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ABSTRACT

Spectral element methods are p-type weighted res dual techniques for partial differential equa-

tions that combine the generality of finite element rrethods with the accuracy of spectral methods.

We present here a new nonconforming discretizatio_l which greatly improves the flexibility of the

spectral element approach as regards automatic mesh generation and non-propagating local mesh

refinement. The method is based on the introduct on of an auxiliary "mortar" trace space, and

constitutes a new approach to discretization-driven ,[omain decomposition characterized by a clean

decoupling of the local, structure-preserving residuai evaluations and the transmission of boundary

and continuity conditions. The flexibility of the m,>rtar method is illustrated by several noncon-

forming adaptive Navier-Stokes calculations in complex geometry.
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Nonconforming Mortar Element Methods:

Application to Spectral Discretizations

1 Introduction

Spectral element methods [22,25,27] are weighted residual techniques for the approximation of

partial differential equations that combine the ra?id convergence rate of spectral methods [6,14]

with the generality of finite element techniques [8,12,29]. The spectral element discretization,

coupled to fast order-independent iterative solve]s [21,28,32], yields numerical algorithms which

have proven computationally emcient on both serial and parallel processors [10,11]. Although the

spectral element method is, by construction, applicable in complex geometries [16,18,27], the large

indestructible geometric unit associated with high-order brick elements leads to a certain lack of

flexibility as regards automatic mesh generation, adaptive mesh refinement, and the treatment of

moving boundaries. In this paper we present a new method, the _mortar element method", which

largely eliminates this rigidity by allowing for noz_conforming matching between subdomalns.

The "mortar element method" represents a new domain decomposition approach [7,13] in which

there is a clean decoupling of local-structure-pres_rving internal residual evaluations and the trans-

missions of boundary (or continuity) conditions. The method is not based on Lagrange-multiplier

interface constraints e.g. [9], but rather on the exl,licit construction of the appropriate nonconform-

ing space of approximation through the introducti on of a new intermediary mortar trace space. The

explicit-space approach is more appropriate for f_st iterative solution than the Lagrange-multiplier

methods, as it avoids the necessity of solving a .:oupled, potentially ill-conditioned problem. Al-

though we develop the mortar methods here f_r spectral element discretizations, they are also



appropriatein the h-type finite element context [4], in which they constitute an extension and

generalization of classical nonconforming methods [8,9,29,31].

We present here the "mortar element method" in its simplest form for the solution of two-

dimensional second-order elliptic and saddle problems. The emphasis is on the numerical formu-

lation, implementation, and demonstration of the technique, and the illustration of the flexibility

of the nonconforming paradigm; theoretical support for the method is given in [4], in which the

optimality of the discretization is proven. The outline of the paper is as follows. In Section 2 we

present the basic discretization for the Poisson equation in terms of the function spaces over which

the standard variational form is to be tested. In Section 3 we present the associated nonconforming

bases and the resulting set of discrete equations. Conjugate gradient iterative solution of the mor-

tar discretization is described, illustrating the strong domain decomposition nature of the residual

evaluation procedure. In Section 4 the extension of the method to the solution of the Stokes and

Navier-Stokes problem is presented. Lastly, in Section 5 we give several numerical examples.

2 Spectral Element Nonconforming "Mortar" Spaces

2.1 Problem Formulation

We considerfirstthe solutionof a Poisson equation on a domain CIof R2: Find u(x,y) such

that

-V 2u = f inf/, (la)

u -- 0 on cgf/, (lb)



where 8f_ is the boundary of fl, and f is the prescribed force. We suppose that fi is rectangularly

decomposable, that is, that there exist rectangular t_ubdomains f2k, k-- 1, ..., K such that

K

= U _, vk, l, k _ l, _k n _' = 0. (2)
k=l

The problem (la,lb) is well posed in X = H 1 in th,._ sense that the following weak formulation of

the problem admits only one solution: Find u E X:uch that

(Vu, Vv)=< f,v>, VvEX. (3)

Here (.,.) represents the L 2 inner product, and <., > denotes the duality pairing between X and

its dual space. For the definition of standard spaces norms and inner products we refer the reader

to [1].

