
RENSSELAERPOLYTECHNICINSTITUTE

CENTERFOR INTERACTIVE
COMPUTERGRAPHiCS/CAM-I

WORKSHOPON TXE INTEGRATION
OF FINITE ELEMENTMODELING
WITX GEOMETRIC MODELING

///i L;: - "_ {_ Y

/';1:.¢ .:,' ,. , <:...i

C/+ i_ .)

/M ?& i-_12_.._

J

MAY 12, 1987

_ (_ISI-¢B-182515) iCIKSB¢t Cl i_l
IB_EGIA_IGb OP lIlIIE IE_B_|_ IOOEEING II_H

6ECSE_BIC ROOStinG (6ensselacr Polltechnic

Inst.) 330 p CSCL 09B
G3/6 1

S88-19111
--¢HBU--
H88-19125
Unclas
01257_6

¢

Center for Interactive Computer Graphics

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

WORKSHOP ON THE INTEGRATION OF FINITE ELEMENT

MODELING WITH GEOMETRIC MODELING

Room 4050: Center for Industrial Innovation (CII)

May 12, 1987

AGENDA

9:00

9:30

i0:I0

Introduction to the Integration of Geometric and Finite

Element Modeling

Mark S. Shephard, RPI

Integration of Geometric Modeling and Advanced Finite

Element Programming

Peter M. Finnigan, General Electric Corporate Research and

Development

Break

10:30

ii:00

11:30

Integration Architecture of SDRC Geometry and Finite

Element Processors

Robert L. Haubrock, Structural Dynamics Research

Corporation

Finite Element Meshing of ANSYS Solid Models
/__

F. Stanley Kelly, Swanson Analysis Systems _/

Solid/FEM Integration at SNLA

Patrick F. Chavez, Sandia National Laboratories Dr-f

12:00 Lunch

i:00 Octree Based Automatic Meshing from CSG Models_/

Renato Perucchio, University of Rochester

1:30 Finite Octree Meshing Through Topologically Driven

Geometric Operators _/_
Kurt R. Grice, RPI

2:00 Design Modeling for Shape Optimization _5//

Mark E. Botkin, General Motors Research Laboratories

2:30 Postprocessing Techniques for Three-dimensional Nonlinear

Structures _/_

Richard S. Gallagher, Hibbitt, Karlsson & Sorensen

3:00 Break

3:15 Geometric Versus Finite Element Modeling - Current and

Future Trends at Northrop _///

Shiv Bajaj, Northrop Corporation

3:35 Building F.E. Applications Using Nonmanifold Boundary

Operators, and the Generation of Idealized Models as Used

in FEM

Mark S. Shephard, RPI

3:55 Panel - Open discussion by the participants of the

workshop

5:00 Cocktail Reception (Faculty/Staff Dining Hall)

WORKSHOP ON THE INTEGRATION OF

FINITE ELEMENT MODELING
WITH GEOMETRIC MODELING

INTRODUCTION TO WORKSHOP

Mark S. Shephard
Rensselaer Polytechnic Institute

Purpose of Workshop

To discuss the geometric modeling requirements of the

finite element modeling process and to better under-
stand the technical aspects of the integration of these
two areas.

Workshop Agenda

Introduction to the Integration of Geometric and Finite

Element Modeling; Mark S. Shephard, RPI

Integration of Geometric Modeling and Advanced Finite

Element Preprocessing; Peter M. Finnigan, General
Electric Corporate Research and Development

Integration Architecture of SDRC Geometry and Finite
Element Processors; Lee Robie, Structural Dynamics

Research Corporation

Finite Element Meshing of ANSYS Solid Models; F.

Stanley Kelly, Swanson Analysis'Systems

Solid/FEM Integration at SNLA; Patrick F. Chavez,
Sandia National Laboratories

Octree Based Automatic Meshing from CSG Models;

Renato Perucchio, University of Rochester

Finite Octree Meshing Through Topologically Driven

Geometric Operators; Kurt R. Grice, RPI

Design Modeling for Shape Optimization; Mark E.

Botkin, General Motors Research Laboratories

Postprocessing Techniques for Three-dimensional

Nonlinear Structures; Richard S. Gallagher, Hibbitt,.
Karlsson & Sorensen

Geometric Versus Finite Element Modeling - Current

and Future Trends at Northrop; Shiv Bajaj, Northrop
Corporation

Building F.E. Applications Using Non-manifold

Boundary Operators, and the Generation of Idealized

Models as Used in FEM; Mark S. Shephard, RPI

Panel - Open discussion by the participants of the

workshop

TERMINOLOGY

To address the integration of geometric and finite element

modeling we must be familiar with some of the termi-

nology from both areas.

Some of the terms to be commonly used during the work-

shop are:

Geometric Modeling - A collection of procedures and rep-
resentations, assumed here to be computerized, for the

construction and description of the shape and spatial

relations of objects.

Wireframe Modeling - The collection of the curve
definitions for the edges of that bound an object.

Surface Modeling - The collection of curve and surface
definitions for the edges and faces that bound an

object.

Solid Modeling - The complete and unambiguous repre-
sentation of three-dimensional objects in a computerized

representation. There are six known families of unam-

biguous schemes known.

Constructive Solid Geometry (CSG) - An approach to solid

modeling in which the object of interest is constructed

by applying Boolean set operators to simple, well un-

derstood, solids. The two common sets of simple ob-

jects are halfspaces and primitive shapes such as

blocks, cylinders, spheres, etc.

Boundary Representations (B-reps) - An approach to solid

modeling in which the boundary entities that enclose

the object, along with sufficient associativity information

to unambiguously define the object, are stored.

Topology (with respect to geometric modeling) - an

abstract representation of an object that contains the

associations of how they connect together. The topology

of an object does not contain information on the shape

of geometric entities.

Manifold (2-manifold) solid representations - every point on

a surface has a neighborhood which is homeomomor-

phic to a two-dimensional disk.

Non-Manifold Geometric Modeling - allows topological situ-

ations which are not 2-manifold. Neighborhood of a

point on the surface need not be flat. Allows wire

edges, dangling surfaces, and more than two faces to

an edge.

Static Geometric Interface - A geometric interface in which
a standardized file format is used to store the

geometric representation of objects.

Dynamic Geometric interface A geometric interface

where both a description of the object as well as the

functionality of the geometric modeling system used to

define it are made available to application programs.

WIREFRAME

SURFACE

i SOLID

Figure 3 - 1. Wireframe, surface, and solid modeling forms

FROM WEILER 1986

NON-MANIFOLD POINTS

MANIFOLD POINT

Figure 3 - 3. The 2-dimensional disk around points on a surface

NON-MANIFOLD RESULT FROM

UNION OF "TWO MANIFOLD OBJECTS

Figure 3 - 4. The Boolean union of two manifold objectsyieldinga non-manifold
resuIt

FROM WEILER 1986

line

cutting
section

plane

center

line

MAYBE FOR

BEAM ELEMENTS

MAYBE FOR

SHELL ELEMENTS

solid volume

Figure 3 - 2. Example of a non-manifold geometric modeling form

FROM WEILER 1986

Geometric Operator - A procedure which can be invoked

by an applications program to have a geometric model-

ing function performed.

Applications Interface Specification (CAM-I) - A specifica-

tion prepared by Computer Aided Manufacturing

International containing an extensive list of geometric

operators for use in the development of dynamic inter-

faces between geometric modeling systems and appli-

cation programs. Test-bed versions of these operators

have been implemented.

Augmented Geometric Model - A geometric representation

plus associated data added that defines analysis attrib-

ute information needed for an application. For example

the loads, material properties and boundary conditions

needed for a finite element analysis.

Idealized Model - This is the model that is discretized into

the finite element mesh that is then analyzed. This
model is constructed from the augmented model by

performing the geometric modifications desired to pro-
duce the model to be meshed.

Analysis Attributes -All information, past the base

geometric model, needed to describe a physical prob-
lem in mathematical physics.

Numerical Model Attributes - All information past the aug-

mented model specified needed to control the
generation of the discrete numerical analysis model.

Finite Element Modeling - The process of going from an

augmented geometric model to numerical solution
results based on the use of finite element analysis

procedures.

Discretization - The process of reducing a geometric object
into a set of discrete entities as needed for a numerical

analysis.

Mesh Generators - Procedures that can be used to discre-

tize a geometric model into a finite element mesh.

Adaptive Finite Element Procedures - Techniques that
employ solution results to determine where a finite ele-
ment discretization needs to be altered to provide the

desired degree of accuracy and the improvement of
that discretization.

A Posteriori Error Estimation - The use of finite element

solution results to estimate the discretization errors pre-
sent in the current solution.

Mesh Enrichment - The improvement of a finite element
model as dictated by the a posteriori error estimators
and associated error indicators.

Automated Finite Element Modeling - A combination of al-

gorithmic procedures capable of automatically perform-
ing the finite element modeling process, without used
intervention, to provide solution results to a prespecified

level of accuracy.

CAM-I PROJECT ON DOCUMENTING
THE GEOMETRIC MODELING REQUIREMENTS OF

COUPLING GEOMETRIC MODELING SYSTEMS AND
FINITE ELEMENT MODELING

APPLICATIONS

CAM-I is supporting RPI to perform this effort.

This workshop and the questionnaires you have been sent

are being used as input to this effort

QUESTIONNAIRE ON THE INTEGRATION
OF GEOMETRIC MODELING AND

FINITE ELEMENT MODELING

Summary of questions

Geometric modeling approaches

Finite element meshing approaches
Geometric modeling information and functionality

Levels of integration
Data used and saved

Development of idealized models

Distribution of Responses to Date:

- 13 CAD/CAM Vendors

- 6 Research Groups

- 9 End User Groups

INITIAL QUESTIONNAIRE SUMMARY

Most responses indicated that they utilized a boundary

representation for modeling. Implicit and parametric stor-

age schemes were both popular.

Future choices of model representation also favored the B-

rep scheme. Some with current CSG approaches also
expect to handle B-rep.

Most responses indicated that they had an integration be-

tween a finite element preprocessing package and the

geometric modeler. In addition, most felt it was

inadequate.

Transfer schemes varied from IGES, tight integration with

the geometric modeler, and ad-hoc schemes developed
within their own organizations.

The finite element preprocessors dependence on a
topological data structure for the geometric modeler

(vertex, edge, etc.) was nearly unanimous, even for those

interfacing to CSG based model representations.

INITIAL QUESTIONNAIRE SUMMARY

Commercial preprocessing capabilities, in general, are still

dominated by the use of interactive mesh generators.

Future capabilities of preprocessors will utilize more auto-

matic techniques for generating numerical analysis
models.

The desire to link the finite element mesh back to the

geometric model was also apparent. This may put addi-

tional demands on modelers or interfacing techniques.

Typical reasons for this link were to allow for integrated

optimization techniques and adaptive analysis.

Attributes such as loads, boundary conditions, and mate-

rial conditions should be applied to the geometric model

and later 'sent off' to the analysis with the resulting mesh.

INITIAL QUESTIONNAIRE SUMMARY

One area of little response was the ability to define the

idealized models. As a finite element analysis vendor indi-

cated, the assumption is made that the model made was

specifically for meshing and that no unnecessary details
exist.

Current techniques to idealize the model are manual in

nature. Either by developing the model in a restricted
sense via some FEM commercial package, or by simply

eliminating the detail to be ignored within the solid
modeler.

Those that responded indicated a desire for some auto-

matic means of developing the idealized model.

Mark S. Shephard
Center for Interactive Computer Graphics

Rensselaer Polytechnic Institute

Troy, NY 12180-3590

N88-19112

INTEGRATION OF FINITE ELEMENT MODELING WITH SOLID

MODELING THROUGH A DYNAMIC INTERFACE

Abstract. Finite element modeling is dominated by geometric modeling

type operations. Therefore. an effective interface to geometric modeling
requires access to both the model and the modeling functionality used to

created it. This paper discusses the use of a dynamic interface that ad-
dresses these needs through the use of boundary, data structures and

geometric operators.

Introduction. The generation of numerical analysis models, typically finite element models.

is an important part of the computer-aided engineering {CAEI process. However. a dispro-
portionately large percentage of the design/analysis process is required to carry out this
task with the tools commonly available today. Over the past few years, substantial gains

have been make in the development of the algorithmic procedures needed to make this a

more automated process. To make effective use of these tools, specific consideration must

be given to the proper integration of the component parts. This paper presents a general

approach to performing the integration of the geometric modeling with advanced finite

element modeling tools.

Three technical areas of importance to the eventual automation of the finite element

modeling porcess are: geometric modeling, automatic mesh generation, and adaptive

analysis techniques. There is no possibility, of automating a geometrically-based procedure
like finite element modeling if the geometric modeling procedures do not contain a com-

plete and unique representation of the object to be analyzed. Therefore. the advances in
geometric modeling based on solid modeling approaches is a prerequisite to automated

finite element modeling. The second functionality needed is the ability to automatically

discretize a geometric model into a finite element mesh. As is briefly reviewed in the next
section, the recently developed algorithmic approaches to automatic mesh generation are

addressing this need. The third area of development, adaptive analysis techniques, are not
needed to be able to automatically perform an analysis, however, they are needed if robust

automated finite element modeling procedures are to be developed. The goal of adaptive

analysis techniques is to automatically improve a finite element discretization until the

solution obtained yield results to a prescribed degree of accuracy. The next section also
indicated the status of the development of these procedures.

The integration of geometric modeling systems with automated mesh generators is not

completely addressed by the passing of a geometry file. Specific geometric modeling
functionality is also needed to support the operations carried out by the geometric model-

ing system. The third section discusses an approach to the integration of geometric mod-

eling and automatic mesh generation that supports these needs.

The fourth section discusses the question of controlling the process of going from the

original geometric model to the finite element model. Central to this discussion is the form
of data structure needed to support this process and the geometric modeling functionality

needed. In particular, consideration is given data structures that will support the evolution

of an original geometric model to the idealized geometric model that is to be discretized

and then supporting the actual discretization process in a general manner.

Automated Finite Element Modeling Tools. Historically. the generation of finite element
meshes has been dominated by the application of mapped mesh generators that produce

what are commonly referred to as structured meshes. They have the disadvantage of

requiring the domain to be meshed to be partitioned into a set of mappable regions which

_elds the desired distribution of elements. The complexity of reducing the complex three-
dimensional domains available from today's geometric modeling systems into a set of

mappable regions has lead to an increased interest in the development of mesh generators
capable of automatically meshing the entire domain. For the purposes of this discussion.

an automatic mesh generator is an algorithmic procedure capable of producing a valid
finite element mesh in a domain of arbitrary complexity, given no input past the

computerized geometric representation of the domain to be meshed.

It is important to emphasize the fundamental operational difference between mapped

meshing procedures and the automatic mesh generation techniques that have been
considered to date. When mapped mesh generators are used. the geometry, of the object is

constructed by gluing together the individual, fixed topology', mesh patches. Therefore. the

geometric representation is explicitly defined in terms of those mesh patches. The map _
ping operators used to define the mesh within each of the mesh patches employ, in either

an explicit or implicit form. a set geometric representation for each mesh patch defined in

terms of the information available on the boundary of the mesh patch. The user is respon-

sible for defining a valid set of mesh patches, which implicitly define the geometric repre-

sentation and explicitly provide the geometry necessary for meshing to occur. The mesh

generators are. therefore, not concerned with the actual geometry of the object. This is.
however, not the case for an automatic mesh generator which is given a complete

geometric representation of the domain of interest and is responsible for decomposing.

without a priori information of the shape of the domain, it into a valid set of elements.

Since an automatic mesh generator must determine the limits of the domain it is to mesh.
the most compur.ationally intensive portion of these procedures are the carrying out of

geometric interrogations forthis purpose. Since mapped mesh generators need not carry.
out these interrogations, it is not surprising to find they are much more computationally

efficient at the expense of user productivity. Another important difference between these
two approaches is that all of the current automatic mesh generators produce unstructured

meshes and are best suited to producing simplex element topologies. This means triangu-
lar elements in two dimensions and tetrahedronal elements in three dimensions.

The three-dimensional automatic mesh generators that have been developed can be classi-

fled as being based on one of the following algorithmic approaches:

1.

.

3.

4.

point placement followed by triangulation [CAVE85]. [FEIL85]. [FIEL86].

[NGUY82].

removal of individualsubdomains [WOO84]. [WORD84].

recursive domain subdivision [SLUI82]. and

spatial decomposition followed by subdomain meshing [SHEP86], [YERR84].

[YERR85].

Although specific automatic meshing algorithms may overlap two of the approaches listed.

or may be implemented in specific steps where separate steps use different approaches to

carry, out the appropriate operations, the above classification provides a reasonably funda-

mental separation of algorithmic approaches. (See [SHEP87] for a more complete review
of automatic mesh generation.}

A large number of two-dimensional mesh generators based on point placement followed by

triangulation have been developed Isee [CAV_74]. [LEE84], [LO85] for example) using a

variety of approaches to place points and triangulate them into elements. The three-
dimensional procedures [CAVE85], [FEIL85], [FIEL86], [NGUY82] have followed a similar

development path. In each of these algorithms, specific heuristics are employed to place

points through the domain. The generation of the mesh using these points can either

employ a set of triangulation heuristics, or can employ the mathematical properties of

Delaunay triangulations [SIBS78], [WATSS1] to develop the meshing algorithm. Although

Delaunay properties are ideal for two-dimensional mesh generation, they are not fully

satisfactory in the three-dimensional case. Therefore, three-dimensional mesh generators

using Delaunay based procedures must be augmented with an appropriate set of heuristics

to avoid possible problems _FIEL85], [FIEL86], [SHEP87].

Automatic mesh generators based on subdomaln removal operate by removing individual
pieces form the domain one at a time until the domain is reduced to one remaining
acceptable piece. The majority, of the algorithms of this type remove individual elements

[SADE80], [SHEP86a]. [W00841, [WORD841. while others remove larger, but 'simple'

portions of the domain and then triangulate them using a different procedure [BYKA76].

[JOE86]. These procedures typically traverse the boundary of the object appl_ng a set of
heuristic operators to identify and then remove portions of the domain one at a time.

Although they have been heavily published, the development of automatic mesh genera-

tots based on recursive domain subdivision is a popular approach under consideration by a

number of CAD vendors. In these approaches the mesh is created by recursively splitting

the domain [SLUI82], until the subdomains represent individual finite elements. A specific

set of heuristics and geometric test are used to identify the 'splits' used to subdivide
objects.

Mesh generators based on spatial decomposition employ some specific decomposition

procedure to decompose, in a controlled manner, the domain into a set of simple cells and

then to triangulate the individual cells in a manner such that a valid finite element mesh

is generated. The procedures developed to date have relied on quadtree structures in two
dimensions [BAEH87]. [KELA86], [YERR83], and octree structures in three dimensions

[SHEP86], [SHEP86a], (YERR84]. [YERR85]. One of the key aspects of these procedures

is the manner in which geometric information is associated with those cells containing
portions of the boundary and how this information is used to generate the element mesh
in those cells [BAEH87]. [SHEP86a].

The limited experience available to date indicates that the amount of computation needed

to generate a mesh of a few thousand elements for a general three-dimensional geometry

will be of the same order of magnitude as a linear analysis carried out on that system.

Therefore. the computational efficiency, of these procedures is of critical importance. The

two measures of computational efficiency of importance are the time required by the given

3

algorithms to generate comparable meshes and.-even more importantly, the computational
growth rate of the mesh generator. Tests run to date on complex two-dimensional
geometries indicates that the implementation of various approaches yields speed
differences that vary by more than an order of magnitude. (The rest referred to are
proprietary to the company that ran the test and can not be presented here.}

The various algorithmic approaches also demonstrate different growth rates. The approach
with the greatest amount of theoretical results is Delaunay triangulation which in the
two-dimensional case indicate an Oqn log(log n)} . where n is the number of points, com-
putational time possible. (In two dimensions, the number of elements is of the same order
as the number of nodes [BOLS86].) Computational results of an implemented three-

dimensional algorithm gave O(n*'5/3) computer times [CAVE85]. (In the three-
dimensional case. the number of elements can be from Oqn) to O(n**2) [BOLS86].

However. it appears that in most practical cases the number of elements will be O(n}.)

The best computational growth, rate obtained thus far is linear. Oqnh [BAEH87]. [JOE86].
Joe and Simpson carried out a detailed study of the computational effort required for their
two-dimensional algorithm and demonstrated times that were linear and asymptotic with
one of the steps of the algorithm [JOE86]. The finite quadtree mesh two-dimensional
generator [BAEH87] also demonstrates a linear growth rate with the number of elements.
It is also anticipated that the finite octree mesh generator can operate in linear rime.
however, neither the analysis or numerical studies needed to confirm this have been

completed.

As the finite element technique becomes more heavily used by designers who do nor
possess extensive expertise in numerical analysis, there is not only a need to improve the 1

speed and robustness of the model generation procedures, but a need to insure that the
analysis results produced are of sufficient accuracy to be meaning/ml. As in the case of the
model generation process, increasing the robustness of the analysis to produce a prespeci-
fled degree of accuracy is best obtained through the development of automated procedures
for that purpose. This is the goal of efforts on the development of adaptive finite element
analysis procedures (see [BABU86] for a good overview of this areah

In an adaptive finite element analysis procedure, the solution results on a given mesh. in
combination with a knowledge of that mesh. are used to both estimate the accuracy of that
solution as well as how to best improve the mesh to efficiently obtain the level of accuracy

desired. The major components of such a system include:

l*

2.

3.

4.

finite element equation formulation and evaluation algorithms.
a posteriori error estimation techniques to estimate the discretization errors in
the current solution.
error indication, or alternatively, correction indicators to determine where and. in
the ideal case, how to improve the finite element discretization, and
mesh enrichment schemes to improve the finite element discretization as indi-
cated by the error or correction indicators.

Since adaptive finite element analysis employs a feedback procedure which requires solu-
tions to a sequence of related finite element equations, the techniques used for each of the
component portions of the system must be able to operate in an efficient manner. In

4

additionto beingableto efficiently solve related sets of finite element equations, the
development of these systems must consider the most appropriate mesh generation and
update procedures to be used with the various adaptive analysis approaches.

Substantial gains in the development of adaptive finite element analysis techniques have
been made in the past few years. However, it will be some time before they appear in
commercial systems. These procedures are critical to the future automation of finite ele-
ment modeling since they must be used to insure that the results obtained are meaning'ful.

Geometric Modeling Support forAutomatic Mesh Generation.As indicatedinthe previous
section,automatic mesh generatorsare geometricallydemanding. In particular,they re-

quire a large number of geometric interrogations,and. depending on the meshing al-

gorithrn,a largenumber of geometricmodel modificationstooperate.Therefore,they are

not wellsuitedto a staticinterfacewith geometric modeling systems in which the only

informationavailableto the mesh generatorisan output fileof the geometric representa-

tion[WILS87]. Assuming thata common format isused forthisfile.thisapproach has the
disadvantage of requiringthat allthe geometric modeling functionalityneeded by the

mesh generator be reproduced within the mesh generator. Assuming that this

functionalityalreadyexistswithinthe geometric modeling system, which istypicallythe

case.the development of thatcapabilityin the mesh generatorisa redundant effortthat
has to be repeatedforeach new geometry form to which the mesh generatorisinterfaced.

An alternative approach is to employ a dynamic interface in which the mesh generation
algorithms can interact directly with a geometric modeling system through a set of proce-
dures, to be referred to as geometric communication operators, that can perform specific
geometric interrogations and modifications. The definition of geometric communication
operators is being considered for geometrically-based applications [CAMI86]. as well as
those needed specifically for mesh generation [SHEP85]. The discussion below assumes a
dynamic interface between the automatic mesh generators and the geometric modeling
system. See reference [SHEP85] for a more specific discussion of the geometric communi-
cation operators needed to support the various automatic mesh generation approaches.

The complexity of the interface of an automatic mesh generator with a solid modeler is a
function of the algorithmic approach underlying the mesh generator. Mesh generation
algorithms that operate through geometric interrogation only require a simpler set of
geometric communication operators than is used by mesh generators that must both
interrogam and modify the geometric representation during the mesh generation process.
In general, the majority of computational effort required for automatic mesh generation is
spent in carrying out geometric communication operations. Since geometric interrogations
typically require much less computation than geometric modifications, mesh generators
requiring geometric interrogation are typically more efficient, on a per element basis.

Two of the four algorithmic approaches to automatic mesh generation discussed above
require geometric interrogation only. point placement followed by triangulation and spatial
decomposition followed by subdomain meshing. The other two. removal of individual sub-
domains and recursive subdivision, require both geometric interrogation and modification.
To better see this differentiation, consider the comparison of the interactions with a
geometric representation for both an element by element removal algorithm and the finite
octree approach. In the element by element removal process, topological and geometric

interrogations are used to look for a candidate feature to be carved off: geometric interro-
gations are used to see if that removal is valid: and finally the feature is removed. Since

the next element removal must consider the geometry, as it stands after the current

element is removed, the geometric model must be updated by the use of geometric modi-

fication operators to reflect this removal. In contrast, the primary geometry-related task in

the finite octree mesh generator is to determine how the boundary of the object interacts
with the appropriate sized octants in the tree. This information is obtained through

geometric interrogation only by intersecting the boundary entities of the object with the
appropriate boundary, features of the octants. The only other geometric communication

operators needed for this process and the rest of the meshing process are the interrogation

operators of point classification, the conversions between parametric and real coordinates.

and the conversion from real to parametric coordinates.

Geometrically-Based Finite Element Modeling. The first key to the integration of

geometric modeling and finite element modeling is the use of a general dam structure that
can properly house various geometric forms. As indicated above, the transfer of only

geometric data into the finite element modeling system does not address the geometric

modeling needs of finite element modeling. Therefore. the second key aspect of this

integration is the use of a general set of operators to support the geometric modeling
demands of the entire finite element modeling process.

Before discussing the data structures and geometric modeling functionality needed, it is

necessary to undekstand the process of generating a finite element model. This process
consist of the:

.

2.
3.

4.

5.

6.

definition of the domain to be analyzed.

specification of the partial differential equations to be solved.

specification of the analysis attributes.
specification of the numerical analysis control information.

specification of the mesh control information, and

generation of the finite element mesh.

The first three steps are concerned with the specification of the problem to be analyzed
and are entirely independent of the numerical analysis procedures used. The last three

steps are concerned with the specification and generation of the numerical analysis model.
There are a number of advantages that can be gained by separating the modeling process

into these distinct steps. The most obvious is the increased levels of integration possible

between geometric and finite element modeling procedures. Possibly the most important.
but least obvious, is that increasing the level of automation of the finite element modeling

process is only possible if there is a strict separation of these steps.

When considering the development of integrated, geometrically-based finite element mod-

eling procedures, it is important to realize that the geometric representation that is ac-
tually discretized into finite elements is often not the same as the original geometric

description that defines the object. It is common in finite element analysis to ignore

geometric details that are deemed unimportant to the analysis. Common geometric simpli-

fications of this type include removing small fillets, and filling small holes and pockets. It
is also common in finite element analysis to represent specific portions of the model with

reduced dimension entities. Common examples are to use only the 'mid-surface" of por-
tions of the model that are "small' in one direction compared to the other two. and to use
only the 'center-line" of portions of the model which are "small' in two directions. In these
cases, the finite element discretization is of those reduced order entities where the elimi-

nated dimensions are accounted for by the specification of 'section properties'.

There are two distinct steps in the finite element modeling process where these model
domain differences can be specified. They can be done during the specification of the
domain to be analyzed where the analyst would carry, out the geometric modeling opera-
tions necessary to insure that the geometric representation used in the remainder of the
finite element modeling process is that which is discretized into a finite element mesh.
This is the approach commonly taken tx_iay.

The other step where the domain differences can be defined is during the specification of
the numerical analysis attributes. In this case. those portions of the domain that are to be
ignored or represented with reduced order elements are simply flagged with the appro-
priate attribute information defining how it is t_ be modeled in the numerical analysis
model. It is then the responsibility of the finite element discretization procedures to

perform the operations necessary to have the meshing procedures generate the mesh
accounting for the domain differences. Although not commonly used procedures taking
this approach can drastically reduce the amount of effort required for the generation of
finite element models for some classes of problems [GREG87].

The previous section introduced the concept of geometric communication operators to
support automatic mesh generators. In addition to the operators needed for this function
[SHEP85], sets of operators are needed to define both the analysis and numerical model-
ing attributes needed for the completion of the analysis model [SHEP85a]. [SHEP86b].
Efforts are currently under way to identify the mapping from the specific operators de-
fined for finite element modeling [SHEP85], [SHEP85a] and those defined in the CAM-I
Applications Interface Specification [CAMI86]. The advantage of this approach is obvious.
it avoids the need to reproduce all the geometric modeling functionality of each geometry.
type within the finite element modeling system. This advantage is absolutely necessary, if
finite element modeling procedures are to be inter_aced with the various geometric model-
ing systems.

The data structures used in a geometrically-based finite element modeling system play a
critical role in the operation of the system. Since all geometrically complete representa-
tions can produce a boundary, representation [RIQU82], and a boundary representation
provides a level of abstraction that is independent of the specific geometric definition of
the boundary of the domain [WEIL85]. WEIL86]. it is ideally suited for storing geometric
representations for finite element modeling.

The combination of the topological information in a boundary representation and an appro-
priate set of geometric communication operators provides a generalized approach to the
integration of finite element modeling capabilities with geometric modeling systems. The
input to the finite element modeling software would be the topological representation of
the object independent of the specific geometric definition of the topological entities.
Although the topology contains no 'shape' information, it does contain a complete set of
connectivity information and also indicates the dimensionality of the portions of the

object. The finite element modeling functions can be easily structured to be controlled by
topological information calling the appropriate geometric communication operators to
carry out the specific geometric calculations and modeling operations needed. The applica-
tion of the geometric communication operators can also be keyed by topological informa-
tion. Therefore. the finite element modeling software can carry out all its tasks without
specific knowledge of the geometric representation.

There are a number of possible ways to group the finite element modeling data. The one
given herein represents the minimal number of data sets that provide a logical separation
of information needed for finite element modeling. The data sets include:

l°

2.
3.

The MODEL data set
The AI_rRIBUTE data set

The MESH data set

The MODEL da_a set contains the topological data. and points to the geometric informa-
tion that defines the domain to be meshed. The A_rRIBUTE data set contains both the

analysis attribute data (e.g.. material properties, boundary conditions, etc.) and the
analysis model control da_a. The MESH data set contains the finite element mesh gener-
ated for the model. The data structures are related through a well defined set of pointers

which provide the mechanisms through which all non-MODEL data is tied to the MODEL
and thus each other [SHEP86b].

The most fundamental data to the generation of a finite element model is the geometry.
As indicated above, a boundary-based MODEL data structure provides a general frame-
work for this data structure. There are a number of possible alternative boundary, struc-
tuFes that can be considered [WEIL85],[WEIL86], with the choice to be made based on a
trade-off between domain of geometries properly represented, storage, and need to search.
The most critical of these questions is domain of geometries represented. Since finite
element models commonly consist of combinations of three-dimensional (solid elements}.
two-dimensional {shell elements}, and one-dimensional (beam elements) it is desirable to

employ a MODEL representation that can house all three without the need for special
cases. The commonly used boundary representations for solid modeling systems can only
represent two-mainfold geometries which means that even a mesh of solid elements alone
would require special consideration. However, the recently developed radial-edge data
structure [WEIL86] can house combined solid, surface, and wireframe geometries in a
consistent manner. Therefore. it is ideally suited for the representation of the finite ele-
ment MODEL data structure [SHEP86b].

In addition to the hierarchy of geometric modeling entities, it is also desirable to employ a
hierarchy of finite element entities in the MESH data structure. It is used to define the
elements themselves. This is a departure from the way in which finite elements have
historically been defined (i.e.. an element of a specific type with a list of nodes which define
the connectivity). In such a hierarchy each finite element entity points to the lowest order
modeling topology entity which it is inherently a part {SHEP86b]. For example, a re-edge
which is on the surface of a region would point to the face on which it lies. rather than the

region itself.

The MESH data structure, with its hierarchy of finite element entities, may seem too

elaborate, perhaps even wasteful of storage. However. on closer inspection some distinct

advantages emerge. The most powerful advantages come from the links to the other data

structures. The major benefits for linking the finite element hierarchy to geometry, is as
follows:

o

2.

°

4.

It makes it possible to interrogate the finite element model using a geometric

enti_ as a key word for searching.
It provides a mechanism which supports mesh generation on the basis of topologi-

cally simple cells li.e., quadrilaterals, triangles, hexahedrons, etcJ providing a

direct procedure to represent all order elements without going back to the mesh

generator. All higher order fe-nodes can easily be placed precisely on the appro-

priate associated geometric entity.

It provides an organization for handling any type of finiteelement in a uniform

manner.

It provides direct access paths to higher order entities from lower order entities

which make it very convenient to do such things as bandwidth minimization,

postprocess the results of elements associated with a given set of nodes, etc.

Closin R" Remarks. The automated finite element modeling procedures currently under
development place severe demands on the interface to geometric modeling. It is no longer

satisfactory to simply pass a geometry file to the finite element modeling procedures, they

require a full set of geometric modeling functions. These needs can only be addressed by
the use of a dynamic interface of the type presented in the CAM-I Applications Interface

Specification [CAMI86]. To support such an approach in a general and modular sense,

future finite element modeling software should be driven by the topological information

available from a boundary representation. Since finite element models are typically non-

manifold, the boundary representation should be a complete non-manifold representation

like the radial-edge structure [WEIL86].

References

[BABU 86)

I. Babuska. O.C. Zienkiewicz, J. Gago and E.R. De A. Oliveria, Accuracy

Estimates and Adaptive Refinements in Finite Element Computations. John

Wiley and Sons. Chichester. 1986.

[BAEH 871

P°L. Baehmann. S.L. Wittchen. M.S, Shephard, K.R. Grice and M.A. Yerry",

Robust Geometrically Based Automatic Two-Dimensional Mesh Generation". TR.

86007. Center for Interactive Computer Graphics. RPI. Troy. NY. 1986. to

appear. Int. J. Num. Meth. Engng.°

[BOLS 86]

J.D. Bolssonnat and M. Tellaud. "A Hierarchical Representation of Objects: The

Delaunay Tree". Proc. Second Annual Symposium on Computatzonal Geometry,

ACM ,89791-194-6/8610600/260, 1986, pp. 260-268,

9

[BYKA 76]

A. Bykat, "Automatic Generation of Triangular Grids: I - Subdivision of General

Convex Subregions, II - Triangulation of Convex Polygons". Int. J. Num. Meth.

Engng., Vol. 10. 1976, pp. 1329-1342.

[CAMI 86]

"Applications Interface Specification (Restructured Version}". CAM-I Report R-

86-GM-01. January 1986.

[CAVE 74]

J.C. Cavendish. "Automatic Triangulation of Arbitrary Planar Domains for the
Finite Element Method". Int. J. Num. Meth. Engng.. Vol. 8. 1974. pp. 679-697.

[CAVE 85]

J.C. Cavendish. D.A. Field and W.H. Frey, "An Approach to Automatic Three-

Dimensional Mesh Genertion", Int. J. Num. Meth. Engng.. Vol. 21, 1985. pp.
329-347.

[DWYE 86]

R.A. Dwyer. "A Simple Divide-and-Conquer Algorithm for Constructing Delaunay
Triangulation in O In log log n} Expected Time". Proc. Second Annual ACM

Symposium on Computational Geometry, ACM 0-89791:1941618610600]276. 1986.

pp. 276-284.

[FIEL 85]

D.A. Field and W.H.

Research Publication

Warren. MI. 1985.

[FIEL 86]

Frey, "Automation of Tetrahedral Mesh Generation".
GMR-4967, General Motors Research Laboratories.

D.A. Field. "Implementing Watson's Algorithm in Three Dimensions", Proc.

Second Annual Symposium on Computational Geomerr% ACM 0-89791-194-6/
86/0600/246. 1986, pp. 246-259.

[GREG 87]

B.L. Gregory and M.S. Shephard. "The Generation of Airframe Finite Element

Models Using an Expert System", Engineering with Computers. to appear.

[JOE 86]

B. Joe and R.B. Simpson, "Triangular Meshes for Regions on Complicated

Shapes". lnt. J. Num. Meth. Engng.. Vol. 23. 1986, pp. 751-778.

[KELA 86]

A. Kela. R. Perucchio and H.B. Voelcker. "Towards Automatic Finite Element

Analysis". Computers in Mech. Engng.. July 1986. pp. 51-71.

10

[LEE 84]
Y.T. Lee.A. de Penning_onand N.K. Shaw."AutomaticFinite ElementMesh
Generation from Geometric Models A Point-BasedApproach", ACM

Transactions on Graphics, Vol. 3. 1984, pp. 287-311.

[LO 85]

S.H. Lo. "A New Mesh Generation Scheme for Arbitrary. Planar Domains". Int.

J. Num. Meth. Engng.. Vol. 21. 1985. pp. 219-249.

[NGUY 82]

Nguyen-Van-Phai. "Automatic Mesh Generation with Tetrahedron Elements".
Int. J. Num. Merh. Engng., Vol. 18, 1982. pp. 273-289.

[RIQU 82]

A.A.G. Riquicha and H.B. Voelcker, "Solid Modeling:. A Historical Summa_ and

Contemporary Assessment", IEEE Computer Graphics and Applications Vol. 3.

No. 2. 1982. pp. 9-24.

[SADE 80]

E.A. Sadek. "A Scheme for the Automatic Generation of Triangular Finite

Elements", Int. J. Num. Merh. Engng, Vol. 15, 1980, pp. 1813-1822.

[SIBS 78l

R. Sibson. "Locally Equiangular Triangulations". The Computer Journal Vol. 21.

No. 3. 1978, pp. 243-245.

[SLUI 82]

M.L.C. Sluiter and D.L. Hansen, "A General Purpose Two and Three

Dimensional Mesh Generator", Computers in Engineering. Vol. 3. L.E. Hulbert.

Ed.. Book No. G00217, ASME, 1982, pp. 29-34,

[SHEP 85]

M.S. Shephard, "Finite Element Modeling within an Integrated Geometric

Modeling Environment: Part I - Mesh Generation", Engineering with Computers`

Vol. 1. pp. 61-71.

[SHEP 85a]

M.S. Shephard. "Finite Element Modeling within an Integrated Geometric

Modeling Environment: Part II - Attribute Specification. Domain Differences, and

Indirect Element Types". Engineering with Computers, Vol. i. pp. 72-85. 1985.

[SHEP 86]

M.S. Shephard. M.A. Yen'y and P.L. Baehmann. "Automatic Mesh Generation

Allowing for Efficient A Priori and A Posteriori Mesh Refinements". Computer
Mech. in Appl. Mech. and Engng. Vol. 55. 1986. pp. 161-180.

[SHEP 86a]

M.S. Shephard. K.R. Grice and M.K. Georges, "Some Recent Advances in
Automatic Mesh Generation", Modern Methods for Automating Finite Element

Mesh Generation. K. Baldwin. Ed.. ASCE. NY. 1986. p. 1-18.

11

[SHEP 86b]

M.S. Shephard and P.M. Finnigan. "Integration of Geometric Modeling and

Advanced Finite Element Preprocessing". to appear. Finite Elements inAnalysis

and Design.

[SHEP 87]

M.S. Shepherd. "Approaches to the Automatic Generation and Control of Finite
Element Mesh". TR-87005. CICG. RPI. Troy. NY. submitted to Applied
Mechanics Review.

[WEIL 85]

K.J. Weiler. "Edge Based Data Structures for Solid Modeling in Curved-Surface
Environments _. IEEE Computer Graphics and Applications Vol. 5. No. 1.

January 1985. pp. 21-40.

[WEIL 86]

K.J. Wefler. "Topological Structures for Geometric Modeling". PhD Thesis.
CICG. TR-86032. Rensselaer Polytechnic Institute. Troy. NY. 1986.

[WATS 81]

D.F. Watson. "Computing the n-Dimensional Delaunay Tessellation with

Applications to Voronoi Polytbrpes ". The Computer Journal Vol. 24. No. 2. 1981.

[WILS 87]

P.R. Wilson. "Data Transfer and Solid Modeling". Geometric Modeling [or CAD

Applieation_ M.d. Wozny. H.W. McLaughlin and J.L. Encarnaeao. Eds.. North

Holland. to appear.

[WOO 87]

T.C. Woo and T. Thomasa. "An Algorithm for Generating Solid Elements in

Objects with Holes _. Computers and Structures. Vol. 18. No. 2. pp. 333-342.

[WORD841
B. Wordenweber. "Finite Element Mesh Generation". Computer-Aided Design.

Vol. 16. 1984. pp. 285-291.

[YERR 831

M.A. Yerry and M.S. Shepherd. "Finite Element Mesh Generation Based on a

Modified-Quadtree Approach", IEEE Computer Graphics and Applications. Vol.
3, No. 1, 1983. pp. 36-46.

[YERR 841

M.A. Yerry and M.S. Shepherd. "Automatic Three- Dimensional Mesh

Generation by the Modified-Octree Technique", Int. J. Num. Meth. Engng.. Vol.

22. 1984. pp. 1965-1990.

[YERR 85]

M.A. Yerry and M.S. Shepherd. "Automatic Three- Dimensional Mesh

Generation for Three-Dimensional Solids". Computers and Structures. Vol. 20.

1985. pp. 173-180.

12

_ _ ',i

j/ J

N88-19113 :

APPROACHES TO THE AUTOMATIC GENERATION

AND CONTROL OF FINITE ELEMENT MESHES

Mark S. Shephard

Center for Interactive Computer Graphics

Rensselaer Polytechnic Institute

Troy, NY 12180-3590 USA

ABSTRACT

This review paper discusses the algorithmic approaches being taken to

the development of finite element mesh generators capable of

automatically discretizing general domains without the need for user

intervention. The paper demonstrates that because of the modeling

demands placed on a automatic mesh generator, all the approaches taken

to date produce _unstructured meshes. Consideration is also given to

both a priori and a posteriori mesh control devices for automatic mesh

generators as well as their integration with geometric modeling and

adaptive analysis procedures.

INTRODUCTION

The generation of finite element models has historically been one of

the drawbacks to the widespread use of the analysis technique. Over

the past fifteen years, code developers have addressed this deficiency

by producing stand alone finite element preprocessing systems for the

generation of finite element models. These systems typically employ a

number of mesh generation techniques in an interactive graphic

framework that allows the user to define the domain and mesh for the

problem at hand. During that same period of time, other developers

were constructing interactive graphics-based geometric modeling

systems. The early versions of these systems simply computerized the

standard drafting processes and were used almost exclusively for

making engineering drawings for the shop floor. It was quickly

realized that there is a large potential for directly employing the

information available in a geometric modeling system for a variety of

-i-

applications such as machining and engineering analysis. However, the

early systems that simply computerized the drafting process did not

contain all the geometric information needed to allow applications to

operate automatically. Therefore, the more recent geometric modeling

systems, commonly referred to as solid modelers [1-3], employ complete

and unique geometric representations. These systems contain all the

geometric information needed to allow any geometrically controlled

operation to be automated.

Since the generation of a finite element mesh is a geometrically

controlled process, it is possible to automate the mesh generation

process when the geometry of the object is defined in a solid modeling

system. There are three reasons why such capabilities are not yet

commonly available. The first is the lack of mesh generators capable

of discretizing general domains without the need for extensive user

interaction to partition the domain into meshable regions. The second

is the lack of the geometric modeling support capabilities needed by

automatic mesh generators to interrogate and, for some algorithms, to

modify the geometric representation of the solid. These modeling

capabilities typically exist within the modeling system itself, but

are not available in a form that they can be easily separated from the

modeler and used by an applications procedure such as a mesh

generator. The third reason is the inability of finite element

analysis programs to automatically modify the finite element

discretization so that the analysis results yield a prescribed level

of accuracy. This necessitates the need for current users to specify

mesh control information to yield the type of element distribution

that, based on their knowledge and experience, should yield the

desired accuracy.

The purpose of this paper is to discuss the progress that has been

made in addressing these three needs. The majority of the paper is

devoted to the algorithmic approaches to automatic mesh generation

that are currently under development, and the techniques available to

control the distributions of elements throughout the domain of the

object. As discussed in the third section,the integration with

-2-

geometric modeling systems is much more than the simple passing of

geometric information, it also includes the geometric modeling

functionality needed for the automatic mesh generators to operate.

Consideration is also given to the use of these procedures in adaptive

finite element analysis. Adaptive analysis procedures promise to

provide the analysis functionality needed to assess and control finite

element discretizations to provide the level of accuracy prescribed.

ALGORITHMIC APPROACHES TO AUTOMATIC MESH GENERATION

In recent

dominated

what are

generators

controlled

generator.

years, the generation of finite element meshes has been

by the application of mapped mesh generators that produce

commonly referred to as structured meshes. These mesh

[4-7] have the advantage of being able to produce well

meshes within the individual 'patches' passed to the mesh

They have the disadvantage of requiring the domain to be

meshed be partitioned into a set of mappable regions which will yield

the type of mesh control desired. Since the majority of finite element

models constructed in the past were produced independently of any

computerized geometric model, it was convenient to define the object

in a bottom-up fashion in terms of mappable mesh patches. However, the

complexity of reducing the complex three-dimensional domains available

from geometric modeling systems into a set of mappable regions has

lead to an increased interest in the development of mesh generators

capable of automatically meshing the entire domain. For the purpose of

this discussion, an automatic mesh generator is an algorithmic

procedure capable of producing a valid finite element mesh in a domain

of arbitrary complexity given no input past the computerized geometric

representation of the domain to be meshed.

Before discussing the specific algorithmic approaches to automatic

mesh generation, it is important to emphasize the fundamental

operational difference between mapped meshing procedures and the

automatic mesh generation techniques that have been considered to

date. When mapped mesh generators are used, the geometry of the object

is constructed by gluing together the individual, fixed topology,

-3-

mesh patches. Therefore, the geometric representation is explicitly

defined in terms of those mesh patches. The mapping operators used to

define the mesh within each of the mesh patches employ, in either an

explicit or implicit form, a set geometric representation for each

mesh patch defined in terms of the information available on the

boundary of the mesh patch. The user is responsible for defining a

valid set of mesh patches, which implicitly define the geometric

representation and explicitly provide the geometry necessary for

meshing to occur. The mesh generators are, therefore, not concerned

with the actual geometry of the object. This is, however, not the case

for an automatic mesh generator which is given a complete geometric

representation of the domain of interest and is responsible for

decomposing, without a priori information of the shape of the domain,

it into a valid set of elements. Since an automatic mesh generator

must determine the limits of the domain to be meshed, the most

computationally intensive portion of these procedures are the carrying

out of geometric interrogations for this purpose. Since mapped mesh

generators need not carry out these interrogations, it is not

surprising to find they are much more computationally efficient,

however, at the expense of user productivity.

Another important difference between these two approaches is that all

of the current automatic mesh generators produce unstructured meshes

and are best suited to producing simplex element topologies. This

means triangular elements in two dimensions and tetrahedral elements

in three dimensions. Although a number of algorithm developers have

successfully implemented two-dimensional algorithms to produce

acceptable quadrilateral meshes, it is not likely that procedures to

create acceptable all hexahedronal meshes for general

three-dimensional domains will be easy to produce. (There is a simple

subdivision procedure to convert a tetrahedral mesh into an all

hexahedral mesh [8], but the shape of the elements tend not to be

satisfactory.) Although some effort is under way to develop all

hexahedral meshes automatically, there are good reasons to assume they

are not going to be overly successful. It is because hexahedral

elements are reasonably sensitive to element shape and any automatic

-4-

mesh generator producing them is unlikely to be able to control the

shape adequately. The other possibility is to generate a mesh with a

mixture of element types with as many hexahedronal elements as

possible. However, the need to match the faces of elements to insure

inter-element continuity means that a number of element shapes would

have to be used including a pyramid element and that the percentage of

hexahedron that would be produced in general geometries may not be

high.

For some classes of problems analyzed by the finite element method,

the use of various polynomial order tetrahedron is considered quite

acceptable. However, in other problem classes, particularly stress

analysis, users have a strong bias against these elements. The major

reason for this concern is that the majority of tetrahedral elements

in analysis packages were linear displacement; and thus constant

stress, elements which are well known to perform poorly in these

classes of problems. Recently, due primarily to the push for the

availability of automatic mesh generators, code developers have been

adding higher order tetrahedron elements to their element libraries.

Although not yet heavily tested, initial experience indicates that the

use of second order tetrahedron elements in conjunction with automatic

mesh generators will provide a cost effective means of performing

stress analyses of general geometries. Additional development of

tetrahedronal element types will be needed to fully address the use of

these elements for other analysis classes. For example, the use of

displacement-based tetrahedral elements for incompressible problems

leads to the application of too many constraint equations often

yielding a severely over constrained system of equations.

The automatic mesh generating procedures considered in this section

are fully three-dimensional or the extension from the existing

two-dimensional procedure to a three-dimensional procedure appear

possible. Therefore, no attempt is made to provide a complete

bibliography of papers on automatic mesh generation, most of which are

two-dimensional. Instead effort is concentrated on those papers that

consider three-dimensional techniques, making reference to selective

-5-

early papers that are relevant. For purposes of this discussion, the

algorithms that have been developed will be classified as being based

on one of the following algorithmic approaches;

i. point placement followed by triangulation,

2. removal of individual subdomains,

3. recursive subdivision of the domain, and

4. spatial decomposition followed by subdomain meshing.

Although specific automatic meshing algorithms may overlap two of the

approaches listed, or may be implemented in specific steps where

separate steps use different approaches to carry out the appropriate

operations, the above classification provides a reasonably fundamental

separation of algorithmic approaches.

Point Placement Followed by Domain Triangulation

In this approach, the generation of the element mesh is carried out in

two distinct steps. The first step is to place points throughout the

domain of interest in a manner such that during the second step, the

triangulation of the points into an element mesh, the desired mesh

gradations and representation of the domain is obtained. As done in

the early survey on mesh generation [9], any mesh generation process

can be viewed as carrying out these two steps. However, this

subsection is only concerned with algorithmic approaches that contain

them as two distinct operational steps.

The first attempts to develop mesh generation procedures using these

approaches concentrated on the automation of the second step on

two-dimension domains [10]. Even in today's three dimensional

procedures [ii], this is the better understood of the two steps. The

early two-dimensional procedures [10,12] employed ad'hoc rules to

determine how to connect points together to create triangular

elements. A properly constructed set of rules is capable of producing

a well controlled mesh within a set of points, but the majority of the

early procedures required extensive searching and a large number of

-6-

checks, many more than needed in an optimal triangulation algorithm.

In addition, it was difficult to develop a set of triangulation rules

that would insure the elements generated satisfy a given shape

criteria. This would indicate that the extension to three-dimensions

could be difficult and likely to be computationally intensive. One

three-dimensional rule-based procedure [13], which is an extension of

the point surrounding concept presented in [10], has been developed.

In this approach, the concept of surrounding a given point with

triangular elements is replaced with surrounding a line between two

points with elements and then to move on to another line until the

mesh is complete. Given a line connecting two points this procedure

will find a near-by point to form a triangular plane. This triangular

plane serves as a face of a tetrahedron of the first element which is

defined by another near-by point selected to complete it. One of the

two triangular faces of the tetrahedron that use that edge is selected

as the base triangle for the next tetrahedron. This process is

continued until the line is surrounded at which time a new line is

selected for surrounding.

Most of the recent effort in the development of procedures to produce

elements given a set of points employ the properties of the geometric

constructs of Dirichlet tessellation and, more importantly for mesh

generation, the dual Delaunay triangulation of a given set of node

points. Cavendish, et al. [ll] gives an interesting account of the

history of these procedures in the mathematics literature and their

more recent use for the purposes of finite element mesh generation.

The basic property of a Delaunay triangulation in two dimensions that

makes it appropriate for use in mesh generation is the resulting set

of triangles is as close to equilateral as possible [14]. More

specifically, the basic property of a Delaunay triangulation is that

there are no points inside the circum-circle defined by the three

corners of the triangles in two dimensions and no points inside the

circum-sphere defined by the four corners of the tetrahedron in three

dimensions. This distinction is of critical importance since this

property does correspond to well shaped, as compared to an equilate

triangle, elements in two dimensions, but does not insure well sha_

-7-

elements in three dimensions, as compared to an equilateral

tetrahedron. As indicated below, this does have an important impact on

the development of a Delaunay based three-dimensional mesh generator.

