NASA Contractor Report 182133 Allison EDR-13481

The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer

L.D. Hylton, V. Nirmalan, B.K. Sultanian, and R.M. Kaufman

Allison Gas Turbine Division General Motors Corporation Indianapolis, Indiana

November 1988

Prepared for Lewis Research Center Under Contract NAS3-24619

(NASA-CR-182133)THE FFFECTS OF LEADINGN89-13754ELGE AND DOWNSTREAM FILM COCLING ON TUBEINEVANE FEAT TRANSFER Final Report (General
CSCL 20DUnclasVANE FEAT TRANSFER Final ReportCSCL 20DUnclasEctors Corp.)175 pG3/340181365

. 、 •

TABLE OF CONTENTS

.

۲

<u>Section</u>	Title	<u>Page</u>
Ι.	Summary	1
II.	Introduction	2
III.	Hardware and Instrumentation3.1 Facility description3.2 Facility instrumentation and geometry3.3 Cascade description3.4 Film cooling geometry description3.5 Test vane instrumentation	3 3 4 8 8 14
IV.	Data Acquisition and Reduction	20 20
	 4.2 Data acquisition software and data reduction procedures 4.3 Heat transfer measurement technique 4.4 Data uncertainties 	20 22 24
۷.	Test Conditions5.1Heat transfer data test conditions	26 26
VI.	Discussion of Experimental Results 6.1 Heat transfer results 6.2 Throat passage pressure results	31 31 47
VII.	Conclusions and Recommendations	51
	Appendix A.Tabulated heat transfer dataAppendix B.Heat transfer data comparison plotsAppendix C.Tabulated throat passage static pressure data.	52 108 164
	Nomenclature	169
	References	172

I. SUMMARY

This report addresses the progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effects of downstream film cooling with and without leading edge showerhead film cooling.

Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on non-film cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters -- Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio -were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data from this contract provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the previous two studies.

The vane external heat transfer data obtained in this program indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex function of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil. The data obtained in this program and presented in this report illustrate the interaction of these variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

II. INTRODUCTION

The thermal design of contemporary high pressure turbine nozzle guide vanes clearly represents one of the more difficult engineering tasks in the design of any modern aircraft gas turbine. Aerodynamic and thermal analysis procedures currently available to turbine designers have deficiencies that do not permit a priori designs that achieve design goals without expensive experimental development iterations.

This study is the experimental portion of the third part of a combined analytical and experimental program initiated to address one particular aspect of the overall design problem; namely, the prediction of external convective heat transfer. In the initial program, Hylton et al (Ref 1) reported results of a study that emphasized the development of a more reliable procedure for determining convective heat transfer loads to nonfilm cooled airfoil geometries. In the first program, the experimental efforts included obtaining heat transfer data on two airfoil geometries at simulated engine conditions. In the second program, Turner et al (Ref 2) reported the study that developed a procedure to predict convective heat transfer for a leading edge film cooled airfoil geometry. As part of that program, a five-row simulated common plenum showerhead geometry was tested to determine the differences between the film cooled and non-film cooled heat transfer coefficient distribution downstream of the leading edge film cooling array. The present program examines the problem of convective heat transfer for discrete site pressure and suction surface injection with and without leading edge blowing.

The first step in the development of a prediction tool for a highly complex three-dimensional coolant jet/mainstream flow interaction is the availability of a relevant data base. Hence, this experimental study was conducted to generate a representative data base. Experiments were conducted in a 2-D linear cascade. The vane profile used is the same as the one used in the showerhead film cooled experiments in Ref 2 and the same as one of the two airfoils used in the nonfilm cooled experiments reported in Ref 1. The leading edge showerhead five row film cooling hole geometry in the present study is identical to the hole geometry of the second study. In addition, the airfoil had film cooling arrays on the suction and pressure side, each consisting of two rows of holes. The three film cooling arrays were fed by separate plenums. Hence, the data base generated in this study can therefore be viewed as extension of the data base generated in the first two programs. Heat transfer data were acquired downstream of the pressure and suction surface film cooling arrays at two exit Mach number conditions of 0.75 and 0.90 with true chord Reynolds number of order 10^6 . Also, the blowing strength and coolant temperature were varied to quantify jet tirbulence production and thermal dilution mechanisms. In addition to the leat transfer data, static pressure measurements on the vane surface and near the cascade throat were acquired for all test conditions.

The description of the hardware and instrumentation is given in detail in section III. The method of data acquisition and reduction is described in section IV. The test conditions are given in section V. The experimental results are presented and discussed in detail in section VI.

2

III. HARDWARE AND INSTRUMENTATION

This section provides a detailed description of the facility and hardware used in acquiring the heat transfer and vane surface and cascade throat static pressure data. A complete description of the cascade is given together with the locations of all facility and cascade instrumentation.

3.1 Facility Description

This experimental investigation was performed in the Allison Aerothermodynamic Cascade Facility (ACF). The purpose of this facility is to conduct experimental research in high-temperature turbine component models that embody advanced cooling techniques, aerodynamics, or materials. The experimental approach employs a 2-D model technique, with full dynamic similarity in freestream Mach number (Ma) and boundary layer Reynolds number (Re) effects, and provides an experimental method to separate the effects on local heat transfer.

The facility consists of a burner, a convergent section, a free-stream section with instrumentation and optical access, a test section with instrumentation, a quench zone with back pressure regulation and an exhaust system. The facility is shown schematically in Figure 1.

Figure 1. Schematic of the Aerothermodynamic Cascade Facility.

The Mach number and Reynolds number modeling considerations necessitate a burner with a large temperature, flow, and pressure range. This burner capability, coupled with back pressure regulating valve, allows experimental separation of free-stream Mach number and bourdary layer Reynolds number effects to accurately simulate a wide range of engine designs and operating conditions.

A constant cross section is provided downstream of the burner to establish uniform inlet velocity, temperature, and turbulence profiles. This section is provided with temperature-controlled cooled walls and isolates the test section from radiant heat transfer from the primary combustion zone. The walls of the test section are cooled with steam to keep them at, or close to, the vane surface temperature to prevent radiant exchange. The test section design is unique in that it incorporates both aerodynamic and heat transfer data acquisition in a single tunnel, thereby reducing costs and ensuring the correlation of heat transfer and aerodynamic data for the single set of

3.2 Facility Instrumentation and Geometry

The various flow circuits of the ACF incorporate standard inline instrumentation for measurement of flow rate, pressure, and temperature. Society of Mechanical Engineers (ASME) standard sharp-edged orifices are used throughout to provide flow-rate measurements. The orifices used to meter the secondary flow systems for the current tests were calibrated to provide flow measurement accuracy to $\pm 2\%$. Facility and rig pressures were measured using two Scanivalve pressure scanners; one with six modules, each capable of handling 48 individual absolute pressures, and the other, with two modules coupled together to handle 24 differential pressures. Pressure transducers of appropriate ranges matched to the current experiment were inserted in these modules. Each time a set of data was taken, the pressure transducers were calibrated using an online pressure calibration system consisting of four dead weight testers connected to the pressure scanners. The standard pressures from three of the dead weight testers were measured by each of the pressure transducers to obtain a new calibration before each set of data was acquired. There are 300 Chromel-Alumel (CA) thermocouple circuits available in the laboratory for temperature measurement. These circuits are coupled to the data acquisition system through temperature-stabilized reference junctions.

A two-axis computer-controlled traverse system permits surveys of inlet pressure and temperature fields to be made. Access at the test section exit plane allows the installation of a three-axis computer-controlled traversing across the entire exit plane. Specifications regarding facility instrumentation are detailed in Table I.

The flow path upstream of the cascade in the ACF takes the burner discharge from a 31.5 cm (12.4 in.) diameter through a 50.8 cm (20. in) long transition section to a 7.6 cm x 27.9 cm (3 in. x 11 in.) rectangular section. A photograph of the transition duct is shown in Figure 2. The rectangular section upstream of the cascade is 36.83 cm (14.50 in.) long and contains inlet instrumentation. A schematic of the inlet and test section, showing the relative positions of the inlet and exit instrumentation, is shown in

ORIGINAL PAGE IS OF POOR QUALITY

Table I. Aerothermodynamic cascade facility instrumentation

Pressure scanner	Scanivalve systems with 288 ports for absolute pressures and 24 ports for differential pressures.
Pressure transducers	Druck and Scanivalve, with ranges from 0-68.9 kPa to 0-689.4 kPa (0-10 psia to 0-100 psia)
Accuracy	<u>+</u> 0.06% BSL
Thermocouple channels Accuracy	$\pm 0.3^{\circ}C$ with calibration
Traversing gear	L.C. Smith 3-axis traversing system with computer interfaces. Discrete stepping capability to .001 of
Anemometers Survey probes	the traversing range. LDA Traversing CA thermocouple Traversing pressure or 5-hole cone probe

Figure 2. Burner-to-cascade inlet transition duct.

Figure 3. The inlet instrumentation consists of two inlet core total pressure rakes (each containing five total pressure proces), two inlet core temperature rakes (each containing five thermocouples), and eighteen endwall static pressure taps. The converging transition duct contains seven endwall static pressure taps. Thirty seven endwall static pressure taps are located in the endwall of the cascade at the exit plang. Six static pressure taps each are located at the cascade throat endwall to measure cascade throat pressures. Figure 4 shows a photograph giving the details of the endwall pressure taps.

Figure 3. Facility instrumentation schematic.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4. Details of the endwall static pressure taps at the exit plane and cascade throat.

3.3 Cascade Description

The three-vane cascade employed in this test, shown in Figure 5, was the C3X cascade previously used in the experimental studies reported in References 1 and 2. The center test vane was replaced with a new C3X vane which had suction side, leading edge, and pressure side film cooling arrays. The test vane was initially fabricated as a single piece. After all the film cooling holes and plenums and the ten radial cooling holes were machined, the vane was cut into a nose and a tail piece to form a thermal barrier between the film cooled nose piece and the rest of the vane. Photographs of the test vane are shown in Figure 6. The two pieces of the vane were held together by two pinned tabs mounted on each end of the vane. The two pin tabs were mounted before the vane was cut into two pieces in order to maintain the vane surface geometry.

The vane coordinates for the C3X airfoil are given in Table II. Figure 7 shows the cascade coordinate system used to define the airfoil shape. Table III lists additional geometry information for the cascade.

The test vane was internally cooled by an array of 10 radial cooling holes. The hole configuration is shown in Figure 8, which also depicts the finite element model (FEM) and the film cooling geometry. The radial cooling holes of each of the outer two slave vanes were supplied from a common plenum, whereas each hole in the test vane was supplied from a separate, metered line.

Flow splitters adjacent to the outer vanes and a tailboard were used to ensure periodicity. The exit plane static pressure taps provided information necessary to establish periodicity.

3.4 Film Cooling Geometry Description

The film cooling geometry for the test vane consisted of film cooling arrays on the leading edge, the suction surface, and the pressure surface. The leading edge film cooling geometry employed a showerhead array of five equally spaced rows of holes with the center row located at the predicted aerodynamic stagnation point. The hole array was staggered with the holes in the second row located midway (radially) between the holes in the first and the third rows. The holes were angled at 45 deg to the surface in the radial (spanwise) direction (slant angle). They were normal to the surface in the chordwise direction (skew angle). Coordinates of the film cooling hole rows are listed in Figure 8. The leading edge film cocling array was geometrically identical to the one tested in Reference 2. Geometry information for all film cooling arrays is detailed in Table IV.

Previous film cooling data of Reference 2 incicated that the ideal locations for the suction and pressure surface film cooling arrays would be just upstream of the suction and pressure surface recovery region respectively. These locations were determined to be 25.2% of the surface distance (as measured from the geometric stagnation point) on the suction side and 22.5% of the surface distance on the pressure side. Two cooling hole rows were centered at these points. The length-to-diameter ratio of the holes were kept the same as the showerhead hole length-to-diameter ratio. The suction surface holes were inclined at 35 degrees to the surface in the chordwise direction

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5. Photograph of the three vane C3X cascade.

TE88-1715

Figure 6. Leading edge and downstream film cooled C3X test vane.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Table II <u>C3X vane coordinates</u>

$R_{LE} = 1.168$ cm (0.460 in.) $R_{TE} = 0.173$ cm (0.068 in.)

Position					Position				
number	x cr	m (in.)	ycm	(in.)	number	x cr	m (in.)	ycm	(in.)
	· · · ·								
1	0.1097	(0.0432)	11.6548	(4.5885)	40	7.4849	(2.9468)	-0.0617	(-0.0243)
2	0.3894	(0.1533)	12.1890	(4.7988)	41	7.3188	(2.8814)	0.3559	(0.1401)
3	0.7658	(0.3015)	12.6764	(4.9907)	42	7.1483	(2.8143)	0.7737	(0.3046)
4	1.2723	(0.5009)	13.0233	(5.1273)	43	6.9736	(2.7455)	1.1895	(0.4683)
5	1.8743	(0.7379)	13,1376	(5.1723)	44	6.7950	(2.6752)	1.6035	(0.6313)
6	2.4707	(0.9727)	12.9939	(5.1157)	45	6.6116	(2.6030)	2.0155	(0.7935)
7	2.9835	(1.1746)	12.6538	(4.9818)	46	6.4237	(2.5290)	2.4254	(0.9549)
8	3.3985	(1.3380)	12.1976	(4.8022)	47	6.2309	(2.4531)	2.8329	(1.1153)
9	3.7376	(1.4715)	11.6817	(4.5991)	48	6.0328	(2.3751)	3.2380	(1.2748)
10	4.0272	(1.5855)	11.1364	(4.3844)	49	5.8296	(2.2951)	3.6406	(1.4333)
11	4.2885	(1.6884)	10.5766	(4.1640)	50	5.6203	(2.2127)	4.0401	(1.5906)
12	4.5326	(1,7845)	10.0094	(3.9407)	51	5.4051	(2.1280)	4.4364	(1.7466)
13	4.7648	(1.8759)	9.4369	(3.7153)	52	5.1834	(2.0407)	4.8290	(1.9012)
14	4.9870	(1.9634)	8.8605	(3.4884)	53	4.9548	(1.9507)	5.2177	(2.0542)
15	5.2019	(2.0480)	8.2814	(3.2604)	54	4.7191	(1.8579)	5.6020	(2.2055)
16	5.4110	(2.1303)	7.7003	(3.0316)	55	4.4760	(1.7622)	5.9817	(2.3550)
17	5.6157	(2.2109)	7.1176	(2.8022)	56	4.2248	(1.6633)	6.3563	(2.5025)
18	5.8171	(2.2902)	6.5336	(2.5723)	57	3.9654	(1.5612)	6.7249	(2.6476)
19	6.0160	(2.3685)	5.9487	(2.3420)	58	3.6975	(1.4557)	7.0874	(2.7903)
20	6.2126	(2.4459)	5.3632	(2.1115)	59	3.4204	(1.3466)	7.4430	(2.9303)
21	6.4074	(2.5226)	4.7767	(1.8806)	60	3.1339	(1.2338)	7.7909	(3.0673)
22	6.5997	(2.5983)	4.1897	(1.6495)	61	2.8374	(1.1171)	8.1308	(3.2011)
23	6.7894	(2.6730)	3.6015	(1.4179)	62	2.5314	(0.9966)	8,4615	(3.3313)
24	6.9756	(2.7463)	3.0122	(1.1859)	63	2.2149	(0.8720)	8.7826	(3.4577)
25	7.1575	(2.8179)	2.4221	(0.9536)	64	1.8885	(0.7435)	9.0935	(3.5801)
26	7.3335	(2.8872)	1.8301	(0.7205)	65	1.5519	(0.6110)	9.3932	(3.6981)
27	7.5024	(2.9537)	1.2357	(0.4865)	66	1.2052	(0.4745)	9.6815	(3.8116)
28	7.6624	(3.0167)	0.6391	(0.2516)	67	0.8494	(0.3344)	9.9578	(3.9204)
29	7.8115	(3.0754)	0.0411	(0.0162)	68	0.4999	(0.1968)	10.2116	(4.0203)
30	7.8161	(3.0772)	-0.0053	(.0.0021)	69	0.3848	(0.1515)	10.3035	(4.0565)
31	7.8082	(3.0741)	-0.0516	(-0.0203)	70	0.2822	(0.1111)	10.4094	(4.0982)
32	7.7879	(3.0661)	-0.0935	(.0.0368)	71	0.1938	(0.0763)	10.5273	(4.1446)
33	7.7572	(3.0540)	-0.1288	(-0.0507)	72	0.1212	(0.0477)	10.6556	(4.1951)
34	7.7180	(3.0386)	-0.1542	(-0.0607)	73	0.0650	(0.0256)	10.7920	(4.2488)
35	7.6736	(3.0211)	-0.1681	(-0.0662)	74	0.0264	(0.0104)	10.9342	(4.3048)
36	7.6269	(3.0027)	-0.1699	(-0.0669)	75	0.0063	(0.0025)	11.0802	(4.3623)
37	7.5816	(2.9849)	·0.1587	(-0.0625)	76	0.0046	(0.0018)	11.2278	(4.4204)
38	7.5408	(2.9688)	-0.1356	(-0.0534)	77	0.0216	(0.0085)	11.3741	(4.4780)
39	7.5077	(2.9558)	-0.1026	(-0.0404)	78	0.0569	(0.0224)	11.5171	(4.5343)

Table	III.
<u>Cascade</u>	<u>geometry</u>

Setting angle, deg	59.89	
Air exit angle, deg	72.38	
Throat, cm (in.)	3.292	(1.296)
Vane height, cm (in.)	7.722	(3.040)
Vane spacing, cm (in.)	11.773	(4.635)
Suction surface arc, cm (in.)	18.037	(7.101)
Pressure surface arc, cm (in.)	13.982	(5.505)
True chord, cm (in.)	14.493	(5.706)
Axial chord, cm (in.)	7.816	(3.077)

	Rac	dial cooling hol	es		-	- Ilm cooiing n	oles
Hole No.	U-cm (in.)	V-cm (in.)	Dia-cm (in.)	ပ	Hole No.	U-cm (in.)	V-cm (in.)
		(811 1) 000 0	0 630 (0 248)	1,118	1	3.592 (1.414)	2.024 (0.797)
•	2.8/0 (UCLI) 0/8.2	(0/1-1) 7667			5	1556 (1400)	1.631 (0.642)
2	2.733 (1.076)	3.998 (1.574)	0.630 (0.240)	0	1		C C C C C C C C C C C C C C C C C C C
	2.555 (1.006)	4.991 (1.965)	0.630 (0.248)	1.118	<u>.</u>	0.498 (0.196)	(c17.0) 1+c.0
) 4	1.364 (0.537)	4.788 (1.885)	0.630 (0.248)	1.118	*	0.211 (0.083)	0.828 (0.326)
r u	1 BEQ (0 736)	6 182 (2.434)	0.630 (0.248)	1.118	15	0.041 (0.016)	1.196 (0.471)
0	(001/0) 5001		0.630 (0.248)	1.118	16	0.005 (0.002)	1.600 (0.630)
9	(aca.n) aaa.l		0.000 (0.186)	000	17	0 109 (0.043)	1.994 (0.785)
7	1.412 (0.556)	9.235 (3.636)	(col.u) U/4.U	060.1	: :		TENE (1 TRO)
80	1.087 (0.428)	10.759 (4.236)	0.310 (0.122)	1.056	18	(077.0) 655.0	
o	0.737 (0.290)	12.253 (4.824)	0.310 (0.122)	1.056	19	0.643 (0.253)	3.891 (1.532)
ç	0.345 (0.136)	13.757 (5.416)	0.198 (0.078)	1.025			

Film cooled C3X finite element grid structure showing internal geometry. Figure 8.

