locate point F. Quadratic interpolation functions are
used to generate curves KLM, BCD, and FGH. Cubic Hermite
curves AB and DE form smooth transitions between BCD and
the outside radii at the ball atud and the strut tube. Only half
the model is shown in the XY-plane because it is symmetric
about the X-axis. Figure 4 is a partial listing of the DESIGN
file for this model. Three geometric constraints have been in-
cluded to prohibit the inside wall boundary from crossing the
outside wall boundary. The initial design is infeasible as the

Table 1. Design Variables Description

Design Variable Description

Floor thickness

Strut tube (MN) thickness

Midsection (L) thickness

Width of inside wall at ball stud (F)
Radius of inside wall of ball stud (fixed)
Width of inside wall at midsection (G)
Radius of inside wall of strut tube
Radius of fillet (HJ)

Position of fillet radius center

Width of outside wall at ball stud (B)
Width of outside wall at midsection (C)
Width of outside wall at strut tube (D)

el ol
NHOO@‘IGU““NH

part had a high stress value near the inside fillet radius at the £
strut tube (Figure 2). The peak stress in the part violates the
stress constraint by 87.5%. The initial mass is 615.4 g. After
‘1 design iterations, the stress constraints were met and an 8%

eight savings was achieved (final mass of 566.5 g). Table 2
lists the initial and final values of the design variables as well
as the limits placed on them. A comparison of the initial and Y
final geometries is given in Figure 5. The design histories of
the mass and maximum stress constraint are shown in Figure X
6.

_______ - m e
STEERING LOAD 3 2
WELDED TO STRUT TUBE i!

constrained around X

top and bottom S— Figure 3. Design model for steering arm
TIRE ROTATION

s
PARAMETERS ITER,NCOND / ICHECK.ISTOP IDEBUG. ISMUTH . NSTR
1

1 1 0 1 k4

$
OPTIMIZATION PARAM NACM. IFLERY ILINC. EPS, PER. BMINLK THETA
-1 -1 -1 0.10 0.0 0% -1 0

1

PROPERTY
2 .0684€0% 0.3
230

s

GEOMETRIC CONSTRAINTS
2 LB

-1 10 104

s
GEOMETRIC CONSTRAINTS
2 4.
-t 1t 106
Stress ares s

initially Infeasible SIOMTRLL CONSTRAINTS

=1, 12 109

s
STRESS CONSTRAINT REMOVAL
70

. 73 74 76 66 63 64 €S 67 :: :3 Zo z; ;; z:
80 77 86 51 46 45 a7 82 1
Analysis Model 43 42 39 20 18 17 19 31 22 23 24 44 41 40
207 202 201 206 204 219 22% 226 221 212 211 210 209 200
164 165 182 184 208 215 217 216 218 214 199 198 172 168
s
9000 N OESIGN VARTABLES B4e6. 86210, 89«10
12
1 2.%00 4.200 4 200 10 000
2 20 000 20 000 20 000 40 000
3 11 000 20 000 20.000 40 000
H - 4 2.200 9 a 968)
Figure 2. Steering control arm s 20.7%0 20 730 20 730 20 7%
. 2 200 15 8s8 15 858 26 000
7 30 400 34 300 34 200 40 000
Table 2. Design Variables for Steering Control Arm S 1300 13383 1328 a0
. on 9 2 200 15.289% 15 288 18 000
able esign Variables lor 10 4 200 10 610 18 610 19 000
" 4 200 21 97¢ 21 976 30 600
12 4 200 26 214 26 214 29 000
s
No. initial final lower bound upper bound LN va v oo | OOR THicKNESS
1.0 ¢t
1 4.20 2.50 2.50 10.00 gé ot
X 62 49 124 182 269 369 379 378 346 339 218 185 95 6t
2 20.00 20.00 20.00 40.00 €3 SO 12% 183 270 297 316 318 29C 234 218 186 96 <
3 20.00 22.12 11.00 40.00 440 515 S0 675 779 903 936 947 1102
453 520 603 692 792 916 1034 106C 1100
4 8.97 8.64 2.20 17.00 458 533 608 697 797 921 1042
448 523 598 687 787 911 1037
5 20.75 20.75 20.75 20.75 427 502 S77 666 766 897 978
411 486 6! GO 737 9839 970 986 1008
(] 15.86 17.95 2.20 26.00 : 405 380 €85 643 728 833 853 865 1010 o1 vieo ve
1223 1300 1391 1429 14495 1434 1436 1310 1332 1267 1t 1140 1074 206
7 34.30 30.46 30.40 40.00 | 1220 1298 1392 1430 1446 1447 1437 1414 1333 1265 1184 1132 1076 1208
s
8 4.00 5.72 1.00 10.00 ™ STRUT TUBE THMICKNESS
3 28 1 00
9 15.29 11.30 2.20 18.00 102
. Q Q 1
10 18.61 19.00 4.20 19.00 76
1232 1309 140 13462 1393 1492 1473 1324 1342 1276 1166 1151 1084 217
11 21-98 22.26 4.20 30.00 1228 1306 1402 1463 1394 139% 137% 1329 1343 1273 t162 118C 1085 I8
12 2621 2546 4.20 29.00 :

‘ unit: mm

Figure 4. DESIGN file for steering arm optimization

——

Initial dimensions shown as dashed lines

Figure 5. Initial and final designs of steering arm

SUMMARY

Efficient creation of the the design model is crucial in three-
dimensional shape optimization. In the ideal scheme, creation
of the analysis model is completely integrated into the design
model building process, thus eliminating any duplication of
effort. At the same time, no cornpromise should be made with
respect to mesh quality. For realistic three-dimensional parts,
this technology is not available yet. In this paper, a design
modeling approach was presented which takes advantage of the
fully developed state of finite element analysis model building.
In this method, the analysis model is the basis of the geometric
description. Building the design model consists of overlaying a
parameterization of the geometry onto the finite element mesh.
This method is applicable with present technology. It has been
used in a number of automotive component applications with
success, one of which was presented here.

REFERENCES

1. Ramakrishnan, C. V. and Francavilla, A., *Structural
Shape Optimization Using Penalty Functions,” Journal
of Structural Mechanics, 3(4), 1974-1975, pp. 403-422.

2. Haug, E. J., Choi, K. K., Hou, J. W, and Yoo, Y. M, "A

Variational Method for Shape Optmnl Design of Elutxc
Structures,” ti t

Ed. E. Atrek et al., Wiley, New York, 1984.
3. Haug, E.], Choi, K. K., and Komkov, V., Design

Sensitivity Apalysis of Structural Systems, Academic Press,
1986.

4. Yang, R. J., and Botkin, M. E., "Comparison Between
the Variational and Implicit Differentiation Approaches to
Shape Design Sensitivities,” AIAA, Vol. 24, No. 6, 1986,
pp. 1027-1032.

650

MASS (G)
6(?0

o
3 T ‘
0 5 10 15
ITERATION NUMBER
) — 1
DZ
<o
=0
9
=0° ~
sO |
0
o T T
0 S 10 15

ITERATION NUMBER

Figure 6. Design history of steering arm optimization

5. Botkin, M. E., Yang, R. J., and Bennett, J. A., "Shape Op-
timization of Three-Dimensional Stamped and Solid Auto-
motive Components,” The Optimum Shape: Automated
Structural Design, Ed. J.A. Bennett and M.E. Botkin,
1986.

6. Imam, M. H., ® Three-Dimensional Shape Optimization,”
. . ¢ . .,

Vol. 18, 1982, pp. 661-673.

7. Imam M. H., "Minimum Weight Design of 3-D Solid Com-

'

10. Cavendish, J C.,

ponents”, Ammmﬂmmm Vol. 3, 1982.

8. Bennett, J. A. and Botkin, M. E., "Structural Shape Opti-
mization with Geometric Problem Description and Adap-
tive Mesh Refinement,” AIAA, Vol. 23, No. 3, 1985, pp.
458-464.

9. Botkin, M. E. and Bennett, J. A., "Shape Optimization of
Three-Dimensional Folded Plate Structures,” AIAA, Vol.
23, No. 11, 1985, pp. 1804-1810.

” Automatic Triangulation of Arbitrary

Planar Domains for the Finite Element Method,”

ternati Journal fo Methods in Engineerin
Vol. 8, No. 4, 1984, pp. 679-696.

11.

13.

14.

15.

Shephard, M. S. and Yerry, M. A., " Automatic Finite Ele-
ment Modeling for Ule with Three-dxmenmona.l Shape Op-

timization,”
Design, Ed. J.A. Bennett and M. E. Botkin, 1986.

. Botkin, M. E., "Shape Optimization of Plate and Shell

Structures,” AIAA, Vol. 20, No. 2, 1982, pp. 268-273.

Braibant, V. and Fleury, C., "Shape Optimal Design, A

Performing C.A.D. Oriented Formulation,” Proceedings of
AIAA/ASME/ASCE/AHS SDM Conference, CP No. 84-

0857, Palm Springs, CA, May 14-16, 1984.

Yang, R. J. and Botkin, M. E., A Modular Approach
for Three-Dimensional Shape Optimization of Structures,”
AIAA, Vol. 25, No. 3, 1987, pp. 492-497.

Vanderplaats, G., "CONMIN - A Fortran Program for
Constrained Function Minimization User’s Manual,”
NASA, TM X 62,282, 1973.