There are a number of algorithmic approaches to the construction of a

Delaunay triangulation. A currently popular approach is a version of

an algorithm proposed by Watson [15] based on the property that in a

Delaunay triangulation there are no node points on the interior of the

circle defined by the three nodes of any of the triangles. The mesh

generation algorithm of Cavendish, et al. [ii] uses this property

directly by constructing the mesh by a node insertion procedure. Given

a Delaunay triangulation for a subset of the total set of nodes, one

of the remaining nodes is considered. The circum-circles of the

existing triangles are tested to see which contain the new node. These

triangles are flagged for deleting from the mesh (Fig. la) which

creates a unfilled polygon with a single internal node. It can be

shown that the Delaunay triangulation including the new node is simply

constructed by connecting all the vertices of the unfilled polygon to

the new node (Fig.lb) . This process is continued until the mesh is

complete.

It is important to note that the triangulation produced by a Delaunay

process represents the convex hull of the points used. This means

specific consideration must be given when the domain to be meshed in

not convex. This concern is easily addressed by rejecting elements

that are not within the domain of interest if the original set of

nodes are placed such that no element edges or faces are generated

that pierce the boundary of the domain. It is possible to do this by

the proper placement of points exterior to the domain when starting

the triangulation process [ll].

The development of algorithmic procedures for the placement of points

such that the desired mesh gradations are created, and poorly shaped

elements are not created because of poor point placement, is an

important part of using a Delaunay procedure for finite element mesh

generation. Cavendish [12] has presented a good two-dimensional scheme

-8-

that spreads points based on node point density factors which are

specified in user defined regions. Another scheme for point placement

based on the primitives in constructive solid modeling has been

presented by Lee, et al. [16]. In this algorithm, the points are

uniformly placed in each of the two-dimensional primitives used in the

definition of the object. Since the shape of a primitive is well

understood, this is a simple task. After the primitives are combined

through the Boolean operations, a procedure to selectively eliminate

selected points in the portions of the domain that overlap is applied

to insure the creation of a mesh of the desired mesh density. Recently

Lo [17] proposed the use of a simple ray firing technique in which

points are placed along the rays when the ray is interior to the

object and places nodes at the points where the rays enter and exit

the domain. It is important to note that whatever technique is used to

place points, it should properly consider the boundary of the domain,

placing points so that the resulting finite element model properly

represents the domain of the object.

Although the basic concept of Delaunay triangulation is directly

extendible to three, and higher dimensional domains, its use for

automatic three-dimensional mesh generation requires special

consideration. This is because there is no guarantee that the

resulting elements will have a satisfactory shape in terms of the

ratio of volume to surface area. In fact it is possible to create zero

volume tetrahedron [11,18,19] within a three-dimensional Delaunay

triangulation. Dealing with the unacceptable element shapes, referred

to as slivers [11,18,19], requires special considerations, taking a

three-dimensional automatic meshing algorithm past that of basic

Delaunay procedure. As an example of a Delaunay-based

three-dimensional mesh generator that has considered these factors, a

brief summary of the one such procedure [18,19] is:

i. Define a bounding box for the domain of interest and fill

it with regular icosahedron following a specific procedure

[18,19].

2. Discard all points belonging to that set of icosahedron

-9-

that fall outside the object to be meshed. The remaining

set of points are referred to as the preliminary nodes.

3. Use Watson's algorithm to construct a Delaunay

triangulation of the preliminary nodes. Since the

triangulation defines the convex hull of the points,

discard all tetrahedron whose centroid is outside the

domain of the object.

4. Eliminate the nodes, and associated tetrahedron, that are

used to define any of the element face triangles that lie

on the exterior of the triangulation produced in step

three. (The exterior triangles are those that are used by

only one element.)

5. Generate a set of nodes on the boundary of the original

object. This includes nodes at model vertices, along model

edges and on model faces.

6. Using watson's algorithm, insert these nodes into the

Delaunay triangulation. Again discard any tetrahedron whose

centroid falls outside the domain of the object.

7. Calculate the shape measure for all elements within the

triangulation. A good measure is the ratio of the radius of

the inscribed sphere to circumscribed sphere, normalized to

the ratio of a regular tetrahedron [19].

8. Collapse out the unacceptable surface tetrahedron, slivers,

that can be eliminated.

9. Apply the sliver removal procedures described in [19] to

eliminate all remaining sliver elements.

Mesh Generation Based on Sub-Domain Removal

Automatic mesh generation procedures in this group operate by removing

individual pieces from the domain one at a time until the domain is

reduced to one 'remaining acceptable piece. The majority of algorithms

based on this approach remove individual elements one at a time

[20-24] while others remove larger, but 'simple' portions of the

domain and then triangulate these individual pieces using a different

procedure [25-27].

-i0-

Sub-domain removal meshing procedures typically employ a boundary

representation of the domain and operate by searching for entities of

specific topological type that satisfy a set of connectivity and

geometric requirements. One of the set of entities that satisfy the

given requirements is used as the base entity for a geometric removal

operation that carves off

looking for and removing

domain remaining until it

Mesh generators based on

a portion of the domain. The process of

a new piece is then again applied to the

is reduced to a single acceptable piece.

this approach often employ a number of

operators, applied in a hierarchic manner, and attempt to consider the

influence of a current choice on future removal operation selections.

As an example, consider the two basic element removal operators used

by woo and Thomasa [21] to mesh three-dimensional domains without

voids. (A third operator is used if voids are present.) The first

operator, VERTEX_REMOVAL is applied by searching the object for

vertices with only three edges coming into it. Any such vertex that

satisfies a set of geometric interference requirements is then removed

from the object. The removal of a vertex carves a tetrahedron from the

object (Fig. 2a). In cases where all vertices have more that three

vertices, a second operator, EDGE REMOVAL, is applied. In this case, a

tetrahedron containing the selected edge is carved from the object

(Fig. 2b). Since this operation reduces the number of edges connected

to two of the vertices by one each, it eventually reduces the

complexity of the object until the first operator can be applied

again.

A topologically-based element by element removal procedure appears

ideally suited for the construction of optimal h-p finite element

meshes where coarse, exponentially graded meshes are desired [28,29].

A procedure under development for the generation of such meshes [24]

employs four meshing operators to produce meshes in simply connected

two-dimensional domains (Fig. 3). The first operator,

SINGULARITY_REMOVAL, is used to isolate the locations of all possible

singularities so that the proper set of elements can be placed around

-ii-

the singularity. The remaining operators, VERTEX_REMOVAL,

VERTEX_REMOVAL_WITH_EDGE SPLIT, and EDGE_REMOVAL, are used to mesh the

rest of the domain.

Since the amount of computation required for the application of each

removal operation is high, these procedures are not computationally

efficient for the creation of a fine mesh. However, the use of such

procedures to remove large pieces of the object which, can then be

quickly filled with with elements, can provide a computationally

efficient method to produce meshes to any level of fineness. An

example of such an approach is the algorithm of Joe and Simpson [26]

which first

regions, and

quasi-uniform

constructed.

reduces a two-dimensional domain into simply connected

then reduces these to convex polygons. An optimal

triangulation of each convex region can then be quickly

The development of an algorithm that decomposes the domain into large

chunks by removing them one at a time is an attractive way to consider

the automation of the current methods of mesh generation where the

user interactively decomposes the domain of interest into mappable

regions and invokes a mapped mesh generator. The difficulty in

developing such an approach is the identification and implementation

of a set of rules that would examine a geometry to determine how to

decompose it into mappable regions that will yield the type of mesh

gradations desired as well as providing a satisfactory mesh topology.

An example of such an approach for two-dimensional geometries is shown

in figure 4. This procedure (an unpublished prototype program by the

author) first invokes a set of 'rules' to identify the regions the

should, based on the mesh control information and the geometry, be

removed as a mappable region. It then applies another set of rules to

decompose the remaining domain into acceptable shaped regions to be

filled by a mapped mesh generator. (Only the second set of rules were

used on the example in figure 4.) The main complexity in the

development of such an approach is the development of a set of rules

that can 'look' at the computerized representation of the entire

geometry and decompose it in a manner simular to that a human produces

-12-

when they look at the geometry on a screen. It is interesting to note

that in the development of the program used to generate the simple

example shown in figure 4, several finite modeling experts were given

example geometries and asked to define, without actually meshing them,

the mesh regions they would define to mesh a given set of geometries.

In most cases, they laid out substantially different regions. An

attempt is currently under way [27] to develop a three-dimensional

procedure taking a similar approach. The work is using the concepts of

primitive identification and feature recognition as applied to

geometric modeling based on constructive solid geometry (CSG) [1,2].

Mesh Generation by Recursive Subdivision

The recursive subdivision mesh generators [30,31] operate by the

repeated splitting of a domain into simplier parts until the

individual parts are single elements, or, possibly, simple regions in

which elements can be quickly generated. As in the sub-domain removal

procedures, this class of mesh generator typically operates off a

boundary representation of the domain to be meshed, looking for

candidate topological features meeting specific connectivity and

geometric requirements, selecting a specific splitting operation, and

updating the geometric and topological representations of the two

sub-domains created by the split.

A simplified description in the steps involved in the generation of a

three-dimensional finite element mesh by such an approach [30] is:

1. Reduce all the faces of the object to simply connected

faces by the introduction of splitting curves from interior

loops to the exterior loop. (Interior loops can connect to

other interior loops so long as one in the chain of

connected interior loops is then connected to the exterior

loop.)

2. Place node points along the various edges in the model in a

manner to reflect the mesh gradations desired.

Topologically this operation is equivalent to introducing

-13-

vertices at various locations along edges and splitting the

edges into multiple edges at those vertices.

3. Triangulate each of the surface patches into a set of

surface triangles employing the nodes introduced in step 2.

The surface triangulation is carried out by the recursive

splitting of the face as follows;

* a split line is introduced between two nodes on the

boundary of the face that validly splits the face into

tWO,

* nodes are introduced along this split line based on the

nodal spacing of the edges that it runs between,

* the splitting of all sub-faces is continued until they are

all reduced to individual triangles.

4. Using the element edges introduced on the faces, determine

a splitting face that splits the object into two

sub-objects.

5. Mesh the splitting face using Step 3.

6. Repeat Steps 4 and 5 until each of the remaining subdomains

represents a single element.

Spatial Decomposition Followed by Subdomain Meshing

The basic idea behind these approaches is to use an efficient

procedure to decompose, in a controlled manner, the domain of interest

into a set of simple cells and to then mesh the individual cells in

such a manner that the resulting mesh is valid. The one spatial

decomposition approach that has been applied to mesh generation is the

quadtree in two-dimensions [32-35] and the octree in three-dimensions

[24,36-38]. In an octree representation, an object is represented as

the union if a set of disjoint cubes of various size which are

derived from the recursive subdivision of parent cubes into eight

octants. The entire structure is stored in a hierarchic tree [39,40].

Since the size of octree cubes desired for use in finite element mesh

generation are large with respect to the geometric details of the

object, it is necessary to deal in a specific manner with those octree

cubes that contain the boundary of the object and are neither fully

-14-

inside nor outside the object.

One approach to building a three-dimensional mesh generator using this

basic tree representation is the finite octree, formerly

modified-octree, technique [24,36-38]. (The paper by Baehmann, et al.

[34], although limited to the two-dimensional finite quadtree,

formerly modified-quadtree, gives the most complete description of the

approach outlined below.) Since the proper representation of the

topological features that define the boundary of the object is

necessary to insure the validity of the mesh, the finite octree is

defined by the insertion of topological entities hierarchically from

the bottom. The vertices are first inserted into the tree being placed

in the proper sized octants. Next the edges are inserted, in discrete

form, into the proper sized octants. Edge insertion is carried out by

traversing the edge starting from its first vertex, which already

exist in its appropriate sized octant. The intersection where the edge

leaves that octant is found and associated with that discrete segment

as well as a pointer back to the original edge it came from. The

intersection location where it exited the first octant is the starting

point of the discrete segment of the second octant, the size of which

is controlled by the mesh control information applied to the edge. The

intersection where it exits that octant is found and the segment

stored. This process is continued until the edge's second vertex is

found. The faces of the object are then inserted in discrete form

using the existing edge information and the intersections of the sides

of octants with the surface patches making up the face. The definition

of the octants containing the boundary of the object, referred to as

cut octants, is completed by qualifying which side of the discrete

boundary existing in the octant is inside the object. This operation

requires a specific set of geometric checks. The interior octants

within the finite octree are then quickly filled by a simple tree

traversal process.

The finite element mesh is then generated within each of the octants

using the tree to pass octant face mesh information required to insure

a compatible mesh. The tetrahedronization scheme used for interior

-15-

octants need only deal with a shape that is topologically a cube with

nodes at the corner and the possibility of mid-side and mid-face nodes

if the neighboring octants are one level finer as is allowed in the

mesh generator. The tetrahedronization of the boundary octants is more

complex in that it employs the above information plus the discrete

boundary information and specific geometric interrogations of the

original description of those entities when needed. A nodal

repositioning procedure to improve the shapes of the elements can also

be invoked. Figure 5 shows an example mesh generated with this

procedure.

Speed of Automatic Mesh Generators

The limited experience available to date indicates that the amount of

computation needed to generate a mesh of a few thousand elements for a

general three-dimensional geometry will be of the same order of

magnitude as a linear analysis carried out on that system. Therefore,

the computational efficiency of these procedures is of critical

importance. The two measures of computational efficiency of importance

are the time required by the given algorithms to generate comparable

meshes and, even more importantly, the computational growth rate of

the mesh generator. Tests run to date on complex two-dimensional

geometries indicates that the implementation of various approaches

yields speed differences that vary by more that an order of magnitude.

(The test referred to are proprietary to the company that ran the test

and can not be presented here.)

The various algorithmic approaches also demonstrate different growth

rates. The approach with the greatest amount of theoretical results is

Delaunay triangulation which, in the two-dimensional case [41],

indicate an O(n log(log n)), where n is the number of points,

computational time as being possible. (In two-dimensions the number of

elements is of the same order as the number of nodes [42].)

Computational results of an implemented three-dimensional algorithm

gave O(n*,5/3) computer times [ii]. (In the three-dimensional case,

the number of elements can be from O(n) to O(n**2) [42]. However, it

-16-

appears

O(n).)

that in most practical cases the number of elements will be

The best computational growth rate obtained thus far is linear, O(n),

[26,34]. Joe and Simpson carried out a detailed study of the

computational effort required for their two-dimensional algorithm and

demonstrated times that were linear and asymptotic with one of the

steps of the algorithm. The finite quadtree two-dimensional [34] and

finite octree three-dimensional mesh generators also demonstrates a

linear growth rate with the number of elements.

A Priori Control of Element Distributions

In addition to the ability to generate a valid mesh for any geometry,

automatic mesh generators must permit the types of mesh gradations

necessary to produce efficient finite element models. Ideally, the

mesh control devices available allow for the convenient specification

of both a priori and a posteriori mesh control information. A priori

mesh control devices are used to specify the distribution of elements

in the initial finite element model, while a posteriori mesh control

devices are used during an adaptive analysis process [43] to improve

the mesh as dictated by the results on the current mesh.

The devices available to control the distribution of elements

throughout the domain of an object is at least partly a function of

the mesh generation algorithm used. The ease with which particular

forms of mesh control can be exercised is a function of both the mesh

generation algorithm and its implementation.

Since the basic input to an automatic mesh generator is a geometric

representation, any a priori mesh control device must be tied to the

geometric representation. This means that a priori mesh control can

also be a function of the particular geometric modeling approach used.

For example, mesh control information could be tied to the individual

primitives used is a constructive solid geometry modeling system and

thus stored as attribute information tied to that primitive in the

-17-

binary tree used to store the primitives and Boolean operations

carried out on them [1]. Although this may be a natural approach for

use with constructive solid geometries and mesh generators designed to

operate with such modelers [16], it is not general, and it most likely

does not provide the type of mesh control that users of a priori mesh

control devices would expect. A more general method to define mesh

control information is to tie this information to the model through

the topological entities in the boundary representation of the object.

This method has the advantage of allowing for convenient specification

of mesh gradations by assigning mesh control information to the

individual vertices, edges, faces and regions that make up the domain

to be meshed in such a manner that any type of mesh gradations that

are desired and can be handled by the mesh generator will be produced.

It is also a reasonably general approach since an object has a unique

boundary representation which can be produced from any of the

evaluated solid geometric modeling approaches [1,2,44,45]. In

addition, most of the geometric modeling systems provide the ability

to produce the boundary representation of the object no matter which

solid modeling approach is used.

Automatic mesh generators that operate by removal of individual

subdomains [20-26] and recursive subdivision [30,31] rely on boundary

information and are well suited to employ mesh control information

tied to the edges of the boundary. They are typically less suited for

mesh control information defined in terms of the faces and regions

that make up the domain of the object. However, it is possible with

the appropriate implementation considerations to reflect that type of

mesh control information in the mesh generation process.

The mesh control devices for automatic mesh generators that

triangulate a set of points in space [10-14,16] are used to control

the distribution of points in space. This has the advantage that any

spatially-based procedure to place points in space can be used to

control their distribution. The disadvantage is that, as indicated in

the previous section, good procedures to define points throughout

general three-dimensional domains are difficult to devise. It would be

-18-

desirable to construct procedures that are able to do this by

specifying mesh control information to the various boundary entities

of the object.

Mesh generators based on spatial decomposition also have the advantage

of easily reflecting spatially-based mesh control so long as this

information can be defined in such a manner that the decomposition can

properly be reflected. The ease with which this can be carried out is

a strong function of particular decomposition algorithm and its

implementation. Since the finite quadtree [33,34] and finite octree

[36,37] operate by inserting the boundary entities of the object into

the tree following the hierarchy of topological entities, they are

well suited for the specification of boundary-based a priori mesh

control information [38]. Figure 6a shows a uniform finite quadtree

mesh for an object when all the mesh control parameters for the

vertices, edges and regions are the same, while Fig. 6b shows a mesh

for the same object by simply changing the values of the mesh control

parameters for some of the vertices and edges (Fig. 6c). Figure 7

shows two finite octree meshes for the same object with the only

difference in mesh control parameters being the values along one edge.

INTEGRATION OF AUTOMATIC MESH GENERATORS WITH GEOMETRIC MODELERS

AS indicated in the previous section, automatic mesh generators are

geometrically very demanding. In particular, they require a large

number of geometric interrogations; and, depending on the meshing

algorithm, a large number of geometric model modifications to operate.

Therefore, they are not well suited to a static interface with

geometric modeling systems in which all that is available to the mesh

generator from the geometric modeling system is an output file of the

geometric representation [46]. Assuming that a common format is used

for this file, this approach has the disadvantage of requiring all the

geometric modeling functionality needed by the mesh generator be

reproduced within the mesh generator. Assuming that this functionality

already exist within the geometric modeling system, which is typically

the case, the development of that capability in the mesh generator is

-19-

a redundant effort that has to be repeated for each new geometry form

to which the mesh generator is interfaced.

An alternative approach is to employ a dynamic interface in which the

mesh generation algorithms can interact directly with a geometric

modeling system through a set of procedures, to be referred to as

geometric communication operators, that can perform specific geometric

interrogations and modifications. The definition of geometric

communication operators is being considered for geometrically-based

applications [47], as well as those needed specifically for mesh

generation [48]. One approach to effectively employing geometric

communication operators in a finite element modeling system is to have

the input information used directly by the finite element modeling

software be the topological description of the object. Topology

represents an abstraction that is independent of the specifics of the

geometric definition, but does contain the connectivity information

necessary to control finite element modeling software which operates

through a set of geometric communication operators. One topological

representation well suited to this application is Weiler's

non-manifold radial edge data structure [45]. A high level design of

such a system is contained in [49].

The discussion below assumes a dynamic interface between the automatic

mesh generators and the geometric modeling system. See reference [48]

for a more specific discussion of the geometric communication

operators needed to support the various automatic mesh generation

approaches.

The integration of an automatic mesh generator with a geometric

modeling system requires a substantially different set of geometric

communication operators than is needed for interactive finite element

model generation. The complexity of the interface of an automatic mesh

generator with a solid modeler is a function of the algorithmic

approach underlying the mesh generator. Mesh generation algorithms

that operate through geometric interrogation only require a simpler

set of geometric communication operators than needed by mesh

-20-

generators that must both interrogate and modify the geometric

representation during the mesh generation process. In general, the

majority of computational effort required for automatic mesh

generation is spent in carrying out geometric communication

operations. Since geometric interrogations typically require much less

computation than geometric modifications, mesh generators requiring

geometric interrogation are typically more efficient, on a per element

basis.

Two of the four algorithmic approaches to automatic mesh generation

discussed above require geometric interrogation only. They are point

placement followed by triangulation, and spatial decomposition

followed by subdomain meshing. The other two, removal of individual

subdomains and recursive subdivision, require both geometric

interrogation and modification. To better see this differentiation,

consider the comparison of the interactions with a geometric

representation for both an element-by-element removal algorithm and

the finite octree approach. In the element-by-element removal process,

topological and geometric interrogations are used to look for a

candidate feature to be carved off; geometric interrogations are used

to see if that removal is valid; and finally the feature is removed.

Since the next element removal must consider the geometry as it stands

after the current element was removed, the geometric model must be

updated by the use of geometric modification operators to reflect this

removal. In contrast, the primary geometry-related task in the finite

octree mesh generator is to determine how the boundary of the object

interacts with the appropriate sized octants in the tree. This

information is obtained through geometric interrogation only by

intersecting the boundary entities of the object with the appropriate

boundary features of the octants. The only other geometric

communication operators needed for this and the rest of the meshing

process are the interrogation operators of point classification, the

conversion from parametric and real coordinates, and the conversion

from real to parametric coordinates.

Although the algorithmic approaches to automatic mesh generation ant

-21-

the geometric modeling procedures are available, the sets of geometric

communication operators needed to properly integrate them are not

readily available. Since the vast majority of these operators

represent operations that the geometric modeler must already support,

there is no major technical hurdles to be overcome to provide this

functionality for finite element modeling.

ADAPTIVE ANALYSIS AND A POSTERIORI MESH CONTROL FOR AUTOMATIC MESH

GENERATORS

As the finite element technique becomes more heavily used by designers

who do not possess extensive expertise in numerical analysis, there is

not only a need to improve the speed and robustness of the model

generation procedures, but a need to insure that the analysis results

produced are of sufficient accuracy to be meaningful. As in the case

of the model generation process, increasing the robustness of the

analysis to produce a prespecified degree of accuracy is best obtained

through the development of automated procedures for that purpose. This

is the goal of efforts on the development of adaptive finite element

analysis procedures.

In an adaptive finite element analysis procedure, the solution results

on a given mesh, in combination with a knowledge of that mesh, are

used to both estimate the accuracy of that solution as well as how to

best improve the mesh to efficiently obtain the level of accuracy

desired. The major components of such a system include;

1. finite element equation formulation and evaluation

algorithms,

2. a posteriori error estimation techniques to estimate the

discretization errors in the current solution,

3. error indication, or alternatively, correction indication

to determine where and, in the ideal case, how to improve

the finite element discretization, and

4. mesh improvement schemes to improve the finite element

discretization as indicated by the error or correction

-22-

indicators.

Since adaptive finite element analysis employs a feedback procedure

which requires a number of solutions to sets of related finite element

equations, the techniques used for each of the component portions of

the system must be able to operate in an efficient manner. In addition

to being able to efficiently solve related sets of finite element

equations, the development of these systems must consider the most

appropriate mesh generation and update procedures to be used with the

various adaptive analysis approaches. Since this paper is primarily

concerned with the automatic generation and control of finite element

meshes, this section is concerned with the use of various automatic

mesh generators and mesh update procedures appropriate for use with

them. It first introduces some of the basic concepts and terminology

of a posteriori error estimation to place the remainder of the section

into context. The reader interested in more detail on error

estimation, as well as the efficient solution of the evolving sets of

algebraic equations arising in such systems, should begin by

consulting [43] and the appropriate references sighted in the

remainder of this section.

Overview of A Posteriori Error Estimation

A critical aspect of an adaptive analysis process is the estimation of

the discretization errors present in a given solution as well as

determination of how to most efficiently improve the finite element

model to obtain the level of accuracy desired. Since a priori finite

element error estimates can only indicate the convergence rate [50],

useful error estimates must employ a posteriori techniques which use

the analysis results to estimate the overall discretization error in

one or more solution norms. The concepts and techniques used to

calculate a posteriori error estimates and to determine how to most

efficiently improve a finite element discretization have begun to

mature since the early pioneering works of Babuska and his co-workers

(see [51-53] for example).

-23-

Investigators in the area of adaptive finite element techniques

[43,54] agree that the primary function of a useful a posteriori error

estimator, E, is to provide a convergent and accurate measure of the

discretization error, e, of a given finite element solution. The

commonly used measure of the accuracy of an error estimator is the

effectivity index, e, which is defined for the jth mesh in a

convergent sequence of meshes, K, as:

llEill

®(kj) =

llu-ujll (i)

where u is the exact solution and uj is the finite element solution on

mesh j. One required property of a useful a posteriori error

estimator is

i®(kj) - 1.0 I _ 0 as j _ _ (2)

The practical measurement of the usefulness of an a posteriori

estimator is to apply it to a set of problems with known solutions

(either analytic or very accurate numerical solution) and to calculate

the effectivity indices for a sequence of adaptively refined meshes.

In addition to the necessary requirement that the effectivity index

for an a posteriori error estimator be close to one, there are two

additional desirable properties. The first is that the computations

of the error estimate, E, be an accurate approximate to the true

error, e, on as local a basis as pointwise evaluations. This allows

the estimate to be used to measure errors in any of a number of norms

as opposed to only integrated norms. The second property is that the

estimates, both local and global, be inexpensive to evaluate relative

to the effort required to calculate the finite element solution. These

two properties tend to work against each other. Estimates that are

computationally efficient, with a computational cost on the order of

n, where n is the number of unknowns in the finite element model, are

often accurate only for specific global norms defined in terms of

integrals over domain. On the other hand expensive estimates that

require the same order of computation as the original solution

-24-

(typically O(n=), 1.5 _ =

estimates for any norm.

2) are more likely to give useful

To demonstrate some of the basic concepts of error estimation consider

a model elliptic [55] problem defined in two dimensions as

-VaVu + bu a - B
Bx

Bu - Bu + bu =
(a --_I _By (a -_-)

f(x,y), (x,y) c R

(3a)

subject to

u(x,y) = 0 (x,y) z BR 1 (3b)

Bu
B--6 = q (x,y) e BR2 (3c)

BR - BR 1 U BR 2

where

g is a bounded region in R 2

BR is the boundary of g

is the unit outward normal to BR

a(x,y), b(x,y) and f(x,y) are given functions meeting the necessary

smoothness criteria subject to a(x,y)>0 and b(x,y)_0 ¥(x,y)¢R

The weak form of solution to this problem is to find ucH 1 such that

¥ vcH_ (4a)
A(u,v) = (f,v) + <q,v>B_ 2

where

and
o

BR 1 . Recall

A(u,v) = [R[aVu. Vv + buy]dR

(f,v) = [g fv dR

S

<q,v>BR 2 _BR2 qv ds

(4b)

(4c)

(4d)

H1 is the set of all functions contained in H1 which are zero on

that the space HI contains all functions for which the

-25-

function and its first partials are square integrable over the domain.

where the

polynominals

the domain

maintained.

out over the individual finite elements, R

A finite element approximation, UzStCH 1 to u is obtained by solving

A(U,V) = (f,V) + <q,V>sQ 2 _ V¢St (5)

basis function selected for U and V are piecewise

defined over individual elements of the triangulation of

such that C° inter-element continuity [50,56] is

This allows the integrals in equation (5) to be carried

and then properly summed.
i'

After the system

approximation, E,

approximate norm.

U + e in equation (4) yielding

is solved for U, the goal to obtain a useful

to the actual error, e - u - U, measured in an

The most direct means to do this is to replace u by

and to

EsSt*cH1, to yield the error estimate

A(e,v) - (f,v) + <q,v>%R 2 - A(U,v) V vcH_ (6)

replace e and v by piecewise polynomial basis functions,

* * *

A(E,V) - (f,V) + <q,V >_R2

* * *

- A(u,V) _ V 8S t

(7)

It is

S
t

St in which case

A(E,V

can not be just any set within H 1 . For example, assume that

important to note that the space spanned by the basis function
,

S t -

) + <q,V >_R2- A(U,V) - (f,V)

+ <q,V>sR 2 - A(U,V) ¥ V8S t

) = (f,V

(8)

which is zero by equation (5). To provide useful estimates of the
,

errors S t must be a richer space than S t . One possible choice is to

use polynomials of one order higher for St which is the approach

taken by a number of investigators including Babuska and Miller [57]

-26-

who used piecewise biquadric functions for E and V* when the f

element solution, U and V employed bilinear functions. As stated in

equation (8), the computational effort required to solve the error

estimation equations is on the same order as the original finite

element analysis. To reduce this computational cost additional

approximations are necessary. For example, Adjerid and Flaherty

[58,59] employed nodal superconvergence by neglecting the errors at

the nodes relative to that within the element to reduce the solution

of the error equations to the solution of a number of local Dirichlet

problems associated with the nodes.

Another approach to the derivation of the error equation is to replace

u by U + e in the equation (3) substituting this into the weighted

residual form and applying the divergence theorem which yields the

elemental level error expression [55,60]

A(e,v)g - (f,v)_ + <q,v>_2i - A(U,v)_ + <au_ ,v>8_ ¥ vcH_

i i i i

(9)

A(u,v)g. - [Q.[aVuVv + buv]dg (9b)
1 1

- fv d_. (9c)
(f'v)_i [gi z

where

<aU_ ,v>_g; [Sgi au_v ds (9d)

_i is the domain of the element, 8_i is its boundary,

derivative of u on the element boundary.

u_ is the normal

A key to the application of (9a) is the evaluation of the third term

on the right hand side since it contains the only unknown, u_. A

possible approximation for measuring this term is to use the average

value obtained from the two elements sharing the boundary which, when
*

applied with a specific set of weight functions, V , yields

-27-

A(E,V*)_.- (f,V
1

where U+_ and U-_

side of the edge.

* + _ V >* - A(U,V) + 1/2 <a(U_ + U),
)_i + <q,V >%_.z _'i _'i

V ¢S t

(i0)

denote the value of the normal derivatives on either

An alternative form of the elemental error equation can be obtained by

integrating the third term on the right hand side of equation (9) by

parts to give

+ <q,v>8
A(e'v)_ i = Ar(U'v)gi g2i

where the

weighted integral of the

element solution defined as

- <aU_ ,v>%_ i + <au_ ,v>sg i

¥ vcg_

(11a)

first term on the right hand side of equation (lla) is the

residual over the element of the finite

Ar(U,v)_" - [_. (V(aVU)v - buy + fv) dg _ vsH_
1 1

(llb)

Again, a key aspect of working with this form, referred to as the

residual form, of the error estimate is dealing with the last term on

the right hand side of equation (lla) which is a function of the

unknown solution u. A more appropriate method to account for this

term in the residual form of the error estimate is to combine it with

the other boundary terms in equation (lla) producing the

so called jump term, <&aU_,v>_.defined as
1

<&aU_ ,v>8_
<a(u_ - u_),v>8_ i, _i $ _2]

<(q - aU_),v>_g., 8_i ¢ B_2)
1

(12)

-28-

where

<a(u_ - U_, v>sQ" = _8_. a(u_ - U_) v ds
l 1

<(q - aUn),V>_" = ;SQ. (f - aU_) v ds
l 1

Thus the jump term represents a weighted integral of the difference

between the normal derivatives of the exact and finite element

solutions for those portions of the element boundary upon which the

normal derivatives have not been defined, and a weighted residual of

the difference between the prescribed normal derivatives and the

normal derivatives of the finite element solution on the portions of

the element boundary upon which the normal derivatives are prescribed.

This form leads to a natural selection for an approximation to the

jump term when an estimate to the error is to be obtained. Selecting

a set of weighting function, V , an approximation to the error is

obtained as

*)_. + <daU_,V > 8_. ¥ V 8S tA(E,V)g. - Ar(U,V* * * * *
1 1 1

(13a)

where

< aaU_,V >_o.
1

+

The term (U_

two elements.

- ' >_i

*

t<(q - aU_),V>_. , _I e _Q2
1

(13b)

- U_-) represents the jump in normal derivatives between

A number

various

outlined

equation

tends

of investigators [51,52,60-64] have used equation (13) with
* ,

selections of finite subspace(s), S t , for the functions, V ,

above. It is interesting to note that in the application of

(13) with linear or bilinear finite elements the jump term

to dominate the a posteriori error estimator. This observation

-29-

has recently been confirmed by Babuska and Yu [62,63] who proved that

the discretization error for odd-order elements is primarily due to

the jump terms. They have also shown [62,63] that when even order

elements are used, the interior residual, Ar(U,V*) , dominates the

discretization error estimate. This allows one to neglect the jump

terms in these cases which means the error estimation process requires

only element integrals which can greatly reduce the programming

complexity of adaptive analysis procedures [64] by avoiding the need

to track and calculate the interelement boundary integrals.

Mesh Improvement in Adaptive Analysis

After an estimate to the total error is obtained, the next step is to

determine how to improve the finite element model such that the

desired level of accuracy is obtained. One method to do this is by the

uniform improvement of the entire mesh by either subdividing each

element into a number of new elements of the same type (h-refinement)

or increasing the polynomial order of all elements (p-refinement).

Although convergent, such an approach is unsatisfactory from the

viewpoint of computational efficiency. It also turns out to be

unsatisfactory for use with many of the error estimation procedures

since the accuracy of the estimate often depends on the mesh having a

near optimum mesh distribution. Therefore, it is important to devise a

means to improve the finite element discretization is an optimal, or

near optimal, manner.

One approach to

requested degree

generated during

straight forward

procedures calculate

generating a near optimum mesh that yields the

of accuracy is to directly employ the information

the error estimation process. This is a fairly

process since the majority of the error estimation

elemental level contributions to the overall

error estimate equations, equations (10) or (13) for example, and sum

them in an appropriate manner to obtain the global error estimate.

That is

E= " Z_i (14)

-30-

where hi is the contribution from element i and is referred to an the
elemental error indicator, and the exponent = is set so that the

summation is proper, for example =12 if the error is measured in the

energy norm. A simple strategy to the development of a near optimal

mesh is to improve the discretization within individual elements when

i _ maxj nj 0_i (15)

Although simple, such an approach develops meshes in which the _i's

are nearly equal in each element. It has been proven that the optimum

mesh for one dimensional elliptic problems is one in which the error

indicators are equal, in an asymptotic sense, for all elements [65].

It has also been demonstrated numerically that equilibrating the

error indicators in meshes in higher dimensions is a near optimal

strategy for elliptic problems. This property, although often used and

seemingly reasonable, is not likely to be optimal for parabolic or

hyperbolic problems where the influence of time must be considered.

If more that a single procedure for.mesh enrichment is available, such

as selecting between element subdivision or increasing the polynomial

order of selected elements for example, the error indicators h i can

not tell which would be more effective for a selected element.

Although the error indicators will properly dictate mesh improvement

in the asymptotic sense, they may not lead to the best selections in a

practical sense. For example, assume the mesh improvement is carried

out by adding higher order polynomial shape functions and that the

error existing in the solution is orthogonal to that new term. In this

case, the addition of that term will not reduce the solution error. To

address this, the concept of a correction indicator, 7i, has been

introduced [66]. The function of a correction indicator is to estimate

the amount of solution improvement that will be gained by the

application of a particular mesh enrichment procedure. By evaluating

several possibilities, one can select that which will yield the

greatest improvements. (It should be noted that most error indicators

are correction indicators for one particular enrichment method.) This

concept appears well suited for use with hierarchic mesh enrichment

-31-

procedures [66].

Once the portions of the mesh requiring improvement are determined,

the finite element discretization in that area must be improved. There

are a number of techniques available to carry out these improvements

including;

i •

•

relocating the positions of nodes within a given finite

element mesh topology (r-refinement),

subdividing selected elements into smaller elements of the

same type (h-refinement),

3. increasing the polynomial

(p-refinement),

4. defining an entirely new

distribution of elements,

5. various combinations of

techniques.

order of selected elements

mesh topology with an improved

two or more of the above

Each approach has its advantages and disadvantages with the most

efficient approach being dependent of the class of equation being

solved, smoothness of the solution, dimension of the domain of the

solution, and the overall modeling and computing environment

available•

The earliest methods for adaptively improving finite element meshes

considered the positions of the node points of a given mesh as

unknowns in the energy functionality governing the system [67,68]• The

resulting minimization problem, with appropriate constraints to insure

the domain and mesh topology remained unaltered, was then solved to

provide both the positions of the nodes and the values of the primary

unknowns at those nodes• Although the use of this approach, coupled

with a standard minimization procedure for nonlinear merit function

and constraints, is not commonly used for the solution of elliptic

equations, r-refinement techniques based on more direct node moving

criteria are being successfully used for the solutions to nonlinear

parabolic and hyperbolic problems. In these cases, the original

-32-

partial differential equations are reduced to a set of ordinary

differential equations (ODE's) in time by the introduction of the

finite element discretization into an appropriately defined functional

which has the amplitudes of the functions at the nodes and the

velocity of the nodal positions as unknowns [69]. The functionality

used contains a specific penalty term to insure the mesh remains

valid. These problem types require time marching, and in the nonlinear

case, iteration. Therefore, the extra computation required to

calculate improved positions for the nodes can be more than

compensated for by the fact that a much coarser overall mesh can be

used. In fact, it has been found [69] that very accurate results can

be obtained for some classes of problems by using r-refinement methods

on coarse meshes. A drawback of r-refinement methods is that since

these methods do not introduce new degrees of freedom into the system,

there is a limit on the solution accuracy possible which is dependent

of the number of elements and initial mesh topology. These methods

also require special care to maintain the validity and numerical

stability of meshes as the nodes move. The complexity of dealing with

the mesh validity and numerical stability increases drastically as one

increases the dimensionality of the problem.

One of the most commonly used methods to increase the numbers of

degrees of freedom in a finite element mesh is to introduce more

elements of the same type into the mesh. In a feedback procedure, this

is typically done by subdividing selected elements into a new set of

elements of the same type, thus decreasing the size of the elements in

that area. This approach is referred to as h-refinement because the

mesh improvements are carried out by reducing the size of elements

which is typically measures in terms of a length parameter h.

There are a number of methods possible to subdividing selected

elements into new ones, however, care must be exercised in the

selection and application of procedures. An important consideration is

the control of the shape of the element, particularly if several

levels of refinement are applied is which case a refinement procedure

that causes deterioration in element shapes can lead to elements with

-33-

numerical conditioning problems. This concern leads to the use of

element bisection methods in which the subelements formed are similar

in shape to the parent element [70-73]. Figure 8 demonstrates the

application of element bisection of a single element in both a

quadrilateral and trianqular mesh. In each scheme, a subdivided

element is replaced by four subelements with nodes introduced at the

midpoint of each of the original element sides. If these new nodes lie

along the edge of an element that is not subdivided, such as nodes 7

and 8 in the quadrilateral mesh and node 6 in the triangular mesh,

constraint equations must be written to maintain the continuity

requirements along that edge. The handling of the constraints, as well

as the efficient solution of the sequence of meshes defined as the

process continues, can be addressed by the careful selection of data

structures and solution algorithms [35,71-75].

H-refinement procedures for triangles have been devised in which the

need for constraint equations are avoided [74-76]. This is done by

allowing elements neighboring subdivided elements to be split in a

manner that constraints are not needed to maintain continuity. This

splitting does reduce the shape quality of the element, however, it is

only applied for one level; and, in a temporary manner such that if

those elements are to be subdivided, the subdivision is applied to the

original element.

An advantage of

solution accuracy

selected elements

process is made

element elements

is a subset of

the p-refinement method is that improvements in

are obtained by increasing the polynomial order of

without the need. to alter the mesh topology. This

even more effective by the use of hierarchic finite

where the shape functions for an element of order p

those for the element of order p+l [61,66,77] which

means the stiffness equations for an enriched mesh can be efficiently

generated by simply adding new terms to the previous stiffness matrix.

It is also possible to employ these shape functions in a manner that

avoids the need to write constraint equations to maintain

inter-element continuity when elements of different polynomial orders

neighbor each other. Another benefit of p-refinement procedures is

-34-

that the rate of convergence, in the energy norm when defined in terms

of the number of unknowns, is better in elliptic problems with

singularities [79,80]. For these reasons, these approaches are

receiving considerable attention in the adaptive analysis literature.

Another feedback approach to the development of improved finite

element meshes is to use the results on the current mesh to guide the

generation of an entirely new mesh. Simplistically, this approach

could be considered a combination of r- and h-refinement which need

not suffer from the basic restrictions of either. That is, it can be

structured to allow the equivalent of node movement, but without the

restrictions of maintaining a fixed mesh topology, and it allows the

number of elements to be increased without the need to consider

constraint equations. The two questions that must be addressed in the

application of such an approach are; the information to dictate the

element distributions and how a new mesh will be generated based on

that information. One approach that has been developed plotted

contours of a specific solution parameter that gave the analyst an

indication of how the mesh should be distributed and then allowed

him/her to then interactively generate a new mesh that followed those

contours [81]. A more recent approach defines a mesh density function

over the domain of interest that is then used by an automatic mesh

generator to generate a new mesh that has an appropriate element

distribution to efficiently calculate a solution of the required level

of accuracy [82].

In addition to the individual application of the above mesh enrichment

schemes, it is possible to apply them in various combinations. For

some classes of problems, the proper combination of two techniques

appears quite appropriate. The first is the combination of r- and

h-refinement techniques for the solution of parabolic or hyperbolic

equations. In these problem types, it is often possible to obtain

greatly improved solutions with only a given amount of mesh motion.

However, since r-refinement methods do not allow for an increase in

the number of unknowns, it may not be possible to obtain the required

degree of accuracy with them alone. Therefore, the addition of

-35-

h-refinement where needed can supply the additional unknowns needed.

In the case of elliptic problems with singularities present, it has

been shown [28,29,80,83] that the proper combination of h- and

p-refinement can be an extremely efficient combination. In particular,

is has been shown that optimal hp-refinement procedures can give

exponential rates of convergence in the energy norm in terms of the

number of degrees of freedom.

Automatic Mesh Generators and A Posteriori Mesh Control

The various mesh enrichment Schemes indicated above can be combined

with automatic mesh generators to provide the mesh generation and

control needed for the development of automated finite element

analysis systems. One aspect of combining the mesh enrichment

procedure directly with the functionality of an automatic mesh

generator is that the mesh refinement can be carried out such that the

mesh's approximation to the domain being analyzed is improved as the

mesh is improved. For example, consider the use of h-refinement where

the boundaries of the domain are curved, but the initial, coarse mesh

consist of straight sided elements. If the element refinement is

carried out based on the element information only, the meshes

approximation to the boundary is never improved over that defined by

the initial mesh. However, if a close link back to the original

geometry is maintained through the mesh generator, the refinement

process can use the capabilities of the automatic mesh generator to

place new boundary nodes on the boundary of the object.

In general, there are specific combinations of algorithmic approaches

to automatic mesh generation and mesh refinement that are appropriate

for three-dimensional geometries. Mesh generation algorithms based on

Delaunay triangulation are well suited for use with h-refinement

schemes that avoid the need to apply constraint equations. This can be

done by using the error indicators to place additional points in those

portions of the mesh that are not fine enough. Then Watson's algorithm

[15] can be used to determine the affected elements to be removed,

-36-

thus creating new elements using the added node inside the element.

Approaches of this type have been developed for two-dimensional

domains [84-85] in which minor alterations to the strict adherence to

a Delaunay mesh properties have been made. Since the basic Delaunay

mesh properties cause complications in the three-dimensional case,

similar modifications are likely.

The application of h-refinement in combination with mesh generators

based on spatial decomposition is an attractive combination since the

tree structure used to store the decomposition of the domain can be

used effectively in the adaptive process [35,38,76]. In this approach,

the mesh refinement would be carried out by the appropriate refinement

of the cells of the decomposition based on the values of the error

indicators of the elements inside the cell. Since the tree used to

define the spatial decomposition can maintain pointers back to the

geometric entities located within it [24,38,76], the enrichment of the

mesh in that cell can efficiently account for any geometry

approximation improvements. This is an important feature in the

three-dimensional case since the amount of computation required for

the mesh generation process is high and any localization of the

process possible leads to substantial computational savings.

Approaches have been developed that combine h-refinement and spatial

decomposition mesh generators that do [35] and do not [38,76] require

the application of constraint equations. In both cases, the tree

structure plays a critical role.

In the case where mesh refinement is carried out by cell bisection

only [35], it is necessary to apply constraints on the cell boundaries

when there is a level (cell size) difference. However, by the

appropriate use of the information in the tree structure, not only can

the need to apply constraints be quickly determined, but, with the

right combination of solution procedures, the finite element solution,

including constraints, can be efficiently calculated [35]. (Since an

adaptive analysis process requires a number of analyses, the

advantageous use of this tree structure to control the entire solution

-37-

process can lead to substantial computational savings).

The need to apply constraint equations can be avoided by directly

employing all the features of the automatic mesh generator. For

example, procedures have been developed for the finite quadtree [34]

and finite octree mesh generators [24,37] that use the tree structure

to determine the cells that are affected by mesh refinement to re-mesh

only those cells, at their new levels, using the facilities of the

mesh generator [76]. This process is depicted graphically in Figure 9

for a finite quadtree example. The mesh before refinement is shown in

Fig. 9a, while Fig. 9b shows the area that is affected by the

refinement removed. The cells at their new levels are then defined,

Fig. 9c, and the mesh topology is created in those cells thus creating

the refined mesh shown in Fig. 9d. Figure 9d also demonstrated the

automatic improvement of geometry approximation gained by doing the

refinement through the functionality of the mesh generator. The

process is identical in the three-dimensional case. The same concepts

can be used to perform de-refinement in portions of the model where

the error indicators say the mesh is finer than needed. Such a

capability is particularly useful in time dependent problems where the

critical regions of the model change with time.

The generation of entirely new meshes based on the error indicators is

also possible with automatic mesh generators based on spatial

decomposition. In this case, all that is needed is information that

dictates the levels of the tree, and thus the cell sizes, for all the

cells. This process is in fact much the same as the local remeshing

procedures indicated above, except the entire mesh is redone instead

of refining and/or de-refining only portions of the model.

The use of automatic mesh generators for hp-refinement is another

possibility. Since the basic form of the mesh can be indicated in an a

priori manner based on the geometry and analysis attributes (loads,

material properties and boundary conditions) [24,28,29], the initial

mesh can be generated using the proper basic mesh topology. The

adaptive mesh updates then consists of only some minor mesh

-38-

enhancements in local regions and increasing the polynomial order of

selected elements. As indicated previously, not all automatic meshing

approaches can produce the coarse exponentially graded meshes needed

for these cases. However, a properly constructed element removal mesh

generator can produce the meshes needed. This mesh generator would

generate the initial mesh [24] by first invoking an operator that

isolates and removes all singularities. The remaining operators then

create the coarsest possible mesh in the rest or the domain (see Fig.

3 for such an example). An initial analysis can be carried out and the

results used to determine the number of layers of elements needed

around the singularity [28]. These can then be easily inserted and

adaptive analysis using p-refinement continued.

CONCLUDING REMARKS

procedures needed

capability needed

element method in

discussed in this

finite element

This paper has reviewed the algorithmic approaches currently available

for the truly automatic generation of finite element meshes. Although

these approaches have been under consideration for a number of years

for two-dimensional domains, it is the recent efforts on

three-dimensional techniques, coupled with the geometric modeling

to support them, that is making them an important

to improve the general usefulness of the finite

engineering design. Mesh generators of the type

paper are beginning to become available to the

user community. By their nature, they will require

substantially more computational effort than other techniques.

However, the amount of user input required to use them will reduce the

amount of user time needed to generate a valid finite element mesh to

a small fraction of what is required using other techniques.

To be used most effectively, these mesh generation procedures must be

coupled with adaptive analysis procedures that can insure that the

final mesh yields the requested degree of accuracy. Without adaptive

analysis procedures based on reliable a posteriori error estimators,

the analyst will need to use a priori mesh control techniques to

generate the desired element distributions. However, more importantly,

-39-

the analyst will not know if the results produced insure the desired

level of accuracy• Although adaptive techniques to completely control

errors in any norm of interest are not yet available, the currently

available techniques do represent an important capability that can be

effectively used to produce much more reliable finite element results.

Increasing the level of automation and reliability in the finite

element modeling process is necessary if finite element analysis is to

be a common part of engineering design• Ultimately, consideration need

be given to the complete automation of the finite element modeling

process•

ACKNOWLEDGEMENTS

The author would like to acknowledge the input of Professor Joseph E.

Flaherty for his review of the section on a-posteriori error

estimation and the efforts of Peggy L. Baehmann, Kurt R. Grice and

Marcel K. Georges for developing the programs used to generate most of

the finite element models shown in the figures•

The support of the National Science Foundation, under Grant

MSM83-05950 and DCM-8603025 and the Industrial Associates of the RPI

Center for Interactive Computer Graphics. Any opinions expressed in

this paper are those of the author and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

•

A.A.G. Riquicha and H.B. Voelcker, "Solid Modeling: A

Historical Summary and Contemporary Assessment", IEEE Computer

Graphics and Applications, Vol. 3, No. 2, 1982, pp. 9-24.

•

• • "Solid Modeling: CurrentA.A.G Riquicha and H B. Voelcker,

Status and Research Directions", IEEE Computer Graphics and
Applications, Vol. 3, No. 7, October 1983, pp. 25-37•

•

M.S. Pickett and J.W. Boyse, Eds., Solid Modeling by Computers:

From Theory to Applications, Plenum Press, 1984.

• O.C. Zienkiewicz and D.V. Phillips, "An Automatic Mesh

Generation Scheme for Plane and Curved Surfaces by

Isoparametric Co-ordinates", Int. J. Num. Meth. Engng., Vol. 3,
-40-

•

•

7.

•

•

10.

11.

12.

13.

14.

15.

16.

17.

18.

No. 4, 1971, pp. 519-528.

W.J. Gordon and C.A. Hall, "Construction of Curvilinear

Co-ordinates Systems and Applications to Mesh Generation", Int.

J. Num. Meth. Engn@., Vol. 7, 1973, pp. 461-477.

J.E. Thompson, Numerical Grid Generation, North-Holland, 1982.

W.A. Cook, "Body Oriented (Natural) Co-ordinates for Generating

Three Dimensional Meshes", Int. J. Num. Meth. Engng., Vol. 8,

1974, pp. 27-43•

R.B. Haber, M.S. Shephard, J.F. Abel, R.H. Gallagher, and D.P.

Greenberg, "A Generalized Two-Dimensional Graphical Finite

Element Preprocessor Utilizing Discrete Transfinite Mappings",

Int. J. Num. Meth. En@ng., Vol. 17, 1981, pp. 1015-1044.

W.R. Buell and B.A. Bush, "Mesh Generation - A Survey", Trans.

ASME J. of En_ng. for Industry, Vol. 95, pp. 332-338, 1973.

C.O. Frederick, Y.C. Wong and F.W. Edge, "Two-Dimensional

Automatic Mesh Generation for Structural Analysis", Int. J.

Num. Meth. En@n@., Vol. 2, 1970, pp. 113-144..

J.C. Cavendish, D.A. Field and W.H. Frey, "An Approach to
Automatic Three-Dimensional Mesh Generation" Int J. Num

Meth. En@n@., Vol. 21, 1985, pp. 329-347.

J.C. Cavendish, "Automatic Triangulation of Arbitrary Planar
Domains for the Finite Element Method" Int J Num Meth

, • • • •

Engng., Vol. 8, 1974, pp. 679-697.

Nguyen-Van-Phai,

Elements", Int.

273-289.

"Automatic Mesh Generation with Tetrahedron

J. Num. Meth. En@n@., Vol. 18, 1982, pp.

R. Sibson, "Locally Equiangular Triangulations", The Computer

Journal, Vol. 21, No. 3, 1978, pp. 243-245•

D. F. Watson, "Computing the n-Dimensional Delaunay

Tessellation with Applications to Voronoi Polytypes", The

Computer Journal, Vol. 24, No. 2, 1981.

Y.T. Lee, A. de Pennington and N.K. Shaw, "Automatic Finite

Element Mesh Generation from Geometric Models - A Point-Based

Approach", ACM Transactions on Graphics, Vol. 3, 1984, pp.
287-311.