For the Galerkin numerical approximation of pr)blem (la,lb), we test the variational form (3)

with respect to a family of discrete finite dimensior al spaces Xh, where h denotes a discretization

parameter: Find tth _ Xh such that

(Vuh, Vvh) = </, Vr_,>, VVh_ Xh. (4)

In the case of a conforming approximation, for whic_ Xh c X, the convergence and convergence rate

of uh towards u is determined essentially by stability (ellipticity and continuity) and approximation

theory (infimum of Ilu- vhlll,aover all vh _ Xh, wh.,reI1"II,,arefer8to the H 1 norm over fl). In the

case of nonconforming approximations, for which 2fh ¢ X, we must also consider the consistency

error, which measures the deviation of the approxir ration space Xh from the proper space X [8,29].

To date, spectral element approximations [22] _ ave been based on domain decompositions that

satisfy (2) as well as the additional constraint thLt the intersection of two adjacent elements is

either an entire edge or a vertex; this second constr_fint is derived from the conforming assumption,



and is also present in the finite element method. In the spectral element context this constraint

can be prohibitively restrictive due to the large geometric units involved. Although relaxing the

conforming constraint clearly introduces a new source of error, it has the potential advantage of

greatly increasing the flexibility of the numerical method as regards mesh generation and adaptive

refinement procedures. This increase in flexibility improves not only the efficiency of the algorithm,

but also the tractability of calculations involving moving and sliding meshes [15]. Furthermore,

the nonconforming approach achieves generality at no cost in loss of local structure, an important

consideration as regards optimal solvers.

We present here a spectral method based on nonconforming approximations in which the con-

sistency errors are commensurate with the approximation errors. To present the nonconforming

spectral element space Xh we first describe the anatomy of the discretization. The K rectangular

subdomains of (2) are now identified as spectral elements, and the (x, y) coordinate system is chosen

so as to be aligned with the edges of the 12k. These edges are denoted r k,l, l -- 1,...,4, such that

qP = int(_ t n _) (5a)

for some k and 1, or

= int( n (Sb)

for some index m, where p is an arbitrary enumeration p -- 1, ...,M of all (k,l) and m such that

int(_ -_ n _) or int(_ -'n n a_) is not empty. The intersection of all closures of all "/P defines a set of

vertices l) composed of all elements

where q is an arbitrary enumeration q : 1, ...,V of all couples (re, n) for which (_ n _') is not

4

all k = U _-_'_-. We next introduce the set of _mortars" "_, where
i=l
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Figure 1: Subdomains and Mortars ot a Nonconforming Decomposition

(The set _) is equal to the set of all the w rtices of the fl _ by definition of the mortars).?ty.

tly, we define the skeleton $ of the mortar syst_ m by

M K

s = U _" = U o_". (7)
p=l k=l

; geometry of the nonconforming decomposition is shown graphically in Figure 1.

In order to define the nonconforming space Xh_ we first require an auxiliary mortar space Wh

Wh={_bEC°($), Vp=l,...,_, ¢1_, ePN(_P)' _bla- =0} (8)

;re P_(_p) is the space of all polynomials on "_Pof degree _< N. The nonconforming space is

a given by



Xh {v E LZ(fl), Vk = 1,...,K,vl__ E PN(f_k) such that 3@ E Wh forwhich:

Vq = 1,...,V,Vk = 1,...,K, such thatvq isa vertexofflk, vl_k(vq)= _b(vq);

Vl= I,...,4,vk= 1,...,K,V¢ e P#_2(rk,t),yr,,,(vlo,- _)_ds = 0 ).

(9a)

and (9b)

Here PN(fl k) denotes the space of all polynomials on flk of degree _< N in each spatial direction;

the spectra[ element discretization parameter is the couple h = (K, N). For a conforming approx-

imation Xh isthe standard spectralelement space;here,and elsewherein thispaper,we assume

the readerisfamiliarwith the conforming spectralelement method [22].

