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SUMMARY 

A unidirectional fiberglass epoxy composite specimen is modelled 

as a homogeneous transversely isotropic continuum plate-like medium 

Acousto-ultrasonic non-contact input-output characterization by trac

ing the P waves in the continuum is studied theoretically with a 

transmitting and a receiving transducer located on the same face of 

the plate The isotropic plane of the equivalent continuum plate 

model lies in the midplane of the plate and is parallel to the top and 

the bottom faces of the plate. 

The single reflection problem for an incident P wave at a stress

free plane boundary in a semi-infinite transversely isotropic medium 

whose isotropic plane is parallel to the plane boundary is analyzed 

first. It is found that an obliquely incident P wave results in a 

reflected P wave and a reflected SV wave. One quadrant of each of two 

sheets of the slowness surfaces of the reflected P and SV waves is 

plotted The angle of reflection of the reflected P wave is equal to 

the angle of incidence of the incident P wave. However, the angle of 

reflection of the reflected SV wave is smaller than the angle of inci

dent of the incident P wave. Consequently, no critical angle phenome

non occurs. The amplitude ratios of the reflected P and SV waves to 

the incident P wave as a function of the angle of incidence are 

plotted. The balance in energy flux normal to the plane boundary ~s 



checked. 

The delay time for propagation between the transmitting and the 

receiving transducers is computed as if the P waves were propagating 

in an infinite half space. It is found that the directional depen

dence of the phase velocity of the P waves propagating in the trans

versely isotropic medium has a significant effect on the delay time, 

as opposed to the directional independence of the phase velocity of 

the P waves propagating in an isotropic medium. 

The displacements associated with the P waves in the plate and 

which may be detected by the non-contact receiving transducer are 

approximated by an asymptotic solution for an infinite transversely 

isotropic medium subjected to a harmonic point load. The polar dia

grams for the directivity functions are plotted at frequencies of 

o 75, 1 50 and 2.25 MHz. 

The study enhances the quantitative understanding of acousto

ultrasonic nondestructive evaluation (NDE) parameters such as the 

stress wave factor (SWF) and wave propagation in fiber reinforced com

posites or any other materials which can be modelled as transversely 

isotropic media 
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INTRODUCTION 

Fiber reinforced composite materials are attractive materials for 

aerospace applications because of their high specific mechanical prop

erties. It has been shown that many composites, such as fiberglass 

epoxy composites or fiber reinforced ceramics, as shown in Fig 1, may 

be modelled as homogeneous transversely isotropic continua [1] In 

this work, acousto-ultrasonic (AU) non-contact input-output character

ization of a homogeneous transversely isotropic elastic plate is 

investigated by tracing P waves. 

First, the single reflection problem of an incident P wave at a 

stress-free plane boundary in a semi-infinite transversely isotrop~c 

medium, whose isotropic plane is parallel to the plane boundary is 

considered. At such boundaries, the conditions for the existence of 

wave mode conversion, the angle of reflection of the reflected wave, 

and the amplitude ratios of the reflected wave to the incident wave 

are derived. 

Second, the P wave input-output relations are derived when mul

tiple reflections occur at the top and bottom faces of the plate. The 

delay time between input and output versus the distance separating the 

transmitting and receiving transducers is analyzed. The directivity 

functions of the stresses associated with the P waves are computed 
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And, the output displacement at the non-contact receiving transducer 

is approximated by an asymptotic solution. 

This investigation should enhance the quantitative understanding 

of AU NDE parameter such as the stress wave factor. It also provides 

the potential for assisting in the development of better NDE schemes 

utilizing the SWF as well as other AU parameters. 
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SINGLE REFLECTION PROBLEM AT STRESS-FREE PLANE BOUNDARY IN SEMI

INFINITE TRANSVERSELY ISOTROPIC MEDIUM WHOSE ISOTROPIC PLANE IS PARAL

LEL TO PLANE BOUNDARY FOR INCIDENT P WAVE 

1. Reflected P and SV Waves 

For a homogeneous linearly elastic transversely isotropic contin

uum, the number of independent elastic constants is five [1]. Define a 

coordinate system (x, y, z) for a semi-infinite transversely isotropiC 

medium whose isotropic plane is parallel to the plane boundary where 

the reflection occurs as follows: the plane boundary contains the x 

and y axes, and the z axis is the zonal axis of the medium, which is 

in the direction parallel to the fiber direction shown in Fig. 1. See 

Fig. 2. The generalized Hooke's law is written, relative to the (x, 

y, z) coordinate system, as [1] 

TXX - C1lu ,x + Cl2v ,y + C13w,z 

TIT Cl2u ,x + Cllv,y + C13w,z 

TZZ C13u ,x + C13v ,y + C33w,z (1) 

TXZ C44(u,z + w,x) 

Tyz C44(v,z + w,y) 

Txy C66(u,y + v,x) 

where Trs (r, s - x, y and z) are the normal (r - s) and shear (r ~ s) 
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stresses with respect to the coordinate system (x, y, z); u, v and w 

are the displacement components of a point in the medium along the x, 

y and z axes, respectively; "," denotes partial differentiation with 

respect to the variable which follows; and Cll' C12, C13' C33 and C44 

are the five independent elastic constants where C66 = 1/2(Cll - C12) 

Let a plane progressive wave be represented as [2] 

(u, v, w) - A (Px ' Py , Pz ) exp{iw(Sxx + Syy + Szz - t)} (2) 

where Sx' Sy and Sz are the components of the slowness vector, which 

is in the same direction as the normal to the wavefront and whose mag

nitude is equal to the reciprocal of the magnitude of the phase velo

city [1], along the x,y and z axes, respectively, Px ' Py and Pz are 

the components of a unit vector of particle displacement along the x, 

y and z axes, respectively; A is the amplitude of particle displace

ment; t denotes time and w denotes radian frequency. 