General Motors

Research Laboratories
Warren, Michigan 48090

. ORIGINAL 7AGE 18 ,‘ o

.

s N
\Vitttqut Permission

Zz-¢/

N88'19123 3 GMR-5168
05778

sa¥

SHAPE OPTIMIZATION OF THREE-DIMENSIONAL
STAMPED AND SOLID AUTOMOTIVE COMPONENTS

M. E. Botkin, R.~J. Yang and J. A. Bennett
Engineering Mechanics Department
General Motors Research Laboratories
Warren, MI 48090-9057

Presented at the
1985 GMR Symposium

and

to be published in
Symposium Proceedings

Shape Optimization of Three-Dimensional
Stamped And Solid Automotive Components

M.E.Botkin, R.J.Yang And J.A.Bennett
Engineering Mechanics Department
General Motors Research Laboratories
Warren, MI 48090-8055

ABSTRACT

The shape optimization of realistic, three-dimensional
automotive components is discussed in this paper. The
integration of the major parts of the total process:
modeling, mesh generation, finite element and sensitivity
analysis, and optimization is stressed. The paper will
treat stamped components and solid components separately.
For stamped parts a highly automated capability has been
developed. The problem description is based upon a
parameterized boundary design element concept for the
definition of the geometry. Automatic triangulation and
adaptive mesh refinement are used to provide an automated
analysis capability which requires only boundary data and
takes into account sensitivity of the solution accuracy to
boundary shape. For solid components a general extension of
the two-dimensional boundary design element concept has not
been achieved. In this case the parameterized surface shape
is provided using a generic modeling concept based upon iso-
parametric mapping patches which also serves as the mesh
generator. Emphasis is placed upon the coupling of
optimization with a commercially available finite element
program. To do this it is necessary to modularize the
program architecture and obtain shape design sensitivities
using the material derivative approach so that only boundary
solution data is needed. Several realistic component
designs will be shown to demonstrate the effectiveness of
both capabilities.

INTRODUCTION

Although structural optimization for sizing varables bhas
been treated extensively in the literature for many
1

years[1,2] the problem of designing the shape of a structure
for minimum mass is a comparatively new research
topic[3,4,5]. Although earlier work[6,7,8)] stressed the need
for automatically modifying the mesh as the structural shape
changes, limitations in the boundary representation and mesh
generation aspects kept the capability from being truly
automatic. Ultimately, one would like to merely describe the
function of the structure to the computer in some convenient
manner and then allow the program to automatically produce
the optimum design[8]. The basic requirements necessary to
do this are as follows: 1) the design model--this describes
the shape of the structure, loads and constraints, and the
design requirements; 2) the analysis model--the finite
element mesh created using fully automatic mesh generation
and improved using adaptive mesh refinement; and 3) the
design modification--a numerical optimization process which
iteratively improves the design until convergence to the
optimum is obtained. Each of these topics and their
implementation into the design program will be discussed.

Previous authors have not addressed the problem of
handling the more general case of designing parts which are
non-planar. Here the major difficulty is in modeling, in a
parametric sense, all of the three-dimensional geometry. To
do this it was necessary to extend the existing capability
for flat parts using an assembly process of the two-
dimensional segments. Furthermore, the ability to add
curvature to planar segments was provided through the
superposition of surface interpolation and transformation
capabilities. -

For solid components, very little research has been
reported[7,8]. In this paper emphasis will be placed upon
two major aspects which have not been previously treated.
The first of these is the efficient calculation of the
sensitivities of the displacement and stresses. Secondly,
the idea of using one of the many commercially available
finite element codes is attractive in order to alleviate the
burden of software support of an analysis program
sophisticated enough to handle solid models. Both of these
issues have been addressed and will be discussed.

The integrated design processes described in this paper
will stress the necessity for treating realistic, three-
dimensional design problems typical of those found in
automotive design. For this reason, the shape design element
~ descriptions would be most suited for interfacing with the
computer-aided drafting systems on which the geometry is
initially created. Additionally, it is absoclutely necessary

CRIGINAL PAGE 19
OF POOR QUALITY

to have a capability which is as automatic as possible to
free the engineer from the burden of finite element creation
and modification and from the equally as great a burden of
design modification.

SHAPE OPTIMIZATION OF SHEET METAL PARTS

Design Model Description

There are a significant number of structural components,
such as the typical part shown in Fig. 1, that are produced
from a single sheet of uniform thickness material. Using
conventional optimization techniques in which element
thicknesses are the design variables, little mass reduction
can be achieved. To further reduce the mass, the shape of
the part and the location of the cutouts must be represented
by design variables. The resulting design model must provide
the description of the boundary geometry as a function of
the design variables and also the finite element structural
model. To be most effective in impacting the design process,
this information must be efficiently generated from
conceptual sketches of the part or obtained through an
interface to a computer-aided drafting(CAD) system. For that
reason, the approach represented in Figs. 2 and 3 has been
chosen. The part shown in Fig. 1 has been modeled in Fig. 2,
using what will be referred to as boundary design elements.
As well as associating the boundary with design variables,
the boundary design elements are also used to define the
stress constraints. Each boundary design element will be
associated with at least one stress constraint which will be
computed from the maximum stress of all the finite elements
touching that boundary design element. The loads and
structural boundary conditions are related to a set of
reference nodes which are shown in Fig. 3 as key nodes. This
information is in turn automatically transferred to the
finite element model once it has been generated.

Mesh Generation

Other work([6,10] has stressed the need for automatically
modifying the mesh as the structure changes shape, but it
was observed that the commonly used mesh generation
techniques based upon coarse isoparametric or transformal
mapping patches imposed limitations on the ability to treat
large variations in shape. While these techniques do
redistribute interior nodes as boundaries move, aspect
ratios tend to get objectionably large as the shape becomes
significantly different than the initial shape. Mesh grading
and solution accuracy are difficult to control as well.

3

As an alternative to more traditional mesh generation
methods, the use of fully automatic mesh generation based
only upon boundary points coupled with adaptive refinement
has been proposed[11]. This technique is capable of
generating a nearly uniform initial mesh of triangular
elements given a set of uniformly spaced boundary points.
Thus, as the design changes, uniform triangular meshes can
be recreated at any time.

After the design model has been created, the boundaries
are automatically discretized into uniform segments called
the characteristic length (CL) which is an input value.
Automatic triangulation[12,13] is used to create a nearly
uniform mesh from the set of boundary points and a set of
points placed uniformly throughout the region’s interior of
approximately the same density as the boundary points. This
process of creating the uniform mesh is repeated at each
step in the design for which a new boundary description has
been generated.

Adaptive Mesh Refinement

Unlike the design of fixed configuration structures, it
is not possible to assure the accuracy of the mesh as the
shape changes, since the accuracy of various portions of the
mesh will change. The ideas of adaptive mesh refinement can
be incorporated to help resolve this difficulty[11].

The mesh refinement process is based upon the variation
in strain energy density(SED) as a measure of the error in
an element. Once SED variations have been determined for all
elements, those elements which have undesirably high values
must be selected for subdivision. Elements so selected
define refinement regions which can be easily identified by
graphical contouring. Since it is not practical from a
computational standpoint to consider more than a two-step
refinement process during the optimization(one initial and
one refined analysis), a concept of multiple refinement
regions has been implemented in an attempt to enhance
convergence. As an example of the process Fig. 4(a)
represents a uniform finite element mesh created using the
triangulation technique described previously. Several
refinement regions can be specified, as shown in Fig. 4(b),
so that the resulting mesh, Fig. 4(c¢), will be more
uniformty graded from coarse to fine. The elements in the
region of highest SED variation, represented by the smallest
dots in Fig. 4(b), are approximately one-fourth of the size
of the initial grid. The region represented by the larger
dots contains elements of approximately one-half of the

4

jnitial grid size. As many as six regions can be specified,
uniformly graded down to one-eighth of the original grid
size. The size of the regiomns can be varied depending upon
the selection of an input parameter.

Obviously, the accuracy due to any refinement is unknown
in advance. Although numerous papers have been written
[14,15] on error estimates of total strain energy, this work
has not been extended to stresses and displacements. It is
desired, for the case of the ijterative design process
described in this paper, to have a conservative estimate of
the converged finite element solution. This information may
be obtained in an approximate manner using linear
extrapolation, graphically represented in Fig. 5. This is a
typical relationship, in the absence of a singularity,
between a soluton quantity and mesh size. Several steps of
refinement are shown, with each step having reduced the
element size in half. The solution will eventually converge
to Se and the slope of the curve reflects the rate of
convergence. A conservative estimate of the converged
solution, represented by points Si and So, may be obtained
by extrapolating data points produced by one unrefined
analysis and one refined analysis. The extrapolated values
will be used as stress constraints.

In order that more realistic three-dimensional plate
structures can be analyzed, accurate refinements are
necessary for finite elements with bending deformation. In
general, refinement works best for conforming elements such
as for the constant strain triangle already described.
Meshes composed of these elements are always too stiff and
solution convergence is predictable as shown in Fig. 5. On
the other hand, meshes composed of nonconforming elements
may switch from too stiff to too flexible as the refinement
progresses. However, the triangular bending element used in
this study[16] has been formulated in such a way as to
reduce the degree of nonconformity, and convergence studies
show that for uniformly refined meshes the element is always
too stiff. Several examples have been presented in Ref. 11
which indicate that although the results are not as
predictable as for the constant strain triangle, they are
quite satisfactory.

Extension To Nonplanar Parts

The design process which has been described has been
extended in order to handle more realistic stamped sheet
metal parts[17]. This was accomplished by treating the part
as an assembly of the two-dimensional segments described

S

above. Each segment has one completely closed exterior
boundary which may contain one or more interior cutouts.
Segments may be joined along straight sides to form more
complex assemblies. Furthermore, segments may be rotated
along the joined edges to form three-dimensional geometry,
as shown in Fig 6(a). Because each segment is represented by
two-dimensional boundary information only, the addition of
surface curvature to a planar segment for added stifiness
must be addressed separately. Large curvature, such as a
cylinder in Fig. 6(b), is accomplished through the
definition of a cylindrical coordinate system for that
segment alone. All nodes in that segment are transformed to
the new surface. Small curvatures are treated by direct
projection as shown in Fig. 6(c). The final assembly process
can be seen in Fig. 7 in which all the three-dimensional
geometry has been expressed in terms of a small number of
parameters which can be treated as design variables.