S.H. Lo,

Domains",

219-249.

"A New Mesh Generation Scheme for Arbitrary Planar

Int. J. Num. Meth. En_n_., Vol. 21, 1985, pp.

D.A. Field, "Implementing Watson's Algorithm in Three

Dimensions", Proc. Second Annual ACM Symposium on Computational

-41-

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Geometry, ACM 0-89791-194-6/86/0600/246, 1986, pp. 246-259•

D.A. Field and W.H. Frey, "Automation of Tetrahedral Mesh
Generation", Research Publication GMR-4967, General Motors

Research Laboratories, Warren, MI, 1985.

B. Wordenweber, "Finite Element Mesh Generation",

Computer-Aided Design , Vol. 16, 1984, pp. 285-291.

T.C. Woo and T. Thomasa, "An Algorithm for Generating Solid

Elements in Objects with Holes", Computers and Structures, Vol.
18, No. 2, 1984, pp. 333-342.

E.A. Sadek, "A Scheme for the Automatic Generation of

Triangular Finite Elements" Int. J Num. Meth Engng., Vol
15, 1980, pp. 1813-1822.

F.T. Tracy, "Graphical Pre- and Post-Processors for

Two-Dimensional Finite Element Programs", Computer Graphics,
Transactions of ACM, Vol. 13, 1977, pp. 8-12.

M.S. Shephard, K.R. Grice and M.K. Georges, "Some Recent

Advances in Automatic Mesh Generation", Modern Methods for

Automating Finite Element Mesh Generation, K. Baldwin, Ed.,
ASCE, NY, 1986, 1-18.

A. Bykat, "Automatic Generation of Triangular Grid: I -

Subdivision of General Convex Subregions, II - Triangulation of

Convex Polygons", Int. J. Num. Meth. Engng., Vol. 10, 1976, pp.
1329-1342.

B. Joe and R.B Simpson, "Triangular Meshes for Regions on

Complicated Shapes", Int. J. Num. Meth. Engng., Vol. 23, 1986,
pp. 751-778.

P.F. Charvez, "Automatic Mesh Generation and Optimization from

the Solid Model Database", Modern Methods for Automating Finite
Element Mesh Generation, K. Baldwin, Ed., ASCE, NY, 1986, pp.
29-42•

I. Babuska and E. Rank, "An Expert-System-Like Approach in the

hp-Version of the Finite Element Method", Institute for

Physical Science and Technology Lab. for Num. Analysis,
TN BN-1048., University of Maryland, 1986.

B.A. Szabo, "Mesh Design for the p-Version of the Finite

Element Method", Computer Meth. in App. Mech. and Engng., Vol.
55, 1986, pp. 181-197.

M.L C Sluiter and D.L. Hansen,• • "A General Purpose Two- and

Three-Dimensional Mesh Generator", Computers in Engineering,
Vol. 3, L.E. Hulbert, Ed., Book No. G00217, ASME, 1982, pp.
29-34.

-42-

31.

32.

33.

A.J.C. Schoofs, L.H.Th.M. Van Beukering and M.L.C. Sluiter, "A

General Purpose Two-Dimensional Mesh Generator", Advances in

Engineering Software, Vol. i, No. 3, 1979, pp. 131-136.

M.A. Yerry and M.S. Shephard, "Finite Element Mesh Generation
Based on a Modified-Quadtree Approach", IEEE Computer Graphics

and Applications, Vol. 3, No. i, 1983, pp. 36-46.

M.S. Shephard and M.A. Yerry, "Approaching the Automatic

Generation of Finite Element Meshes", Computers in Mech.

Engng., Vol. i, No. 4, 1983, pp. 49-56.

34. P.L. Baehmann, S.L. Wittchen, M.S. Shephard, K.R. Grice and

M.A. Yerry", Robust Geometrically-Based Automatic
Two-Dimensional Mesh Generation", TR-86007, Center for

Interactive Computer Graphics, RPI, Troy, NY, 1986, to appear,

Int. J. Num. Meth. Engng..

35. A. Kela, R. Perucchio and H.B. Voelcker, "Towards Automatic

Finite Element Analysis", Computers in Mech. Engng., July 1986,

pp. 57-71.

36. M.A. Yerry and M.S. Shephard, "Automatic Three-Dimensional Mesh
Generation for Three-Dimensional Solids", Computers and

Structures, Vol. 20, 1985, pp. 173-180.

37. M.A. Yerry and M.S. Shephard, "Automatic Three-Dimensional Mesh

Generation by the Modified-Octree Technique", Int. J. Num.

Meth. Engng., Vol. 22, 1984, pp. 1965-1990.

38. M.S. Shephard, M.A. Yerry and P.L. Baehmann, "Automatic Mesh
Generation Allowing for Efficient A Priori and A Posteriori

Mesh Refinements", Computer Meth. in Appl. Mech. Engng., Vol.

55, 1986, pp. 161-180.

39. C.L. Jackins and S.L. Tanimoto, "Octrees and Their Use in the

Representation of Three-Dimensional Objects", Compt. Graph.

Image Process., Vol. 14, 1980, pp. 249-270.

40. D. Meagher, "Geometric Modeling Using Octree Encoding",

Computer. Graph. Image Process., Vol. 19, 1982, pp. 129-147.

41. R.A. Dwyer, "A Simple Divide-and-Conquer Algorithm for
Constructing Delaunay Triangulations in 0 (n log log n)

Expected Time", Proc. Second Annual ACM Symposium on

Computational Geometry, ACM 0-89791-194/6/86/0600/276, 1986,
pp. 276-284.

42. J.D. Bolssonnat and M. Tellaud, "A Hierarchical Representation

of Objects: The Delaunay Tree", Proc. Second Annual Symposium

on Computational Geometry, ACM 0-89791-194- 6/86/0600/260,

1986, pp. 260-268.

43. I. Babuska, O.C. Zienkiewicz, J. Gago and E.R. De A. Oliveria,

-43-

44.

Accuracy Estimates and Adaptive Refinements in Finite Element

Computations, John Wiley and Sons, Chichester, 1986.

K.J. Weiler, "Edge Based Data Structures for Solid Modeling in

Curved-Surface Environments", IEEE Computer Graphics and

Applications, Vol. 5, No. i, January 1985, pp. 21-40.

45. K.J. Weiler, "Topological Structures for Geometric Modeling",

PhD Thesis, Center for Interactive Computer Graphics, TR-86032,

Rensselaer Polytechnic Institute, Troy, NY, 1986.

46. P.R. Wilson, "Data Transfer and Solid Modeling", Geometric

Modeling for CAD Applications, M.J. Wozny, H.W. McLaughlin and
J.L. Encarnacao, Eds., North Holland, to appear.

47. "Applications Interface Specification (Restructured Version)",

CAM-I Report R-86-GM-01, January 1986.

48. M.S. Shephard, "Finite Element Modeling within an Integrated

Geometric Modeling Enviroment: Part I - Mesh Generation"_

Engineering with Computers, Vol. I, 1985, pp. 61-71.

49. M.S. Shephard and P.M. Finnigan, "Integration of Geometric
Modeling and Advanced Finite Element Preprocessing", Proc 4th

Chautauqua on Productivity in Engineering and Design...The

Quest for Quality, H. Shaeffer, Ed., PDA Eng., Los Angeles, CA,
1986, pp. 231-233.

50. G. Strang and G. Fix, An Analysis of the Finite Element Method,
Prentice Hall, 1973.

51. I. Babuska and W.C. Rheinboldt, "A Posteriori Error Estimate

for the Finite Element Method", Int. J. Num. Meth. Engng., Vol.
12, 1978, pp. 1597-1615.

52. I. Babuska, W.C. Rheinboldt,

Finite Element Computations",

No. 4, 1978, pp. 736-754.

"Error Estimates for Adaptive
SIAM J. Numer. Anal., Vol. 15,

53. I. Babuska, "A Posteriori Error Estimates and Adaptive
Approaches for Finite Element Modeling", Finite Element

Workshop 1980, Technical Note BN-940, I. Babuska, Ed.,

Laboratory for Numerical Analysis, U. of Maryland, May, 1980.

54. Proceedings of Int. Conf. on Accuracy Estimates and Adaptive

Refinements in Finite Element Computations, Vol. 1 and 2, Int.
Association of Computational Mechanics, 1984.

55. S. Adjerid and J.E. Flaherty, "Local Refinement Finite Element

Methods on Stationary and Moving Meshes for One-Dimensional

Parabolic Sytstems", to appear.

56. J.N. Reddy, An Introduction to the Finite Element Method,

McGraw-Hill Book Co., NY, 1984.

-44-

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

I. Babuska and A. Miller, "A Posteriori Error Estimates and

Adaptive Techniques for the Finite Element Method", Institute

for Physical Science and Technology, Laboratory for Numerical

Analysis, Tech. Note BN-968, University of Maryland, 1981.

S. Adjerid and J.E. Flaherty, "A Moving Finite Element Method

for Time Dependent Partial Differential Equations with Error

Estimation and Refinement", SAM, Numer. Anal., Vol. 23, pp.

778-796, 1985.

S. Adjerid and J.E. Flaherty, "A Moving Mesh Finite Element
Method with Local Refinement for Parabolic Partial Differential

Equations", Comp. Meths. Appl. Mech. Engng., 1986, pp. 3-26.

R.E. Bank, "Analysis of a Local A Posterori Error Estimate for

Elliptic Equations", Accuracy Estimates and Adaptive

Refinements in Finite Element Computations, I. Babuska, O.C.

Zienkiewicz, J. Gago and E.R. de A. Oliveria, Eds., 1986, pp.

119-128.

O.C. Zienkiewicz, J. Gago and D.W. Kelly, "The Hierarchical

Concept in Finite Element Analysis", Computers and Strucutres,

vol. 16, 1983, pp. 53-65.

I. Babuska and D. Yu, "Asymptotically Exact A Posteriori Error

Estimates and Adaptive Approaches for Biquadratic Elements",

Tech. Note BN-1050, Institute for Physical Science and

Technology, U. of Maryland, 1986.

I. Babuska and D. Yu, "A Posteriori Error Estimation for

Biquadratic Elements and Adaptive Approaches" to appear

S. Adjerid and J.E, Flaherty, "Second-Order Finite element

Approximations and A Posteriori Error Estimation for

Two-Dimensional Parabolic Systems", Report No. 87-1, Department

of Computer Science, Rensselaer Polytechnic Institute, 1987.

I. Babuska and

Element Meshes

431-463.

W.C.. Reinboldt, "Analysis of Optimal Finite

in R I'', Math. of Comp., Vol. 33, 1979, pp.

O.C. Zienkiewicz and A. Craig, "Adaptive Refinement, Error

Estimates, Multigrid Solution and Hierarchic Finite Element

Method Concepts", Accuracy Estimates and Adaptive Refinements

in Finite Element Computations, I. Babuska, O.C. Zienkiewicz,

J. Gago and E.R. de A. Oliveria, Eds., 1986, pp. 25-59.

D.J. Turcke and G.M. McNeice, "Guidelines for Selecting Finite

Element Grids Based on an Optimization Study", Computers and
Structures, Vol. 4, 1974, pp. 449-519.

C.A. Fillipa,

Energy Search",

"Optimization of Finite Element Grids by Direct

Appl. Math. Modeling, Vol. i, September 1976,

-45-

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

pp. 93-96•

K. Miller, "Recent Results on Finite Element Methods with

Moving Nodes", Accuracy Estimates and Adaptive Refinements in

Finite Element Computations, I. Babuska, O.C. Zienkiewicz, J.

Gago and E.R. de A. Oliveria, Eds., 1986, pp. 225-338.

"An Energy Basis for MeshR.J. Melosh and P.V. Marcal,

Refinement of Structural Continua", Int. J. Num. Meth. Engn@.,
Vol. 11, No. 7, 1977, pp. 1083-1092.

"OnW.C. Rheinboldt and C.K. Mesztenyi, a Data Structure for

Adaptive Finite Element Mesh Refinements", ACM Transaction on

Maths. Software, Vol. 6, No. 2, June 1980, pp. 166-187.

W.C. Rheinboldt, "Adaptive Mesh Refinement Processes for Finite

Element Solutions", Int. J. Num. Meth. En_ng., Vol. 17, 1981,
pp. 649-662.

R.E. Ewing, "Adaptive Mesh Refinements in Large-Scale Fluid

Flow Simulation", Accuracy Estimates and Adaptive Refinements
in Finite Element Computations, I. Babuska, O.C. Zienkiewicz,

J. Gago and E.R. de A. Oliveria, Eds., 1986, pp. 229-314.

R.E. Bank, A.H. Sherman and A. Weiser, "Refinement Algorithms
and Data Structures for Regular Local Refinement", Scientific

Computing: Applications of Mathematics and Computing to the
Physical Sciences, R.S. Stepleman, Ed., North Holland, 1983,
pp. 3-17.

M.C. Rivara, "Algorithms for Refining Triangular Grids Suitable

for Adaptive and Multigrid Techniques" Int. J Num Meth
Engng., Vol. 20, 1984, pp. 745-756•

M.S. Shephard, J.E. Flaherty and P.L. Baehmann, "Adaptive

Analysis for Automated Finite Element Modeling", to appear,

Proc. of The Mathematics of Finite Elements and Application,
1987.

A.G. Peano, "Hierarchies of Conforming Finite Elements for

Plane Elasticity and Plate Bending", Comp. Math. with Appl.,
Vol. 2, 1976.

A. Peano, R. Riccioni, A. Pasini and L. Sardella, "Adaptive

Approximations in Finite Element Structural Analysis",
Computers and Structures, Vol. 10, 1979, pp. 333-342.

I. Babuska and B.A. Szabo, "On the Rates of Convergence of the

Finite Element Method", Int. J. Num. Meth. Engn_., Vol. 18,
1982, 323-341.

I. Babuska and M. Dorr, "Error Estimates for the Combined h and

p Versions of the Finite Element Method" Numer Math , Vol
25, 1981, pp. 257-277•

-46-

81.

82.

83.

84.

85.

M.S. Shephard, R.H.

Near-Optimum Finite

Graphics", Int. J.
1021-1039.

Gallagher and J.F. Abel, "Synthesis of

Element Grids with Interactive Computer

Num. Meth. Eng., Vol. 15, 1980, pp.

J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz,

"Adaptive Remeshing of Compressable Flow Computations",

Institute for Numerical Methods in Engineering, CR/R/544/86, U.

College Swansea, Swansea, Wales, 1986.

B. Guo and I. Babuska, "The h-p Version of the Finite Element

Method - Part I: The Basic Approximation Results; Part II -

General Results and Applications", to appear, Computational
Mechanics.

W.H. Frey, "Selective Refinement: A New Strategy for Automatic
Node Placement in Graded Triangular Meshes", GM Research

Publication, GMR-5432, 1986.

J. Penman and M.D. Grive, "An Approach to Self-Adaptive Mesh

Generation", IEEE Transactions on Magnetics, Vol. MAG-21, No.

6, 1985, pp. 2567-2570.

-47-

FIGURE CAPTIONS

I. Watson's Algorithm for inserting a point into a Delaunay

triangulation

2. Basic three-dimensional element removal operators

3. h-p mesh generated by element removal

4. Subdomain removal to decompose object into mappable regions

5. Finite octree mesh example

• Finite quadtree mesh control

a) uniform mesh

b) graded mesh

c) mesh control parameters for graded mesh

• Finite octree mesh control

a) uniform mesh

b) graded mesh

• h-refinement by element bisection

a) quadrilateral element

b) traingualar element

• Finite quadtree mesh refinement by local remeshing

a) initial mesh

b) affected portion of mesh removed

c) refined quadrants

d) resulting refined mesh

-48-

/
t"

/
/

/

• - node

X - element flagged
for deletion

(9 - new node being
inserted

a) original mesh with new node inserted

FIG. l.

b) resulting Delaunay triangulation

Watson's Algorithm for inserting
triangulation ...

a point into

9
a Delauna]

-49-

a) vertex removal

b) edge removal

FIG. 2. Basic three-dimensional element removal operators

FIG. 3. h-p mesh generated b_" element removal

-50-

-51-

FIG. 5, Finite octree mesh example

-52-

.53-

a) uniform mesh b) graded mesh

D FIG.7. Finite octree mesh control

/
4 7

8 9

5

a) quadrilateral element

3

6

2

b)
1 4 2

traingualar element

5

riG. 8. h-refinement by element bisection

-54-

a)

m.4

initial mesh

%/J_J

b) affected portion of mesh removed

c) refined quadrants d)

I

resulting refined mesh

FIG. 9.
Finite quadtree: mesh refinement by local remeshing

-55-

N 8 8 - 1 9 1 1 4 i /_5-Jsq

INTEGRATION OF GEOMETRIC MODELING AND

ADVANCED FINITE ELEMENT PREPROCESSING

By

Mark S. Shephard

Rensselaer Polytechnic Institute

and

Peter M. Finnigan

General Electric Corporate Research and Development Center
q

ABSTRACT

The structure to a geometry-based finite element preprocessing system is

presented. The key features of the system are the use of geometric operators

to support all geometric calculations required for analysis model generation,
and the use of a hierarchic boundary-based data structure for the major data

sets within the system. The approach presented can support the finite element

modeling (FEM) procedures used today as well as the fully automated procedures

under development.

i. INTRODUCTION

The generation of numerical analysis models is one of the major steps in the

computer-aided engineering (CAE) process. Of primary concern is the dispro-

portionate amount of the entire design/analysis process that is currently
dedicated to this task. If significant productivity gains are to be achieved

in CAE, this bottleneck must be reduced. In the long term, this means the

automation of the entire finite element process, which would include such

things as adaptive analysis and optimization techniques. In the short term,

this means improving the basic model generation tools and developing prepro-

cessing systems that employ advanced geometric modeling and more powerful data

structures. This paper presents the overall design of a geometry-based FEM

system that will address today's needs, as well as provide a foundation for

the fully automated systems of tomorrow.

The most obvious reason for a better integration of finite element and

geometric modeling is to avoid the need to redefine the geometry during finite

element modeling. The second is to make more direct use of the functionality

present in advanced geometric modeling systems. The third reason is the crea-
tion of a more unified design/analysis environment that employs a geometry-

based (object) problem description. This includes geometry-based analysis

attribute specification, which is not only a necessary part of an object-based

problem definition, but is the most efficient method of prescribing this

information. Finally, it is only with the close integration of geometric and

finite element modeling procedures, that FEM can be fully automated.

In addition to the requirements placed on a preprocessing system by the above

needs, it must give the analyst all the model generation functions needed to

efficiently create controlled element meshes. At this time, that requires the

system to support bottom-up, mapped, and fully automatic mesh generators such

that they can be used in various combinations in a consistent manner. This

also means that flexible, geometry-based mesh control specification techniques

be used.

The majority of the current finite element preprocessing systems have been

developed in an evolutionary manner, independent of geometric modeling sys-

tems. Interfacing, not integration, results between the two systems. With

the recent advances in geometric modeling procedures, there is a desire to

make more direct use of the geometry available for the generation of the fin-

ite element model. To date, there has been limited success in integrating

geometric and finite element modeling. The major factors deterring this

integration are:

. Generally, finite element preprocessing systems are designed to con-

struct a finite element model by directly building the object's

description in terms of topologically simple shapes (i.e., triangles,

quadrilaterals, tetrahedrons, hexahedrons, etc.). This approach is

not well suited for general geometric manipulation.

. The data structures within a finite element preprocessor are designed

to house little more than the most basic of mesh construction infor-

mation and the mesh data (i.e., node point coordinates and element

definitions). They do not possess a general geometric data structure

to house the original geometric definition of the object, nor do they

maintain relationship information which explicitly couples the finite

elements themselves to the geometry from which they came.

. The geometric modeling systems do not make their intrinsic geometric

manipulation capabilities readily available to other applications on

the system which require such functionality.

The majority of effort that has been expended on improving the level of

integration between finite element and geometric modeling has been aimed at

particular modeling systems. The finite element preprocessing developers have

added their own geometric modeling capabilities, or the geometric modeling

developers have extended their systems to include finite element model genera-

tion. Although these approaches represent improvements, they tend to lack

generality and represent a large duplication of software development effort.

In addition, they typically lead to systems that have lopsided strengths; such

as geometric modeling systems that are well suited for developing finite ele-

ment models but poor for other applications. The position taken in this paper

is that the developers of geometric modeling systems should concentrate on

providing advanced geometric modeling functionality, FEM developers should

concentrate on the advancement of finite element modeling, and that these two

groups work together to integrate their respective capabilities in a cohesive

manner.

A general integration of geometric and finite element modeling requires not

only the transfer of data but also the transfer of functionality from the

geometric modeling system to the finite element modeler. This paper presents

a methodology that addresses this need. It must be noted that the implementa-

tion of these methodologies requires a major expansion of the data structures

underlying the finite element modeling system, the strict adherence to

prespecified operators to interact with a geometric modeling system, and the

construction of those Operators. The successful implementation of such a

system depends on:

I. Finite element modeling developers recognizing the need for change.

. Finite element modeling developers working closely with geometric

modeling developers to better understand each others requirements and
limitations.

3. Geometric modeling developers providing the requisite modeling func-

tionality for FEM.

Section 2 indicates an approach to the modular integration of geometric and

finite element modeling. Section 3 indicates the type of data structures

required in a geometry-based finite element modeling system. Section 4 gives

a more specific indication of how the various finite element model generation

procedures would operate within such a system. Section 5 addresses the

remaining open questions of the development of a geometry-based finite element

modeling system.

2. APPROACH TO MODULAR INTEGRATION WITH GEOMETRIC MODELING

The first key to the development of a finite element modeling system that can

be efficiently integrated with various geometric modeling systems is the use

of a general data structure that can support various geometric forms. The

second key aspect of this integration is the use of a general set of geometric

communication operators [I]. A geometric communication operator is a pro-

cedure designed to perform a geometric function, given specific information

about the operation and the geometry involved. The operator would return the

result of the operation and/or modify the geometric representation to reflect

the invocation of the operation.

The information passed directly to the geometric communication operator has a

general structure. Any data, specific to a particular geometric modeling sys-

tem, would be extracted directly from its geometric database by a geometric

communication operator. Therefore, it is only necessary to provide a set of

geometric communication operators for each new geometric modeling system that

the finite element modeler is to be interfaced. No changes within the finite

element modeling system need be applied. The approach discussed in this sec-

tion is consistent with the CAM-I work on an applications interface for

geometric modeling [2,3]. The advantage of this approach is obvious; it

avoids the need to reproduce all the geometric modeling functionality within

the finite element modeling system. This advantage is absolutely necessary if

finite element modeling systems are to be interfaced with the various forms of

geometric modelers being developed. Once a set of geometric communication

operators are agreed on, the operators can be constructed by the developers of

a geometric modeling system. Hopefully, the majority of them can be extracted

directly from the modeling capabilities already present in the system.

The geometric communication operators needed for finite element modeling can

be grouped into the following five categories:

I. BASIC QUERY- A request for geometric information that is intrinsi-
cally a part of the geometric modeling database.

. DERIVED DATA QUERY - A request for geometric information not directly

stored in its database. The determination of the requested data

requires the performance of geometric calculations. A DERIVED DATA

QUERY will not alter the contents of the geometric modeler's data-
base.

. GEOMETRIC MODELING OPERATION - A request is made that invokes one or

more geometric modeling operations such that the geometric model is

altered in the process.

4. ATTRIBUTE SPECIFICATION - The geometry-based specification, modifica-

tion, or deletion of the model's attributes.

5. GENERAL UTILITY - These would contain the operators that request gen-

eral, geometry independent information on a model.

A large number of geometric communication operators are needed for finite ele-

ment modeling. They will most likely be built in two levels. The low level

operators will represent atomic geometric operations such as Euler operators

[A] or specific Boolean operations [5]. The higher level operators, those

oriented toward finite element modeling, would be constructed primarily from

the low level operators. This approach has the advantage of insulating the

FEM system from changes in the geometric modeling system because only the

internals of the higher level layer would be affected. Thus, the FEM system

could be interfaced to a new geometric modeling system with relative ease

assuming it provided, in some form, the low level operators. It should be

noted, that since the type and amount of information stored in a geometric

modeler's database is a function of modeling approach and implementation, an

operator that is a BASIC QUERY in one system may be DERIVED DATA QUERY in

another. A few example operators are listed below:

BASIC QUERY

. RETURN GEOMETRY COEFFICIENTS return the coefficients used in the

definition of a-geometric entity.

. RETURN TOPOLOGICAL ENTITY

topological entity_

return the definition of the requested

. RETURN ENTITY ASSOCIATIVITY
4

ties for a topological entity.

return a specific set of associativi-

DERIVED DATA QUERY

i. DETERMINE DISTANCE BETWEEN

two geometric entities.

calculate the minimum distance between

. POINT_CLASSIFY determine if a given point is inside the object,

outside the object, or on the surface of the object.

3. DETERMINEINTERSECTIONS calculate the intersections
geometric entities.

between two

GEOMETRICMODELINGOPERATION

i. ADDENTITY- add a given entity to the geometric model.

2. SPLIT ENTITY - break a given entity into multiple entities in a
prescribed manner.

. PERFORM_BOOLEAN - carry out a Boolean operation between two specified
entities.

ATTRIBUTE SPECIFICATION

i. PLACE_ATTRIBUTE - apply an attribute to a given entity.

2. MODIFY ATTRIBUTE - modify a given attribute on a given entity.

GENERAL UTILITY

I. GET MODEL - retrieve a given model form the database.

2. SAVE MODEL - store the current model in the database.

Although the concept of geometric communication operators represents the most

general method to tie the functionality of geometric modeling systems to

geometry-based applications, the geometric modeling systems available today do

not fully support this concept. This is expected to change over the next few

years. The move to more open architectures, the increased pressures from

applications, a maturing of geometric modeling systems, and specific research

on the creation of such operators are contributing to this change. Developers

of application software should expect the availability of specific sets of low

level operators in the near future.

3. DATA STRUCTURES IN A GEOMETRY-BASED PREPROCESSOR

This section first provides an overview of the data structures required in a

truly geometry-based preprocessor before discussing the details of a particu-

lar implementation. It is important to understand, in very general terms, the

data structures themselves and how they interact.

There are a number of possible ways to group the requisite preprocessing data.
The one listed below was selected because it uses the minimal number of data

sets that provide a logical separation of information needed for finite ele-

ment modeling. The data sets include:

• The MODEL data set

• The ATTRIBUTE data set

• The MESH data set

The MODEL data set contains the geometric and topological data that defines

the domain to be meshed. The ATTRIBUTEdata set contains both the analysis
attribute data (e.g., material properties, boundary conditions, etc.) and the
mesh control data. The MESHdata set contains the finite element mesh gen_
erated for the model. Each data set has its own structure tailored to meet
its special requirements. The data structures are related through a well
defined set of pointers which provide the mechanisms through which all non-
MODELdata is tied to the MODELdata. The information content of these data
structures and their relationships are described in more detail in the sec-
tions which follow.

3.1. Model Data Structure

The most fundamental data to the preprocessor is the geometry. The work

described in this paper uses the concept of a non-manifold geometric modeling

topology representation [4]. In a manifold representation, the area surround-

ing any point on a surface (in the limit) is "flat." In a non-manifold

representation, the "flatness" criterion is not a requirement.

Historically, solid modeling systems have employed manifold representations.

However, this has caused problems when non-manifold results would occur as a

natural part of the model building process. One major benefit of a non-

manifold representation is that it permits wire frame, surface, and solid

models to coexist in the same system concurrently. Relative to finite element

modeling, it appears that the developers have not appreciated the importance

of a well defined topological model and that the topology which does exist in

these systems has been evolutionary. Not unexpectedly, they are inadequate to
support major advances in automation.

There is a close parallelism between finite element modeling and geometric

modeling with the three representations. That is, because of the abstractions

associated with FEM, all three geometric representations may be necessary

simultaneously. For example, many "real world" models are typically comprised

of a combination of solid, shell, and beam elements. Although not

exclusively, these element types lend themselves to being modeled with the

"corresponding" geometric representations. That is, the shell portion of the

model with a surface representation, the beam portions with a wire frame

representation, and of course, the solid elements with a solid representation.

The logical conclusion is that a non-manifold data structure that can support

the three forms of geometric modeling, can also support the geometric aspects

of finite element modeling. A single representation opens the possibility for

the finite element modeling system to make direct use of geometric operators

developed in support of the geometric modeling system.

The non-manifold geometry/topology hierarchical model used is depicted in Fig-

ure I. In addition, the relationships between geometry and topology are
shown.

3.1.1. Model Data Definitions

This section provides a set of working definitions for the various geometric

and topological entities used for geometric modeling. In addition to the

basic definition being stored in the data structure, its origin or purpose

will also be stored. That is, if an entity originates from the geometric

modeler, or if an entity is added for the purpose of controlling the mesh or
applying a boundary condition, it will be so identified.

.i.I.i. Geometric Entities

There are four geometric entities which the system will support as defined
below:

• POINT -- A point is a geometric entity specified by a triple of numbers

representing its position in space.

• CURVE -- A curve is a geometric entity representing the trajectory of a

point through space_ Curves can be infinite in extent.

• SURFACE -- A surface is a geometric entity representing a two-

dimensional locus of points. Surfaces can be infinite in extent.

• VOLUME -- A volume is a geometric entity representing a three-

dimensional locus of points.

It should be noted that in most geometric modeling systems, volumes in space

are defined in terms of a set of surfaces that enclose it. It is, however,

desirable to support the possibility of a specific volume geometric entity

which adds the ability to house volumes with internal definitions in the sys-

tem [i0,ii].

3.1.1.2. Geometric Modeling Topological Entities

The topological entiti6s form a hierarchy which, when coupled with geometry,

provide a complete definition of the part. A brief description of each of the

geometric modeling topological entities to be used in the model data is given
below.

• VERTEX -- A vertex is the topological equivalent of a three-dimensional

point in space. It is typically used to bound an edge. There is

always a vertex at the joining of edges. Vertices may also be used as

a boundary of a face or shell.

• EDGE -- An edge is the topological equivalent of a geometric curve

(i.e., line, arc, spline). It is bounded by two vertices. An edge may

be closed, in which case the starting and ending vertices are the same.

• LOOP -- A loop consists of an ordered, closed, connected, set of edges.

A loop bounds a face.

• FACE -- A face consists of a portion of a shell. A face is bounded by

at least one loop, and may be internally bounded by further interior

loops (i.e., holes).

• SHELL -- A shell consists of a set of faces which bound a region. A

shell may consist of a connected set of faces which form a closed

volume or may be an open set of adjacent faces, a wire frame, a combi-

nation of these, or even a single point. In the case of a solid model,

one shell is required to define the external boundary and additional
shells are required to define voids within the solid.

• REGION-- A region is a volume of space. A region has one exterior
shell and one interior shell for each void contained within it.

• MODEL-- A model is a collection of regions. Regions within a model
may be distinct because of physical separation in space, or simply
because a user wishes to keep them logically distinct.

3.2. Attribute Data Set

Any form of numerical analysis, requires the following information:

i. A complete specification of the physics of the problem to be

analyzed.

2. Specification of the desired level of domain discretization.

3. The specification of the required analysis control parameters.

In general terms, this information is referred to as the attribute data for
the model.

The attribute data structure will contain all of the information, past the

geometric definition of the object, that is needed to complete the description

of the problem. Attribute data includes both geometric and non-geometric

information. Data which is geometric in nature must be tied to the original
geometric definition of the object.

A number of different modeling attribute types are needed for finite element

analysis. A partial list of these includes:

.

2

3

4

5

6

7

8

Analysis program control data.
Case information.

Finite element type declaration information.

Nodal (skewed) coordinate system data.

Material property data.

Physical property data.
Mesh control data

Essential boundary condition data

.

- e.g., displacements in a stress problem or temperatures

heat conduction problem.

Natural boundary condition data

in a

i0.

- e.g., pressures in a stress problem or fluxes in a heat conduc-
tion problem.

Initial condition data.

3.2.1. Classes of Attributes

Finite element modeling attributes can be categorized by class, depending on
how they interact with geometry. Three distinct classes of attribute data
have been identified, and are described below:

CLASS#I:

Attribute data in class #I is characterized by data which is required for the
analysis to be performed but which it totally independent of the geometric
definition of the model.

CLASS#2"

Attribute data in class #2 is characterized as data which is attached directly
to geometric entity data, and which can be described completely in terms of
that geometric entity.

CLASS #3:

Attribute data in class #3 is characterized by data which is attached directly

to geometric entity data but which needs auxiliary geometric data (henceforth

known as attribute specification geometry) to help define the attribute. That

is, the attribute may not be conveniently described in terms of the geometric

entity to which it is attached, and thus two pieces of geometric entity data
are required; a piece of geometry data and a piece of attribute specification

geometry data.

The basic distinction between class #2 and class #3 data is that class #2 data

needs a single geometric entity to define both (a) the associativity of the
attribute with the model and (b) the attribute's definition. Class #3 data,

on the other hand, requires a piece of geometric data to define its associa-

tivity with the model, and in addition, requires attribute specification

geometry to define the attribute.

As an aid to understanding class #3 data, consider the case of an arbitrarily

complex flat plate in the xy-plane. Suppose that the structure was subjected

to a normal pressure load which was linearly varying as a function of y. If

one attempted to describe this pressure solely in terms of pressure values

along the edges, one would not have a uniquely defined pressure surface, and

thus the pressures on individual elements could be evaluated incorrectly.

Alternatively, the pressure could very simply be specified by defining an aux-

iliary piece of geometry; in this case a rectangular face which covered the

entire 2-D domain and four pressure values, one at each of the corners. Pres-

sure on individual elements could then be evaluated in a totally unambiguous

manner.

3.2.2. Attribute Specification Geometry

Attribute specification geometry is simply geometry plus topology which is

used to help define the physics of certain attributes. It can be thought of

as being auxiliary to the part definition. It has no direct links to the

part's geometric data structure. The attribute specification geometry will be

an intrinsic part of the definition of the attributes. It is stored in the

MODEL data structure but is referenced through the attributes. The attribute

specification geometry maintains the samehierarchic structure as the models
geometry/topology.

The purpose of attribute specification geometry is twofold. First, it pro-
vides a mechanism for allowing simpler and more efficient specification of
attribute data. Secondly, it provides a means for evaluating attribute data
directly and unambiguously.

3.2.3. Attribute Data. Structure

The relationships between attribute data and geometry are as follows. The
model's topological entities point to attributes. An attribute contains its
definition along with two pointers. One pointer points back to the geometric
entity to which it is "tied." The other pointer points to the attribute
specification geometry which is used to help define the attribute. If this
geometry is, in fact, the same as the model's geometry, then the attribute
specification geometry pointer is a null pointer. Figure 2 shows the general
data structure for a generic attribute data type. It indicates how attributes

are specified and associated with geometry/topology. The dimensionality of

the attribute topology can be the same or lower order as the model's topology

to which it points; it can never be of higher order. That is, an edge is a

one-dimensional entity. The permissible associated attribute's topological

entities are "vertex" and "edge."

3.3. Mesh Data Structures

In addition to the hierarchy of geometric modeling entities discussed earlier,

there will also be a hierarchy of finite element entities, the MESH data

structure (Figure 3), which will be used to define the elements themselves.

This is a departure from the way in which finite elements have historically

been defined (i.e., an element of a specific type with a list of nodes which

define the connectivity).

The finite element entities have two types of data associated with them. The

first is the modeling topology data, and the second is the finite element

attribute data (i.e., material properties, physical properties, etc.). Each

finite element entity points to the lowest order modeling topology entity
which it is inherently a part. For example, a fe-edge which is on the surface

of a region would point to the face on which it lies, rather than the region

itself. It is this relationship that permits attribute data which is tied to

the geometry to be evaluated on an element by element or node by node basis.

Pointers from the geometry to individual element components (i.e., fe-nodes,

re-edges, fe-faces, etc.) are also desirable for efficient postprocessing

activities. The storage penalties for maintaining these relationships are

easily offset by the performance gains which can be achieved.

3.3.1. Finite Element Entity Definitions

What follows is a set of working definitions for the various finite element
entities.

I0

• FE-NODE-- A fe-node is a three-dimensional point in space. Typically,
it is used to define a fe-edge; however, it can also be used to help
define a finite element. For example, the mid-face node used in a
Lagrange parabolic element is not associated with a fe-edge, but rather
with the fe-face itself. In addition, a reference node used to define
the center of curvature or the plane in which a beam element lies would
point to the element rather than the edge of that element. Finally, a
fe-node could be used to define the element explicitly such as the con-
centrated mass element. A fe-node may lie on a vertex, an edge, a
face, or be completely contained within a region.

• FE-EDGE -- A fe-edge is a combination of topology plus implied
geometry. That is, the nodes used in the definition of an edge are
used to bound the geometric curve, and at the same time can be used to
define the geometry (i.e., straight line, parabola, or cubic) for the
element itself. A fe-edge can be used to define a fe-face, as with
planar or solid elements, or can be used to define the finite element
directly, as is the case with truss and beam elements. It may lie on
an edge, a face, or be completely contained within a region.

• FE-FACE-- A fe-face is bounded by fe-edges. It is either used to
define the surface of a "planar" finite element or is used in combina-
tion with other fe-faces to bound a solid finite element. Topologi-
cally, a fe-face will be either triangular or quadrilateral in nature.
It may lie on a face, or be completely contained within a region.

• FINITE ELEMENT-- Depending on the type, a finite element can be a fe-
node, a fe-edge, or a collection of fe-faces. It may be completely
contained within a region. However, it is true only for solid finite
elements that the entity "finite element" can point to a region because

other finite element types will have lower order entities which point

to various geometric entities.

3.3.2. Advantages of a Finite Element Entity Hierarchy

At first glance, the MESH data structure, with its hierarchy of finite element

entities, may seem too elaborate, perhaps even wasteful of valuable storage.

However, on closer inspection some distinct advantages emerge. The most

powerful advantages come from the links to the other data structures. These

relationships are discussed in the next section. Independent of the benefits

which accrue due to these links, a number of other benefits surface as

enumerated below:

• It provides an organization for handling any type of finite element in
a uniform manner.

• It provides direct access paths to higher order entities from lower

order entities which make it very convenient to do such things as

bandwidth minimization, postprocess the results of elements associated

with a given set of nodes, etc.

• It makes it possible to interrogate the finite element model using a

geometric entity as a key word for searching.

ii

• It provides a mechanismwhich supports mesh generation on the basis of
topologically simple cells (i.e., quadrilaterals, triangles, hex-
ahedrons, etc.) which corresponds to linear finite elements, providing
a direct path to upgrade to higher order elements without going back to

the mesh generator. All higher order fe-nodes can easily be placed

precisely on the appropriate associated geometric entity.

3.4. Relationships of the Three Data Structures

The power of the implementation is derived from two sources; the data struc-

tures themselves and the relationships between the structures. Figure 4 shows

the relationships which exist amongst the three data structures. It is, in

fact, these links that provide the necessary structure for claiming to be a

geometry-based system. These links provide a bond between the data structures

which permit the system to respond in a cohesive manner.

The links are automatically established during the model generation process.

The natural progression of events is something like this:

I. The part is generated via a geometric modeling session.

geometric entities are loaded into the MODEL data structure.

The

. Model attributes are defined and loaded into the attribute data

structure. Since the attributes are associated with the model's

geometry, two-way pointers are established between the MODEL data and

the ATTRIBUTE data. In addition, any necessary attribute specifica-

tion geometry is generated and stored in the MODEL data structure.
Links are also established between the ATTRIBUTE data structure and

the attribute specification geometry.

. One of the attributes is mesh control data. Having this information,

mesh generation can proceed, and the resulting node and element data

is stored in the MESH data structure. During the mesh generation

process, the associations which exist between the finite element mesh

data and the part definition are known, and thus pointers between the

MESH data structure and the MODEL data structure can be generated.

4. Since both the MESH data and the ATTRIBUTE data point to the MODEL

data, the attribute data can then be evaluated on a node by node or

element by element basis. The links between the MESH data and the

ATTRIBUTE data structures are established at this point.

This completes the model building process. It accomplishes what it was

intended for; to use a completely geometry-based approach to produce an
analysis model.

4. DESIGN OF A GEOMETRY-BASED PREPROCESSOR

The approaches and data structures outlined above form the basis on which an

advanced geometry-based preprocessing system can be built. The remaining

capabilities needed are the actual finite element model definition procedures
and the user interface.

12

The best form of user interface for this system is an interactive graphics
front end. This is obviously the most convenient form of interface for the
specification of geometry and geometry-based information. Even for those
cases where the geometry to be meshed is identical to that obtained from the
geometric modeler, and an automatic mesh generator is used, there is still the
need for the specification of the analysis attribute information in terms of
the geometric model. Until fully automatic, adaptive procedures are avail-
able, the system must support the entire range of finite element mesh genera-
tion procedures. These are most efficiently operated in an interactive graph-
ics mode.

Geometric operations within the system will be carried out making heavy use of
the capabilities of the geometric modeling systems to which it is interfaced.
It is important that geometric modeling functions be presented in a form
appropriate for finite element modeling. This may be different than the way
they are presented in the geometric modeling system. In addition, it must be
recognized that different geometric modeling systems will not provide the same
sets of geometric modeling functions. The two level approach to the implemen-
tation of the geometric communication operators provides a method to deal with
both of these concerns. The high level geometric communication operators for
finite element modeling would be designed to fit directly into the modules of
the preprocessing system. Since they are constructed by the combination of
the low level geometric communication operators, which represent the actual
tie to the geometric modeler, they need not necessarily be altered when a new

modeler is interfaced to the system. If a particular geometric modeler does

not provide specific low level operators used by a high level operator, it may

be possible to reconstruct the high level finite element operators by a dif-

ferent combination of low level operators.

The geometric modeling functions needed by a complete finite element prepro-

cessing system are extensive. They include a full set of high level opera-
tors, such as the Boolean operators, for the construction and modification of

geometry, as well as for use by automatic mesh generators to decompose the

geometry into a valid finite element mesh. A full range of geometric interro-

gation operators will be required for use by the mesh generation algorithms,

the mesh checking procedures, the geometric construction operations, and the

attribute specification procedures. Finally, a full range of bottom-up

geometric modeling functions are needed to allow the analyst to define all or

part of a geometry.

The attribute specification procedures in a geometry-based preprocessor must

give the analyst a high level of flexibility in the specification of the vari-

ous types of finite element attributes. The geometric specification pro-

cedures for defining analysis attributes, such as distributed loads, must

allow for the convenient description of the distribution of the loads, as well

as for defining the portions of the object on which they act.

Flexible procedures must be available to group attributes of the same type

into sets for simple manipulation during the specification of the actual load

cases to be analyzed. The reason for allowing the grouping of attributes is

partly to provide convenience to the analyst, but is mainly for the purpose of

allowing a greater degree of automatic validity checking in the system. By

only allowing the combination of attributes of one type into sets, automatic

13

validity checks on attribute combinations, which are based on attribute type,
can easily be done. The combination of attribute sets into analysis cases
allows the application of an additional set of checks which can only be made
after the analysis process control information has been indicated. Thus, the
user maintains a high degree of flexibility while affording the system a means
of performing validity checks at the appropriate levels.

A difficulty in the implementation of the mesh control attributes in a system
that allows a variety of mesh generation approaches is devising a procedure
that can operate from a single internal representation of mesh control infor-
mation. Since all attributes, including mesh control information, are
directly tied to entities in the geometric model, the most direct method of

dealing with this specification is to tie mesh control parameters to each of

the topological entities that define the object. The analyst can be given a

set of procedures that allow for geometry-based specification of the mesh con-

trol information and have it properly associated with the topological enti-

ties. Since it is possible to introduce geometric entities for the sole pur-

pose of attribute specification, this approach maintains the desired level of

flexibility. The remaining question is the selection of mesh control parame-

ters for the various topological entities that can always be meaningfully con-

verted to the specific parameters needed by the various mesh generators. The

simplest solution is to assign a single element size parameter to all enti-

ties. Although seeming simplistic, this tends to be acceptable for all enti-

ties except the edge. The reason for this is simply that most mesh generators

base all their mesh control on edge information, and those that use additional

parameters, typically use a single parameter per entity. The mesh control

information appropriate for edges should allow for the specification of the

number of elements along the edge, as well as biasing parameters to grade the
size of elements in a flexible manner.

As indicated above, the preprocessor should house a variety of mesh generation

procedures ranging from simple bottom-up meshing procedures through fully

automatic meshing procedures. It is anticipated that as automatic mesh gen-

erators become more robust, and as the geometric modeling capabilities needed

to support them continue to improve, they will tend to become the main mesh

generation tool. However, until fully automated finite element modeling sys-
tems become available, there will be a continued need to support the other
mesh generation approaches.

Bottom-up mesh generation will tend to be used for the quick construction of

both mesh and geometry (in terms of the finite elements) for very simple

objects, and for adding simple finite element entities to an object that does

not contain all the geometric entities in a form convenient for generation of

that portion of the finite element model. Although, these procedures will not

represent the major mesh generation workhorse, their presence in the system is
necessary.

Mapped mesh generators are the most popular mesh generation procedures

currently available. To some extent, they are more difficult to provide the

needed geometric communication operators than some of the automatic mesh gen-
eration approaches [i]. The system must contain procedures that allow the

analyst to easily define the supplementary geometry needed to define the boun-

daries of mesh patches and to be able to select the geometric entities that

14

define the specific meshpatches. The process of defining these mesh patches
in a geometry-based preprocessor that accepts a general geometric model as
input is substantially different from preprocessors where the geometry is
built in a bottom-up fashion in terms of meshpatches. The user tools needed
to efficiently decomposea general geometry into a set of valid mesh patches
are different from those that are efficient for defining a geometry in terms
of a set of meshpatches. The preprocessing system discussed here should sup-
port both sets of capabilities.

The selection of fully automatic mesh generation procedures to be included in
such a system must consider the following factors:

I. The ability of the mesh generator to produce the desired types of
meshes.

2. The ease of integration of the meshing procedure with geometry
through a set of geometric communication operators.

3. The computational efficiency of the mesh generator.

Since the level of complexity of geometric operators needed to integrate an

automatic mesh generator with a geometric representation varies greatly [i],

as does their computational efficiency, it is likely that these two factors

will dictate the selection of automatic mesh generators to be included in the

preprocessor.

5. OPEN QUESTIONS IN THE DESIGN OF A GEOMETRY-BASED PREPROCESSOR

The procedures presented in the previous sectioqs address the close coupling

of the geometric representation of an object and the finite element mesh used

to analyze it when there is an obvious correspondence of the finite elements

generated and the geometric entities in the model. The type of finite element

models that yield this correspondence are those where the finite elements are

dimensionally the same as the geometric entities, and when the domains spanned

by the geometric and finite element model are the same. However, it becomes

much less clear how to account for the coupling between the geometric and fin-

ite element models when the geometric model is simplified for purposes of fin-

ite element analysis or when the finite element mesh contains a mix of element

types of different geometric order representing various portions of a solid

model. Common examples of these cases include ignoring specific geometric

features deemed unimportant, and the use of shell or beam elements when one or

two of the geometric dimensions of specific portions of a geometric model are

small compared to the others. Element types of a dimensional order less than

the geometric entity they represent account for the small dimensions in terms

of element parameters such as thickness and moment of inertia. Elements of

this type will subsequently be referred to as indirect elements.

Historically, the concern for the proper representation of the differences

between the geometric model and the finite element model have not existed.

This is because the two modeling processes were carried out independently.

However, the desires to make direct use of the information in the original

geometric model, to maintain complete links for making model revisions easier,

15

and to maintain a clear history of the analysis modeling procedures used,
makes it necessary to address the question of how to define and account for
these differences.

A major portion of the answer to these questions lies in the data structures
to be used and the procedures employed to reflect the differences between the
models in the database. However, this is not the appropriate place to begin
to address these questions. One of the major factors that makes this a com-
plex question is the lack of analytic procedures, or even an agreed upon set
of rules for determining when and how these modeling differences should be
used. If this information were available, it would be possible to devise
algorithmic approaches to carry out these processes and it would becomemore
obvious as to the best method to account for the results of those processes.
Lacking such information requires that the approach taken to address these
questions be somewhatopen ended, thus allowing users to carry out the opera-
tions associated with geometric simplification and the generation of indirect
element types in a flexible manner.

As an example of the range of possible approaches to geometric simplification,

three different approaches to account for domain differences are considered.

In all cases, the finite element analyst begins with the complete specifica-

tion of the geometric model. In approach one, the analyst generates the mesh

interactively with a mapped mesh generator. In this case, the finite element

model generation process consists of the analyst simplifying the geometric

model by performing specific geometric modeling operations during the con-

struction of the various mesh patches. With currently available finite ele-

ment modeling procedures, this is an appropriate method. However, this

approach does not readily lend itself to account for the specific geometric

simplifications made to the model before mesh generation. Ever if the analyst

was required to make the geometric simplifications, independent of the defini-

tion of the mesh patches, accounting for the simplification would require the

explicit storage of both models or storing the list of modeling operations

carried out during the simplification, neither of which is convenient.

The second and third approaches require the availability of a fully automatic

mesh generation procedure that can ignore geometric features during the mesh-

ing process. With such a capability, the mesh generator can be passed the

entire geometric model. Geometric features to be ignored are flagged

appropriately. Accounting for the differences between the geometric and fin-

ite element models consist of simply examining the geometric model to see

which geometric features are flagged. The second approach would consist of

the analyst flagging the geometric details to be ignored while the third

approach would rely on adaptive analysis procedures to determine the features

to be ignored. Although the finite element modeling capabilities needed to

support these two approaches are not fully available, components of them are

currently being investigated. For example, the quadtree [6] and octree [7]

mesh generators operate on the basis of hierarchic insertion of the geometric

entities within an object's boundary file into a tree structure. Therefore,

it is possible to simply identify those entities associated with the geometric

features to be ignored so they are represented in an approximate manner.

Although this approach may not be able to account for all desired forms of

geometric simplification, it should be able to easily handle a majority of

them. Efforts are currently underway to develop and test these capabilities.

16

The development of adaptive analysis procedures to automatically identify
geometric details to be ignored, is a much more complex issue. One possible
approach is to combine a set of rules employing analytic stress concentration
factors with the results from an initial analysis that ignored features in
order to estimate their influence [8] and to determine if they should be
included.

The controlled generation of, and accounting for, the use of indirect element
types is an even more complex process. The computerization of this process
could make effective use of artificial intelligence techniques to help convert
geometric representations to numerical analysis representations [9].

6. CLOSINGREMARKS

There are a number of areas that must be addressed before fully automated fin-
ite element modeling becomesa reliable analysis tool that is an integral part
the computer-aided engineering process. This paper has addressed one of those
areas which is the framework of a preprocessing system that allows the com-
plete integration of finite element modeling with geometric modeling. The two
key aspects of the approach are the use of geometric communication operators
and the use of advanced data structures required to store the various data
sets needed in finite element modeling. The key to the data structures is the
use of a single hierarchic boundary-based geometric representation for both
the geometric model and the finite element model. To this, auxiliary data
structures (e.g., the attribute data structure) can be linked. A boundary-
based representation was selected because:

i. It is the most general form of geometric representation to which
other geometric forms can be converted.

2. It is a convenient framework on which new geometric and finite ele-
ment types can be quickly added.

3. It is the most natural form, since finite element modeling is dom-
inated by boundary information.

The major penalty for the added capability of this approach is the large
amount of data storage. This is unavoidable if the goal of a general,
geometry-based system is to be achieved. The only way to reduce the amount of
information required is to reduce the level of integration with general
geometric modeling systems or to limit the number of finite element modeling
procedures that can be supported.

A final advantage of the approach presented here is that it can fully support
today's finite element modeling procedures while allowing the introduction of
ever increasing levels of automation as fully automatic mesh generators and
adaptive analysis procedures evolve. This is very important since current
preprocessing systems cannot support full automation and it is only through
automation of these procedures that finite element techniques can be made a
reliable tool for designers and not just the experts.

17

REFERENCES

. Shephard, M. S., "Finite Element Modeling Within an Integrated Geometric

Modeling Environment: Part I Mesh Generation, Part II Attribute

Specification, Domain Differences, and Indirect Element Types," Engineer-

in k With Computer, Vol. I, 1985, pp. 61-85.

2. "CAM-I Geometric Modeling Project Boundary File Design (XBF-2)."

Report R-81-GM-02. i, October 1982.