It follows from Eqs. (1) and (2) that the stresses can be repre-

sented as 

TXX - iwA[CllSxPx + C12SyPy + C13 SzPz]exp{iw(Sxx + Syy + Szz - t)} 

Tyy iwA[C12SxPx + CllSyPy + C13SzPz]exp{iw(Sxx + Syy + Szz - t)} 

TZZ iwA[C13SxPx + C13SyPy + C33SzPz]exp{iw(Sxx + Syy + Szz - t) } 

TXZ iwA[C44SzPx + C44SxPz]exp{iw(Sxx + Syy + Szz - t) } (3) 

Tyz iwA[C44SzPy + C44SyPz ]exp{iw(Sxx + Syy + Szz - t)} 

Txy ~ iwA[C66SyPx + C66SxPy]exp{iw(Sxx + Syy + Szz - t)} 
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The stress boundary conditions on the stress-free plane boundary 

require that [2] 

Txz(I) + TXZ(R) - 0 

T (I) + T (R) - 0 yz yz 

T (I) + T (R) - 0 zz zz 

(4) 

where Trz(I) (r-x, y and z) represents stresses on the plane boundary 

associated with the incident P wave, and Trz(R) (r - x, y and z) 

represents stresses on the plane boundary associated with the 

reflected waves. 

In order to satisfy Eq. (4), it is required that the frequency, 

w, of the reflected waves be equal to that of the incident wave and 

that [2] 

s (I) 
x 

s (I) y 

_ s (R) 
x 

s (R) 
y 

(5) 

As a result of Eqs. (5), the slowness vectors of the incident 

and reflected waves lie in a plane called the plane of incidence. 

This analysis can be simplified by assuming that the plane of inci-

dence is the x - 0 plane; that is, the slowness vectors of the inCl-

dent and reflected waves are in the x - 0 plane, as shown in Fig 2 
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Then it follows from Eqs. (5) that 

(6) 

It has been shown [3] that P waves or SV waves travelling in a 

plane containing the zonal axis, z axis, of a transversely isotropic 

medium are quasi-longitudinal and quasi-transverse, respectively; that 

is, the components of the unit vector of particle displacement for 

either the P or SV waves along both the y and z axes, Py and P
z 

do 

not vanish; whereas the components along the x axis, P
X

' do vanish 

Therefore, it follows from Eqs. (3) and (6) that stresses associated 

with P and SV waves are 

Txy TXZ - ° 
TXX ~ ° ; Tyy ~ ° (7) 

It has also been shown that an SH wave travelling in a plane 

containing the zonal axis, z axis, of a transversely isotropic medium 

possesses a transverse displacement only; that is, for the coordinates 

in Fig. 2 (Px ' Py ' Pz ) - (1,0,0) [3] Therefore, it follows from 

Eqs. (3) and (6) that the stresses associated with SH waves are 

TXX Tyy - TZZ - Tyz - ° 
TXZ ~ 0; Txy ~ 0. 
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Assume that a P wave is incident on the plane boundary It fol-

lows from Eqs. (4) and (7) that 

r (I) ~ O' r (I) ~ 0 yz 'zz 

(9) 

• (I) _ 0 
'xz . 

As a result of Eq.(9), it is immediately known from Eq (4) 

that r (R) is equal to zero. This means that no SH wave will be xz 

reflected back into the medium because a reflected wave of the SH 

type would result in nonzero values of the stress r xz ' So, Eqs. (4) 

reduce to: 

r (I) + r (R) 0 yz yz 

r (I) + r (R) - o. (10) zz zz 

Since either a reflected P wave or a reflected SV wave results 

in nonzero values of the stresses, ryz(R) and rzz(R), it is therefore 

concluded from Eqs. (7) and (10) that both a P wave and an SV wave may 

be reflected back into the medium. 

2. Slowness Surface for P and SV Waves 

The equations of motion relative to the coordinate system 

(x,y,z) 

9 



are [1) 

TXX,X + TXY,y + TXZ,Z - pU,tt 

Txy,X + Tyy,y + TyZ,Z - pv,tt (11) 

TXZ,X + TyZ,y + TZZ,Z - pw,tt 

where the body forces are identically zero for the homogeneous solu-

tion. 

It follows from Eqs (1), (2) and (11) that the following equa-

tions of motion are obtained: 

[CllSx
2 + C66 Sy2 + C44Sz2 - pjPx + (C12 + C66)SxSyPy 

+ (C13 + C44)SxSyPz = 0 

(C12 + C66)SxSyPx + [C66Sx2 + CllSy
2 + C44Sz2 - p)Py (12) 

+ (C13 + C44)SySzPz - 0 

(C13 + C44)SxSyPx + (C13 + C44)SySzPy + [C44(Sx2 + Sy2) 

+ C33Sz2 -p)Pz - 0 

The condition for the existence of the plane wave solution is 

expressed by setting the determinant of the matrix of the coefficients 

of Px ' Py and Pz in Eq. (12) equal to zero [1): 
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[C"Sx2 + C66Sy
2 + C44SZ

2 .p] 

(C'2 + C66)SxSy 

(C'2 + C66)SxSy 
2 2 2 [C66Sx + C"Sy + C44Sz .p] 

(C'3 + C44)SxSz 

(C'3 + C44)SySz 

(C'3 + C44 )SxSz (CU + C44 )SySz 2 2 2 [C44(Sx + Sy ) + C33Sz .p] 

(13) 

By expanding Eq. (13), three sheets of slowness surface are 

obtained The slowness surface for an P wave is given in [3] as 

CU+C44 2 2 C44+C33 2 
( ) (Sx+Sy) + ~ ) Sz 

2 2 
2 2 

+ 1/2 ([(Cll-C44)(Sx+Sy) 

2 
+ (C33 -C44)Sz]2 

(14) 

Similarly, the slowness surface for an SV wave is given in [3] 

as 

(15) 
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In the present study, the slowness vectors of the incident P 

wave and the reflected P and SV waves are confined in the y-z plane, 

as shown in Fig. 2. Take numerical values of elastic constants and 

density given in [1] for the unidirectional fiberglass epoxy composite 

as follows: Cll - 10.581 x 109 N/m2, C13 - 4.679 x 109 N/m2, Cj3 = 

40 741 x 109 N/m2, C44 - 4.422 x 109 N/m2, and p - 1850 kg/m3 . One 

quadrant of the intersection of the slowness surface of a P wave 

travelling in the unidirectional fiberglass epoxy composite with the 

plane x - 0 and one quadrant of the intersection of the slowness sur-

face of an SV wave travelling in the unidirectional fiberglass epoxy 

composite with the plane x - 0 are obtained by substituting the numer-

ical values of the elastic constants and the density given above into 

Eqs. (14) and (15), respectively, and are shown in Fig. 3. 