ORIGINAL PAGE IS OF POOR QUALITY,

This country note of	<u>gcome cry</u>
<u>Leading edge geometric parameters</u>	Values
Rows of holes Hole diameter, cm (in.) Hole length, cm (in.) Hole pitch-to-diameter ratio (P/D) Hole spacing-to-diameter (S/D) Hole slant angle (α), deg Hole skew angle (β), deg	5 0.099 (0.039) 0.335 (0.132) 4.0 7.5 45 90
<u>Downstream geometric parameters</u>	Values
Rows of holes Hole diameter, cm (in.) Hole length, cm (in.) Hole pitch-to-diameter ratio (P/D) Hole spacing-to-diameter (S/D) Hole slant angle (α), deg Hole skew angle (β), deg Pressure surface Suction surface	2 0.099 (0.039) 0.335 (0.132) 4.0 3.0 90 20 35

Table IV. Film cooling hole geometry

while the pressure surface holes were at 20 degrees in the chordwise direction. Holes in both downstream arrays were normal to the surface in the spanwise direction.

Three supply plenums, each with a separate, metered line, were designed to feed the three film cooling arrays. This system was designed to provide the capability of individually controlling the blowing parameters of each array. The film coolant supply was piped through an electric heating system that provided the capability to vary the coolant supply temperature.

3.5 Test Vane Instrumentation

The heat transfer measuring technique used for this test does not make heat transfer measurements in the actual film cooled nose piece. Consequently, the film cooled area was thermally isclated from the rest of the airfoil. As mentioned before, the thermal barrier was achieved by cutting the test vane into two segments with the airfoil profile maintained in its original contour by two retaining bars pinned to the airfoil ends. Prior to testing, a thin, 0.254 mm (0.010 in.), shim was welded across the thermal barrier gap on both the pressure and suction surfaces. This provided a smooth continuous surface on the airfoil. Also, the gap was sealed at the two ends of the airfoil, thereby creating a sealed air gap between the film cooled region and the rest of the airfoil. The sealed air gap provided the thermal barrier. The method used to obtain heat transfer measurements is based on the work of Turner (Ref 3), who employed a 2-D plane of the test piece as a fluxmeter. The technique is implemented by measuring the internal and external boundary conditions of the test piece at thermal equilibrium and solving the steadystate heat conduction equation for the internal temperature field of the test piece. The heat transfer coefficient distribution can be directly obtained from the normal temperature gradient at the surface.

For the present study, the external boundary conditions were measured using thermocouples installed in grooves on the exterior surface of the test vane and in the thermal barrier on the tail piece of test vane. Average heat transfer coefficients and coolant temperatures for each of the 10 radial cooling holes provided the internal boundary conditions for the finite element solution. The heat transfer coefficient for each cooling hole was calculated from the hole diameter, measured coolant flow rate, and coolant temperature with a correction (Cr in Figure 8) applied for thermal entry region effects.

Figure 9 shows the distribution of the thermocouples for the C3X airfoil. The airfoil surface was instrumented with 123 0.51 mm (0.020 in.) diameter sheathed CA thermocouples, while the thermal barrier region was instrumented with 18 1.02 mm (0.040 in.) CA thermocouples. Eleven of the 123 thermocouples on the vane surface were redundant or double thermocouples. They were installed in critical areas near the film cooling holes and the thermal barrier. The thermocouple junctions were located in the fully 2-D region of the airfoil in a plane 0.254 cm (0.100 in.) off midspan. The redundant thermocouple junctions were located 0.635 mm (0.250 in.) away from midspan. Thermocouples were brought off the vane in 0.58 mm (0.023 in.) deep radial grooves covered with cement, and blended by hand to provide a smooth surface. In the case of the double or redundant thermocouples, the grooves were cut to a depth of 1.092 mm (0.043 in.) to accept two thermocouples. The vane was fabricated of ASTM type 310 stainless steel, which has a relatively low thermal conductivity, thereby minimizing the error introduced by the grooves.

Figure 9. Surface and thermal barrier thermocouple locations for film cooled C3X airfoil.

In addition to the thermocouples on the instrumentation plane, twelve extra thermocouples were placed on the suction and pressure surfaces, 1.905 mm (0.75 in.) on either side of the instrumentation plane at three axial locations. These and the instrumentation plane temperatures at the same axial locations provided a check on the validity of the two dimensionality of the heat transfer solution.

Each of the tubes supplying the radial cooling holes of the test vane was instrumented with two static pressure taps and two thermocouples at both the vane inlet and exit. The static pressure taps were located upstream of the thermocouples in all cases. The flow to each cooling tube was measured using a calibrated orifice meter.

Each film cooling plenum was instrumented with thermocouples and pressure taps at various locations to provide the coolant supply temperature and pressure. The flow rate to each plenum was measured using a calibrated orifice meter.

The test vane surface was instrumented with surface static pressure taps in addition to the heat transfer instrumentation. Forty-six taps were located around the airfoil outer surface in a plane 0.508 cm (0.200 in.) from midspan away from the thermocouple instrumentation. The pressure taps were located so that the taps would be downstream of a film cooling hole. The spacing was varied to provide a higher density of instrumentation in high pressure gradient regions. Figure 10 illustrates the relative locations of the surface pressure taps on the C3X airfoil. As in the case of the thermocouples, eleven of the 46 pressure taps were redundant or doubles and they were located around the film cooling holes and the thermal barrier. The double pressure taps were located behind the next adjacent cooling hole so as to maintain the similarity. Figure 11 shows the technique used to install the static pressure taps. Stainless steel tubing, 0.51 mm (0.020 in.) dia, was laid in a radial surface groove, and the end of the tubing was bent 90 deg to achieve surface orientation. The tube was secured to the adjacent vane surface by laser welding.

Figure 10. Surface pressure tap locations for the film cooled C3X airfoil.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 11. Installation of vane surface static pressure taps.

The excess tube length was then removed and dressed down to ensure a flush local condition. The remainder of the groove was then filled with cement and hand blended smooth with airfoil surface similar to the thermocouple installations. In cases where there were double pressure taps, a deeper groove was cut in order to lay two stainless steel tubes, one on top of the other.

In order to measure the spanwise variation of the static pressure on the airfoil at the cascade throat, 4 seven element pressure rakes were designed and fabricated using 0.51 mm (0.020 in.) stainless steel tubing. These rakes were positioned in a 2.31 mm (0.091 in.) wide and 1.45 mm (0.057 in.) deep groove at the vane throat and laser welded using a 0.254 mm (0.010 in.) shim cover. Figure 12 shows a photograph of a seven element rake before and after being installed in the vane surface. Two of these rakes were mounted on the test vane at the throat on the pressure and suction surfaces and one on each slave vane on the surfaces adjacent to the test vane. A photograph of the pressure surface of the airfoil following installation of all surface thermocouples and pressure taps is shown in Figure 13.

Figure 12. A seven element rake before and after being installed in the vane surface.

TE88-1713

ORIGINAL PAGE IS OF FOOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Figure 13. Pressure surface of instrumented airfoil

IV. DATA ACQUISITION AND REDUCTION

<u>4.1 Data Acquisition System</u>

The control room of the ACF contains a dedicated computer-controlled data acquisition system shown schematically in Figure 14. Data input signals are multiplexed by Hewlett-Packard (HP) Model 3497 440-channel random access signal scanner, with analog to digital conversion performed by an HP 3456A integrating digital voltmeter. The computer main frame is a Model HP 1000 Series A700 running under the RTE-A operating system.

Input/output devices complementing this central processing unit consist of a HP 7946 24 mega byte hard disk drive with an integral tape backup, HP 2563A graphics printer, HP 2526 graphics monitor, HP 9895 dual 9-inch floppy disk drives and a HP 7475 6-pen plotter. A multitask, facilityoriented software system that contains general subprograms to do all routine control measurement tasks exists. The system is flexible and provides for real-time facility monitoring and diagnosis of instrumentation or control problems. Software routines developed to meet specific data acquisition requirements of individual experiments are incorporated into the main system as interchangeable program segments.

4.2 Data Acquisition Software and Data Reduction Procedures

The data acquisition software written for this experimental program is menu-driven with multiple options that could be chosen by the operator. These options also include fairly standard tasks such as transducer calibrations, block or random scans of temperatures and pressures, and facility operation point monitoring. Specialized options include tasks such as individual checkout of film cooling plenum data, radial cooling tube data, plotting of surface temperature and surface static temperature profiles, full heat transfer data acquisition, and storage and analysis of all data. The heat transfer data acquisition task is operated in three phases.

The first phase of the heat transfer data acquisition task monitored and displayed the cascade operating condition as the desired run conditions were being established. The facility instrumentation used to determine the cascade operating point was described previously in Sect on III in sub-section "Facility Instrumentation and Geometry." Cascade inlet total pressure and temperature were based on readings of the upstream core flow rakes. The cascade inlet static pressure was defined as the average of readings at 18 endwall static pressure taps near the upstream core rakes. The average exit pressure was determined by obtaining an integrated average of the endwall static pressure taps between midlower-passage to midupper-passage at the cascade exit plane. The vane average wall temperature was defined as the average of the midspan vane surface temperatures Coolant total pressure and temperature were taken as the average of the coo ant plenum pressure and temperatures, respectively. The operating conditions of the Mach number, the Reynolds number (based on true chord), coolant-to-free-stream pressure ratio, and coolant-to-free-stream temperature ratio were calculated from these averaged quantities and displayed continuously or the monitor during the setup procedure until a satisfactory steady-state condition was achieved. The

Figure 14. Schematic of the computer controlled data acquisition system.

change in temperature of the vane surface over a fixed period of time was then monitored until thermal equilibrium was established.

The second phase of the heat transfer data acquisition software sampled, averaged, and stored the raw pressure and temperature data after the desired steady-state operating conditions were achieved. All of the data were read in a single sweep that was repeated several times to provide time averaged, steady-state values. The averaged values for a given run were then stored in a permanent file on magnetic floppy disks.

All necessary calculations were performed in the third phase. The final run conditions, vane surface static pressure distributions, and temperature distributions were established. The changes in vane surface temperatures between readings were checked to verify thermal stability during data acquisition. Mass flowrates for the radial cooling tubes and the film cooling plenums were calculated from the orifice meter data.

The average coolant plenum to free-stream pressure ratio and temperature ratio were calculated. Also film cooling parameters such as discharge coefficients and blowing ratio (mass flux ratio) based on coolant plenum and local free-stream conditions were also determined. The average coolant temperature for each radial tube at the vane surface temperature measurement plane was calculated, assuming a linear temperature rise through the vane cooling hole. The Reynolds number for each cooling tube was determined from the measured flowrate, cooling hole diameter, and vicosity based on the average coolant temperature. The Prandtl number (Pr) for the coolant flow was calculated from the average ccolant temperature. The Nusselt number (Nu_D) was then calculated from the following relationship for turbulent flow in a smooth pipe:

$$Nu_{D} = Cr (0.022 \ Pr^{0.5} \ Re_{D}^{0.8})$$
(1)

The correction factor (Cr) is a function of Prandtl number, the tube diameter Reynolds number (Re_D), and the streamwise coordinate at the cooling hole diameter (x/D), which corrects the Nu expression for a fully developed thermal boundary layer to account for thermal entrance region effects. The correction factor found in Ref 4 ranged from approximately 1.03 to 1.12 for the Prandtl number, tube diameter Reynolds number, and streamwise coordinate at the cooling hole diameter values encountered in this experiment. The average heat transfer coefficient for each cooling hole was then calculated from the Nusselt number, hole diameter, and thermal conductivity.

After the data acquisition task is completed, all of the data are transferred to an HP 1000 Series A900 computer in the Allison Research Laboratories for further analysis and plotting.

4.3 Heat Transfer Measurement Technique

The heat transfer measurement technique, discussed briefly in Section 3.5, used a finite element solution of the 2-D Laplacian heat conduction equation for the vane internal temperature field using measured surface temperatures and internal cooling hole heat transfer coefficients as boundary conditions. The technique is illustrated in Figure 15. Inputs to the program, in addition to the measured inlet and exit boundary conditions, were the 2-D vane cross-sectional geometry, thermal conductivity of the material, and the average coolant temperature for each radial hole.

A FEM of the midspan cross section of the airfoil was constructed by using Allison's computer aided design/computer aided manufacturing (CAD/CAM) facilities. The finite element grids used for the present film cooled airfoil were previously shown in Figure 8. A total of 179 nodes were located around the airfoil outer surface, while 41 nodes were located on the thermal barrier. A special effort was made to arrange sufficient elements in the thin trailing edge region to ensure the quality of the solution in that region. Also, the thermal barrier was designed in a "Z" shape to ease the construction of finite element grids.

A linear fit of all measured midspan surface temperatures for a given run was used to provide the temperature for each surface nodal point of the FEM. Since the finite element program was available on the Allison Data Center IBM computer, the input to the finite element program was created on the HP 1000 Series A900 computer and then transferred to IB4 using a telephone link. The

Figure 15. Heat transfer data reduction technique.

heat transfer solution from the finite element program, which is the normal heat conduction into the vane surface, is transferred back to the HP 1000 via the telephone line. The hot gas side local heat transfer coefficients were derived by equating the surface normal heat flux to the local convection.

4.4 Data Uncertainties

An uncertainty analysis was performed for the key experimental parameters, using the technique of Kline and McClintock (Ref 5). The accuracy of the external heat transfer coefficient measurement is primarily dependent on the accuracy of the external vane surface and free-stream gas temperature measurements, the geometry description for the finite element program, the calculation of the heat transfer coefficients for the radial cooling holes, and the knowledge of the thermal conductivity of the vane material. Details of the uncertainties of the individual measurements are discussed in Reference 1. Using the uncertainties of the individual measurements, a calculation of the overall uncertainty in the external heat transfer coefficient was made using the methods of Ref 5. Due to variations in the airfoil thickness along the chord, it was necessary to calculate the uncertainty at several points. The maximum uncertainty, based on minimum wall thickness (distance from cooling hole to exterior surface), was calculated at various regions on the airfoil. The values ranged from \pm 7.1% to \pm 22.5% as shown in Table V. The uncertainties increase significantly beyond midchord due to a decrease in airfoil thickness.

Uncertaiı	nty in heat transfe	er coefficient measu	irements
Pressure	e surface	Suction s	surface
Percent surface arc	Percent uncertainty	Fercent surface arc	Percent uncertainty
26-34 34-45 45-56 56-67 67-78 78-89 89-100	$\begin{array}{r} \pm 11.8 \\ \pm 7.1 \\ \pm 8.5 \\ \pm 9.9 \\ \pm 11.7 \\ \pm 16.7 \\ \pm 22.5 \end{array}$	30-36 36-42 42-48 48-57 57-65 65-74 74-82 82-91 91-100	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	Uncertainty in	test parameters	
Reynolds nu Mach number Wall to gas Coolant to Coolant to	umber, Re , Ma ; temperature ratio freestream pressur freestream tempera	, T _w /T _g e ratio, P _c /P _t ture ratio, T _c /T _g	± 3.1% ± 0.9% ± 2.0% ± 1.0% ± 4.0%

Table V. <u>Experimental Uncertainties</u>

The uncertainty was also calculated for the test parameters, based on the methods of Reference 5. The results are given in Table V. The uncertainties presented in this subsection are intended to provide the analyst with an indication of the uncertainty in absolute levels in using the data for verification purposes. In comparing data runs for a given cascade (i.e., looking for Reynolds number trends, etc), the uncertainty in the comparisons is considerably less than the values just described. This difference is due to the fact that several of the variables contributing to the uncertainty do not change from run to run. For example, an error of 3% in the airfoil thermal conductivity would result in an error in the absolute value of the heat transfer coefficient, but would be of the same order for each run. Thus comparisons of runs from a given cascade would not be affected. Reproducibility for a given cascade is on the order of $\pm 2\%$.

V. TEST CONDITIONS

The experimental results presented in this study were obtained at different test conditions with the variable parameters being exit Reynolds number, exit Mach number, coolant-to-gas absolute temperature ratio and coolant-to-gas total pressure ratio. Each nominal test condition is represented by a five-digit numeric code. Each numeric digit of the code corresponds to one of the corresponds to the exit Mach number, the second to the exit Reynolds number, the third to coolant to gas temperature ratio of the furth to the plenum (P_c, $|e/P_t|$), and the fifth to the coolant to free-stream total pressure ratio of the result of the two'downstream film cooling plenums (P_c, d_s/P_t). Exit Reynolds numbers numbers are based on measured inlet total pressure and mid-passage to midat a nominal gas stream temperature of 700°K (1260°R), and a turbulence intensity level of 6.5%, based on LDA measurements taken previously as reported in

5.1 Heat Transfer Data Test Conditions

The nominal run conditions where heat transfer data were obtained are shown in a graphical form in Figure 17. The actual run conditions corresponding to each five-digit code are given in Table VI. In Table VI-A the cascade conditions are given by the inlet total pressure, P_t1 , the gas stream inlet total temperature, T_t1 , the inlet and exit Mach numbers, Ma_1 and Ma_2 ,

	(Control variable	e by position			
Code No.	Position 1 Ma ₂	Position 2 Re ₂ x 10 ⁻⁶	Position 3 T _c /T _g	Position 4 P _{c,le} /P _t	Positio Pc,d	n 5 s/Pt
					SS	ps
0			No coolant flow	1.00	1.00	1.00
1			Min			
2			Med			
3	0.75	1.5	Max	1.02	1.02	1 02
4	0.90	2.0		1.05	1.05	1.02
5		2.5		1.10	1 10	1.00
6					1 30	1.10
7					1.50	1.30
8					1.50	1.50
					1.70	1.70

Figure 16. Control variable code description.

the inlet and exit Reynolds number based on the true chord Re_1 and Re_2 , and the arc-distance weighted average wall-to-gas absolute temperature ratio, T_w/T_g . Table VI-B shows the actual secondary flow conditions represented by the coolant-to-gas absolute temperature ratio, T_c/T_g , the average coolant-tofree-stream total pressure ratio, P_c/P_t , and film coolant (clnt) mass flow rate for each of the three plenums supplying the suction surface, the leading edge, and the pressure surface film cooling arrays.

The cascade Reynolds number range was achieved by varying the cascade flowrate from approximately 2.27 kg/s (5 lbm/sec) to 4.54 kg/s (10 lbm/sec). At a given Reynolds number condition, exit Mach number levels were independently established by adjusting the cascade exit pressure ratio with a controllable exhaust valve. The coolant-to-free-stream total pressure ratio was varied by controlling the film cooling mass flow rate to each plenum. The coolant-to-gas absolute temperature ratio parameter was controlled by a single electric heating system for the three plenums. The coolant-to-gas absolute temperature ratio from plenum due to each plenum requiring a different coolant mass flow rate to achieve the prescribed coolant-to-gas total pressure ratio. Also, some further variations in T_c/T_g occurred between test conditions due to the changes in the influence of the test hardware on the onboard coolant supply temperature as other parameters were varied.