CAM- I

° Wilson, P. R., I. D. Faux, M. C. Ostrowski, and K. G. Pasquill, "Inter-

faces for Data Transfer Between Solid Modeling Systems," IEEE Computer

Graphics and Applications, Vol. 5, No. i, 1985, pp. 41-51.

4. Weiler, K., "Topological Structures for Geometry Modeling," PhD Thesis,

Rensselaer Polytechnic Institute, Troy, New York, 1986.

° Requicha, A. A. G. and H. B. Voelcker, "Solid Modeling: A Historical

Summary and Contemporary Assessment," IEEE Computer Graphics and Applica-

tlo___ns Vol. 3, 1982, pp. 9-24.

. Baehmann, P. L., S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A.

Yerry, "Robust Geometrically Based Automatic Two-Dimensional Mesh

Generation," TR-86007, Center for Interactive Computer Graphics, Rensse-

laer Polytechnic Institute, Troy, New York, 1986.

7. Yerry, M. A. and M. S. Shephard, "Automatic Mesh Generation for Three-

Dimensional Solids," Comput. Struct., Vol. 20, 1985, pp. 31-39.

. Shephard, M. S. and M. A. Yerry, "Toward Automatic Finite Element Model-

ing for the Unification of Engineering Design and Analysis," Finite Ele-

ments in Analysis and Desi_n_ Vol. 2, 1986, pp. 143-160.

° GregorY, B. L. and M. S. Shephard, "Design of a Knowledge Based System to

Convert Airframe Geometric Models to Structural Models," Expert Systems

in Civil Engineering_ ASCE, New York, New York, 1986, pp. 133-144.

i0. Casale, M. S. and E. L. Stanton, "An Overview of Analytic Solid Model-

ing," IEEE Computer Graphics and Applications, Vol. 5, No. 2, February

1985, pp. 45-56.

ii. Farouki, R. T. and J. K. Hinds, "A Hierarchy of Geometric Forms," IEEE

Computer Graphics and Applications_ Vol. 5, No. 5, May 1985, pp. 51-78.

18

LIST OF FIGURES

i. A NON-MANIFOLDGEOMETRYREPRESENTATIONFORFINITE ELEMENTMODELING

2. GENERICATTRIBUTEDATASTRUCTURE

3. MESHDATASTRUCTURE(A hierarchy of finite element entities)

4. RELATIONSHIPSOFTHEDATASTRUCTURES

19

)-

S
0
Q.

>-
rr

LIJ

0
u.J

_f _r _f

uJ w w I-

q

Z

o G:

_S,,,

_°

0
IE

Z

o_

_,'r"
ff:o
t--w

_ a

__ i _

__ e_

1

0

el I.-

Z

0

S
0

n _

i

,I

q

q

w

rr"
I--
O0

r_

ILl
r_
0

I-
oO

_rT"
WLLI
r_
0 _
_0 w

ILl

z
_0>-

C?_;__/7--

Geometric Modeling in Transition

May 12, 1987

Lee Robie

SDRC

Milford, Ohio

Geometric Modeling in Transition

Application

Specific Tool - Limited Percent of the Total Job

Fatigue Analysis

NC Programming

Mechanism Simulation

Utility

General Support Tool

Data Management

• User Interface

Graphics

Transition Indicators

Need: General Applicability

Age

Consensus of Approach

"It is clear that solid modeling is increasingly being viewed as a tool

for creating a central database upon which most. applications may run"

-CAD/CIM Alert - October .31, 1986

Mechanical Product Definition

Complete Product Definition Data

• Object Representation (Geometry + Topology)

Features

• Dimension and Tolerance

• History and Heritage

Associated and Administrative Data

. Where is the Application- Utility Dividing Line?

Varies with time

• Object Representation

-Precise Boundary Representation

-NURBS

• Features

Associated Data

-Application Specific

-Generic

Features

. Definition

An aspect of an object that is significant in some context

• A closed volume with an implied boolean

. Contents

Administrative Data

• Geometric Association

Geometric Parameters

• Application Data

Modification Rules

• Recreation Procedure

. Uses

Higher level of Information Content

User Interface

Design Rules

Geometric Abstraction

Shape Optimization

Downstream Functions

Variational Geometry

Developed at MIT in late '70's

Relationships.

Angle Parallel Tangent

Distance Perpendicular Fit

Captures Design Intent - Improves Modification

• Embryonic

• Futures: Sculptured Geometry

Diameter

< .>

Fix

v

_>

Depth
v

Fit

A

f
v

Reference

Product Model Data Flow

Product

Model

l

l

l

L

P

Design

Geometry

Features

Constraints

Associated Data

Structural Verification

° Select Material

• Define Loads

• Mesh and Analyze

• Modify

L

I"

I

I

I
v

Manufacturing Engineering

• Material Cost

• Manufacturing Process and Cost

Modif-y

Single Copy Product Database

Product

Model
1

l

l

t >

F --

I

I

Station 1

Product

Model
i'

u_:

l

I

L >

r --

I

I

]
Station 2

Product

Model i"

I

l

l

L

b-:"

>

p --

I

Station 3

Multiple Copy Product Database

Product

Model 1

l

l

L >

r --

I

I

Station 1

Product

Model 2

t__
• c/

• II

Product

Model 2'

u_:

l

I

L >

r --

I

I

Station 2

Product

Model 3

Product

Model
F

Station 3

i L IIProduct

Model 4

Product Development Process

Concept i

Concept 1'

Concept 2 Concept 3 Concept 4

Concept 3'Concept 2' Concept 4'

Decision

Prototype I

I
I Prototype

i F

Decision

Prototype 2

Prototype 2'

Product 1

Product i'

Sign Off

Final
Product

Design

Structural Verification Process

Product

Model

9

G S

Geometric

Abstraction

1

[cI]

Accuracy Level

l
[MG]

I

I DiscreteModel 1

f
[FEA]

Discrete

Model 2

J
[FEA]

I DiscreteResults 1

l
[_R]

Geometric [Results 1

DiscreteResults 2

{
[IR]

J

I GeometricResults 2

I

Geometric

Abstraction

i'

Accuracy Level

Mesh Density

-- FEA Results

q

Structural Optimization Process

Product

Model 1

G $ i

Geometric

Abstraction
1

l
[sv]

I
Geometric

Abstraction
I'

l
[so]

I
l Geometric

Abstraction 2

l
[sv]

Accuracy Level

Accuracy Level

Mesh Density

-- Results

Accuracy Level

Mesh Density

[??]

Geometric

Abstraction
2'

Accuracy Level

-- Mesh Density

-- Results

Product

Model
2

Geometric Modeling in Transition

. SDRC Direction

Geometry Data and Procedures as Utility to the MCAE System

. Mechanical Product Definition

• Increasingly Application Independent over time

Common Geometry

, Product Development Process

• Flexible Database

, Structural Analysis

Use Geometric Model not

Geometric Abstraction

the Finite Element Mode1

Mesh Generation

Result Interpolation

N88-19115

Finite Element Meshing of ANSYS ® Solid Models

F. S. Ketley, Supervisor, General Development

Swanson Analysis Systems, Inc.

P. O. Box 65, Johnson Road

Houston, Pennsylvania 15342

Telephone: (412) 746-3304

Presentation at the Workshop on the Integration of

Finite Element Modeling with Geometric Modeling

Rennselaer Polytechnic Institute

May 1987

/_._.¢7Y'o

/ ,7/,,#

ORIGINAIJ PAGE IS

OF POOR QUALIT'Ej

(All images are from ANSYS Revision 4.3)

1. INTRODUCTION - ANSYS AND SASI HISTORY

Swanson Analysis Systems, Inc. (SASI) was founded in 1970 by Dr. John A. Swanson to develop,

support, and market ANSYS, a large scale, general purpose finite element computer program.

ANSYS and the recently introduced ANSYS-PC products remain the only reasons for SASI's

existence. There is no engineering consulting practice to distract attention away from the software

business. SASI currently employs over 100 people at its office near Pittsburgh, Pennsylvania, and

there are thirty regional support distributors marketing and supporting ANSYS worldwide.

ANSYS was developed solely for the commercial market, with no government or university funding.

It has more than 1000 installations to date, including universities, but not PC's.

1

2. PURPOSE OF ANSYS SOLID MODELING

ANSYS was perhaps the first commercially available program to offer truly interactive finite element

model generation. (In the late 1970's, there was confusion about what constitutes =interactive"

processing. Some programs would simply prompt users for a fixed sequence of commands.)

ANSYS Revision 3, released in August 1978, contained PREP7. This processor allowed a user to

create, display, and modify a finite element mesh in whatever order desired.

ANSYS Revision 3 also contained a powerful 3-dimensional automatic mesh generator called

PREP5. Based on keypoints, lines, areas, and volumes, this processor created brick models with

relative ease. It was also capable of automatic application of boundary conditions. PREP5 was

never as popular for model creation as PREP7. However, some users were upset when we

removed PREP5 at Revision 4.0, released in 1982.

ANSYS Revision 4.0 (1982) introduced the PREP7 Mesh module, with powerful automatic

Quadrilateral and brick meshing capabilities. The 4.0 MESH module was widely used for model

generation, but it could not handle i[regular regions.

The ANSYS PREP7 MESH module was rewritten as a solid modeler for Revision 4.2 (1985), and

enhanced in Revision 4.3 (to be released in June 1987), This was done solely to aid ANSYS users

in the creation of finite element analysis models. SASI did not have to patch finite element

meshing into the ANSYS solid modeler as an afterthought. It was designed in from the beginning.

From SASI's point of view, any other benefits which may be derived from the creation of a solid

model in ANSYS (such as pretty pictures) are bonuses rather than primary objectives.

3. ANSYS REVISION 4.3 SOLID MODELS

ANSYS solid models are internally stored in several forms. The first of these has been well

documented in textbooks and papers.

Hermite cubic splines as shown below.

figures 1 - 3.

2
X - C1 + C2 • r + C3 • r +

2
Y - C5 + C6 • r _ C7 • r +

2
Z = C9 + CIO • r + Cll • r +

Lines, surfaces, and volumetric regions are defined by

The parameters r, s, and t vary from 0.0 to 1.0. See

(line)
3

C4 r
3

C8 r
3

C12 r

2 3
X - C1 + C2 • r + C3 • r + C4 r

+ (C5 + C6 • r + C7 • r 2 + C8 r 3) (s)

+ (C9 + ClO • r + Oil • r 2 + C12 r 3) (s 2)

÷ (C13 + C14 • r + C15 • r 2 + C16 r 3) (s 3)
2 3

Y - C17 + C18 • r + C19 • r + C20 r

+ (C21 ÷ C22 • r + C23 • r 2 ÷ C24 r 3) (s)

÷ (C25 ÷ C26 • r + C27 • r 2 + C28 r 3) (s 2)

+ (C29 + C30 • r + C31 • r 2 + C32 r 3) (s 3)
2 3

Z - C33 + C34 • r + C35 • r + C36 r

+ (C37 + C38 • r + C39 • r 2 + C40 r 3) (s)

+ (C41 + C42 • r ÷ C43 • r 2 + C44 r 3) (s 2)

+ (C45 + C46 • r + C47 • r 2 + 048 r 3) (s 3)

2 3
X = C1 + C2 • r + C3 • r + C4 r

. (C5 + C6 • r + C7 • r 2 + C8 r 3) (s)

+ (C9 + CIO • r + Cll • r 2 + C12 r 3) (s 2

(surface)

(volumetric reEion)

÷ (C13 + C14 • r + C15 • r 2 + C16 r 3) (s 3)

+ [C17 + C18 • I" + C19 • r 2 + C20 r3

+ (C21 + C22 • r + C23 • i-2 + C24 r 3) (3)

+ (C25 + C26 • r + C27 • r 2 + C28 r 3) (3 2)

+ (C29 + C30 • I" ÷ C31 • z̀ 2 + C32 1̀ 3) (s 3)] It]

+ [C33 + C34 • r + C35 • r 2 + C36 z"3

+ (C37 + C38 • r + C39 • r 2 + C40 z'3) (3)

+ (C41 + C42 • r + C43 • r 2 + C44 z.3) (3 2)

+ (C45 ÷ C46 • 1" ÷ C47 • !-2 + C48 z"3) (3 3)] It 2]

+ [C49 + C50 • r + C51 • r2 + C52 z"3

+ (C53 + C54 • r + C55 • r 2 + C56 1.3) (s)

÷ (C57 + C58 • r + C59 • r 2 + C60 r 3) (s 2)

+ (C61 + C62 • r ÷ C63 • r 2 + C64 r 3) (s 3)] [t 3]

(The equations for Y and Z are similar, using C65 through C192.)

Figure 1 Hermite Spline Defining a Line

Figure 2 Bicubic Hermit• Spline Defining a Surface Region

Figure3 TricubicHermiteSplineDefininga VolumetricRegion

ANSYSalsoallowsthedefinitionof degenerateHermiteregions(figures4 and5). Thisis very
impo_ant. There is no assurance that an arbitrary surface can be mapped by quadrilateral

regions, and even less assurance that an arbitrary 3-dimensional object can be mapped by

hexahedral regions. The degenerate forms give ANSYS a far more general modeling capability

than would be provided by the standard regions,

Figure 4 Degenerate Surface Region

r

Figure 5 Degenerate Volumetric Region

4

New to ANSYS Revision 4.3 is the ability to define surface regions by a list of up to 200 cubic line

segments, and volumetric regions by a list of up to 200 bicubic surface regions (figures 6 and 7).

These alternate region types allow great flexibility in the modeling of complex structures. They also

make it difficult to classify the ANSYS solid modeler into one category, such as "B-rep" or

"CSG". Perhaps "hybrid CSG" is the best term to apply.

I i
IL6

I J
",L7

IL9

I

I

I

I

L_ m

=L4
i_ 33-

I

IL2

I

I

Figure 6 Surface Region Defined by a List of Lines

Hermite
surface

f patches

Figure 7 Volumetric Region Defined by a List of Surface Patches

Oefinition of solid models in ANSYS begins with the input of several "keypoints". "Line segments",

"areas", and "volumes" may be defined by connecting keypoints. Lower order entities are

generated automatically as needed. Lines and areas follow the curvature of the "currently active

coordinate system" (figure 8). Translation, rotation, and symmetry reflection operations are

available, Line segments may be rotated about an axis or dragged along a path to produce areas

(figure 9). Areas may be rotated about an axis or dragged along a path to produce volumes

(figure 10). ANSYS is command driven, with complete documentation available on-line via a menu

system. Cross hair and digitizing tablet input is also possible.

Figure 8

egments

Keypoints

ANSYS Keypoints, Line Segments, Areas, and Volumes

Rotation Axis

Drag Pa_.,,_

Line Segments Line Segments

Figure 9 Rotation and Dragging of Line Segments to Create Areas

DragPath

Area

Figure 10 Dragging of an Area to Create Volumes

4. SURFACE ACCURACY OF ANSYS SOLID MODELS

Accuracy of curved surfaces in cubic spline based solid modelers can be of concern. Circular

arcs and intersection lines cannot be represented exactly by Hermite splines. A circular arc of 90

degrees has a radius error of 0.03 % (figure 11). For an arbitrary region extending 90 degrees on

the surface of a cylinder, the radius error can be as much as 0.2 % (figure 12). Lines resulting

from the intersection of arbitrary 90 degree regions can have a radius error of 0.4 % (figure 13).

Figure 14 shows the effect of a +/- 0.5 % local perturbation of radius on the results of the analysis

of a flat plate with a hole. The maximum corner stress decreased by 0.8 % as a result of the

perturbation. For solid elements, the stress error appears to be of the same order of magnitude

as the geometric error. Figure 15 shows the effect of a +/- 0.5 % local perturbation of radius on

the results of the analysis of a pressurized spherical shell. The stress error introduced was
approximately 8 %. For shell elements, the stress error appears to be an order of magnitude

higher than the geometric error, The radius error in the ANSYS solid modeler is drastically

reduced if the line segments and areas are limited to spans of 45 degrees or less. Typical radius

errors are then 0.0005 % for line segments. 0,005 % for areas, and 0.03 % for intersection lines.

Radius error = 0.03%

Radius error = 0

Figure 11 Radius Error for a 90 Degree Line Segment

Figure12 RadiusErrorfor Arbitrary90DegreeArea

i

J_

i_1 II

/11111
IIl|l

/ lllJl

I I1111

L

3 Y×

Intersection of cylinders -
/ Maximum radius error = 0.4%

Figure 13 Radius Error for Intersection of 2 Arbitrary 90 Degree Areas i

Radius = Constant

7?777X',..7
_-.", /il __

Radius varies +/- 0.5%

Figure 14 Effect of Radius Error on Plane Stress Solution

Membrane Stress

/ ---.. -_ __ varies +/- 0.5%

/ _/_ / _ _ Membrane Stress
._- i _ I ",<
/ I"'l_l\l\

I I"'_1\1\1\ i,"" ./ i\l\lk/\'_/../ _.\ ,,_,, \,,_ _.

- _6"/\ # \ / \,_"\

+/"{,',-.,0.)0

Radaus Varies

varies +/- 8%

R,-.--/"

+/- 0.5% __

Figure 15 Effect of Radius Error on Shell Stress Solution

5. FINITE ELEMENT MESHING OF AN ANSYS SOLID MODEL

The first step in meshing of an ANSYS solid model is to establish the mesh density. This is

accomplished by assigning a number of element divisions and a spacing ratio to every line

segment attached to the areas or volumes (figure 16). Commands are available for making the

assignments line segment by line segment or to a group of line segments at once. Divisions can

be computed based on line segment length and a desired element size and assigned

automatically. Spacing ratios can also be computed automatically for smooth mesh transitioning

(figure 17).

DivisionsAllLineEStablished _ ____for Segments _ _ °

Figure16 EstablishingFiniteElementMeshDensity

/

/

/

/
I.. /

%

/

/

/

/

/

m

/I

I

I

I

I

I

I

I

Figure 17 Automatically Adjusted Line Divisions and Spacing Ratios

Meshing of areas with quadrilateral elements and volumes with brick elements is available in certain

cases. The most limiting restriction is that only the standard region shapes (four keypoints on

areas, eight keypoints on volumes) are allowed. Further, the number of element divisions

requested must match on opposing sides of areas (figure 18). The area corner angles must be

reasonable for quadrilateral or brick elements. The mesh is mapped onto the natural coordinates

of the areas and volumes (figures 19 and 20).

10

f

Matching Divisions /--_'_ I

Matching Divisions

Figure 18 Matching Divisions on Areas Required for Quadrilateral or Brick Meshing

f

Figure 19 Quadrilateral Element Mesh!ng of an Area

I

'/' _ i

S

Figure 20 Brick Element Meshing of a Volume

11

Meshing with triangles is available for all areas, regular or not. Meshing with tetrahedra is available

for all volumes, regular or not. The elements of choice are the 6-noded triangular solid or shell

(figure 21) and the 10-noded tetrahedral solid (figure 22). ANSYS has these elements available

for stress, thermal, electro-magnetic, or multi-field analysis. For planar, axisymmetric, or shell

applications, 6-noded triangles are good performers, giving results of equal or superior quality for

equal edge divisions when compared to 4-noded or 8-noded quadrilaterals. For 3-dimensional

solid applications, 10-noded tetrahedra perform well. (This element is a theoretically consistent,

completely conforming element which passes the patch test, Because tetrahedral meshes are

rarely symmetric, however, this element can develop localized spurious deformation modes. For

this reason, some theoreticians have refused to bless this element for general use. This is really

bad news if their fear is justified, since tetrahedral meshing is the only reasonable approach to

automated meshing of arbitrary 3-dimensional shapes. No conclusions can be reached, however,

until the stress analysis community has had ample opportunity to gain experience with tetrahedra.)

ANSYS uses the same algorithm for triangular meshing of areas and tetrahedral meshing of

volumes: an initial mesh is formed without regard to region shape and is then repeatedly

improved by operations which divide or combine elements, until all elements are nicely shaped or

until no operations available will improve the situation. This iterative scheme is computationally

intensive, but is highly reliable and produces well distributed meshes of well shaped elements.

Figure 21 6-Noded Triangle Element

Figure 22 l O-Noded Tetrahedron Element

12

Figure23 TriangularMesh on the Exterior of a Volume

Prior to Tetrahedron Meshing

We at SASl have been asked on several occasions why we do not mesh areas with mixtures of

quadrilaterals and triangles, or mesh volumes with mixtures of bricks, wedges, and tetraheOra.

First, there is little evidence to suggest that such mixed meshes are likely to perform any better

than meshes consisting entirely of triangles or tetrahedra. Second, the algorithms to produce such

meshes appear to be at least as complex and compute intensive as the triangle and tetrahedron

algorithms, if they are to check element shape as thoroughly as they should. Finally, connecting

brick elements to wedges and tetrahedra is not a straightforward process if one wishes to avoid

displacement incompatibilities.

Meshing of adjacent areas or adjacent volumes in ANSYS will always produce compatible and

properly interconnected finite element meshes. This is possible because the triangle and

tetrahedron meshing algorithms used do not have the "authority" to alter the exterior of the mesh

of a region. As shown in figure 23, the tetrahedral meshing of a volume starts with a fixed exterior

triangular mesh, which cannot change.

6. BOUNDARY CONDITIONS

The following boundary conditions may be defined directly on an ANSYS solid model.

imposed displacements at keypoints

imposed temperatures at keypoints

imposed voltage at keypoints

imposed magnetic potential at keypoints

(stress analysis)

(thermal analysis)

(electrical analysis)

(magnetic analysis)

(constraints can be interpolated over attached line segments, areas, and volumes)

temperatures at keypoints (stress analysis)

heat generation rates at keypoints (thermal analysis)

(can be interpolated over attached line segments, areas and volumes)

13

applied forces at keypoints

applied heat input at keypoints

applied current flow at keypoints

applied magnetic flux at keypoints

pressures on line segments

convections on line segments

symmetry / antisymmetry

on line segments

(stress analysis)

(thermal analysis)

(electrical analysis)

(magnetic analysis)

(2-0 stress analysis)

(2-D thermal analysis)

(2-D solid or 3-D shell

stress analysis)

pressures on areas
convections on areas

symmetry / antisymmetry

OR areas

(3-D stress analysis)

(3-D thermal analysis)

(3-D stress analysis)

Boundary conditions may be defined before or after finite element meshing, and can be displayed

on the solid model. They will be transferred to the finite element model automatically when

needed. (The transfer can be forced earlier if the user wishes to display them on the finite

element model.)

Even if boundary conditions are not applied directly to an ANSYS solid model, they can be

conveniently applied to a finite element model created by the solid modeler. Nodes and elements

associated with various mesh entities can be activated or deactivated as desired, making it easy to

specify where constraints or Ioadings belong.

7. ANSYS INTERFACE WITH CAD SYSTEMS

ANSYS accepts keypoint and line segment information from a number of other solid modeling

systems (see Table 1). A user can use this data to create areas and/or volumes and a finite

element model.

Table 1

Translations within
ANSYS

Other Systems Having Some Interface
with ANSYS

IGES ADAMS-DRAM ClS-MEDUSA PATRAN

MEDUSA ADVANTAGE DIAD Solid Modeler PDGS

FEMVlEW ANVIL ENGINEER WORKS PROF. CADAM

FEMGEN APPLICON EUCLID ROMULUS-D

NASTRAN AUTOCAD FEMAS SOLUTION 3000

SUPERTAB AXXYZ GRAFTEK UNIGRAPHICS

CADAM ICAD VERSACAD

CADKEY INTERGRAPH

CATIA ME30

CDS-4000 M.E. Workbench

ClMLINK MOLDFLOW

Even though ANSYS can accept nodes and elements created by other systems, we believe that in

most cases the user will be better off doing the finite element meshing step within ANSYS. First,

we have seen evidence (finite element models from other systems) that not all develol3ers of

meshing software know what constitutes a good analysis model. Badly shaped elements may give

poor quality analysis results. (It is far better to inform the user that meshing is not possible with

14

the data supplied than to produce an unacceptable mesh.) Second, if the user has meshed in

another system, he or she may be reluctant to make any alterations to the model which may be

indicated by initial analysis results. Third, the required mesh may by load dependent. Finally,

nodes and elements brought into ANSYS from another system will not be associated with the solid

model, and boundary condition manipulation will be difficult.

8. FUTURE DEVELOPMENT PLANS

In the short term (Revision 4.4, 1988), we plan improvements in the command structure for

defining ANSYS solid models. We hope to improve the speed and reliability of our meshing

algorithms. We plan to allow definition of contact surfaces. We plan to improve our interfaces

with other software packages.

In the long term (Revision 5, 1990), we want to address some or all of the following.

• mapping analysis results back onto the solid model

• adaptive mesh refinement

• improved curved surface accuracy

• improved user interface

9. EXAMPLES

Figures 24 through 31 show several examples of ANSYS solid models and resulting finite element
meshes. Table 2 shows the various statistics for these models.

Table 2

Example Statistics

Elapsed time* for creation
Number of Number of of solid model & finite

Model Commands Elements element model Computer

Block with two holes 159 3047 tetrahedra 183 minutes VAX 11/780

Helix 62 2856 tetrahedra 160 minutes Prime 9950

Pawn 60 819 triangles 19 minutes MicroVax

Knight 351 2427 tetrahedra 318 minutes MicroVax
Gear 279 1136 tetrahedra 31 minutes Prime 9950

Gear Submodel 186 2684 tetrahedra 138 minutes Prime 9950

Turbine Spacer 403 1224 tetrahedra 75 minutes Prime 9950

"CP times are nearly identical

15

ORIGINAL; PAGE I_

0E POOR QUALrl_

Figure 24 Tetrahedron Model of Block with

Two Holes

Figure 25 Detail of Tetrahedron Model -

Block with Two Holes

Figure 26 Tetrahedron Model of Helix Figure 27 Triangle Model of Pawn

16

OR2GfNA!_ PAGE IS

OE t:'OOR QUALITY

Figure 28 Tetrahedron Model of Knight Figure 29 Stress Contours on Tetrahedron
Model of Gear

/

Figure 30 Stress Contours on Tetrehedron
Submodel of Gear

Figure 31 Stress Contours on Tetrahedron
Model of Turbine Spacer

17

N88-19116

SOLID/FEM INTEGRATION at SNLA *

Patrick F. Chavez

CAD Technology Division
Sandia National Laboratories

Albuquerque, New Mexico 87185

SS
SAND87-0882A

This presentation will describe the effort at Sandia National

Laboratories Albuquerque with emphasis on the methodologies and

techniques being used to generate strict hexahedral finite element
meshes from a solid model. We utilize the functionality of the modeler

to decompose the solid into a set of non-intersecting meshable finite

element primitives. The description of the decomposition is exported,

via a Boundary Representation format, to the meshing program which

uses the information for complete finite element model specification.

Particular features of the program will be discussed in some detail

along with future plans for development which includes automation of

the decomposition using artificial intelligence techniques.

*This work performed at Sandia National Laboratories was supported by

the U.S. Department of Energy under contract DE-AC04-76DP00789.

Automatic Nesh Generation and Optimization
from the Solids Hodel Dec•base

SA/_D85-2822C, CAD/CAH 031

Patrick F. Ch•vez *

A proposed system co Kenerece finite element models directly from
the solids model dec•base is presented. This system includes euco-

macic error analysis vlch adaptive griddln8 for equillbraclon of the
error estimator in use. The complete specification of the finite

element model including boundary conditions and material identifiers

is produced co • neutral output file. An illustrative example depict-

ing the state of implementation of the proposed system is contained
vichin. Current research is also briefly described.

Introduction

The advancing technology of computing hardvare and software is yell

represented by the current Computer Aided Design (CAD) systems employ-
ing solids modeling. These solids modeling systems, under development
by both universities and industry, have the obvious benefit for the

realistic visualization of three-dimensional (3-D) objects. The most
important benefits of solids modeling, however, do not lie in the

solid model itself, but in the subsequent applications which utilize

the valid and unambiguous geometric lnfor_acion available. In ocher
vords, the advantage of solids modeling is not as a stand •lone appli-

cation but as • means of creating • geometrical database to unify a

number of applications. Indeed, users and vendors currently seem to
be concentrating their efforts ec integrating the solids model daCe-

base In the areas of Finite Element Hodeling (FE/4) end Numerical
Control (NC) Programming. Solids modeling does appear Co have the

potential for unifying the design, engineering, and manufacturing

areas of industry.

AC Sandia National Laboratories • unified geometric database is

expected Co reduce design time and yield added reliability and
optimization of the designed systems. A Joint effort becveen the

Engineering Sciences and the Computer Aided Design Departments has

been defined and is being pursued co integrate the Computer Aided

Engineering (CAE) ecclvlcles of the Engineering Sciences Department

into the automated design and manufacturing process. The primary

vehicle for this ef£orc is the utilization of improved model genera-

tion capabilities vlch emphasis on advanced geometric de£inicion and

automatic mesh generation for FF_. In particular, the utilization of

the CAD geometrical dace and hence the elimination of the error prone
reentry of such dace is considered essential.

*Hember of Technical Staff, CAD Technology Division 2814,
$andis National Laboratories, Albuquerque, NH, 8718S.

-1- Chavez

ORIGINAL PAGE IS

O_ _OOK QUA_Ty

This paper describes the effort underway at Sandia for
integration of FF_ Hesh generation utilizing PADL-2 [BROW82]. the
Constructive Solid Geometry (CSC) system produced at the University of
Rochester. Xn general, because of the couerclally available and

locally developed finite element analysls co_es in use at Sandia, a
requirement for the use of hexahedral elements in 3-D FEM exists.
This, coupled wlth the large number of nonlinear finite element

analyses performed, prohibits us from considering the automatic
tetrahedralization work [CAVE85] developed at General Motors Research
Labs or the sodified-octree work [YER_84] performed at Rensselaer
Polytechnic Institute. The finite element mesh generation philosophy
we are pursuing is divided into Cvo primary phases; 1) initial mesh
installation utilizing the available CAD geometric data base and 2)
mesh optimization including mesh improvements based on geometrical
aspects of the initial mesh and automatic error analysis coupled with
node grading techniques to obtain uniformly reliable answers
throughout the domain of analysis.

The following sections of this paper describe in some detail the
relevant topics including 1) solids modeling, 2) application inter-
face, 3) initial mesh generation, 4) mesh improvements, 5) and error
analysis and adaptive grldding. An illustrative problem depicting the

state of implementation of these topics is included.

Solids Modeling - A Geometrical Basis for Applications

The classical geometrical CAD database is the so-called
"wireframe m format. To define wireframe, we introduce the notion of
an edge. For us, how an edge is actually represented within so_e
computer database is unimportant. Only the idea that an edge results
from the intersection of two distinct surfaces matters. An edge is
one-dimensional in a parametric sense. That i_, although any point

(x,y,z) on an edge is in Euclidean 3-space it can be derived through
a system of equations depending on only one independent parameter of
the form

x - X(s) y - Y(s) z - Z(s).

Here Y, Y, and Z are functions of the independent parameter s which is

bounded in the closed interval [So,Sl]. A vtreframe representation
then models a solid by simplistically s_ecifying certain edges of the

solid. Typically, those edges defined for a given solid correspond to
the bounding edges of the domain being considered. Particular entity
specification, referred to as instancing, is accomplished through a
choice of a particular type of edge (say a line or circular segment)
with a rigid motion and any other necessary parameters (say curvature)
to complete the definition.

New geometrical modeling technologies are becoming popular. The
_o most popular technologies are CSC and Boundary Representation (B-
Rep). CSG systems define solids as Boolean operations (union, dif-
ference, intersection) of simpler primitive solids (blocks, spheres,
wedges, cones) instanced by size and location. The B-Rep, on the
other hand, is a heirarchical extension of the wireframe format. In
the B-Rep, solids are described as a collection of instanced (by type,
size, and location) faces, each of which in turn are composed by a

-2- Chavez

number of edges. Explicit mathematical descriptions of both the faces

and edges are usually available. The user interface for the CSC and
B-Rep systems appear to be unifying wlth each other borrowing from the
others successes. Primitive instancing, once strictly a tool of the

CSC modeler, is found in several B-Rep modelers. Similarly, a sweep-

ink formulation of edges to create faces and the 8weepin_ of faces to
form volumes have begun to appear in some CSG formulation_.

We are, of course, interested in utilizing an unambiguous and

valid description of a solid. The adjectives "unambiguous" and
"valid" are similar to the terms "one-to-one" and "onto" as applied to

invertible functions. When we say an unambiguous solid representation

we imply that for a given representation it should correspond to one

and only one solid. We do not have strict one-to-oneness since there
is no unique representation for a given solid, but only a unique solid

for every representation. Indeed, in any of the currently available

geometrical modeling systems, there is no unique representation for a
solid. There are as many definitions of a solid as there are users.
As for the term "valid', we imply that for any representation we

derive, it describes a solid although it need not be realizable from a

manufacturing point of view.

It is easy to imagine that wit, frame representations are neither

unambiguous nor valid. Indeed, there are a myriad number of counter-
examples testlfylng to thls. On the other hand, both CSG and B-Rep

systems have the ability to produce unambiguous and valid descrip-
tions. Our york in automatic finite element analysis has been based

on the unambiguous and valid geometric description available within
the C$C modeler PADL-2. The choice of PADL-2 has been more • matter

of convenience, since the source code and expertise are available at

$andia, than a matter of preference of CSG over B-Rep. In fact, it
nay be argued that the B-Rep facilitates certain applications, for

example FEH and NC programming, that are primarily surface oriented.

For our implementation of the mesh generation we use the B-Rep,

as supplied through a conversion routine available in PADL-2. These

conversion routines are generally well understood and details of the
PADL-2 implementation can be found in [HARTS1]. Our development thus

is considered Feneric in the sense that any solid modeler capable of

ultimately delivering a B-Rep, independent of its own internal repre-
sentation, would be able to utilize the capabilities we are develop-

ing.

We have realized the benefits of using a valid and unambiguous
solid model as neither the geometry nor the topology has to be sup-

plemented. For vireframe applications it is quite typical that either
additional topology or geometry has to be supplied before applications
are undertaken.

Application Interface - The Link Between Geometry and Applications

The idea for using arbitrary solid modelers in conjunction with

verious applications is kno_nn under the broader category of
"application interface'. An application interface has been likened to

a "software bus" enabling applications to communicate directly to

-3- Chavez

ORICrN_L PAGEIS
OF POORQUALITY

8ollds modelers for the purpose of interrogating or modifying the
• olld model. To date no standard •ppllc•tion interface exists for the

available •ollds modelers although •fforts [CAMI86] to thls and have
been underway for ••me time. Still. some solids modelers make

available to ••me •xt•nt the modeling operations requlr•dby loc•!ly

deTeloped •ppllc•tlons. Application interfaces can be thought of •s

part of the •ollds modeler which make the Intern•Is of the modeler
transparent to the •ppllc•tlon.

We have been able to use • number of the available routines

within PADL-2 to facilitate the interface to the finic• element mesh

generator. These include routines for identifying and utilizing the
Ks•metric entities within the representation. For •xample, routines

pertaining to the st•rage management •truccur•, the rigid motion

facility, and the computational geometry package have been used to
discretize the body for mesh generation. Other utilities necessary

for linking our application to PADL-2 have had to be defined and
developed. These include routines that format the B-Rap available in

PADL-2 for •xport to applications and the corresponding routines to

read the representation into the mesh generator. The mesh generator
also requires contiguous lists of edges and faces, called loops, which

PADL-2 does not require. These have been developed. Redundant edges

and faces •re either necessary or add to the robustness of • solids
modeler, but •re detrimental to mesh generation. Algorithms to

identify and eliminate redundant faces and edges have been

implemented. Finally, although PADL-2 contains routines usable to
discretize edges, none existed to discretize surfaces.

The above development has allowed the mesh generator to directly

create finite element models from • solids description while g_utrmn-

teeing that •11 nodes defined for the mesh either lie in the body or
are exactly on the surface. This group of routines are necessary

within another solids modeler for our implementation of the finite
tlement mesh Bener•tor.

Mesh Generation - An Application for Solids Modeling

In this section the philosophy for generating hexahedral finite
element meshes from • solids model database is presented. We proceed

by briefly describing one technique for generating hexahedral meshes
that is representative of the classical methods used. The method we
are pursuing for mesh generation is an extension of these ideas im-

bedded in new technologies, namely solids modeling and feature recog-
nition.

A hexahedral mesh can be constructed through a coordinate trans-

formation in conjunction with higher order approximating functions.
More specifically, the geometry of the body is constructed using

hexahedral subregions each having six well defined faces and twelve
edges. The description of each hexahedron requires the coordinates o£

eight corner points and one interior point of each edge for • total of
twenty points. During the construction of 8 particular hexahedron,

faces which are coincident with previously defined faces are identi-
fied. Thus, coincident nodes on coincident faces are assigned the
same node number, Finally, • consistent number of divisions along

three "mutually orthosonal" directions for each hexahedron i•
•pacified.

A mesh of hexahedral element• can then be installed in each

hexahedral region in the following manner. The t_enty points given on
each hexaheIral subregion are considered the images of the unlt cube
S, where S - [(r,s,t):O__r,•,c_l], vle maps given by x - X(r,•,C), y -
Y(r,s,t), and z - Z(r,s,c). Here the usually polynomial functions X,
Y, and Z ere of total degree three In each variable. The unlt square
i• then •ubdlvlded Into the specified number of divisions and the grid
• o formed is transformed via the above maps to the physical domain.
If the interior points defined along the edges of the hexahedral are
placed closer to a corner point, a higher density of elements is
obtained in that portion of the subregion.

The mapping technique described above, usually referred to as an
Isoparametrlc mapping, necessarily matches the body at only the twenty
interpolation points defined. A different mapping technique has been
utilized In our york. Our a_pping technique is related to the
transfinite mapping york of Htber at. el. [HA_Eal,HABE82], in that a
non-denumerable set of points on the surface of the body can exactly
be matched. This mapping is derived by utilizing the par_matrtc
representation of the surfaces available in PADL-2 to locate the mesh
points on tvo "opposite" faces. The interior points of the mesh are
then generated through s lofting o£ the meshes on these faces. For

the simple subreglons implemeted to date, these interior points ere
guaranteed to lie interior to the subregion. As more geometrically
complicated subregtons are added, validity of the location of the
interior points rill be checked through point classification, a capa-
billcly of the solids modeler PADL-2.

In the discussion of a classical hexahedron mesh generator, ve
.described the geometric definition of the body as an assemblage of
.l_rge hexahedra. This definition of a solid is overly restrictive.
This construction is unnatural end inefficient when using general
solids modelers. Even for systems explicitly designed for this

purpose, this construction can be overly time consuming for ell but
the simplest cases.

For our york, no such res_rlc_ions on the geomett 7 creation is
assumed. The full power of the solids modeler is utilized. Our
philosophy for subregion definition is that all the capabilities of
the solids modeler are used Co decompose the body into a set of
regions within each of which • hexahedral finite element mesh can be
installed. We term these subregions "finite element primitives'.
That is, the solid model is decomposed using the primitivesand
Boolean operations of the solids modeler into a set of finite element
primitives. The resulting set of finite element primitives need not
coincide with the geometric primitives of the solids modeler. The
finite element prlmiCves Co be supported include all the geometric
primitives plus all the topolologtcally equivalent entities. For
example, any volume defined by one surface, topologically equivalent
to a sphere, viii be able to be meshed.

Allovln8 more seneral finite element primitives either
necessitates the de£1nlclon of hey mapping techniques or a decomposl-
tlon of each of the finite element primitives Into a collection of
hexahedra. Thls last alternative Is easily accomplished. Flgure 1
shove the decomposltlon of the standard geometric primitives. This
decomposition of the finite element primitives vlll be automatic In
the solid modeler and transparent to the user.

The mesh seneraclon Is only automatic in each finite element
primitive. Presently human interaction Is required for the primitive
deco=posltlon. Work is beginning in the area of feature recognition,
as applied to recognizing the finite element primitives, to automate
thls process.

.',

Figure 1. Decomposition of the Standard Geometric
Primitives into Hexahedron.

Mesh Improvements - Assur£n S Geometrically Good Meshes

In the previous discussion o£ the mesh generator ve did noc
enumerate the characteristics of m "good" mesh. We do so nov. Some
characteristics of a good mesh are 1) gradually changing element
sizes, 2) gradually changing element shapes, and 3) as nearly reccan-
Bular (even cubical) elements as possible. These characteristics have
i=porcanc ncunerical consequences. For example, the third condition
assures us in practice of m yell defined (one-Co-one and onto) coot-
dlnace Cransformaclon during the sclffness matrix foraulaclon. In
sddlclon, all the above characcerlstlcs attempt co malncaln the condl-
Clon n,,mbers of the stiffness matrices generated for Cvo nearby ale-
mencs Co be similar.

-6- Chavez

Our approach to generating good meshes is an extension of the
ideas incoporated in the _o-dimensional (2-D) mesh generator QKESH
[3ON£74]. Only the necessary details of these developments rill be
given in this section. A more complete description of the 2-D im-
plementation can be found in the QMESH documentation.

In our mesh generator, like QMESH, the initial mesh is evaluated
and improved through a series of processors vorking in tandem. The
processors have the capabilities to automatically reposition nodes,
delete elements, and rearrange the topology in an attempt to improve
the element geometry. The mesh improvements, as ve now discuss, are
only concerned rich the geometrical aspects of the mesh. The suffi-
ciency of the mesh with regard to accuracy is discussed in the next
section of this paper. The general concepts of the algorithms for
node smoothing, topology restructuring, and element deletion are nov
described.

The node repositioner, or smoother, consists of attempting to
have the nodes equidistant and the elements having equal volumes.
Requiring the nodes to be equidistant is tantamount to requiring thaC
every node is at the average location of all its neighbors. Symboli-
cally we have

1
c=.y,=)- :(::xi, -Yi':h)

where n is the number of neighboring points each rich coordinate (_ui:
Yi' z_). This formula is the one applied in the smooching code
in a slightly altered fashion. The expression is rewritten as

i (xi.xo) ' X(yi.y0) ' (zi.z0))(x,y,z) - (Xo,Yo,Z O) + _(

or more succinctly .

". 1

, (x,y,z) - (Xo,Yo,Z O) + _:l i.

Here (Xn.Yn.Zn) and (x,y.z) are respectiv_ly
position_ 6f -the node being moved and VL - _1 i
movement vector.

the old and updated
is the "Laplacian"

Only a related form of the volume equilibra=lon has been
considered Co date. Instead of requiring the volumes for all elements
to be the same, we impose that each of the areas of the faces on-all
the elements are equal. This has been proposed to more fully utilize
the capabilities already developed in QHESH. This requirement is
represented in the formula

v^-: vi
Aif+Aib

where VA is the "Area-Pull" movement vector (corresponding to VI in

the node-equldlstrlbutlon) applied co the node in quesclon. The A_ f
and A_ _ refer to the areas of the face "in front" and "in back*'of
the nad3. Agsin, more complete description of the formulation in the
two-dimensional setting can be found in [JONE74]. The Laplacian and
Area-Pull moment vector for 8 node are incorporated through a convex

-7- Chavez

ORIGINAU PA-GE 1_

OF POOR QUALITY,

combination of the two. That is the moment vector for a given node is
taken as

v - avA ÷ (1-a)v L

rich ac[O,1] a user select•hie parameter.

The next capability is the restructuring of the element topology,
i.e., the element connectivity. By this we mean the process of eras-
ing an interface plane and drawing it differently to improve the
geometrical shape of the neighboring elements to the plane. To assess
the element shapes, three element evaluator functions referring co the
angle condition, the aspect ratio, and the product of these cvo have
been defined. These definitions are extensions Co chose developed by
Jones for QHESH.

The operation of the restructuring process is then the following:
the condition numbers for all the elements are evaluated and a list of
the twenty-five worst (largest) is saved. The processor attempts to
improve the worst element in the mesh. If no improvement is made in
any of the first ten worst elements, the processor quits. If a re-
structure is accomplished, the list of worst elements is updated and
the process is continued so long as a restructure Is performed among
the ten worst elements of the mesh.

The final processor contained is the element deleter. This
processor attempts to improve the mesh by deleting elements. Element
deletion is similar in nature co the restructuring processor. This
processor sweeps through the mesh to make a list of the five worst
"rhombic" elements. The measure of how rhombic an element, termed the
R-number, is defined as the ratio of the length of the shorter diago-

•nal to the length of the longer diagonal. If the R-number of an
element is less than tan(V/2), where V is normally forty-five degrees,
the element is placed in the candidate list for deletion in ascending
order. The more rhombic an element is the smaller the R-number. The

tolerance parameter tan(V/2) is the R-n,,=ber of a parallelogram with
opposite angles of V and is not simply a measure of how sharp an
element is. The progra: then starting with the worst (smallest) R-
number, attempts to eliminate the element. As soon as an element is
deleted, control returns to the calling program.

The sequence Chat the processors operate on can effect the out-
come o£ the mesh. A general method for specifying the sequence of the
processors has been implemented. The entire sequence is lceracively
performed until convergence (no more node smoothing, element restruc-
turing, or element deletion) is attained.

The full capability of the mesh improvement has not been imple-
mented to date. Only those capabilities corresponding Co each of the

lofting planes generated in the primitives are acted on. Ve can show
that for certain limited cases this is a partial implementation of the
entire algorithm for m true 3-D mesh improvement. Ue have observed
that the primary processor functioning is the smoother, attributing to
the initial quality of the meshes generated.

-8- Chavez

Error £nalysis _and £daptlTe Oriddin$ o Generating ¢omlmcationally
Opt 1=us Meshes

The eoplcs of error analysis and ad4pclve grlddlng have attracted
considerable accenclon. For example, Ic is well known theoreclcally

chac inserting degrees of freedom inca the finite elfment method can
yield more accurate results. In practice, iC has been verified chat
often the error can be reduced when the number of degrees of freedom

are increased. In general, there are two ways of decreasing the error
by increasing the number of degrees of freedom in the finite element
space. The first method, usually referred Co as the "p-method",
involves increasing the degree of the polynomial used over each
element while leaving the total number of elements in the domain
fixed. This refinement, as usually implemented, has no effect on the

approximation of the geometry and hence the initial mesh should be
developed to include all the important geometrical aspects.

The second method of increasing the accuracy of the finite ele-
ment method is termed the "h-method'. In the h-method, the degree of
the approximating functions over each element is maintained while the
portion of the domain spanned by each element is decreased. In ocher
words, additional elements (and thus nodal points) are placed in the

region. Again, in practical applications of the h-method, no im-
provement of the geometrical model is attained. The theoretical
aspects of the h-method are probably more developed than chose
perCainlng Co the p-method.

The difficulty with bach the above approaches is thac extensive
modifications are required for the finite element analysis codes in

use today Co cake advantage of these developments. A third alterna-
tive for adaptive gridding is possible. Errors in numerical methods
are pointwise dependent. That is, errors in an analysis usually vary

from one element co another. One reasonable goal co strive for is a
Uniformly reliable answer with the same error associated with every
element. Thus, if elements are concentrated in the area where errors

are large while decreasing the number of elements where errors are
small, we can hope co produce such a result. In effect, we are crying
to automate the technical expertise applied by computational stress

analysts in achieving reasonable results.

The methodology currently being pursued is the latter approach
primarily because of the large investment in conventional FEB tech-
niques noc involving the h- or p-methods of refinement. IC nay be
quite some time before software is readily available for applying
general h- or p-methods especially for the non-linear problems of
interest ac Sandia. The question now arises: HOW do we introduce the

adaptive grading techniques in our calculations? To answer this we
look ec the composite pares of the problem. They are error evaluation
and node distribution.

The problem of finite element error evaluation has been studied
extensively. Sophisticated theoretical work has been done by Babuska
and P,helnboldC [BABU78a, BABU78b, BABU80]; K. Miller and R. Miller

[MILLSIe]; K. Miller [MILLalb]; end Babuska and A. Miller [BABUal] on
error evaluation. To paraphrase their work without extensive techni-

cal details, an estimate of the local error in an energy norm aca

-9- Chavez

given node is derived by considering the surrounding elements to that
node. Here the energy norm for • function f is defined as

IIflIEcD) - _ DlVfl2dv.

The indicated integration is carried ouc over the domain covered by
the neighboring elements of the node of interest and is not•ted _y D.

It is assumed thac the finite element solution, denoted by uh, to the
desired partial di££erencial equation (PDE) is available. A model
problem, perhaps mimicking the actual PDE being solved, with boundary

data corresponding to uh is then solved on D and denoted by v. It is
then reasonable to assume that the quantity JJu_-vJJ_. D-
approximates the local energy error JJu h - uJJ_tD_ wheY• u _ _he
exact (and usually unavailable) solution. VarYbug refinements and
extensions to this idea are the topics of the references cited.

The error indicator we are currently experimenting with is
different from the one presented •boys. Our error indicator is
simpler to evaluate and attempts to estimate the maximum point-vise
error in an element rather than a local energy error. Briefly, under
conditions which are usually satisfied, it can be shown chac in the
maximum norm the finite element solution is the optimal solution
available from the span of the basis functions. Thus

Ilu-uhllL. _ Cmin IIu-XIIL.
X _Sh

where II * II L denotes the maximum norm and Sh denotes the finite
element subspace depend_n_ on the choice of the discrecizacion h and
the approximating polynomials S used. Then, on an element k spproxi-
nation theory yields

• Ilu'uhllz_ (K)

Here D2u denotes the generic

I_ IIv milL- (K)
IID2ulIL- (K).

second derivative while h k is the
diameter of the element. In the case of linear elements we use the

first inequality replacing Vu by Vu_. _or quadr_tic elements the
second inequality can be used replacing D u with D _. The maximum
norm is currently estimated aC the quadrature points or the elements.

This error indicator is conservative for problems with smooch
solutions. Ic does noc Cake into account the full order of the

polynomial approximation for such problems. Ic is known thac for

problems wich2smooch solutions, the error using linear elements would
be of order h and noc3h. Simlla_ly for quadratic elements the error
would be of order h and noc h . This error indicator may be more
suitable for non-smooch problems such as in shock calculations.
Again, the primary advantage of the proposed error indicator is its
computability and iC is a poinCvise estimate.

Ve nov consider the problem of hey co distribute the nodes to
equilibrate the error indicator and obtain • uniformly reliable
solution throughout the domain of anyelysia. This problem is easily

-10- Chavez

addressed with the development of the Keometrical •moothin s as dis-
cussed eerlier. As noted, the movement vector as considered in the

Area-Pull and Laplacian •moocher i• siren a•

It

8•

v - aVA÷(I-a)VL.

is reasonable co expect that the new node movement vector defined

v - avAeA + (l-a)vL%

where e A and • I represent the error• 8ssocieced with the Area-Pull
and the Laplacran movement vector respectively, would cluster the

elements where errors ere large. For example, e A could be defined as
the maximum error computed for the element corresponding to v 4 while

e L could be the average of the errors associated with ell the eIement•
• urroundlng I i. Overall, the node distribution for adaptive grading
X• taken as an error weighting of the seometrical node •mooching.

An Example - Current Capabilities

As an illustration of the procedure for cresting • finite element

mesh end performing automatic error analysis and adaptive grlddlng, we
consider m relaclvely slmple but realistic problem. The problem
involves an L-bracket vlch a cylindrical hole in the bottom slab. The

part is constructed in the PADL-2 language through the union of cvo

properly Instanced blocks and the difference of a properly instanced
cylinder. The solid is decomposed Into six finite element primitives.
The solids model of the decomposed L-bracket is shown in F_sure 2.

The four primitives surrounding the hole were created by first

defining a coordinate system with respect to the axis of the hole. A
properly instanced wedge with its apex parallel to the holes axis was

defined. Finally. four intersections of the bracket with The wedge
after appropriate rotmcions of the wedge about the holes axis yielded

the indicated finite element primitives. The two remaining finite
element primitives were obtained by intersecting appropriately
instanced blocks with the L-bracket.

The B-Rep of the decomposed bracket was transferred to the mesh

generator via several of the routines imbedded in the application

interface. For analysis purposes, the part is assumed co be o£ alu=i-
nu= construction with a load applied co the right front vertical edge.

Discretization date supplied via the user interface in The mesh gene-
rator resulted in the mesh indicated in Figure 3. Appropriate mate-

rial indicators and boundary condition flags were specified, again

within the F_ user interface, before formatting the model into a

neutral format for analysis. Automatic translation of the neutral
formatted finite element model into SAP IV [BATH7&] format for a

linear elastic static analysis was accomplished. Typical results

shoving the minimum principal stress contours is shown in Figure 3.