3 Angle of Reflection 

It follows from Eqs. (5) and (6) that the y-component of the 

slowness vector of an incident P wave is equal to the y-component of 

the reflected P wave as well as the y-component of the reflected SV 

wave. Accordingly, the relation between the y-component of the slow-

ness vector of an incident P wave and the y-components of the slowness 

vectors of the reflected P and SV waves is given as 

S (I) _ S (P) - S (SV) - b 
y Y Y (16) 
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where Sy(I) represents the y-component of the slowness vector of an 

incident P wave; Sy(P) represents the y-component of the slowness 

vectors of the reflected P wave; Sy(SV) represents the y-component of 

the slowness vector of the reflected SV waves; and b is a common con-

stant 

It follows from Eqs. (6), (14) and (16) that the relation 

between the z-component of the slowness vector of an incident P wave 

and that of the reflected P wave is 

S (I) - -S (P) z z (17) 

The minus sign is due to the fact that the slowness vector of an 

incident P wave points out of the medium, whereas the slowness vector 

of the reflected P wave points into the medium, as shown in Fig. 2 

Consequently, the value of the z-component of the slowness vector of 

an incident P wave S (I) is negative, whereas that of the reflected , z ' 

P wave, Sz(P), is positive. 

The angle of reflection is defined as the angle between the 

slowness vector of a reflected wave, either type P or SV, and the 

normal to the plane boundary where the reflection occurs. Similarly, 

the angle of incidence is defined as the angle between the slowness 

vector of an incident P wave and the normal to the plane boundary, as 
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shown in Fig. 2. Therefore, the angle of reflection of a reflected P 

wave Op is 

(18) 

and the angle of incidence of an incident P wave 81 is 

(19) 

It follows from Eqs. (16), (17), (18) and (19) that the angle 

of incidence of an incident P wave is equal to the angle of reflect~on 

of the reflected P wave, as shown in Fig. 2. 

However, the angle of reflection of the reflected SV wave is not 

equal to the angle of incidence of the incident P wave. For a given 

value of b in Eq. (16), two values of the z-component of the slowness 

vector, Sz' of equal magnitude but opposite sign of an SV wave travel

ling in the plane x - 0 in the transversely isotropic medium can be 

obtained from the slowness surface for the SV wave from Eqs (6) and 

(15). The positive z-component of the slowness vector corresponds to 

the reflected SV wave and is denoted as Sz(SV). Similarly, for a 

given value of b, there exists a positive z-component of the slowness 

vector, Sz(P), corresponding to the reflected P wave. Accordingly, 

for any given value of b in Eq. (16), there exist a positive z-compo-
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nent of the slowness vector for the reflected P wave, Sz(P), and a 

positive z-component of the slowness vector for the reflected SV wave, 

Sz(SV). In fact, the z-components of the slowness vectors of the 

reflected P and SV waves, sz(P) and Sz(SV), for an incident P wave 

which determines the value of b in Eq. (16) and which travels in the 

plane x - 0 in the transversely isotropic medium, can be obtained from 

the lengths of the perpendicular lines between the abscissa represent-

ing the value of b and the interesections with two sheets of slowness 

surface for the reflected P wave and the reflected SV wave, respec-

tively, as shown in Fig. 3. It is apparent from Fig 3 that the 

z-component of the slowness vector of the reflected P wave S (P) ~s , z ' 

less than that of the reflected SV wave, Sz(SV), for an incident P 

wave travelling in the plane x - 0 in the unidirectional fiberglass 

epoxy composite under consideration [I]. Consequently, the angle of 

reflection of the reflected SV wave 8SV defined similarly to Eq (18) 

as 

(20) 

is smaller than the angle of reflection of the reflected P wave, from 

Eqs. (16), (18) and (20). The angle of reflection of the reflected SV 

wave as a function of the angle of incidence of an incident P wave 

travelling in the unidirectional fiberglass epoxy composite [1] is 

shown in Fig. 4. 
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The critical angle is defined as the angle of incidence of an 

incident P wave at which the slowness vector of the reflected SV wave 

(or P wave) becomes tangent to the plane boundary where the reflect~on 

occurs For the case of an incident P wave travelling in the unidirec-

tiona1 fiberglass epoxy composite in Fig. 1, it has been shown that 

the angle of reflection of the reflected SV wave is smaller than that 

of the reflected P wave. Thus, the critical angle phenomenon does not 

occur for the unidirectional fiberglass epoxy composite under consid-

eration. This is due to the fact that when the angle of incidence of 

an incident P wave reaches 90°, the angle of reflection of the 

reflected SV wave is still less than 900 

4 Amplitude Ratios of Reflected Waves to Incident Wave 

It has been shown that when a P wave travelling in a semi-

infinite transversely isotropic medium is incident on a plane bound-

ary, a P wave and an SV wave will be reflected. The boundary condi-

tions on the stresses of a P wave travelling in the plane x = 0 and 

incident on the plane boundary can be obtained from Eqs (4) and (7) 

as 

T (I) + T (SV) + T (P) - 0 yz yz yz (21) 

T (I) + T (SV) + T (P) - 0 zz zz zz 
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where Tyz(I) and Tzz(I) represent the shear and normal stresses 

associated with the incident P wave', T (SV) and T (SV) represent yz zz 

the shear and normal stresses associated with the reflected SV wave, 

and TyZ(P) and TZZ(P) represents the shear and normal stresses 

associated with the reflected P wave. 

The shear stress, Tyz(I), associated with a P wave of unit 

amplitude travelling in the plane x - 0 and incident on the plane 

boundary at the origin, as shown in Fig. 2, can be obtained from 

Eqs. (3) and (6) as 

(22) 

where Sy(I) and Sz(I) are the components of the slowness vector of the 

incident P wave along the y and z axes, respectively; py(I) and pz(I) 

are the components of the unit vector of particle displacement of the 

incident P wave along the y and z axes, respectively; CSS is an elas-

tic constant, and w is the frequency. Similarly, the normal stress, 

Tzz(I), associated with the incident P wave of unit amplitude can be 

expressed, from Eqs. (3) and (6), as 

(23) 

where C13 and C33 are elastic constants. 
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The shear stress, ryz(P), and the normal stress, rzz(P), 

associated with the reflected P wave on the plane boundary at the or~-

gin are, from Eqs. (3) and (6), 

(24) 

and 

(25) 

where Sy(P) and Sz(P) are the components of the slowness vector of the 

reflected P wave along the y and z axes, respectively; P (P) and y 

pz(P) are the components of the unit vector of particle displacement 

of the reflected P wave along the y and z axes, respectively, and 

A(P) is the amplitude of the reflected P wave. 