Figure 17. Text matrix for heat transfer data

Table VI <u>Summary of heat transfer run conditions</u>

A. Cascade conditions

RUNCODE	P	r1	T	 T1	Maı	Reı	 Mao	Re2	Τ/Τ.
	kPa	psia	ĸ	°R	1	×10 ⁻⁶		x10 ⁻⁶	w [,] y
34000	304.65	44.19	707.	1272.	0.17	0.57	0.75	1.99	0.81
34103	300.73	43.62	703.	1266.	0.19	0.64	0.75	1.97	0.77
34104	303.81	44.06	702.	1263.	0.19	0.63	0.75	2.00	0.76
34105	302.33	43.85	697.	1254.	0.18	0.61	0.75	2.00	0.76
34135	305.81	44.35	701.	1201.	0.18	0.62	0.75	2.01	0.75
34155	310 17	44.43	703.	1265.	0.10	0.02	0.74	2.00	0.75
34303	304.81	44.21	706.	1270	0.17	0.057	0.75	2.03	0.70
34304	303.48	44.02	711.	1280.	0.17	0.56	0.75	1.97	0.80
34305	307.19	44.55	700.	1260.	0.17	0.60	0.75	2.03	0.80
43000	211.65	30.70	704.	1267.	0.19	0.46	0.91	1.51	0.76
43103	215.23	31.22	716.	1289.	0.19	0.45	0.89	1.49	0.73
43104	211.90	30.73	705.	1269.	0.19	0.45	0.91	1.51	0.72
43105	218.15	31.64	703.	1266.	0.19	0.46	0.89	1.55	0.72
43135	213.04	30.99	705.	1268.	0.19	0.45	0.90	1.52	0.71
43155	218.31	31.66	702	1263	0.19	0.44	0.90	1.52	0.71
43303	214.71	31.14	709.	1277.	0.18	0.43	0.90	1.52	0.74
43304	214.72	31.14	707.	1273.	0.19	0.44	0.90	1.52	0.74
43305	214.66	31.13	706,	1270.	0.19	0.44	0.90	1.52	0.74
44000	280.35	40.66	709.	1277.	0.19	0.59	0.89	1.97	0.81
44103	279.12	40.48	709.	1276.	0.18	0.55	0.89	1.96	0.76
44104	283.24	41.08	709.	12/6.	0.18	0.56	0.90	2.00	0.76
44105	284 14	40.03	703.	1270.	0.20	0.61	0.89	1.99	0.75
44107	281.08	40.77	707.	1273.	0.21	0.64	0.89	1.98	0.73
44108	281.94	40.89	703.	1266.	0.20	0.63	0.89	2.00	0.73
44133	284.68	41.29	705.	1268.	0.18	0.56	0.92	2.03	0.76
44135	281.55	40.84	705.	1269.	0.20	0.62	0.90	2.00	0.75
44144	285.22	41.37	704.	1267.	0.19	0.61	0.90	2.03	0.76
44145	290 05	40.00	705.	1269.	0.20	0.61	0.89	1.98	0.76
44203	282 02	40.75	705.	1200.	0.19	0.00	0.90	2.00	0.75
44204	282.17	40.93	705.	1270.	0.18	0.56	0.90	2 00	0.77
44205	285.64	41.43	709.	1275.	0.18	0.56	0.90	2.01	0.77
44303	279.38	40.52	697.	1254.	0.17	0.54	0.90	2.01	0,79
44304	282.96	41.04	701.	1262.	0.17	0.53	0.89	2.01	0.79
44305	284.4/	41.26	/02.	1263.	0.18	0.57	0.90	2.03	0.79
44300	280.54	40.09	702.	1264.	0.21	0.64	0.90	2.00	0.77
44308	283 93	40.75	703.	1200.	0.21	0.64	0.90	2.00	0.78
44333	282.93	41.04	710.	1279	0.17	0.04	0.09	1.90	0.70
44344	285.13	41.35	701.	1263.	0.17	0.54	0.89	2.03	0.79
44355	284.02	41.19	702.	1264.	0.18	0.56	0.90	2.02	0.79
45000	355.67	51.59	696.	1253.	0.19	0.76	0.92	2.58	0.80
45103	350.34	50.81	705.	1270.	0.18	0.70	0.89	2.48	0.76
45104	320.30	50.82	703.	1265.	0.18	0.68	0.89	2.49	0.76
45135	350.24	50.22	699. 699.	1258.	0.18	0.70	0.89	2.48	0.75
45145	352 18	51.08	698	1256	0.18	0.72	0.90	2.01	0.75
45155	348.53	50.55	698.	1256.	0.18	0.71	0.90	2.50	0.75
45303	350.99	50.91	702.	1264.	0.18	0.71	0.90	2.50	0.79
45304	350.39	50.82	704.	1266.	0.18	0.70	0.89	2.49	0.79
45305	351.35	50.96	701.	1263.	0.18	0.70	0.90	2.51	0.79

Table VI (contd) Summary of heat transfer run conditions

B. Secondary flow conditions

								* * * * * *				
RUN COC	E Pc/Pt	st r _c /r _g	JCTION SIDE CLNT F kg/sec	LOW RATE tbm/sec	P _c /Pt	LEADI T _c /Tg	NG EDGE CLNT FI kg/sec	LOW RATE ibm/sec	Pc/Pt	PRESSURI T _c /Tg	: SIDE CLNT FI kg/sec	.OW RATE lbm/sec
00072	1.000	1.00	0.000E+00	0.000E+00	1.000	1.00	0.000E+00	0.000E+00	1.000	1.00	0.000E+00	0.000€+00
34103	1.025	- - - 0	0.156E-01	0.344E-01	1.000	1.00	0.000E+00	0.000E+00	1.021	0.70	0.671E-02	0.148E-01
34104	1.047	0.64	0.166E-01	0.366E-01	1.000	1.00	0.000E+00	0.000E+00	1.050	0.69	0.905E-02	0.200E-01
34105	1.100	0.66	0.168E-01	0.369E-01	1.000	1.00	0.000E+00	0.000E+00	1.102	0.69	0.116E-01	0.255E-01
34135	1.100	0.65	0.171E-01	0.377E-01	1.019	0.75	0.506E-02	0.111E-01	1 102	0.68	0.118E-01	0.259E-01
34145	1.097	0.65	0.169E-01	0.373E-01	1.049	0.73	0.736E-02	0.162E-01	1.100	0.68	0.116E-01	0.256E-01
34155	1.099	0.67	0.169E-01	0.373E-01	1.099	0.73	0.102E-01	0.224E-01	1.101	0.70	0.117E-01	0.258E-01
34303	1.019	0.86	0.1336-01	0.292E-01	1.000	1.00	0.000E+00	0.000E+00	1.020	0.83	0.570E-02	0.126E-01
34304	1.048	0.86	0.137E-01	0.301E-01	1.000	1.00	0.000E+00	0.000E+00	1.050	0.84	0.771E-02	0.170E-01
34305	1.102	0.87	0.151E-01	0.333E-01	1.000	1.00	0.000E+00	0.000E+00	1.102	0.85	0.105E-01	0.231E-01
43000	1.000	1.00	0.000E+00	0.000E+00	1.000	1.00	0.000E+00	0.0006+00	1.000	1.00	0.000E+00	0.000E+00
43103	1.022	0.66	0.120E-01	0.264E-01	1.000	1.00	0.000E+00	0.000E+00	1.020	0.71	0.446E-02	0.983E-02
43104	1.064	0.67	0.124E-01	0.272E-01	1.000	1.00	0.000E+00	0.000E+00	1.053	0.70	0.628E-02	0.138E-01
43105	1.100	0.67	0.132E-01	0.291E-01	1.000	1.00	0.000E+00	0.000E+00	1.098	0.70	0.831E-02	0.183E-01
43135	1.105	0.65	0.131E-01	0.289E-01	1.018	0.67	0.376E-02	0.829E-02	1.102	0.68	0.835E-02	0.184E-01
43145	1.110	0.66	0.131E-01	0.289E-01	1.051	0.68	0.557E-02	0.123E-01	1.098	0.69	0.814E-02	0.179E-01
43155	1.091	0.66	0.131E-01	0.289E-01	1.095	0.68	0.749E-02	0.165E-01	1.094	0.69	0.822E-02	0.181E-01
43303	1.022	0.85	0.1066-01	0.233E-01	1.000	1.00	0.000E+00	0.000E+00	1.021	0.80	0.447E-02	0.985E-02
43304	1.050	0.84	0.109E-01	0.241E-01	1.000	1.00	0.000E+00	0.000E+00	1.050	0.81	0.586E-02	0.129E-01
43305	1.110	0.86	0.117E-01	0.258E-01	1.000	1.00	0.000E+00	0.000E+00	1.106	0.83	0.784E-02	0.173E-01
00077	1.000	1.00	0-000E+00	0.000E+00	1.000	1.00	0.000E+00	0.000E+00	1.000	1.00	0.000E+00	0.000E+00
44103	1.020	0.68	0.1396-01	0.307E-01	1.000	1.00	0.000E+00	0.000E+00	1.019	0.72	0.578E-02	0.127E-01
44104	1.050	0.67	0.1496-01	0.328E-01	1.000	1.00	0.000E+00	0.000E+00	1.046	0.71	0.790E-02	0.174E-01
44105	1.103	0.68	0.1666-01	0.365E-01	1.000	1.00	0.000E+00	0.000E+00	1.101	0.71	0.111E-01	0.244E-01
44106	1.292	79-0	0.202E-01	0.444E-01	1.000	1.00	0.000E+00	0.000E+00	1.297	0.68	0.180E-01	0.397E-01
44107	1.524	0.63	0.246E-01	0.542E-01	1.000	1.00	0.000E+00	0.000E+00	1.505	0.66	0.230E-01	0.506E-01
44108	1.635	0.63	0.270E-01	0.595E-01	1.000	1.00	0.000E+00	0.000E+00	1.692	0.66	0.277E-01	0.611E-01

Table VI (contd) Summary of heat transfer run conditions

B. Secondary flow conditions (contd)

...... lbm/sec 0.134E-01 0.230E-01 0.236E-01 0.181E-01 0.237E-01 0.174E-01 0.133E-01 0.227E-01 0.128E-01 0.166E-01 0.217E-01 0.356E-01 0.440E-01 0.5205-01 0.127E-01 0.166E-01 0.217E-01 0.000E+00 0.165E-01 0.227E-01 0.301E-01 0.294E-01 0.311E-01 0.297E-01 0.147E-01 0.199E-01 0.270E-01 CLNT FLOW RATE 0.107E-01 0.608E-02 0.104E-01 0.107E-01 0.821E-02 0.200E-01 0.604E-02 0.103E-01 0.987E-02 0.790E-02 0.582E-02 0.754E-02 0.162E-01 0.236E-01 0.576E-02 0.982E-02 0.000E+00 0.748E-02 kg/sec 0.752E-02 0.135E-01 0.103E-01 0.141E-01 0.1376-01 0.133E-01 0.901E-02 0.668E-02 0.123E-01 PRESSURE SIDE 1,1 c/1 0.69 0.76 0.71 0.71 0.71 0.69 0.77 0.78 0.82 0.83 0.84 0.86 0.84 58° 0 0.83 0.83 0.83 1.8 0.70 0.69 0.67 0.68 0.71 0.68 0.82 0.84 0.84 P_c/Pt 1.020 1.09 1.050 1.099 1.050 1.100 1.101 1.021 1.021 1.052 1.105 1.293 1.476 1.636 1.020 1.050 1.000 1.102 1.019 1.054 1.099 1.110 1.019 1.102 1.050 1.095 1.105 lbm/sec 0.107E-01 0.102E-01 0.155E-01 0.149E-01 0.000E+00 0.000E+00 0.209E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.104E-01 0.141E-01 0.000E+00 0.000E+00 0.189E-01 0.000E+00 0.000E+00 CLNT FLOW RATE 0.148E-01 0.287E-01 0.200E-01 0.000E+00 0.000E+00 0.000E+00 0.485E-02 0.704E-02 0.464E-02 0.000E+00 0.675E-02 0.949E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 kg/sec 0.000E+00 0.000E+00 0.474E-02 0.638E-02 0.000E+00 0.000E+00 0.857E-02 0.000E+00 0.672E-02 0.908E-02 0.130E-01 0.000E+00 00+30C0-0 0-3000.0 LEADING EDGE 1_c/1 6.3 0.75 0.74 0.74 0.72 1.00 1.00 1.00 1.00 1.00 1.0 1.00 1.00 1.00 0.86 0.86 0.85 1.00 1.0 1.0 1.00 0.65 0.64 1.0 9.0 1.0 1.00 P_c/Pt .018 1.050 1.019 I.051 1.103 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.021 1.048 1.099 1.000 000-1 000-1 000.1 1.021 1.046 .000 1.000 .105 1.000 lbm/sec 0.319E-01 0.351E-01 0.342E-01 0.332E-01 0.352E-01 0.3086-01 0.330E-01 0.298E-01 0.282E-01 0.294E-01 0.314E-01 0.406E-01 0.460E-01 0.516E-01 0.278E-01 0.296E-01 0.315E-01 0.000E+00 0.421E-01 CLNT FLOW RATE 0.462E-01 0.497E-01 0.483E-01 0.496E-01 0.517E-01 0.375E-01 0.390E-01 0.426E-01 0.145E-01 SUCTION SIDE 0.159E-01 0.150E-01 0.155E-01 0.160E-01 0.135E-01 kg/sec 0.150E-01 0.1336-01 0.142E-01 0.140E-01 0.128E-01 0.184E-01 0.209E-01 0.234E-01 0.126E-01 0.134E-01 0.143E-01 0.000E+00 0.191E-01 0.210E-01 0.226E-01 0.225E-01 0.219E-01 0.234E-01 0.170E-01 0.1776-01 0.193E-01 1,1 c/1 0.67 0.67 0.67 0.68 0.66 б.3 0.76 0.77 0.86 0.85 0.84 0.82 0.85 0.85 0.85 0.85 1.8 0.84 0.67 0.67 0.66 2.0 0.65 0.66 0.87 0.89 0.86 P_c/Pt 1.020 1.099 1.052 1.097 1.021 1.050 1.106 1.101 1.024 1.054 1.106 1.301 1.493 1.614 1.024 1.051 1.101 1.00 1.016 1.063 1.102 1.089 089.1 1.118 .021 1.052 .108 RUN CODE 44133 44135 77177 44145 44155 44205 44303 44203 44204 44304 44305 44306 44307 44308 100011 45000 44344 44355 45104 45103 45135 45105 45145 45155 (5303 45304 45305

VI. DISCUSSION OF EXPERIMENTAL RESULTS

6.1 Heat Transfer Results

Heat transfer data from this experimental program are tabulated in Appendix A. Included in the tabulation are the heat transfer coefficient distributions and vane surface temperature distributions. The location of each measurement is expressed as a percent of surface length as measured from the geometric stagnation point defined as x=0 point in Figure 7, and a percent of axial chord. Appendix A also contains tabulated discharge coefficient and blowing ratio data for the film coolant flow. The baseline (i.e., no discrete injection) heat transfer distribution plots and all data comparison plots showing the effects of downstream film cooling with and without leading edge film cooling are contained in Appendix B, although some representative data comparison plots are presented and discussed in this section.

The goal of presenting the heat transfer results is to isolate the differences between non-film cooled and film cooled (in this case, downstream film cooling with and without leading edge injection) heat transfer downstream of the suction and pressure side film cooling arrays. This goal is achieved, as done before in Reference 2, by calculating the ratio of the experimentally determined local Stanton number for cases where coolant is being ejected to the local Stanton number determined for the case where no coolant is added.

Rather than simply form the film cooled Stanton number to non-film cooled Stanton number ratio (St_{FC}/St_{NFC}), which would take on values about a "no difference" value of unity, an alternate parameter referred to as Stanton number reduction (SNR) is used. SNR is defined as

(2)

When SNR is greater or less than zero, it implies reduced or increased heat transfer levels, respectively. When SNR is equal to zero, it implies no difference in the heat transfer level. Forming SNR values along the entire test surface gives the actual SNR distribution for the airfoil. In addition, if the film cooled Stanton number to nonfilm cooled Stanton number ratio were determined using data obtained at equivalent exit Mach number and exit Reynolds number conditions, SNR would be approximately equal to the actual heat transfer coefficient reduction,

$$SNR = 1 - (h_{FC}/h_{NFC})$$

(3)

because $(\mathbf{P}_{\infty}c_{p}u)_{e,NFC}/(\mathbf{P}_{\infty}c_{p}u)_{e,FC}$ would be near unity. SNR results shown here and in Appendix A and B were formed by using the above equation.

Prior to obtaining film cooled heat transfer data, baseline data (i.e., without film cooling) were obtained at the four baseline conditions as shown in Figure 17. Starting first with the exit Mach number effects, typical baseline measured surface static pressure distributions corresponding to the

two cascade expansion ratios tested are shown in Figure 18 and tabulated in Table VII. The percent surface distance in Figure 18 and all figures that follow is measured from the geometric stagnation point. As observed in References 1 and 2, the primary effect of exit Mach number variations is to alter the suction surface pressure distribution downstream. The resultant effect on the measured baseline heat transfer is shown in Figure 19. In this figure and in other similar figures, the vertical dashed lines mark the locations of the film cooling hole rows and the vertical solid lines mark the locations of the thermal barrier on the pressure and suction surfaces. On the suction surface, the level of heat transfer coefficient decreases with increasing exit Mach number due to different static pressure distribution. On the pressure surface, much less variation in heat transfer due to variation in Mach number is noticed, again caused by lesser variation in the static pressure distribution.

The effect of exit Reynolds number variation on the baseline heat transfer coefficient distribution is shown in Figure 20. As expected, the overall heat transfer levels systematically increase as the exit Reynolds number increases.

The present heat transfer data matches reasonably well with the data of References 1 and 2 at surface percentage distances greater than 50% on both suction and pressure surfaces. However at surface distances less than 50%, the differences in geometry of the film cooling positions between the vane of the present study and the previous studies causes differences in absolute heat

Figure 18. The effects of exit Mach number variation on the C3X vane baseline surface static pressure distribution.
% Surface distance	% Axial chord	P _s /P _t Ma ₂ = 0.75	0.90
Suction su 1.22 3.47 6.29 11.53 15.26 19.81 31.81 34.36 37.73 47.98 54.81 61.67 68.00 75.32 80.63 89.00	urface 0.27 2.11 5.23 13.60 20.91 30.98 50.00 52.76 56.08 65.14 70.65 75.97 80.74 86.13 89.94 95.68	0.9946 0.9807 0.9467 0.8406 0.6924 0.5669 0.5530 0.5839 0.6023 0.6367 0.6474 0.6606 0.6655 0.6699 0.6677 0.6754	0.9942 0.9804 0.9452 0.8287 0.6711 0.5333 0.4210 0.5106 0.5092 0.5271 0.5398 0.5564 0.5626 0.5639 0.5615 0.5717
93.74	98.68	0.6764	0.5742
Pressure 1.34 4.25 7.19 10.11 27.33 36.77 53.61 63.02 70.44 79.23 87.31 97.06	surface 0.22 1.99 5.36 9.62 33.04 44.32 61.89 70.51 76.80 83.76 89.77 96.51	1.0000 0.9950 0.9892 0.9880 0.9830 0.9734 0.9456 0.9048 0.8745 0.8233 0.7567 0.6625	1.0000 0.9945 0.9873 0.9857 0.9814 0.9696 0.9386 0.8870 0.8488 0.7901 0.7014 0.5553

Table VII. C3X vane surface static pressure data

transfer data. In the present study during baseline runs, there was a developing thermal boundary layer beginning at the thermal barrier at about 20-25% surface distances on both surfaces causing the differences in absolute heat transfer levels at surface distances less than 50%. The origination of the thermal boundary layer is shown by the step change in temperature across the thermal barrier in Figure 21, which gives the vane surface-to-gas absolute temperature ratio (T_W/T_g) distribution at the baseline condition corresponding to an exit Mach number (Ma₂) of 0.9 and exit Reynolds number (Re₂) of 2.0x10°. Also, the decreasing slope of the heat transfer coefficient, in Figures 19 and 20, downstream of the thermal barrier on both surfaces show the effect of the developing thermal boundary layer.

Figure 19. The effects of exit Mach number variation on the C3X vane baseline heat transfer coefficient distribution.

Figure 20. The effects of exit Reynolds number variation on the C3X vane baseline heat transfer coefficient distribution.