Let us summarize the propertiesofthe approximationspaceXh. First,as regardstheuniqueness

ofthesolution,we note thatthe uniquenessofthemortar element_bE Wh isnot ofmajor importance

as long as itsimage uh E Xh isunique;itisuh, not the mortar element, that must be closeto

u. The uniqueness of the discretesolutionuh followsfrom the ellipticityof the Laplacianform

(Vuh, Vvh), Vuh E Xh, Vvh E Xh with respect to the following "broken Hl(f_) norm",

ll_hllx. = ll(_h)l°_lll,a. , Wh e Xh. (10)

Although the proof of ellipticity is quite involved (see [4]), an elementary proof of uniqueness can

be readily derived. To wit, we note that if uh and u_ are two solutions of (4), we get

K

0 = (Vvh, V_h) = _ [ _[V(vh)[_k] 2 with _h = uh -- u_,
k=l Jfl

and thus vh is piecewise constant. Using the fact that the elements of Xh vanish over cgf_ and are

continuous at the vertices of _, it follows that vh -- 0 and thus uh -- u_.

Although uniqueness of _ E Wh is not necessary, it is nevertheless true that spurious (or

parasitic) modes in _ correspond to unprofitable work, and can potentially cause problems in the



Figure 2: Nonconforming Discre _ization Derived from the Refinement

of a Conform ng Approximation

subsequent solution of the discrete system (see Seclion 3.2). There is one situation in which the

uniqueness of ¢ follows easily; this is the case wher,_ for each qcP there exists an element II k that

accepts _/P as an entire edge (see Figure 2). Thi. arises, for instance, from a refinement of a

mesh which is initially conforming. In this paper ,re shall consider only this "refinement" case;

development and analysis of the general problem <f Figure 1 is more involved, and is relegated

to future publications. For the "refinement" case _miqueness of ¢ results from the fact that the

mortar element ¢ coincides exactly with the restriction (Vh)l, _ over _f. To show this we note that,

by construction, the elements ¢ and v_ = (vh)I,k co: ncide at the endpoints of _tp. This implies that

¢ - v_l_ is a polynomial of the local coordinate _,

(¢ - v_,l_,)(_ ) = 11 - _2)_(_), (11)

where ¢ is a polynomial of degree < N - 2. Her% and in what follows, _ = _ (or _ = _) for a

horizontal (or vertical) mortar, where _ (or _) is a nortar-local variable which scales x (or y) such

that _/p corresponds to ] - 1, 1[ (similarly, g = _ (or _ = _) for a horizontal (or vertical) edge, where

(or _) is an element-local variable on ] - 1, 1[ whi_ h scales x (or y) to the appropriate FkJ). From
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theorthogonalityof ¢- kVh[.Tv to all elements of PN_2(_/v) (gb), it follows that • is necessarily zero,

and thus ¢ is exactly the trace of one piece of vh. The uniqueness of the solution uh to problem

(4) thus yields the uniqueness of the corresponding mortar element.

Let us consider now the consistency error. The scheme (4) based on the definition (9a,9b)

of Xh is optimal in that the consistency error is maintained small by the combination of the L 2

condition (gb) and the vertex condition (ga). In essence, the L 2 condition ensures that the jump in

functions is small in the interior of internal boundaries, whereas the vertex condition ensures exact

continuity at cross points where the normal derivative has more than one sense. We note that the

superiority of the L 2- (versus pointwise-) matching of vl, _ and ¢ has been demonstrated previously

[2]. The mortar methods are different from previously proposed nonconforming L 2 approximations

in that the latter are mortarless master-slave spaces, whereas the current approach is democratic;

this allows for very simple implementation in arbitrary topologies.

Lastly, the approximation properties of the space Xh are similar to those of past nonconforming

approximations. For example, for the case of a square domain decomposed into several elements,

as a first result one can use the best global polynomial approximation as a bound for approximation

errors. The combination of stability, consistency and approximation result in an optimal scheme,

the details, and degree of locality of which, are described in [4]. We note that for the special case

of infinitely smooth solutions, uh approaches u exponentially fast as N --, oo for fixed K (spectral

convergence).