Figure 4 shows the results of the automatic error analysis.
Areas of large error ere indicated es a high density of error contours

and corresponds to locations of high stress. This is intuitively
correct since the error measure is related co the calculation of the

-11- Ch•vez

ORIGINAL PAGE PS

OF POOR QUALITY
straln$ and hence proportional to the stresses. Finally, Figure 5
shows the adapted mesh and the analysis results on that mesh. In
general the error Indlcaeor has aqulllbrated to reasonable values and
the answer ts considered to be uniformly reliable In the domain of
interest for the number of elements used.

Conclusions

We have presented in some detail the theory and development
behind a three-dimensional hexahedral finite element mesh generator
working directly from a solids model database. Zn conjunction with
the mesh generator are co-developments in automatic error analysis and
adaptive grading to produce uniformly reliable analyses.

Research and development pertaining to the overall system is
continuing. Development of the mesh improvement schemes and inclusion
of more topologically complex finite element primitives ts proceeding.
The mesh generation phase is only automatic in each finite element
primitive. Full automation Is impossible without automating the
finite element primitive decomposition. Research is underway in the
general area of feature recognition as applied to the process of
primitive decomposition. In addition, York is continuing in the areas
of automatic error analysis and acLapClve grading. This york is
prlmarily seen to remain in the area of adaptive grading because of
the predominant nature of the commercially available finite element
analysis codes.

f

T

X L.4bslll •tll • _ IDle

Figure 2. The Solid Model of
the Primitive

Decomposition

Figure 3. The Minimum Principal
Stress Contours on the
Hexahedral Nesh
Generated.

-12- Chavez

_ X 1,41,'gIN II11_ • _ lile

ORIGINAI_ PAGE IS

D_ POOR QUALITY

IUlWl IIIlJ e Imdll IIIo a, III_

i

Fisure 4. Error Contours from the
Automatic Error Analysis

Figure 5. The Minimum Principal
Stress Contours After

Adaptive Gridding

References

BABU78a Babuska, I., and Rhelnboldt, W.C., "Error Estimates for
-.. Adaptive Finite Element Computations," SIAH Journal of

Numerical Analysis, Vol. 15, pp. 736-754, 1978.

BABU78b Babuska, I., and Rheinboldt, V.C., "A-Posterlori Error
Estimates for the Finite Element Method," International
Journal of Numerical Mechanical Engineering. Vol. 12, pp.
1597-1615, 1978.

_ABU80 Babuska, I., and Rheinboldt, W.C., "Reliable Error Estimates
and Mesh Adaptation for the Finite Element Method,"
Computational Methods in Nonlinear Mechanics, North Holland,
Amsterdam, pp. 67-108, 1980.

BABU81 Babuska, I., and Hiller, A., "A-Posteriorl Estimates and
Adaptive Techniques for the Finite Element Method," University
of Maryland, Institute for Physical Science and Technology,
Tech Note BN-968, 1981.

BATH74 Bathe,K.J., Wilson, E.L., and Peterson, F.E., "SAP IV - A
Structural Analysis Program for Static and Dynamic Response of
Linear Systems," Earthquake Engineering Research Center,
College of Engineering, University of California, Berkeley,
California, 1974.

-13- Chavez

BROW82 Brovn, C.M., "FADL-2: A Technical Summary," IEEE Computer
Graphics and Applications, Vol. 2, No. 2, pp. 69-84, Hatch
1982.

CAHI86 Computer Aided Manufacturing-International, "Application
Interface Specification-Volumes I and II', Cranfield Institute
of Technology, January 1986.

CAVE85 Cavendish, J.C., Field, D.A., and Frey, V.M., "An Approach co
Automatic Three-Dimensional Mesh Generation, m International
Journal for Numerical Methods in Engineering, Vol. 21, pp.
)29-)47, 1985.

RABE81 Heber, R., Shepherd, M.S., Abel, J.F., Callagher, R. H. and
Greenberg, D.P., "A General Tvo-Dimensionel, Graphical Finite
Element Processor Utilizing Discrete Transfinite Mappings,"
International Journal for Numerical Methods in Engineering,

Vol. 17, pp. 1015-10_4, 1981.

HABE82 Maber, R. and Abel, "Discrete Transfinite Mappings for the
Description and Meshing of Three-Dimensional Surfaces Using
Interactive Computer Graphics," Incernaclonal Journal for
Numerical Methods in Engineering, Vol. 18, pp. &l-86, 1982.

HAKT8I Martquist, E.E., Peterson, D.P., and Voelker, M.B., "BFILE/2:
A Boundary File for PADL-2," Technical Memo CGGM-20,
University of Rochester, Rochester NY, March 1981.

JONE7_ Jones, R.E., "QMESH: A Self-Organizing Mesh Generation
Program," Publication N. SLA-73-1088, Sandia National
Laboratories, Albuquerque, N.M., 1974.

MILL81a Miller, K., and Miller, R., "Moving Finite Elements-l," SIAM

Journal of Numerical Analysis, Vol. 18, pp. 1019-1032, 1981.
°.o

MILL81b Miller, K., "Moving Finite Elements-II," SIAM Journal of
Numerical Analysis, Vol. 18, pp. 1033-1057, 1981.

YEP,q 8 _ Yerry, M.A., and Shephsrd, M.S., "Automatic Three-Dimensional
Mesh Generation by the Modi£1ed-Occree Technique,"
International Journal for Numerical Methods in Engineering,
Vol. 20, pp. 1965-1990, 1984.

-14- Chevez

Key Words

io

2.

3.

4.

5.
6.
7.

8.
9.

Solids Modeling
Application Interface
Finite Element Mesh Ceneration

Mesh Optimization

Error Analysis
Adaptive Cridding
Finite Element Analysis

Computer Aided Design
Computer Aided Engineering

N88-19117 i
-4/

/"d4_, o_JuL/

IU,

OCTI:tEE BASED AUTOMATIC MESHING FROM CSG MODELS

Renato Perucchio. Assistant Professor

Department of Mechanical Engineering

University of Rochester

Rochester, NY 14627

Abstract

Finite element meshes derived automatically from solid models through

recursive spatial subdivision schemes (octrees) can be made to inherit the

hierarchical structure and the spatial addressability intrinsic to the underly-

ing grid. These two properties, together with the geometric regularity that

can also be built into the mesh, make octree based meshes ideally suited

for efficient analysis and self-adaptive remeshing and reanalysis. Our pre-

sentation is focussed on the element decomposition of the octal cells that

intersect the boundary of the domain. The problem, central to octree based

meshing, is solved by combining template mapping and element extraction

into a procedure that utilizes both constructive solid geometry and bound-

ary representation techniques. Boundary cells that are not intersected by

the edge of the domain boundary are easily mapped to predefined element

topology. Cells containing edges (and vertices) are first transformed into a

planar polyhedron and then triangulated via element extractors. We also

analyze the modelling environments required for the derivation of planar

polyhedra and for element extraction.

r

PRODUCTION AUTOMATION PROJECT

College of Engineering & Applied Science

The University of Rochester

Rochester, New York 14627

GEOMETRICAL AND TOPOLOGICAL ISSUES

IN OCTREE BASED AUTOMATIC MESHING

by

Mukul Saxena and Renato Perucchio

to be presented at NAFEMS International Conference

on Quality Assurance and Standards in Finite Element Analysis

to be held

May 13-15, 1987

in

Brighton, England

The work described in this paper is supported by the companies in the P.A.P.'s Industrial

Associates Program. Any opinions, findings, conclusions, or recommendations expressed

in this paper are those of the authors and do not necessarily reflect the opinions of the

industrial sponsors or the University of Rochester.

N88-19118

GEOMETRICAL AND TOPOLOGICAL ISSUES IN OCTREE
BASED AUTOMATIC MESHING

Mukul Saxena and Renato Perucchio"

ProductionAutomation Project

and Department ofMechanicalEngineering
UniversityofRochester

Rochester,N.Y. 14627,U.S.A.

SUMMARY

Finite element meshes derived automatically from solid models through recursive spatial subdivision

schemes (octrees) can be made to inherit the hierarchical structure and the spatial _ddressability intrinsic

to the underlying grid. These two properties, together with the geometric regularity that can also be built

into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing

and reanalysis. This paper discusses the element decomposition of the oct,,] cells that intersect the

boundary of the domain. The problem, central to octree based meshing, is solved by combining template

mapping and element extraction into a procedure that utilizes both constructive solid geometry and

6o-un_y representationtechniques.Boundary cellsthatarenot intersectedby the edgeof thedomain

boundary areeasilymapped to predefinedelementtopology.Cellscontainingedges(and vertices)are

firsttransformedintoa planarpolyhedronand then triangulatedviaelementextractors.This paper

alsoanalyzesthe modellingenvironmentsrequiredforthederivationofplanarpolyhedraand forelement

extraction.

1 INTRODUCTION

In this paper, we describe an approach for resolving the geometrical and topological issues that arise

when a recursive spatial subdivision scheme (octree) is used to generate automatically a FEM mesh

from a solid model. Amongst the various schemes that have been proposed for automatic mesh genera-

tion from solid models [W0084, WORD84, CAVE85, SHEP85, YERR85] recursive spatial subdivision

schemes have been found to offer an efficient avenue for automatic mesh generation ms well as for self-

adaptive remeshlng and re.analysis because of two intrinsic properties: hierarchical structure and spatial

sddremsbility [KELA8fl]. To understand the importance of these two properties consider the subdivision

rule and the associated tree structure illustrated - for a 2-D example - in Figure 1.1. The recursive

subdivision rule can be concisely described as follows: (i) the solid domain is "boxed" and the box is

decomposed into quadrants (octants in 3-D); (ii) qua_irants are classified with respect to the domain:

when a quadrant is totally inside or outside of the object, the decomposition ceases; when a quadrant is

neither wholly inside nor outside, it is further subdivided into quadrants; (iii) the process continues until

some minimal resolution level is reached. The resulting quaternal or octal tree can be thought of as a

hierarchical cataloging structure for data describing particular regions cf space. The lowest level of the

" Research AssimtJtnt and Au/stsnt Professor, respectively

tree (the "resolution"level)contains the smallestspatialregions and the ordinary finiteelements. At

higher levelsthe regionsbecome largerand the finiteelements become substructures("superelements")

with associatedassembled stiffnessmatrices. As shown in [KELA86], such a hierarchicalorganizationis

ideallysuitedfor self-adaptivemesh refinement and incremental analysis.Furthermore, ifthe quadrant

or octant cellsare numbered systematically,then the index of any cellin the hierarchicaltree can be

quicklycomputed from itssizeand position,and converselythe sizeand positionofa cellcan be directly

derived from itsindex. This property,calledspatialaddressability,permits directaccess to pertinent

geometrical and analyticaldata during both globalmesh generation and localizedmesh refinement.

OBJECT
QUADRANT

NUMBERING NODE STATUS

B I s Imsi_[] @., mmi_

D • • m tim Immarl {NIO)

FIGURE 1.1 : Quadrant sumberins scheme for a 2-D decomposition.

The octree-based scheme presented here is a direct extension of the work in 2-D meshing and adaptive

analysis reported in [KELA86]. The scheme involves two stages of meshing. In the first stage the

interior of the dommn is meshed with a geometrically regular grid of hexahedral elements that includes

all the inside octree cells. In the second stage the mesh is extended to the boundary of the domain by

inserting finite element topologies in the 3-manifolds formed by the intersection of the octree cell with the

bounding surface of the solid. While for 2-D problems the manifolds are cut quadrants that can be easily

decomposed into quadrilateral and triangular elements via template matching, the 3-manifolds associated

to boundary intersecting octree cells are far more complex structures that cannot be handled by templates

alone. Furthermore, to enforce continuity of the field variable and to maintain the geometrical regularity

of the interior mesh, the "nterf&ce between each 3-manifold and neighboring hexahedrai elements must

be a square. Since tetrahedral elements are essential for the decomposition of the cells intersected by

the boundary, the interface requirement can be satisfied only by introducing pentahedral ("pyramid")

elements to provide the transition between triangular and square faces.

In essence, the crucial problem of octree based meshing is to decompose the cells on the boundary into

validelement assemblies while maintaining the hierarchicalstructure,the spatialaddressablity,and the

geometrical regularityassociatedwith the underlying octree grid. In the followingsectionswe discuss

the meshing scheme ingeneral terms and then we focuson the decomposition of 3-D boundary cells.

2 AN OCTREE BASED MESHING SCHEME

We begin by describing the object in s modelling system based on Constructive Solid Geometry z which

provides all the basic geometric operators for spatial decompoeition and meshing. The ides underlying the

octal decomposition scheme is to approximate the object to be meshed with a union of disjoint, variably

sized cells (cubes) [JACK80]. However, such an approximation cannot be directly mapped onto a finite

element mesh for two crucial reasons: (i) adjoining elements corresponding to octal cells of different

size violate the connectivity rules between finite elements, and (ii) the union of orthogonal surfaces that

approx/mates the boundary of the solid contains re-entrant vertices and edges which introduce artificial

singularities in the FEM model. We modify the octal decomposition scheme to yield a valid FEM

discretization according to the following two-stage strategy.

First sta_e of Meshing

The object S is enclosed in a "box" and the box is recursively decomposed into octal cells which are

classified as being "IN"S, "OUT" of S or neither in nor outside ('NIO'). For IN cells subdivision ceases

and the octant is maPL!ed directly on to a finite element substructure. OUT cells are discarded and NIO

cells are further subdivided and classified until a pre-specified level of subdivision (the "resolution" level)

is reached and no cell contains more than one connected boundary segment of S. IN cells at resolution

level are mapped onto finite elements. The collection of IN cells forms the interior octree of the solid.

Figure 2.1 shows the interioroctreefora solidpart - a bracketmodelled inthe PADL-2 domain [HART83].

The classificationprocedure used in thisstage of meshing isdescribed in [LEE82].

Second sta_e of Meshin_

During the second stage the interior octree is extended to the boundary of S, bS. This requires associating

each of the NIO cells (more precisely the intersection of the solid S and the octant) to valid finite element

topologies. The NIO cells that do not contain edges of bS are classified as Simple ('SNIO') and their

finite element topologies are easily derived through template association.

For the NIO cellsthat contain edges and verticesof bS, decompolition through templates isnot feasible

because of the largenumber ofpossibleconfigurationsforthe edge-cellintersection.These cells,labelled

"Complex" NIO (CNIO), are decomposed through a set ofelement extractorsthat operate recursivelyon

the topologicaland geometricaldescriptionofthe cell.The startingpointfor recursiveelement extraction

isa validboundary representationof the polyhedron Re, formed by the intersectionof the CNIO celland

the cuttingplanes on bS. These operators are discussedin detailin the followingsection.

I Constructive Solid Geometry (CSG) exploits the notion of "adding" and "subtract/rig" simple building

bloclm ('primitives") via set-union and set-difference operations.

i
i

FIGURE 2.1 : A bracket and its interior octree.

The finite element mesh is complete at the end of second stage. The interior of the mesh consists of

identical hexahedral elements and substructures associated with IN cells at resolution and higher levels,

respectively. Also, the mesh inherits the hierarchical structure and the spatial addressabi]ity of the

underlying octree decomposition.

As shown in [KELA86, 87], the regularity of the interior mesh together with the spatial addressability of

the entire model provides the basis for a very powerful procedure for doing analysis as well as remeshing

and reanalysis. Briefly, stiffness matrices are built and stored for all the non-OUT cells in the hierarchi-

cal tree (for identical interior elements and substructures they are copied into storage from precomputed

values). This is done from the bottom up by assembling son matrices and condensing-out the interior

degrees of freedom to build parent matrices at each level. A preliminary study on a 2-D implementation

reported in [KELA87] su_ests that this substructuring procedure is asymptotically more efScient than

direct Gauss/an reduction. For adaptive remeshing and reanalysis, spatial addressability allows e/_cient

localized mesh modification. The reanalysis proceeds incrementally: the new stiffness matrices are in-

serted in the appropriate tree location and are combined with the stiffness of the unmodified elements

and substructures.

In conclusion, the strict adherence of the FE mesh to the underlying octree structure offers some unique

advantages for the analysis and, as such, is worth preserving. Therefore, stage 2 of the meshing procedure

is designed in such a way as to leave intact the interior octree and the spatial addressability of the mesh.

2.1 Decomposition of 2-D NIO cells

The approach to 2-D NIO cells decomposition described in [KELA86, 87] is based on deriving finite

element topologies exclusively through templates. In this case the number of required templates is small

because of the following constraints imposed on the topology of the 2-D NIO cells:

(I) eachNIO cellcan be traversedby bS onlyonce,suchthat

NIO N bS - _rI (1-Dsimplyconnectedpolyhedra); (1)

(2) each NIO cell can contain at most one "vertex" node of bS;

(3) each edge of the NIO cell can have at most one intersection with bS.

(b)

(c) (d) (e)

FIGURE 2.2 : Valid (a,b) and invalid (c,d,e) 2-D NIO cellJ.

Validand invalid2-D NIO cellsare shown in Figure2.2.As shown in Figure2.3,the derivationof

elementtopologies,basedon theabove constraints,issimple.When the NIO celldoesnot containany

vertex,theelementtopologymay be derivedby traversingtheboundary ofthe quadrant and counting

the intersectionswith the objectboundary. Ifthe intersectionsare encounteredon alternateedges,

a quadrilateralelement ismapped on to thiscell.Ifthe intersectiontakesplaceon adjacentedges,

triangularelementsare generatedby connectingthe intersectionpointsto the appropriatecellnode

classifiedas IN.

For the case of NIO celts containing a vertex of bS, the vertex becomes a finite element node and triangles

are generated by connecting this node to all the intersection points and the cell nodes that are inside the
domain.

Thissimpledecompositionapproach- b_udthe topologicalconstraintson which itisbased- cannotbe

extended to 3-D NIO cellsbecausea 3-D bS containsedges.In thiscase,unlessone imposes overly

No Vertex Inside Vertex Inside

FIGURE 2.3 : Derivation of finite element wpolosies for 2,-D NIO ceUa.

restrictive conditions on the way a bS edge is permitted, to intersect a NIO cell, decomposition solely via

template matching is infeasible.

An important property of the decomposition procedure described above is that each 2-D NIO cell contains

all the topological information necessary to associate a finite element structure to the cell such that the

continuity of the field variable across the cell boundary is ensured. Thus each 2-D NIO cell can be meshed

independently from neighboring cells.

To prove this property we note that the interface between neighboring 2-D elements is an edge (I-D

polyhedron). Therefore, to ensure continuity across the interface, the edge shared must be topologically

identical, i.e., the edges must have the same bounding vertices (nodes) in both elements. Along the

boundary of the NIO cell FE nodes are inserted onl....._yat the intersection points and at the cell vertices

classified as IN. Because of this condition, an_._y.yfinite element topology introduced in the NIO cell contains

only elements that have the correct interface with neighboring elements associated to either IN or NIO

cells. Also, the insertion of triangular elements in a NIO cell does not disrupt the regularity of the mesh

of square elements associated with the interior quaxitree.

For 3-D problems, neighboring elements have a face in common (a 2-D polyhedron) and continuity requires

that the shared face have the same set of bounding edges in both elements. In this case, the insertion of

nodes on the NIO cell boundary only at the intersection points and at the cell vertices is not sui_cient

to ensure that 3-D NIO cell meshed independently will satisfy continuity across the interface. We shall

expand on this problem later.

3 DECOMPOSITION OF 3-D NIO CELLS

The NIO cellsare classifiedas SNIO or CNIO, basedon the topologicaldescriptionofthe associated

polyhedron,_, definedas

= NION'S'. (2)

HereN" denotesa regularizedintersection[REQU85]. If_ doesnot containany vertexoredgeofbS,the

cellisclassifiedasSNIO. In thiscase,_,, the polyhedronauociatedwiththe SNIO cell,can be simply

describedas an octalcellinwhich a number ofverticeshavebeenshavedoff"by a singlecuttingsurface,

i,eo,

_o = Octant _) Ht (3)

where octsnt indicates an octal cell at resolution level, $ a regularized boolean operation and Hi is the

cutting surface. Figure 3.1 shows a typical SNIO cell and its corresponding location in the solid part.

Note that the smociated polyhedron R, is a cube with four corners shaved off.

!

FIGURE 3.1 : A SNIO cell sad its location on the solid part.

If _ contains vertices or edges of bS, the cell is dmmified as CNIO. Since a vertex is always defined by three

or more intersecting surfaces and an edge by exactly two, the associated polyhedron can be represented

as

Re = O_anL (_ H1 _) H2...(9 Ha (4)

where Hx, H2,...Hn are cutting surfaces. Figure 3.2 shows a CNIO cell which contains three edges and

a vertex of bS.

7

i

VIrt_B_ [dge

Hi"" Boundary Surface

L.

Boundary Surface

FIGURE 3.2 : A CNIO cell and it_ location on the aolid part.

3.1 Decomposition of SNIO

Since only seven different FE topologies are required for all possible SNIO cell configurations, the cell is

decomposed by first selecting the appropriate template and then mapping the mesh from the template

onto _s. The template is chosen by counting the number of vertices shaved off by the cutting surface.

Figure 3.3 shows four cases of SNIO cells and the associated template derived meshes. The remaining

three cases of possible SNIO cells, not illustrated in this figure, are the complements of (a), (b) and (c).

The templates shown are based on linear hexahedral, pentahedral, wedge and tetrahedral elements 2 The

quadrilateral faces of the pentahedra] and wedge elements mapped on to the square sides of the NIO cell

ensure continuity along the interface between the NIO cell and the interior mesh. The union of the finite

elements represents a planar approximation of the actual geometry with all the non-planar segments of

bS intersected by the NIO cell replaced by triangular and quadrilateral bilinear patches. Finally, we

note that most of the NIO cells are classified u SNIO calls and their decomposition through template

matching is computationally inexpensive.

3.2 Decomposition of CNIO cells

The element "extractors", shown in Figure 3.4, are a modified version of the operators presented in

[WO084]. The operators _'i and _2 produce tetrahedral elements while _3 extracts pentahedra based on

the square faces of _¢ that correspond to the original faces of CNIO cell. These operators work as follows.

2 Linear pentahedral, wedge and tetrahedr_l elements can be generated by collapsing a standard isopara-

metric brick element [BATH82].

FIGURE3.3: SNIOcellsandauociLtedtemplstes.

FIGURE$.4 : Element extractors for CNI0 celb.

I)

2)

3)

rl scans the boundary representation of Rc searching for convex trivalent vertices. When such

a vertex is found I"1 extracts a tetrahedron by introducing a single cut in the domain (this

corresponds to the "slicing" operation in [WOO84]).

_'2 is applied when all the convex trivalent vertices are exhausted. This operator uses a convex

edge to extract a tetrahedron by introducing two cuts in the domain- referred to as "digging"

into the domain in _VO084].

1"3 looks for faces of Rc that correspond to original cell faces and extracts a pentahedron by

introducing multiple cuts that vary according to the location of the apex vertex. The choice

of the apex vertex is based on interference considerations. The operator 1"s is applied before 1"i

and _ in order to preserve all the original cell faces contained in Re.

_I mO_d to _
convex vortex v will
oxtract tetrahedron
that _ edge
and vertex interference
tests.

FIGURE 3.5 : Pathological cue for the interference test in [WOO84].

Before each extraction the validity of the candidate tetrahedron or pentahedron is checked through a

series of tests. As in [W0084], the vertices and edges of Rc are checked for interference with the faces of

the candidate element. More preckely, the interference test ensures that: (i) no vertex of Rc lies on any

of the faces of the candidate element, and (ii) no edge of Re intersects any of the faces of the candidate

element. This test is not enough, however, to ensure the validity of the element - see the exemplary

pathological case illustrated in Figure 3.5. To remove the ambiguity, an additional check is performed by

classifying the centroid of each face of the candidate element against Re. If all centroids are classified as

ON or IN the element is valid.

The implementation of the element extractors and the geometric checks described above requires a

point-membership classifier (PMC) -- a function that returns the classification of a point p with re-

spect to the polyhedron Re as

PMC , R.) = (;., 0., 0.0 • (5)

The PMC developed for the present work operates on planar polyhedra and is based on ray casting

algorithms [KALA82].

The boundary representation (BKep) structure used for maintaining and updating the topology of R_

has two graphs imbedded in it: (i) Face --, Edge --- Vertex and (ii) Vertex -, Edge --. Face. This

double structure provides greater flexibility while manipulating the BRep for the polyhedron, because

it reduces the number of scans required to retrieve the necessary information about the boundary. The

PMC permits the classification of the edges and the vertices in the BRep as convex or concave. This

piece of information is crucial for element extraction and must be updated after each element removal.

I0

All theoperatorsusedfor elementextractionpreservethedifferentialformof the Euler-Poincare formula

[BAUM72]

VF-VE+VV = 0 (6)

where F is the number of faces, E is the number of edges and V the number of vertices in the polyhedron.

Provided that the initial polyhedron is valid, the satisfaction of equation (6) ensures that the validity is

maintained at each stage of the extraction.

Figure 3.6 shows different stages of the element extraction on the _c associated with the CNIO cell in

Fig. 3.2. The operator rs is applied to extract a pentahedral element whose base is the original cell

face. This is followed by the recursive application of the operator rl until all trivalent convex vertices

are exhausted. Operator r2 takes over until one or more trivalent convex vertices become available and

1"1can be applied again. This progressively reduces the domain to a single tetrahedron.

(a) (b)

(c) (d)

FIGURE S.O z Element extraction on • CNIO cell: _ extraction of a pentahedron (a), a tetrahedron extracted

via rl (b) and _ (c), the complete dement topology.

The computational cost for deriving the BRep of _c and decomposing it through element extraction

is considerably higher than that associated with $NIO cell decomposition. We note, however, that the

number of CNIO cells is relatively small.

11

4 BOUNDARY EVALUATION FOR CNIO CELLS

ORIGINAL PAGE IS

OE I_)OR QUALITy,

In the preceding sectionwe indicated that a boundary representationof the polyhedron _¢ isneeded

for the element extraction. The standard approach to derive the boundary for solidsdescribed in a

CSG environment isto intersectthe facesof allthe primitivesthat constitutethe CSG definitionof the

object and classifythe resultingedges againstthe combinatorial tree(thisoperation iscalledboundary

merging [REQU85]). Since this merging process involvesallthe primitives,boundary evaluation for a

CSG described solidisin generala computationally expensive procedure3.

I_ The polyhedron _c isformed by the intersectionof the CNIO octant and the originalsolid,i.e.,

"_ _, ffi CNIOn" S (7)

and therefore its boundary evaluation appears to require the boundary merging of the complete solid S

I_I and the CNIO cell.We note, however, that generallythe cellunder considerationisspatiallylocalized,

11 i.e.,each CNIO cellintersectsonly a limitednumber of primitives.In thiscase the boundary of _c can

,be obtained by merging only the boundary of the primitiveswhich interferewith the cell.

!/The primitiveincidenceinformation required to generate the nece_ary set oftentativeedges isproduced

[the followingway. At the lastlevelofthe octreedecomposition every NIO cellisclassifiedagainsteach of

,!,the primitivesinthe CSG tree.When the cellisclassified"ON" s primitive,the primitiveisadded to the
!. incidence information carriedwith the cell.Hence, st the end of the cls_mification,each NIO cellpoints

'I to the subset of the CSG primitivesthat "interact"spatiallywith the cell.As indicated in [TILO81],

\ I[primitiveincidenceleadsto "pruning" ofthe CSG treeand, consequently,reduces the computational cost

'_ of boundary merging.

t

The boundary of Rc is necessarilycontained in the boundary of the CNIO celland of the primitives

incidentupon the cell.Therefore the tentativesetofedges generated merging the incidentprimitivesand

the cellsufficesforbuilding the boundary representationofRe. Since severalCNIO cellsmay be incident

upon a small number of primitives,exploitingprimitiveincidence may save considerablecomputational

time during mesh generation.Fig. 4.1 illustratestree pruning for the CNIO cellshown in Fig. 3.2.

\
\

\
\
\

5 DISCUSSION

As indicated in the previous sections, by sdhereing to the underlying octal cell decomposition the mesh

acquires hierarchical structure, spatial sddremability sad interior geometrical regularity. We consider

these three properties central to the automation of finite element analysis. Therefore our approach to

octree based automatic meshing is focussed on preserving a tight correspondence between the finite

element and the cell structure. In particular, this requires embedding a finite element topology in the

NIO cells without disrupting the global structure and addressability of the mesh as well as the regularity

of the interior octree.

\

We treat NIO cells in a selective way: element extractors are used only for those - relatively few - cases

for which template matching is infeasible.Template controlleddecompostion is appealing because it is

s The uymptot/c time complexity for boundary evMuation rinses between O(n s Io$ n) Lnd O(n'), where n

is the number of primitives [TILO81].

'\

" ,"

Tie: • IrmltwRsailt_

! :

FIGURE 4.1 : Tree pruning for • CNIO cell. (A, B, C, Daze primitives; ml,m= ue motions; _',F_*,-" represent

rqularised Booleu operations; O indicates the application of • motion.

¢omputationally inexpensive and allows a good degree of control on the elements which are im_rted in the

NIO cell. Conversely, element extractors require l_uilding and maintaining a sophisticated data structure

and provide a very limited amount of control on the mesh. The exclusive use of mapping or element

extraction on all the boundary cells - as proposed in [YERR84] and [YERR85], respectively - is either

too limited for handling complex geometries (the former) or computationally too demanding for practical

implementation (the latter). The selective use of the two algorithms based on the preliminary NIO cell

classification described in this paper results in a flexible approach designed to exploit the advantages of

both types of decomp_ition.

The algorithms discussed here are currently being implemented in an experiments] code built on the

PADL-2 modelling system. PADL-2 provides the utilities for modelling the solid and extracting the octree.

Also, the geometric routines contained in the modeller are used extensively to perform the operations

required for the SNIO/CNIO cell classification, the SNIO template mapping and the derivation of the

CNIO boundary representation. In particular, boundary evaluation is done by first pruning the CSG tree

and then using the PADL-2 incremental boundary evaluator [HART85]. The CNIO cell decomposition is

carried out in an independent modelling environment based on the BRep structure described in Section

3. The implementation of the element extractors is built on a specialized point-membership classifier

that operates on planar polyhedra.

To complete the implementation of our meshing algorithm we have to resolve some specific issues related

to interfacing CNIO cells with IN and SNIO cells. Our plans are the following. The CNIO/IN interface

is generally taken care of by using pentahe_lral elements. Whenever that is not po_ible, the propagation

of triangular faces is contained within the adjacent IN cell with a two-step procedure: (i) decompose

13

the IN cell into 6 identical pyramids with the apex at the cell centriod and (ii) split the pyramid on

the interface into two tetrahedral elements. The interface between SNIO/CNIO cells can be modelled

by either embedding the edges on the SNIO face into the BRep associated with the CNIO cell, or by

modifying locally the SNIO mapped mesh to reflect the entities on the CNIO face. Note that the task of

identifying the two ceils sharing a face is considerably simplified because of the spatial addressability of

the cell (and element) structure.

In conclusion, the approach presented here resolves efficiently the geometrical and topological issues

related to octree based automatic meshing and - in analogy with the quadtree structures described in

[KELA86] - opens a promising avenue for self-adaptive analysis.

ACKNOWLEDGEMENTS

Herbert Voelcker of Cornell University, Ajay Kela of General Electric Company, and Aristides Requicha

of the University of Southern California contributed to this research. The figures were produced on equip-

ment donated by Tektronix, Inc. Other Industrial Associate companies of the Production Automation

Project provided sustaining support. The findings and opinions expressed here do not reflect the views

of the sponsors.

REFERENCES

[BATHS2]

[BAUM721

[CAVE85]

[HART83]

[HART85]

pACK80]

[KALA82]

[KELA86]

K. J. Bathe, Finite Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall,
1982.

B. G. Baumgart, "Winged edge polyhedran representation", STAN-CS-320, Stanford Arti-

ficial Intelligence Project, Stanford University, October 1972.

J. C. Cavendish, D. A. Field and W. H. Frey, "An approach to automatic three-dimensional

finite element mesh generation", International Journal for Numerical Methods in Engineer-

ing, vol. 21, pp. 329-347, 1985.

E. E. Hartquist, "Public PADL-2", IEEE Compater Graphics and Applications, vol. 3, no.

7, pp. 30-31, October 1983.

E. E. Hartquist, _PP2/2.N Boundary EvaJuator", Incremental Boundary Evaluator Doc.

No. 4, Production Automation Project, University of Rochester, December 1985.

C. L. Jackins and S. L. Tanimoto, "Ocbtrees and their use in representing three-dimensional

objects", Compete*" Graphics _ Image Processing, vol. 4, no. 3, pp. 249-270, November
I980.

Y. E. Kalay, "Determining the spatial containment of a point in general polyhedra", Com-

puter Graphics £J Image Processing, vol. 19, no. 4, pp. 303-334, August 1982.

A. Kela, R. Perucchio and H. B. Voelcker, _'l"oward automatic finite element analysis",

ASME Computers in Mechanical Engineering, vol. 5, no. 1, pp. 57-71, July 198{5.

14

[KELA87]

[LEES2]

[REQU85]

[SHEP85]

[TILO81]

[WOO84]

[WC)RD84]

[YERR84]

[YERR85]

A. Kela, "Automatic finite element mesh generation and self-adaptive incremental analysis

through solid modeling", Ph.D. Dissertation, Dept. of Mechanical Engineering, University

of Rochester, January 1987.

Y. T. Lee and A. A. G. Requicha, "Algorithms forcomputing the volume and other integral

propertiesof solids:Part II - A family of algorithms based on representationconversion

and cellular approximation", Communications of the AC._4, vol. 25, no. 9, pp. 642-650,

September 1982.

A. A. G. Requicha and H. B. Voelcker, "Boolean operations in solidmodelling: Boundary

evaluation and merging algorithms", Proceedings of the IEEE, vol. 3, no. 1,pp. 30-44,

JanuAry 1985.

M. S. Shephard, "Finite element modeling within an integrated geometric modeling envi-

ronment: Part I - Mesh generation", Engineering with Computers, vol. 1, pp. ill-71, 1985.

R. B. Tilove, "Line/polygon ¢lmmification: A study of the complexity of geometric com-

putation", IEEE Computer Graphics and Applications, vol. 1, no. 2, pp. 75-88, April

1981.

T. C. Woo and T. Thomasma, "An algorithm for generating solid elements in objects with

holes", Computers _ Structures, vol. 18, no. 2, pp. 333-342, 1984.

B. W_rdenweber, "Finite-element analysis for the naive user", in M. S. Pickett and 5. W.

Boyse, Eds., Solid Modelling by Computers. New York: Plenum Press, 1984, pp. 81-102.

M. A. Yerry and M. S. Shephard, "Automatic three-dimensional mesh generation by the

modified-octree technique", Interuational Jourual for Numerical Methods in Engineering,

vol. 20, pp. 1965-1990, 1984.

M. A. Yerry and M. S. Shephard, "Trends in engineering software and hardware - Automatic

mesh generation for three-dimensional solids", Computers fJ Structures, vol. 20, no. 1-3,

pp. 31-39, 1985.

15

_q

N88-19119

Production Automation Project

College of Engineering & Applied Science

The University of Rochester

Rochester, New York 14627

A HIERARCHICAL STRUCTURE FOR AUTOMATIC

MESHING AND ADAPTIVE FEM ANALYSIS

by

Ajay Kela, Mukul Saxena and Renato Perucchio

(November 1986)

submitted for publication in

a special issue of

Engineering Computations

The work described in this paper was supported by the National Sci-

ence Foundation under Grants ECS-8104646 and DMC-8403882 and by

companies in the P.A.P.'s Industrial Associates Program. The findings and

opinions expressed here are those of the authors and do not necessarily

reflect the views of the various sponsors.

A HIERARCHICAL STRUCTURE FOR AUTOMATIC MESHING

AND ADAPTIVE FEM ANALYSIS

Ajay Kela"

Corporate Research and Development

General Electric Company

Schenectady, N.Y. 12301

&

Mukul Saxena and Renato Perucchio ""

Production Automation Project

and Department of Mechanical Engineering

University of Rochester

Rochester, N.Y. 14627, U.S.A.

SUMMARY

This paper deals initiallywith a new algorithm for generating automatically, from

solid models of mechanical parts,/mite element meshes that are organized as spatiallyad-

dressable quaternary trees (for 2-D work) or octal trees (for 3-D work). Because such

meshes are hzherently hierarchicalas wellas spatiallyaddressable, they permit e_cient sub-

structurhag techniques to be used for both global analysis and £ncremental re-meshlng and

re-analys/s. The paper summarizes the global and incremental techniques, and presents

some results from an experhnental closed loop 2-1) system in which meshing, analysis, error

evaluation, and re-meshing and re-analysis are done automatically and adaptively. The

paper concludes with a progress report on a 3-D implementation.

@

former Research Assistant, Production Automation Project

"" Research Assistant and Director, respectively

Kela, Sezena 8SPerucchio

1 INTRODUCTION

Interactive computer graphics has reduced the cost of using the Finite Element

Method (FEM) to analyze mechanical parts and structures [PERU82]. However, interactive

mesh generation still requires the guidance and ingenuity of an expert analyst to produce

a valid FEM model, to interpret computed results and to modify the model when results

are questionable. Thus analysing a fixed dmign is usually an iterative process; moreover

as design itself is iterative, the current use of the FEM requires continued human guidance

within a doubly iterative process. It is obvious that automatic mesh generation, followed

by adaptive mesh refinement would dramatically reduce the cost of the design process. Two

newly available tools - solid modelling systems [REQU83] and algorithms for a posteriori

error analysis [BABU78,PEAN79,KELL83,GAGO83] - make this goal reachable.

< Figure 1 >

Figure 1 illustrates the architecture of an automatic analysis system. The user

defines an initial geometrical domain in the Solid Modelling System (SMS) together with

such attributes as boundary conditions, loads, material properties, and analysis related

parameters. The mesh generator produces a discretized model - the FEM mesh - from the

geometric definition and the attribute specification (attributes may determine, for example,

the locations of some nodes). The FEM analysis processor computes primary and secondary

field variables (in general, the displacements vector at nodal points and the stress tensor

within the elements) from the initial FEM model. The error evaluator compares global

error estimates derived from the analysis output with pre--epecified error-tolerances to either

accept the results or request a new analysis based on a modified mesh. In the feed-back

loop, the analysis control process indicates regions of refinement in the current model for

the next cycle of mesh generation and analysis. In case of reanalysis, mesh generation

and mesh analysis proceed through localized mesh refinement and incremental re-analysis,

i.e. the use of previous unaltered regions of the mesh as well as intermediate analysis

computations to derive new results. This approach to automatic FEM analysis is embodied

in an experimental 2-D system whose underlying principles are explained below. All meshes

and analytical results that appear in later sections were produced with the experimental

system.

Kela, $_ena 0 Peru¢¢hio 2

The next section opens with a discussion of automatic mesh generation focussed

mainly on a particular approach - hierarchical grids - that fosters spatial addressability (an

important property explained below). Later sections discuss algorithms for (1) generating hi-

erarchical grid-based meshes, then (2) analyzing such meshes, (3) refining and re--analyzing,

and finally (4) extending meshing and analysis to 3-D work. The paper concludes with a

short discussion of the strengths and weaknesses of the approach.

2 AUTOMATIC MESH GENERATION

Most "automatic" meshing facilities in contemporary CAD systems operate from

wireframe descriptions of objects, via mapping algorithms. The user must partition the

domain, which is represented by a collection of edges, into a set of topologically simple

subdomains in which meshes can be generated automatically. This approach is unsuitable

for a fully automatic meshing procedure because it depends on human judgement both to

guide meshing per se and to resolve ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an unambiguous represen-

tation of the object to be analyzed, and thus some form of solid modelling system (SMS)

is a primary utility. Nearly all current SMS's are based internally on either a Constructive

Solid Geometry (CSG) Representation or a Boundary Representation, or both [REQU83].

CSG exploits the notion of "adding" and "subtracting" (via set-union and set--difference

operations) simple solid building blocks. Boundary schemes describe solids indirectly, via

sets of faces which are represented by sets of edges that bound finite regions of surfaces.

The various schemes that have been proposed for automatic mesh generation may

be catalogued for present purposes into three families: triangulation, element extraction and

recursive spatial subdivision (quadtree and octree) schemes. We shall discuss the first two

family briefly and then focus on the third.

Originally limited to 2-D problems, triangulation sigorithnm require some level of

interactive user control to generate irregular assemblies of triangular elements [SUHA72].

Recently, however, Cavendish and co-workers [CAVE85] have developed a two-stage ap-

proach to automatic triangulation of solid domains. In the Cavendish method, points are

injected into the domain, and then a solid triangulation is induced in which the points

Eela, S6zena 8 Peru¢¢hio 3

become nodes of tetrahedral elements. The main working tool of the second-stage triangu-

lation is a Delaunay algorithm that generates valid meshes of tetrahedral elements within

convex hulls of node points. Automatic algorithms are still being sought for (a) inserting

points in the procedure's first stage, (b) removing elements that are generated outside the

domain, and (c) representing the domaln's boundary correctly.

Meshing schemes based on element extraction also result in decomposing the do-

main into a irregular collection of tetrahedral elements [WOO84, WORD84]. Elements are

extracted by recursively applying a set of operators that work on the topological and geomet-

rical description of the domain. The tetrahedral meshes that result are coarse and usually

contain distorted elements that must be refined for analytical use. Also, existing operators

for element extraction are not robust as required for a truly automatic implementation.

In both of these family of approaches, mesh refinement is done by splitting existing

elements. Because refinement is driven from a FEM mesh rather than from the original

solid model, refinement does not improve the geometric apprcQctmation of the original solid.

Also, the meshes are not spatially addressable.

The idea underlying recursive spatial subdivision schemes is to apprcw_nate the

object to be meshed with a union of disjoint, variably sized rectangles (in 2-D) or blocks (in

3-D); these are generated by subdividing recursively a spatial region enclosing the object,

rather than the object itself. Figure 2.1 provides a 2-D example. The object - a bracket

with a hole - is "boxed" to establish a convenient minimal spatial region, and then the box

is decomposed into quadrants. When a quadrant can be classified as wholly inside or outside

of the object, subdivision ceases; when a quadrant cannot be so classified, it is subdivided

into quadrants and this process continues until some minimal resolution level is reached. (In

3-D, the decomposition proceeds by octants.) Apprccximations produced in this manner can

be represented by logical trees whose nodes have four or eight sons (see Figure 2), hence the

popular names quadtree and octree [JACK80].

< Figure 2 >

Inside cells of a spatial decomposition can be converted easily into FEM elements or sub-

structures, but Boundary cells require further processing to produce valid elements that

approximate closely the object's boundary.

Recursive spatial decompositions have two intrinsic properties - hierarchical struc-

ture and spatial addressability - that are central to the mesh refinement and incremental

Kela, $azena 0 Perucchio 4

analysis techniques described later. These intrinsic properties, briefly presented here, are

fully discussed in [KELA87].

The tree structure in Figure 2 can be regarded as an organizing or cataloging

structure for data describing particular regions of space. At the lowest level of the tree

one finds the smallest spatial regions and simplest finite elements. As one ascends the tree,

the regions become larger (encompassing multiples of four or eight elemental regions) and

the finite elements become super--elements with associated ('assembled') stiffness matrices,

collected constraints, and so forth. Ks we shall see later, such an organization is ideally

suited to mesh refinement by subdivision and incremental mesh analysis.

The diagram in Figure 2 suggests the classical approach to accessing the data struc-

ture associated with the tree: represent a tree with a linked-list in which nodes are addressed

indirectly through downward pointers to sons and perhaps lateral pointers to siblings. Thus

one accesses data by following pointers downward from the root of the tree. Alternatively,

a recursive spatial decomposition can be viewed as a directly addressable hierarchical gri.....dd

in which the number of cells in each linear dimension is an integer power of two. The key

notion here is a systematic scheme for numbering all possible nodes of the underlying tree.

In Figure 2, "1" represents the enclosing box, "2" - "5" represent specific quadrants of "1" ,

"6" - "9" would represent quadrants of "2", and so on. Thus to access the spatial data for

a particular node in the underlying tree, one merely calculates an array index through a

simple formula and follows the single pointer stored there. This is usually much faster than

the pointer-following method noted above, but it carries a storage penalty [KELA87].

Suppose finally that we know the geometric size and spatial position of the "1" cell

(the overall box) in Figure 2. We can compute quickly the index of any cell in the hierarchy

from its size and position, and conversely from an index we can compute quickly the size

and position of the associated spatial cell. We have already seen that cell indices allow

access through a single pointer to data associated with the cell, and thus we can associate,

without searching, spatial regions with stored data, and stored data with spatial regions.

This is what is meant by spatial addressability.

Kela, S=ena • Perucchio 5

3 AN AUTOMATIC MESHING PROCEDURE

The procedure described below produces a spatially addressable FEM mesh em-

bedded in the lowest level of a hierarchical grid. Higher levels of the grid are used during

construction of the mesh and, as explained later, when the mesh k analyzed, refined, and

incrementally re-analyzed. The procedure starts with a representation in a Solid Modelling

System of the object to be meshed, and operates in two stages. The first stage meshes the

interior of the object by spatial subdivision, and the second extends the mesh to the object's

boundary. Each stage is described and illustrated below. 1

We wish to note that the use of quadtree/octree methods for automatic mesh gen-

eration was pioneered by Shephard & Yerry [YERR83,YERR84]. Our work is similar to

theirs, but the differences are real and important.

STAGE 1: Interior Meshing See Figure 3. The object S is enclosed in a box which is recur-

sively subdivided into a grid whose smallest cell size determines the element size (or element

density) of the initialFEM mesh; thisminimal size isdetermined by subdividing cellsuntil

no cellcontains more than one connected boundary segment of S. As the subdivision pro-

ceeds the cellsare classifiedas being In.__S('IN"), Out of S ('OUT"), or Neither In nor Out

('NIO"). Cells classifiedas IN at higher levelsin the hierarchy are subdivided to the final

grid size without further classification.The collectionof IN cellsconstitutes the interior

mesh of S.

< Figure 3 >

The main computational utilityused for cellclassificationisthe modified cellclas-

sificationprocedure

ModUlaaaUdl(©ell, adid) = ('IN', "OUT', "?"),

which is described fully in [LEES2].

STAGE 2: Boundary-Region Meshing

The task here isto fillthe region between the boundary ofthe interiormesh (denoted

bIS - see Figure 4a) and the boundary bS of the solidS. Observe that

bS C (U NIO ¢e118) U blS

I

The discu_ion here m_d in the next severalsectionsiscut in 2-9; 3-D extensionsare

discussedin section6.

Kcla, Sazena _ Perucchio 0

Thus bS usually is contained in the NIO cells and special element-building operations are

required, but sometimes segments of bS coincide with bIS (as at the top of Figure 4a) and no

special processing is needed. Thus we can mesh the inter-boundary region by visiting each

NIO cell and creating elements that link the bS segment passing through it to the interior

of the solid.

< Figure 4 >

There are three main technical issues involved in this process: devising a systematic

way to insure that allNIO cellsare visited,creating nodes on bS, and associatingbS-nodes

with existing bIS-nodes to form validelements. We shalldiscuss each of these issuesbriefly.

All NIO cellscan be visitedby an exhaustive scan of the lowest-levelgrid,or by tree

traversal,or by traversing bS. Since no singleapproach seems to offersubstantialadvantages

over the others, we use grid--scanfor generating the initialmesh and, because operations

tend to be more localized,tree--traversalfor re-meshing and re-analysis.

Figure 4a shows exemplary bS nodes (PI, P2, P3 in Figure 4a) that are created as

follows.

• Vertices of bS within each NIO cell(e.g. P2 in Figure 4a) are tagged as such and

are always used as finiteelement nodes.

• Additional bS nodes are created by intersectingbS with the boundaries of the NIO

cells(P1 and P3 in Figure 4a).

The generation of valid elements within an NIO cell is straightforward if the cell

does not contain bS-vertices (corner-nodes): nodes on bS and blS belonging to the same

NIO cell are simply linked to form quadrilateral and triangular elements (see the lower left

portion of Figure 4b). When a corner is present, the corner node is linked to bS and bIS

nodes within the cell and templates are used to form a web of triangular elements - see

Figure 4b. To avoid generating elements with poor aspect ratios, the distances between

nodes are checked by using a node-neighborhood test, and closely spaced nodes are merged

into single nodes on bS. Figure 5 provides an example of this process.

< Figure 5 >

The FEM mesh iscomplete at the end of Stage 2. A regular mesh of quadrilateral

elements in the interiorresultsfrom a directmapping of IN cells.On the boundary, NIO cells

are associated with quadrilateral and triangular elements. It isimportant to note that, the

Kela, 8oaena #/perucchio 7

FEM mesh inherits the spatial addressability and structure of the hierarchical grid because

elements and substructures are associated with the quadrants of the original decomposition.

Figure 6 shows an example of a mesh generated by our automatic procedure.

< Figure 6 >

The Shephard-Yerry (S-Y) boundary-region meshing algorithm performs in/out

tests on the mid-points and quarter-points of the edges of NIO cells, and then maps each

NIO cell into one of a finite number of cut-quadrant forms; each cut-quadrant is then

meshed. (We avoid such geometric apprcDdmations by computing exact points of intersection

on bS.) The final stages of the S-Y algorithm move nodes in NIO cells to the boundary, and

then eliminate ill-formed elements by using a Lagrangian relaxation procedure to smooth a

triangulated version of the entire mesh. This last operation destroys the uniform quadrilat-

eral interior mesh and also spatial addressability - because elements are not constrained to

remain in their original cells.

4 ANALYSIS OF HIERARCHICAL 1VIESHES

This section summarizes a FEM analysis procedure that exploits the properties of

the hierarchical, spatially addressable meshes described above. Recall that data specifying

the finite elements in the initial mesh are accessed through the lowest level of the hierarchical

grid.

One analytical simplification is immediately obvious: because the interior mesh

elements are uniform, their stiffness matrices are identical if the material properties are

homogeneous and thus only one stiffness matrix need be computed for all of the interior

elements. Other, more important analytical simplifications accrue during both assembly

and solution of the system of equations, because the hierarchical grid - which has provided

spatial substructuring for meshing - can serve also as a multi-level analytical substructuring

mechanism.

Assembly Procedure

Most FEM analysis procedures build a single stiffness matrix to cover the whole

domain. Our Assembler builds and stores stiffness matrices for every non- OUT cell in the

hierarchical grid. This is done bottom-up - see Figure 7 - by assembling son-matrices and

condensing-out interior d.o.f.'s to build parent-matrices at each level. The parent nodes of

Kela, $_ena 8 Perucchio 8

the interiormesh with identicalsons (uniform) yield identicalsubstructures, hence need be

assembled only once. (The mesh generator tags identicalinterior-mesh nodes at alllevelsof

the tree to facilitatethis.)

< Figure 7 >

Figure 4.2 shows an initialmesh and substructures at various levelsin the assembly

process. Note in Figure 4.2 a that the initialmesh contains some higher-level substructures;

these arisenot from assembling lowest-levelIN -elements, but from intermediate-level cells

that were classifiedas IN and tagged as substructures during Stage--1meshing. (The identi.

cal stiffnessmatrices for lowest-levelIN --cellsare needed in the assembly process only when

IN -elements must be assembled with elements in NIO cells.)

< F_ure 8 >

Solution Procedure

Figure 9 illustratesvarious stages in the solution process. After loads and boundary

conditions are attached to the root structure,the Solver computes the displacements of all

nodal points on the boundary (i.e.the nodal points of the root substructure - see Figure

9a) and then traverses down the tree, recovering displacements of substructure nodes at

each level.The displacements at alllevelsare saved-in data records accessed through the

hierarchicalgrid, and the lowest-leveldisplacements are used to compute the stressesin the

elements. 2

< Figure 9 >

Remarks on the Assembly and Solution Procedures

Our experience to date with thissubstructuring approach to analysis indicatesthe

following.

• The hierarchical grid used for mesh generation has almost all of the data manage-

ment facilities needed for analytical substructuring.

The computing time and storage requirements for internal-element assembly are

substantially reduced.

We conjecture that our substructuri_ technique is asymptotically more effecient

than the methods used in standard solvers. Preliminary result that support our

conjecture will be reported in [KELA87].

All analysis presented here are linear-4tatic, based on linear iaoparametric elements.