Also in Figure 21, a cyclic variation in vane surface temperatures is seen near the trailing edge on both surfaces. These variations are due to coolant air flowing through the internal cooling holes. These variations in surface temperature result in the heat transfer coefficient fluctuations seen earlier in Figures 19 and 20. Figure 22 shows the heat transfer distribution for the baseline condition of $Ma_2 = 0.9$ and $Re_2 = 2.0 \times 10^6$, which again shows the fluctuations in heat transfer coefficient over the rear 50 percent of the airfoil. Also in Figure 22, results predicted (Ref 6) for the same conditions using the Allison - STANCOOL code developed by Refs 1 and 2, are given. Here, the solid curve is the predicted results with a constant temperature boundary The dashed curve is the prediction made using the actual measured condition. surface temperature boundary condition given in Figure 21. Figure 22 shows a very reasonable comparison between the experimental data and the prediction using the measured surface temperature for the boundary condition. This comparison illustrates the significance of using the actual wall temperature boundary condition when making heat transfer predictions. It also illustrates the sensitivity of the experimental method by its demonstrated ability to track the cyclic nature of the heat transfer coefficient distribution in the trailing edge region of the airfoil.

The effect of downstream blowing on the vane surface static pressure distribution is shown in Figure 23, where the base flow conditions are at an exit Mach number of 0.9 and an exit Reynolds number of 2.0x10⁶. Figure 23 indicates that increasing the downstream blowing strength from 1.00 (no blowing) to 1.63 has no measurable effect on the vane surface static pressure distribution.

Figure 21. Vane surface-to-gas absolute temperature ratio distribution at baseline flow condition of $Ma_2 = 0.9$ and $Re_2 = 2.00 \times 10^6$.

rigure 25. Effects of downstream blowing on vane surface static pressure distribution.

Figures 24, 25, and 26 show the effects of varying the blowing strength at three constant thermal dilution (T_c/T_g) levels with only the downstream film cooling arrays active. The base flow conditions are at exit Mach number of 0.9 and an exit Reynolds number of 2.0x10°. Figure 24 shows the effect of varying blowing strength (P_c/P_t) at the lowest coolant-to-gas temperature ratio $(T_c/T_g = 0.65, MIN)$. A positive SNR is seen on both surfaces at all three blowing strengths indicating a comparatively large decrease in heat transfer due to downstream film cooling. A pronounced variation in SNR due to different blowing strengths is seen on the pressure surface. Also, on the pressure surface, as the blowing strength is increased, the effect of film cooling is felt further downstream. However, the higher turbulence level near the film cooling holes, resulting from increased blowing, tends to increase heat transfer (i.e., reduce SNR) in the near hole region. On the other hand, on the suction surface, there is no significant effect due to varying blowing strengths. This is due to the lower freestream pressure on the suction surface causing the film coolant flow on the suction surface to be choked over this range of pressure ratios. The choked conditions keep the blowing ratio almost invariant on the suction surface.

Figures 25 and 26 show similar behavior at higher T_c/T_q ratios of 0.75 (MED) and 0.85 (MAX), though, as expected, with lower values of SNR due to lower levels of thermal dilution (warmer air being injected). Also, on the pressure surface, at the lower thermal dilution levels (high T_c/T_q), the

Figure 24. Effects of downstream blowing on Stanton number reduction $(T_c/T_a = MIN)$.

Figure 26. Effects of downstream blowing or Stanton number reduction $(T_c/T_q = MAX)$

effect of turbulence due to the higher blowing strengths increases heat transfer (i.e., decreases SNR values) just downstream of the film cooling holes to a larger extend than at higher thermal dilution levels (i.e., low T_c/T_q). It should also be noted that for the higher blowing strengths, SNR increases over the last 60% of the airfoil; where as, for the lower blowing strengths, the SNR decreases. This is the result of the interaction of the thermal dilution and turbulence augmentation effects.

On the SNR data presented above, just downstream of the suction side film cooling holes, SNR attain high values. These high SNR values are caused by the non-film cooled and the film cooled tests having different origination of the thermal boundary layer. In the case of a vane which is uniformly cooled throughout, the hydrodynamic and the thermal boundary layer would originate simultaneously at the leading edge. However, in the present case under non-film cooled conditions, the nose piece of the vane is not cooled (radially or otherwise). This results in a step change in vane surface temperature across the thermal barrier on both surfaces as shown earlier in Figure 21. This indicates that the origin of the thermal boundary layer is at the thermal barrier, while the hydrodynamic boundary layer still originates at the leading edge. When the film cooling arrays in the nose piece are activated, the temperature in the leading edge region drops to approximately the levels on the pressure and suction surfaces just downstream of the thermal barrier, thus resulting in both the hydrodynamic and thermal boundary layers originating at the vane leading edge. This difference in thermal boundary layer origin between the the film cooled and non-film cooled cases results in the high SNR values just downstream of the film cooling arrays.

The thermal dilution and turbulence augmentation trends discussed earlier are further brought out by Figures 27 and 28, which show data with downstream film cooling holes active for blowing strengths at levels up to 1.7 at MIN and MAX levels of thermal dilution, respectively. On the pressure surface, at both coolant-to-gas temperature ratios, the turbulence due to high blowing strengths decreases the SNR near the film cooling holes. At the lower coolant-to-gas temperature ratio, as shown in Figure 27, a positive value of SNR is seen, even at the highest blowing strength. However, in Figure 28, at the higher coolant-to-gas temperature ratio, almost all the data on the pressure surface at high blowing strengths $(P_c/P_t > 1.3)$ show negative SNR values. (note that in Figure 28, the SNR scales are offset.) On the other hand, there is hardly any effect of coolant pressure on the suction surface due to the fact that the film coolant flow is choked and no significant variation in blowing ratio occurred. Nevertheless, at the higher coolant-to-gas temperature ratio, on the suction surface, there is slight decrease in SNR near the film cooling holes at the high blowing strengths. Although the flow is choked, increasing coolant supply pressure increases the coolant mass supply, causing an increase in turbulence level near the coolant holes, which in turn reduces SNR at very high blowing strengths. This also may be due to the damping of turbulence at increased velocity levels.

Figures 29 and 30 show the effects of both the downstream and the leading edge film cooling arrays being active with the varying blowing strengths at the MIN and MAX levels of thermal dilution, respectively. The flow conditions are at an exit Mach number of 0.9 and exit Reynolds number of $2.0 \times 10^{\circ}$. In comparison to Figures 24 and 26, the trends and levels of SNR are very similar to the case where only the downstream film cooling holes are active. However,

Figure 27. Effects of high downstream plowing on Stanton number reduction ($T_c/T_q = MIN$).

igure 28. Effects of high downstream b owing on Stanton number reduction $(T_c/T_g = MAX)$

Figure 29. Effects of leading edge and downstream blowing on Stanton number reduction $(T_c/T_q = MIN)$.

Figure 30. Effects of leading edge and downstream blowing on Stanton number reduction $(T_c/T_g = MAX)$.

on the pressure surface just downstream of the film cooling holes, slightly higher values of SNR are seen due to the leading edge film cooling holes being active.

The SNR data for the case where downstream film cooling hole arrays are at a constant blowing strength of 1.10 while the leading edge film cooling blowing strength is varied from 1.00 (no leading edge blowing) to 1.10 are shown in Figure 31. These data are at the flow conditions corresponding to an exit Mach number of 0.75 and an exit Reynolds number of 2.0x10⁶. On the pressure surface, SNR is increased by low leading edge blowing values $(P_{c,le}/P_t = 1.02)$. However, at higher leading edge blowing values, SNR values drop off, to the extend that SNR is lower than without any leading edge blowing. This indicates that high leading edge blowing rates can actually increase heat transfer over the entire pressure surface of the airfoil due to increased turbulence levels. On the other hand, very little effect of leading edge blowing is seen on the suction surface.

To illustrate the effects of thermal dilution, data shown earlier in Figures 24-26 were re-plotted as a function of T_c/T_g at two blowing strengths of 1.02 and 1.10 and are shown in Figures 32 and 33, respectively. On the suction surface, in both cases, there is a significant effect due to different coolant-to-gas temperature ratios. Conversely, on the pressure side, at the lower blowing strength, as shown in Figure 32, only a small effect is noticed. However, as seen in Figure 33, there is a larger effect on the pressure surface due to varying thermal dilution at the higher blowing strength of

Figure 31. Effects of variable leading edge blowing with constant downstream blowing on Stanton number reduction $(T_c/T_q = MIN)$.

. gure ss. Effects of downstream film cooling thermal dilution on Stanton number reduction ($P_c/P_t = 1.10$).

 $P_c/P_t = 1.10$. Also in Figure 33, at higher coolant-to-gas temperature ratio, SNR is negative on the pressure surface at surface distances less than 50%. As mentioned before, this increase in heat transfer is due to the high blowing strength causing a higher level of turbulence augmentation effects which offsets the thermal dilution effects in the vicinity of the film cooling holes.

Figures 34 and 35 illustrate the effect of varying the exit Mach number from 0.75 to 0.90 while keeping other flow and film cooling conditions constant. In these instances, the downstream film cooling hole arrays are at blowing strengths, $P_{c,ds}/P_{t}$, of 1.10 and the coolant-to-gas temperature ratios, T_{c}/T_{g} , are at MIN (Figure 34) and MAX (Figure 35) levels. In these cases, each film cooling data point is compared with the baseline at that flow condition. In other words, these SNR data show the increase or decrease of the heat transfer over the particular baseline case. Figures 34 and 35 show that there is no significant effect on SNR due to variations in Mach number on either the suction surface or pressure surfaces at the lower coolant-to-gas temperature ratio. However, on the pressure surface at the higher coolantto-gas temperature ratio, Figure 35 shows that there is a slight Mach number effect. As pointed out earlier, at the higher coolant-to-gas temperature ratio, on the pressure surface, the favorable thermal dilution effects are offset by the adverse turbulence augmentation effects, thereby increasing heat transfer near the vicinity of the film cooling holes. At regions where this phenomenon occurs, the change in heat transfer due to film cooling seems to depend on the Mach number, suggesting that the turbulent augmentation effect may be Mach number dependent.

Figure 34. Effects of Mach number on Stanton number reduction $(P_c/P_t = 1.10, T_c/T_q = MIN)$.

Figure 35. Effects of Mach number on Stanton number reduction $(P_c/P_t = 1.10, T_c/T_q = MAX)$.

The effects of three different exit Reynolds numbers of 1.5×10^6 , 2.0×10^6 , and 2.5×10^6 on downstream film cooling are shown in Figures 36 and 37. As in the previous two figures, the SNR data show the change in heat transfer due to film cooling above the particular baseline. Figure 36 presents data at the MIN level of coolant-to-gas temperature ratio and coolant pressure ratio of 1.10. On both surfaces, SNR increases with increasing Reynolds number indicating that a more favorable effect of film cooling is attainable at a higher Reynolds number, though the trends are more pronounced on the pressure surface than on the suction surface. In Figure 37, where the coolant-to-gas temperature is at MAX level, the effect of Reynolds number variation is not as marked as in the case of the lower coolant-to-gas temperature ratio.

In summerizing the heat transfer results, the data indicate that considerable cooling can be attained by downstream film cooling. The downstream film cooling process is a complex function of the thermal dilution, due to the injection of relatively cold fluid, and turbulence augmentation, due to the injection process, with trends actually reversing as the coolant-to-gas temperature ratio is varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to the combined effect of turbulence augmentation and thermal dilution. At regular blowing strengths $(P_C / P_t > 1.0)$, the pressure surface shows considerable dependence on blowing strength, while the suction surface is insensitive to varying blowing strength, due to the coolant flow being choked. Also, the heat transfer levels are significantly dependent on the thermal dilution, to the extend that at high levels of thermal dilution, the turbulence augmentation effect is negligible. The data also indicate that, at high thermal dilution levels

 $(P_c/P_t = 1.10, T_c/T_a = MIN).$

Effects of Reynolds number on Stanton number reduction ($P_c/P_t = 1.10$, $T_c/T_g = MAX$). Figure 37.

(i.e. low coolant-to-gas temperature ratio), the film cooling effects are relatively insensitive to exit Mach numbers, while higher favorable film cooling effects are seen at higher exit Reynolds numbers. Conversely, at low thermal dilution levels (i.e., high coolant-to-gas temperature ratio), film cooling effects are dependent on exit Mach number and lesser exit Reynolds number effects are seen and finally, the heat transfer results presented here indicate that the data is significantly dependent on the measured vane surface-to-gas temperature ratio distribution.

6.2 Throat Passage Pressure Results

During all heat transfer data acquisition runs, static pressure measurements were acquired near the cascade throat on the upper and the lower passages. These data are tabulated in Appendix C. Included in the tabulation is the run code, the percent distance of the location of the pressure tap from the midspan of the upper vane to the midspan of the lower vane, and the ratio of the local static pressure-to-inlet total pressure. Note that this distance from the upper vane midspan to the lower vane midspan is actually three dimensional, as shown in Figure 38. The distance is measured spanwise from the midspan of the lower vane; then spanwise from the endwall; then along the endwall to the lower vane; then spanwise from the endwall to the midspan of the lower vane along the vane pressure surface. Some representative data of the throat passage pressure are presented and discussed in this section.

Figure 38. Isometric view of the location of the throat static pressure measurements.

Figures 39, 40, and 41 show the throat static pressure ratio for three of the baseline (i.e, no film cooling) flow conditions corresponding to an exit Mach number, Ma2, of 0.9 at exit Reynolds number, Re2, of $2.0 \times 10^{\circ}$ and $2.5 \times 10^{\circ}$, and Ma2=0.75 at Re2= $2.0 \times 10^{\circ}$. The two dashed vertical lines in these figures indicate the corner location where the vane surface meets the endwall. Figures 39-41 show very little variation in throat static pressure ratio along the spanwise direction on either vane surface or on the endwall. Also, the upper and the lower passages have nearly identical levels on the pressure in the lower passage are about 5% less than the throat pressures on the upper passage. Comparison of Figures 39 and 40 indicate that variation of exit Reynolds number has negligible effect on the throat static pressure ratio. Comparing Figures 39 and 41, a decrease in exit Mach number increases the throat static pressure ratio. This is expected due to the different expansion ratio of the two flow conditions.

To display the effects of film cooling on the throat static pressures, the throat static pressure-to-total pressure ratios measured with film cooling were compared with the baseline case. This is shown in Figure 42 for the case of $Ma_2 = 0.9$ and $Re_2 = 2 \times 10^6$. Only the downstream film cooling arrays were active, with the coolant-to-gas pressure ratio, $P_{c,ds}/P_{t}$, varied from 1.02 to 1.10, and the coolant-to-gas absolute temperature ratio, T_c/T_g , kept at the MIN level. The format of Figure 42 is similar to Figures 39-41, except that the data from the lower and upper passages have been separated and the scale has been expanded. Also, it should be noted that only the center vane

Figure 42. Effects of blowing strength on throat static-to-inlet total pressure ratio.

contains film cooling arrays. Effects of varying blowing strengths do not seem to have any significant effect on the throat static pressure ratio. However, at locations near the corner where the endwall meets the vane suction surface, there is a distinct drop in throat static pressure ratio due to film cooling, but there does not seem to be any consistent effect associated with the varying levels of film cooling.

In summary, the throat static pressure distribution from upper midspan to lower midspan via the endwall does not vary extensively. Varying downstream film cooling with and without leading edge film cooling does not show any consistent effects on the surface pressure distribution. The effects of the film cooling are essentially insignificant except at the corners of the vane suction surface and the endwall where a slight reduction in static pressure was measured.

VII. CONCLUSIONS AND RECOMMENDATIONS

The results from this experiment have provided a data base for characterizing the effects of downstream film cooling with and without leading edge (showerhead) film cooling on external heat transfer to the C3X airfoil.

The external heat transfer data indicate that considerable cooling can be attained by downstream film cooling. The downstream film cooling process is a complex function of mainly two competing mechanisms; (i) the thermal dilution, due to the injection of relatively cold fluid, which decreases heat transfer to the airfoil, and (ii) turbulence augmentation, due to the injection process, which increases heat transfer to the airfoil. It is also observed that favorable cooling effects actually reverse as the coolant-to-gas temperature ratio are varied.

The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to the combined effect of turbulence augmentation and thermal dilution. At moderate blowing strengths $(P_c/P_t > 1.0)$, the pressure surface shows considerable dependence on blowing strength, while the suction surface is insensitive to variations in blowing strength, due to the coolant flow being choked. Also, the heat transfer levels are significantly dependent on thermal dilution, to the extend that at high levels of thermal dilution, the adverse turbulence augmentation effect is negligible. The data also indicate that, at high thermal dilution levels (i.e. low coolant-to-gas temperature ratio), the film cooling effects are relatively insensitive to exit Mach numbers; and higher favorable film cooling effects are seen at higher exit Reynolds numbers. Conversely, at low thermal dilution levels (i.e., high coolant-to-gas temperature ratio), film cooling effects are dependent on exit Mach number; and lesser effects due to exit Reynolds number are seen.

Static pressure data indicate that vane surface static pressure is relatively independent of downstream and leading edge blowing. Also, the throat static pressure distribution from upper midspan to lower midspan via the endwall do not vary extensively. Downstream film cooling with and without leading edge film cooling do not show any consistent effects on the passage throat static pressure distribution. And moreover, the effects of the film cooling are not significant on the static pressure except at the corners of the vane suction surface and the endwall.

After analyzing the heat transfer data obtained in this experimental program, the following recommendations should be considered for future work:

- o The heat transfer data indicate a strong dependence on the measured vane surface-to-gas temperature ratio distribution, and hence, the surface temperature distribution associated with the heat transfer data should be taken into account when predicting heat transfer results to compare with these data.
- Further work should be carried out to fully understand the trends of the favorable effects of thermal dilution and the adverse effects of turbulence augmentation during film cooling. A better understanding of these effects would help in obtaining better predictions of film cooled vane heat transfer.

APPENDIX A

TABULATED HEAT TRANSFER DATA

Tabulated heat transfer data for each run code of the downstream and leading edge film-cooled C3X cascade are presented in Table VIII. These data sets are listed in run code order, with the actual operating conditions associated with each run code having been given previously in Table VI. Vane surface-to-gas absolute temperature ratio (T_W/T_g) data and normalized heat transfer coefficients (h/h_0) are tabulated versus percent of surface arc length and percent of axial chord. The heat transfer coefficients are normalized with respect to 1135 $W/m^2/{}^{\circ}C$ (200 BTU/hr/ft²/ ${}^{\circ}F$). The surface arc and axial chord lengths were given in Table III.

Tabulated discharge coefficient and blowing ratio data for each heat transfer run code are presented in Table IX. The discharge coefficient is defined as the ratio of actual flow to possible ideal flow; the blowing ratio is defined as the coolant to free-stream mass flux ratio $(M = \rho_c u_c / \rho_{\infty} u_{\infty})$. Both values are averages for all holes in a given film cooling array and are based on the average local freestream conditions and total coolant mass flow rate through each cooling array.