3 Representation and Discrete Equations

3.1 Bases

Although the spaces Wh and Xh appear quite co _aplicated, they have a simple basis and evalua-

tion procedure which yields an efficient domain decc.mposition algorithm. In this section we discuss

the basis, and in the following section we describe 'esidual evaluation.

To begin, we write for the space Wh,

N

¢;hi (s), vpe {1,...,M) (n)
1=0

where we assume that all indices increase with inc_:easing x, y. Here the h_v are Lagrangian inter-

polants defined by

hN • PN(]- 1,1[), hN(_,) : 6,i, Vi,j • {O,...,N} 2 (13)

where the _(= _N) are the N + 1 Gauss-Lobatto begendre points defined by the zeroes of

L_v(z)(1 - z2), and LN is the Legendre polynomhl of order N [30] so that

1 (1 - z2)L'vCz) z 6]- 1,1[, Vj • {0,...,N}.
h_(z) : -g(g + 1)LN(_) z-

The definition (12) is not sufficient given the requirement that @• Wh must be C°(S); to indicate

the continuity condition, we resort to diagrammatic: methods. The mortar conventions are described

in Table la, with the basis for Wh shown in Figme 3b for the nonconforming mesh of Figure 3a.

We next construct a representation for v • X,_ in terms of the mortar. To begin, we write

N N

vl_ k = _ _ v_ihN(_)),N(_), Vk • {I,...,K} (14)
i=0 1=0

where the h_ are defined in (13). The internal ,legrees-of-freedom, v_, i,j e {1,...,N- 1} 2, are

clearly free, however the boundary degrees-of-fre_..dom are constrained through (9a,gb). Based on
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[]

[D=====[]

[]-_n

open or dashed symbol/

solid symbol

¢(:)

¢'_ i=I,...,N-1

¢; i=O,...,N

assign vertex

source/destination

or degree-of-freedom/slave

= Ei=o¢ihi (_)

0

[_-.'_O

0---_i"4---0

I )

VO0) t_oN) t_NO) t_NN

voi, riO, VNi, viN
i: 1,...,N- 1

_,_ i,j E {1,..., N - i}_

assign vertex

mortar-to-edge projection

sum vertices

edge-to-mortar sum

a) b)

Table 1: Symbols for Diagrammatic Basis Representation

a) b)

Figure 3: a) Nonconforming Mesh and b) Associated Mortar Basis
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Figure 4: Diagrammatic Representation of the B_sis for Xh on Nonconforming Mesh of Fig. 3a

the diagrammatic conventions of Table 1 the admissible v are given by Figure 4, where Q derives

from the projection (9b). In order to construct Q L,ve require a basis for ¢, which we choose as

N-1

q=l

where

._-2C.)= (_I)N-qL_
_q -- Z

,-]- 1,1[, q• {1,...,N- 1}.

(15)

To calculate the projection of (9b) we then perfoma (here exact) piecewise Gauss-Lobatto quadra-

ture on N-t- 1 points on the element edges and m,_rtar segments, giving

N-1 N

Bijvi : _Pi_'¢j Vie {1,...,N- 1) (17)

j--1 i--0

where for the destination edge I "k,I (ei) and source,, mortar "l p (q_j)

_r I r_,,,,._¢ ---. B3.,-= L_--'C-1)_-'(-,s_C_llP,8_;, Vi,i • {1,...,N- 1}2 (is)

(16)
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rk,l

,-lP

8o

Figure 5: Definition of Mortar Offset so

and

_,,¢t:¢ --+ P,J = "N-_(21r_:l 1+ (¢s+ 1)1r---_:iJpi

I rk,l 1

_ k-_2--LA_N-2(-1)poSo J if So = 0

L_2:-'-,N-_(1)p,,_.,i if_o+ I:l=lr_,'l

vi e {1,...,_v- I}vje{0,...,N}.