The shear stress r (SV) and the normal stress r (SV) 'yz ' 'zz ' 

associated with the reflected SV wave on the plane boundary at the 

origin, from Eqs. (3) and (6), 

and 

rzz(SV) - iWA(SV)(C13Sy(SV)py (SV) + C33Sz(SV)pz (SV» (27) 

where Sy(SV) and Sz(SV) are the components of the slowness vector of 
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the reflected SV wave along the y and z axes, respectively; py(SV) and 

pz(SV) are the components of the unit vector of particle displacement 

of the reflected SV wave along the y and z axes, respectively; and 

A(SV) is the amplitude of the reflected SV wave. 

Upon substitution of Eqs. (22) through (27) into Eq. (21), the 

boundary conditions on the stresses for an incident P wave of unit 

amplitude travelling in the plane x - 0 can be rewritten as 

S (l)p (I) + S (l)p (I) + A(P)(S (P)p (P) + S (P)p (P» z y y z z y y z 

+ A(SV)(S (SV)p (SV) + S (SV)p (SV» = 0 z y y z 

(C13Sy(l)py(l) + C33Sz(l)pz (I» 

+ A(P) (C13Sy(P)Py (P) + C33Sz(P)Pz(P» (28) 

+ A(SV) (C13Sy(SV)Py(SV) 

+ C33Sz(SV)pz(SV» - 0 

The components of a unit vector of particle displacement along 

the y and z axes of a P wave travelling in any plane containing the 

zonal axis of a transversely isotropic medium are given in [3], and 

can be expressed, when applied to the present case of the reflected P 

wave travelling in the plane x - 0, as [3] 
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(29) 

where C13, C33 and C44 are elastic constants; and Hp is defined as 

2 2 
Hp - (Cll-C44)Sy(P) + (C33-C44)Sz(P) 

+ ([(Cll-C44)Sy(P) 
2 

Similarly, the components of a unit vector of particle displacement 

along the y and z axes for the reflected SV waves travelling in the 

plane x - 0 can be expressed as 
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pz(SV) - (C13+C44)Sy(SV)Sz(SV)1 

(SV)2 2 
{[HSV - (G33- G44)Sz ] 

where HSV is defined as 

2 2 2 
- {[(Cll-C44)Sy(SV) + (C33- C44)Sz(SV) 1 

- 4Sy (SV)2 sz(SV)2 [(Cll-C44)(C33- C44) 

2 2 1/2 
- (C13+C44) l} }/2. 

(30) 

The amplitude ratios of the reflected P and SV waves, A(P) and 

A(SV), for a P wave of unit amplitude obliquely incident on the plane 

boundary can be determined from Eq. (28). For a given incident P 

wave, the values of the components of the slowness vector along the y 

and z axes, Sy(I) and Sz(I), and the values of the components of the 

unit vector of particle displacement along the y and z axes, py(I) and 
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pz(I), are defined as part of the the specification of the incident P 

wave The values of the components of the slowness vector of the 

reflected P wave along the y and z axes, S (P) and S (P) are 
y z' 

determined from Eqs. (16) and (17), respectively: The values of the 

components of the unit vector of particle displacement along the y and 

z axes for the reflected P wave, py(P) and pz(P), are obtained by 

substituting Sy(P) and Sz(P) into Eq. (29). The values of the 

coefficients for A(P) in Eq. (28) are thus obtained Since the y-com-

ponent of the slowness vector of the reflected SV wave, Sy(SV), is 

equal to that of the incident P wave, Eq. (16), the value of the 

z-component of the reflected SV wave, Sz(SV), is obtained by substi

tuting Sy(I) into the slowness surface for the SV wave, Eq. (15). On 

substitution of the values of the Sz(SV) and Sy(SV) into Eq. (30), the 

values of the unit vector of particle displacement along the y and z 

axes for the reflected SV wave P (SV) and P (SV) are determined , y z' 

The values of the coeft~cients for A(SV) in Eq. (28) are thus 

obtained. The values of the amplitudes of the reflected P and SV 

waves, A(P) and A(SV) , are then obtained by solving Eq. (28) with the 

thus determined values of the coefficients for A(P) and A(SV) in Eq 

(28) for a given incident P wave. By varying the angle of incidence 

of the incident P wave of unit amplitude and by repeating the proce-

dures described above, the amplitude ratios of the reflected P and SV 

waves to the incident P wave are obtained as functions of the angle of 

incidence. For an incident P wave in the unidirectional fiberglass 
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epoxy composite shown in Fig. 1, the amplitude ratios of the reflected 

P and SV waves to the incident P wave versus the angle of incidence 

are shown in Fig. S. 

5 Balance in Energy Flux Normal to Plane Boundary 

The balance in energy flux normal to the plane boundary z 0, 

as shown in Fig. 2, must be satisfied and is expressed as [2] 

F (I) + F (P) + F (SV) - 0 z z z (31) 

where F (I) F (P) and F (SV) are the z-components of the energy z ' z z 

fluxes of the incident P wave, the reflected P wave and the reflected 

SV wave, respectively. 

The z-component of the energy flux of an incident P wave of unit 

amplitude travelling in the plane x - 0 is [4] 

2 
Fz(1) - W2(C44Py(1) Sz(1) + C13Py(1)pz(1)Sy(1) 

2 
+ C44Py(1)pz(1)Sy(1) + C33Pz(1) Sz(1» (32) 

where py(1) and pz(1) are the components of the unit vector of 

particle displacement of the incident P wave along the y and z axes, 
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respectively; Sy(I) and Sz(I) are the components of the slowness 

vector of the incident P wave along the y and z axes, respectively, w 

is the radian frequency, and C13, C33 and C44 are elastic constants 

Similarly, the z-components of the energy fluxes of the 

reflected P wave and the reflected SV wave are (4) 

2 2 
Fz(P) - A(P) W2(C44Py(P) Sz(P) + C13Py(P)Pz(P)sy(P) 

2 
+ C44Py(P)Pz (P)sy(P) + C33Pz(P) Sz(P)) (33) 

and 

(34) 