Table VIII <u>Heat transfer data for each run code</u>

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.8019 .8026 .7976 .7830 .7762 .7700 .7693 .7752 .7789 .7928 .7977 .8001 .8047 .8145 .8169 .8160 .8164 .8145 .8169 .8160 .8164 .8131 .8203 .8194 .8278 .8348 .8349 .8317 .8196 .8200 .8412 .8451 .8396 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .8246 .825	.9147 1.0021 .9839 .8854 .8255 .7571 .7428 .7232 .7163 .7734 .7269 .7022 .6286 .6639 .7756 .6861 .6457 .6824 .6644 .7185 .7380 .6918 .6921 .6122 .6299 .7033 .7362 .5516 .5802 .5959 .6044 .6560 .5184 .4714 .3856 .6365 .4877 .7888	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 74.37 75.85 77.38 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7796 .7680 .7615 .7623 .7653 .7792 .7887 .7908 .7901 .7925 .7990 .8032 .8103 .8096 .8076 .8122 .8180 .8260 .8276 .8237 .8130 .8260 .8276 .8237 .8130 .8280 .8276 .8237 .8130 .8280 .8275 .8401 .8275 .8401 .8579 .8657 .8648 .8495 .8636	.6704 .5991 .4983 .4660 .4277 .3873 .3851 .4040 .4250 .4457 .4635 .4933 .5290 .5559 .6389 .6530 .5172 .5280 .4826 .5302 .6488 .7264 .5302 .6488 .7264 .5977 .4768 .4537 .6817 .4234 .3797 .5254 .8151 .8698 .5939

RUN CODE 34000

				DL 34103			
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7207 .7208 .7152 .7066 .7016 .7000 .7004 .7004 .7004 .7064 .7109 .7208 .7267 .7317 .7355 .7406 .7504 .7504 .7504 .7535 .7544 .7550 .7554 .7554 .7554 .7697 .7789 .7868 .7881 .7858 .7881 .7858 .7881 .7858 .7855 .7868 .7881 .7858 .7855 .7868 .7855 .7867 .7767 .7991 .8026 .7985 .7845 .7801 .8013 .8213 .8276 .8140 .8021 .8269	.1730 .3546 .4144 .4523 .4330 .4151 .4106 .3986 .3949 .4349 .4158 .3927 .3522 .3724 .4351 .3843 .3618 .3907 .3833 .4365 .4622 .4201 .4123 .3670 .3833 .4365 .4622 .4201 .4123 .3670 .3881 .4534 .4534 .4829 .3217 .3266 .3570 .3809 .4341 .2992 .2482 .2037 .4046 .2993 .4823	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7279 .7186 .7149 .7172 .7210 .7364 .7470 .7499 .7504 .7543 .7620 .7662 .7733 .7736 .7729 .7776 .7832 .7790 .7903 .7903 .7903 .7903 .7903 .7903 .7903 .7813 .7824 .7968 .8053 .8107 .7914 .8102 .8270 .8342 .8339 .8196 .8328	.4714 .4118 .3610 .3507 .3263 .3103 .3214 .3372 .3539 .3716 .4064 .4342 .4610 .4896 .5532 .5631 .4612 .4705 .4455 .4927 .5955 .6653 .5643 .4612 .4478 .6207 .4387 .3978 .4873 .7417 .7975 .5986

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7217 .7212 .7158 .7070 .7017 .6999 .7002 .7058 .7100 .7198 .7257 .7304 .7338 .7483 .7509 .7516 .7529 .7516 .7529 .7516 .7529 .7518 .7636 .7653 .7653 .7741 .7817 .7817 .7829 .7807 .7708 .7722 .7938 .77708 .7722 .7938 .7976 .7934 .7798 .7755 .7962 .8159 .8217 .8091 .7982 .8218	.1507 .3365 .4055 .4514 .4309 .4121 .4077 .3944 .3894 .4307 .4190 .3913 .3484 .3704 .4379 .3838 .3597 .3859 .3779 .4348 .4560 .4183 .4111 .3696 .3894 .4505 .4786 .3298 .3400 .3634 .3810 .4253 .3047 .2599 .2101 .4049 .3118 .4780 .	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7283 .7186 .7140 .7153 .7181 .7305 .7397 .7422 .7422 .7457 .7529 .7571 .7637 .7640 .7635 .7677 .7738 .7640 .7635 .7677 .7738 .7814 .7814 .7836 .7813 .7727 .7737 .7883 .7969 .8020 .7838 .8027 .8193 .8267 .8264 .8129 .8263	.4711 .4174 .3609 .3432 .3152 .2844 .2859 .3007 .3152 .3298 .3602 .3811 .4015 .4306 .4869 .4951 .4050 .4079 .3849 .4331 .5286 .5905 .5005 .3832 .5565 .3828 .3429 .4309 .6484 .7147 .5312

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7336 .7275 .7171 .7172 .7082 .7084 .7136 .7175 .7268 .7322 .7364 .7398 .7442 .7534 .7560 .7561 .7568 .7556 .7654 .7556 .7654 .7654 .7556 .7654 .7666 .7746 .7814 .7814 .7814 .7823 .7804 .7716 .7814 .7814 .7814 .7814 .7814 .7815 .7814 .7917 .7952 .7915 .7789 .7748 .7941 .8124 .8176 .8068 .7969 .8190	.2231 .3860 .4408 .4671 .4422 .4152 .4122 .3987 .3934 .4363 .4188 .3912 .3507 .3721 .4370 .3849 .3600 .3812 .3745 .4310 .4572 .4174 .4110 .3686 .3851 .4360 .4574 .3277 .3376 .3624 .3748 .4074 .3030 .2634 .3791 .2796 .3791 .2796 .4567	28.90 30.78 32.58 34.38 35.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 57.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7349 .7257 .7211 .7218 .7239 .7344 .7419 .7435 .7426 .7453 .7515 .7551 .7607 .7608 .7596 .7635 .7692 .7765 .7681 .7689 .7765 .7681 .7689 .7830 .7912 .7963 .7912 .7963 .7791 .7977 .8134 .8205 .8088 .8217	.4728 .4249 .3678 .3460 .3121 .2752 .2691 .2762 .2849 .2955 .3195 .3348 .3504 .3771 .4273 .4321 .3449 .3484 .3242 .3659 .4494 .5028 .4219 .3355 .3186 .4738 .3180 .2787 .3532 .5342 .6073 .4459

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw∕Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7206 .7209 .7157 .7062 .7007 .6984 .6986 .7039 .7078 .7168 .7219 .7264 .7295 .7338 .7427 .7452 .7457 .7459 .7458 .7555 .7568 .7650 .7719 .7458 .7555 .7568 .7650 .7719 .7710 .7710 .7710 .7710 .7710 .7710 .7611 .7623 .7823 .7859 .7819 .7695 .7653 .7846 .8030 .8081 .7976 .7876 .8095	.1998 .3632 .4155 .4407 .4186 .3985 .3940 .3810 .3759 .4142 .3930 .3726 .3333 .3517 .4105 .3663 .3663 .3606 .4112 .4319 .4025 .3663 .3663 .3727 .4209 .4423 .3202 .3580 .3727 .4209 .4423 .3202 .3580 .3727 .4209 .4423 .3202 .3580 .3727 .4209 .4423 .3202 .3288 .3503 .3663 .3948 .2973 .2595 .2056 .3723 .2771 .4364	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7221 .7136 .7093 .7102 .7125 .7233 .7310 .7327 .7320 .7346 .7408 .7443 .7501 .7502 .7493 .7531 .7588 .7662 .7684 .7664 .7664 .7581 .7591 .7727 .7809 .7859 .7685 .7873 .8033 .8105 .8105 .7988 .8120	.4443 .3980 .3443 .3232 .2925 .2575 .2526 .2609 .2695 .2789 .2998 .3134 .3281 .3554 .4031 .3257 .3035 .3439 .4270 .4789 .3934 .3097 .2946 .4397 .2918 .2563 .3295 .4939 .5671 .4206

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7197 .7211 .7158 .7065 .7009 .6984 .6984 .7038 .7076 .7167 .7220 .7265 .7297 .7341 .7432 .7456 .7456 .7456 .7456 .7456 .7459 .7559 .7571 .7652 .7723 .7734 .7460 .7559 .7571 .7652 .7723 .7734 .7717 .7618 .7631 .7830 .7868 .7857 .8039 .8092 .7984 .7884 .7884 .7884 .8108	.1828 .3645 .4176 .4442 .4213 .3988 .3934 .3797 .3742 .4131 .3921 .3708 .3311 .3505 .4114 .3612 .3386 .3627 .3560 .4070 .4252 .3909 .3889 .3500 .4070 .4252 .3909 .3889 .3500 .4070 .4252 .3909 .3889 .3500 .3668 .4179 .3889 .3500 .3668 .4179 .3889 .3500 .3668 .4179 .3889 .3500 .3668 .4179 .3889 .3500 .3668 .4179 .3889 .3500 .3668 .4179 .3889 .3500 .3668 .4179 .3645 .2704 .4433	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 95.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7239 .7154 .7108 .7116 .7139 .7250 .7325 .7345 .7340 .7368 .7430 .7465 .7525 .7526 .7517 .7555 .7610 .7684 .7705 .7684 .7705 .7684 .7705 .7684 .7705 .7684 .7750 .7832 .7881 .7709 .7832 .7881 .7709 .7895 .8053 .8126 .8125 .8004 .8135	.4581 .4102 .3494 .3268 .2962 .2638 .2546 .2663 .2782 .2901 .3108 .3260 .3428 .3696 .4181 .4217 .3358 .3420 .3156 .3573 .4408 .4929 .4121 .3274 .3095 .4600 .3084 .2711 .3274 .3095 .4600 .3084 .2711 .3537 .5850 .4290

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw∕⊺g	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7282 .7297 .7248 .7154 .7096 .7067 .7068 .7121 .7160 .7249 .7303 .7346 .7379 .7425 .7519 .7548 .7561 .7548 .7561 .7545 .7648 .7662 .7745 .7648 .7662 .7745 .7648 .7662 .7745 .7648 .7662 .7745 .7805 .7745 .7805 .7707 .7805 .7707 .7805 .7707 .7719 .7924 .7961 .7921 .7947 .8132 .8185 .8074 .7970 .8192	.2051 .3927 .4493 .4770 .4517 .4264 .4221 .4085 .4015 .4378 .4205 .3928 .3507 .3727 .4395 .3839 .3594 .3859 .3772 .4286 .4504 .4156 .4105 .3639 .3807 .4365 .4105 .3639 .3807 .4365 .4105 .3639 .3807 .4365 .4105 .3639 .3807 .4365 .4105 .3639 .3807 .4365 .4185 .3595 .3785 .4185 .3052 .2586 .2043 .3873 .2923 .4510	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7338 .7253 .7206 .7212 .7236 .7348 .7426 .7445 .7445 .7442 .7473 .7535 .7572 .7633 .7634 .7667 .7722 .7796 .7814 .7793 .7799 .7814 .7939 .7939 .7939 .7987 .7811 .7992 .8152 .8225 .8223 .8100 .8227	.5063 .4492 .3834 .3558 .3245 .2884 .2810 .2922 .3077 .3254 .3432 .3604 .3805 .4067 .4629 .4701 .3762 .3827 .3505 .3955 .4882 .5467 .4586 .3654 .3474 .3474 .34743

			NUM COL	JE 34303			
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7843 .7847 .7796 .7649 .7580 .7525 .7518 .7572 .7609 .7696 .7746 .7796 .7822 .7868 .7960 .7985 .7980 .7985 .7980 .7985 .7980 .7985 .7980 .7985 .7980 .7985 .7980 .7985 .7980 .7985 .8051 .8058 .8138 .8211 .8058 .8138 .8211 .8215 .8189 .8082 .8091 .8293 .8328 .8287 .8151 .8104 .8301 .8491 .8539 .8417 .8311 .8542	.6409 .7629 .7709 .7059 .6601 .6082 .5973 .5813 .5755 .6220 .5862 .5669 .5073 .5342 .6215 .5486 .5163 .5494 .5356 .5494 .5356 .5829 .6102 .5644 .5756 .5849 .5049 .5210 .5885 .6195 .4491 .5885 .6195 .4491 .4668 .4971 .5053 .5473 .4236 .3807 .3066 .5212 .3913 .6537	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7639 .7540 .7489 .7504 .7534 .7669 .7763 .7785 .7780 .7810 .7875 .7916 .7983 .7981 .7966 .8011 .8070 .8147 .8163 .8133 .8038 .8041 .8185 .8273 .8323 .8323 .8323 .8314 .8185 .8273 .8314 .8484 .8557 .8550 .8417 .8551	.5280 .4925 .4229 .4051 .3717 .3364 .3369 .3518 .3700 .3894 .4098 .4337 .4615 .4903 .5580 .5670 .4541 .4695 .4229 .4679 .5723 .6384 .5324 .4270 .4018 .5967 .3784 .3494 .4704 .6866 .7506 .5348

RUN	CODE	34304

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7846 .7849 .7796 .7649 .7578 .7520 .7512 .7567 .7604 .7692 .7743 .7792 .7819 .7864 .7955 .7982 .7975 .7983 .7956 .8035 .8039 .8119 .8165 .8057 .8190 .8165 .8057 .8064 .8262 .8299 .8256 .8119 .8075 .8271 .8461 .8506 .8389 .8285 .8285 .8512	.6017 .7455 .7670 .7155 .6669 .6118 .5982 .5814 .5760 .6237 .5863 .5665 .5076 .5336 .6190 .5480 .5162 .5479 .5345 .5836 .6107 .5699 .5724 .5044 .5220 .5879 .6164 .4283 .4706 .4957 .4983 .5450 .4298 .3159 .5279 .4017 .6588	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7704 .7604 .7548 .7556 .7578 .7692 .7770 .7786 .7775 .7800 .7860 .7897 .7958 .7954 .7954 .7954 .7954 .7954 .7975 .8032 .8109 .8126 .8096 .8000 .8011 .8144 .8232 .8283 .8094 .8274 .8283 .8094 .8274 .8439 .8510 .8506 .8378 .8510	.5978 .5527 .4718 .4450 .4029 .3543 .3434 .3544 .3700 .3878 .4058 .4251 .4483 .4767 .5382 .5427 .4314 .4437 .4032 .4477 .5470 .6090 .5045 .4020 .3820 .5679 .3539 .3115 .4112 .6356 .7105 .4827

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7898 .7907 .7858 .7705 .7633 .7575 .7566 .7620 .7657 .7747 .7845 .7872 .7917 .8007 .8033 .8028 .8055 .8220 .8224 .8154 .8220 .8224 .8198 .8095 .8290 .8325 .8290 .8478 .8523 .8407 .8301 .8528	.5934 .7683 .7994 .7395 .6885 .6331 .6176 .5979 .5899 .6388 .6024 .5787 .5186 .5427 .6257 .5563 .5246 .5538 .5405 .5943 .6210 .5798 .5741 .5126 .5996 .6291 .4621 .4814 .5050 .5113 .5541 .4314 .3920 .3155 .5368 .4054 .6603	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 7C.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7830 .7739 .7679 .7682 .7702 .7796 .7863 .7876 .7857 .7877 .7930 .7961 .8017 .8017 .8017 .8017 .8017 .8017 .8017 .8017 .8017 .8017 .8021 .8017 .8021 .8021 .8021 .8021 .8146 .8161 .8128 .8030 .8029 .8168 .8252 .8302 .8115 .8292 .8458 .8529 .8524 .8394 .8528	.7041 .6481 .5479 .5105 .4653 .3963 .3772 .3900 .4045 .4192 .4358 .4527 .4720 .4948 .5594 .5641 .4429 .4522 .4126 .4553 .5560 .6192 .5051 .3943 .3728 .5724 .3557 .3163 .4215 .6419 .7156 .4970

RUN CODE 34305

	RUN	CODE	43000
--	-----	------	-------

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7640 .7569 .7487 .7283 .7189 .7111 .7104 .7170 .7211 .7317 .7368 .7431 .7443 .7490 .7603 .7625 .7614 .7607 .7579 .7636 .7640 .7750 .7654 .7640 .7750 .7614 .7750 .7614 .7793 .7750 .7614 .7793 .7750 .7614 .7617 .7866 .7914 .7846 .7914 .7846 .7914 .7846 .7914 .7846 .7914 .7846 .7914 .7846 .7914 .7846 .7914 .7846 .7914 .7880 .8124 .8188 .8035 .7906 .8192	.9274 .8538 .8052 .7036 .6447 .5684 .5637 .5521 .5531 .6111 .5562 .5539 .4815 .5151 .6236 .5468 .5090 .5385 .5287 .5447 .5341 .5316 .4720 .4706 .5086 .5295 .4284 .4634 .4507 .4278 .4200 .42788 .42788 .42788 .42788 .42868 .42868 .42868 .42888 .42888 .42888888 .4288888888888	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7254 .7108 .7030 .7034 .7071 .7214 .7316 .7332 .7317 .7331 .7405 .7445 .7519 .7517 .7497 .7537 .7610 .7707 .7537 .7610 .7707 .7552 .7551 .7724 .7670 .7552 .7551 .7721 .7827 .7889 .7651 .7827 .7889 .7651 .7905 .8121 .8218 .8214 .8039 .8209	.5290 .4655 .3824 .3515 .3342 .3018 .3102 .3200 .3220 .3215 .3551 .3763 .4328 .4887 .4922 .3981 .4362 .3941 .4059 .4776 .5367 .4535 .3735 .3620 .5194 .3594 .3594 .3594 .3594 .3594 .3594 .3594 .3594 .3594

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.6914 .6903 .6855 .6729 .6675 .6647 .6653 .6710 .6752 .6859 .6919 .6974 .7005 .7054 .7149 .7180 .7191 .7206 .7192 .7306 .7191 .7206 .7192 .7306 .7191 .7206 .7192 .7306 .7335 .7426 .7501 .7512 .7486 .7511 .7512 .7486 .7531 .7678 .7631 .7678 .7631 .7678 .7630 .7484 .7445 .7630 .7484 .7445 .7672 .7880 .7945 .7808 .7691 .7946	.1357 .2987 .3645 .3808 .3653 .3448 .3489 .3363 .3305 .3756 .3542 .3398 .2998 .3135 .3647 .3259 .3103 .3647 .3259 .3103 .3245 .3524 .3524 .3524 .3524 .3524 .3524 .3529 .379 .3001 .3140 .3649 .3907 .2752 .2953 .2992 .2958 .3390 .2436 .2061 .1659 .3437 .2588 .4185	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.17\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.24\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.85\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.6988 .6871 .6809 .6819 .6854 .7004 .7105 .7137 .7141 .7169 .7247 .7292 .7367 .7371 .7365 .7408 .7477 .7556 .7572 .7556 .7572 .7535 .7440 .7449 .7601 .7684 .7742 .7552 .7766 .7944 .8019 .8026 .7860 .8004	.4430 .3679 .3016 .2848 .2689 .2592 .2647 .2871 .2962 .2978 .3327 .3613 .3875 .4099 .4532 .4611 .3978 .4135 .3826 .4079 .4802 .5359 .4614 .3723 .3617 .4974 .3674 .3674 .3674 .3670 .5101

	SUCTION	SURFACE	_		PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.6961 .6903 .6845 .6710 .6637 .6598 .6600 .6659 .6700 .6802 .6852 .6913 .6932 .6981 .7084 .7109 .7108 .7109 .7108 .7120 .7105 .7198 .7220 .7304 .7378 .7237 .7248 .7354 .7354 .7354 .7354 .7354 .7354 .7354 .7354 .7490 .7540 .7540 .7539 .7294 .7539 .7294 .7539 .7759 .7860	.2741 .3515 .3987 .4187 .3900 .3533 .3542 .3454 .3450 .3868 .3476 .3476 .3015 .3239 .3945 .3423 .3183 .3449 .3397 .3656 .3218 .3216 .3221 .3231 .2221 .3331 .2628 .2338 .2901 .3221 .2221	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.6864 .6739 .6682 .6693 .6731 .6868 .6956 .6975 .6970 .6992 .7064 .7101 .7171 .7173 .7164 .7206 .7271 .7359 .7377 .7359 .7377 .7356 .7236 .7242 .7400 .7495 .7556 .7556 .7357 .7594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77594 .77595	.4069 .3440 .2887 .2715 .2620 .2428 .2422 .2517 .2561 .2591 .2884 .3066 .3234 .3501 .3946 .3979 .3236 .3538 .3207 .3333 .3890 .4339 .3735 .3095 .3024 .4273 .3043 .2946 .3746 .5785 .5735 .4368