Kela, Sazena 8 Perucchio 0

• Substructuring based on trees lends itself naturally to parallel (computer) process-

ins.

More broadly our particular approach to substructuring seems promising for non-

linear as well as linear analysis. In many practical problems (e.g. contact problems, fracture

mechanics, localised plasticity), non-linear behavior occurs in isolated regions, and spatially

localized analytical methods should prove to be e1_cient. (For example: during analysis

regions that become non-linear can be tagged in the grid and handled specially.) In other

types of problems one may want displacements and stresses only in small critical regions,

and here again spatially localised methods seem very appropriate.

5 SELF-ADAPTIVE INCREMENTAL ANALYSIS

In this section we discuss first the techniques used for managing mesh refinement

and incremental analysis, and then an error--driven algorithm for closing the feed-back loop

in Figure 1.

5.1 Refinement and Re-Analysis

Assume that (1) a mesh has been constructed at the lowest level of the grid, (2) the

mesh has been analyzed and the results stored in the grid and (3) evaluation of the results

(discussed in the next subsection) has indicated that refinement is needed in a particular

spatial region.

Two avenues for refinement are available: h-refinement and p-refinement. In p-

refinement successively higher-order shape functions are assigned to the element formulation.

To refine a particular element, the old stiffness matrix for the element is invalidated and a

new matrix is computed from the new shape function. No new tree-nodes are generated,

but the size of the stiffness matrix increases.

In h-refinement, existing elements are subdivided into smaller elements of the same

type. To improve the geometric accuracy, localised h-refinement is done on the origina!

geometric model rather than on the current finite element approximation. Thus to refine a

particular element, one deletes the element, creates and classifies new vertices and nodes, and

Kela, 8azena 8/Perucchio 10

inserts the smaller new elements into the grid. Discontinuities of displacements along edges

where smaller elements abut on larger elements are avoided by using constraint equations.

< Figure 10 >

Figure 10 shows examples of localized refinement. Note that successive h-

refinements improve the geometric approximation of the original solid. A maximum cross-

element grading of 2:1 is maintained during refinement.

Storage for the new entities created by h-refinement could be provided by adding

a whole new bottom layer to the grid, but this would be wasteful unless very extensive

h-refinement is needed. If the h-refinements are sparse, small localized explicit schemes or

linked-list methods are more efficient.

Assume now that the original mesh has been refined in a few regions using the

methods just described, that the affected elements have been tagged, and that the refined

mesh is to be re-analyzed. ClJarly one wants to do incremental analysis, i.e. to use partial

results from the earlier analysis insofar as possible. These results are available through the

hierarchical grid; for example, a tree of K-matrices will exist - see Figure 7.

The incremental Assembler traverses the tree and by examining the sons of each

parent node, detects new offspring and computes the appropriate stiffness matrices (Fig-

ure 11). Stiffnesses for unmodified elements are recovered from storage, and new and old

stiffnesses are combined to form a modified substructure. If a node has no new offspring,

the complete old substructure is reused. The incremental Solver works similarly, inspecting

tags on data to distinguish valid and invalid old results and reusing the former whenever

possible.

5.2 Self-Adaptive Algorithm

Our current algorithm for controlling self-adaptive incremental analysis operates

as follows (see Figure 1). After a mesh (either initial or refined) has been analyzed, error

indicators are computed for each element together with an estimate of the global error. If

the global error exceeds a pre--specified limit, the systems calls for refinement and reanalysis

in regions having large local errors. This process continues automatically until the global

error estimate talk below the pre-specified limit.

Thus far we have done little research on errors per se, and our current error measures

are crude. As in [KELL83], our element error-indicator (e_) is merely the average of the

Keh, S_en. _ Peru¢¢hio 11

stress jumps (J, : normal and tangential) across each of the element's edges with dimension

(h) and assuming linear isoparametric elements

2 1-v h f j2dr

normalized by the strain energy of the displaced model. Our global error estimator is simply

the sum of the element error indicators. Figure 10c shows the computed values of the element

error indicators for a sample problem. Note that, in the vicinity of the hole and around the

re-entrant corner the data imply high stress gradients because the error indicators are high.

Figure lOd shows an automatic refinement resulting from this set of error indicators.

An obvious improvement to the current algorithm: replace the single global error

indicator with a hierarchical series of regional error indicators. These can be computed

bottom-up in the tree, and should force selective refinement in cases where the overall

(average) error is small but errors in small regions are _igh.

6 AUTOMATIC MESHING FOR S-D PROBLEMS

In this section we present the algorithms that we are currently developing to ex-

tend to 3-D problems the automatic meshing procedure described in Section 3. Since

our work is based on the octree generator built in the PADL-2 solid modelling system

[HART83,KELA84], stage 1 of meshing - which includes (i) boxing the domain, (ii) subdi-

viding the box into octal cells, (iii) classifying the cells as IN, OUT and NIO, and (iv) further

subdividing and reclassifying NIO cells until a minimal level of subdivision is reached - is

virtually completed. Figure 11 shows the interior octree for a PADL defined solid.

< Figure 11 >

Stage 2 involves associating each of the NIO cells (represented by the intersection

of the solid with a grid-level octant) to a valid finite element topology. Before being decom-

posed into elements, NIO cells are classified as Simple (SNIO) or Complex (CNIO). SNIO

cells, formed by the intersection of the grid-level octant with a single "cutting" surface, are

topologically simple, as shown in Figure 12. CNIO cells, on the other hand, intersect the

boundary surface and also contain vertices and edges coming from the solid's boundary. A

typical CNIO cell is illustrated in Figure 13. Due to the differences in their geometry and

topology, the decomposition of SNIO and CNIO cells proceeds along two different avenues.

Kela, Sazcna 8 Perucchio 12

< Figure 12 >

< Figure 13 >

Decomposition of SNIO cells

Since the number of possible configurations of SNIO cells is inherently limited,

SNIO cells can be decomposed into finite elements by associating the cell to an appropriate

template containing a mesh topology. Specifically, the number of possible cases is restricted

to seven (the number of vertices of the original octant shaved off by the cutting surface

identifies the appropriate template - Figure 14).

< Figure 14 >

The topolgies embedded in the templates are not unique and include hexahedral,

wedge, pyramid and tetrahedral isoparametric linear elements. However, as explained fur-

ther on in this section - care has been taken in producing mesh topologies that, whenever

possible, associate each uncut octant faces to a quadrilateral face of a hexahedral, wedge or

pyramid element. We note, finally, that (a) in general, most of the NIO cells are classified

as SNIO, and (b) SNIO decomposition is computationally inexpensive.

Decomposition of CNIO cells

The topological description of CNIO cells is not confined to a limited number of

possible configurations. Hence, in this case mapping is of little use and the automatic

decomposition of the cells can be done only by recursive element extraction. We are currently

implementing a family of operators - based on the approach in [WOO84], Figure 15 -

that works on the boundary representation (Brep) of the polyhedron associated with the

CNIO cell. Because of the complexity of the operations involved - (|) scan the topological

information contained in the Brep to identify a candidate element, (ii) verify the validity of

the element, and (iii) extract the element and update the Brep - CNIO decomposition is

considerably more expensive than template matching.

< Figure 18 >

Elements for 3-D analysis

The family of linear isoparametric elements used in the above decomposition schemes

can be generated by collapsing a standard 8-node isoparametric brick element. Note that

the use of pyramids is mandated by the necessity of preserving a regular interior mesh of

hexa.hedra] elements, whenever tetrahedral elements are introduced in the proximity of the

Kela, Sazena _ Perucchio

boundary. Pyramids allow interfacing triangular sides belonging to tetrahedral or wedge

elements with quadrilateral faces of hexahedral elements without introducing discontinuities

in the displacement field.

13

7 DISCUSSION

Advantages

The main advantage we see is that mesh generation and mesh analysis are integrated

and, in effect, collaborate under the control of the error evaluator. Thus the mesher only

refines regions where refinement is needed, and the analyzer only computes _what's new"

about a refined mesh. This type of efficient adaptive behavior is, in our opinion, the key to

efficient automatic finite-element analysis.

Hierarchical substructuring is the driving principle in both the mesh generator and

mesh analyzer, s It seems to be a very powerful principle of divide-and-conquer genre, in

that it enables hard problems (object decomposition, equation-set solution) to be decom-

posed into smaller, tractable problems via spatial partitioning.

Open Issues

We cite four sets of issues that will require extensive theoretical work.

I. Error measures and indicators: measures better than the ones we use currently are

needed, especially for 3-D work.

o

1

Adaptive convergence: the convergence behavior of the self-adaptive process must

be investigated (strong convergence properties are required for a truly automatic

system).

Computational complexity: preliminary results let us conjecture that hierarchical

substructuring techniques are asymptotically more efficient than the methods used

s The hierarchical tree might be viewed u s generalization of the structure, described in

[RHEIg0]. However, the latter it applied in mabdomaina that are mapped to regular figures (squares
and triangles), and Rheinboldt's tree addressee the element partitioning induced in the regular
figures. By avoiding mapping we are able to use the same structure for both meshing and analysis;
further, the regularity of our structure permRs systematic cell numbering and, hence, data access

through calculated addresses rather than through searching or table lookup.

Kela, Sazena 8 Perucchio 14

in standard solvers, but an in-depth study is needed to prove/disprove our conjec-

ture.

4. Non-linear analysis: our approach to substructuring appears promising for non-

linear analysis.

While the issues above are certainly important in the long term, in the immediate

future one other issue - completing the extension of our meshing and analysis system to

3-D problems - is more pressing. The current status of 3-D work is as follows :

The 2-D spatial substructuring techniques for maasging saa]ysis sad adaptive re--

meshing and re-analysis extend gracefully to 3-D, and indeed most of the 2-D

control code is directly usable in 3-D.

The major open issues lie in Stage 2 of the automatic meshing procedure, specifically

in decomposition of CNIO cells. A promising approach, based on a family of element

extractors, is currently being implemented.

In summary, we believe that hierarchical substructuring as embedded in the experi-

mental system described here represents an important contribution on the road to genuinely

automatic finite element analysis.

ACKNOWLEDGEMENTS

Herb Voelcker, former director of the Production Automation Project and currently

at Cornell University, contributed extensively to this research. Also we acknowledge the

contribution and the encouragement of John Goldak, of Carleton UniversiW, and of Vic

Genberg, of the Eastman Kodak Company. The computer-output displays were produced

on equipment donated by Tektronix, Inc., and other Industrial Associate companies of the

Production Automation Project provided both equipment and funds for the work. Sustaining

support was provided by the Nationad Science Foundation under Grant(s) ECS-8104646 &

DMC-8403882. The findings and opinions expressed here those of the authors and do not

necessarily reflect the views of the various sponsors.

REFERENCES

[BABUT8] I. Babuska and W. C. Rheinboldt, "A-posteriori error estimates for the finite el-

ement method", INTERNATIONAL JOURNAL FOR NUMERICAL METHODS

IN ENGINEERING, vol. 112, pp. 1597-1615, 1978.

Kela, Sa=ena 8 Perucchio 15

[CAVE85] J. C. Cavendish, D. A. Field and W. H. Frey, =An approach to automatic three-

dimensional finite element mesh generation", INTERNATIONAL JOURNAL FOR

NUMERICAL METHODS IN ENGINEERING, vol. 21, pp. 329-341'.

[GAGO83] J. P. De S. R. Gago, D. W. Kelly, O. C. Zienkiewicz and I. Babus]m, =A poste-

rior] error analysis and adaptive processes in the finite element method: Part 1"I

- Adaptive mesh refinement", INTERNATIONAL JOURNAL FOR NUMERICAL

METHODS IN ENGINEERING, vol. 19, pp. 1621-1656, 1983.

[HART83] E. E. Hartquist, =Public PADL-2", IEEE COMPUTER GRAPHICS & APPLICA-

TIONS, vol. 3, no. 7, pp. 30-31, October 1983.

{JACKSO] C. L. Jackins and S. L. Tanimoto, =Oct-trees and their use in representing three-

dimensional objects", COMPUTER GRAPHICS & IMAGE PROCESSING, vol. 4,

no. 3, pp. 249--270, November 1980.

[KELA84] A. Kela, =Programmers guide to the PADL-2 octree processor output system",

INPUT/OUTPUT GROUP MEMO. No. 15; Production Automation Project, Uni-

versity of Rochester; January 1984.

[KELA8?] A. Kela, =Automatic finite element mesh generation and self-adaptive incremental

analysis through solid modeling", Ph. D. Dissertation, Production Automation

Project, University of Rochester, 1987.

[KELL83] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz and I. Babus]m, =A posteriori

error analysis and adaptive proce_es in the finite element method: Part I - Er-

ror analysis', INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN

ENGINEERING, vol. 19, pp. 1593--1619, 1983.

[LEE82] Y. T. Lee and A. A. G. Requicha, =Algorithms for computing the volume and other

integral properties of solids: Part H - A family of algorithms based on representation

conversion and cellular approximation', COMMUNICATIONS OF THE ACM, vol.

25, no. 9, pp. 642--650, September 1982.

[PEAN?9] A. G. Peano, A. Pasini, R. Riccioni and L. Sardella, =Adaptive approximation in

finite element structural analysis', COMPUTER & STRUCTURES, vol. 10, pp.

332-342, 1979.

Eela, $6zena 8 Perucchio 16

[PERU821

/REQU831

[RHEI80]

[SUHA74]

[woo841

[W()RD84]

[YERR83]

IYERR84]

R. Perucchio, A. R. Ingraffea and J. F. Abel, "Interactive comuter graphic prepro-

cessing for three-dimensional finite element analysis", INTERNATIONAL JOUR-

NAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 18, pp. 909-926,

1982.

A. A. G. Requicha and H. B. Voelcker, "Solidmodelling: Current status and research

directions",IEEE COMPUTER GRAPHICS & APPLICATIONS, vol. 3, no. 7, pp.

25-37, October 1983.

W. O. Rheinboldt and C. K. Memztenyi, "On a data structure for adaptive finite el-

ement mesh refinements", ACM TRANSACTIONS ON MATHEMATICAL SOFT-

WARE, vol. 6, no. 2, pp. 166-187, June 1980.

J. Suhaxa and J. Fukuda, "Automatic mesh generation for finite element analysis", in

ADVANCES IN COMPUTATIONAL METHODS IN STRUCTURAL MECHAN-

ICS AND DESIGN, J. T. Oden, R. W. Clough and y. Yamadoto eds., Univ. of

Alabama Press, pp. 607-624, 1974.

T. C. Woo and T. Thoma.sma, "An algorithm forgenerating solidelements in objects

with holes", COMPUTERS & STRUCTURES, vol. 18. no. 2, pp. 333-342, 1984.

B. Wordenweber, "Finite element mesh generation", COMPUTER-AIDED DE-

SIGN, vol. 16. no. 5, pp. 285-291, September 1984.

M. A. Yerry and M. S. Shephard, "A modified quadtree approach to finiteelement

mesh generation", IEEE COMPUTER GRAPHICS & APPLICATIONS, vol. 3, no.

1, pp. 39--46, January/February 1983.

M. A. Yerry and M. S. Shephard, "Automatic three-dimensional mesh generation

by the modified--octreetechnique", INTERNATIONAL JOURNAL FOR NUMER-

ICAL METHODS IN ENGINEERING, vol. 20, pp. 1965-1990, 1984.

LIST OF FIGURES

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 An automatic finite element analysis system.

2 A quadtree approximation

3 First stage of the automatic meshing algorithm.

4 Second stage of the meshing algorithm (a) generation of bS nodes and

(b) linking bS and blS nodes.

5 Node relocation to get well-formed elements.

6 Example of automatically generated 2-D FEM mesh.

7 Assembly via multi-levelsubstructuring.

8 Substructures at various levels during ,_sembly.

Fig. 9 Nodal displacement at stages of the solution process.

Fig. 10 Refinement driven by error indicators.

Fig. 11 Solid domain with interior octree produced by PADL-2

Fig. 12 Typical Simple NIO cell.

Fig. 13 Typical Complex NIO cell.

Fig. 14 Template driven decomposition of SNIO cells.

Fig. 15 Element extractors for CNIO cells.

t

' I

0

[-i

0

0
m

7

tl

II
II
0

tll tlt
'11 m ,11

t
-- 0 0

R I! I!

N 0 m

II E]

| I

/J
f/

f

IU,,.,

I1,1

o_

O_ POOR QUALIT_

|
A

\
\

,,D

+i,->.:_!!.,...,.

I.l

°_,_

r_

0
If: li r_l

o c#l c#l
N

ORIGINAL PAGE I_

OF. POOR QUALITY

o_

c_

o_

f_

o_,,I

(IJ elf N N

N N N N N

N N N

A A

A

U
v

cr_

c_

N N

J . • •

_,,.0 I _ ,....._¢ _ . ,_,_

k • _ m

.lr
mk.

J Jr

N

N_

I)

A (.)

v ¢o ¢o ql_ N,

N, ¢t_ eQ ¢o ¢o e_ NF

(too N, N, O

m iel_

- _ - - - _ _ A '

4 I,.,,.., _1 ,ili_

O

.i-I

cO
V

Z ,,,

a me 4

Z e

N M

M qP

m --

t 83

(

tb v

V

I i i I"
IAL

\
llll

Fisure 11

>

>

Figure 12

[
Vortex

Edge

Boundsry
Surface

Edge

Figure 13

SNIO Cells

Template-derived F.E. Topologies

Figure 14

• Extraction of tetrahedra :
Operators rl and r_ (Woo & Thomasma, 1983).

• Extraction of pyramids : operator rs.

Fisure 15

ORIGINAL; PAGE IS

OF POOR QUALIT_ 1 88 - 19120

The essence of mechanical design is interplay between

human creatlvlt_ and incisive analysis. The procedure for

designing a critical component or structure typically runs as:

I. Prepare a candidate design.

2. Analyze the design using the finite element (FE) meth-
od.

(a) Model the designed structure and its loading and

constraints.

(b) Analyze the loaded model.

(c) Assess the validity of the analytical results.

(d) Repeat steps 2(a---c) until acceptable analytical
results are obtained.

3. Assess the candidate design.

4. Repeat steps I--3 until the design is acceptable.

Thus the design process is doubly iterative because cur-
rent FE techniques are not single-shot blackbox tools with

guaranteed reliability; they require human judgement and

"'tuning." It follows that the (in)efficiency of the inner

analysis loop is a strong determinant of the quality of the

final design when the cost of design matters, as is usually the

case. If analysis can be made cheap, fast, and reliable, more

alternatives can be considered and better designs will result.
Let's look more closely at the analysis procedure. During

step 2(a), the design is modeled as a properly connected

mesh of suitably sized and shaped elements (triangles.

quads, etc.) from an element library. Its loading and con-

straints are modeled by assigning suitable constants (e.g.

displacement and load values) to particular nodes of the

mesh. The operative words here are "'suitably sized and

shaped" and "'properly connected". If the elements are too

large or have bad aspect ratios, or if the mesh as a whole

does not obey the combinatorial sharing rules of FE mesh

decompositions, inaccurate and inconsistent results will

accrue because the mathematical conditions underlying the

FE method will have been violated. In the early days of FE

analysis, the analyst was wholly responsible for mesh and

element integrity. Today, computer graphics preprocessors

help ensure proper connectivity, but the selection, place-

ment, and sizing of elements are still the user's responsibil-
ities.

Step 2(b), analysis of the loaded model, is usually per-

formed by using a standard code such as Nastran and Ansys.

This step is largely automatic, and the popular codes are well

debugged though sometimes expensive to run.

For step 2(c), assessing the validity of the results, there

are no standard methods and the analysts judgement plays a

critical role. In the early days, when "results" were huge

tables of numbers, assessment was largely a black art.

Graphics postprocessors, which can display colored contour

plots of stresses, temperatures, and so forth, enable experi-

Computers In Mechanical Engineering/July 1986_57

Object definition Attribute definition

Sohd modeling system wnth attr=Oute facilities

Mesh -_ FE mesh

F generator _,:_,'!:

.I_ ',......... _ " Refinement II
region

Analys_s _ Analysis
processor resu Its

Error OK Results
stresses

evaluator a,so etc

• =, ;. ,..':* ;.

4"

Fig. 1 An sutomatlo finite element analysis system.

enced analysts to identify trouble spots (such as regions with

high cross-element gradients) quite effectively.

During step 2(d), the analyst refines the mesh by subdivid-

ing troublesome regions into smaller elements, and then

reanalyzing the whole.

Obviously, automation of the whole process will make

design more systematic and efficient by replacing the ana-

lysrs judgement with mathematical criteria. Two new tools

make automation of the FE mesh feasible:

• Solid modeling technology [I, 2] enables designers to

create and store in CAD systems informationally complete

"master models" of mechanical parts and products. From

there, one should be able to generate FE meshes automati-

cally.

New algorithms for analyzing errors in a finite element

analysis {3--7] systematic means to automate the results

assessments of step 2(c).

One more tool is needed: a good method for using error

indicators to refine the FE mesh automatically. Another

tool, while not essential, is also very desirable: a method for

analyzing refined meshes selectively or incrementally so that

results already computed for unmodified regions of a mesh

can be reused rather than recomputed.

Figure I shows a design for an automauc analysis system.

In this system, the user defines the structure to be analyzed

in the Solid Modeling System (SMS) together with attributes

such as boundary conditions, loads, material properties, and

certain analytical parameters. The mesh generator produces

a discretized model (the FE mesh) from the geometric

definition and attribute specifications. (Attributes can deter-

mine, for example, the positions of some nodes.) The

analysis processor performs FE analysis: it computes prima-

ry and secondary field variables (in general, the displace-

ments vector at nodal points and the stress tensor within the

elements) for the loaded and constrained FE mesh. Finally.

the error evaluator compares error estimates derived from

the analysis output with specified tolerances, and either

accepts the results or requests a new analysis of a modified

mesh. In the latter case, the error evaluator indicates the

regions in the current model that require refinement. The

inner mesh-generation loop and mesh-analysis loop in Figure

I connote localized mesh refinement and incremental reanal-

ysis.

This approach to automatic FE analysis has been embod-

ied in an experimental 2-D system whose underlying prmci-

I

/\

CSG representation

Solid

ORIGINA__ PA_ _.

Fig. 2 Two unambiguous representetion schemes for solids.

I

U

Boundary representation

58/July 1986/Computers In Mechanical Engineering

Iql, 3 A qu_ltm m-im_iea.

plea will be explained. (Our actual implementation is some-

what different than Figure l for reasons of computational

efficiency.) All meshes and analytical results that appear in

this article were produced with this experimental system.
This anJcle summarizes a moderately complicated topic: for

technical details, see [8].

Automatic Mesh Generation

Most "automatic'" meshing utilities in contemporary CAD

systems actually operate from wireframe descriptions of

objects via mapping algorithms. The user must partition the

domain, which is represented by a collection of edges, into a

set of topologically simple subdomains in which meshes can

be generated automatically. This approach is unsuitable for a

fully automatic meshing procedure because it depends on

human judgement both to guide meshing and to resolve

ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an

unambiguous representation of the object to be analyzed,

and thus needs some form of SMS. Nearly all current SMS

systems are based internally on one or both of the represen-

tation schemes illustrated in Figure 2 [1, 2]. Constructive

Solid Geometry (CSG) exploits the notion of "adding" and

"subtracting" simple solid building blocks (via set-union and

set-difference operations). Boundary schemes describe so-

lids indirectly via sets of faces which are represented by sets

of edges that bound finite regions of surfaces. The various

schemes that have been proposed for automatic mesh gener-

ation can be divided into two families: recursive spatial

subdivision (quadtree and octree) schemes, and triangulation
and other schemes. After a brief discussion of the second

family, we will focus on the first.

Triangulation and Other Schemes

Wordenweber [9] and Cavendish [I0] have developed two

different two-stage approaches to automatic triangulation of

solid domains. Wordenweber's procedure first does surface

triangulation of the boundary of the solid, and then performs

solid triangulation in the interior. The tetrahedral meshes

that result are coarse and usually contain distorted elements

that must be refined to be useful for analysis.

In the Cavendish method, points are injected into the

solid, and then a solid triangulation is induced in which the

points become nodes of tetrahedral elements. The main

working tool of the second-stage triangulation is a Delaunay

algorithm that generates valid meshes of tetrahedral ele-

ments within convex hulls of node points. Good methods are

still being sought for inserting points automatically during

the procedure's first stage.

In both of these approaches, mesh refinement is done b._

splitting existing elements. Because refinement is driven

from an FE mesh rather than from the original solid model.

refinement does not improve the geometric approximation of

the original solid. Also, the meshes are not spatially address-
able.

A few commercial CAD systems claim automatic meshing

facilities that can involve triangulation but the principles are

proprietary.Lee's method [II],which has been described

publiclyand implemented in2-D,exploitsthedecomposition

inherentinCSG representationsratherthan triangulationor

spatialsubdivision.Briefly,Lee generates"'natural"distri-

butionsofpointsineach CSG primitiveand then inducesa

uniformspatialdistributionofpointsover the whole object

by "thinning"pointsinregionswhere primitivesoverlap:a

mesh ofquadrilateraland triangularelements isthen gro_n

over the pointsintheobject.

Recursive Spatial Subdivision

We approximate the object to be meshed with a union of

disjoint, variably sized rectangles (in 2-D} or blocks (in 3-D).

These are generated by recursively subdividing a spatial l

region enclosing the object, rather than the object itself.

Figure 3 shows a 2-D example.

The object (a rounded plate with a hole) is "boxed" to

Computers in Mechanical E ginurlng, July 1986:5g

)

)

OR

OF

£

C

311_AE p_G_ IS

poo QuALtTY

Ill

mGINAL.PAC ,s
POOR QUALITY
r _" N

(c_ (e} (fi

Element: Nocle: Prope_es:

type. X, Y, Z mat't loacl.

basis COnStrllnt i=,

{K]. :O:

(J'I (b# (CJ

Ce,: Ve_ex: Eage:
t,O,NJO i,O.ON LO.

bS.blS

Ib)

Fig. 4 Nlermhioll sb'uetm'e foe the Pl .wwlel.

PIQ. I Dire4tly a4kimssable h_oll Iwid.

establish a convenient minimal spatial region, and then t_e
box is decomposed into quadrants. When a quadrant car, be

classified as wholly inside or outside of the object, subd:_ _-

stun ceases: when a quadranl cannot be so classified. 1: it

subdivided into quadrants, So this process continues u_,:
some minimal resolution level is reached. (In 3-D. t_,,-

decomposition proceeds by octants.) Approximations pr,..

duced this way can be represented by logical trees _ho--:

nodes have four or eight sons (see Figure 3). hence t::c

popular names "quadtree" and "octree" {12].

As we will explain, inside cells of a spatial decomposim;r

can be easily converted into "nice" mesh elements. _"..

boundary ceils require further processing lest their literai

translations into mesh elements introduce bogus high-gr:,:,
ent stress regions in the analytical results. We'll deal _;:_:

boundary-cell processing later; for the moment, assume ti',.=

the "'B'" cells in Figure 3 are somehow reshaped into _a:',_

mesh elements that closely approximate the objecfs boun:

ary.

Recursive spatial decompositions have two intrinsic pror-

erties, hierarchical structure and spatial addressability, the:

are central to the mesh refinement and incremental analy:_

techniques described later. These intnnsic properties, pIus

an extnnsic (engineered) property called logical addressabi-

lity. warrant discussion.

Hierarchical structure. The tree structure in Figure 3

results from the subdivision rule used to produce the ¢iecorr-

position, and one can think of the tree as an orgamz;ng or

cataloging structure for data describing particular regions of

space.

Figure 4(a) illustrates this notion by showing a data record

associated with each node of the tree; Figure 4(b) shc_ s data

pertinent to automatic mesh generation that might be stored
within such a record. These include classification of the

spatial region represented by the node as inside, outside, or

on the boundary (Figure 3); shape functions for a fev,

(typically one) finite elements associated with the region:

and properties associated with the finite elements, such as

one or more stiffness matrices, external constraints, and so
forth.

At the lowest level of the tree one finds the smallest spatial

regions and simplest finite elements. As one ascends the tree

the regions become larger (encompassing multiples of four or
eight elemental regions) and the finite elements become

superelements with associated ("assembled") stiffness ma-

trices, collected constraints, and so forth. Such an organiza-

tion is ideally suited to mesh refinement by subdivision and

incremental mesh analysis.

Logical addressability. Given the notion of a tree as an

organizing structure for hierarchical spatial data, how should

such a structure be mapped into computer storage as a data

structure, and how does one gain access to it to store and

retrieve data? The tree diagrams in Figures 3 and 4 suggest

the classical approach: represent a tree with a linked list in

which nodes are addressed indirectly through downward

pointers to sons and perhaps lateral pointers to siblings. The

data record associated with each node is addressed through a

BO/July 1986/Computers In Mechanical Engineering

specialpointerstoredwiththe node.Thus one has accessto

data by followingpointersdownward from the rootof the

tree.

Alternatively. a recursive spatial decomposition can be

viewed as a directly addressable hierarchical grid (see Figure
5) in which the number of cells in each linear dimension is an

integer power of two. The key here is a systematic scheme

for numbering all possible nodes of the underlying tree. In

Figure 5(a), "'1"" represents the enclosing box, 2--5 repre-

sent specific quadrants of "'1," "6"'--"9" represent quad-

rants of "2," and so on. The underlying relation, which can

be applied recursively, is:

The four sons of a parent node P are [4 • P - 2, 4 * P - 1,

4 * P, 4 * P _- 1], and the parent of P is (P + 2) div 4.

These numbers can be used as indices for a single array of

pointers to data records, as shown in Figure 5(c). Thus, to

accessthespatialdatafora particularnode intheunderlying

tree,one merely calculatesan arrayindex througha simple

formulaand followsthe singlepointerstoredthere.This is

usuallymuch fasterthanthepointer-followingmethod noted

above but it carries a storage penalty. Specifically, the

pointer array in Figure 5 (c) must be large enough to

accommodate all possible nodes in the tree.
If the lowest-level grid in Figure 5 (a) requires N°N°K

units of storage (N*N°N*K in 3-De for pointers and data
records,one needs:

K*(2 °'(I -log.__ I)

2n - I

unitsofstoragefortheworst-casewhole tree.where D isthe

dimension of the space and "log" is log-2.Thus a 2-D

hierarchicalgrid requiresat most about 33 percentmore

storagethanthe N*N'K unitsneeded foritslowestlevel:in

3-D only about 14percentmore storageisneeded.

Spatial addressability. Suppose thatwe know thegeomet-

ricsizeand spatialpositionofthe "I" cell(theoverallbox)

inFigure5(a).We can quicklycompute theindexofany cell

inthe hierarchyfrom itssizeand position,and conversely

from an indexwe can quicklycompute the sizeand position

ofthe associatedspatialcell(an example isinTable I).We

have alreadyseen thatcellindicesallow accessthrougha

singlepointerto data associatedwith the ceil,and thus we

can associate,withoutsearching,spatialregionswithstored

data and stored data with spatial regions. This is what is

meant by spatialaddressability.

Inpracticalterms,ifaparticularregionofan objectproves

troublesomeeitherinmesh generationormesh analysis,one

has directaccessto pertinentmesh and analyticaldata to

takelocalizedcorrectivemeasures.

An Automatic Mashing Procedure

Based On Spatial Subdivision

Thisprocedureproduces a spatiallyaddressableFE mesh

embedded inthelowestlevelof a hierarchicalgrid.Higher

levelsof the gridare used dunng constructionofthe mesh

and when the mesh isanalyzed,refined,and incrementally

reanalyzed. The procedure starts with a representation in an

SMS oftheobjecttobe meshed, and operatesintwo stages.

The firststagemeshes the interiorof the objectb.vspatial

subdivisionand the secondextendsthemesh totheobject's

boundary.The followingdescriptionsarein2-D: 3-D exten-

sionsare inthefinalsection.

The use of quadtree and octreemethods for automatic

mesh generationwas pioneeredby Shephard and Yerrv [I3.

14]. Our work is similar to theirs but important differences

willbe noted as we go along.

Stage 1: interior meshing. The object S, Figure 6(a). is

enclosedina box, Figure6(be,which isrecursivelysubdi-

vided intoa gridwhose smallestcellsizedetermines the

elementsize(orelementdensity)oftheinitialFE mesh. This

minimalsizeisdeterminedby subdividingcellsuntilno cell

containsmore than one connected boundary segment of S.

As thesubdivisionproceeds theceilsare classifiedas being

"IN" S,"OUT" ofS,or neitherinnor out ("NIO"). Cells

Computers In Mechanical Engineering Jury_986 61

OIL_,..;,I;,_,L I>AG/_ I,_

DF,, POOR QUALITY]

S

/
/

Pig. g First W_lge of the automatic: meshing algorithm.

O-cells

\
NlO=cells

Y

blS

Fig. 70ener_ion of b• nodes in stags 2 of the meshing reign-
tithe.

bI$ nodes

bS nodes

Fig. • |lemantgimerationvin linking #S end his nodes.

classified as IN at higher levels in the hierarchy ar.. ,abdi-

vided to the final grid size without further classificat_, a The
collection of IN cells constitutes the interior mesh <<

The main computational utility used for cell class_;,catJon

is the modified cell classification procedure:

ModClassCell_¢ell, solidi = ("IN", "OUT". "

which is described in [15].
ModClassCeU tests a cell to determine if it is e_:.Jrel_

inside the solid, entirely outside, or undetermined. Ti,e '""

cells are further subdivided and tested. Stage I en,-_:- _th

special operations that reclassify final-sized "'?'" cell, ,:.. IN.
OUT, or NIO. (Some might think that "'?" cells must ._!_ Jys

be NIO. but this is not true for Lee's efficient use ¢,'. :he

classification procedure, which assumes a CSG rel_r=,e:::,-
tion of the solid S [15]. Although CSG implementatlc,: - ,:.:'_

be designed to insure that "?'" cells are NIO. at,,! ',F_

procedure can be used for solids represented in bour_Jav,

format, both approaches are computationally expens:', e,

Specifically, the vertices of each final "?" cell are clas_)-

fled; ff one to three vertices are OUT, the cell is NI(3. In
cases where all four vertices have the same classification the

cell is classified as:

ff (Cell N* S = 0) then "OUT"
else if (Cell N* S = Cell) then "IN"

else "NIO'"

where N* is the regularized intersection operate: [16].

Methods for performing the tests above are described in !8].

We note that the Shephard-Yerry cell classification proce-

dure [13. 14] is based on in/out tests of cell vertices, with

some special operations performed on vertices of cells

having uniform vertex classifications. In/out tests on verti-

ces are insufficient because cells containing holes or thin

sections might be misclassifled.

6?./July 1986Computhr• in Mechanical Engineering

i

[.

ill-formKIelements

\

.blS nodemoved
to the bounOary

elements

ORIGINAL PAGE IS

DE POOR QUALITY

Fig. 9 Node relocation to get well.formed elements.

/ } i.2

\ . J
A'

/

/

Stage 2: boundary-region meshing. The task here is tofill
the region between the boundary of the interior mesh

(denoted his in Figure 7) and the boundary bS of the solid S.
Observe that:

bS C (U "NIO'" cells) u blS

Thus bS is usually contained in the NIO cells and special

element-building operations are required, but sometimes

segments of bS coincide with hiS. as at the top of Figure

6(h). and no special processing is needed. We can mesh the

interboundary region by visiting each NIO cell and creating

elements that link the bS segment passing through it to the
interior of the solid.

There are three main issues in this process: to devise a

systematic way to insure that all NIO cells are visited, to

create nodes on bS. and to associate bS nodes v_ith existing
b15 nodes to form valid elements.

All NIO cells can be visited by an exhaustive scan of the

Fig. 10 Iixlumplesof automatically generated FIEmeshes.

Computers in Mecl_anicalEngineering July "9_ 63

OF

---J I

, ,\ \

8 7

lowest-level grid, or by tree traversal, or by traversal of bS.

Sinceno singleapproach seems to offersubstantialadvan-

tageswe use gr/d-scanforgeneratingthe initialmesh and,

becauseoperationstend tobe more localized,tree-traversal

forremeshingand reana]ysis.

Figure7 shows b$ nodes PI, P2, P3 thatarecreatedinthe

followingmanner. Verticesofb$ withineach NIO cell{e.g.

P2 inFigure7)are taggedas such and are always used as

finiteelementnodes.The verticesofbS areavailableexplic-

itlyifS isrepresentedinboundary format.Ifonly a CSG

representationisavailable,as inour system,a limitedform

ofboundary evaluation[17]must be performed.In 2-D.the

CSG primitivesthatintersectan NIO cellare themselves

i I I I l i 'x\

)
I I I i s I I

I ¢ _pX /

,/

J

: - - : • Jf

Fig. t_ 8ubltru@turoo It vamrlou|Iovell during Iloombly.

t4/July 1986,Computers In Mechanical Engineering

intersected to generate candidate bS vertices; the candidates

are then classified to identify true bS vertices. The an_;ugous

3-D.operations amount to constructing a wireframe repre-

sentation from a CSG representation. Additional bS nodes

are created by intersecting bS with the boundaries of the

NIO cellsCPI and P3 inFigure7).

The generationof validelements withinan NIO ce'.:i+

straightforwardifthe celldoes not contain bS venice,

(comer nodes):nodes on bS and bIS belongingtothe same

NIO cellaresimplylinkedtoform quadrilateraland triangu-

larelements {see the lower left portion of Figure 8). The

treatment is more involved when a corner is present: a

detailed explanation is in [8]. Briefly, the comer node is
linked to bS and his nodes within the cell to form a web of

triangular elements (Figure 8). To avoid generating elements

with poor aspect ratios, the distances between nodes are

checked by using a node neighborhood test..and closel)

spaced nodes are merged into single nodes on bS. Figure 9

provides two examples of this process.
The FE mesh is complete at the end of stage 2 of the

design procedure. A regular mesh of quadrilateral elements

in the interior results from a direct mapping of IN ceils. On

the boundary, NIO cells are associated with quadrilateral

and triangular elements. It is important to note that the FE

mesh inherits the spatial addressability and structure of the

hierarchical grid because e}ements and substructures are

associated with the quadrants of the original decomposition.

Figure 10 shows two examples of meshes generated by our

automatic procedure.

The Shephard-Yerry (SY) boundary, region meshing at co-

rithm performs in/out testson the midpointsand quarter-

points of the edges of NIO ceils, and then maps each NIO

cell into one of a finite number of cut-quadrant forms: each

cut quadrant is then meshed, (We avoid such geometric

approximations by computing exact points of intersection on

bS.) The final stages of the SY algorithm move nodes in NIO

cells to the boundary, and then eliminate ill-formed elements

by using a Lagrangian relaxation procedure to smooth a

triangulated version of the entire mesh. This last operation

destroystheuniformquadrilateralinteriormeshandalso
spatialaddressability,becauseelementsarenotconstrained
toremainin their original cells.

Analysis Of Hierarchical Meshes

We will now summarize a mesh-analysis procedure that

exploiLs the properties of the hierarchical, spatially address-

able meshes already described. Recall that data specifying

the finite elements in the initial mesh are accessed through

the lo_,est level of the hierarchical grid: Figure 4(b) shows

the types of data that are carried.

One analytical simplification is immediately obvious: be-
cause the interior mesh elements are uniform, their stiffness

matrices are identical if the material properties are homoge-

neous and thus only one stiffness matrix need be computed

for all of the interior elements. Other more important analyti-

cal simplifications accrue dunng both assembly and solution

of the system of equations because the hierarchical grid.

which so far has provided spatial substructuring for meshing.
can serve also as a multilevel analytical substructuring

mechanism.

Assembly procedure. Most FE analysis procedures build a

stogie stiffness matrix to cover the whole domain. Our
assembler builds and stores stiffness matrices for every non-

OUT ceil in the hierarchical gad. This is done from the

bottom up (see Figure 11) by assembling son matrices and

"condensing out" interior degrees-of-freedom to build par-

ent matrices at each level. The parent nodes of the interior

mesh with identical (uniform) sons to yield identical sub-

structures and need be assembled only once. The mesh

generator tags identical interior-mesh nodes at all levels of
the tree to allow this.

Figure 12 shows an initial mesh and substructures at

various levels in the assembly process. Note in Figure 12(a)

that the initial mesh contains some higher-level substruc-

tures; these arise not from assembling lowest-level IN ele-

ments, but from intermediate-level cells that were classified

as IN and tagged as substructures during stage 1 meshing.

(The identical stiffness matrices for lowest-level IN cells are

needed in the assembly process only when IN elements must
be assembled with elements in NIO cells.)

Solution, Figure 13 illustrates various stages in the solution

_cess. After loads and boundary conditions are attached to

the root structure, the FE solver computes the displace-

ments of all nodal points on the boundary, i.e., the nodal

points of the root substructure as in Figure 13(a), and then

traverses down the tree, recovering displacements of sub-
structurenodes ateach level.

The displacementsatalllevelsare saved indata records

accessedthroughthehierarchicalgad, and the lowest.level

displacementsare used to compute the stressesin the

elements.Figure 14 shows the displacementsand average

valueper elementofa stresscomponent. The displacements

inFigure15areexaggeratedforclarity.At]analyseshereare

linear-static,based on linearisoparametnc elements,For

nonlinearanalysis,where displacementscan be large,spatial

addressability is still maintained via a backward mapping

that associates each displaced element to the original grid.

Remarks

Our experience with this substructuring approach to anal-

ysis leads to some conclusions. The hierarchical gad used

for mesh generation has almost all of the data management

facilities needed for analytical substructuring. The comput-

ing time and storage requirements for internal-element as-

sembly are substantially reduced. We have not yet compared

the solution efficiency of our tree-traversal method with that

I ! ' i
"v" r

I ¢
) ,i

!

I / "'1

: ; T = t _-'_S

•T ' ' I) _, , (

|) _"-I ' .)
j I •

)
t ¢

, j

• ! t f f "_s

) I I s)) I

) * sl))_) s _i

11
t , : _ -4|

)-_"s --4" -o 4--4 --_ •

).-,) -4)---4-4
S • --4---41

_ _-t'_ "4"_ -t_-. _ .__ 4 _.o.._ _

Irig. 13 Nodal displeoements at stages of the solution ISrOoes8.

-.=,4

-?3

Fig. 14 Average value per element of a Itltll OOmlSonont,

Computers In Mechanical Engineering'July 1986 65

I?$8

441

-867

-217S

rlI, 11 & bioyole Sl)anner In octlon. The four nOOeS on the right-s)Oe notch ere totally constrained to mo(:lel engagement with a nut The average vaJue of

a stress ¢omooment ,s also smown

of standard solvers, in part because we have made no effort

to optimize our code. However. the incremental reanalysis

facilities described later clearly outclass standard solvers

when it comes to adaptive analysis. Note that solution via

tree traversal does not require the normally expensive global

element- or node-numbering schemes used by standard

solvers to minimize bandwidth or wavefront. Finally. sub-

structunng based on trees lends itself naturally to parallel

processing.

In general, substructuring has proven to be efficient [18]

and our particular approach to substructuring seems promis-

ing for nonlinear as well as linear analysis. In many practical

problems (e.g. contact problems, fracture mechanics, and
localized plasticity), nonlinear behavior occurs in isolated

regions, and spatially localized analytical methods should

prove to be efficient. For example, during analysis, regions

that become nonlinear can be tagged in the grid and specially

handled. In other types of problems one might want dis-

placements and stresses only in small critical regions, and

again spatially localized methods seem very appropriate, i
I

Self.Adaptive Incremental Analysis I

Assume that a mesh has been constructed at the lowest !

level of the grid; the mesh has been analyzed and the results

stored in the grid (e.g. "f" in Figure 4): and evaluation of the
results (discussed next) has indicated that refinement is

needed in a particular spatial region, say that repre_en'ed b._

the mesh fragment in Figure 16(a).
Two avenues for refinement are available, h-refinement

and p-refinement. In p-refinement, illustrated in Figure
16(b). successively higher-order shape functions arc a_-;

signed to the element formulation. To refine a particular
element, the old stiffness matrix for the element is invalidat-

ed and a new matrix is computed from the ne_ _b,a._e

function. No new tree nodes are generated, but the size of
the stiffness matrix increases.

(a)
IqI. 11 Schemes fm m_ reflmmmnt.

-= ,,v

P-refinement (b)

) ----4)

& d k 4 k

H-refinement (c)

66/July 1986/Computers In Mechanical Engineering

J

/
t 4 • • I

\

\

i

/

/
i 4

t
\

/

/"
it - 4

/

• • e •

• • ---0

• 41 -O --

• • 4 • •

\

_e e e

/

x

F • e t e • i

i

/
J

t "O--* --* • 'I. • • --4

x
I • I - -"_'_+ I _ _I, ---I i+ • •

\ . . ._.. /

/

°

1_j -41 4 • . -------4 - -e

/ "
4 I • •+ -'l _II - -e + --,it • I

\ /

I/ ' "-'--" "

i

II II • -o----'O-I I-•-+---,+ --_I 4 •

, • - -, _ _ -+--+-e

,+++-, • • -e---v------+-- , J

I

i,

/
+)

/

/
ii

Iqig. 17 Two It_Hloo of h*_fleoment.

In h-refinement existing elements are subdivided into
smaller elementsof the same type, as in Figure 16(c). To
improve the geometricaccuracy, localized h-refinementis
done on the original geometricmodel rather than on the
current finite element approximation. Thus. to refine a
particular element, one deletes the element, creates and
classifiesnew vertices and nodes, and inserts the smaller
new elementsinto the grid. Discontinuitiesof displacements
alongedgeswhere smallerelementsabut onlargerelements
areavoidedby usingconstraint equations.Theseare indicat-
ed by the circled nodes in Figure 16(c).

Figure L? shows examples of localized refinement. Note

Lthat successive h-refinements improve the geometric ap-proximation of the original solid. A maximum cross element

gradingratio of 2:I is maintained during refinement.
Storageforthe new entitiescreatedby h-refinementcould

be providedby addinga whole new bottomlayer to the grid,
but this would be wasteful unless very extensiveh-refine-
ment is needed. If the h-refinements are sparse, small
localizedexplicit schemesor linked-list methodsare more
et_cient.

Now assumethat the original mesh has been refined in a
few regions using the methods just described, that the
affected elements have been tagged, and that the refined
meshis to bereanalyzed.Clearly onewants to do incremen-
tal analysis, i.e., to use partial results from the earlier
analysis as much as possible. These results are available
through the hierarchicalgrid, for example,using a tree of K

Computo_ In Moohmnloll Engtnoorlng, Juiy 198667

K 2

K1

K 6 K? K 9

Original level K37

Fig. t 8

Modified substructure @

Incremental reaeeembly.

New offsprings O Unmodified substructure

matrices as in Figures 11 and 18.

The incremental FE assembler (Figure I) traverses the

tree and by examining the sons of each parent node, detects

new offspring and computes the appropnate stiffness matri-

ces IFigure 18). Stiffnesses for unmodified elements are

recovered from storage, and new and old stittnesses are
combined to form a modified substructure. If a node has no

new offspring, the complete old substructure is reused. The

incremental solver (Figure i) works similarly, inspecting

tags on data to distinguish valid and invalid old results and

reusing the former whenever possible.

Self.adaptive algorithm. Our current algorithm for control-

ling self-adaptive incremental analysis operates as follows

(see Figure 10). After a mesh (either initial or refined) has

been analyzed, error indicators are computed for each

element together with an estimate of the global error. If the

global error exceeds a specified limit, the system calls for

refinement and reanalysis in regions having large local

errors. This process continues automatically until the global

error estimate falls below the specified limit. This rather

simplistic control strategy seems to work in the cases we
have tested, but it is crude and some needed improvements

will be noted.

Considerable research has been conducted on the sources

and nature of errors in FE analysis, and on their relationship

to mesh refinement schemes [3--7]. Research pertinent to p-

refinement-has yielded s'lgnificant results, whereas results on

h-refinement have been based mainly on 1-D studies and are

fairly primitive.
Thus far we have done little research on errors and our

current error measures are crude. As in [5], our element

error indicator (ei) is merely the average of the stress jumps

(J,, normal and tangential) across each element's edges with

dimension (h) and assuming linear isoparametric elements:

, l-v h f
J2sd,r

normalized by the strain energy of the displaced model. Our

global error estimator is simply the sum of the element error
indicators. Figure 19 shows the computed values of the

element error indicators for a sample problem (a plate with a

hole under traction). Note that. in the vicinity of the hole.

the data imply high stress gradients because the error

indicators are high. Figure 19(b) show's an automatic refine-

ment resulting from this set of error indicators.

An improvement of the current algorithm would be to

replace the single global error indicator, which now serves as

a simple refine/don't refine switch, with a hierarchical series

of regional error indicators. These can be computed bottom-

up in the tree. and should force selective refinement in cases

where the overall average error is small but errors in small

regions are high. Additional improvements can be expected
as more is learned about the nature of errors in FE analysis.

Such research should also generate the information needed

to study the convergence properties of self-adaptive
schemes.

Advantages and Disadvantages

The main advantage of our approach is that mesh genera-

tion and mesh analysis are integrated and in effect collabo-

rate under the control of the error evaluator. Thus, the

masher only refines regions where refinement is needed, and

the analyzer only computes "what's new" about a refined

mesh. This type of efficient adaptive behavior is, in our

opinion, the key to efficient automatic FE analysis.
Some can argue that mesh generation and mesh analysis

should not be integrated because integration precludes

"mixing and matching", i.e. being able to analyze, through

simple interface translators, a mesh from "any" CAD sys-

tem or preprocessor using "any" popular analysis package.

We believe that by the 1990s, however, the benefits of

integration will outweigh those of mixing and matching.

Spatially localized substructuring is the driving principle

in both the mesh generator and mesh analyzer. This principle

derives from recursive spatial subdivision and is manifested

in our hierarchical grid and its underlying tree. The tree

(ill'July 1986,'ComputersIn Mechanical Engineering

3 5

S

i

2 i 2
I

0

L
I 8

5

I
I

3 t

19,: 24 _2_/ ,

_ r

5 i 2 . 5

3 S

4

4

2

2

2

8

8

8

0

0

S

2 S

+ i
++ t i ,

i

i

l

S 2 I S 2

f
I

I
4 i 2

T T
L

' 8 ! 0
I

2

I

.L,

8 i o
E

8

J
t

J

glg,I• IleAnement driven by en_r I_loator.

might be _iewed as a generalization of the structure de-

scribed in [19]. However, the latter is applied in subdomains

that are mapped to regular figures (squares and triangles),

and Rheinboldt's tree addresses the element partitioning

induced in the regular figures. By avoiding mapping we are

able to use the same structure for both meshing and analysis;

further, the regularity of our structure permits systematic

cell numbering and. hence, data access through calculated

addresses rather than through searching or looking in tables.

This "divide-and-conquer" principle enables hard prob-

lems (such as object decomposition and equation-set solu-

tion) to be decomposed into smaller, tractable problems via

spatial partitioning. We note that spatially localized sub-
structuring, and spatial addressability in general, provide

powerful mechanisms for coupling FE methods and results

to other applications (e.g., manufactunng process modeling)

through master data bases based on solid modeling.

Certain technical details already described, such as the

regularity of the interior mesh elements, are also advantages

of this approach.

Limitations. The main limitation of spatial subdivision

methods is that they produce meshes that are dependent on

orientation and position if the initial enclosing box is not

tight.

This is most easily seen in simple objects that have a

single,naturalorientation.As such objectsare rotatedin

fixedset of subdivisionaxes the induced meshes change.

oftendramatically.Figure20 isan example with a simile i

objectmeshed ina nonstandardorientation.SkilledanaI._sis

callsuch meshes "'unnatural."and note thatthey usually

containmore elementsthan "hand-made'" meshes.

Spatialsubdivisioncan be appliedin non-Cartesiando-

mains,For example, predominantlycircular2-D objectscan

be meshed efficientlyinpolarcoordinatesby subdKisionof

(r.8).The meshes so produced can be managed throughthe

Computlrl In Mechanical Engineering July 198669

I

, "%

• 4 e I\

• • • 4 • q
e • •

• e e
a • •

O 4 • • • • a _q

4

I

0 I • f '_ • •
t

• f •

• ' " .,,, J, " t
a • • • •

• • "4_" -"r j • i

I • •

,ll t • 4_
/

Q e • • •
e e • • •

• • e .

t •

e • • °4'

Pig. 20 OriontaJtionand I_sition dopondon©oof moshos dorivod by opatlat mubdivhdon.

same hierarchical grid as is used for Cartesian subdivision

[20]. Various schemes have been proposed for mixing subdi-

vision strategies to cater to objects having both circular and

rectilinear regions, but none seem promising [20].