Since the frequency term w2 is common to Eqs. (32), (33) and 

(34), the balance in energy flux normal to the plane boundary, 

Eq (31), is not affected by assuming the value of the frequency w to 

be equal to unity. Accordingly, subsequent calculations of the values 

of the z-components of the energy fluxes of the incident P wave and 

the reflected P and SV waves, F (I) F (P) and F (SV) are done by z ' Z Z' 

assuming the radian frequency w to be equal to one. 
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The values of the z-components of the energy fluxes in 

Eqs. (32), (33) and (34) are obtained similarly to the calculations 

of the amplitude ratios of the reflected P and SV waves to the inci-

dent P wave. For a given incident P wave of unit amplitude, the 

y-components of the slowness vectors and of the unit vectors of par-

ticle displacement, S (I) S (P) S (SV) P (I) P (P) and P (SV) and y'y'y 'y'y y' 

the z-components of the slowness vectors and of the unit vectors of 

particle displacement, S (I) S (P) S (SV) P (I) P (P) and P (SV) z,z,z ,z,z z 

of the incident P wave and of the reflected P and SV waves are deter-

mined first. Then, combining the amplitudes of the reflected P and SV 

waves, A(P) and A(SV) with the values of S (I) S (P) S (SV) S (I) , y , y , y , z ' 

S (P) 
z ' 

S (SV) P (I) P (P) P (SV) P (I) P (P) and P (SV) the z ' y , y , y , z ' z z, 

values of the z-components of the energy fluxes of the incident P wave 

and the reflected P and SV waves, F (I) F (P) and F (SV) are thus z ' z z, 

obtained from Eqs. (32), (33) and (34). For a P wave of unit ampli-

tude travelling in the plane x - 0 in the unidirectional fiberglass 

epoxy composite shown in Fig. 1 incident on a plane boundary, the 

z-components of the energy fluxes of the reflected P and SV waves and 

the energy flux of the incident P wave are shown in Fig. 6 with the 

value of the frequency w in Eqs. (32), (33) and (34) equal to one The 

balance in energy flux normal to the plane boundary, Eq. (31), is also 

checked and is shown in Fig. 6. 
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ACOUSTO-ULTRASONIC NON-CONTACT INPUT-OUTPUT CHARACTERIZATION OF UNIDI

RECTIONAL FIBERGLASS EPOXY COMPOSITE PLATE 

It has been shown [1] that the unidirectional fiber composite 

shown in Fig. 1 may be modelled as a homogeneous transversely iso-

tropic continuum For the axes shown in Fig. 1, the isotropic plane 

of its equivalent continuum lie in the midplane of the plate [1]. A 

cartesian coordinate system (x, y, z) is chosen so that the x-y plane 

is the isotropic plane; as a result, the upper and the lower surface 

are at z - h/2 and z - -h/2, respectively, where h is the plate thick

ness The properties of the equivalent continuum model of the unidi

rectional fiberglass epoxy composite plate to be considered are [1] 

h 0.1 m 

Cll - 10.581 x 109 N/m2 

C13 - 4.679 x 109 N/m2 

C33 40.741 x 109 N/m2 (35) 

C44 4.422 x 109 N/m2 

C66 3.243 x 109 N/m2 

p 1850 kg/m3 

A transmitting and a receiving transducer are located on the 

same face of the unidirectional fiberglass epoxy composite plate spe

cimen without direct contact, as shown in Fig. 7. The unidirectional 
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fiberglass epoxy composite plate specimen shown in Fig. 7 is consid

ered as a plate of thickness h and of infinite planar (x-y) extent 

The input electrical voltage to the transmitting transducer is Vi(t) 

and the output electrical voltage from the receiving transducer is 

Vo(t) where t represents time. The transmitting transducer converts 

an input electrical voltage into a stress, whereas the receiving 

transducer converts a displacement associated with stress waves trav

elling in the plate into an output voltage. In the following analy

sis, only the P waves are traced. The P waves which are generated by 

the transmitting transducer located above point 0 experience multiple 

reflections at each face of the plate, and then reach the receiving 

transducer located above point H, as shown in Fig 8. Since the iso

tropic plane lies in the midplane and is parallel to both the top and 

the bottom faces where the multiple reflections occur, the angle of 

reflection of the reflected P wave is equal to the angle of incidence 

of an incident P wave for each reflection at each face of the plate 

Accordingly, the P wave travelling from the input 0 to the output M 

may be considered as a wave propagating in a semi-infinite trans

versely isotropic medium, and travelling to point H' as if there were 

no bottom face, as shown in Fig. 8. 

1. Delay Time and Phase Velocity 

Let the input 0 and the output H lie in the y-z plane. Assume 
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the number of reflections at the bottom face experienced by the P 

wave in travelling from the input 0 to the output M is n, as shown in 

Fig. 8. With respect to the z axis, the angle of incidence of the P 

wave at each face of the plate is 0, and the total distance travelled 

by the wave is Rn. From the geometry in Fig. 8, 

(36) 

where l is the separation distance between the input 0 and the output 

M, and 

Rn - l/sinO (37) 

The time delay tn for the wave to reach the receiving transducer is 

(38) 

where Cl(O) is the directionally dependent phase velocity of the P 

wave. The phase velocity Cl of a P wave in the unidirectional fiber

glass epoxy composite shown in Fig. 1 is given as [1] 

where 

E - [(C11-C44) sin20 + (C44-C33)cos20]2 

+ 4(C13+C44)2 sin20 cos20 ; 
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C11, C13, C33, C44 and p are given by Eq. (35). 

The delay time is then computed when the number of reflections n 

at the bottom face of the plate is equal to 10, 100, 300 or 500 The 

numerical results are shown in Fig. 9 where the delay time tn is 

plotted as the ordinate, and the dimensionless separation i/h is 

plotted as the abscissa, for values of zero to 300. The phase velo

city Cl as a function of the angle of incidence e is also shown in 

Fig 10. 

2. Displacements Detected by Receiving Transducer 

The displacements detected by the non-contact receiving trans

ducer above point M, radiated by the non-contact transmitting trans

ducer, are assumed to be equivalent to the displacements at point M' 

associated with the P wave propagating in a semi-infinite transversely 

isotropic medium as if there were no bottom boundary (except for the 

cumulative effect of the reflection coefficient), as shown in Fig. 8 

The displacements at point M' are approximated by the far-field asymp

totic solution for large Ru of an infinite transversely isotropic 

medium subjected to a harmonic point load. 