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distarce	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.6976 .6924 .6868 .6729 .6651 .6599 .6589 .6635 .6673 .6788 .6853 .6919 .6938 .6985 .7084 .7108 .7103 .7112 .7097 .7185 .7204 .7283 .7354 .7204 .7283 .7354 .7354 .7354 .7354 .7354 .7354 .7354 .7214 .7223 .7454 .7504 .7454 .7504 .7454 .7504 .7454 .7504 .7454 .7504 .7454 .7504 .7454 .7504 .7454 .7504 .7454 .7504 .7457 .7262 .7498 .7713 .7778 .7557 .7807	.2465 .3428 .3984 .4217 .3907 .3497 .3397 .3207 .3150 .3692 .3504 .3482 .3003 .3201 .3871 .329 .3076 .3353 .3215 .3596 .3945 .3575 .3505 .3151 .3159 .3440 .3596 .2849 .3159 .3440 .3596 .2849 .3159 .3440 .3596 .2849 .3139 .3031 .2883 .3284 .2604 .2321 .1852 .3207 .2313 .4108	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.33 89.25 91.03 92.85 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.6926 .6807 .6750 .6759 .6794 .6910 .6983 .6998 .6988 .7005 .7070 .7101 .7163 .7162 .7148 .7162 .7148 .7183 .7245 .7329 .7345 .7302 .7203 .7208 .7362 .7452 .7510 .7311 .7541 .7541 .7541 .7541 .7541 .7541 .7734 .7823 .7829 .7685 .7836	.4404 .3744 .3166 .2970 .2860 .2551 .2464 .2573 .2612 .2622 .2898 .3047 .3178 .3422 .3828 .3047 .3178 .3422 .3828 .3840 .3115 .3377 .3069 .3170 .3698 .4151 .3567 .2902 .2821 .4000 .2799 .2668 .3476 .5366 .5308 .4023

	Rl	JN	C0	DE	43	13	5
--	----	----	----	----	----	----	---

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.6853 .6805 .6758 .6568 .6528 .6528 .6526 .6582 .6628 .6735 .6789 .6847 .6864 .6910 .7009 .7034 .7033 .7046 .7032 .7122 .7142 .7219 .7288 .7295 .7267 .7158 .7267 .7158 .7267 .7158 .7267 .7158 .7267 .7158 .7267 .7158 .7267 .7443 .7388 .7247 .7446 .7657 .7722 .7613 .7517 .7759	.2217 .3046 .3571 .3844 .3580 .3229 .3172 .3078 .3106 .3576 .3280 .3231 .2772 .2963 .3612 .3131 .2909 .3160 .3120 .3414 .3717 .3368 .3299 .2957 .2992 .3282 .3434 .2733 .2966 .2847 .2736 .3123 .2475 .2240 .1787 .3006 .2174 .3936	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\\ \end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.6810 .6702 .6652 .6664 .6698 .6818 .6895 .6911 .6904 .6923 .6989 .7022 .7085 .7086 .7074 .7111 .7173 .7256 .7272 .7233 .7138 .7146 .7297 .7387 .7444 .7258 .7484 .7258 .7484 .7672 .7761 .7771 .7635 .7782	.3964 .3369 .2847 .2678 .2545 .2291 .2245 .2322 .2349 .2363 .2622 .2772 .2910 .3146 .3527 .3544 .2813 .2913 .3427 .3858 .3299 .2682 .2614 .3744 .2579 .2440 .3178 .5005 .4923 .3695

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.6893 .6842 .6793 .6665 .6594 .6552 .6549 .6605 .6650 .6758 .6811 .6869 .6886 .6933 .7033 .7057 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7054 .7143 .7163 .7243 .7183 .7193 .7183 .7193 .7420 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7470 .7680 .7747 .7638 .7540 .7782	.2345 .3171 .3698 .3935 .3664 .3299 .3245 .3145 .3172 .3660 .3326 .3279 .2815 .3020 .3693 .3172 .2934 .3213 .3174 .3424 .3748 .3293 .3174 .3424 .3748 .3399 .3325 .2983 .3016 .3312 .3465 .2701 .2978 .2983 .3016 .3312 .3465 .2701 .2978 .2882 .2726 .3150 .2450 .2163 .1721 .3041 .2229 .3945	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.6857 .6744 .6688 .6695 .6728 .6848 .6926 .6941 .6934 .6955 .7022 .7054 .7120 .7122 .7054 .7120 .7122 .7054 .7120 .7122 .7054 .7120 .7123 .7309 .7269 .7174 .7182 .7332 .7421 .7480 .7293 .7517 .7707 .7795 .7804 .7665 .7809	.4178 .3534 .2953 .2747 .2609 .2365 .2326 .2397 .2434 .2465 .2730 .2887 .3034 .3287 .3034 .3287 .3034 .3287 .3088 .3266 .2943 .3052 .3585 .4027 .3442 .2803 .2746 .3914 .2729 .2626 .3349 .5246 .3914 .2729 .2626 .3349 .5246
	SUCTION S	SURFACE			PRESSURE	SURFACE	
--	--	--	--	---	--	---	--
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
$\begin{array}{c} 30.57\\ 31.98\\ 33.40\\ 37.60\\ 39.08\\ 41.80\\ 43.25\\ 44.57\\ 46.03\\ 47.51\\ 48.95\\ 50.31\\ 51.78\\ 53.14\\ 54.62\\ 55.97\\ 57.36\\ 60.29\\ 61.67\\ 67.29\\ 70.13\\ 71.51\\ 73.03\\ 74.39\\ 75.74\\ 77.24\\ 78.62\\ 81.54\\ 82.88\\ 84.34\\ 85.70\\ 87.11\\ 88.50\\ 89.92\\ 91.35\\ 94.24\\ 95.65\\ 97.03\\ \end{array}$	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.6906 .6860 .6812 .6691 .6620 .6578 .6571 .6619 .6658 .6770 .6834 .6900 .6921 .6968 .7067 .7090 .7088 .7067 .7090 .7088 .7067 .7090 .7088 .7067 .7090 .7185 .7090 .7185 .7209 .7289 .7289 .7361 .7371 .7342 .7233 .7245 .7475 .7523 .7469 .7323 .7524 .7524 .7524 .7524 .7594 .7693 .7594 .7832	. 2097 . 3049 . 3626 . 3943 . 3668 . 3322 . 3229 . 3050 . 2994 . 3508 . 3305 . 3300 . 2850 . 3048 . 3700 . 3164 . 2911 . 3181 . 3146 . 3412 . 3754 . 3164 . 3412 . 3754 . 3368 . 3294 . 2960 . 2986 . 3289 . 3456 . 2681 . 2931 . 2825 . 2690 . 3147 . 2408 . 2092 . 1638 . 3043 . 2241 . 3891	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.6905 .6793 .6746 .6737 .6746 .6779 .6904 .6984 .7002 .6996 .7017 .7086 .7119 .7185 .7188 .7178 .7218 .7279 .7363 .7279 .7363 .7379 .7363 .7551 .7404 .7493 .7551 .7404 .7493 .7551 .7363 .7586 .7773 .7859 .7867 .7729 .7866	.4331 .3640 .3034 .2824 .2692 .2458 .2423 .2515 .2561 .2593 .2874 .3046 .3205 .3460 .3882 .3904 .3179 .3476 .3140 .3260 .3818 .4274 .3675 .3021 .2957 .4160 .2957 .4160 .2957 .4160 .2961 .2832 .3549 .5480 .5428 .3967

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	 h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7372 .7306 .7229 .7033 .6941 .6877 .6870 .6928 .6967 .7070 .7122 .7185 .7201 .7249 .7360 .7384 .7375 .7378 .7378 .7354 .7428 .7428 .7437 .7526 .7601 .7603 .7562 .7429 .7456 .7689 .7738 .7671 .7499 .7452 .7713 .7955 .8023 .7872 .7745 .8033	.6522 .6485 .6401 .5798 .5340 .4783 .4783 .4783 .4626 .4604 .5085 .4623 .4625 .4053 .3015 .3709 .4157 .3352 .3104 .2538 .4112 .2589 .4112 .2589 .4112 .3104 .2538 .4112 .2889 .5440	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.53 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7022 .6881 .6815 .6827 .6871 .7026 .7128 .7148 .7138 .7159 .7235 .7277 .7352 .7355 .7341 .7354 .7454 .7549 .7566 .7513 .7397 .7569 .7673 .7397 .7569 .7673 .7753 .7753 .7753 .7753 .7969 .8066 .8066 .8066 .7889 .8060	. 4326 .3828 .3214 .3021 .2929 .2742 .2801 .2919 .2972 .3002 .3317 .3527 .3741 .4084 .4630 .4678 .3792 .4144 .3781 .3851 .4467 .5026 .4337 .3583 .3444 .4938 .3435 .3370 .4488 .6986 .6655 .5083

	SUCTION S	URFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	T::/Tg	'n/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7380 .7312 .7237 .7045 .6954 .6889 .6883 .6940 .6977 .7081 .7133 .7196 .7211 .7259 .7370 .7393 .7393 .7383 .7383 .7382 .7359 .7431 .7438 .7523 .7599 .7431 .7438 .7523 .7599 .7427 .7431 .7681 .7728 .7663 .7494 .7449 .7705 .7494 .7449 .7705 .7942 .8008 .7862 .7740 .8022	.6154 .6246 .6261 .5767 .5310 .4743 .4720 .4582 .4541 .5037 .4577 .4571 .3967 .4266 .5204 .4524 .4194 .4482 .4412 .4661 .5018 .4664 .4035 .4360 .4035 .4360 .4548 .3689 .3976 .3869 .3976	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7099 .6959 .6888 .6895 .6932 .7068 .7157 .7173 .7159 .7177 .7248 .7285 .7357 .7357 .7357 .7357 .7341 .7448 .7555 .7503 .7555 .7503 .7385 .7588 .7558 .7659 .7719 .7493 .7755 .7579 .7719 .7493 .7752 .8048 .8047 .7879 .8049	.4799 .4208 .3505 .3265 .3126 .2848 .2838 .2943 .2990 .3015 .3505 .3695 .4017 .4545 .4580 .3691 .4036 .3633 .3715 .4336 .4885 .4205 .3460 .3334 .4788 .3299 .3223 .4335 .6621 .6511 .4977

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7424 .7359 .7283 .7085 .6992 .6924 .6915 .6972 .7010 .7116 .7170 .7234 .7249 .7297 .7406 .7431 .7423 .7417 .7491 .7458 .7459 .7459 .7543 .7616 .7575 .7439 .7543 .7616 .7575 .7439 .7543 .7616 .7575 .7439 .7543 .7616 .7575 .7439 .7440 .7686 .7733 .7665 .7494 .7446 .7697 .7933 .7697 .7851 .7729 .8008	.6239 .6440 .6489 .5938 .5461 .4874 .4821 .4666 .4611 .5098 .4662 .4648 .4033 .4306 .5206 .4550 .4237 .4537 .4467 .4731 .5092 .4685 .4668 .4127 .4731 .5092 .4685 .4668 .4127 .4122 .4646 .4616 .3790 .4110 .3967 .3741 .4160 .3404 .3188 .2619 .4176 .3001 .5417	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7220 .7090 .7021 .7026 .7061 .7174 .7246 .7255 .7233 .7243 .7307 .7338 .7402 .7395 .7371 .7403 .7464 .7552 .7564 .7558 .7384 .7551 .7651 .7651 .7707 .7476 .7718 .7928 .8023 .8019 .7852 .8024	.5640 .4966 .4162 .3857 .3710 .3252 .3130 .3227 .3255 .3256 .3545 .3710 .3866 .4155 .4646 .4637 .3694 .4016 .3626 .3674 .4016 .3626 .3674 .4016 .3626 .3674 .4019 .3336 .3189 .404 .3117 .2977 .4108 .6174 .6137 .4677

	SUCTION S	URFACE				JUKFALE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.8009 .7969 .7907 .7736 .7595 .7661 .7595 .7661 .7700 .7799 .7851 .7893 .7923 .7968 .8067 .8091 .8082 .8083 .8052 .8126 .8125 .8206 .8125 .8275 .8275 .8249 .8124 .8127 .8340 .8374 .8331 .8176 .8122 .8329 .8533 .8583 .8583 .8583 .8583 .8583 .8583 .8583	.9518 .9428 .9186 .8219 .7615 .6871 .6895 .6742 .6696 .7406 .7095 .6648 .5978 .6320 .7374 .6512 .6113 .6425 .6247 .6683 .7004 .6491 .6291 .5668 .5878 .6512 .6758 .5112 .5668 .5878 .6512 .5678 .512 .5675 .6059 .4721 .4392 .3630 .6028 .4791 .7286	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7749 .7620 .7545 .7554 .7554 .7580 .7720 .7818 .7842 .7852 .7924 .7965 .8033 .8033 .8011 .8046 .8113 .8194 .8211 .8174 .8073 .8063 .8210 .8303 .8210 .8303 .8210 .8303 .8210 .8303 .8210 .8303 .8210 .8303 .8210 .8303 .8210 .8349 .8149 .8340 .8512 .8587 .8584 .8587	.6593 .5766 .4717 .4483 .4059 .3713 .3738 .3914 .4051 .4171 .4526 .4763 .5017 .5461 .6035 .6030 .4959 .5052 .4626 .5102 .6156 .6761 .5563 .4463 .4128 .6423 .4094 .3556 .4699 .7674 .8270 .5305

RUN CODE 44000

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	 h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7257 .7232 .7178 .7075 .7020 .6999 .7005 .7063 .7106 .7208 .7265 .7309 .7348 .7397 .7493 .7524 .7526 .7541 .7529 .7652 .7670 .7757 .7831 .7845 .7826 .7757 .7831 .7845 .7826 .7722 .7670 .7757 .7831 .7845 .7826 .7722 .7670 .7757 .7831 .7845 .7826 .7722 .7670 .7757 .7831 .7845 .7826 .7727 .7831 .7845 .7826 .7727 .7831 .7845 .7826 .7727 .7831 .7947 .7947 .7947 .7947 .7947 .7980 .8176 .8237 .8117 .8009 .8242	.2206 .3531 .4079 .4377 .4156 .3956 .3954 .3823 .3785 .4279 .4095 .3804 .3417 .3625 .4251 .3735 .3495 .3705 .3611 .4188 .4375 .3611 .4188 .4375 .3611 .4188 .4375 .3611 .4188 .3850 .3474 .3641 .4159 .4380 .3474 .3641 .4159 .4380 .3474 .3641 .4159 .4380 .3008 .3179 .3372 .3408 .3179 .3372 .3408 .3179 .3372 .3408 .3179 .3372 .3408 .3179 .3372 .3408 .3179 .3372 .3408 .3637 .2531 .4543	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 99.07\\ 70.91\\ 72.72\\ 74.63\\ 76.4\\ 91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\\ 96.5$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7272 .7175 .7131 .7155 .7191 .7342 .7443 .7472 .7473 .7473 .7506 .7577 .7617 .7687 .7691 .7687 .7691 .7687 .7691 .7682 .7728 .7786 .7863 .7863 .7863 .7863 .7852 .7765 .7771 .7912 .7996 .8047 .7878 .8059 .8220 .8293 .8295 .8164 .8287	.4636 .3924 .3335 .3052 .2932 .3013 .3182 .3310 .3415 .3700 .3961 .4229 .4500 .5049 .5122 .4233 .4395 .4044 .4399 .5227 .5779 .4963 .4093 .3932 .5673 .3906 .3504 .4365 .6713 .6990 .5169

	SUCTION S	URFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7254 .7224 .7171 .7067 .7012 .6990 .6995 .7051 .7094 .7192 .7247 .7292 .7326 .7374 .7495 .7512 .7494 .7495 .7512 .7497 .7613 .7630 .7714 .7495 .7512 .7497 .7613 .7630 .7714 .7785 .7798 .7777 .7679 .7694 .7897 .7937 .7937 .7937 .7937 .7932 .7932 .8120 .8177 .8066 .7967 .8190	. 1934 . 3293 . 3922 . 4273 . 4065 . 3863 . 3857 . 3738 . 3711 . 4178 . 3957 . 3729 . 3330 . 3530 . 4151 . 3623 . 3383 . 3604 . 3513 . 4064 . 3513 . 4064 . 3513 . 4064 . 3213 . 3872 . 3756 . 3402 . 3534 . 4035 . 4278 . 2924 . 3088 . 3302 . 3574 . 3748 . 2924 . 3088 . 3302 . 3374 . 3748 . 2690 . 2294 . 1806 . 3418 . 2465 . 4270	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7270 .7171 .7124 .7140 .7168 .7297 .7385 .7411 .7410 .7443 .7511 .7550 .7615 .7619 .7615 .7619 .7612 .7659 .7716 .7791 .7811 .7831 .7791 .7811 .783 .7704 .7711 .7850 .7935 .7982 .7982 .7982 .7819 .7998 .8159 .8232 .8237 .8113 .8232	.4596 .3910 .3325 .3230 .2960 .2727 .2709 .2860 .2981 .3086 .3365 .3574 .3777 .4034 .4582 .4663 .3785 .3939 .3649 .3987 .4782 .5320 .4555 .3748 .3541 .5183 .3541 .5183 .3541 .5183 .3533 .3238 .4056 .6231 .6561 .4783

	SUCTION	SURFACE		PRESSURE SURFACE			
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7214 .7214 .7186 .7072 .7017 .6991 .6996 .7047 .7089 .7181 .7236 .7291 .7313 .7360 .7448 .7473 .7481 .7495 .7477 .7585 .7601 .7485 .7477 .7585 .7601 .7680 .7749 .7756 .7756 .7756 .7755 .7646 .7658 .7856 .7857 .7855 .7855 .7701 .7886 .8064 .8109 .8010 .7910 .8124	.0941 .2995 .3970 .4369 .4178 .3965 .3972 .3841 .3757 .4106 .3844 .3752 .3262 .3417 .4023 .3549 .4023 .3535 .3344 .3637 .3549 .4000 .4192 .3817 .3549 .4000 .4192 .3817 .3815 .3327 .3500 .4103 .4103 .4392 .3009 .3166 .3242 .3428 .3859 .2778 .2347 .1747 .3650 .2744 .4245	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7339 .7244 .7189 .7196 .7225 .7324 .7392 .7416 .7414 .7435 .7490 .7523 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7581 .7585 .7620 .7669 .7741 .7665 .7794 .7867 .7922 .7748 .7933 .8082 .8152 .8152 .8031 .8156	.5200 .4519 .3777 .3559 .3381 .2905 .2719 .2989 .3155 .3233 .3361 .3489 .3640 .3837 .4429 .4530 .3575 .3711 .3411 .3711 .4619 .5300 .4312 .3324 .3250 .4544 .3250 .4544 .3161 .2752 .3567 .5354 .5905 .4339