The essential counter arguments are that "unnatural"

meshes will produce valid results if the elements are valid,

and that these results should converge under adaptive re-

meshing and reanalysis to a single set of(correct) results that

is independent of position and orientation. Experimental

evidence indicates that our approach exhibits such qualities.

Still To Be Resolved

Over the long term. four areas will require extensive

theoretical work to make truly automatic FI:_ analysis possi-
ble:

• Error measures and indicators. Better measures than the

ones we use currently are needed, but they need not be

optimal if adaptive convergence can be guaranteed.

• Adaptive convergence. We have seen no experimental

evidence of divergence in the self-adaptive process, but

automatic analysis systems like ours will require human

monitoring to guard against divergence until stron8 conver-

gence properties can be guaranteed.

• Computational complexity. We think that spatial sub-

structuring techniques are asymptotically more et_icient than
the methods used in current solvers, but we have no results

to prove or i_isprov_'th"_-._plexity and convergence

analyses, when coupled, should provide bounds on the
inherent cost of finite element analysis.

• Nonlinear analysis. Thus far we have confined our efforts

to linear analysis but our approach to substructuring appears

promising for nonlinear analysis as well.

Two other issues are currently more pressing: extending

the systems to 3-D problems and handling loads and con-

straints automatically.

We have done 3-D work in parallel with our 2-D work. An

etticient publicly available interior mesher (octree generator)

has been created for solids describable in the PADL-2 solid

modeling system [21, 22]. Figure 21 shows an example. The

2-D spatial substructuring techniques for managing analysis.

adaptive remeshing, and reanalysis extend gracefully to 3-D.

and indeed most of the 2-D control code is directly usable in

3-D. The major unresolved problems are in stage 2 of the

automatic meshing procedure, i.e.. in the handling of NIO

cells. Promising methods for resolving these problems are

being studied.

The handling of loads and constraints is the only aspect of

2-D linear FE analysis that we have not yet automated. At

present, loads and constraints are applied manually when the

assembler has completed its initial pass and the solver is

about to begin its initial pass, i.e., at the transition between

Figures 12(d) and 13(al. This raises two different questions.

First, there are no fundamental barriers to automating the

application of loads and constraints at this stage of the

solution procedure. The problems are strictly of an engineer-

ing nature. Essentially, what mechanisms should be provid-
ed in a solid modeler to support the declaration of loads and

constraints (see Figure 1), and how should declarations be
translated into mesh-node vector values? The translation

problem is straightforward given a good solution to the

declaration problem, and an experimental system v.ith

enough power to handle load and constraint declarations _s

already running under 3-D PADL-2 [23].

The second question is deeper. Should loads and con-

straints be applied at the outset, where they will influence

construction of the initial mesh, rather than after an initml

mesh has been built? This is certainly the case when me,_he_

are constructed manually, and part of the analyst's skili is in
knowing how fine a mesh should be in a loaded or con-

strained region. Should our mesher be modified to mimic this

skill? The only possible gain we see is efficiency and this

might be marginal because the current system alread_ re-

fines meshes automatically to reflect loads and constraints

but only after it has passed from initial mesh anal._sJS to

adaptive remeshing and reanalysis.

In conclusion, we believe that the experimental system

70/July 1986/Computers in Mechanical Englnooring

I_1. 21 Automaticlily deflved o4:tree deCOml_sitkm of uGehause" la stan¢la_ benohmaek part for solkl modeling systems). Here
only I1_ IN oclme ceils are o=_layeO

described here and its underlying principles represent a

milestone on the road to truly automatic finite element

analysis. I

Acknowledgments

John Goldak of Carleton University contributed to this

research and to the education of its authors. Victor Genberg

of Eastman Kodak Company provided advice and encour-

agement. The plots were produced on equipment donated by

Tektronix, Inc. Other industrial associate companies of the

Production Automation Project provided both equipment

and funds. Sustaining support was provided by the National

Science Foundation under grants ECS-8104646 and DMC-

8403882. The findings and opinions expressed here do not

reflect the views of the sponsors.

References

I Requicha. A,A,G. and Voelcker. H.B.. "Solid Modeling: A
Historical Summary and Contemporary Assessment," lEEK Com-
puter Graphics and Applications. Vol. 2, No. 2. pp. 9-24, March
1982.

2 Requicha. A.A.G. and Voelcker, H.B.."Solid Modeling: Cur-
rent Status and Research Directions. "lEEK Computer Graphics and

Applications. Vol. 3. No. 7. pp. 25-37, Oct. 1983.
3 Babuska. I. and Rheinboldt. W.C., "'A-posterior Error Esti-

mates for the Finite Element Method," International Journal For
Numerical Methods In Engineering. Vol, 112, pp. 1597-1615. 1978,

4 Peano. A.G.. Pasini. A.. Riccioni. R.. and Sardella. L., "Adap-

tive Approximation in Finite Element Structural Analysis," Com-
puter and Structures, Vol. 10, pp. 332-342. 1979.

$ Kelly. D.W., Gago, J.P., Zienkiewicz, O.C., and Babuska, I.,
"A Posteriori Error Analysis and Adaptive Processes in the Finite
Element Method: Part I, Error Analysis." International Journal For
Numerical Methods in Engineering. Vol. 19. pp. 1593-1619, 1983.

6 Gago. J.P., Kelly, D.W.. Zienkiewicz. O.C. and Babuska, I.,
"'A Posteriori Error Analysis and Adaptive Processes in the Finite
Element Method: Pan 11, Adaptive Mesh Refinement." Internation-
al Journal For Numerical Methods In Engineering, Vol. 19. pp.
1621-1656, 1983.

7 Zienkiewicz. O.C., Gago, J,P.. and Kelly, D.W.. "The Hierar.
chical Concept in Finite Element Analysis," Computers and Struc-
tures, Vol. 16, No. I-4, pp. 53-65. 1983.

$ Kela. A.. "Automatic Finite Element Mesh Generation and
Self-Adaptive Incremental Analysis Through Solid Modeling," Dis-
sertation. Production Automation Project. University of Rochester.

1986 (in preparation1.
9 Wordenweber, B., "'Finite Element Mesh Generation." Corn-

purer-Aided Design. Vol. 16. No. 5, pp. 285-291. Sept. 1984.
10 Cavendish. J.C.. Field, D.A., and Frey. W.H, "'An Approach

to Automatic Three-Dimensional Finite Element Mesh Genera-

tion." International Journal For Numerical Methods In Engineer-
ing. Vol. 21. pp. 329-34"7.

11 Lee. Y.T.."Automatic Finite Element Mesh Generation

Based On Constructive Solid Geometry," Dissertation. Mechanical
Engineering Dept., University of Leeds. England, April 1983.

12 .lackins. C.L. and Tanimoto. S. L., "Octrees and Their Use in
Representing Three-Dimensional Objects.'" Computer Graphics and
Image Processing. Voi. 4. No. 3. pp. 249-,.270, Nov. 1980.

13 Yerry, M. A. and Shephard, M. S,. "'A Modified Quadtree
Approach to Finite Element Mesh Generation." IEEE Computer

Graphics and Applications, Vol. 3, No. 1, pp. 39--46. Jan./Feb.
1983.

14 Yerry, M. A. and Shephard. M. S.. "'Automatic Three-
Dimensional Mesh Generation by the Modified Octree Techmque.'"
International Journal For Numerical Methods In Engineering. \o[.
20. pp. 1965-1990, 1984.

15 Lee. Y.T. and Requicha, A.A.G.. "Algorithms for Computing
the Volume and Other Integral Properties of Solids: Part II. A
Family of Algorithms Based On Representation Conversion and
Cellular Approximation." Communications of the ACM, Vol. 25,
No. 9. pp. 642-650. Sept. 1982.

16 Requicha. A.A.G., "Representations for Rigid Solids: The-
ory, Methods, and Systems," ACM Computing Surveys. Vol. 12,
No. 4, Dec. 1980.

17 Requicha, A.A.G. and Voelcker, H.B., "Boolean Operations
in Solid Modeling: Boundary Evaluation and Merging Algorithms."
Proceedings of the lEEK. Vol. 73. No. !, pp. 30-44, Jan. 1985.

18 Dodds Jr,. R. H. and Lopez, L.A., "'Substructunng in Linear
and Nonlinear Analysis." International Journal For Numerical

Methods In Engineering. Vol. 15, pp. 583-597, 1980.
19 Rheinboldt, W.O. and Mesztenyi. C.K., "On a Data Structure

for Adaptive Finite Element Mesh Refinements," ACM Transac-

tions On Mathematical Software, Voi. 6, No. 2, pp. 166-187. June
1980.

2,0 Kela. A., "'Approaches to Automatic Finite Element Mesh
Generation From CSG Representations of Solids." ITM A'o..¢.;.
Production Automation Project. University of Rochester, July]9S3

21 Hartquist, E. E.. "Public PADL-2,'" lEEK Computer Graph-
ics and Applications, Vol. 3, No. 7, pp. 30--31, Oct. 1983.

22 Kela. A., "'programmer's Guide to the PADL-20ctree Pro-
cessor Output System," Input/Output Group Memo No. 15 : Produc-
tion Automation Project, University of Rochester, Jan. 198zt

23 Requicha, A. A. G. and Chart. S. C.,"Representation
Geometric Features, Tolerances, and Attributes in Solid Modelers

Based On Constructive Geometry," ITM No. 48. Production Auto-
mation Project. University of Rochester, Oct. 1985.

ComputMB in Mechanical Engineering July 198671

i '

N88-19121 I

WORKSHOP ON

THE INTEGRATION OF FINITE ELEMENT MODELING
WITH

GEOMETRIC MODELING
12 MAY 1987

FINITE OCTREE MESHING

THROUGH

TOPOLOGICALLY DRIVEN

GEOMETRIC OPERATORS

Kurt R. Grice

Center for Interactive Computer Graphics

Rensselaer Polytechnic Institute

Troy, New York

OCTREE TECHNIQUE

HIERARCHIC STRUCTURE

PROVIDES POWERFUL DATA STRUCTURE

SPATIALLY ADDRESSABLE

- REGULAR HEXAHEDRA (PARALLELEPIPED)

FINITE INFORMATION

- DISCRETE PORTION OF THE MODEL

FINITE OCTREE

FINITE OCTREE- OVERVIEW

DlSCRETIZATION OF SPACE

- EACH TERMINAL CELL (OCTANT) CONTAINS

SPECIFIC DISCRETE MODEL INFORMATION.

- THE DISCRETE INFORMATION IS

TOPOLOGICALLY CORRECT, BUT

GEOMETRICALLY INCOMPLETE.

- EACH DISCRETE ENTITY CONTAINS

POINTERS BACK TO THE MODEL, SO ALL

GEOMETRIC AMBIQUITIES CAN BE

RESOLVED.

THESE TERMINAL OCTANTS ARE FURTHER BROKEN

UP INTO ELEMENTS.

THE ELEMENTS ARE THEN SUBMITTED TO AN
ANALYSIS PACKAGE.

IF NEEDED, TERMINAL OCTANTS CAN BE EITHER

RECOMBINED, OR FURTHER SUBDIVIDED IN AN

ADAPTIVE TECHNIQUE.

GEOMETRIC
MODELER

FINITE OCTREE

MESH GENERATOR

FINITE
ELEMENT

ANALYZER

FINITE ELEMENT SYSTEM

MODELER REQUIREMENTS

BOUNDARY REPRESENTATION -

CONTAIN VERTEX, EDGE, FACE AND

REGION ENTITLES ALONG WITH THE

ADJACENCY INFORMATION.

ALL COMPLETE AND UNIQUE GEOMETRIC

REPRESENTATIONS CAN BE CONVERTED TO

A B-REP.

ANALYSIS ATTRIBUTES ARE DOMINATED BY

INFORMATION ASSOCIATED WITH THE

BOUNDARY.

PROVIDES A GENERAL, ABSTRACT MEANS

REPRESENTING NON-MANIFOLD

STRUCTURE, ORIGINATING PERHAPS FROM

AN IDEALIZATION OF THE MODEL

GEOMETRIC COMMUNICATION OPERATORS -

RESTRICTED SET OF QUERIES ON BOTH

THE TOPOLOGICAL ADJACENCY AS WELL

AS THE UNDERLYING GEOMETRIC

DEFINITION.

SIMILAR IN APPROACH TO THE CAM-I

APPLICATION INTERFACE SPECIFICATION

(AIS).

PROVIDES MEANS OF INTERFACING TO

VARIETY OF MODELERS.

MODELER REQUIREMENTS

EACH TOPOLOGIC ENTITY HAS A CORRESPONDING

GEOMETRIC ENTITY ASSOCIATED WITH IT.

REGION TO VOLUME
FACE TO SURFACE

EDGE TO CURVE
VERTEX TO POINT

VOLUME, FACE AND EDGE ENTITLES CAN BE
PARAMETERIZED

IDENTIFICATION OF EACH ENTITY IS UNIQUE

OCTREE DISCRETIZATION

ONE COULD VIEW THE COMPLETE DISCRETIZATION

OF A MODEL AS POINT (OCTANT CORNERS) AND

CELL (BOUNDARY INTERSECTIONS WITH OCTANTS)
CLASSIFICATIONS.

THIS CLASSIFICATION AND THE ASSOCIATION WITH

THE OCTANTS WILL PROVIDE THE DATA FOR

GENERATING THE FINAL MESH.

POINT AND CELL CLASSIFICATION TECHNIQUES

ARE EXTREMELY GEOMETRY INTENSIVE AND MAY

REQUIRE EXTENSIVE QUERIES.

THESE CAPABILITIES MUST BE CAREFULLY

IMPLEMENTED FOR USE IN A GENERAL MODELING

ENVIRONMENT.

FROM A MODELING STAND POINT:

IN NON-IMPLICIT REPRESENTATIONS, POINT

CLASSIFICATION (IN/OUT/ON TESTING)IS

NOT EFFICIENT.

FROM A FINITE OCTREE PERSPECTIVE:

CLASSIFICATION OF AN 'ON' POINT IS MOST

IMPORTANT (DETERMINATION OF A

BOUNDARY).

RESOLVE COMPLICATIONS OF THE MODEL

AS EARLY AS POSSIBLE, INCLUDING

CONTRIBUTIONS FROM ANALYSIS

ATTRIBUTES.

RESOLUTION OF NON-MANIFOLD

REPRESENTATIONS COULD BE VERY

COSTLY (ex: hanging faces).

ONCE A DISCRETE REPRESENTATION OF

THE BOUNDARY OF THE MODEL IS

COMPLETE, IT IS A TRIVIAL MATER TO

IDENTIFY THE INTERIOR NODES.

OCTREE DISCRETIZATION

GENERAL METHOD

INSERT TOPOLOGICAL ENTITLES OF THE

MODEL FROM THE LOWEST ORDER UP

VERTEX, EDGE, FACE, THEN INTERIOR (IF

ANY)

UTILIZE SPECIFIC GEOMETRIC

COMMUNICATION OPERATORS, AVOID 'EX-
PENSIVE' OPERATIONS

ASSOCIATE THE DISCRETE ENTITIES BACK TO THE
MODEL AND THE MODEL TO THE DISCRETE

ENTITIES.

ALLOWS FOR RESOLUTION OF GEOMETRIC
AMBIGUITIES

ALLOWS FOR THE ASSIGNMENT OF

GEOMETRICALLY ASSIGNED LOADS ON TO
THE DISCRETE ENTITIES

GEOMETRIC COMMUNICATION
OPERATORS

TWO TYPES CALLED BY THE FINITE OCTREE

PROGRAM:

8 EXPECT INFORMATION ON TOPOLOGICAL

ADJACENCY OR ATTRIBUTES APPLIED TO
THE TOPOLOGY.

10 EXPECT SPATIAL DATA AS A RESULT OF

A COMPUTATION USING THE UNDERLYING
GEOMETRY OF THE MODEL.

ALL ARE TYPICALLY AVAILABLE IN

GEOMETRIC MODELERS.

GOES BEYOND THE STATIC FILE TRANSFER

SCHEMES SUCH AS IGES, AND INTO A DYNAMIC
INTERFACE WITH THE MODELER ITSELF.

GEOMETRIC COMMUNICATION
OPERATORS RETURNING

TOPOLOGICAL ASSOCIATIVITY

GET A LIST OF MODEL ENTITIES, SUCH AS

VERTICES, EDGES, OR FACES FOR INSERTION INTO

THE TREE.

GET THE MESH CONTROL ATTRIBUTE ON THE

MODEL ENTITLES.

GET LOWER ORDER ENTITIES ASSOCIATED WITH A

SPECIFIED ENTITY. (ex: vertices of on edge)

GET HIGHER ORDER ENTITY ASSOCIATED WITH A

SPECIFIED ENTITY. (ex: regions on either side of a

face)

VERIFY WHETHER AN ENTITY IS ASSOCIATIED WITH

ANOTHER. (ex: edge in face)

GEOMETRIC COMMUNICATION
OPERATORS RETURNING

SPATIAL DATA

RETURNED DATA IS ALWAYS BASED ON POINT
INFORMATION: COORDINATES, PARAMETER

VALUES, NORMALS, DISTANCES.

EXAMPLES:

GET COORDINATE OF VERTEX

INTERSECT PLANE WITH EDGE

INTERSECT LINE WITH FACE

GET NORMAL TO FACE

1

7""..
I \ I \\
I \\ I ",\
I \ I \

\
I ,.--1

I I I I
I I I I
I I I I

I I I I
I I,,I I

.... L_J,
------ I ",, I

_\\ / "\ /

\\ / \\ /
\ / \ /

I "\ I \\
/ \. h / ",.
I \\ III ..__./ ,'-1-t4......

/ if,� /
I _ I

/
\ I \ I
\ I"4_._-- "_

CAPABILITIES OF A FINITE
OCTREE BASED MESHING

PROCEDURE

ADAPTIVE ANALYSIS TECHNIQUES WITH LOCAL

REMESHING.

AUTOMATED METAL FORMING USING REMESHING

CAPABILITIES.

Z
W

L_
Z
m

L.L.
W
C_

W
W
C_

n

C_

U.J

L__
m

n
0

C _ C
0 C 0

C3 "0 C3
(3

cr _ = E_
C7 O"

0 0 .0

0 C X .--
133 ,-, ILl U.

e • 0 •

____1

m

f

___/

a) original geometry b) geometry during forgtng

lllll
Jill
lill
IIII
Illl

IIIII

c) mesh for orLginal geometry

d
d) mesh for current geometry

Figure 3. _lodeling of forging process

WORKPIECE WITH ELEMENTS

DIE

WITH ELEMENTS

DIE

Figure 4. Volume control through geometric checks

SUMMARY

ADVANTAGES OF BOUNDARY REPRESENTATION

ADVANTAGES OF GEOMETRIC COMMUNICATION

OPERATORS

IMPLEMENTATION PLAYS AN IMPORTANT ROLE IN
THE INTEGRATION WITH A VARIETY OF GEOMETRIC

MODELERS

CAPABILITIES OF CLOSED LOOP PROCESSES
WITHIN A COMPLETE FINITE ELEMENT SYSTEM

ELEMENT GENERATION

PERFORMED ON AN OCTANT BY OCTANT BASIS

EACH OCTANT REPRESENTS ONE OR MORE

DISCRETE REGIONS OF THE MODEL, EACH
DISCRETE REGION BOUNDED BY DISCRETE

FACES

TOPOLOGICALLY CORRECT, BUT
GEOMETRICALLY INCOMPLETE

GEOMETRIC COMMUNICATION OPERATORS
ARE STILL NECESSARY

THE ELEMENTS ARE CREATED BY BREAKING THE
DISCRETE REGION INTO A COLLECTION OF SIMPLEX

ELEMENTS (TETRAHEDRONS)

CREATING THE ELEMENTS REQUIRES BOTH THE
TRIANGULATION OF THE DISCRETE FACES AS WELL
AS THE TETRAHEDRONIZATION OF THE DISCRETE
REGIONS

D

ELEMENT GENERATION

FACE TRIANGULATION

SINGLE LOOP OF CONNECTED POINTS IN 3-
SPACE IS BROKEN INTO A SET OF SIMPLEX

ENTITIES (TRIANGLES)

CRITERIA FOR TRIANGULATION BASED ON
VALIDITY AND QUALITY

NEITHER OF THESE CRITERIA CAN BE
RESOLVED BASED ON THE TOPOLOGY OF

THE LOOP, THE GEOMETRY OF THE MODEL
MUST BE QUERIED

REGION TETRAHEDRONIZATION

BASED ON THE WORDENBER VOLUME
TRIANGULATION TECHNIQUE

OPERATIONS ARE EDGE REMOVAL AND
VERTEX REMOVAL

EACH REMOVAL MAY CREATE ADDITIONAL
ENTITLES THAT MAY INTERFERE WITH THE

GEOMETRIC MODEL, CAUSING INVALID
ELEMENTS

IN SHORT, THE TOPOLOGY SUPPLIED BY THE

DISCRETE REPRESENTATION, IS SIMPLY NOT
SUFFICIENT FOR TETRAHEDRONIZATION,
GEOMETRIC QUERIES ASSURE A CORRECT AND
APPROPRIATE MESH

\

N88-19122 I

DESIGN MODELING FOR SHAPE OPTIMIZATION

M.E. Botkin

Engineering Mechanics Department

General Motors Research Laboratories

Warren, MI 48090-9057

ABSTRACT

Some important aspects of design modeling for shape optimization

will be discussed for both stamped sheet metal components and cast

solid components. For stamped components the basis for the model-

ing approach is a boundary design function. Design parameters

control the shape of two-dimensional regions. For more complex,

folded plate components, the two-dimensional regions can be

assembled using translation and rotation operations. The analysis

model is automatically created using a mesh generation procedure

requiring only boundary data. For less complex solid components,

it was found that this approach is not suitable. For these struc-

tures, the finite element models are typically created using very

sophisticated graphical modeling systems. A new approach which

overlays a parameterized surface design model on an existing

analysis model is described. To summarize, the future needs for

solid shape design will be described in terms of an extension of

the previously described two-dimensional capability.

Design Modeling for Large-Scale Three-Dimenslonal

Shape 0ptlmlzatlon Problems

R. J. Yang and M. J. Fiedler

Engineering Mechanics Department
General Motors Research Laboratories

ABSTRACT

Modeling three-dimensional automotive components for

shape optimization is described. Shape optimization differs
from sizing optim_ation in the type of structure, type of de-
sign variable, and sensitivity analysis employed. The key el-
ement of the shape optimization design model is the parame-
terization of the geometry by which the opt;m;,e_ controls the
structure dimensions. Efilcient generation of the design model

is very critical in the design process. A quick generation of a
good optimization model combined with an et_cient optimiza-
tion system will result in a drastic design time saving. In this
paper, three approaches to generating the design model are
discussed. Emphasis will be placed upon a special modeling
technique which overlays the design model onto an already ex-
isting finite element model. This technique is incorporated in
a modular three-dimensional shape optimization system which
uses NASTRAN for analysis. A realistic automotive steering
control arm is used as an example to demonstrate the use of
the technique.

INTRODUCTION

Optimization techniques have emerged as usof_ design
tools in recent years. Structural optimization for sizing vari-
ables has been treated extensively in the literature. The prob-
lem of designing the shape of a structure for minimum ms_
constitutes another important class of optimization problems.
Shape optimization difers from sizing opthn_ation in sev-
eral ways. First, sizing design variables are generally dimen-
sions which do not affect the geometric configuration of the

structure, such as cro_-sectional dimensions of beam mere-
hers (thickness, width, height, moment of inertia, etc.). Shape
design variables define the geometry of two-dimensional plate
and three-dimensional solid structures. As a result, shape de.

sign sensitivity analysis is much more complicated. In shape
optimization, the boundary of the structure is variable, so pa-
rameterization of the geometry is the most important aspect
of the shape design model. Modeling for shape optimization
is more difllcult because both the analysis and design rood-

el- must completely describe the structure geometry. The de-
sign and analysis models for sizing opt_ation are inherently
loosely coupled because there k little duplication of informa-
tion. For an existing large analysis model whose surface is not
parametrized, generating the design model is not trivial.

In the past, most efort has been put on shape design sen-
sitivity analysis and most problems solved are limited to two-
dimensional problems [I-4]. The importance of automatic cre-
ation of the design model was seldom found in the literature.
Botkin at. al. [5] used computer graphics to generate shape
design modek for two and three-dimensional stamped struc-
turin. Only a limited amount of work has been aceomplkhpd
in three-dimensional shape optimization using solid _Luite ele-

ment analysis [_-7]. Refa. 6 and 7 generated design modek
manually and as a result, only simple geometries (cantilever
beam, engine bearing cap, etc.) were optimized. ROf. 5 used
an automatic mesh generator to create the design model and a

more complicated engine connecting rod was optimized. How-
ever, connecting design variables to the geometry was still done
manually. In the real world, three-dimensional problems are of-
ten complex and require large finite element analysis models.
To be most elective in impacting the design process, the de-

sign model must be efllciently generated through an interface
to a CAD system.

Many graphics oriented finite element preprocessors are
•available which can generate very complex finite element mod-
els. Unfortunately, these models cannot be used directly for

optimization, since they offer no means of parameterizing the
shape of the structure. Ideally, for shape optimization, the de-
sign and analysis models should be generated simultaneously
using a CAD system. An alternative to this approach is an
optimization system which generates the analysis model auto-
rustically from the the design model description of the struc-
ture. The major disadvantage to both approaches is that the

!present state-of-the-art in mesh generation is not of a level
'where they would be robust enough to function in a real world
design environment. However, finite element analysis is an
accepted and established part of the design process. For

mediate impact, a shape optimization system should be able
to take advantage of this fact. Hence, the third approach to

design modeling which is presented in this paper is one which
an already existing finite element model ,m the basis

the geometry description. A parameterization of key dl-

mensions, edges, and surfaces is then overlayed on the finite
element mesh.

In this paper, different design modeling approaches are first

discussed. A new approach which can handle large-scaie prob-

lems initially generated as analysis problems only is presented.
A steering control arm is used as an example to demonstrate

the use of the design modeling approach.

DESIGN MODELING APPROACHES

When evaluating any modeling approach, the robustness

of the technique and the dimculty of integrating the system

into the design proem are the two major criteria. A robust

design model will be general enough to include every pmaible
shape which will satisfy the design constraints. At the sane

time, the constraints must be flexible enough to eliminate the

consideration of any impractical designs from a manufacturing

standpoint. It is also important that the coupling between the

design and analysis models be of a nature that maintains the

integrity of the finite element analysis through the iterations

of the optimization process.

Two design modeling approaches were found in the litera-
ture: a boundary design element concept, and a design element

approach or a generic model approach. The present approach

di_ers from both of these in that they both use some form of

generation while our approacJ_ uses mesh manipulation.

The boundary design element concept was _ret proposed

by Bennett and Botkin IS] for two-dimensional plates and

by Botkin and Bennett [9] for three-dimensional folded plate
structures. The basic idea of this approach is to parameterize

a boundary seSment with several design variables, a_mble all

segments to form the whole part, and generate a finite element
mesh within this boundary. The key to the success of this ap-

proach is the availability of a two-dimensionai fully automatic

mesh generator [I0]. With this capability, a more advanced

step which considm the accuracy of finite element analysis

with mesh refinement was made possible [S]. This approach is

probably the most robust and attractive as the creation of the

finite element mesh is transparent to the designer. However,

the boundary description format cannot be extended to three-

dimensional solids beeatme a fully automatic mesh generation

[11] which relies on mzrface data is not developed to the point

where it can be routinely nsed in an automated fashion.

The design element approach for two-dimensional elastic-

ity problems was first used by Botkin) [15] and also used

by Bralbant and Fleury [15], who employed Besier and B-

spline functions for boundary geometry. The design element

or generic modeling scheme for three.dimensional shape opti-

mization was used in Refs. 5-7. This approach can be thought

of as a volume design element concept. In this approach, the

geometry is described by design elements whose key dimensions
are associated with the geometric design variables. The finite

element mesh for analysis is then generated within each design

by an iaoparametric mapping technique. The advan-

tages of this approach are that no discontinuity exists at the

element interface, relatively few design va.'iables are needed,
and interior points are automatically adjusted when a bound-

ary moves. The main disadvantage of this method is the tel-

atively inflexible mesh generation scheme. Mesh gradation is

completely controlled by the number of generic elements and

the mapping technique used. Since the generation technique

creates a very uniform mesh, refinement in a local region can
only be accomplished by adding more design elements. For

complex geometries which cannot be modeled with a coarse

mesh, the density of the generic model quickly approaches that

of the analysis model. In erect, the designer has to generate

a full-scale finite element model anyway. With increased com-

plexity of the mesh, the number of necessary design variables

also increases. Although the finite element mesh generation is

largely transparent in this approach, the quality of the mesh

may not satisfy the designer who is used to generating finite

element modek with a graphics preprocessor. One other draw-

back to this method is that the designer will be restricted to

using the finite element types permitted by the mesh generator.

PRESENT APPROACH

In the present approada, the original finite element model

is employed as the basis for the design model. There is a one-

to-one correspondence between the finite element analysis and

design model geometry descriptions. That is, the node num-
bers and locations for both models are identical. The design

model attaches design variables to the node locations stored in

the analysis model. As the optimizer changes the design, the

analysis model is updated to refiect the change in node coor-
dinates, and the design model is updated to reflect the change

in the design variables.

All the additional data needed to describe the shape opti-

mization model is stored in a single DESIGN file. The present
model contains two key elements. The first is a list of design

variables with upper and lower linlits. When the optimiza-

tion is performed, the design variable vector moves toward Be

optimal design. The second key element of this model is the

type of geometric operators which give these numbers physical

significance by relating them to actual part dimensions. This

is done by manipulating the coordinates of the nodes which
describe the finite element mesh. Three types of operators are

included in the design model. LINK functions form the most

direct relationship between the design variables and the part
geometry. Each LINK function references a design variable

or a linear combination of any number of the design variables

as specified by the nser. This dimension is then used to po-
sition a lkt of dependent nodes relative to some independent

reference. The type of reference depends on the type of LINK

function specified. For example, if a cylinder function is nsed,

all the dependent nodes are positioned relative to an axis. Un-
like LINK functions, POLY and GRID functions do not ex-

plicitly reference design variables. Therefore, they allow the

designer to minimize the number of design variables necessary

to completely describe a problem. Like LINK functions, both

of these functions position nodes in a specified list relative to

some independent nodes. POLY functions do this by putting a

polynomial curve through the independent nodes and interpo-

luting the dependent nodes onto it. GRID functions set chosen

coordinates of the dependent nodes to a value determined by

a linear combination of the independent node coordinates.

ORIGINAL PAGE IS

OE POOR QUALITY

Themosttime-consumingsadtediouspartof this ap-
proachislocatingandidentib/ingtheindependentsaddepen-
dentnodesusedin thegeometric functions. To expedite this

process, an interface with a CAD system should be developed.
With such a graphical system, the business of determining and

attaching the node labels to the geometric functions would be

transparent to the user. The designer would have to select the

nodes graphically off the screen, while the computer internally

stores the appropriate numbers and builds the DESIGN file. A

key feature of the shape design modeler, which will be imple-
mented in the future, is the ability to animate the geometric

functions. This will allow the designer to instantly see the

effect changing an individual design variable has on the part

geometry.

The main advantage of this method k that it is applicable

at any point in the design process. The designer does not have

to sacrifice the time already invested in building the analysis

model if he decides to run an optimization. Also, this method
has been shown to work ¢_ real problems with technology that

is currently available.

MODULAR SYSTEM FOR SHAPE OPTIMIZATION

The design modeling technique described in the previous

section is incorporated with a three-dimensional modular shape

optimization system which uses MSC/NASTRAN for finite ele-

ment analysis [$,14]. The system flow chart is shown in Figure
I. Each step is an independently executable module. CONMIN

[15] is called as a subroutine from SENSTY. A fifth module

(not shown) forms the link between STEP 4 and STEP 1. Ter-
ruination is controlled by an iteration counter and can occur

after STEP 2 or alter STEP 4, as specified by the user. StepG
2 and 4 can be run independently to test the design model

without running an analysis. In STEP 1, a NASTRAN static

analysis is run using superelement formulation. The nods] co-

ordinates, internal/external node label list, and displacements
are written to an output file for use in the next steps. In STEP

2 (ADJLOD), stre_ and displacement constraints are evalu-
ated. For those constraints which are active, adjoint loads are

calculated. In STEP 3, each adjoint load is submitted as a

separate load case in a restart on the analysis performed in

the first step. Displacements from this analysis are written to

an output Rle and used in the next step to calculate sensitivi-

ties. In STEP 4 (SENSTY), the gradients of the cost function
and active constraints with respect to the design variables are

evaluated. This information k fed to CONMIN, which forms

Taylor series approximations of these functions and performs

an optimization to arrive at the next design iteration. The

grid coordinates are updated to reflect the new design vari-

ables. Then a Laplacian smoothing operation is carried out

on all interior corner grids to minim_e element distortion. Fi-
nally, the midside grids are linearly interpolated between theLr

respective corner grids, except those on the boundary surfaces

. The new coordinates and design variables are written to the

NASTRAN and DESIGN files, respectively.

STEERING CONTROL ARM

The forged steel steering control arm shown in Figure 2

was optimized. The arm is subjected to a single 9000 N steer-
Lug load applied through a ball stud as shown. Constraints are

applied around the strut tube on the upper and lower surfaces
of the arm to simulate the welds. The NASTRAN model con-

J STEP 1: NASTRAN _1 _ NASTRAN 1v I (actual loads) DATA BASE

STEP 2:ADJLOD r
(cost, constraints.

and adjoint loads)

,l
l STEP 3: NASTRAN RESTART L

(adjoint loads) [-

,L
._ STEP 4: SENSTY](design sensitivity analysis I

and CONMIN optimization) I

Figure L System flow chart

slats of 190 HEXA elements, 6 PENTA elements, and 30 BAIt

elements (used to model the ball stud). There are 1497 grids

in the model which corresponds to roughly 4300 DOF. Young's
modulus, Poisson's ratio, and the allowable octahedral shearing
stress are 2.07xlOSJ_fPa, 0.3, and 250MPa, respectively. The

optimization model shown in Figure 3 uses 12 design variables,

31 link fim_..¢tions, 15 polynomial interpolating functions, and 21

grid link functions. The numbered arrows represent the design

variables. The lettered points are key node locations and the

dashed lines are movable boundaries. The design variables are

described in Table I. Design variable 5 is actually fixed, but is

needed to locate point F. Quadratic interpolation functions are

used to generate curves KLM, BCD, and FGH. Cubic Hermite

curves AB and DE form smooth transitions between BCD and

the outside radii at the ball stud and the strut tube. Only half

the model is shown in the XY-plane because it is symmetric

about the X-axis. Figure 4 is a partial listing of the DESIGN
file for this model. Three geometric constraints have been in-

eluded to prohibit the inside wall boundary from crossing the
outside wall boundary. The initial design is infeuible as the

Table I. Design Variables Description

Design Variable Description

1

2
3

4
5

6

7

8

9
I0

U

12

Floor thickness

Strut tube (MN) thickness

Midsection (L) thickness

Width of inside wail at ball stud (F)

Radius of inside wall of ball stud (fixed)

Width of inaide wall at midsection (G)
Radius of inside wall of strut tube

l_adins of fillet (H J)
Poeition of fillet radius center

Width of outside wall at ball stud (B)

Width of outside wall at midsection (C)

Width of outside wall at strut tube (D)

/

part had a high stresl value near the inside fillet radius at the

strut tube (Figure 2). The peak stre_ in the part violates the

strem conJtralnt by 87.5%. The initial ma_ k 615.4 g. After
iterations, the stre_ constraint8 were met and an 8_

savinp wu achieved (final mau of 566.5 g). Table 2

lists the initial and final values of the design variables -. well
u the limits placed on them. A comparison of the initial and

final geometries is given in Figure 5. The design histories of

the mmm and maxhnum stress constraint are shown in Figure
6.

STEERING LOAD

constrained iround

/W£LO[D TO STRUT TUBE

top and bottom

stress area _
initially Inf.sible __[

o

Analysis Model /._

9000N

Figure 2. Steerinl control arm

Table 2. Design Variables for Steering Control Arm

No. initial final lower bound upper bound

I 4.20 2.50 2.50 I0.00

2 20.00 20.00 20.00 40.00
3 20.00 22.12 II.00 40.00

4 8.97 8.64 2.20 17.00

5 20.75 20.75 20.75 20.75

8 15.86 17.95 2.20 26.00

7 34.30 30.46 30.40 40.00
8 4.00 5.72 1.00 10.00

9 15.29 11.30 2.20 18.00

10 18.61 19.00 4.20 19.00

II 21.98 22.26 4.20 30.00

12 26.21 25.46 4.20 29.00

unit: mm

,

[

K L M N

......"....T£:--]

E__
X

Figure 3. Design model for steering arm

S
PAIAMETEMS ITEM._O_ / ICM[CK.ISTOP,IDEBUG.ZS_TM.NSTI

1 0
I 1 0 1 ?

S
OPTIMIZATION PARAM NACM. IFLE6Y.ILI_. EPS. PER. BNINLK,TM[TA

-1 -_ -1 0.100 I0 0 05 -10

$
PQOPEmTV

2 _84[OS 03
250

S

GEOMETRIC CONSTRAINTS
2S.

-I IO 104
S

GEOMETRIC DDNSTMAINTS
24
-I t_ * 0 6

S

G[0M_TMI¢ ¢ONSTRRINT$
2S.
-t 12 10 9

S

STMES$ ¢ONS?6A|N7 P[_VAL
?O

?3 74 ?6 66 63 64 6S 67 68 69 70 71 72 7S
60 77 S6 51 46 AS 47 S2 S? 60 61 62 79 78

43 42 39 20 16 _7 _6 21 22 23 24 _4 41 40
207 202 20t 2_ 204 216 229 226 221 2t2 211 2_0 DOI 208
_64 16S 182 164 205 21S 217 21G 216 2_a 196 _91 172 166

$
DESIGN VARIaOLES 6a*.• 6•-_0. 89-10

12
1

2

3

S

7

I
9

IO

12

S

3 It3

I O t
O. O

76
62 a9

63 SO
_40 Sl5

aS3 528
AS• 533

• 48 523
42? 502

411 •6•
409 a60

1223 13OO
1220 1266

$
LINK

3 26
I O2

0 0
?G

1232 _309

122B 1306

$

2 SO0 4 200 • 200 _C 000

20 COO 20 O00 20 OOO 40 0OO
11 0OO 20 OO0 20 0OO •O COO

_2oo p.. :,,. ,7ooo20 7S0 2 750 2 750 20 ?_O

2 200 15 656 15 6Sl 26 OOO
30 400 34 300 34 300 40 0OO

10OO aOO0 _0OO 10OO0
2 200 I_ 26_ 15 26_ _6 OOO

• 200 t| 610 18 6_0 19 00_
• 200 21 676 21 676 30 0OO

A 200 26 214 21 214 29 COO

r_O06 T_I CKN[SS
I O0

1

_2a _82 256 369 379 3?6 346 339 218 I_S 95 61

12S 183 2?0 29? 3_6 31_ 26C 234 2_9 IS6 96 6a
690 679 ?76 903 936 6_? 1_02

603 662 762 _t• 103a _06_ _00
608 667 _97 621 _Oa2

596 667 767 6_ _037
S77 666 ?6• $97 g?S

$61 660 ?_7 139 970 9$6 1006
SSS 64_ 726 833 eS_ 865 _010

_391 *_29 14a5 1•_4 1•36 1_1D 133_ 1267 t_S? _140 _C?_ _206
1362 1•30 1_d• t_? _a37 141_ _333 1265 _a _I_2 1076 _2_6

STRUT ?_8| TMIC_NESS

0 0

1_01 1_62 1493 1462 _?_ _24 13_2 _276 _166 I!_I '_•a '2 '_

_a02 '_63 la9a ,_9S _S _:S _3_3 1273 _62 tlSC ,085 ':_6

Figure 4. DESIGN file for steering arm optimization

_D

O
if')
tf_

I I

0 5 10

ITERATION NUMBER

15

Initial dimensions shown as dashed lines

Figure 5. Initi,d cud final designs of steering arm

SUM]VLtLRY

Efficient creation of the the design model is crucial in three-
dimensimml shape optimization. In the ideal scheme, creation

of the analysis model is completely inter'steal into the desisn

model buUdh_ process, thus eliminatins any duplication of
efiPort. At the same time, no compromise should be made with

respect to mesh quality. For realistic three-dimensional parte,

this technology is not available yet. In this paper, a design
modeling approach was pr_ented which takes advante4[e of the

fully developed state of' finite element analysis model building.

In this method, the analysis model is the basis of the geometric

description. Building the design model consists of overlaying a

parameterization of the geometry onto the finite element mesh.

This method is applicable with present technology. It has been
used in a number of automotive component applications with

success, one of which was presented here.

REFERENCES

I. Ramakrishnan, C. V. cud FrancaviUa, A., "Structural

Shape Optimization Using Penalty Functions," Journ_

of Structural Mechanics, 3(4), 1974-1975, pp. 403-422.

2. Haug, E. J., Choi, K. K., Hou, J. W., and Yoo, Y. M., "A

Variational Method for Shape Optimal Design of Elastic
Structures," New Directions in Outimum StTuc_q4'_l Design,

Ed. E. Atrek et al., Wiley, New York, 1984.

3. Haug, E. J., Choi, K. K., cud Komkov, V., D_izn

Sensitivity Analysis of Structural Systems, Academic Press,
1986.

4. Yang, R. J., cud Botkin, M. E., "Comparison Between

the Variational cud Implicit Differentiation Approaches to

Shape Design Sensitivities," AIAA, Vol. 24, No. 6, 1986,

pp. 1027-1032.

(/) _--

t_
O I I

I 0 5 10

ITERATION NUMBER

15

Figure 6. Design history of steering arm optimization

5. Botkin, M. E., Ycug, R. J., cud Bennett, J. A., "Shape Op-

timization of Three-Dimensional Stamped cud Solid Auto-

motive Components," The Ootimum Shaue: Automated

Ed. J.A. Bennett cud M.E. Botkin,

1986.

6. Imam, M. H., "Three-Dimensional Shape Optimization,"

h_ternational Journal/'or Numerical Methods in Engineering,

Vol. 1S, 1982, pp. 661-673.

7. Imam _VI. H., "Minimum Wei&ht Design Of 3-D Solid Com-

ponents', ASME Comuuters in En_ineerinz, Vol. 3, 1982.

8. Bennett, J. A. cud Botkin, M. E., "Structural Shape Opti-
mization with Geometric Problem Description cud Adap-

tive Mesh Refinement," AIAA, Vol. 23, No. 3, 1985, pp.
458-464.

9. Botkin, M. E. cud Bennett, J. A., "Shape Optimization of"

Three-Dimensional Folded Plate Structures," AIAA, Vol.
I 23, No. 11, 1985, pp. 1804-1810.

I0. Cavendish, J C., "Automatic Triangulation of" Arbitrary

Planar Domains for the Finite Element Method,"

l_terl_atig_ Journal for Numerical Methods in Ens[ineerin_[_ F

Vol. 8, No. 4, 1984, pp. 679-696.

11.

13.

14.

15.

Shephard, M. S. and YenT, M. A., *AutomAtic Finite Ele-

ment Modeting for Use with Three-dimensional Shape Op-
tim_ation," The Outimum ShaDe: Automated Structural

D_ism, Ed. J.A. Bennett and M.E. Botkin, 1956.

Botkin, M. E., *Shape Optimization of Plate and Shell

Structures," AIAA, Vol. 20, No. 2, 1982, pp. 268-273.

Bralbsnt, V. and FlemT, C., "Shape Optimal Design, A
Performing C.A.D. Oriented Formulation,"

AIAA/ASME/ASCE/AHS SDM Conference, CP No. 84-

0857, p,im Sprinp, CA, May 14.16, 1984.

Ysag, It. J. and Botkin, M. E., "A Modular Approach
for _rnree-Dimensional Shape Optimization of Structures,"

VoL 25, No. 3, 1987, pp. 492-497.

Vanderplants, G., "CONMIN - A Fortran Program for

Constrained Function Minimization User's Manual,"
NASA, TM X 62,282, 1973.

j j s'_

£

General Motors
Research Laboratories
Warren, Michigan 48090

N88-19123 -

SHAPE OPTIMIZATION OF THREE-DIMENSIONAL

STAMPED AND SOLID AUTOMOTIVE COMPONENTS

/2 -,/
GMR-BI6S

H_

M. E. Botkin, R.-J. Yang and J. A. Bennett

Engineering Mechanics Department

General Motors Research Laboratories

Warren, MI 48090-9057

Presented at the

1985 GMR Symposium

and

to be published in

Symposium Proceedings

Shape Optimization of Three-Dimensional

Stamped And Solid Automotive Components

M.E.Botkin, R.J.Yang And J.A.Bennett

Engineering Mechanics Department
General Motors Research Laboratories

Warren, MI 48090-9055

ABSTRACT

The shape optimization of realistic, three-dimensional

automotive components is discussed in this paper. The

integration of the ma_or parts of the total process:

modeling, mesh generation, finite element and sensitivity

analysis, and optimization is stressed. The paper will

treat stamped components and solid components separately.

For stamped parts a highly automated capability has been

developed. The problem description is based upon a

parameterized Boundary design element concept for the

definition of the geometry. Automatic triangulation and

adaptive mesh refinement are used to provide _n automated

analysis capability which requires only Boundary data and

takes into account sensitivity of the solution accuracy to

Boundary shape. For solid components a general extension of

the two-dimensional Boundary design element concept has not

Been achieved. In this case the parameterized surface shape

is provided using a generic modeling concept Based upon iso-

parametric mapping patches which also serves as the mesh

generator. Emphasis is placed upon the coupling of

optimization with a commercially available finite element

program. To do this it is necessary to modularize the

program architecture and obtain shape design sensitivities

using the m_terial derivative _pproach so that only boundary

solution data is needed. Several realistic component

designs will Be shown to demonstrate the effectiveness of

both capabilities.

INTRODUCTION

Although structural optimization for sizing varaBles has

been treated extensively in the literature for many
1

yemrs[1,2] the problem of designing the shape of a structure
for minimum mass is a comparatively new research

topic[3,4,5]. Although earlier work[8,T,8] stressed the need
for automatically modifying the mesh as the structural shape

changes, limitations in the boundary representation and mesh

generation aspects kept the capability from being truly
automatic. Ultimately, one would like to merely describe the

function of the structure to the computer in some convenient
and then allow the program to automatically produce

_n_timum desiEn[9]. The Basic requirements necessary to

do this are as follows: 1) the design model--this describes

the shape of the structure, loads and constraints, and the

design requirements; 2) the analysis model--th? finite.

element mesh created using fully automatic mesa generation

and improved using adaptive mesh refinement; and 3) the

desiEn modification--a numerical optimization process which

iteratively improves the desiEn until converK ence to the

optimum is obtained. Each of these topics and their
implementation into the design program will be discussed.

Previous authors have not addressed the problem of

handling the more general case of desiEning parts which are

non-planar. Here the major difficulty is in modeling, in a

parametric sense, all of the three-dimensional geometry . To
do this it was necessary to extend the existing capability

for flat parts using an assembly process of the two-
dimensional segments. Furthermore, the ability to add

curvature to planar segments was provided through the

superposition of surface interpolation and transformation
Q

capabilities.

For solid components, very little research has been

reported[T,8]. In this paper emphasis will Be placed upon

two major aspects which have not been previously treated.
The first of these is the efficient calculation of the

sensitivities of the displ_cement and stresses. Secondly,
the idea of using one of the many commercially available

finite element codes is attractive in order to a llevi&te the

burden of software support of an analysis program

sophisticated enough to handle solid models. Both of these
issues have been addressed and will Be discussed.

The integrated design processes described in this paper

will stress the necessity for treating realistic, three-
dimensional design problems typical of those found in

automotive design. For this reason, the shape design element

descriptions would be most suited for interfacing with the

computer-aided drafting systems on which the geometry is

initially created. Additionally, it is absolutely necessary
2

ORIGINAL PAGE IS

OF PO0?, QUALITY

to have a capability which is as automatic as possible to

free the engineer from the burden of finite element creation

and modification and from the equally as great a burden of

design modification.

SHAPE OPTIMIZATION OF SKEET METAL PARTS

Design Model Description

There are a significant number of structural components,

such as the typical part shown in Fig. I, that are produced

from a single sheet of uniform thickness material. Using

conventional optimization techniques in which element

thicknesses are the design variables, little mass reduction

cam be achieved. To further reduce the mass, the shape of

the part _nd the location of the cutouts must be represented

by design variables. The resulting design model must provide

the description of the boundary geometry as a function of

the design variables and also the finite element structural
model. To be most effective in impacting the design process,

this information must be efficiently generated from

conceptual sketches of the part or obtained through an
interface to a computer-aided drafting(CAD) system. For that

reason, the approach represented in Figs. 2 and 3 has been

chosen. The part shown in Fig. I has been modeled in Fig. 2,

using what will be referred to as boundary design elements.

As well as associating the boundary with design variables,

the boundary design elements are also used to define the

stress constraints. Each boundary design element will be

associated with at least one stress constraint which will be

computed from the maximum stress of all the finite elements

touching that boundary design element. The loads and

structural boundary conditions mre related to a set of

reference nodes which are shown in Fig. 3 as key nodes. This

information is in turn automatically transferred to the

finite element model once it has been generated.

Mesh Generation

Other work[6,10] has stressed the need for automatically

modifying the mesh as the structure changes shape, but it
was observed that the commonly used mesh generation

techniques based upon coarse isoparametric or transformal

mappin_ patches imposed limitations on the ability to treat

large variations in shape. While these techniques do
redistribute interior nodes as boundaries move, aspect

ratios tend to get objectionably large as the shape becomes

significantly different than the initial shape. Mesh grading
and solution accuracy are difficult to control as well.

3

As an alternative to more traditional mesh generation

methods, the use of fully automatic mesh generation based

only upon boundary points coupled with adaptive refinement

has been proposed[ll]. This technique is capable of

generating a nearly uniform initial mesh of triangular

elements given a set of uniformly spaced boundary points.

Thus, as the design changes, uniform triangular meshes can

be recreated at any time.

After the design model has been created, the boundaries

are automatically discretized into uniform segments called
the characteristic length (CL) which is an input vxlue.

Automatic triangulation[12,13] is used %o create a nearly

uniform mesh from the set of boundary points and a set of

points placed uniformly throughout the region's interior of

approximately the same density as the boundary points. This

process of creating the uniform mesh is repeated at each

step in the design for which a new boundary description has

been generated.

Adaptive Mesh Refinement

Unlike the design of fixed configuration structures, it

is not possible %o assure the accuracy of the mesh as the

shape changes, since the accuracy of various portions of the

mesh will change. The ideas of adaptive mesh refinement can

be incorporated to help resolve this difficulty[Ill.

The mesh refinement process is based upon the variation

in strain energy density(SED) as a measure of the error in
an element. Once SED variations have been determined for all

elements, those elements which have undesirably high values
must be selected for subdivision. Elements so selected

define refinement regions which can be easily identified by

graphical contouring. Since it is not practical from a

computational standpoint to consider more than a two-step

refinement process during the optimization(one initial _nd

one refined analysis), a concept of multiple refinement

regions has been implemented in an attempt to enhance

convergence. As an example of the process Fig. 4(a)

represents a uniform finite element mesh created using the

triangulation technique described previously. Severml

refinement regions can be specified, Ls shown in Fig. 4(b),

so that the resulting mesh, Fig. 4(c), will be more

uniformly graded from coarse to fine. The elements in the

region of highest SED variation, represented by the smallest

dots in Fig. 4(b), are approximately one-fourth of the size

of the initial grid. The region represented by the larger

dots contains elements of approximately one-half of the

4

initial grid size. As many as six regions can be specified,

uniformly graded down to one-eighth of the original grid

size. The size of the regions can be varied depending upon

the selection of an input parameter.