Interactive Graphics Geometrical Modeling

The need to model more complex geometries makes it
obvious that some form of model preparation based upon
graphics oriented preprocessing is necessary. Unfortunately,
existing finite element preprocessors cannot be used
directly, since they offer no means of paramaterizing the
shape of the model. Although some of the more recently
developed modelers do include boundary functioms, such as
splines, there are no design parameters available externally
for use with other programs. Furthermore, since the finite
element mesh must change to reflect shape changes, loads and
constraints must be associated with boundary functioms
instead of being directly applied to the finite element
mesh, as in the typical modeling system. As a result, a
special graphics preprocessor for shape optimization was
developed[18], which allows a user to create a paramaterized
finite element model. A part is modeled as a collection of
planar part segments, which are assembled to form a three-
dimensional plate structure. Design variables define the
shape of each part segment. Loads and constraints are
applied to finite element nodes through boundary functionms,
instead of being applied directly to the nodes.

To begin model preparation, the user first selects the x
and y dimensions of the part. Next, commands and cross-hairs
are used to create the key nodes and boundary design
elements that define the geometry of the part to be
optimized. Figure 8(a) shows the six key nodes needed to
define the boundary of a planar triangular bracket. Three

exterior key nodes locate the perimeter of the part, while
6

three interior key nodes locate an interior cutout boundary .
Associated with each key node is a radius, represented as a
circle in Fig 8(a). The radius, as well as the x and ¥y
coordinates, are automatically designated as design
variables. '

Once the necessary key nodes have been created, the
cross-hairs are used to connect the key nodes and create the
boundary design elements, as shown in Figure 8(b). If the
same key node is selected twice, a circular arc boundary
design element is created. A circular arc element can be
used to represent a round boundary, a fillet, or a circular
hole. If two different key nodes are selected, the user can
choose to connect the two key nodes with either a straight
boundary design element or a double cubic boundary design
element, as shown in Fig. 3. All design variables specified
for a particular element type are automatically assigned
when the element is created. Commands are available to link
design variables, as required.

Other commands are available to be used for applying
constraints or loads to a given boundary. The terminal
cross-hairs are first used to select the boundary to be
supported or loaded. The user is then prompted for a
constraint type or a load magnitude and direction. The
constrained boundaries are indicated by a letter ’'C’, while
the loaded boundaries are indicated with a letter 'L’, as
shown in Fig. 8(b). At the time when loads are applied,
optimization constraints on displacements can also be
specified.

Most real production parts, however, have more complex
geometries than these examples. For instance, a common
manufacturing operation used to add stiffness to a planar
part involves adding a lip, or flange, along the edge of the
part. Modeling such a part with a conventional finite
element preprocessor is relatively simple, but if the design
of the part is to be automated, the geometric model of the
part must fulfill the requirements already mentioned.
Commands are available to create multiple part segments as
shown in Fig. 7. An additional command can be used
specifically for creating flanges, which automates some of
the multiple-segment-creation steps.

Figure 9(a) shows six flanges added around the perimeter
of the triangular bracket. A flange is added by using the
cross-hairs to locate the portion of the boundary for which
a flange is desired. The user is then prompted to specify
the flange height at each end. The model is completed by

7

specifying the angle that each flange is rotated relative to
the base part to form a three-dimensional model. This angle

‘s normally ninety degrees. Each of the six flanges, as well
s the base triangular bracket, is a separate part segment,
on which a finite element mesh is generated. Figure 8(b)
shows the assembled finite element model of the triangular
bracket, generated from the boundary shape information
created with the preprocessor.

THREE-DIMENSIONAL SOLID COMPONENTS

Only a limited amount of work has been accomplished in
three—dimensional shape optimization using solid finite
element analysis([7,8]. Issues not treated previously will be
emphasized in this paper[19]. Because a fully automatic mesh
generation scheme which relies only on surface data[20] has
yet to be developed, the boundary description format.
described for thin parts cannot be implemented for solid
three-dimensional parts. Instead, it will be assumed that
surface representation and mesh generation will be handled
by a generic modeling scheme based upon isoparametric
mapping patches described in Ref. 8 and shown for a typical
part in Fig. 10.

The two topics which will be addressed are design
.sensitivities and program architecture. Work in both of
these areas were largely driven by the desire to use a
variety of structural analysis programs (NASTRAN, ANSYS,
ADINA, etc.) to be used with a relatively small amount of
additional program development. In this study, NASTRAN was
used for analysis.

Design Sensitivity analysis

The variational design sensitivity theory uses the
material derivative concept of continuum mechanics and an
adjoint variable method to obtain computable expressions for
the effect of shape variation on the functionals arising in
the shape design problem. The resulting expressions provide
analytical sensitivities of structural response.

The variation of displacement functional ¢ with respect
to shape” change is derived by differentiating the

variational equilibrium equation and employing the adjoint
variable method, to obtain [21-23]

8y /8b = - fraij(z)eij(k)nTar/ab dr (1)
8

This equation is an integral along the perturbed boundary in
which the required data for evaluation are the stresses from

the actual loa.d,a1J , the strains from the adjoint load,elj,

the position vector,r , and the design variable vector,b. It
should be pointed out that in Eq. 1 assumptions have been
made in the derivation so that the kinematically constrained
boundary and loaded boundary are assumed to be fixed, and
the variation of the displacement functional is only
affected by the normal movement of the boundary of the
physical domain. Physically, the adjoint solution required
in Eq. 1 is interpreted by applying a unit load at the point
where the displacement is of interest.

To see the advantage of Eq.l, a comparison should be
made [24] with the well known expression for design
sensitivities resulting from the implicit differentiation of
the finite element equations

3z/8b = -K 18K/3b 2 (2)

This equation evaluates the displacement derivative by
computing derivatives of the terms of the stiffness matrix.
There are two shortcomings to this approach. First,
obtaining analytical expressions for the stiffness matrix
derivatives is very difficult for boundary movements. These
expressions are, in general, different for each element
type, thereby requiring special computer code for each
different element type. For this reason, a finite difference
method is generally used to obtain stiffness derivatives.
This usually requires a judicious choice of the step size to
maintain accuracy. Finally, if it is desired to use a

- commercial finite program for analysis--for which the source

code is not available--it is very difficult to manipulate
the stiffness matrices to compute the needed derivatives.
For these reasons, Eq. 1 is a more desirable expression for
computing displacement sensitivities. The needed stresses
and strains can be stored by most programs on files to be
used by a post-processing routine to obtain the derivatives.

The stress variation also can be derived to obtain an
expression similar to Egq. 1, except that the discontinuity
of the stresses along the interelemental boundaries has to
be properly handled. A characteristic function, which
averages stress over a small region, is introduced to treat
stress constraints in Refs. 24 and 25. This approach is
similar to using the finite element center as the stress
constraint point if the element is chosen as the small

region and may lead to a misleading comstraint value and may
o) .

result in an undesireable or inaccurate optimum shape if the
finite element model is inadequate[25].

An alternative that avoids this problem is to obtain the
stress sensitivity at a point, using the definition of
stress computation in finite element analysis. The elemental
stresses are computed by using the following equation

¢ =DB 2z€ : (3)

where D is the elasticity matrix, B the strain recovery
matrix, that contains the derivatives of shape functionms,

and z° an elemental displacement vector. Differentiating Eq.
3 with respect to the design variables, b, one obtains

] — e) y e
o = D(Bzi + Biz) (4)
where the subscript i with a prime superscript indicates the
derivative with respect to the ith design variable. Notice
that the first term on the right side of Eq. 4 is only a
combination of displacement gradients, and can be obtained
by applying a combined adjoint lcad to the system and using
the same formula of Eq. 1.

The primed matrix of the second term of Eq. 4 can be
evaluated from the derivative of the nodal coordinates with
respect to shape design parameters[26]. It can be computed
analytically or by using a finite difference method. For a
linear shape function element, such as constant stress
triangular element, the matrix B’ vanishes, while for a
quadratic element, the B’ matrix is constant. Therefore, the
finite difference method is sufficient to evaluate the B’
matrix, except when a higher order element is used. In this
study, analytical derivatives are used for B’ and the eight
corner points of the solid element are chosen as the stress

constraint points.

Modularized Program Architecture

It was desired to have a system which uses a commercial
finite element code as the analysis capability because of
the generally widespead acceptance by the structural
analysis community of such codes. A major drawback to
achieving this goal is that most commercial finite element
codes cannot be used as a subroutine. This problem was
addressed by building a system of independently executable
program modules in which the overall execution is controlled
by job control language.

10

The modularized system is comprised of a mesh generator,
the finite element code(NASTRAN), the adjoint load and
constraints definition program, a design sensitivity
analysis module, and an optimization module. Each of those
is an independent program and is treated as a module. The
flow chart of the system is shown in Fig 11. Initially,. one
has to generate a generic model for the structural
component, and create a NASTRAN data deck for the NASTRAN
run. The whole cycle of the system proceeds as follows: run
the NASTRAN code for the actual load; calculate the cost
function, comstraints, and the adjoint loads using the
NASTRAN output; rerun the NASTRAN code for the adjoint
loads; and perform the design semsitivity analysis and
optimization to obtain a new design. Finally, a new finite
element mesh and NASTRAN data deck for the new design are
generated. :

The MSC/NASTRAN version 63 finite element code is
employed for analysis. The new feature of the NASTRAN data
base is used to save computing time for reanalysis of the
adjoint loads. This data base, created by the first NASTRAN
run, preserves the stiffness and boundary condition
information and results in easier input data preparation and
less computing time for the reanalysis. The displacements,
stresses, and geometric information that are needed for
design sensitivity calculation are obtained by using an
ALTER feature in NASTRAN to write that information on a file
for postprocessing.

The ADJLOD module(Fig. 11) is used to define the cost
function and constraints for the design problem, and to
calculate the adjoint loads for the constraints which are
active or violated. The displacements, stresses, and
geometric information from the NASTRAN output are first read
to define the constraints for the structural component. A
NASTRAN deck containing the adjoint loads is then created
for reanalysis.