(19)

Here so is the offset of the mortar _,P from the edge F k:, as shown in Figure 5; the endpoint terms

of (19) derive from the vertex-pinning condition of (ga). Finally we arrive at

Qq = [Q---]= [B----I-lIP----I, Vie {1,...,N - 1}, Vj e {0,...,N}. (20)

Note that by proper choice of the basis for ¢ we can explicitly form the matrix Q, that is, we are

able to directly invert the diagonal inner product B. The alternating-sign term in r/_ -_ assures

that the entries of B are positive.

Although in practice we shall evaluate vln k from the diagram without forming the global linear

projection operator, it is nevertheless of theoretical interest to remark that the diagram is equivalent

to
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or

I ov )(01( ovk}
v_.l_,,,,,,/,_,,, Vk 0 [Q---'J ¢cvq), Vq, ¢_, Vp, vie {1,...,N-1}

(21a)

= (21b)

We denote the vector v as the algebraic basis, in thw this variable represents the finite-dimensional

approximation space with an equivalent number of, legrees-of-freedom; the proper functional basis

correspondsto the images of vT ----(I,0,0...),,(0,l,C,....),...,(0,...,0,1) in v* through the transfor-

mation Q, acting on the local bases hihj as describ,,d by (14).

3.2 Discrete ]Equations

Armed with the variationalforms of Section2 ,_.ndthe bases of Section3.1,itisnow a simple

matter to constructthe discreteequations.In particular,we note that our basisconstruction(21)

allowsus toexpressadmissibleelementaldegrees-of-freedomv_v_*interms ofvv_.This,in turn,permits

us to constructthe globaldiscreteequationsdirectlyfrom localstructure-preservingelemental

equations,which isat the heartofthe discretizatioa-drivendomain decomposition approach.

We firstconstructthe decoupledelementalmat ricesand inhomogeneity,

(Vhphq, Vhihi) k=l 0 0 "_

0 (Vhvh q ,Vhihj) k=2 0

blk(A k) = (22)

0 0 (Vhphq, Vhihj) k=l¢
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blk(/ ) =

(hphq, f)/_=l

(hphq, f)k=2

, Vi, j,p,q E {0,..., N} 4.

(hphq, f)k=K

The kth block of blk(A k) represents the Neumann Laplace operator on the elemental domain f_k.

We now recognize that not all elemental hihj are I_ossible, and that not all hphq are admissible;

indeed, the admissible degrees-of-freedom follow from the Q transformation of (21). We thus arrive,

rather simply, at the fully discrete equations:

QT blk( f_)Qu_= QT blk(fk). (23)

We note that independent of the size of the mortar nullspace (Q right nullspace), (23) is solvable. A

sufficient condition for a unique mortar function is that QTQ be invertible; in the conforming cases

QTQ is simply the multiplicity of a node (that is, the number of elements in which it appears).

Equation (23) illustrates that the global Laplace operator can be thought of as a local operator

"mortared" together by the QT,Q operations; indeed, the QT operator is the algebraic form of

the standard direct stiffness procedure (here extended to nonconforming elements). In the imple-

mentation of iterative procedures the Q,QT are, of course, never explicitly formed, but rather are

evaluated; diagrammatic evaluation of QT (direct stiffness summation) is shown in Figure 6 in terms

of the diagram conventions defined in Table 1. The domain decomposition decoupling afforded by

the implicit construction of the image basis through u_* allows for efficient parallel implementation

following the methods described in [11] for conforming techniques.