Obviously, the accuracy due to any refinement is unknown

in advance. Although numerous papers have been written

[14,15] on error estimates of total strain energy, this work
has not been extended to stresses and displacements. It is

desired, for the case of the iterative design process

described in this paper, to have a conservative estimate of

the converged finite element solution. This information may

be obtained in an approximate manner using linear

extrapolation, graphically represented in Fig. 5. This is a

typical relationship, in the absence of a singularity,

between a soluton quantity and mesh size. Several steps of

refinement are shown, with each step having reduced the

element size in half. The solution will eventually converge

to Se and the slope of the curve reflects the rate of

convergence. A conservative estimate of the converged

solution, represented by points Si and So, may be obtained

by extrapolating data points produced by one unrefined

analysis and one refined analysis. The extrapolated values
will be used as stress constraints.

In order that more realistic three-dimensional plate

structures can be analyzed, accurate refinements are

necessary for finite elements with bending" deformation. In

general, refinement works best for conforming elements such

as for the constant strain triangle already described.

Meshes composed of these elements are always too stiff and

solution convergence is predictable as shown in Fig. 5. On

the other hand, meshes composed of nonconforming elements

may switch from too stiff to too flexible as the refinement

progresses. However, the triangular bending element used in

this study[16] has been formulated in such a way as to

reduce the degree of nonconformity, and convergence studies

show that for uniformly refined meshes the element is always

too stiff. Several examples have been presented in Ref. 11

which indicate that although the results are not as

predictable as for the constant strain triangle, they are

quite satisfactory.

Extension To Nonplanar Parts

The design process which has been described has been

extended in order to handle more realistic stamped sheet

metal parts[IT]. This was accomplished by treating the part

as an assembly of the two-dimensional segments described
5

above. Each segment has one completely closed exterior

boundary which may contain one or more interior cutouts.

Segments may be joined along straight sides to form more

complex assemblies. Furthermore, segments may be rotated

along the joined edges to form three-dimensional geometry,

as shown in Fig 6(a). Because each segment is represented by

two-dimensional boundary information only, the addition of

surface curvature to a planar segment for added stiffness

must be addressed separately. Large curvature, such as a

cylinder in Fig. 6(b), is accomplished through the

definition of a cylindrical coordinate system for that

segment alone. All nodes in that segment are transformed to

the new surface. Small curvatures are treated by direct

projection as shown in Fig. 6(c). The final assembly process

can be seen in Fig. 7 in which all the three-dimensional

geometry has been expressed in terms of a small number of

parameters which can be treated as design variables.

Interactive Graphics Geometrical Modeling

The need to model more complex geometries makes it

obvious that some form of model preparation based upon

graphics oriented preprocessing is necessary. Unfortunately,

existing finite element preprocessors cannot be used

directly, since they offer no means of paramaterizing the

shape of the model. Although some of the more recently

developed modelers do include boundary functions, such as

splines, there are no design parameters available externally

for use with other programs. Furthermore, since the finite

element mesh must change to reflect shape changes, loads and

constraints must be associated with boundary functions

instead of being directly applied to the finite element

mesh, as in the typical modeling system. As a result, a

special graphics preprocessor for shape optimization was

developed[18], which allows a user to create a paramaterized

finite element model. A part is modeled as a collection of
planar part segments , which are assembled 5o form a three-

dimensional plate structure. Design variables define the

shape of each part segment. Loads and constraints are

applied to finite element nodes through boundary functions,

instead of being applied directly to _he nodes.

To begin model preparation, the user first selects the x

and y dimensions of the part. Next, commands and cross-hairs

are use_ to create the key nodes and boundary design

elements that define the geometry of the part to be

optimized. Figure 8(a) shows the six key nodes needed to

define the boundary of a planar triangular bracket. Three

exterior key nodes locate the perimeter of the part, while
6

three interior key nodes locate an interior cutout boundary.

Associated with each key node is a radius, represented as a

circle in Fig 8(a). The radius, as well as the x and y

coordinates, are automatically designated as design
variables.

Once the necessary key nodes have been created, the

cross-hairs are used to connect the key nodes and create the
boundary design elements, as shown in Figure 8(b). If the

same key node is selected twice, a circular arc boundary

design element is created. A circular arc element can be
used to represent a round boundary, a fillet, or a circular

hole. If two different key nodes are selected, the user can

choose to connect the two key nodes with either a straight

boundary design element or a double cubic boundary design

element, as shown in Fig. 3. All design variables specified

for a particular element type are automatically assigned
when the element is created. Commands are available to link

design variables, as required.

Other commands are available to be used for applying

constraints or loads to a given boundary. The terminal

cross-hairs are first used to select the boundary to be

supported or loaded. The user is then prompted for a

constraint type or a load magnitude and direction. The

constrained boundaries are indicated by a letter 'C', while

the loaded boundaries are indicated with a letter 'L', as

shown in Fig. 8(b). At the time when loads are applied,

optimization constraints on displacements can also be

specified.

Most real production parts, however, have more complex

geometries than these examples. For instance, a common

manufacturing operation used to add stiffness to a planar

part involves adding a lip, or flange, along the edge of the

part. Modeling such a part with a conventional finite

element preprocessor is relatively simple, but if the design

of the part is to be automated, the geometric model of the

part must fulfill the requirements already mentioned.

Commands are available to create multiple part segments as

shown in Fig. 7. An additional command can be used

specifically for creating flamges, which automates some of

the multiple-segment-creation steps.

Figure g(a) shows six flanges added around the perimeter
of the triangular bracket. A flange is added by using the
cross-hairs to locate the portion of the boundary for which

a flange is desired. The user is then prompted to specify
the flange height at each end. The model is completed by

T

specifying the angle that each flange is rotated relative to

the Base part to form a three-dimensional model. This angle

s normally ninety degrees. Each of the six flanges, as well

the Base triangular bracket, is a separate part segment,

on which a finite element mesh is generated. Figure 9(b)

shows the assembled finite element model of the triangular
bracket, generated from the boundary shape information

created with the preprocessor.

THREE-DIMENSIONAL SOLID COMPONENTS

0nly a limited amount of work has been accomplished in

three-dimensional shape optimization using solid finite

element a_alysis[7,S]. Issues not treated previously will be

emphasized in this paper[19]. Because a fully automatic mesh

generation scheme which relies only on surface data[20] has

yet to be developed, the boundary description format.

described for thin parts cannot be implemented for solid

three-dimensional parts. Instead, it will be assumed that

surface representation and mesh generation will be handled

by a generic modeling scheme based upon isopara_etric

mapping patches described in Ref. 8 and shown for a typical

part in Fig. 10.

The two topics which will be addressed are design

tivities and program architecture. Work in both of

• areas were largely driven by the desire to use a

variety of structural analysis programs (NASTRAN, ANSYS,

ADINA, etc.) to be used with a relatively small amount of

additional program development. In this study, NASTRAN was

used for analysis.

Design Sensitivity analysis

The variational design sensitivity theory uses the

material derivative concept of continuum mechanics and an

adjoint variable method to obtain computable expressions for

the effect of shape variation on the functionals arising in

the shape design problem. The resulting expressions provide

analytical sensitivities of structural response.

The variation of displacement functional _ with respect

to shape'change is derived by differentiating the

variational equilibrium equation and employing the adjoint

variable method, to obtain [21-23]

_)#/Sb = - _Fa ij(z)_ ij(X)nTSr/_b dF (1)

8

This equation is an integral along the perturbed boundary in

which the required data for evaluation are the stresses from

the actual load,a ij , the strains from the adjoint load,e ij,

the position vector,r , and the design variable vector,b. It

should be pointed out that in Eq. I assumptions have been

made in the derivation so that the kinematically constrained

boundary and loaded boundary are assumed to be fixed, and

the variation of the displacement functional is only

affected by the normal movement of the boundary of the

physical domain. Physically, the adjoint solution required

in Eq. 1 is interpreted by applying a unit load at the point

where the displacement is of interest.

To see the advantage of Eq.1, a comparison should be

made[24] with the well known expression for design

sensitivities resulting from the implicit differentiation of

the finite element equations

8z/Sb =-K-18K/Sb z (2)

This equation evaluates the displacement derivative by

computing derivatives of the terms of the s_iffness matrix.

There are two shortcomings to this approach. First,

obtaining analytical expressions for the stiffness matrix

derivatives is very difficult for boundary movements. These

expressions are, in general, different for each element

type, thereby requiring special computer code for each

different element type. For this reason, a finite difference

method is generally used to obtain stiffness derivatives.

This usually requires a judicious choice of the step size to

maintain accuracy. Finally, if it is desired to use a

-commercial finite program for analysis--for which the source

code is no5 available--it is very difficult to manipulate

the stiffness matrices to compute the needed derivatives.

For these reasons, Eq. 1 is a more desirable expression for

computing displacement sensitivities. The needed stresses

and strains can be stored by most programs on files to be

used by a post-processing routine to obtain the derivatives.

The stress variation also can be derived to obtain an

expression similar to Eq. 1, except that the discontinuity

of the stresses along the interelemental boundaries has to

be properly hamdled. A characteristic function, which

averages stress over a small region, is introduced to treat

stress constraints in Refs. 24 and 25. This approach is

similar to using the finite element center as the stress

constraint point if the element is chosen Ls the small

region and may lead to a misleading constraint value and may
g

result in Ln undesiremble or inaccurate optimum shape if the

finite element model is inadequate[25].

An alternative that avoids this problem is to obtain the

stress sensitivity at a point, using the definition of

stress computation in finite element analysis. The elemental

stresses are computed by using the following equation

¢ = D B z e (3)

where D is the elasticity matrix, B the strain recovery

matrix, that contains the derivatives of shape functions,

and z e an elemental displacement vector. Differentiating Eq.

3 with respect to the design variables, 5, one obtains

a_ = D(Bze' + B_z e) (4)

where the subscript i with a prime superscript indicates the

derivative with respect to the ith design variable. Notice

that the first term on the right side of Eq. 4 is only a

combination of displacement gradients, and can be obtained

by applying a combined adjoint load to the system and using

the same formula of Eq. I.

The primed matrix of the second term of Eq. 4 cam be
evaluated from the derivative of the nodal coordinates with

pect to shape design parameters[26]. It can be computed
analytically or by using a finite difference method. For a

linear shape function element, such as constant stress

triangular element, the matrix B' vanishes, while for a

quadratic element, the B' matrix is constamt. Therefore, the
finite difference method is sufficient to evaluate the B'

matrix, except when a higher order element is used. In this

study, analytical derivatives are used for B' and the eight
corner points of the solid element are chosen as the stress

constraint points.

Modularized Program Architecture

It was desired to have a system which uses a commercial

finite element code as the analysis capability because of

the generally widespead acceptance by the structural

analysi6 community of such codes. A major drawback to

achieving this goal is that most commercial finite element
codes cannot be used as a subroutine. This problem was

addressed by building a system of independently executable

program modules in which the overall execution is controlled

by job control language.
I0

The modularized system is comprised of a mesh generator,

the finite element code(NASTRAN), the adjoint load and

constraints definition program, a design sensitivity

analysis module, and an optimization module. Each of those

is an independent program and is treated as a module. The

flow chart of the system is shown in Fig 11. Initially,. one

has to generate a generic model for the structural

component, and create a NASTRAN data deck for the NASTRAN

run. The whole cycle of the system proceeds as follows: run

the NASTRAN code for the actual load; calculate the cost

function, constraints, and the adjoint loads using the

NASTRAN output; rerun the NASTRAN code for the adjoint

loads; and perform the design sensitivity analysis and

optimization to obtain a new design. Finally, a new finite

element mesh and NASTRAN data deck for the new design are

generated.

The MSC/NASTRAN version 63 finite element code is

employed for analysis. The new feature of the NASTRAN data

base is used to save computing time for reanalysis of the

adjoint loads. This data base, created by the first NASTRAN

run, preserves the stiffness and boundary condition

information and results in easier input data preparation and

less computing time for the reanalysis. The displacements,

stresses, and geometric information that are needed for

design sensitivity calculation are obtained by using an
ALTER feature in NASTRAN to write that information on a file

for postprocessinE.

The ADJLOD module(Fig. 11) is used to define the cost

function and constraints for the design problem, and to

calculate the adjoint loads for the constraints which are

active or violated. The displacements, stresses, and

geometric information from the NASTRAN output are first read

to define the constraints for the structural component. A

NASTRAN deck containing the adjoint loads is then created

for reanalysis.

The SENSTY module(Fig. 11) performs the design

sensitivity analysis for the cost and the active

constraints, and then performs the optimization process by

calling the optimizer(CON]dIN[27]) as a subroutine. Before

executing the module, the NASTRAN output files for the

actual load and the adjoint loads should be available. The

module "then changes the desiEn and creates new input data

for the MESHGN module which will generate a new mesh and a

new NASTRAN data file for the next design iteration, if

necessary.

11

DESIGN EXAMPLES

Three-Dimensional Sheet-metal Part

Figure 12 shows the initial shape and dimensions of a

realistic design example of a sheet metal part[17]. The

model was initially created in two dimensions and then

segments 2 and 4 were transformed into the third dimension.
Structural boundary conditions were imposed around the holes

labelled C and D. Loads P1 and P2 were applied at hole.A in

the y and z directions, respectively. Load P3 was applied at

hole B in the y direction. The design criteria were a stress
limit on all boundaries and a displacement limit at hole A.

CL was chosen to be 0.80 cm for the initial mesh.

The current model is similar to an earlier part[IT],

except that flanges on the new model add seven flange design

variables to the problem. The locations of these design

variables are shown in Fig. 13. A total of nineteen design

variables were used to parameterize the part's shape. Figure

14 shows the initial, unrefined finite element mesh.

This part was modeled to determine how the program would

reduce the mass and tailor the flanges, subject to a

displacement constraint. A displacement constraint was

applied to the hole A, such that the displacement of the

point was limited to I millimeter in the -z direction.

Figure 15 shows the initial and final part designs. The

program removed material from the interior cutouts on the

base triangular part segment and the cylindrical part

segment. A small amount of in-plane curvature was added

along the edges of the triangular part segment to which

flanges are attached. The flange heights were reduced to
less than half the initial values everywhere except along

the upper edge of the triangular part segment. The flange

heights along this edge are controlled by flange design
variables 3 and 4, as shown in Fig. 13. This edge serves as

the primary load path for the structure, since it transfers

the load from the tip of the triangular par5 segment to the

support points. As a result, one would expect the flange

along this edge to be the most important in maintaining the

stiffness of the part. The flange design variable values for

the initial and final designs are given in Table I.

J,

Figure 16 shows the design history for this part. A

design variable move limit of five percent was used for the

first ten steps, followed by a move limit of 2.5 percent for

the last fourteen steps. The characteristic length was

reduced from .8 to .6 in the last four steps to obtain more

12

accurate displacement values in the unrefined analyses. The

reduction of the characteristic length eliminated design

oscillations that emerged once the displacement constraint
became active. The initial unrefined finite element mesh

included 3000 degrees of freedom, while the initial refined

mesh contained 4000 degrees of freedom.

Finally, some comments are in order concerning the

results. First, the design history (Fig. 16) does not show

traditional convergence behavior. The optimizer was turned
off when it was felt that further mass reduction would

require an excessive amount of computer time. Second, one

might question the finite element accuracy in the fl&nge

areas. Constant strain elements were used, and only one or

two elements were used to span the depth of each flange in

the unrefined mesh. Bending of the flanges could result in

stress variations that would not be picked up by so few

constant strain elements. For this reason, the automatic

mesh refinement technique described above was used to

minimize this error.

Table I. Design Variables for Transmission Bracket

No. initial final lower bound upperbound

I 2.12

2 I. 50

3 I. 50

4 I. 50

5 2.12

6 1.50

7 I .50

0 91
0 68

0 89
0 89
0 96

0 68
0 67

0 5

0 5

0 5

0 5

0 5

0 5

0 5

30
30
30
30
30
30
30

Three-Dimensional Solid Part

An idealized engine connecting rod, which connects the

crank shaft and piston pin of an engine and transmits an

axial compressive load during firing and a tensile load

during the intake cycle of the exhaust stroke, is employed

as the example[19]. Shape optimization of similar components

have been studied by Yoo et al. [28] and Yang et al. [2@]

assumimg a plane stress state. However, a fully three-

dimensional shape optimization for the connecting rod is
still not available in the literature.

Figure 17 shows the generic model for the connecting

rod. For simplicity, the right hole of the connecting rod
13

which connects the piston pin is fixed to eliminate rigid

body motion; and the arbitrarily selected pressure of 3000

MPa is applied to the left hole, from 0 to 90 degrees, to
simulate the firing forces. The yon Mises stress constraint

is imposed mt each node in the finite element model of the

connecting rod. The critical yield stress used for Lnal_sis

is chosen Ls 3000 MPa. Young's modulus and Poisson's rLtio

are I0.0 x 10E8 KPa and 0.3, respectively. The numerical

data were selected to demonstrate the use of the system and

are not representative of a specific production part.

Using the symmetrical conditions, only a quarter of the

structure needs to be analyzed. The desiEn variables are

shown in Fig. 17. In this model, 8 design v_riables are

chosen; 5 parameters define the shape of the shank amd neck

regions, 2 are the outer radii of the right _nd left holes,

and I parameter defines the height of the web. The finite
element model, as shown in Fig. 18, contmins 105 solid(20

node) elements, 928 nodal points, and 2128 degrees-of-

freedom.

The initial values of the design v_riables are shown in

Table 2. Initially, the volume is 15688.T cu mm with no

stress violation. After 20 design iterations, it is reduced

to T217.8 cu mm with no stress violation. The final design

variables and the final shape are shown in Table 2 Lnd Fig.

1T, respectively. Figures 19 and 20 show the design
histories for the cost and the maximum constraint v_lues,

respectivily, of the idealized connecting rod. In Fig. 19,
one observes that the convergence rate is reasonably good.

From design iterations 10 to 17, the optimizer tries to

force the design into the feasible region. The slow

correction for stress violation shown in FiE. 20 may result

from Taylor's series expansion approximation for functions.

Table 2. Design Variables for Engine Connecting Rod

No. initial final lower bound upperbound

1 10.958 12.512 0.I I00.0

2 8.37 2.8478 0.I I00.0

3 3.9687 1.4220 0.1 100.0

4 3.0024 1.0984 0.1 100.0

5 3.2711 1.2733 0.1 100.0

8 8.8158 7.2219 0.1 I00.0

7 31.271 25.481 24.0 I00.0

8 1T.553 13.300 13.3 100.0

14

SUMMARY

An integrated approach to the shape design problem has

been described for sheet-metal parts in which the problem

description is stated in a simple format, the finite e_ement

mesh is generated automatically, and its accuracy is

improved by adaptive mesh refinement. Non-planar structures

can be treated using an assembly process of two-dimensional

segments in such a way 5hat all three-dimensional geometry

is expressed in terms of a relatively small number of

parameters. Surface curvature variations can be added to the

planar sub-assemblies through the superposition of a variety

of surface transformation and mapping options. All of the

geometric problem description has been formulated in such a

way that it is particularly suitable for interface to modern

CAD systems.

It was found that for the design problem in which the

boundaries of the part are moving, the accuracy of the

finite element mesh must be continuously assessed and

updated. Strain energy density variations within an element
were used Ls a measure of error. Elements with errors

greater than a specified value in an unrefined analysis were

refined by _dding nodes, _nd a new mesh was created using

automatic triangulation. Results of the refined mnalysis

were combined with the unrefined results to compute stress

intensification factors which were used to approximate a

refined solution for intermediate designs in which

refinement did not take place.

The development of a modular computer program for the

shape optimization of three-dimensional solid components is

also discussed. The program uses NASTRAN for analysis and

CONMIN for optimization. Since design sensitivities with

respect to shape variables are not available in NASTRAN, a
module had to be written to obtain these sensitivities which

is based upon the material derivative concept applied to the

variational state equation. Parameterized surface
definitions and the finite element mesh were obtained from a

module based upon generic modelling concepts. Each program

module is a separately executable program but all modules

can be executed sequentially using Job Control Language. A

realistic design example has been provided to demonstrate

the capabilities of the program.

In general, it has been shown that it is possible to

automate the structural design process for determining the

shape of quite complicated three-dimensional components
15

through the integration of a parameterized geometric

description, automatic mesh generation, finite element

analysis, design sensitivity analysis, and optimization. The

resulting capabilities eliminate the need for tedious data

transfer inherent in existing trial and error design

approaches as well as eliminating many of the repetitive

steps involved.

REFERENCES

I. Schmit,L. A.,"Structural Synthesis by Systematic

Synthesis", Proc. 2nd Conf. on Electronic Computation ASCE, New

York, 105-122 (lg60) .

2. Vanderplaats, G.N.,"Structural Optimization- Past,

Present, and Future" AIAA Journal, Vol. 20, No. 7, 992-

1000(1982).

3. Zienkiewicz, 0. C., and Campbell, J. S., "Shape

Optimization and Sequential Linear Programming," Chap. 7 in

OPTIMUM STRUCTURAL DESIGN, edited by R. H. Gallagher and 0.

C. Zienkiewicz, John Wiley & Sons, New York(l@73).

4. H_ug, E. J., Choi, K. K., Hou, Y. M., and Yoo, Y. M. "A

Variational Method for Shape Optimal Design of Elastic

Structures, " OPTIMAL STRUCTURAL DESIGN II, (Ed. R. H.

Gallagher), Wiley, New York(f083)

5. Haftka,R.T. and Gandhi,R.V.,"Structural Shape

0ptimization-A Survey",The 26th AIAA SDM Conference,CP

No. 85-0772,617-628 (1985) .

6. Botkin, M. E.,"Shape Optimization of Plate and Shell

Structures," AIAA Journal, Vol. 20, No. 2, 268-273(1982).

7. Imam, M. H., "Three-Dimensional Shape Optimization,"

International Journal for Numerical Methods in Engineering,

Vol. 18, 8Sl-S73(I@82).

8. Ima_n ,M. H., "Minimum Weight Design of 3-D Solid

Components", Proceedings of the 2nd ASME Computers in

Engineering Conference, Vol. 3, 119-128 (1@82).

@. Bennett, J. A., and Botkin, M. E., "Structural Shape

Optimization with Geometric Problem Description and Adaptive

Mesh Refinement",AIAA Journal,Vol.23,No.3,458-464(l@85).

18

10. Braibant, V. and Fleury, C.,"Shape Optimal Design Using

B-Splines",Computer Methods in Applied Mechanics and

Engineering, Vol. 44, 247-267(1984).

11. Botkin, M. E., "An Adaptive Finite Element Technique for

Plate Structures",Technical Note, AIAA Journal, Voi.23,

No.5, 812-814(1@85).

12. Cavendish, J. C., "Automatic Triangulation of Arbitrary

Pl_nar Domains for the Finite Element Method," International

Journal for Numerical Methods in Engineering, Vol. 8, 679-

696, 1@74.

13. Frey, W.H. and Cavendish, J.C.,"Fast Planar Mesh
Generation Using the Delaunay Triangulation",Presented to

the Society for Industrial and Applied Mathematics Meeting,

Seattle, WA, July 16-20(1984).

14. Babuska, I., and Rheinbolt, W. D., "Adaptive Approaches

and Reliability Estimates in Finite Element Analysis,"

Computer Methods in Applied Mechanics and Engineering, No.

17/18, 519-540 (1979).

15. Shephard, M. S., "Finite Element Grid Optimization with
interactive Computer Graphics," Ph.D Thesis, Department of

Structural Engineering, Cornell University(1979).

16.Conner, J. J. and Will, G., "A TriamEular Flat Plate

Bending Element," M.I.T., Department of Civil Engineering,

Report TR-68-3,Cambridge, MA(1968).

IT. Botkin, M. E., and Bennett, J. A., "Shape Optimization
Of Three-Dimensional Folded Plate Structures," 1984 _ SDM

Conference, CP No. 84-0856, Palm Springs, CA., May 14-16,

(1984) .

18. Botkin,M.E. and Gressel,G.S.,"Shape Optimization of

Sheet Metal Components With Flanges",to be presented at the

6th SA_ international Vehicle Structural Mechanics

Conference,Detroit,Michigan, April 22-25(1985).

19. Yang, R. J., and Botkin, M. E., "A Modular Approach For
Three-Dimensional Shape Optimization 0f Structures",to be

presented at the 2Tth AIAA SDM Conference, San
Antonio,Texas, May 19-21(1986).

20. Yerry, M. A., and Shephard, M. S., "Automatic Three-

dimensional Mesh Generation by the Modified-octree

Technique," International Journal for Numerical Methods in

Engineering, Vol. 20,No.11, 1965-1990(1984).
17

21. Haug, E. J., Choi, K. K., Hou, J. W., and Yoo, Y. M., "A

Variational Method for Shape Optimal Design of Elastic

Structures," New Directions in Optimum Structural Design,

Ed. E. Atrek et al., Wiley, New York(1984).

22. Choi, K. K. and Haug, E. J., "Shape Design SensitiVity

Analysis of Elastic Structures," Journal of Structural

Mechanics, 11(2), 231-2B9(1983).

23. Haug, E. J., Choi, K. K., and Komkov, V., Design

Sensitivity Analysis of Structural Systems, Academic Press,

(1@85).

24. Yang, R. J., and Botkin, M. E., "The Relationship

Between the Variational Approach and the Implicit

Differentiation Approach to Shape Design Sensitivities,"

presented at the 1@85 AIAA SDM Conference, CP No. 85-0774,

Orlando, Florida, April 15-17,(1@85).

25. Yang, R. J., Choi, K. K., amd Haug, E. J., "Numerical

Considerations in Structural Component Shape Optimization,"

ASME Journal of Mechanisms, Transmissions, and Automation in

Design, paper No. 84-DET-21@(I@84).

26. Ramakrishnan, C. V. and Francavilla, A., "Structural

Shape Optimization Using Penalty Functions," Journal of

Structural Mechamics, 3(4), 403-422(I@T4-1@T5).

27. Vanderplaats, O., "CONMIN - A Fortran Program for

Constrained Function Minimization User's Mamual," NASA, TM X

B2,282(lg73).

28. Yoo, Y. M., Haug, E. J., and Choi, K. K., "Shape Optimal

Design of An Engine Connecting Rod," ASME Journal of

Mechanism, transmissions, and Automation in Design, Vol.

106, 415-48@(1@84).

2@. Yang, R. J., Choi, K. K., and Haug, E. J., "Finite
Element Computation of Structural Design Sensitivity

Analysis," Report CCAD No. 84-3, The University of Iowa,

(1@84) .

18

frame attachmentpoint

uniform thickness, t
only designvarlable

FIG. 1 Typical Part

79

®

I|

®

i Key Nodes

QBoundery Elements

FIG. 2 BoundaryElementsFor TypicalPart

2O

Key Node

a. Circular Arc

Key Node I Key Node 2

b. Straight Line Segment

a4

Key _ a3

Node 1 Key Node 2

a6

c. Double Cubic Connected by Straight Line.

FIG. 3 BoundaryDesignElements

21

®

®

eA ®

(_) - Boundary Element i

a) Initial Uniform Mesh

b) SED DIFFERENCECONTOURS

c) REFINED MESH

FIG. 4 Mesh Refinement

22

lulJe

I,--

...1
C_
U')

t ! I I

0.00 0.25_o 0.50:_o 0.75Ao

ELEMENTS ! ZE

FtG. 5 TYPICAL SOLUTION CONVERGENCE

23

°

(c) Projection

z _ Q(x,y)

Q InterpolationDescription
of Surfaces

R,'

,_,_._e z=Rcose
(b) Tran

(a) Assembly of Segments

Jb

=1

FIG. 6 THREE FORMS nF Nr_N-PLANAR STRUCTURES

24

FIG. 7 Assemblyand Rotationof Segments

25

..................... f

\

(b)Boundary Design Element Creation

t_

alAltllAAJ=*lAIAI

FIG. 8(a) Key Node Creation

25

(b)Triangular Bracket Finite Element Mesh

I

FIG. 9(a> Flanges Added to Triangular Bracket Model

27 C -

A

m

w4

gg

C
aO

q_
a_

qJ
_,o
t

m

O'J
C
im

LLO

J

"8
_E

in

C_

c_
J

LL

28

ADJLOD "[
(cost, constraints,
and adjointloads)

SENSTY
CONMIN

(designsensitivityanalysis
and optimization)

I I

MES_HGN

ifinite elementmeshand
NASTRANdatadeck)

Termination Conditi
_ration limit etc.)

No
Yes

STOP

FIG. 11 FlowChart ofModularizedSystem

All Holes Have Radius of I cm

All Dimensions in cm

E = 20.74 x 106 N/cm 2 I I

ey 1.Ox104N/cm 2 ._ QB I_.0
p -.00784 kg/cm 3 - m /.nt4_,_j_.I, _ ,NI

_eg • t lq._5.0_.,.l
Y

T
-X

FIG. 12 DIMENSIr)NS _IF EXAMPLE

3O

E

X
_J

L_

0

c-
O

im

0
..J

a_
m

el

L_

n

LJ..

I.I-

31

.C::

,.t.d

l"

m

L_

lalmb

r-
on

LL
,,lJ

C_
I,..

C::
O

Im

r-
C_

mml

LL

32

INITIAL DESIGN

FINAL DESIGN

FIG. 15 Initial and Final Designs for Example
33

0.48 "

A

o.

o.

4

_O

"e
•, R

It: m_H t_FINE_b_

CL-.O

°"e ••A

R

8 12 16

Iterations

%
%

CL - .8
I< >!

e., .e.
•o ;%

• r %

• R
it "'O, •

2O 24

FIG. 16 Design History for Example

om o_

m

iio
q_ c
m e_

IJ
1.4 ,_
I

_ wo
,wl _.l

m J

G_

m

LL

35

m

mm

mm

im

mm

m

mm

m

nu

J

m

mm

m

mp

I

t_

elmm

0

b
0

=E

E
m

Q_
om

LL

CO
I---4

m

LL

36

| |

37

II

d

UOl_lOlA ue,q,S uanualx_lq

Q

!

._o_ 0

|
"W ----

-ql

,-, ql'

0

38

N88-19124 :z3

STRUCTURES '" -POSTPROCESSING TECHNIQUES FOR 3D NON-LINEAR

Richard S. Gallagher

Hibbitt, Karlsson & Sorensen, Inc., Providence RI

ABSTRACT

This paper reviews how graphics postprocessing techniques are

currently used to examine the results of 3D non-linear analyses,

some new techniques which take advantage of recent technology,

and how these results relate to both the finite element model and

its geometric parent.

INTRODUCTION

The end result of most finite element postprocessing remains the

interpretation of a single result quantity in the form of a

single, static picture. Because there is a natural mapping

between such plots and the increment-by-increment output data

files produced in non-linear analysis, most such analyses today

essentially treat individual steps and increments of non-linear

analyses as degenerate cases for these linear techniques.

Current methods to view structural analysis results have their

origins in display of univariate data for linear analysis.

Indeed, the majority of techniques used in today's result

displays came into use in the late 1970's and early 1980's, with
incremental enhancements to take advantage of improving graphics

display technology.

From a human perspectige, areas for improvement in evaluating 3D

non-linear results include improving one's insight into time-

dependent behavior, rapidly finding critical behavior in complex

3D structures, and putting more result information into a given

picture.

CURRENT POSTPROCESSING TECHNIQUES

Techniques used today in generating analysis result plots include

the following:

i. Deformed shape plotting

These plots showing the deformation of a structure under load

generally overlay deformed and undeformed plots, with a

magnification factor applied for small displacements. Hidden line

removal or boundary plotting is commonly employed to reduce the

visual complexity of these plots.

2. Vector result plotting

Quantities which vary at points across the structure are

displayed as arrow or line vectors. This technique is one of few

which display the directionality as well as the magnitude of a

quantity. On the other hand, such plots easily become "busy" and

difficult to interpret unless applied to limited plot areas.

3. Contour line plotting
Like a topographic chart, lines are constructed on the surface of
a structure to outline transitions between result levels. Either
coded colors or alphanumeric labels are used to differentiate
levels.

4. Shaded result plotting
In the late 1970's, when few of the color graphics devices in use
could display more than 8 or 16 simultaneous colors, shaded
result plotting essentially "filled in" the areas spanning
contour levels with discrete colors.

Today, increased levels of color and firmware shading
capabilities have made it easier to produce fully shaded plots
showing the variation of a quantity in a smooth, continuous

manner. Even as such capabilities become more of standard among

display devices, plots using limited numbers of discrete colors

remain popular - often, a discrete plot gives a more rapid
overview of where critical behavior exists.

PROBLEMS IN 3D NON-LINEAR POSTPROCESSING

While techniques such as these are commonly used to look at

single-frame results in 3D non-linear results, they carry with

them a number of drawbacks as currently used. Some of these

include:

-Range limits within a frame. Non-linear results can vary across

a large range across time steps, yet each individual step may

encompass only a small part of this range.

For example, if 16 colors are used to represent the full global

range of behavior in a non-linear analysis, a given step might

only use one or two of these colors. But more common is the

opposite problem: each frame in an analysis maps its full range

of colors to the LOCAL step data, making it difficult to

correlate frame-to-frame behavior after the fact.

-Loss of time perspective. Evaluating non-linear behavior by

review of individual frames carries with it the same loss of

insight that differentiates nodal result printouts from graphic

plots.

-In 3D structures, critical results may be interior or rearward-

facing relative to a 2D plot image of its results. While it is

often true that critical results occur on exterior surfaces, this

is not always the case - and moreover, the ability to quickly

evaluate interior results increases the design complexity which

can be analyzed and interpreted within a given time frame.

Limitations such as these continue to exist in the non-linear

area due to a number of factors. First, it has only been in the

past two to three years that graphics display devices with

extended color and three dimensional display capabilities have

become common. Here, the key word is COMMON - technology for

shaded and 3D display have existed since the early days of the
computer graphics field, but only recently have they been
available from major suppliers with the kind of price�performance

relationship that would encourage common use among engineers.

Further hardware enhancements that affect this area, such as

real-time 3D display of substantial models, and computer-driven

animation hardware, still generally remain at the point where

they are the domain of the well-funded and technologically

courageous.

Second, as time progresses, we are seeing more of a "critical

mass" of users in this area to influence CAE techniques.

As CAE has increased analysis productivity in general,

there has been a trend towards increasing complexity in analysis.

This natural progression has led to a wider interest in non-

linear analysis - and often, more from design groups applying CAE

for the first time to their traditional non-linear problems as

well as existing CAE users expanding the scope of their

activities.

Finally, CAE tools add changes to design procedure as well as

increased productivity, and non-linear users have had to absorb

the same existing tools as other analysis users over the past
decade.

This latter point bears some explaining. While technology itself

can certainly proceed in parallel for different applications

areas, current acceptance of CAE makes it more possible to

implement new techniques to assist result display. From the

vantage point of a commercial software developer, the penetration

of state-of-the-art display hardware and tools among non-linear

users would not have justified advanced graphics development in

the early 1980's. Today, acceptance of current CAE tools and

equipment makes it economically feasible to develop more advanced
tools.

ENHANCEMENTS TO ADDRESS 3D NON-LINEAR PROBLEMS

There are a number of areas which can be pursued to address

improved productivity for non-linear analysis work. Some

techniques that look attractive because they can provide more

informative displays to cope with the larger data output of a

non-linear analysis are as follows:

i. Translucency

Techniques to display surfaces which can be seen through have

existed since early work by people such as Atherton(1) in 1981.

Early scan-line based techniques in this area would sort surfaces

into their requisite display pixel locations, applying a tint

function to surfaces "behind" the translucent surface at a given

pixel location. It was clearly limited to devices with a large

number of simultaneously displayable colors.

Now that local rendering of polygons have become a common feature
of graphics display devices, many devices and/or software now
generate "translucent" polygons by displaying some, but not all,
of a polygon's pixels, in a regular pattern.

Either approach makes it easier to make OPACITY an attribute of a
result's color in a shaded result display. In this manner,
interior critical results become more visible, as shown in the
slide figure.

The technique has two apparent drawbacks: multiple layers of
translucent surfaces may still obliterate the view of opaque
results unless a very fine pattern of translucency is used, and

such a technique requires display processing of interior surfaces

which would normally be discarded in opaque processing.

2. Auto-clipping

This technique is also useful in looking at interior results.

Here, hardware or software Z-clipping is used to remove surfaces

which obscure the view of critical results. This is done by

positioning the front and/or back clip plane at the first Z
location where a critical result value is detected.

The slide figure example shown was performed using hardware Z-

clipping capabilities in a Tektronix 4129 display system.

3. Animation

Two kinds of animation are clearly of interest in non-linear

analysis: progressive display of incremental results data, and

animation of a final state of behavior from rest. Slide figures

show examples of animation frames for two engineering models.

Currently, many display devices allow what could be called

"segment animation", where separate frames of animation are

loaded into separate "segments" of display memory and then cycled

through in sequence.

This technique is particularly effective on real-time 3D display

devices, as it allows the user to dynamically adjust the view of

a deforming or changing model. Unfortunately, such techniques

have crude refresh rates in many cases, and severely limited

display capacity at present in all cases.

More promising in the longer term is frame-by-frame animation,

where individual frames of animation are computed, displayed, and

then captured under software control on a medium such as film or

videotape. Frame-by-frame capture hardware does exist today with

media such as videotape and interactive read/write videodisk, but

is very expensive, disjoint and lacks any unified vendors aimed

at the engineering market.

Of further interest downstream is path of motion control for

structural models as rigid bodies, for better visualization.

Techniques exist at a practical level today, with primary issues

being acceleration, decceleration and continuity of motion across

changes in path. Reference (2) is one of a number of examples to
further codify these kinds of motion.

The technology behind engineering animation is well in hand, and
more limited by commercial hardware availability than anything
else at this point. In the author's opinion, animation will
become a major factor in CAE once low-cost frame-by-frame capture
and display equipment exists which is supported by major CAE
hardware and software.

4. Correlation of result plots with history data

Most discussion to this point has centered on model-based result

plotting. Equally important in this application area is history

data - plotted or printed output of result variables versus time
or each other.

Graphics alone do not suffice in the engineer's determination of

structural behavior. As stated in a recent issue of the

Engineers' Digest in the UK (3), "While graphics have resulted in

increased acceptance of the (FEA) technique, it is the print out

that provides the proof to the purchaser.".

In designing an interactive display package, an emphasis must be

placed on managing the duality between model and history data -

particularly in making it easy to select history data based upon

what is noticed and selected from model result plots.

5. Management of display data across steps

As mentioned earlier, the potential differences between local and

global result ranges in a non-linear analysis require an

intelligent approach to the use of color. Techniques under study

include specification of macro versus micro color levels, as well

as taking advantage of displays with larger numbers of

simultaneous colors to modify display ranges locally via the
color table.

Many of these techniques are still being evaluated at an

experimental stage at present. A key component of the above

efforts is the ability to tie directly into the database of an

existing non-linear analysis package to manipulate the large

amounts of data involved in input to these and other display
functions.

THE RELATIONSHIP OF POSTPROCESSING DATA TO GEOMETRY AND FINITE

ELEMENTS

To this point, we have primarily discussed postprocessing data as

it relates to finite element level displays. For a large

percentage of current ABAQUS users, this finite element model is

created at least in part due to operations on a geometric model.

Commonly, a solid modeling or other CAD system is integrated with

a finite element modeler for creation of the analysis data.

Upon completion of the analysis, the question remains of how -

or, in fact, whether - to relate this information to this
geometric database. Often, the geometric data is available across
design disciplines, while its finite element model is specific to
the individual analysis group.

In this era of automated adaptive analysis, meshes change - while
geometry, generally, does not. The end result of an analysis is a
state vector expressed at points which correspond to parametric
or spatial locations in this geometry. In theory, the finite
element mesh itself need not even remain as permanent data.

Some practical considerations interfere with this concept,

however. The purpose of saving analysis data is to display or

interrogate it later. Given the largely polygon-based methods of

model result display, a polygonalization of some form will

generally be required for graphics display - with preservation of

this mesh data being an ideal polygon representation in most

cases.

Furthermore, direct association of results with geometry removes

a link to re-starting or replicating the analysis data from its

final state - although, arguably, initial conditions alone

combined with the same adaptive meshing approach would allow a

reproduction to this point in theory.

Currently, most solid modeling systems which integrate FEM

capabilities treat analysis results as purely an attribute of the

mesh. While it of course relates ultimately to the geometry

itself, both display and analysis techniques in use today clearly

point to a representation where the geometry is the parent of the

mesh, and the mesh is the parent of the results, with both parts

of the linkage remaining intact.

However, at a database and user interface level, more work

clearly needs to be done to make this linkage transparent to the

user. Ideally, the user would rather not create or care about the

finite element mesh en route to the overall goal of evaluating

geometric behavior. While numerous obstacles remain on the way to

this goal, the longer term goal is to eventually make this the

level at which the user operates in postprocessing.

CONCLUSION

While graphics display techniques have done much to increase

insight into non-linear 3D structural problems, these problems

contain unique display issues which are not completely addressed

by current techniques. Approaches such as translucency, clipping,

animation and management of color have potential to increase

understanding of these phenomena further. Moreover, in time these

results must be treated to the user's view as an attribute of

the user's primary medium of exchange, the geometric model

itself.

REFERENCES

i. Atherton, P., "A Method of Interactive Visualization of CAD
Surface Models on a Color Video Display", ACM SIGGRAPH '81
Proceedings, August 1981, pp. 279-287.

2. Wilhelms, J., "Towards Automatic Motion Control", IEEE
Computer Graphics and Applications, v.7 n.4, April 1987, pp. ii-
22.

3. "Stress Analysis - Potential and Problems", Engineers' Digest
UK, Dec/Jan 1987, p. 37.

4. Gallagher, R.S., "The Computational Laboratory Concept", SAE

Technical Paper no. 850786, April 1985.

7

SLIDES:

-Review of current postprocessing techniques
-Geometry-based

-Deformed shape plots
-Vector plots
-Contour line plots
-Discrete fringe contour plots

-Continuous tonal plots

-Result-based

-XY plots

-3D data surfaces

-Some newer techniques

-Translucency

-Auto-clipping

-Animation

-Results as a

geometry

sub-level to the mesh, as a sub-level to the

8

N88-19125

GEOMETRIC VERSUS FINITE ELEMENT MODELING

CURRENT AND FUTURE TRENDS AT NORTHROP

Shiv K. Bajaj

Systems Technical Specialist

NCASA Development

Northrop Aircraft Division

Hawthrone, CA 90250

/

ABSTRACT

Engineering Automation at Northrop encompasses the various design

and analytical phases of air vehicle development. Design systems

addresses automation of engineering/tooling design and computer-

aided manufacturing processes. The analysis systems automate

aeroelastic modeling and postprocessing analysis results. These

systems interface with aircraft loft and geometric entities thru

localized transfer techniques. However, total integration effort

based on a geometric database nucleus with peripheral design,

analytical and manufacturing systems is well underway. An outline

of the present and future trends is presented to help channel the

RPI effort in this direction.

i

i

<o

m

m

o

I

c

Im

Bm

I.L! n"

m

z z

i

_C
0
z

i

u

Ol

OI
Zl

m

z
0
0
0
k-

in

1--
00
0

n.-
0
z

m

< O0

m r-
0

"_. _ >'

0

O0 m

m

1.1.1
--I

o

I--..
mE

II<

DRIGINAL PAGE IS

ORIGINAL PAGE I8
t'_L" Dr3(_r9 f-,TT__ ! I'PV

ORIGINAL PAGE IS

OF POOR QUALITY

ORIGINAL PAGEIS
OF POORQUALITY

IJ..

L_

0

J
+

5

L
)

p

)
1

)

i
i

.,.'_

+[L_

_E

• i'_O

m
.m

m

r-

X
U.I

c-

C

Z<

_J
o

LLI

r_

r_

I

r_

m

IIII

c_
a

In.,
I-

z_

¢_o

I"
ob

.__

m

- _ w _

..C • • • •

,...
Z_c

<+

,4,,,I

_3
x._

m

"0

..++
z _ '_ o

_ ._ <

l.U
l--
Z

c--

I,,4,,--

0
c

.m

t,.l'3

0
m

0

r_
m

Q.

0
Q.

,,.._

m+(+
In..,
E" m
o_
I<

IDEALIZED FINITE ELEMENT MODELS

Mark S. Shephard

Rensselaer Polytechnic Institute

Concerned with the evolution from the Augmented Model,
to the Idealized Model, to the Finite Element Model.

Augmented Model- Original geometric model plus
analysis attributes.

Idealized Model - The geometric representation plus

analysis attributes that is discretized into the finite ele-
ment model.

Finite Element Model - The discrete model sent to the

finite element analysis program.

Differences Between Augmented Model and Idealized
Model

1. Geometric simplification - ignoring specific

geometric features such as small holes and fillets.
2. Geometric Enrichment- including geometry in the

numerical analysis model not originally repre-
sented in the augmented model (air around a
model and zero thickness interfaces, etc).

3. Geometric Dimension Reduction - Replacing por-
tions of a model with reduced dimension entities

with the eliminated dimensions represented by sec-

tion properties tied to the reduced dimension
elements.

A) original geometry

B) simplified geometry

C) finite element model

FIGURE 3. GEOMETRIC SIMPLIFICATION

ORIGINAL PAGE

OF POOR QU_

CH.47D
STATIC MODELING

NASTRAN STRUCTURAL MODEL

NASTRAN MODEL
i

1,883 STRUCTURAL NODES
5,758 STRUCTURAL ELEMENTS

NO. OF
ELEM ENTS

398 CBAR --

76 CELAS2 --

3,253 CONROD --

1,707 CSHEAR --

156 CTRMEM --

156 CQUAD1 --

12 CTRIA1 --

TYPE
ii

BEAM

SPRING

AXIAL

QUADRILATERAL
SHEAR

TRIANGULAR
MEMBRANE

QUADRILATERAL
SHELL '

TRIANGULAR
SHELL

FIGURE 5. FINITE ELEMENT MODEL OF AIRFRAME STRUCTURE

COMMON APPROACHES TO DEVELOPING
IDEALIZED MODELS

DIRECTLY DEFINE IDEALIZED MODEL

The majority of geometric representations used in finite
element modeling are defined solely for that purpose. That

is the augmented model and idealized model are the
same. This is an inefficient approach and does not make
the best use of available technology.

MODIFY AUGMENTED MODEL TO BECOME
IDEALIZED MODEL

Carry out modeling operations to alter the augmented

model evolving it into the idealized model.

TREAT IDEALIZATION INFORMATION AS NUMERICAL

MODELING ATTRIBUTES TIED TO THE AUGMENTED
MODEL

Indicate what entities are to be altered and have the ap-

propriate information automatically tied to entities in the
augmented model as attribute information. The discretiza-
tion procedures would then be responsible for insuring that
the finite element model reflects the idealizations.

MODIFY AUGMENTED MODEL TO
BECOME IDEALIZED MODEL

Advantages -

It is reasonably straight forward to see how this ap-

proach would operate. The user would have a first
hand understanding of the modifications.

Disadvantages -

The user is required to perform geometric modeling
modifications manually. Could not support use of

adaptive idealization procedures.

Technical Issues-

Data Structures - should there be two identical struc-

tures for the augmented and idealized model?
Recovery - how does one recover portion of a model if
the idealization process is changed?

TREAT IDEALIZATION INFORMATION AS

NUMERICAL MODELING ATTRIBUTES

TIED TO THE AUGMENTED MODEL

Advantages -

Would support the evolution to automated, adaptive

techniques for developing idealized models thus poten-
tially being more efficient and robust. Would reduce
total amount of storage needed making it easy to
track the modeling assumptions used.

Disadvantages -

Do not know how to handle such an approach fully
enough at this time.

Technical Issues-

Idealization procedures - do not know all the idealiza-

tion procedures desired well enough to try to define
geometric operators to support them.
Data structures - do not fully know how to house all
the possible idealization attributes in the augmented
model.

Discretization - the discretization process would

become more than just mesh generation in this case,
must have procedures to account for model
differences automatically.

9

TECHNICAL AREAS IMPORTANT TO

THE AUTOMATION OF

IDEALIZED MODEL GENERATION

Attribute Data Structure of Augmented Model

Geometric Operators to Support the Generation of the
Idealized Model from the Augmented Model

Feature Recognition Techniques

Knowledge-Based Modeling Procedures

Adaptive Analysis Techniques for Determining Idealizations

I

q

A KNOWLEDGE-BASED APPROACH FOR
DEVELOPING IDEALIZED MODELS

I

IGEOMETRYEXTRACTORI

Geometric information

ICLASSIFIERI
Attributed_geometry

I INFERENCEENGINEI

Analysis model c_ntrol parameters

i' .E. MODEL GENERATION ROUTINES i

i

I
R_es

Finite element analysis input file

Generic finite _element model

_ ,,
I F.E.A. TRA SLATORS I

A COMBINED KNOWLEDGE-BASED AND

ADAPTIVE TECHNIQUE FOR
ONE FORM OF GEOMETRIC SIMPLIFICATION:

IGNORING CIRCULAR HOLES
IN 2-D STRESS ANALYSIS

Approach -

, Determine candidate holes - those that are less

that some percent of the net section through object

at that location, and not too close to an edge.

o Analyze object ignoring all candidate holes. This

gives basic flow of loads to supports.

. Apply correction factors to the stress at the loca-
tions of the ignored holes based on 'standard ana-

lytic' formulae.

° Include only those holes with estimated values

higher than some fraction of the limiting stress.

-nr-

8

_'U.

--3.5--

_--3--4

8

3

T

Figure i0. Geometry for cam example.

. ,,I ".., _ I .'* ." : :
.*" o ". r " - : ".

. ., " ,+--......_.-.x,. /:..,
"" 4 " " _'" "" "- _ _" !

........... _. _ ._'_____,_._ ! ..,.."
• • *". • _" 4r , 0,_ r

..... lJ. %.":" ..._...", ,

i ,.., -'.... -.... .,...:"..".....- -.-' /
t' "'"......."'.... "'" /

"-.m.o,,.,._.., o'''' • .. p........."

1 /
P

:UqPl|Jlt.t
I

COIIIOUII
l,.llVII,!I

¢O*ITOUII
IN¢IIE_NT

2.44t'
FIIOI4

•7 • OSE-OO

141O14
V,I.I.Ul

I • l,ll Ol

I,,OW
yA&*ol

•;'. ell-o i

l I,.411111

l l.,llli Ii

I 1.1411 IIi

4 O, quill' •

l 4.MIM U

e e.484E U

IP 1,,41611111

l ,,.I .IIII'II

Ok!GINAL PAGE I8

OF POOR QUALI'I_

Figure ii. Stress contours with holes ignored.

)

O_!G_NAL PAO_ lll

.........'" ..,..i_, J.":_::'"..: ""

i "--.-.:;;-k'_";;:".'._._/

/f--_' _- 1.5 a- S

, " ges t - 14 aest, ,, 30

Omax - 5 Omax = 22.0

_URRImIt. Y
I

¢OWYOUll
LEVELS

COIqYOUIt
I NCIIEI_IIY
•3..2[O0

FltOlq
,I .07[O0

NION
VALUl

a. 201[OI

LOW
WJU.Ul

.I .ITI[O0

l I.I

I I_

I l,llI Im

• l*llI I

| o.ak_

!o 4.aNl' I
i
iP o.qoql'

I *o.mm I

J

Figure 12. Stress contours with holes included.

)

BUILDING FINITE ELEMENT APPLICATIONS

USING NON-MANIFOLD BOUNDARY OPERATORS

An Approach to a dynamic interface that is a level above
those discussed above. Application programs would
employ both the modeling functionalities and data struc-
tures of the geometric modeling system without knowing
the details of either.

This is consistent with object-based procedures that are

becoming popular.

A start to such a capability employing the Radial-Edge
non-manifold data structure is proposed by Kevin J. Weiler

in his Ph.D. thesis for the process of defining geometric
models.

A complete set of Non-Manifold Boundary Operators
needed to support this approach.

q

I

BUILDING FINITE ELEMENT APPLICATIONS
USING NON-MANIFOLD BOUNDARY OPERATORS

Classes of Operators Needed

Obtaining Objects Based on Type - ability to find ob-

jects of given types.

Determining Object Adjacencies - find how an object is

related to others of a given type.

Geometric Interrogations - determine a geometric prop-

erty of an object.

Attribute Interrogations - determine the attributes of an

object.

Attribute Assignment - tie attribute to objects.

Geometric Modification - carry out a geometric model-

ing operation based on a given set of objects.

BUILDING FINITE ELEMENT APPLICATIONS

USING NON-MANIFOLD BOUNDARY OPERATORS

Typical Objects -

Topological entities

Geometric entities

Attributes

The topological entities represent the 'glue' needed to hold
such a system together, however this can be transparent
to the applications built on it.

The approach is in a very early phase of investigation. It
is not clear if it will work.

I

i