The SENSTY module(Fig. 11) performs the design
sensitivity analysis for the cost and the active
constraints, and then performs the optimization process by
calling the optimizer (CONMIN[27]) as a subroutine. Before
executing the module, the NASTRAN output files for the
actual load and the adjoint loads should be available. The
module ‘then changes the design and creates new input data
for the MESHGN module which will generate a new mesh and a
new NASTRAN data file for the next design iterationm, if
necessary.

11

DESIGN EXAMPLES

. Three-Dimensional Sheet-metal Part

Figure 12 shows the initial shape and dimensions of a
realistic design example of a sheet metal part[17]. The
model was initially created in two dimensions and then
segments 2 and 4 were transformed into the third dimension.
Structural boundary conditions were imposed around the holes
labelled C and D. Loads P1 and P2 were applied at hole A in
the y and z directions, respectively. Load P3 was applied at
hole B in the y direction. The design criteria were a stress
limit on all boundaries and a displacement limit at hole A.
CL was chosen to be 0.80 cm for the initial mesh.

The current model is similar to an earlier part[17],
except that flanges on the new model add seven flange design
variables to the problem. The locations of these design
variables are shown in Fig. 13. A total of nineteen design
variables were used to parameterize the part’s shape. Figure
14 shows the initial, unrefined finite element mesh.

This part was modeled to determine how the program would
reduce the mass and tailor the flanges, subject to a
displacement constraint. A displacement constraint was
applied to the hole A, such that the displacement of the
point was limited to 1 millimeter in the -z direction.
Figure 15 shows the initial and final part designs. The
program removed material from the interior cutouts on the
base triangular part segment and the cylindrical part
segment. A small amount of in-plane curvature was added
along the edges of the triangular part segment to which
flanges are attached. The flange heights were reduced to
less than half the initial values everywhere except along
the upper edge of the triangular part segment. The flange
heights along this edge are controlled by flange design
variables 3 and 4, as shown in Fig. 13. This edge serves as
the primary load path for the structure, since it transfers
the load from the tip of the triangular part segment to the
support points. As a result, one would expect the flange
along this edge to be the most important in maintaining the
stiffness of the part. The flange design variable values for
the initial and final designs are given in Table 1.

Figure 16 shows the design history for this part. A
design variable move limit of five percent was used for the
first ten steps, followed by a move limit of 2.5 percent for
the last fourteen steps. The characteristic length was
reduced from .8 to .6 in the last four steps to obtain more

12

accurate displacement values in the unrefined analyses. The
reduction of the characteristic length eliminated design
oscillations that emerged once the displacement constraint
became active. The initial unrefined finite element mesh
included 3000 degrees of freedom, while the initial reflned
mesh contained 4000 degrees of freedom

Finally, some comments are in order concerning the
results. First, the design history (Fig. 16) does not show
traditional convergence behavior. The optimizer was turned
off when it was felt that further mass reduction would
require an excessive amount of computer time. Second, one
might question the finite element accuracy in the flange
areas. Constant strain elements were used, and only one or
two elements were used to span the depth of each flange in
the unrefined mesh. Bending of the flanges could result in
stress variations that would not be picked up by so few
constant strain elements. For this reason, the automatic
mesh refinement technique described above was used to
minimize this error.

Table 1. Design Variables for Transmission Bracket

No initial final lower bound upperbound
1 2.12 0.91 0.5 3.0
2 1.850 0.68 0.5 3.0
3 1.50 0.89 0.5 3.0
4 1.50 0.89 0.5 3.0
5 2.12 0.96 0.5 3.0
6 1.50 0.68 0.5 3.0
7 1.50 0.67 0.5 3.0

Three-Dimensional Soli& Part

An idealized engine connecting rod, which connects the
crank shaft and piston pin of an engine and transmits an
axial compressive load during firing and a tensile load
during the intake cycle of the exhaust stroke, is employed
as the example[19]. Shape optimization of similar components
have been studied by Yoo et al. [28] and Yang et al. [29]
assuming a plane stress state. However, a fully three-
dimensional shape optimization for the connecting rod is
still not available in the literature.

Figure 17 shows the generic model for the connecting
rod. For simplicity, the right hole of ‘the connecting rod
13

which connects the piston pin is fixed to eliminate rigid
body motion; and the arbitrarily selected pressure of 3000
MPa is applied to the left hole, from O to 90 degrees, to
simulate the firing forces. The von Mises stress constraint
is imposed at each node in the finite element model of the
connecting rod. The critical yield stress used for analysis
is chosen as 3000 MPa. Young’s modulus and Poisson’s ratio
are 10.0 x 10E6 MPa and 0.3, respectively. The numerical
data were selected to demonstrate the use of the system and
are not representative of a specific production part.

Using the symmetrical conditions, only a quarter of the
structure needs to be analyzed. The design variables are
shown in Fig. 17. In this model, 8 design variables are
chosen; 5 parameters define the shape of the shank and neck
regions, 2 are the outer radii of the right and left holes,
and 1 parameter defines the height of the web. The finite
element model, as shown in Fig. 18, contains 105 so0lid (20
node) elements, 928 nodal points, and 2126 degrees-of-
freedom.

The initial values of the design variables are shown in
Table 2. Initially, the volume is 15686.7 cu mm with no
stress violation. After 20 design iteratioms, it is reduced
to 7217.8 cu mm with no stress violation. The final design
variables and the final shape are shown in Table 2 and Fig.
17, respectively. Figures 19 and 20 show the design
histories for the cost and the maximum constraint values,
respectivily, of the idealized connecting rod. In Fig. 19,
one observes that the convergence rate is reasonably good.
From design iterations 10 to 17, the optimizer tries to
force the design into the feasible region. The slow
correction for stress violation shown in Fig. 20 may result
from Taylor’s series expansion approximation for functions.

Table 2. Design Variables for Engine Connecting Rod

- - — ——————— —— —— ————————— - —————> “—— T ——— — ————— o —————— ————

No initial final lower bound upperbound
1 10.956 12.512 0.1 100.0
2 6.37 2.8478 0.1 100.0
3 3.9667 1.4220 0.1 100.0
4 3.0024 1.0964 0.1 100.0
) 3.2711 1.2733 0:1 100.0
6 6.8156 7.2219 0.1 100.0
7 31.271 26.461 24.0 100.0
8 17.553 13.300 13.3 100.0
14

SUMMARY

An integrated approach to the shape design problem has
been described for sheet-metal parts in which the problem
description is stated in a simple format, the finite element
mesh is generated automatically, and its accuracy is
improved by adaptive mesh refinement. Non-planar structures
can be treated using an assembly process of two-dimensional
segments in such a way that all three-dimensional geometry
is expressed in terms of a relatively small number of
parameters. Surface curvature variations can be added to the
planar sub-assemblies through the superposition of a variety
of surface transformation and mapping options. All of the
geometric problem description has been formulated in such a
way that it is particularly suitable for interface to modern
CAD systems.

It was found that for the design problem in which the
boundaries of the part are moving, the accuracy of the
finite element mesh must be continuously assessed and
updated. Strain energy density variations within an element
were used as a measure of error. Elements with errors
greater than a specified value in an unrefined analysis were
refined by adding nodes, and a new mesh was created using
automatic triangulation. Results of the refined analysis
were combined with the unrefined results to compute stress
intensification factors which were used to approximate a
refined solution for intermediate designs in which
refinement did not take place.

The development of a modular computer program for the
shape optimization of three-dimensional solid components is
also discussed. The program uses NASTRAN for analysis and
CONMIN for optimization. Since design sensitivities with
respect to shape variables are not available in NASTRAN, a
module had to be written to obtain these sensitivities which
is based upon the material derivative concept applied to the
variational state equation. Parameterized surface
definitions and the finite element mesh were obtained from a
module based upon generic modelling concepts. Each program
module is a separately executable program but all modules
can be executed sequentially using Job Control Language. A
realistic design example has been provided to demonstrate
the capabilities of the program.

In general, it has been shown that it is possible to
automate the structural design process for determining the
shape of quite complicated three-dimensional components

15

through the integration of a parameterized geometric
description, automatic mesh generation, finite element
analysis, design sensitivity analysis, and optimization. The
resulting capabilities eliminate the need for tedious data
transfer inherent in existing trial and error design
approaches as well as eliminating many of the repetitive
steps involved.

REFERENCES

1. Schmit,L. A.,"Structural Synthesis by Systematic
Synthesis", Proc.2nd Conf.on Electronic Computation ASCE,New
York, 105-122(1960).

2. Vanderplaats, G.N.,"Structural Optimization - Past,
Present, and Future" AIAA Journal, Vol. 20, No. 7, 992 -
1000 (1882) .

3. Zienkiewicz, 0. C., and Campbell, J. S., "Shape
Optimization and Sequential Linear Programming," Chap. 7 in
OPTIMUM STRUCTURAL DESIGN, edited by R. H. Gallagher and O.
C. Zienkiewicz, John Wiley & Sons, New York (1873) .

4. Haug, E. J., Choi, K. K., Hou, Y. M., and Yoo, Y. M. "A
Variational Method for Shape Optimal Design of Elastic
Structures," OPTIMAL STRUCTURAL DESIGN II, (Ed. R. H.
Gallagher), Wiley, New York(1983)

5. Haftka,R.T. and Gandhi,R.V.,"Structural Shape
Optimization-A Survey",The 26th AJAA SDM Conference,CP
No.85-0772,617-628(1985) . -

6. Botkin, M. E.,"Shape Optimization of Plate and Shell
Structures," ATAA Journal, Vol. 20, No. 2, 268-273(1982) .

7. Imam, M. H., "Three-Dimensional Shape Optimization,"
International Journal for Numerical Methods in Engineering,
Vol. 18, 681-673(1982).

8. Imam ,M. H., "Minimum Weight Design of 3-D Solid
Components", Proceedings of the 2nd ASME Computers in
Engineering Conference, Vol. 3, 119-126(1982) .