Although the emphasis in the current paper is on the mortar discretization, the bases and
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1,! I- I
1o

Figure6: DirectStiffnessSummation QT of Residualson Nonconforming Mesh

evaluationprocedure have been tailoredto admit efficientiterativesolution,and itistherefore

appropriateto brieflyindicatehow the method isu_ed inconjunctionwith (forexample) conjugate

gradientiteration.To solve(23)we write

_; _ = qrbZk(/k) - Q_bzk(_k)Q_; _ = _ (24)

am = (r_m,r_.m)i(q_m, _9_Tblk(_4k)Q, qm)

_+i = _-_- a_QrbzkCAk)9_q.,

b,,=C_+1,_.1)/('_.,,,_)

q-,,+l= r-_+1+ b__q,_,

where m refersto iterationnumber, r_.m isthe r,sidual,q-m the search directionand (.,.)is the

usual discreteinner product. All evaluationsar: performed through the diagrams of Figures 4

and 6. The blk(]ti)operationsare entirelylocal;itthe elementallevel,with alltransmissionand
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coupling through Q. The local _k calculations are the standard conforming spectral element tensor

product evaluations, as the mortar decoupling allows all local structure to remain intact despite

global irregularity (e.g. non-propagating mesh refinement).

4 The Stokes and Navier-Stokes Problems

In thissectionwe considerthe extensionof the nonconforming mortar method to the solution

of the two-dimensionalsteadyStokesproblem in a rectangularly-decomposabledomain 12,

-vV2u-Vp = f (25)

divu = O,

with homogeneous Dirichletvelocityboundary conditionsu --0 on egft.Here u isthe velocity,p

isthe pressure,f isthe forcingvector,and u isthe kinematicviscosity.The associatedvariational

problem is:Find (u,p)E (H_(12)Z,L_(12))such that

L,(Vu, Vw) - (p, divw) = (f,w), Vw e Hol(fl) 2

(q, div u) = 0, Vqe Lo2(ft),

(26)

where Lo2(f]) is the space of L 2 functions of zero mean.

The discrete formulation of the problem consists of choosing two discrete approximation spaces,

one for the velocity field and one for the pressure. It is shown in [3,22,24] for the conforming

spectral element approximation that choosing both of these spaces to be polynomials of degree

less than or equal to the same degree N leads to an ill-posed problem, in which spurious pressure

modes arise [5,12]. The existence of such modes is in contradiction with the verification of the "inf-

sup" condition [5]. As regards our nonconforming methods for the Stokes problem, our starting
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point is the conforming staggered mesh method deflated in [23] for which the "inf-sup" condition is

satisfied. The correct nonconforn_ng extension is to ,_se the velocity space (Xh) 2 defined in (9a,9b),

and for the pressure the space Mh = {¢ E L 2, ¢[,_ e PN__(IRk)} associated with the conforming

approximation. In essence, the fact the pressure is L2 implies that it need not be modified when

the constraints on the velocity are relaxed.

With these spaces we arrive at the following nol_conforming discretization:

Find (Uh,Ph) • ((XA)2, Mh) such that

v(Vuh, Vwh) - (Ph, divwh)

(qh, div Uh)

= <f,w h>, Vw hE(Xh) 2

= O, Vqh E Mh

(27)

from which uniqueness, stability, and spectral erro_ properties follow from the results of previous

sections and [4], suitably modified within the Stokes context as described in [23,24]. (We note

that, as elsewhere in this paper, we do not dwell on quadrature issues which are, by now, standard

practice.) We then choose a basis for Mh

N-1N-1

P{ak- _ _ k N-Z ^ V-2 . {I,...,K) (28)C=)g: (v), vk e
d=l i=1

where the gN-2 are the N- 2th order Gauss-Legendre interpolants, that is, those polynomials of

PN-, such that g_V-,(fN-,) = _ij, where fN-, are the N - 2 zeroes of LN-__ [30]. We thus arrive

at the discrete saddle problem

QTblk(A )Q,u- QTblk(3)k)Tp_ = QTblk(fk)

blk(X} )Qu : O.

(29)

Here p_p_is the algebraic basis for p analogous to u ¢_f (21b), blk(fik), QT, Q, blk(?_,) are defined as in
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(18-22), and ]_ is the gradient operator given by

(g_-2g_-2, Vhihj)k=x 0

0 (g_-2g_-,, Vhlhj)k=,

btk(__)=

0 0

0

0

(g_-_g_-=,Vh,hi)k=K

(30)

vi, i _ {0, ..., N}2, vp, qe {1,..., N - 1} 1.