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7168 .7185 .7151 .7028 .6957 .6919 .6972 .7008 .7105 .7160 .7194 .7230 .7270 .7359 .7383 .7385 .7384 .7370 .7471 .7475 .7546 .7607 .7617 .7597 .7506 .7517 .7506 .7517 .7597 .7506 .7517 .7597 .7506 .7517 .7599 .7593 .7593 .7533 .7753 .7533 .77691 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7574 .7574 .7574 .7573 .7573 .7573 .7573 .7573 .7573 .7573 .7574 .7574 .7574 .7574 .7574 .7573 .7573 .7573 .7573 .7573 .7573 .7574 .7574 .7574 .7574 .7574 .7573 .7573 .7573 .7574 .7573 .7574 .7574 .7574 .7573 .7574 .7573 .7574 .7573 .7574 .7573 .7573 .7574 .7573 .7574 .7573 .7574 .7574 .7574 .7573 .7573 .7574 .7574 .7573 .7574 .7573 .7574 .7574 .7573 .7574 .7574 .7573 .7574 .7574 .7574 .7574 .7573 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7574 .7573 .7574 .7574 .7573 .7574 .7573 .7574 .7573 .7574 .7573 .7574 .7573 .7574 .7594	.1201 .3361 .4197 .4458 .4165 .3821 .3820 .3677 .3608 .4045 .3909 .3533 .3170 .3330 .3852 .3385 .3158 .3336 .3278 .3818 .3278 .3818 .3278 .3319 .3556 .3390 .3123 .3556 .3390 .3123 .3556 .3390 .3123 .3556 .3390 .3123 .3556 .3390 .3123 .3556 .3390 .3123 .3556 .3278 .3850 .4106 .2862 .2934 .3127 .3284 .3583 .2622 .2329 .1857 .3421 .2780 .4026	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7293 .7206 .7160 .7165 .7182 .7258 .7319 .7334 .7312 .7331 .7388 .7411 .7458 .7455 .7438 .7455 .7438 .7465 .7518 .7465 .7518 .7583 .7597 .7568 .7488 .7489 .7613 .7688 .7489 .7613 .7688 .7727 .7562 .7731 .7562 .7731 .7874 .7937 .7938 .7834 .7944	.5143 .4588 .3996 .3791 .3455 .2874 .2782 .2880 .2914 .2926 .3218 .3283 .3308 .3566 .3919 .3210 .3219 .3210 .2933 .3268 .4014 .4458 .3626 .2823 .2577 .3918 .2538 .2099 .2548 .3952 .4805 .3037

	SUCTION	SURFACE		PRESSURE SURFACE			
% Surface Distance	% Axial Chord	T w∕⊺g	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 87.96 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7047 .7074 .7036 .6885 .6808 .6764 .6758 .6808 .6844 .6945 .7001 .7039 .7067 .7107 .7201 .7222 .7220 .7211 .7222 .7220 .7211 .7187 .7278 .7272 .7275 .7416 .7424 .7394 .7280 .7285 .7490 .7523 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7475 .7488 .7717	. 1947 . 4087 . 4778 . 4697 . 4391 . 4060 . 3997 . 3837 . 3770 . 4192 . 4051 . 3701 . 3271 . 3443 . 4035 . 3531 . 3297 . 3518 . 3455 . 3944 . 4058 . 3743 . 3593 . 3324 . 3457 . 3886 . 4101 . 3054 . 3169 . 3313 . 3354 . 3599 . 2790 . 2566 . 2062 . 3500 . 2717 . 4233	28.90 30.73 32.58 34.33 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.43 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.85 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7115 .7027 .6980 .6990 .7012 .7086 .7143 .7154 .7125 .7141 .7125 .7141 .7250 .7261 .7250 .7250 .7250 .7304 .7374 .7384 .7374 .7384 .7374 .7384 .7374 .7384 .7376 .7463 .7463 .7463 .7504 .7463 .7504 .7485 .7650 .7723 .7588 .7713	.5126 .4701 .3878 .3602 .2989 .2860 .2978 .3048 .3095 .3345 .3380 .3375 .3943 .3197 .3238 .2936 .3194 .3865 .3194 .3865 .4280 .3497 .2767 .2537 .3803 .2397 .1985 .2629 .4123 .4754 .2971

			KUN CUL				
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7057 .7095 .7047 .6900 .6828 .6791 .6784 .6835 .6872 .6973 .7029 .7066 .7095 .7132 .7227 .7247 .7246 .7234 .7234 .7234 .7234 .7246 .7234 .7246 .7234 .7247 .7246 .7234 .7247 .7246 .7234 .7295 .7372 .7433 .7300 .7295 .7372 .7433 .7439 .7411 .7298 .7300 .7497 .7532 .7483 .7339 .7284 .7479 .7598 .7490 .7598 .7490 .7714	.2083 .4237 .4758 .4538 .4260 .3977 .3895 .3742 .3691 .4110 .3979 .3626 .3203 .3380 .3978 .3480 .3243 .3458 .3408 .3458 .3408 .3243 .3458 .3408 .3243 .3458 .3408 .3243 .3458 .3408 .3243 .3458 .3408 .3263 .3246 .3400 .3835 .4037 .2948 .3109 .3263 .3262 .3492 .2677 .2435 .1978 .3432 .2684 .4096	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7130 .7053 .7014 .7029 .7051 .7126 .7182 .7193 .7165 .7180 .7233 .7245 .7292 .7279 .7254 .7279 .7254 .7278 .7395 .7404 .7364 .7365 .7404 .7366 .7260 .7390 .7472 .7515 .7314 .7495 .7656 .7724 .7721 .7591 .7712	.5048 .4640 .4074 .3899 .3598 .2998 .2873 .3000 .3085 .3148 .3369 .3395 .3382 .3565 .3940 .3942 .3192 .3209 .2899 .3174 .3876 .4296 .3451 .2708 .2518 .3745 .2414 .2038 .2518 .3745 .2414 .2038 .2518 .3745 .2414 .2038 .2518 .3745 .2414 .2038 .2536 .4088 .4718 .2947

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7132 .7115 .7068 .6976 .6923 .6906 .6965 .7014 .7118 .7174 .7222 .7256 .7306 .7401 .7432 .7434 .7453 .7438 .7568 .7585 .7675 .7748 .7568 .7585 .7675 .7748 .7568 .7585 .7675 .7748 .7764 .7743 .7638 .7563 .7651 .7870 .7912 .7869 .7729 .7683 .7899 .8099 .8161 .8036 .7923 .8160	. 1782 .3206 .3830 .4208 .3994 .3781 .3738 .3638 .3653 .4127 .3884 .3663 .3252 .3439 .4042 .3534 .3534 .3536 .3440 .4066 .4225 .3842 .3629 .3258 .3480 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3980 .4210 .2880 .3062 .3238 .3294 .3671 .2621 .2208 .1734 .3419 .2378 .4189	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.36 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7172 .7082 .7045 .7072 .7112 .7266 .7365 .7395 .7398 .7434 .7507 .7545 .7616 .7619 .7612 .7661 .7717 .7795 .7813 .7781 .7695 .7701 .7845 .7934 .7982 .7986 .8157 .8235 .8236 .8095 .8219	.4569 .3832 .3264 .3224 .3028 .2928 .3106 .3261 .3402 .3693 .3948 .4199 .4437 .5020 .5119 .4212 .4414 .4071 .4389 .5197 .5755 .4985 .4189 .3982 .5606 .3911 .3639 .4641 .6983 .7073 .5313

	RUN	CODE	4413
--	-----	------	------

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
$\begin{array}{c} 30.57\\ 31.98\\ 33.40\\ 37.60\\ 39.08\\ 41.80\\ 43.25\\ 44.57\\ 46.03\\ 47.51\\ 48.95\\ 50.31\\ 51.78\\ 53.14\\ 54.62\\ 55.97\\ 57.36\\ 60.29\\ 61.67\\ 67.29\\ 70.13\\ 71.51\\ 73.03\\ 74.39\\ 75.74\\ 77.24\\ 78.62\\ 81.54\\ 82.88\\ 84.34\\ 85.70\\ 87.11\\ 88.50\\ 89.92\\ 91.35\\ 94.24\\ 95.65\\ 97.03\\ \end{array}$	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7187 .7168 .7125 .7029 .6977 .6955 .6961 .7015 .7055 .7148 .7199 .7242 .7274 .7274 .7274 .7320 .7408 .7433 .7449 .7433 .7449 .7433 .7449 .7433 .7541 .7557 .7631 .7696 .7709 .7692 .7601 .7616 .7802 .7805 .7805 .7805 .7654 .7838 .8017 .8065 .7976 .7890 .8089	. 1437 . 2920 . 3640 . 4057 . 3868 . 3676 . 3680 . 3561 . 3519 . 3945 . 3732 . 3509 . 3138 . 3329 . 3912 . 3412 . 3183 . 3382 . 3300 . 3851 . 3999 . 3653 . 3241 . 3393 . 3865 . 3241 . 3393 . 3865 . 4086 . 2836 . 2927 . 3177 . 3270 . 3547 . 3270 . 3547 . 2673 . 2391 . 1843 . 3360 . 2592 . 4032	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7238 .7147 .7099 .7108 .7128 .7233 .7306 .7327 .7321 .7348 .7409 .7442 .7502 .7502 .7502 .7502 .7502 .7591 .7661 .7680 .7657 .7582 .7589 .7720 .7803 .7846 .7698 .7866 .8020 .8092 .8099 .7992 .8107	.4592 .3900 .3138 .2838 .2501 .2404 .2523 .2615 .2693 .2903 .3059 .3212 .3403 .3059 .3212 .3403 .3841 .3901 .3172 .3202 .2936 .3255 .3975 .4432 .3715 .2998 .2772 .4252 .2670 .2371 .3074 .4785 .5253 .3666

Table VIII (contd) <u>Heat transfer data for each run code</u>

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7194 .7181 .7133 .7037 .6985 .6966 .6973 .7031 .7074 .7172 .7227 .7270 .7307 .7354 .7473 .7473 .7473 .7473 .7473 .7473 .7473 .7473 .7473 .7473 .7473 .7473 .7475 .7615 .7697 .7766 .7780 .7766 .7780 .7766 .7780 .7765 .7679 .7881 .7921 .7884 .7921 .7884 .7955 .7716 .7915 .8100 .8160 .8049 .7950 .8174	.1488 .3101 .3786 .4174 .3977 .3786 .3787 .3673 .3646 .4100 .3913 .3645 .3274 .3466 .4051 .3533 .3296 .3515 .3428 .3946 .4194 .3818 .3599 .3287 .3463 .3986 .4225 .2867 .3034 .3255 .3463 .3986 .4225 .2867 .3034 .3255 .3315 .3702 .2667 .2245 .3315 .3702 .2667 .2245 .3817 .2475 .4296	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 56.12 59.97 61.77 63.63 65.41 67.30 69.07 7C.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7256 .7159 .7111 .7128 .7155 .7286 .7376 .7402 .7400 .7434 .7503 .7542 .7608 .7611 .7603 .7542 .7608 .7611 .7603 .7650 .7707 .7782 .7800 .7774 .7694 .7700 .7836 .7917 .7967 .7805 .7917 .7967 .7805 .7981 .8140 .8211 .8216 .8094 .8212	.4727 .3949 .3315 .3221 .2921 .2713 .2727 .2862 .2985 .3104 .3379 .3609 .3832 .4053 .4053 .4053 .4579 .4660 .3818 .3980 .3636 .3990 .3636 .3990 .4796 .5313 .4502 .3657 .3506 .5148 .3494 .3169 .3885 .6047 .6440 .4601

RUN CODE 44:44

			NON COL				
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7234 .7217 .7168 .7066 .7013 .6991 .6996 .7051 .7091 .7187 .7240 .7278 .7314 .7278 .7314 .7360 .7447 .7474 .7473 .7485 .7469 .7576 .7591 .7667 .7591 .7667 .7591 .7667 .7731 .7744 .7728 .7635 .7647 .7735 .7647 .7735 .7647 .7718 .7635 .7647 .7835 .7871 .7835 .7871 .7835 .7871 .7835 .7871 .7835 .7871 .7835 .7869 .8043 .8096 .7999 .7910 .8116	.1462 .3065 .3777 .4156 .3961 .3775 .3768 .3635 .3593 .4065 .3881 .3574 .3218 .3408 .3245 .3408 .3245 .3429 .3444 .3878 .4055 .3429 .3344 .3878 .4055 .3699 .3520 .3211 .3405 .3699 .3520 .3211 .3405 .3897 .4096 .2825 .2941 .3131 .3207 .3566 .2565 .2148 .1682 .3172 .2349 .3835	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7306 .7208 .7154 .7161 .7179 .7285 .7362 .7382 .7375 .7403 .7464 .7500 .7559 .7561 .7549 .7561 .7549 .7561 .7549 .7559 .7561 .7549 .7559 .7646 .7717 .7735 .7711 .7634 .7637 .7769 .7848 .7895 .7744 .7895 .7744 .7920 .8071 .8141 .8146 .8037 .8153	.4908 .4131 .3453 .3282 .2929 .2613 .2572 .2669 .2761 .2855 .3073 .3250 .3436 .3667 .4108 .4145 .3378 .3463 .3172 .3523 .4254 .4699 .3955 .3172 .3001 .4525 .3077 .2739 .3472 .5214 .5740 .4217

				JL 44133			
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 87.96 87.96 88.92 91.06 91.94 92.98 93.87 95.72 96.63 97.57 99.40 100.24 101.02	.7177 .7155 .7112 .7012 .6962 .6949 .7006 .7049 .7144 .7197 .7237 .7273 .7319 .7411 .7438 .7439 .7454 .7439 .7454 .7439 .7454 .7439 .7454 .7439 .7454 .7439 .7454 .7439 .7454 .7439 .7454 .7439 .7552 .7571 .7649 .7715 .7623 .7640 .7825 .7860 .7825 .7860 .7832 .7867 .8040 .8093 .8007 .7921 .8115	.1240 .2755 .3514 .3950 .3781 .3594 .3609 .3498 .3460 .3888 .3729 .3426 .3061 .3265 .3868 .3253 .3117 .3314 .3224 .3734 .3914 .3565 .3346 .3068 .3253 .3770 .4008 .2662 .2753 .3029 .3113 .3451 .2520 .2136 .1649 .3223 .2473 .3820	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.53\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.53\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.36\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7268 .7178 .7127 .7138 .7159 .7268 .7344 .7368 .7364 .7394 .7457 .7492 .7553 .7556 .7546 .7546 .7586 .7546 .7586 .7643 .7714 .7733 .7712 .7638 .7642 .7770 .7848 .7642 .7770 .7848 .7894 .7751 .7915 .8065 .8134 .8142 .8033 .8143	.4794 .4072 .3396 .3258 .2935 .2613 .2524 .2682 .2804 .3292 .3114 .3292 .3480 .3712 .4121 .4142 .3405 .3503 .3211 .4750 .3976 .3185 .3015 .3015 .3015 .3015 .3267 .2656 .3267 .5170 .5447 .3843

RUN	CODE	44203

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
$\begin{array}{c} 30.57\\ 31.98\\ 33.40\\ 37.60\\ 39.08\\ 41.80\\ 43.25\\ 44.57\\ 46.03\\ 47.51\\ 48.95\\ 50.31\\ 51.78\\ 53.14\\ 54.62\\ 55.97\\ 57.36\\ 60.29\\ 61.67\\ 67.29\\ 70.13\\ 71.51\\ 73.03\\ 74.39\\ 75.74\\ 77.24\\ 78.62\\ 81.54\\ 82.88\\ 84.34\\ 85.70\\ 87.11\\ 88.50\\ 89.92\\ 91.35\\ 94.24\\ 95.65\\ 97.03\\ \end{array}$	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\end{array}$.7444 .7436 .7377 .7236 .7168 .7127 .7129 .7189 .7233 .7336 .7391 .7436 .7471 .7519 .7614 .7642 .7640 .7649 .7629 .7640 .7649 .7629 .7738 .7751 .7838 .7911 .7868 .8010 .7868 .7820 .8032 .8233 .8291 .8161 .8047 .8287	. 3658 . 5081 . 5444 . 5266 . 4948 . 4571 . 4578 . 4466 . 4457 . 5000 . 4747 . 4449 . 4005 . 4227 . 4913 . 4336 . 4076 . 4329 . 4215 . 4700 . 4927 . 4504 . 4336 . 3887 . 4038 . 4587 . 4504 . 3887 . 4038 . 3887 . 4038 . 3887 . 4038 . 3871 . 3810 . 3871 . 4275 . 3148 . 2255 . 3148 . 2255 . 3990 . 2803 . 4966	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7372 .7263 .7215 .7232 .7264 .7407 .7508 .7533 .7530 .7563 .7563 .7634 .7675 .7746 .7792 .7845 .7924 .8049 .8101 .7913 .8097 .8264 .8338 .8202 .8329	.4919 .4294 .3722 .3600 .3308 .3106 .3213 .3366 .3518 .3672 .3959 .4215 .4471 .4722 .5271 .5363 .4510 .4648 .4310 .4684 .5578 .6161 .5196 .4244 .4082 .5834 .3975 .3567 .4571 .6862 .7338 .5358

.....

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7471 .7466 .7407 .7263 .7192 .7145 .7145 .7205 .7249 .7350 .7405 .7448 .7481 .7527 .7622 .7648 .7646 .7650 .7629 .7727 .7738 .7822 .7895 .7903 .7879 .7770 .7780 .7879 .7770 .7780 .7995 .8034 .7987 .7843 .7987 .7843 .7987 .7843 .7987 .7843 .7987 .7843 .7977 .8004 .8202 .8259 .8129 .8018 .8258	.3526 .5129 .5554 .5397 .5052 .4612 .4617 .4522 .4524 .5041 .4823 .4490 .4026 .4255 .4971 .4385 .4117 .4367 .4261 .4714 .4944 .4544 .4119 .4666 .4909 .3589 .3781 .3898 .3879 .4292 .3194 .2844 .2332 .3956 .2813 .5081	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7428 .7317 .7260 .7270 .7293 .7411 .7499 .7521 .7513 .7540 .7607 .7645 .7711 .7707 .7692 .7736 .7798 .7875 .7895 .7895 .7895 .7863 .7773 .7772 .7915 .8004 .8054 .8054 .8298 .8298 .8162 .8287	.5308 .4662 .3980 .3807 .3442 .3092 .3119 .3271 .3403 .3525 .3791 .4020 .4238 .4436 .4971 .5054 .4172 .4244 .3941 .4324 .5176 .5705 .4781 .3898 .3714 .5425 .3649 .3287 .4280 .6552 .6948 .4877

RUN CODE 44204

			Non col				
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7505 .7496 .7435 .7281 .7206 .7154 .7154 .7212 .7254 .7357 .7413 .7455 .7487 .7532 .7626 .7653 .7650 .7653 .7650 .7653 .7650 .7649 .7623 .7713 .7718 .7878 .7871 .7878 .7871 .7878 .7854 .7743 .7751 .7958 .7957 .7950 .7805 .7950 .7805 .7950 .7805 .7950 .7974 .8210	.3671 .5341 .5811 .5637 .5262 .4772 .4795 .4670 .4636 .5178 .4955 .4609 .4119 .4332 .5037 .4473 .4217 .4454 .4343 .4797 .5024 .4454 .4343 .4797 .5024 .4607 .4214 .4771 .5023 .3632 .3854 .4012 .3994 .4380 .3338 .2966 .2391 .4154 .3071 .5153	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7494 .7385 .7327 .7327 .7345 .7444 .7518 .7534 .7534 .7537 .7630 .7689 .7689 .7682 .7663 .7702 .7663 .7702 .7762 .7762 .7854 .7854 .7854 .7854 .7820 .7729 .7724 .7863 .7951 .8001 .7810 .7993 .8163 .8240 .8236 .8097 .8228	.5980 .5317 .4493 .4243 .3829 .3334 .3280 .3415 .3537 .3647 .3845 .4012 .4186 .4393 .4909 .4969 .4069 .4123 .3774 .4161 .5024 .5525 .4541 .3658 .3478 .5161 .3352 .3009 .4015 .6075 .6443 .4525

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7685 .7684 .7624 .7461 .7384 .7331 .7329 .7390 .7433 .7534 .7590 .7633 .7666 .7710 .7806 .7833 .7806 .7833 .7806 .7832 .7803 .7896 .7832 .7803 .7896 .7907 .7993 .8065 .8070 .8042 .7929 .7937 .8154 .8194 .8194 .8194 .8159 .8360 .8418 .8282 .8164 .8410	.5420 .6758 .6898 .6271 .5827 .5305 .5288 .5172 .5167 .5749 .5527 .5171 .4646 .4892 .5679 .5021 .4729 .5002 .4854 .5282 .5619 .5197 .5080 .4486 .4638 .5250 .5543 .4074 .4301 .4425 .4434 .4865 .3703 .3349 .2846 .4667 .3327 .6000	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\\ 96.55\\ \end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7550 .7434 .7378 .7392 .7421 .7556 .7655 .7678 .7670 .7698 .7767 .7809 .7877 .7873 .7858 .7899 .7963 .8043 .8061 .8026 .7929 .7923 .8068 .8155 .8208 .8155 .8208 .8155 .8208 .8155 .8208 .8155 .8208 .8155 .8202 .8370 .8445 .8442 .8301 .8427	.5493 .4836 .4132 .3966 .3641 .3334 .3468 .3622 .3756 .3883 .4186 .4472 .4751 .5561 .5643 .4975 .5561 .4826 .4465 .4866 .4465 .4866 .5773 .6327 .5282 .4265 .4093 .6028 .3999 .3513 .4555 .7101 .7582 .5121