©. Bennett, J. A., and Botkin, M. E., "Structural Shape
Optimization with Geometric Problem Description and Adaptive
Mesh Refinement" ,ATAA Journal,Vol.23,No.3,458-464(1985) .

16

v

10. Braibant, V. and Fleury, C.,"Shape Optimal Design Using
B-Splines" ,Computer Methods in Applied Mechanics and
Engineering, Vol. 44, 247-267(1984).

11. Botkin, M. E., "An Adaptive Finite Element Technique for
Plate Structures",Technical Note, AIAA Journal, Vol.23,
No.5, 812-814(1985).

12. Cavendish, J. C., "Automatic Triangulation of Arbitrary
Planar Domains for the Finite Element Method," International
Journal for Numerical Methods in Engineering, Vol. 8, 679-
696, 1974.

13. Frey, W.H. and Cavendish, J.C.,"Fast Planar Mesh
Generation Using the Delaunay Triangulation",Presented to
the Society for Industrial and Applied Mathematics Meeting,
Seattle, WA, July 16-20(1984).

14. Babuska, I., and Rheinbolt, W. D., "Adaptive Approaches
and Reliability Estimates in Finite Element Analysis,"
Computer Methods in Applied Mechanics and Engineering, No.
17/18, 519-540(1879) .

15. Shephard, M. S., "Finite Element Grid Optimization with
interactive Computer Graphics," Ph.D Thesis, Department of
Structural Engineering, Cornell University(1979).

16.Conner, J. J. and Will, G., "A Triangular Flat Plate
Bending Element," M.I.T., Department of Civil Engineering,
Report TR-68-3,Cambridge, MA(1968).

17. Botkin, M. E., and Bennett, J. A., "Shape Optimization
Of Three-Dimensional Folded Plate Structures," 1884 ATAA SDM
Conference, CP No. 84-0856, Palm Springs, CA., May 14-16,
(1884) .

18. Botkin,M.E. and Gressel,G.S.,"Shape Optimization of
Sheet Metal Components With Flanges",tc be presented at the
6th SAE international Vehicle Structural Mechanics
Conference,Detroit,Michigan, April 22-25(1986).

19. Yang, R. J., and Botkin, M. E., "A Modular Approcach For
Three-Dimensional Shape Optimization Of Structures",to be
presented at the 27th AIAA SDM Conference, San
Antonio,Texas, May 19-21(1986).

20. Yerry, M. A., and Shephard, M. S., "Automatic Three-
dimensional Mesh Generation by the Modified-octree
Technique," International Journal for Numerical Methods in
Engineering, Vol. 20,No.11, 1965-1990(1984).

17

21. Haug, E. J., Choi, K. K., Hou, J. W., and Yoo, Y. M., "A
Variational Method for Shape Optimal Design of Elastic
Structures," New Directions in Optimum Structural Design,
Ed. E. Atrek et al., Wiley, New York(1984).

22. Choi, K. K. and Haug, E. J., "Shape Design Sensitivity
Analysis of Elastic Structures," Journal of Structural
Mechanics, 11(2), 231-269(1983).

23. Haug, E. J., Choi, K. K., and Komkov, V., Design
Sensitivity Analysis of Structural Systems, Academic Press,
(1685) .

24. Yang, R. J., and Botkin, M. E., "The Relationship
Between the Variational Approach and the Implicit
Differentiation Approach to Shape Design Sensitivities,"
presented at the 1985 AIAA SDM Conference, CP No. 85-0774,
Orlando, Florida, April 15-17,(1985).

25. Yang, R. J., Choi, K. K., and Haug, E. J., "Numerical
Considerations in Structural Component Shape Optimization,"
ASME Journal of Mechanisms, Transmissions, and Automation in
Design, paper No. 84-DET-219(1984).

26. Ramakrishnan, C. V. and Francavilla, A., "Structural
Shape Optimization Using Penalty Functions," Journal of
Structural Mechanics, 3(4), 403-422(1974-1875).

27. Vanderplaats, G., "CONMIN - A Fortran Program for
Constrained Function Minimization User’s Manual,”" NASA, TM X
62,282(1973) .

28. Yoo, Y. M., Haug, E. J., and Chei, K. K., "Shape Optimal
Design of An Engine Connecting Rod," ASME Jourmnal of
Mechanism, transmissions, and Automation in Design, Vol.
106, 415-489(1984).

20. Yang, R. J., Choi, K. K., and Haug, E. J., "Finite

Element Computation of Structural Design Sensitivity

?nalysis," Report CCAD No. 84-3, The University of Iowa,
1884) .

18

frame attachment point

uniform thickness, t
only design variable

FIG. 1 Typical Part

19

® ® ®
©)
©)

i Key Nodes
@Boundary Elements

FIG. 2 Boundary Elements For Typical Part

20

A

. Key Node

8. Circular Arc

. i

Key Node 1 Key Node 2

b. Straight Line Segment

Node 1 as
o - Key Node 2

26

¢. Double Cubic Connected by Straight Line.

FIG. 3 Boundary Design Elements

21

@ - Boundary Element i

a) Initial Uniform Mesh

TR
A
ST R
EA"’A“%E?E;
VA NS - 5a, AR
RN\
N/

QATAV vy e
<VaAVAV,V, v, vf :‘ "\‘

c) REFINED MESH

FIG. 4 Mesh Refinement

22

SOLUTION QUANTITY,S

0.254, O.ISOA, 0.‘7'5/.\,
ELEMENT SIZE

FIG. 5 TYPICAL SOLUTION CONVERGENCE

23

z=Q(x,y)

-
,‘ Q = Interpolation
€ Projection v Description

of Surfaces

Z=RCos 6

(b) Transformation

(a) Assembly of Segments

FIG. 6 THREE FORMS NF NNAN-PLANAR STRUCTURES

24

e

(p)Boundary Design Element Creation

FIG. 8) Key Node Creation

N

Amvv

G O
VKV

(o) Triangular Bracket Finite Element Mesh

e o

Flanges Added to Triangular Bracket Model

FIG. 9a)

C-Y

27

de) bujseag aujbu3 jo [9pow U39 01 "Il

t——

’q

_Allll €

..

q

gajqejiea udysap 918 8,q :3I0N

\

a

r

—_— e

NASTRAN

NASTRAN —
DATA BASE

(actual lozd)

Y
ADJLOD

(cost, constraints,
and adjoint loads)

NASTRAN | y
(adjoint loads)

—

!
SENSTY
CONMIN

(design sensitivity analysis
and optimization)

Y

_ MESHGN
(finite element mesh and
NASTRAN data deck)

Termination Condition
iteration limit etc.)

No

STOP

F16. 11 Flow Chart of Modularized System

29

All Holes Have Radius of 1 em
All Dimensions in cm

@- Design Element Number 20l4.0+ * 2.0

Segment 3

Segment 1
r= 1.0 (typ) / Segment 2

\

-
2.0 jf—}—lae—>ie o —
f<4.0+{ 30 30 30 30 20

E=20.74 x 106 N/cm2
cy=1.0x104 N/c:r'r\2 /

p =.00784 kg/cm3 s
egment 4
9 l—5.0— I
X

FIG. 12 DIMENSINNS OF EXAMPLE

30

“9|dwex3 10} suoljed07] ajqenrep ubisag abue|4

¢l "o

31

USSN JudLI&|] 8)iul] }oXOkIg UOISSIWSURS |

A by O T ATAV v VAT S v

>
\WVAVAN oy AVAVLY, WalVavs SIS
B S A e Sy
VZava
< 74>4>4b4>4>07 NE2OOK 4"

/
NG A
Iv%sA

14|

BIE

32

INITIAL DESIGN

FINAL DESIGN

FI6. 15 Initial and Final Designs for Example
33

044 +

Mass (kg)

@ = CONSTR. VIOLATION < 3% |
O = CONSTR. VIOLATION < 10%
o R: MESH REFINEMENT
‘...
042 - .°.'. a. L .'
‘s
“ R
.‘ -
Q...
040 | ‘..
‘.‘
e
0‘. R
9.,
..

038 '...

\.. °

..‘ o'.. ‘.o
.ﬁ ...‘
. CL=.6
036 R % keeeee- >
. °
'.. ." .“
“o‘ ‘..
..
R °
o& i | 1 1 1 [
0 4 8 12 18 20 24
Iterations

FIG. 16 Design History for Example
- 3y

poy bujzeuuo) aujbul jo japow J4aU9 L1 "Il

89[qujava uldysap 1w 8,q :IJO0N

udyeap [VUl}

ugyeap 1eTITUL

-
-

35

poy bupzauuo) Jo ysaw yuswajd ayuld g1 9l

pasteny

36

~ poy Buioeuuo) eulbug jo Aojsi ubiseq 61 "9l

Joquuny uojjous|
w0 w w o ow w e e

T
'

(u) ownicA

37

poy Buyosuuo) eubuy jo AsojsiH ubiseq oz "9l

J0quuny uoyoue))
S S S SN SN L B

s0-

90—

¢

3

$

-1'0

UOHDIOIA SS8LS WNWIPDN

38

N§8-19124 « 5 —¢/

73
L,% 1.
POSTPROCESSING TECHNIQUES FOR 3D NON-LINEAR STRUCTURES “)1

Richard S. Gallagher
Hibbitt, Karlsson & Sorensen, Inc., Providence RI

ABSTRACT

This paper reviews how graphics postprocessing techniques are
currently used to examine the results of 3D non-linear analyses,
some new techniques which take advantage of recent technology.
and how these results relate to both the finite element model and
its geometric parent.

INTRODUCTION

The end result of most finite element postprocessing remains the
interpretation of a single result quantity in the form of a
single, static picture. Because there is a natural mapping
between such plots and the increment-by-increment output data
files produced in non-linear analysis, most such analyses today
essentially treat individual steps and increments of non-linear
analyses as degenerate cases for these linear techniques.