Consider an infinite transversely isotropic medium in which the 

z axis of a rectangular cartesian system O(x, y, z) is the zonal axis 
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of the medium and the x-y plane coincides with the isotropic plane, as 

shown in Fig. 11. The equations of motion including the body forces 

are [5] 

TXX,X + Txy,y + TXZ,Z + pX - pU,tt (40) 

Txy,X + Tyy,y + Tyz,z + pY - pv,tt (41) 

TXZ,X + Tyz,y + TZZ,Z + pZ - pw,tt (42) 

where T rs (r, s - x, y and z) are the normal (r - s) and shear (r ~ s) 

stresses with respect to the chosen coordinate system O(x, y, z); u, 

v and ware displacement components of a point in the medium along the 

x, y and z axes, respectively; X, Y and Z are the components of the 

body force along the x, y and z axes respectively; p is the density, t 

is time; and "," denotes partial differentiation with respect to the 

variable which follows. 

Combining Eqs. (l)and (42) gives 

C13+C44 C44 + C44 r 
(p ) 6., zz + -p- r, xx p 'yy 

+ r,zz + Z'z (43) 

where rand 6. are given by [5]. 
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r - w,Z; ~ - u,X + v,y. 

By differentiating Eq. (40) with respect to x and Eq. (41) with 

respect to y, we find upon addition of the resulting equations and 

using the appropriate stress-strain relations, Eq (1), that 

C13+C44 C44 
L\,tt - (p ) (r,xx + r,yy) +-p- L\,zz 

Cll 
+-- (L\,xx + L\,yy) + X,x + Y,y 

p 
(44) 

For a harmonic point load at the origin, the body forces may be 

taken of the form [5] 

x - Xo5(x)5(y)5(z)e- iwt 

Y - Y0 5(x)5(y)5(z)e- iwt 

Z - Z0 5(x)5(y)5(z)e- iwt 

(45) 

where 5(r) (r - x, y and z) is the Dirac delta function, and Xo ' Yo 

and Zo are the magnitudes of the respective point body forces. 

Express rand L\ as threefold Fourier integrals [5] as follows 
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~ 

6(x,y,Z,t) - III ~(Sx,Sy,Sz,t) 

where 

~ 

6(Sx,Sy,Sz,t) - 1/s.3 III6(X,y,z,t) 

Similarly, X,x, Y,y and Z,z can be expressed as threefold 
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Fourier integrals [5] 

co 

X,x - iwSx III X exp{iw(Sxx + Syy + SzZ - t»dSxdSydSz (47) 

-co 

co 

Y,y - iWSy III y exp{iw(Sxx + Syy + SzZ - t»dSxdSydSz (48) 

-co 

co 

Z,z - iwSz III z exp{iw(Sxx + Syy + SzZ - t»dSxdSydSz (49) 

-co 

where 

co 

x - 1/8.3 III Xo5(x)5(y)5(z)e- iwt 

-co 

and, similarly, 

-y-

Substitution of Eqs. (45) through (49) into Eqs. (43) and (44) 
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gives 

t::.. -

where 

C44/p (Sx2+Sy2) + C33/p Sz2_ 1 

8~3 wH (Sx' SY' Sz) 

-(C13+C44)/p (SX2+Sy2) 

8~3 wH (Sx' SY' Sz) 
(50) 

(51) 

(52) 

In fact, H(Sx' SY' Sz) - 0 represents two sheets of the slowness 

surface, one for a P wave and one for an SV wave [5] As a result of 

Eqs. (50) and (51), rand t::.. in Eq. (46) can be written as 
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co 

~(x,y,z,t) - III 
-co 

[
C44/P (Sx2+Sy2) + C33/p Sz2 - I 

81f3WH(Sx,Sy,Sz) 

(53) 

The asymptotic solution at a large distance from the point load is 

obtained by applying the theory of residues, the method of stationary 

phase, and the radiation condition [5] as 

~(x,y,z,t) 

+ (CII (Sx*2+ S*y2) + C33 S*2 - 1)iS* Z 1 
P P z z 0 

* * * exp{iw(Sxx + Syy + Szz - t)} 

_ ~nw {[ C44 (S*2+ S*2) +~ S*2_ 
21fR P x Y p z 

-(CI3+C44) *2 *2 * } 
+ p (Sx + Sy ) iSz Zo 

* * * exp{iw(Sxx + Syy + Szz - t)} 
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where R is the distance from the origin 0 where the point loads are 

applied to the location of interest Q in the medium, as shown in 

* * * Fig. 11; (Sx' Sy' Sz) are points on the slowness surface for a P wave 

where the normal is parallel to the OQ direction; ~n is the amplitude 

coefficient and is given by 

{ 
2 } + H,Sz 

1/2 

(57) 

where ~ is the sum with respect to cyclic permutation of Sx' Sy and 

* * * Sz' and is evaluated at points (Sx' Sy' Sz) on the slowness for a P 

wave where the normal is parallel to the OQ direction. 

The displacement components along the x, y and z axes, u, v and 

w, due to a P wave can be obt41ned by direct integration of the def~-

nitions of r and ~ in Eq. (43), and are given as [6] 

Sx 
u -

iw(Sx2+Sy2) 

Sy 
(58) v-

iw(Sx2+Sy2) 

1 
w- r 

iwSz 
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Substitution of Eqs. (55) and (56) into Eq. (58) gives the 

asymptotic solutions at a large distance of the displacement compo-

nents along the x, y and z axes, u, v and w, as follows: 

u -

-(C13+C44) (S~2 + s*2) * } + iSz Zo p Y 

* * * exp{iw(Sxx + Syy + Szz - t)} (59) 

v -

+ 

(60) 

An [ - (C13 + C44) * * * w - Sz (Sx Xo + Sy Yo) 
211'R P 

+ (cn (S~2+ S*2) C33 *2 
1) Zo ] +-- S 

P Y p z 

* exp{iw(Sxx + * * Syy + Szz - t)} (61) 
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The slowness surface for a P wave travelling in the unidirec-

tional fiberglass epoxy composite shown in Fig. 1 is an oblate sphe-

roid See Fig. 3. Thus, if (x, y, z) are the coordinates of a given 

point in the medium, there will be only one P wave front passing 

* * * through it, corresponding to a point (Sx' Sy' Sz) on the slowness 

surface where the normal is parallel to the given direction. There-

fore, it is concluded that for the displacement components along the 

x, y and z axes, u, v and w, measured by tracing the P wave in the 

unidirectional fiberglass epoxy composite plate specimen at point M ~n 

* * * Fig 8, there is only one point (Sx' Sy' Sz) on the slowness surface 

where the normal is parallel to a given direction OM' [5]. 

