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THEORETICAL STUDIES OF SOLAR LASERS AND CONVERTERS

ABSTRACT.

The previously constructed one dimensional model for the simulated operation of an
jodine laser assumed that the perflouroalkyl iodide gas n — C3F7 [ was incompressible.
The present study removes this snmphfymg assumption and considers n — C3Fyf as a
compressible fluid.

Introduction.

The iodine laser being modeled uses the gas n — C3 Fy] flowing in a cylindrical tube.
As a first approximation to the chemical kinetics and flow it was assumed that the gas
was incompressible and operating at a constant temperature. To remove these simplifying
assumptions we consider the effects of fluid density variation as a function of both pressure
and temperature in the flow. In particular we have added to our previous model:

(i) An equation of state.
We azsume the equation of state of an ideal gas and write

P =qRT (1)

where P is the gas pressure [ Pa}, 5 is the gas density [Kg/m?], T is the temperature [° K],
and R = R*/206[J/Kg¢° K|, and R* is the gas constant, R* = 8.317 [J/mole °K]. For
n — C3 Fy I we use the value of 296 K g/mole to convert R* to R.

(ii) Continuity equation. ,
The continuity equation expressing the conservation of mass flow can be represented

?% +div(nV) =0 | (2)

where 1 is the fluid density [Kg/m®), and V is the fluid velocity [m/s]. For steady state
conditions and a flow in the a.xxal direction we let V = wk and reduce the continuity
equation to the form

~

9

2 () =0 ()
An integration of this equation gives |
nw = ¢ S )

where ¢; i8 a constant of integration.



(i) Momentum equation.
The momentum equation for a control volume having a mass ndr, where dr is an

element of volume, is given by
M= f / / Vydr (5)

From Newton’s second law we have

| f_DM D[f Pndr - ()
where D/ Dt is the material derivatrve We have

DR _ (17 (47-aa)+  [[[ i 0

where d7 is an element of surface area. The surface integral term in (7) represents the efflux
of momentum through the control volume and the volume integral term in (7) represents
the change in momentum inside the control volame. Using the Gauss—divergence theorem
we can change the surface integral to a volume integral and write

//j(ﬂd&):f/f [v-a7¥) ar (8)

Then the momentum équation becomes .

—-—Ai = // div(nVV) dr + ‘—%— ff (nwk) dr (9)
where V'V is the dya.dlc w’kk for V = wk, a.nd
V¥V = 32 (qw’) k (10)

We also make the substitution F = If f fdr where f is the average force per unit
volume
as this allows the momentum equation to be written in the form

f=f//fdf=%tM:=[/[ [g?(qw)lz-i—%(nw’)i] dr | (11)

Neglecting viscosity and using f = —VP as the average force per unit volume which
is due to the fluid pressure P , we have

9P _ 3
S22 = 2 )+ () (12)
f‘roml; equation (4) we use gw = ¢; and examine the steady state form of the equation (12)
© obtain 8P w
- 5; =0y a—z (13)
Integrating this equation gives
Ptrcow=cy (14)

where ¢; i a constant of integration.



(iv) Energy Equation. '
In terms of the specific enthalpy A per unit mass, the energy equation for the fluid

flow is
"= Dr T kV*T + ¢ | (15)
where P is the pressure, T is the temperature, x is the thermal conductivity and ¢ = ¢(z)
is the radiation heat flux. In one dimension this can be written '
dh 3h AdP 4P &T
qm+qw5=-{;{-+wa+x-&?—+q (16)
The specific enthalpy A can be expressed in terms of the specific heat at constant
pressure and .
Using the relation _
Cy-C:=R* < . (18)
where R* = 8.317 [J/mole — K] is the universal gas constant.
The specific heat at constant pressure C; can be expressed in terms of the specific
heat at constant volume C;. We use the numenca.l data

Temperature °K  C;, for CiFyI[J/mole®K]

208.15 146
400.00 | 169 (19)
500.00 186
and assume that C; can be obtained from the relation
= G,(T) = ay exp(fs (T — 300)),  298.15 < T < 500 (20)

By applying a least square’s fit of the data with the exponential curve in (20) we obtain
the best fit parameter values of

: a, = 147.23 Be = 0.0012 (21)
This gives the steady siate energy equation
dP &T
qw[C,(T) + R} d Swo + Ko +¢(2) (22)

where C,(T) i8 the correct dimensional form of C;.
Having neglected the viscosity terms, we also neglect the effect of thermal conductivity
and integrate the equation

¢1{Co(T) + R|dT + weydw — g(2)dz =0 (23)

to obtain c _
& j C,(T)T + ¢, R(T - 300) + 24 - Q(z) = ¢4 (24)

where '

Q) = / o(2) dz

and ¢4 is a constant of integration.



Implementation of Model.

In order to compare and verify the computer model with laboratory data it is assumed
that we are given the boundary conditions as z = 0 and 2 = L. We use the subscript 0 to
denote values at 2 = 0 and subscript L to denote the values at 2 = L. By setting 2 = 0 we

obtain:
from(4) ¢ =nowo

from(14) ¢ =Py + c1wp
from (24) we have

- [R(To—soo)-y[c,m@]ﬁ_l 2

Assuming that ¢ = ¢(2) can be represented by a constant, at z = L we obtain from the
equation (24) the relation

Qo = 1 {c; [R(TL 300) +/C,(T) dT] + —wL c4}

Knowing the valnes of the above constants the temperature, density, pressure and flow
rate as a function of distance z can be calculated as follows:
From the equation of state we can write