Current methods to view structural analysis results have their
origins in display of univariate data for linear analysis.
Indeed, the majority of techniques used in today's result
displays came into use in the late 1970's and early 1980's, with
incremental enhancements to take advantage of improving graphics
display technology.

From a human perspectiVe, areas for improvement in evaluating 3D
non-linear results include improving one's insight into time-
dependent behavior, rapidly finding critical behavior in complex
3D structures, and putting more result information into a given
picture.

CURRENT POSTPROCESSING TECHNIQUES
Techniques used today in generating analysis result plots include
the following: '

1. Deformed shape plotting

These plots showing the deformation of a structure under load
generally overlay deformed and undeformed plots, with a
magnification factor applied for small displacements. Hidden line
removal or boundary plotting is commonly employed to reduce the
visual complexity of these plots.

2. Vector result plotting

Quantities which vary at points across the structure are
displayed as arrow or line vectors. This technique is one of few
which display the directionality as well as the magnitude of a
quantity. On the other hand, such plots easily become "busy" and
difficult to interpret unless applied to limited plot areas.

/25777

3. Contour line plotting

Like a topographic chart, lines are constructed on the surface of
a structure to outline transitions between result levels. Either
coded colors or alphanumeric labels are used to differentiate
levels.

4. Shaded result plotting

In the late 1970's, when few of the color graphics devices in use
could display more than 8 or 16 simultaneous colors, shaded
result plotting essentially "filled in" the areas spanning
contour levels with discrete colors.

Today, increased levels of color and firmware shading
capabilities have made it easier to produce fully shaded plots
showing the variation of a quantity in a smooth, continuous
manner. Even as such capabilities become more of standard among
display devices, plots using limited numbers of discrete colors
remain popular - often, a discrete plot gives a more rapid
overview of where critical behavior exists.

PROBLEMS IN 3D NON-LINEAR POSTPROCESSING

While techniques such as these are commonly used to look at
single-frame results in 3D non-linear results, they carry with
them a number of drawbacks as currently used. Some of these
include:

-Range limits within a frame. Non-linear results can vary across
a large range across time steps, yet each individual step may
encompass only a small part of this range.

For example, if 16 colors are used to represent the full global
range of behavior in a non-linear analysis, a given step might
only use one or two of these colors. But more common is the
opposite problem: each frame in an analysis maps its full range
of colors to the LOCAL step data, making it difficult to
correlate frame-to-frame behavior after the fact.

-Loss of time perspective. Evaluating non-linear behavior by
review of individual frames carries with it the same loss of
insight that differentiates nodal result printouts from graphic
plots.

-In 3D structures, critical results may be interior or rearward-
facing relative to a 2D plot image of its results. While it is
often true that critical results occur on exterior surfaces, this
is not always the case - and moreover, the ability to quickly
evaluate interior results increases the design complexity which
can be analyzed and interpreted within a given time frame.

Limitations such as these continue to exist in the non-linear
area due to a number of factors. First, it has only been in the
past two to three years that graphics display devices with
extended color and three dimensional display capabilities have
become common. Here, the key word is COMMON - technology for

shaded and 3D display have existed since the early days of the
computer graphics field, but only recently have they been
available from major suppliers with the kind of price/performance
relationship that would encourage common use among engineers.

Further hardware enhancements that affect this area, such as
real-time 3D display of substantial models, and computer-driven
animation hardware, still generally remain at the point where
they are the domain of the well-funded and technologically

courageous.

Second, as time progresses, we are seeing more of a "critical
mass" of users in this area to influence CAE techniques.

As CAE has increased analysis productivity in general,

there has been a trend towards increasing complexity in analysis.
This natural progression has led to a wider interest in non-
linear analysis - and often, more from design groups applying CAE
for the first time to their traditional non-linear problems as
well as existing CAE users expanding the scope of their
activities.

Finally, CAE tools add changes to design procedure as well as
increased productivity, and non-linear users have had to absorb
the same existing tools as other analysis users over the past
decade.

This latter point bears some explaining. While technology itself
can certainly proceed in parallel for different applications
areas, current acceptance of CAE makes it more possible to
implement new techniques to assist result display. From the
vantage point of a commercial software developer, the penetration
of state-of-the-art display hardware and tools among non-linear
users would not have justified advanced graphics development in
the early 1980's. Today, acceptance of current CAE tools and
equipment makes it economically feasible to develop more advanced
tools.

ENHANCEMENTS TO ADDRESS 3D NON-LINEAR PROBLEMS

There are a number of areas which can be pursued to address
improved productivity for non-linear analysis work. Some
techniques that look attractive because they can provide more
informative displays to cope with the larger data output of a
non-linear analysis are as follows:

1. Translucency

Techniques to display surfaces which can be seen through have
existed since early work by people such as Atherton(l) in 1981.
Early scan-line based techniques in this area would sort surfaces
into their requisite display pixel locations, applying a tint
function to surfaces "behind" the translucent surface at a given
pixel location. It was clearly limited to devices with a large
number of simultaneously displayable colors.

Now that local rendering of polygons have become a common feature
of graphics display devices, many devices and/or software now
generate "translucent" polygons by displaying some, but not all,
of a polygon's pixels, in a regular pattern.

Either approach makes it easier to make OPACITY an attribute of a
result's color in a shaded result display. In this manner, ‘
interior critical results become more visible, as shown in the
slide figure.

The technique has two apparent drawbacks: multiple layers of
translucent surfaces may still obliterate the view of opaque
results unless a very fine pattern of translucency is used, and
such a technique requires display processing of interior surfaces
which would normally be discarded in opaque processing.

2. Auto-clipping

This technique is also useful in looking at interior results.
Here, hardware or software Z-clipping is used to remove surfaces
which obscure the view of critical results. This is done by
positioning the front and/or back clip plane at the first Z
location where a critical result value is detected.

The slide figure example shown was performed using hardware Z-
clipping capabilities in a Tektronix 4129 display system.

3. Animation

Two kinds of animation are clearly of interest in non-linear
analysis: progressive display of incremental results data, and
animation of a final state of behavior from rest. Slide figures
show examples of animation frames for two engineering models.

Currently, many display devices allow what could be called
"segment animation", where separate frames of animation are
loaded into separate "segments" of display memory and then cycled
through in sequence.

This technique is particularly effective on real-time 3D display
devices, as it allows the user to dynamically adjust the view of
a deforming or changing model. Unfortunately, such techniques
have crude refresh rates in many cases, and severely limited
display capacity at present in all cases.

More promising in the longer term is frame-by-frame animation,
where individual frames of animation are computed, displayed, and
then captured under software control on a medium such as film or
videotape. Frame-by-frame capture hardware does exist today with
media such as videotape and interactive read/write videodisk, but
is very expensive, disjoint and lacks any unified vendors aimed
at the engineering market.

Of further interest downstream is path of motion control for
structural models as rigid bodies, for better visualization.
Techniques exist at a practical level today, with primary issues
being acceleration, decceleration and continuity of motion across

changes in path. Reference (2) is one of a number of examples to
further codify these kinds of motion.

The technology behind engineering animation is well in hand, and
more limited by commercial hardware availability than anything
else at this point. In the author's opinion, animation will
become a major factor in CAE once low-cost frame-by-frame capture
and display equipment exists which is supported by major CAE
hardware and software.

4. Correlation of result plots with history data

Most discussion to this point has centered on model-based result
plotting. Equally important in this application area is history
data - plotted or printed output of result variables versus time
or each other.

Graphics alone do not suffice in the engineer's determination of
structural behavior. As stated in a recent issue of the
Engineers' Digest in the UK (3), "While graphics have resulted in
increased acceptance of the (FEA) technique, it is the print out
that provides the proof to the purchaser.".

In designing an interactive display package, an emphasis must be
placed on managing the duality between model and history data -
particularly in making it easy to select history data based upon
what is noticed and selected from model result plots.

5. Management of display data across steps

As mentioned earlier, the potential differences between local and
global result ranges in a non-linear analysis require an
intelligent approach to the use of color. Techniques under study
include specification of macro versus micro color levels, as well
as taking advantage of displays with larger numbers of
simultaneous colors to modify display ranges locally via the
color table.

Many of these techniques are still being evaluated at an
experimental stage at present. A key component of the above
efforts is the ability to tie directly into the database of an
existing non-linear analysis package to manipulate the large
amounts of data involved in input to these and other display
functions.

THE RELATIONSHIP OF POSTPROCESSING DATA TO GEOMETRY AND FINITE
ELEMENTS

To this point, we have primarily discussed postprocessing data as
it relates to finite element level displays. For a large
percentage of current ABAQUS users, this finite element model is
created at least in part due to operations on a geometric model.
Commonly, a solid modeling or other CAD system is integrated with
a finite element modeler for creation of the analysis data.

Upon completion of the analysis, the question remains of how -

or, in fact, whether - to relate this information to this
geometric database. Often, the geometric data is available across
design disciplines, while its finite element model is specific to
the individual analysis group.

In this era of automated adaptive analysis, meshes change - while
geometry, generally, does not. The end result of an analysis is a
state vector expressed at points which correspond to parametric
or spatial locations in this geometry. In theory, the finite
element mesh itself need not even remain as permanent data.

Some practical considerations interfere with this concept,
however. The purpose of saving analysis data is to display or
interrogate it later. Given the largely polygon-based methods of
model result display, a polygonalization of some form will
generally be required for graphics display - with preservation of
this mesh data being an ideal polygon representation in most
cases.

Furthermore, direct association of results with geometry removes
a link to re-starting or replicating the analysis data from its
final state - although, arguably, initial conditions alone
combined with the same adaptive meshing approach would allow a
reproduction to this point in theory.

Currently, most solid modeling systems which integrate FEM
capabilities treat analysis results as purely an attribute of the
mesh. While it of course relates ultimately to the geometry
itself, both display and analysis techniques in use today clearly
point to a representation where the geometry is the parent of the
mesh, and the mesh is the parent of the results, with both parts
of the linkage remaining intact.