3. Directivity Function 

The shear stress Tyz and the normal stress TZZ associated with 

the P wave reaching the point M' in Fig. 8 are used to study their 

associated directivity functions. The asymptotic shear stress Tyz and 

the asymptotic normal stress TZZ are obtained by_substituting 

* Eqs (55) through (58) into Eq. (1) and then by setting Sx equal to 

zero as 
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Tyz 

C33 *2 1) +-- Sz -
P 

. * * exp(~w(Syy + Szz - t)} 

CSSAnW - (C13+C44) *2 * 
Yo ---- ( p iSy Sz 

21fR 

Cll *2 C33 S*2_ 1) . * + (- Sy +-- lSy Zo + 
P P z 

. * * exp(~w(Syy + Szz - t)} 

(62) 

C44 *2 (- Sy 
P 

(63) 

The directivity functions associated with the normal stress TZZ 

in Eq. (62) and the shear stress Tyz in Eq. (63) will be evaluated 

Due to the axial symmetry with respect to the zonal axis, the z axis, 

of the transversely isotropic medium, the values of the directivity 

functions obtained for the case Sx - 0 hold for all values of Sx 
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Consider the case of the point load acting along the y direction 

only; that is, Yo ~ 0 but Xo - Zo - 0 in Eq. (45). 

Y 
The directivity function Dyz of the shear stress Tyz associated 

with a P wave whose slowness vector is confined to the plane x = 0 LS 

obtained from the amplitude of the shear stress in Eq (63) by setting 

Yo - R - 1; 

-C13 *2 C33 *2 
(-p- Sy + -p- Sz - 1) (64) 

* where An is given in Eq. (57) and is evaluated at the point (0, Sy' 

* Sz) on the slowness surface for a P wave, Eq * (14); (0, Sy' * Sz) is 

point on the slowness surface where the normal is parallel to the 

the 

given direction and w is radian frequency. Similarly, the directivity 

Y 
function Dzz of the normal TZZ is, from Eq. (62), for Yo - R - 1. 

Cl3C44 *2 C33C44 -;;;;";;"'--Sy - --..;;.~-
p p 

Next, consider the case of the point load acting along the z 

direction only; that is, Zo ~ 0, but Xo - Yo - 0 in Eq. (45). 

Z 

(65) 

The directivity function Dyz of the shear stress Tyz associated 

with a P wave whose slowness vector is confined to the plane x - 0 is 
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obtained from the amplitude of the shear stress in Eq. (63) by setting 

(66) 

Z 
Similarly, the directivity function Dzz of the normal stress TZZ is, 

from Eq. (62), for 20 - R - 1; 

* 2 Z _.A~n~wS...,;:z:... (_C=.;11=-C...,;3...;;.3_-C....;1;;.,;3;.,..C....;4...;,.4_-C...,;:1:.;;3;.... 
Dzz -

211' p 

2 
*2 C33 

S +-Y p 
(67) 

The polar diagrams for the directivity functions of the shear 
y y Z Z 

stress Tyz and the normal stress TZZ (Dyz ' Dzz ' Dyz and Dzz given in 

Eqs. (64) through (67» associated with the P waves propagating in the 

unidirectional fiberglass epoxy composite shown in Fig. 1 are obtained 

by substituting Eq. (35) into Eqs. (64) through (67) at frequencies of 

o 75, 1.50 and 2.25 MHz. 

Numerical results are shown in Figs. 12 through 23 where the 

angle of incidence 9 given in Eq. (36) is used to determine the 

* * 
direction for which the value of a point (0, SY' Sz) on the slowness 

surface where the normal is parallel to the given direction is thus 

obtained. 
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4. Assumptions on the Transducers 

The non-contact transmitting transducer in Fig. 7 is assumed to 

transform an electrical voltage into a uniform stress; however, the 

non-contact receiving transducer in Fig. 7 transforms a displacement 

into an electrical voltage. The approach below is similar to that 

given in [7]. 

Referring to Fig. 7, if an input voltage of amplitude V and 

frequency w is applied according to 

the stress a that is introduced into the specimen plate by the 

non-contact transmitting transducer is 

a(t) - Fl(w)Ve-i(wt + ~l) 

(68) 

(69) 

where FI(w) is the transduction ratio for the non-contact transmitting 

transducer in transforming a voltage to a stress and ~l is a phase 

angle. In Eqs. (68) and (69), the harmonic character of the signals 

is expressed in the complex notation where i- j:f and only the real 

parts of these and subsequent equations should be considered. Thus, 

the amplitude T of the applied force is defined as 

42 



T - Fl(w)V (70) 

Similarly, if a stress wave producing a displacement d of ampli

tude D and frequency w that is detected by the non-contact receiving 

transducer is defined as 

d(t) - De- iwt (71) 

the output voltage from the non-contact receiving transducer, see 

Fig. 7, is 

-i(wt + 4>2) 
Vo(t) - F2(w)De (72) 

where F2(w) is the transduction ratio for the non-contact receiving 

transducer in transforming a displacement to a voltage, and ~2 is a 

phase angle Thus, the amplitude V' of the output electrical voltage 

is 

V' - F2(w)D (73) 

The characteristics of Fl(w) and F2(w) are unknown except that 

the dimensions of the product Fl(w)F2(w) are [kg/m2.sec2 j. 
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5. Steady-State Output Voltage Amplitude due to Multiple Wave Reflec-

tions in a Plate 

Since the P wave traced in the unidirectional fiberglass epoxy 

composite plate specimen shown in Fig. 8 is travelling in the y-z 

plane, it follows from Eqs. (59), (60) and (61) that only the dis-

placement components along the y and z axes, v and w, are detectable 

at the point M' Consider first the point load acting along the y 

direction only; that is, Yo ~ 0, but Xo - Zo - 0 in Eq. (45). 