Extension to Navier-Stokes is straightforward given the lower-order nature of the convective terms.

As in the pure elliptic discretization, (29) is amenable to iterative solution. We currently use

a semi-implicit procedure for Navier-Stokes, in which the nonlinear terms are treated explicitly,

and the Stokes subproblem is handled with a Uzawa nested iteration [20]; conforming multigrid

techniques [28] are currently being extended to the nonconforming case. In addition to the staggered

mesh Stokes treatment, elliptic-splitting methods appropriate for higher Reynolds number flows are

also used [17,19]; these discretizations represent sequences of elliptic operations (23), and thus their

extension to the nonconforming case follows from Sections 2 and 3.

5 Numerical Examples

In this section we illustrate various aspects of our nonconforming method by a number of exam-

ples. The central point is the flexibility and ease-of-implementation afforded by a nonconforming

approach based on a consistent, non-context-dependent matching. As our first example we consider
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the Helmholtz problem

-V:_u+A2u:f ca _--]0,1[x]O,l[ (31)

u=e_ ((z-1)+Cv-1))c_ af_

where f ischosen such that the exact solutionin f_isgiven by u = e_ ((z-1)+(v-1)).In Figure

7a we show a high-resolutionconforming mesh h = (K : 16,N -- *);in Figure 7b we show a

nonconforming mesh h = CK --10,N ----*),inwhicL the localstructure-preservingmesh refinement

isillustrated.In Figure8 we plotthe errorin the )(hnorm of (10)forboth solutionsas a function

of N (K fixed)forA = 50. This example demonst ratesthe rapid (hereexponential)convergence

of the spectralelement approach, and the superi.)rresolutionpropertiesof the nonconforming

discretization,which achievesthesame accuracyas !,heconforming approximation with significantly

fewer degrees-of-freedom.

a) b)

Figure7: High Resolutiona) Conforming and b) Nonconforming Meshes forHelmholtz Problem

As our second example we demonstrate the u ility of nonconforming methods in constructing

appropriate meshes; we consider the labyrinth charnel of Figure 9, in which the two meshes for the
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Figure 9: Nonconforming Labyrinth Channel Mesh, h -- (K = 22, N = 9)

two sides of the channel are constructed "separately", and subsequently merged by mortar. The

boundary conditions are given as: a parabolic velocity profile at inflow, no slip on the channel walls,

and outflow (constant pressure) at the exit. In Figure 10 we show streamlines for the steady Stokes

flow calculated by the discretization (29) and the nested conjugate gradient Uzawa method; notable

are the continuity at element boundaries and the lack of spurious pressure modes. The mesh in

Figure 9 can be thought of as one instance of a sliding channel calculation; nonconforming methods,

with appropriate extension (as in Figure 1), should prove to be powerful techniques for moving

boundary problems when used in conjunction with arbitrary-Lagrangian-Eulerian techniques [15].
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Figure10:StokesSolutionfo: the LabyrinthChannel

Lastly,weconsidera moderateReynoldsnumter flowpast a wedge[17,26]in a channel;the

utility of the nonconformingmethodsin generatin::an appropriatelyrefinedmeshis apparentin

the meshshownin Figure 11. Notethat we relax herethe constraint,introducedfor simplicity

of expositionin previoussections,that the elementsbe rectangular;treatmentof generalcurved

elementsrepresentsa simpleextensionof themethodsdescribedin Sections2-4. In Figure 12we

show the short time solution of the startup vortex near the tip of the wedge, for a Reynolds number

R= 500 at atime r = _-- .085 on the mesh h:: (K = 16, N =9) of Figure 11. We prescribe

a slug velocity profile at inflow, no slip boundary conditions on the walls, and outflow (constant

pressure) at the exit. Here R -- _K__,where V is the channel average velocity, H the channel width,

and g is the kinematic viscosity, and t is time. The high resolution in the vicinity of the wedge

allows for a detailed description of the startup vor: ex.
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