However, at a database and user interface level, more work
clearly needs to be done to make this linkage transparent to the
user. Ideally, the user would rather not create or care about the
finite element mesh en route to the overall goal of evaluating
geometric behavior. While numerous obstacles remain on the way to
this goal, the longer term goal is to eventually make this the
level at which the user operates in postprocessing.

CONCLUSION

While graphics display techniques have done much to increase
insight into non-linear 3D structural problems, these problems
contain unique display issues which are not completely addressed
by current techniques. Approaches such as translucency, clipping,
animation and management of color have potential to increase
understanding of these phenomena further. Moreover, in time these
results must be treated to the user's view as an attribute of

the user's primary medium of exchange, the geometric model
itself.

REFERENCES

1. Atherton, P., "A Method of Interactive Visualization of CAD
Surface Models on a Color Video Display", ACM SIGGRAPH '8l
Proceedings, August 1981, pp. 279-287.

2. Wilhelms, J., "Towards Automatic Motion Control", IEEE
Computer Graphics and Applications, v.7 n.4, April 1987, pp. 1l1-
22.

3. "Stress Analysis - Potential and Problems", Engineers' Digest
UK, Dec/Jan 1987, p. 37.

4. Gallagher, R.S., "The Computational Laboratory Concept", SAE
Technical Paper no. 850786, April 1985.

SLIDES:

-Review of current postprocessing techniques
-Geometry-based
-Deformed shape plots
-Vector plots
-Contour line plots
-Discrete fringe contour plots
-Continuous tonal plots
-Result-based
-XY plots
-3D data surfaces

-Some newer techniques
-Translucency
-Auto-clipping
-Animation

-Results as a sub-level to the mesh, as
geometry

a

sub-level

to

the

S~
/25809
477

N88-19125

GEOMETRIC VERSUS FINITE ELEMENT MODELING
CURRENT AND FUTURE TRENDS AT NORTHROP

shiv K. Bajaj
Systems Technical Specialist
NCASA Development
Northrop Aircraft Division
Hawthrone, CA 90250

ABSTRACT

Engineering Automation at Northrop encompasses the various design
and analytical phases of air vehicle development. Design systems
addresses automation of engineering/tooling design and computer-
aided manufacturing processes. The analysis systems automate
aeroelastic modeling and postprocessing analysis results. These
systems interface with aircraft loft and geometric entities thru
localized transfer techniques. However, total integration effort
based on a geometric database nucleus with peripheral design,
analytical and manufacturing systems is well underway. An outline
of the present and future trends is presented to help channel the
RPI effort in this direction.

:A@_O Heny

dOYH1HON

juswdojarag YSYON ‘Isijeinads [eoluyoa] swalsig
feleg ") AyS

- Aq 2861 ‘21 Aep uo |dY 0} uoneluasaid

doJyuoN 1e spual] ainjin4 pue jusun)
Buljopoyy 1uswa|g alul{ SA 2l}BWO0dY)

oido |

JVO/NYI/AVD palelbajul

\
S~

uoIsIAIQ JjeIdNy

<OUHIHON ue|d uonejuswaldw] paseyd paisebbng .

WaisAS 31 VYHOILNI UE 10} SUOepuUsWWO0day -

dosyuop 1e saiyjigede) juaung Jo mainenQ jalg .

aullnQ uoljejussaid

W3LSAS DNITIAONW LONAOHd I[e4dAQ UE JO LEd SE
walsAsqng sisAjeuy bBuusauibug pue Buljgpoyy ou18Woan)

pojeibajuj ue 1o} sjuswalinbay jeuonoun dojaasp o

aA1108lq0 |-INVYD/IdY

JVI/NVI/AVI paleibajul

UoISIAIg Jesony

dOYHIHON

"uoNdAIP SIY} Ul Wols |-NVD/IdY 8yl |suueyd

djay 0} pajuasaid si spual) ainin} pue juasaid a8y} Jo auyino uy “Aemiapun ||am si

sjelayduad swajsAg buunjoejnueyy pue [eonhjeuy

.C@_mmD uim SNI|ONN osegele(] Ollslloor) E uo paseq

Hoys uolje ._mmwc_ |10 | JeAamoH "sanbiuydal sajsueil paziiedo] ruy)

m.mz_ucm OlIBWO0BK) pue O Yedollyy Ylm adeudlu| swaishs esayl

‘buissaooidisod pue sisAjeue ‘Gujjapow dlise|oiee sjewoine SWIQ)LS As w_m>_mc<
'sassaoosd Buunjoejnuew papie-1aindwod

pue ubisap Buiooybuuaauibua jJo uolewolne ssaippe mc._m#m\»w Cm_me
‘Juswdojanap ajo1yaa se jo saseyd jeonhjeue

pue ubisap snoueA ay} sassedwooua dosyuon e uoljewoiny Bui ‘_mmc_mcm

JOBIISQY

AVI/NVI/AVI paleibalul

uoISIAIQ Ye1dny

dOHHIHON

eseqele(oHIBWO3Y) YIm saoepaju] weibold

eseqele(] 21j8WO8Y) sulejuleyy pue sajesauss) welbolid -

- WvO/avOl __ WVOXVIN _

swaishs WyD/avod

NOJOLNY 1SOdHON

s+ UN39T1

VANID /AavO SAVOTHON

VSVON

L

-o_moz _

AIS

swajsAg
sisAjeuy

—m\>> _ A/S

yoddng suonesad
swa)sAg ubisaq

_

TVON

avON

swalsAg pajewoiny
Bunsauibug

aseqgeje(q
1oedw|

9JeLdu| o1BwoaY) buliinbay
sjoslold uonewolny burisauibug

ARTRRIRTELA

aseajey
Buuasu)bul

Areigny

piepuelg

av .Zﬂ..%;: 3 ..11_

ORIGINAL PAGE Is

(
e.:‘ég".'r A. v ' J
= AL PAGE IS

OE POOR QUALITY.

IR e X T .v

s Zag 1% T3 y

B PR 36
2 VY, 4R .y
?&mw%
© EChhg A
18188 58 JoAnaue)\ |
uoijoeiau .
sisAjeuy)
BulepoN e

el

s ey

njoniIs

[)
RN

Iy

Y

1o

.
:

ST e e

in .

)

599

o o

9,

Interfac

esign

ORIGINAL PAGE IS
OF POOR QUALITY

BTy

"

ety

gram

9
ol
ot
2
3]
m

ORIGINAL PAGE IS
OF POOR QUALITY

s0d’

- .
- a -t

NVHISYN e

/(

UOISIAIQ Jjesdny

dOHHIHON 98-2901-10
oSeg Eje uowuwoy SO|l4 |BuUloIX3 Niy| Jajsuel] eje u
(e I JeUIRX3 MUY | Jajsuel] ejeq)
aseg
eleqg
SOINPOW SO|NPON S9INPOW
VSVON avON TVON v v v v
T]
weiboiy weibold weiboid
SeINPON sompon] | . vsvon [avon [€ avon
Aljowoar) aseqeje(A A
weiboid
|0U0)
|
uobo : ﬁ AVON J
VSVON T1VON
Jojuowsadng Jojuowsadng
1oedw) eduy| .
Juswdojana ainin4 SNJeIS ualng

Spusail olnind % Eo.::O
woaisAs 1 DVdINI auL

:azo yeidny

dOHH1HUON

Buniod
Keidsiqg H_

S8INPad0ld 9Sed|1dY —
Buluue|d $S8001d —
Buunjoejnuepyy —
sisAjeuy jeinonig —
. ubisaq —
uoneinbyuon —

L— s9|npopy uonedlddy

SS900V |3POW
O/1 914 u

labeuepy eleq

SI9ALI(] BANORIBIU|

mm_:__SEms_
esg_gmu_ mo_as_._z___S @
Aieuooig eleq I_

: Sjejayduad e

sajl4 ejeq |ealsAyd O

| . SNBJONN

S|enuassy

JVI/NVI/AVD palesbajul

UOISIAIQ Jje1oNyY

dOHH1HON

saqn] sojydeln) 19)sey pue J0j08A ‘SUOIHBISHIOAM PUE Saweluiep We| o1

: Aljiqenod

sabuey jo Aljiqeases] e

S391 ® S3Ad ‘SOIHd “ZIA .%ancm,m Ansnpuj BuinjoAT yim ajgiedwo) e
solsusioeIey) ainonsg eleq bunsix3 Buipuaixy jo ase] e

ai1njonIS eleg Mo Jo uoiesodioou| jo aseg e

Juswabeuep Aowspy oiweulq e

awayog aInnig ejeq bunjoed jlos

anfep uonejauo) buisn ainjonng eleq Yyoseas 1se e

sian18g ejeq ybnoay g
SSa00Y BleQg e
Ayosessiy eleq Juawa|] j9ra 8aiy)
S8INQUNY / SaAlliW-UON / saAliwud
: aInjonas eleQ
abelolg ysiq pue lowapy 810)-ul usamiaq buiddems aanoeiaju) pue Buibed jo asn Ag
- 9ZIS [SPO palwiun e

euau) ubisa(

labeuep ejeq |[9pon

:&5 neny

dOYHIHON

Sjijauag |ejuswalou} Yyim sauolsafiy Ajloadg
salnn Aujewosr) uaau(Jojenjens Juswajdw)
sjopo bunsix3 jo Auignedwod psemdn moj|y

swalsAg Ajawoar) Jussald wouy uolisuel] AuspiO Mojy

sauljapiny uolneluswajdw| paseyd

AVI/NVYI/AVD pajesbajuj

o
UoISIAIg eIy

dOYH1HON

suoljeolddy Buunjoejnuepy pue Buissasoidisod
‘sisAjeuy Buusaulbug snouep ssaippy 0S|y PINOYS |
ing
AjuQ Bujjapopy Juswa|g slul4 pue Ajewoarn)
O} pajiWI 8q 10N pnoys walsAs WvO/AYD AILVYHOILNI Ue jo ubisa(

SuoISNjouUO0N)

JVI/INVI/AVD palelbajuj
@ o

IDEALIZED FINITE ELEMENT MODELS

Mark S. Shephard
Rensselaer Polytechnic Institute

Concerned with the evolution from the Augmented Model,
to the Idealized Model, to the Finite Element Model.