Y 
The amplitude of the y-component displacement Dv evaluated at 

the point M' can be obtained from Eqs. (37) and (60) as 

(74) 

* * *2 *2 
where f1 (Sy,Sz) - (An/2~)I(C44/p)Sy + (C33/p)Sz -11. Similarly, the 

Y 
amplitude of the z-component displacement Dw evaluated at the point M' 

can be obtained from Eqs. (37) and (61) as 

(75) 

* * * * 
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Next, consider the point load acting along the z-direction only, 

that is, Zo ~ 0, but Xo - Yo - 0 in Eq. (45). 

Z 
The amplitude of the y-component displacement Dv evaluated at 

the point M' can be obtained from Eqs. (37) and (60) as 

(76) 

evaluated at the point M' can be obtained from Eqs. (37) and (61) as 

(77) 

* * *2 *2 
where f3(Sy' Sz) - (An/2~)I(Cll/P)Sy +(G33/p)Sz -11· 

Finally, consider the point load acting along the x direction 

only; that i~{ Xo ~ 0, but Yo - Zo - 0 in Eq. (45). It follows from 

Eqs. (60) and (61) that the amplitude of the y-component displacement 

and the amplitude of the z-component displacement vanish at the point 

M'. This is due to the fact that the P wave is travelling in the y-z 

plane. 

According to Eqs. (74) through (77), the amplitude of a displa-

cement component at the point H', denoted as DH" can be expressed in 
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the following form as 

* * fi(Sy'Sz) 
%' - T 

~ 
(78) 

where T is the applied point load and is equivalent to either Yo or 

* * 20 in Eqs. (74) through (77); and fi(Sy'Sz) (i-l,2 or 3) is determined 

from one of the Eqs. (74) through (77), depending on which displace-

ment component is measured and along which direction the point load is 

applied. 

However, with the bottom boundary present, the wave is reflected 

a total of (2n-l) times, as shown in Fig. 8. Thus, the amplitude of 

displacement at the point M is DM and is expressed as 

(79) 

where Qpp is the amplitude ratio of the reflected P wave to the 

incident P wave, as shown in Fig. 5, and is a function of the angle of 

incidence 9 defined in Eq. (36). 

Here, we have ignored the effects of mode conversion. The ampli-

tude of the output voltge from the non-contact receiving transducer ~s 

V' and can be obtained by substituting Eqs. (78) and (79) into Eq 

(73) as 
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V' -

2n-l * * 
F2(w) Qpp fi(Sy,Sz)T 

Substitution of Eq. (70) into Eq. (80) gives 

2n-l * * 
Fl(w) F2(w) Qpp fi(Sy' Sz)V 

V' - --------------------~-------

(80) 

(81) 

Introducing the P wave attenuation constant Q of the unidirectional 

fiberglass epoxy composite and a possible electrical signal amp1ifica-

tion factor K, Eq. (81) can be written as 

() () 2n-lf (* S*z)V V' - KF1 w F2 w Qpp i SY' ---Rn---- (82) 

Eq. (82) gives the output voltage amplitude from the non-contact 

receiving transducer due to an input voltage amplitude V at the non-

contact transmitting transducer when the P wave path has undergone n 

reflections from the bottom face of the unidirectional fiberglass 

epoxy composite plate specimen, as shown in Fig. 8. 
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DISCUSSION AND CONCLUSION 

In the acousto-ultrasonic input-output characterization of the 

unidirectional fiberglass epoxy composite plate specimen, the angle of 

reflection of the reflected P wave is equal to the angle of incidence 

of the incident P wave for each reflection at either the top or the 

bottom face of the plate. This is due to the fact that the isotrop~c 

plane is parallel to both faces of the plate However, if the paral-

lelism between the isotropic plane and the plane boundaries where 

reflection occurs does not exist, the angle of reflection is not equal 

to the angle of incidence. In this case, the use of a semi-infinite 

transversely isotropic medium, neglecting the existence of the bottom 

face of the plate specimen except for the cumulative reflections, to 

compute the delay time, the displacement and the directivity functions 

becomes inappropriate. 

It is observed from Fig. 9 that an increase in the number of 

reflections n results in a minor increase in the delay time tn at 

each value of the dimensionless separation lfh. For a given plate 

thickness h and a given the separation distance 1 between the trans

mitting transducer and the receiving transducer, an increase in the 

number of reflections n results in a decrease in the angle of inci

dence e, as given by Eq. (36), thereby increasing the travelling 

distance Ru, from Eq. (37). The phase velocity Cl of a P wave in 
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the unidirectional fiberglass epoxy composite increases with decreas

ing angle of 0, as shown in Fig. 10. For the time delay, the increase 

in the travelling distance Ru is partly offset by the increase in the 

phase velocity Cl with an increse in the number of reflections n 

This accounts for the minor increase in the delay time given by Eq 

(38). However, in an isotropic medium, the phase velocity of a stress 

wave is directionally independent. As a result, the increase in the 

dealy time tn caused by an increase in the number of reflections n ~s 

solely attributed to the increase in the travelling distance Ru in an 

isotrpic plate. Therefore, it is concluded that the directional 

dependence of the phase velocity of a stress wave travelling in a 

transversely isotropic medium has a significant effect on the delay 

time when conducting acousto-ultrasonic testing. 

Now, consider the case of a given number of reflections n. An 

increase in the separation distance i results in an increase in the 

travelling distance Ru, as shown in Fig. 8, and an increase in the 

angle of incidence 0 given by Eq. (36). An increasing angle of inci

dence 0 results in a decreasing phase velocity Cl' as shown in 

Fig. 10. Consequently, the delay time tn increases sharply as a 

result of the increasing separation distance i for a given number of 

reflections n, as shown in Fig. 10. However, as the separation dis

tance i approaches infinity, the phase velocity approaches a limit. 

Thus, (for i/h~) the increase in the delay time tn is due solely to 
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the increase in the travelling distance Rn. which is similar to the 

isotropic medium case. 

This theoretical investigation provides a step forward in the 

quantitative understanding of acousto-ultrasonic nondestructive evalu

ation (NDE) parameters such as stress wave factor (SWF) in trans

versely iostropic media. It also provides the potential for assisting 

in the development of more efficient and more revealing NDE schems 

utilizing wave propagation. 
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Fig. 2 
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