P =9RT

and multiplication by w gives
Pw = qwRT = &\ RT

Using the relation (14) in the above equation gives
(63 — ciw)w = 1 RT
or

W — c;w’
| T=""g— (25)
We also use the scale factors
SF, = % mole/Kg and  SFp = lﬂl%ifﬂsl (N/m?)/Torr  (26)
where applicable to insure all equations balance dimensionally.
For
3, 0<2z<z2
» Q=1 ‘ (27)

32, 21<z<k
We may then solve for w = w(z) such that the energy equation

F(w) =<, [ Cu(T)dT + ¢, B(T ~ 300) + 302 ~ Q(2) — g =0 (28)

is satisfied where T is determined by the relation (25). Smce this is a nonlinear equation,
the method of interval halving is used. The value of w is changed until F{w) changes sign
and then interval halving is used until the desired solution accurracy is obtained. The
temperature T is then determined from (25), the density is obtained from the relation (4)
and the pressure is obtained from the relation (1). We then have the flow rate, temperature,
pressure and density as functions of distance z.
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Reaction Rates.
The reaction rate coefficients

kl; h’ k31 k431 ks, kﬁ) k?; ka,
€1, 3,3, C4,$5,Cs,

@1,@2,Q3,Q4,Qs

which occur in the chemical kinetics associated with the iodine laser can be assumed
to vary with temperature. Various assumptions can be made concerning the effects of
temperature on these rate coefficients. Various Arrenius type temperature variation effects
can be modeled using one or more of the following expressions:

K =koef(T-To)
K =koe?/T
K =koT-¥
K =kokT—NefIT
K =koT ¥ F/IT"

Since the coefficients in these expressions are not known, as a first approximation to
temperature on the rate coefficients, we will keep most of the rate coefficients constant.

Incompressible low model.

The incompressible flow model was presented in the previous progrsss report reference
2). Nominal results from that model are illustrated in the figures 1 through 5 for various
values of the flow rate w. Values of w used in these graphs are:

w = 750., 1750., 2750., 5500. cm/s
while other parameters were held constant. These other parameters were:

P =235 Torr,
R, = .95848 reflectivity at left end of the tube,
R, = .81634 reflectivity at right end of the tube,
concentration = 1267 (peak conceniration in solar constants.)

Both the incompressible and compressible flow models are being modified to include
temperature effects. Also an analysis by R.C. Costen of the pumping photon density is
being studied and incorporated into the model. This analysis is given in the Appendix A
along with figures of the results therein.
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Figure 2. Log (I,) vs axial distance.
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Figure 3. Log (I*) vs axial distance.
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Appendix A

Pumping Photon Density within Absorbing Lasant Gas
by R.C. Costen
Assumptions: There is a 2-D cylindrical geometry which is treated as a black body
cavity. .
A. Consider the relation of 2-D surface brightness By(W/m3) to the 2-D surface
flux Fy(W /m?). Consider a one meter depth of a cylindrical cavity of arbitrary shape as
illustrated in the figure. A.1

Bz, .,;"
.-~ KO

normal 4o surface

£

Figure A.1 Cylindrical geometry

We have 5
F3=[ Bacosddf = 2B,
ot 3

w pei' m of perimeter entering the cavity per m of depth.
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B. Determination of the pumping photon density at an interior point resulting from
a length dL of perimeter.

A .
| 41

Figure A.2 Density at an interior point
- The power in df due to a length dL is given by -
BycosddL do

W in d4 per unit depth. This power (J/s) is due to the photons movmg at the velocity of
light ¢ (m/s) The energy density in df per m of depth is

—23 cosfdLdf  (J/m)
Using dé = “-;,9 and noting that the photon energy density dp; due to dL is given by
dpa = %cosﬂdL - (I/m?)
per m depth. For an absorbing gas we have
32

dp; = exp(——) cosfdlL  (J/m?)

per m depth and where §, (m) is the absorption length.
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C. 2-D Circalar cylinder with absorbing gas and uniform incident flux Fj.

Figure A.3 Cylindrical geometry
At the point P we have due to dZ that
_B . 2
dp= Zor® cosfdL (J/m*)

per m of depth. Using
cosf

— dL =dy
we can write ¥
dp 5. ¢ dy
or

2 : 4 '
b= [Tty [etav  @m)
2¢ Jo ¢ Jo

per m of depth. Using the law of cosines

r=—r1cos¢+\/r3—rfsin2¢ -

x 1 .
[ oo (sencmy— -t ay
Changing r; to r the pumping photon density is given by:

we have
= &

P=

Ff* 1 »
plrire,6) = -;‘3[) exp (f(rl cos ¢ — \/rd — r¥ain? ¢)) dy
in J/m? per m of depth.

14



o

Figure A.4 Geometry

D. Average pumping photon density
The average pumping photon density is given by

< plro,8) >= H/ dr 2xrp(rire,8)
Lettmg 8 =r/6 where 59 = ro/b' is the laser tube radius per absorption length, we have

ollro,8) = 2 [” explocony — /o~ sin"9) g

= p(8, 90)
and

< plro,8)> = —, [ 5) 25 (5) oloys0)
= ;gj; ds ap(s, 30)

=< p(0) >
We define and compute

P(s,8) = %[exp(sww— 8 — s%sin” ) dy¢

with g poo
<lm)>= 5 [, ds s¢'(8, 50)

which i8 the average pumping photon density.
Then
(8 50) = =—24'(s, %)

and "
< p(s0) > = 2”& / ds sp'(s, %0)

”F’ < Hso) >

15



Note:

. . " xF
Jim (s, 8) = 1 Jim p(e, s) = '—6-3
i = " ﬂ'F
dm, < #(s0) > =1 Jim < p(so) >= =2

and at the center s = 0 we have
l x
7'(0,30) = _/ e~ dyp = g0
% Jo

and on the wall s = sy we have

p'(80,80)=;-[:e°d¢=1

16
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Figure A.5 <p'> vs 54,
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