Augmented Model - Original geometric model plus
analysis attributes.

Idealized Model - The geometric representation plus
analysis attributes that is discretized into the finite ele-
ment model.

Finite Element Model - The discrete model sent to the
finite element analysis program.

Differences Between Augmented Model and |dealized
Model

1. Geometric simplification - ignoring specific
geometric features such as small holes and fillets.

2. Geometric Enrichment - including geometry in the
numerical analysis model not originally repre-
sented in the augmented model (air around a
model and zero thickness interfaces, etc).

3. Geometric Dimension Reduction - Replacing por-
tions of a model with reduced dimension entities
with the eliminated dimensions represented by sec-
tion properties tied to the reduced dimension
elements.

A) original geometry

B) simplified geometry

C) finite element model

FIGURE 3. GEOMETRIC SIMPLIFICATION

-

{/

CH-47D PRIMARY
FUSELAGE STRUCTURE

VAN AY
Ry R X
T 7N

e s
P ", N
AN NN

(«\\\\Wz&v

MFG SPLICE

N AR\,
VO N SR ST

STRINGER

FRAME

ﬁ» < >/
RN

AR

LONGERON

STA 440

ORIGINAL PAGE IS
OF POOR QUALITY,]

BULKHEAD

HELICOPTER AIRFRAME STRUCTURE

FIGURE 4. GEOMETRIC REPRESENTATION OF

STATIC MODELING
CH-47D NASTRAN STRUCTURAL MODEL

NASTRAN MODEL

1,883 STRUCTURAL NODES
5,758 STRUCTURAL ELEMENTS

NO. OF

ELEMENTS

398
76

3,253
1,707

156
156

12

TYPE

CBAR — BEAM
CELAS2 — SPRING
CONROD — AXIAL

CSHEAR — QUADRILATERAL
SHEAR

CTRMEM — TRIANGULAR
MEMBRANE

CQUAD1 — QUADRILATERAL
SHELL |

CTRIA1 — TRIANGULAR
SHELL

FIGURE 5. FINITE ELEMENT MODEL OF AIRFRAME STRUCTURE

3dALl IN3IW3IT3 LOFHIANI NV mOu.u_h<._:oq<0 AlH43d0Hd "9 3HNOIL ‘

22V + Zo-u)] A¢|< A v Aum_qn\;v o<~A|._,$ = VIN)

Le”

JWVH4 TVv3H SV w_2<w u iy +°¢

TRV
) MY _ o M) _ oy«
v Ainkoz,q v A.,.Ivukmj
A c 0
_ v+ _ T o0 TN 'y +%y
2P+ glewly = Y St =8 (2N + o v = Nt gt = e
| ¥31anod
.</{ dv0 40 \MI/
T D 3903 H3NNI VIHVY dvO HINNI 'V — | o
- AI.T“ {+ — QI0YINID
%
v
? | ™t | saiouinao
y N33IM13E
u 4<z_zou L] H1ld3d
\ (VILHINI ONIONIE OL gaue o .;_mr/
aN giow 3LNEIELNOD 10N s300) _ L QIOYLN3D
Pary dvd
oy 4O INTRDIS V3HV dvO HILNO Ov — 1 /ﬂ.n..*.”__

a3sn 10N NIMS <
JAILO3443 A3NNV1d

T30OW NOILO3S SSOHO FNVHd NVHISYN NOILO3S SSOHO IWVHd Tv3H

VILH3NI ONION39

~ IN3TVAIND3 ONININY313d
S3INVH4 — S3AIND ONITIAON DJILVIS

COMMON APPROACHES TO DEVELOPING
IDEALIZED MODELS

DIRECTLY DEFINE IDEALIZED MODEL

The majority of geometric representations used in finite
element modeling are defined solely for that purpose. That
is the augmented model and idealized model are the
same. This is an inefficient approach and does not make
the best use of available technology.

MODIFY AUGMENTED MODEL TO BECOME
IDEALIZED MODEL

Carry out modeling operatiohs to alter the augmented
model evolving it into the idealized model.

TREAT IDEALIZATION INFORMATION AS NUMERICAL
MODELING ATTRIBUTES TIED TO THE AUGMENTED
MODEL

Indicate what entities are to be altered and have the ap-
propriate information automatically tied to entities in the
augmented model as attribute information. The discretiza-
tion procedures would then be responsible for insuring that
the finite element model reflects the idealizations.

MODIFY AUGMENTED MODEL TO
BECOME IDEALIZED MODEL

Advantages -

It is reasonably straight forward to see how this ap-
proach would operate. The user would have a first
hand understanding of the modifications.

Disadvantages -

The user is required to perform geometric modeling
modifications manually. Could not support use of
adaptive idealization procedures.

Technical Issues -

Data Structures - should there be two identical struc-
tures for the augmented and idealized model?
Recovery - how does one recover portion of a model if
the idealization process is changed?

TREAT IDEALIZATION INFORMATION AS
NUMERICAL MODELING ATTRIBUTES
TIED TO THE AUGMENTED MODEL

Advantages -

Would support the evolution to automated, adaptive
techniques for developing idealized models thus poten-
tially being more efficient and robust. Would reduce
total amount of storage needed making it easy to
track the modeling assumptions used.

Disadvantages -

Do not know how to handle such an approach fully
enough at this time.

Technical Issues -

Idealization procedures - do not know all the idealiza-
tion procedures desired well enough to try to define
geometric operators to support them.

Data structures - do not fully know how to house all
the possible idealization attributes in the augmented
model.

Discretization - the discretization process would
become more than just mesh generation in this case,
must have procedures to account for model
differences automatically.

TECHNICAL AREAS IMPORTANT TO
THE AUTOMATION OF
IDEALIZED MODEL GENERATION

Attribute Data Structure of Augmented Model

Geometric Operators to Support the Generation of the
Idealized Model from the Augmented Model

Feature Recognition Techniques
Knowledge-Based Modeling Procedures

Adaptive Analysis Techniques for Determining Idealizations

A KNOWLEDGE-BASED APPROACH FOR
DEVELOPING IDEALIZED MODELS

GEOMETRY EXTRACTOR

v

Geometric information

:

CLASSIFIER

v

Attributed geometry

RULE MAINTENANCE
SYSTEM

v

Rules

4

INFERENCE ENGINE

\ i

Analysis model control parameters

F.E. MODEL GENERATION ROUTINES

Generic finite element model

4

F.E.A. TRANSLATORS

Finite element analysis input file

A COMBINED KNOWLEDGE-BASED AND
ADAPTIVE TECHNIQUE FOR
ONE FORM OF GEOMETRIC SIMPLIFICATION:
IGNORING CIRCULAR HOLES
IN 2-D STRESS ANALYSIS

Approach -

1. Determine candidate holes - those that are less
that some percent of the net section through object
at that location, and not too close to an edge.

2. Analyze object ignoring all candidate holes. This
gives basic flow of loads to supports.

3. Apply correction factors to the stress at the loca-
tions of the ignored holes based on 'standard ana-
lytic’ formulae.

4. Include only those holes with estimated values
higher than some fraction of the limiting stress.

e1.24

Figure 10. Geometry for cam example.

— o

CURRENTLY
8

CONTOUR
LEVELS

CONTOUR

pltlﬁﬂ!l'

ch “‘ “
FROA
-7 .95€-01

nigH
vALUE

1.638 OV

LoV
VALYE
" . '“.o'

1880 &
10000 &
11000 00
o. o008
..
.00
1.00a8
0 . 0088 0

® ® & ® o & & -

Figure 11.

GHIGINAL PAGE IS
CF FOOR QUALITY

Stress contours with holes ignored.

ORIGINAL PAGE IR
or OOR QUALITM

CURRENTLY
]
CONTOUR
LEVELS

CONTOUR
INCREPENT

3. 42€ 00
FROM

L1.97¢ 00

HICM
VALVE
2.20€ Ot

L0d
YALUE
F1.97€ 00

8. 2000
1.0008
1. 000
1:0000 00
8. 8008
.00
1.6
0 1.0 &

A L

Left hole

0-105 0.5

Jest ~ 14 dest = 30

Omax * 5 . Omax = 22.0

Figure 12. Stress contours with holes included.

BUILDING FINITE ELEMENT APPLICATIONS
USING NON-MANIFOLD BOUNDARY OPERATORS

An Approach to a dynamic interface that is a level above

those discussed above. Application programs would
employ both the modeling functionalities and data. struc-
tures of the geometric modeling system without knowing

the details of either.

This is consistent with object-based procedures that are
becoming popular.

A start to such a capability employing the Radial-Edge
non-manifold data structure is proposed by Kevin J. Weiler
in his Ph.D. thesis for the process of defining geometric

models.

A complete set of Non-Manifold Boundary Operators
needed to support this approach.

BUILDING FINITE ELEMENT APPLICATIONS
USING NON-MANIFOLD BOUNDARY OPERATORS

Classes of Operators Needed -

Obtaining Objects Based on Type - ability to find ob-
jects of given types.

Determining Object Adjacencies - find how an object is
related to others of a given type.

Geometric Interrogations - determine a geometric prop-
‘erty of an object. ’

Attribute Interrogations - determine the attributes of an
object.

Attribute Assignment - tie attribute to objects.

Geometric Modification - carry out a geometric model-
ing operation based on a given set of objects.

BUILDING FINITE ELEMENT APPLICATIONS
USING NON-MANIFOLD BOUNDARY OPERATORS

Typical Objects -
Topological entities
Geometric entities

Attributes

The topological entities represent the 'glue’ needed to hold
such a system together, however this can be transparent
to the applications built on it.

The approach is in a very early phase of investigation. It
is not clear if it will work.