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7766 .7764 .7704 .7547 .7473 .7421 .7416 .7473 .7514 .7613 .7668 .7710 .7741 .7786 .7881 .7908 .7900 .7903 .7873 .7957 .7962 .8043 .7900 .7903 .7873 .7957 .7962 .8043 .8110 .8115 .8088 .7978 .7985 .8192 .8229 .8180 .8036 .7987 .8188 .8383 .8438 .8309 .8196 .8431	.5537 .6897 .7113 .6576 .6128 .5637 .5580 .5423 .5392 .5993 .5754 .5377 .4819 .5081 .5920 .5239 .4926 .5187 .5043 .5187 .5043 .5498 .5783 .5342 .5193 .4607 .4789 .5433 .5733 .4607 .4789 .5433 .5733 .4193 .4413 .4545 .557 .5007 .3756 .3356 .2818 .4719 .3450 .5808	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\\ \end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7668 .7561 .7509 .7532 .7643 .7728 .7747 .7731 .7753 .7818 .7857 .7918 .7914 .7896 .7933 .7995 .8074 .8091 .8056 .7960 .7952 .8094 .8181 .8233 .8041 .8226 .8390 .8462 .8390 .8462 .8390 .8462 .8460 .8325 .8452	.6144 .5500 .4656 .4423 .4025 .3527 .3540 .3698 .3796 .3868 .4194 .4426 .4646 .4932 .5495 .5539 .4551 .4716 .4354 .4759 .5652 .6180 .5135 .4139 .3976 .5889 .3934 .3461 .4407 .5889 .3934 .3461 .4407 .5256

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7759 .7755 .7703 .7550 .7472 .7419 .7415 .7415 .7473 .7515 .7615 .7667 .7709 .7740 .7785 .7878 .7905 .7878 .7905 .7878 .7905 .7899 .7901 .7869 .7948 .7949 .8029 .8097 .8099 .8097 .8099 .8074 .7963 .7967 .8168 .8206 .8159 .8016 .7966 .8168 .8168 .8360 .8413 .8286 .8174 .8407	.4916 .6550 .6990 .6647 .6156 .5611 .5561 .5561 .5385 .5972 .5656 .5296 .4754 .4996 .5784 .5125 .4833 .5124 .4986 .5443 .5125 .4833 .5124 .4986 .5443 .5707 .5278 .5242 .4591 .4784 .5415 .5676 .4160 .4422 .4606 .44553 .5676 .4160 .44553 .5676 .4160 .44553 .5676 .4160 .44553 .5676 .4160 .44553 .3856 .3483 .2915 .4782 .3501 .5971	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7734 .7633 .7570 .7575 .7593 .7687 .7758 .7774 .7753 .7772 .7829 .7862 .7918 .7908 .7919 .7976 .8050 .8064 .8029 .7933 .7925 .8063 .8148 .8196 .8007 .8189 .8352 .8425 .8425 .8425 .8425 .8425 .8425 .8415	.6857 .6142 .5159 .4867 .4410 .3772 .3665 .3830 .3939 .4016 .4280 .4472 .4651 .4867 .5421 .5465 .4445 .4532 .4445 .4532 .4445 .4525 .5437 .5970 .4916 .3899 .3692 .5581 .3604 .3106 .4097 .6425 .7059 .4737

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 101.02	.7516 .7535 .7498 .7325 .7234 .7174 .7163 .7221 .7264 .7380 .7442 .7486 .7518 .7562 .7666 .7693 .7691 .7669 .7639 .7691 .7669 .7639 .7639 .7723 .7708 .7796 .7868 .7872 .7829 .7698 .7872 .7829 .7698 .7872 .7829 .7698 .7964 .7926 .7964 .7926 .7964 .7926 .7964 .7926 .7964 .7926 .7964 .7926 .7964 .7926 .7959 .7890 .8117 .8173 .8006 .7865 .7865 .7859 .7966 .7956 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7859 .7856 .7856 .7859 .7850 .7850 .7856 .7857 .7850 .7856 .7850 .7850 .7857 .7850 .7850 .7856 .7850 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7857 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .7856 .78577 .78577 .7857777777777	.3771 .6314 .7171 .6910 .6369 .5778 .5661 .5452 .5381 .5973 .5724 .5301 .4727 .4937 .5694 .5084 .4795 .5082 .4992 .5486 .5700 .5230 .5045 .4591 .4737 .5331 .5632 .4134 .4352 .4505 .4554 .4904 .3728 .3424 .2846 .4828 .3677 .5821	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7669 .7556 .7488 .7489 .7515 .7590 .7645 .7653 .7617 .7627 .7688 .7702 .7754 .7754 .7734 .7701 .7725 .7779 .7856 .7861 .7807 .7865 .7675 .7829 .7926 .7971 .7725 .7929 .8119 .8196 .8185 .8015 .8156	.8652 .7559 .6367 .5927 .5599 .4658 .4431 .4606 .4692 .4742 .5149 .5223 .5210 .5450 .5986 .5979 .4878 .5001 .4534 .4830 .5743 .6352 .5297 .4304 .3987 .5728 .3816 .3399 .4331 .6794 .7387 .4913

				JE 44307			
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7568 .7596 .7571 .7397 .7305 .7242 .7233 .7294 .7339 .7456 .7521 .7566 .7597 .7643 .7750 .7776 .7771 .7747 .7776 .7771 .7747 .7773 .7750 .7774 .7773 .7861 .7934 .7935 .7891 .7753 .7891 .7753 .7750 .7984 .8020 .7951 .7753 .7951 .7753 .7951 .7753 .7951 .7753 .7951 .7753 .7951 .7951 .7753 .7951 .7951 .7753 .7951 .7951 .7753 .7951 .7951 .7753 .7951 .7951 .7951 .7952 .8163 .8219 .8044 .7896 .8174	.4031 .6788 .7766 .7465 .6861 .6193 .6087 .5869 .5775 .6357 .6145 .5671 .5031 .5267 .6111 .5389 .5048 .5375 .5271 .5800 .5994 .5470 .5309 .4781 .4937 .5580 .5910 .4369 .4781 .4937 .5580 .5910 .4369 .4572 .4685 .4749 .5149 .3875 .3574 .2999 .5068 .3792 .6095	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7781 .7685 .7621 .7627 .7655 .7724 .7772 .7779 .7737 .7745 .7800 .7807 .7856 .7831 .7794 .7856 .7831 .7794 .7863 .7938 .7939 .7863 .7939 .7880 .7752 .7738 .7939 .7880 .7752 .7738 .7939 .7880 .7752 .7738 .7939 .7880 .7752 .7738 .7939 .7891 .7986 .8030 .7773 .7976 .8166 .8241 .8227 .8051 .8191	.9920 .8740 .7378 .6893 .6547 .5380 .5047 .5266 .5381 .5440 .5807 .5841 .5792 .6020 .6573 .6550 .5363 .5477 .4942 .5227 .6181 .6812 .5654 .4582 .4258 .6054 .4582 .4258 .6054 .4587 .3581 .4547 .3581 .4547 .5090

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7554 .7587 .7553 .7291 .7235 .7223 .7283 .7327 .7447 .7511 .7556 .7588 .7634 .7743 .7740 .7765 .7740 .7759 .7848 .7923 .7877 .7733 .7728 .7965 .8000 .7931 .7744 .7670 .7908 .8140 .8197 .8011 .7858 .8146	.3954 .6844 .7750 .7424 .6852 .6290 .6130 .5882 .5790 .6414 .6147 .5667 .5034 .5267 .6105 .5397 .5063 .5428 .5342 .5397 .5063 .5428 .5342 .5397 .5063 .5495 .5397 .5063 .5495 .5356 .4827 .4968 .5585 .5899 .4349 .4572 .4728 .4705 .5148 .3924 .3613 .3055 .5099 .3815 .6279	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7790 .7703 .7643 .7650 .7677 .7742 .7789 .7795 .7752 .7760 .7813 .7815 .7862 .7834 .7795 .7813 .7860 .7934 .7934 .7932 .7873 .7742 .7873 .7742 .7727 .7880 .7974 .8017 .7753 .7952 .8142 .8219 .8203 .8020 .8160	1.0201 .9107 .7721 .7222 .6818 .5593 .5271 .5487 .5632 .5735 .6060 .6062 .5987 .6197 .6781 .6762 .5504 .5629 .5044 .5629 .5044 .5357 .6357 .7011 .5821 .4697 .4373 .6197 .4114 .3588 .4633 .7268 .7848 .5050

			Non con				
	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7669 .7665 .7607 .7449 .7374 .7320 .7317 .7378 .7422 .7523 .7576 .7620 .7652 .7699 .7795 .7815 .7818 .7999 .7795 .7815 .7818 .7818 .7915 .7818 .7981 .8050 .8056 .8027 .7915 .7923 .8140 .8151 .7923 .8140 .8131 .7931 .8143 .8345 .8400 .8147 .8389	.5424 .6716 .6904 .6370 .5935 .5421 .5382 .5266 .5274 .5859 .5566 .5230 .4700 .4970 .5803 .5102 .4783 .5041 .4891 .5346 .5690 .5208 .5041 .4891 .5346 .5690 .5208 .5041 .4484 .4627 .5242 .5549 .4059 .4059 .4302 .4443 .4420 .3686 .3365 .2778 .4618 .3289 .5806	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7523 .7410 .7353 .7369 .7398 .7536 .7634 .7658 .7649 .7678 .7747 .7791 .7861 .7857 .7842 .7886 .7949 .8030 .8048 .8014 .7916 .7911 .8056 .8142 .8197 .8001 .8187 .8354 .8428 .8423 .8284 .8412	.5450 .4833 .4128 .3990 .3639 .3350 .3447 .3600 .3743 .3883 .4166 .4457 .4748 .4955 .5568 .5667 .4671 .4842 .4484 .4889 .5796 .6356 .5315 .4278 .4132 .6013 .4001 .3530 .4589 .5267

							
	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 87.11 88.50 87.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7711 .7707 .7654 .7499 .7427 .7377 .7374 .7473 .7572 .7625 .7667 .7699 .7745 .7857 .7858 .7857 .7858 .7857 .7858 .7857 .7858 .7857 .7858 .7829 .7918 .7925 .8008 .8078 .8084 .8058 .8078 .80568 .80568 .80568 .80568 .80568 .80568 .80568 .80568 .80568 .80568 .8	.4825 .6403 .6783 .6371 .5951 .5485 .5431 .5284 .5256 .5826 .5553 .5207 .4690 .4931 .5703 .5057 .4761 .4997 .4849 .5310 .5592 .5140 .5055 .4481 .4653 .5277 .5561 .4022 .4274 .4385 .3647 .3281 .2744 .4686 .3410 .5873	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7627 .7516 .7455 .7463 .7485 .7602 .7689 .7710 .7724 .7789 .7827 .7890 .7886 .7868 .7911 .7972 .8050 .8066 .8033 .7939 .7935 .8075 .8160 .8213 .8023 .8160 .8213 .8023 .8205 .8160 .8213 .8205 .8368 .8437 .8434 .8295 .8419	.6039 .5309 .4482 .4256 .3840 .3429 .3442 .3614 .3759 .3886 .4160 .4395 .4628 .4862 .5464 .5558 .4579 .4690 .4304 .4714 .5647 .6220 .5161 .4140 .3998 .5895 .3922 .3442 .4308 .6847 .7208 .4893

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7689 .7693 .7644 .7493 .7423 .7473 .7423 .7375 .7373 .7432 .7474 .7572 .7626 .7668 .7699 .7744 .7837 .7863 .7858 .7858 .7860 .7834 .7924 .7930 .8011 .8080 .8086 .8060 .7950 .7956 .8162 .8202 .8155 .8016 .7951 .8162 .8202 .8155 .8016 .7971 .8172 .8362 .8416 .8291 .8181 .8409	.3857 .5866 .6446 .6197 .5797 .5345 .5307 .5160 .5123 .5684 .5414 .5684 .4547 .4781 .5542 .4885 .4588 .4588 .4588 .4588 .4588 .4588 .4588 .4588 .4588 .4588 .4588 .4590 .5514 .5514 .5073 .4948 .4414 .5073 .5433 .3956 .4204 .4357 .5433 .3956 .4204 .4357 .4385 .4886 .3712 .3300 .2730 .4688 .3520 .5769	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.63\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7704 .7602 .7537 .7539 .7556 .7655 .7731 .7748 .7731 .7755 .7817 .7851 .7910 .7905 .7887 .7924 .7981 .8056 .8071 .8037 .7945 .7940 .8078 .8078 .8078 .8078 .8078 .8026 .8211 .8026 .8211 .8026 .8211 .8026 .8204 .8367 .8439 .8435 .8305 .8423	.6774 .5964 .4964 .4641 .4187 .3644 .3593 .3738 .3860 .3973 .4267 .4475 .4675 .4938 .5512 .5559 .4529 .4658 .4273 .4690 .5618 .6174 .5780 .3772 .3904 .5780 .3772 .3311 .4294 .6498 .7319 .4822

C-2

	SUCTION S	URFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{c} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7978 .7923 .7860 .7684 .7597 .7515 .7498 .7561 .7613 .7731 .7790 .7843 .7858 .7898 .8021 .8044 .8034 .8044 .8034 .8044 .8034 .8040 .8139 .8222 .8217 .8182 .8040 .8139 .8222 .8217 .8182 .8027 .8030 .8264 .8044 .8030 .8264 .8030 .8051 .8053 .8051 .8053 .80544 .8054 .8054 .8054 .80544 .80544 .8054 .8054 .8054 .80544 .80544	1.0654 1.0570 1.0467 .9615 .8896 .7933 .7653 .7468 .7541 .8371 .7959 .7547 .6546 .6951 .8346 .7364 .6853 .7245 .7180 .7795 .8000 .7491 .7567 .6496 .6623 .7382 .7716 .5720 .6192 .6467 .6280 .6814 .5545 .5100 .4108 .6813 .5520 .8080	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7631 .7513 .7463 .7489 .7538 .7701 .7799 .7817 .7801 .7892 .7921 .7990 .7975 .7945 .7979 .8045 .8134 .8149 .8098 .7966 .7957 .8128 .8230 .8281 .8012 .8232 .8433 .8520 .8505 .8316 .8469	.7144 .6525 .5658 .5399 .5145 .4737 .4683 .4936 .5124 .5274 .5691 .5888 .6055 .6436 .7241 .7315 .5885 .5924 .5404 .5816 .6962 .7746 .6462 .5171 .4849 .7258 .4699 .4008 .5560 .8606 .9145 .5942

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7253 .7209 .7168 .7073 .7015 .6991 .6994 .7053 .7097 .7195 .7254 .7307 .7337 .7383 .7492 .7519 .7526 .7525 .7525 .7525 .7532 .7647 .7654 .7551 .7654 .7751 .7832 .7647 .7654 .7751 .7832 .7841 .7820 .7703 .7713 .7933 .7976 .7930 .7776 .7956 .8156 .8222 .8089 .7974 .8209	.2794 .3824 .4512 .5002 .4743 .4465 .4420 .4293 .4462 .4293 .4612 .4390 .4179 .3652 .3890 .4668 .4087 .3787 .4090 .4668 .4087 .3787 .4090 .4093 .4703 .4703 .4703 .4910 .4535 .4409 .3826 .4027 .4649 .3826 .4027 .4649 .3826 .4027 .4649 .3826 .4027 .4649 .3825 .3309 .3549 .3835 .3903 .4432 .3285 .2641 .2156 .4260 .3497 .4875	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.34\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.15\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7202 .7125 .7107 .7145 .7196 .7367 .7468 .7494 .7496 .7524 .7600 .7628 .7697 .7694 .7682 .7697 .7694 .7682 .7725 .7784 .7862 .7725 .7784 .7862 .7878 .7845 .7745 .7745 .7745 .7745 .7745 .7745 .7985 .8033 .7837 .8030 .8204 .8281 .8254	.4758 .4243 .3820 .3772 .3602 .3454 .3521 .3699 .3838 .3965 .4362 .4582 .4763 .5057 .5712 .5825 .4800 .4851 .4457 .4830 .5754 .6374 .5428 .4438 .4457 .4830 .5754 .6374 .5428 .4438 .4204 .5754 .6374 .5428 .4457 .7440 .7529 .5332

	SUCTION S	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7299 .7249 .7208 .7097 .7031 .6997 .7053 .7094 .7188 .7242 .7292 .7318 .7242 .7292 .7318 .7464 .7490 .7494 .7491 .7493 .7599 .7605 .7698 .7773 .7781 .7761 .7649 .7662 .7773 .7781 .7761 .7649 .7662 .7870 .7673 .7896 .7720 .7673 .7896 .7720 .7673 .7896 .8092 .8153 .8028 .7921 .8152	.2948 .3963 .4680 .5107 .4814 .4461 .4420 .4297 .4246 .4617 .4336 .4143 .3627 .3847 .4585 .4042 .3762 .4031 .4028 .4031 .4028 .4031 .4028 .4031 .4028 .4031 .4028 .4631 .4827 .4482 .4339 .3781 .3964 .4583 .4852 .3271 .3520 .3783 .3827 .4294 .3249 .2672 .2166 .4062 .3296 .4727	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7218 .7131 .7099 .7124 .7164 .7302 .7392 .7412 .7409 .7434 .7505 .7533 .7599 .7597 .7586 .7628 .7688 .7668 .7688 .7661 .7783 .7752 .7658 .7658 .7658 .7661 .7808 .7752 .7658 .7658 .7658 .7658 .7658 .7658 .7658 .7658 .7658 .7756 .7952 .8123 .8196 .8195 .8056 .8188	.4801 .4345 .3831 .3679 .3464 .3154 .3165 .3306 .3412 .3508 .4028 .4172 .4487 .5100 .5198 .4238 .4263 .3894 .4264 .5140 .5714 .4830 .3915 .3691 .5555 .3780 .3345 .4035 .6266 .6804 .4851

	SUCTION	SURFACE					
% Surface	% Axial			% Surface	% Axial	SURFACE	
Distance	Chord	Tw/Tg	h/ho 	Distance	Chord	Tw∕Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7315 .7263 .7219 .7101 .7031 .6995 .6993 .7045 .7081 .7171 .7223 .7271 .7295 .7335 .7434 .7459 .7461 .7454 .7454 .7454 .7454 .7454 .7454 .7557 .7559 .7647 .7559 .7647 .7559 .7647 .7711 .7600 .7610 .7807 .7807 .7807 .7807 .7845 .7807 .7845 .7807 .7845 .7807 .7865 .7619 .7829 .8014 .8073 .7961 .7862 .8081	.2942 .3974 .4702 .5129 .4805 .4454 .4395 .4248 .4166 .4501 .4241 .4038 .3534 .3735 .4431 .3911 .3636 .3872 .3877 .4548 .4688 .4370 .4167 .3718 .3941 .4505 .4712 .3226 .3403 .3730 .3769 .4177 .3183 .2592 .2091 .3865 .3197 .4553	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\\ \end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7244 .7153 .7116 .7133 .7165 .7282 .7356 .7371 .7361 .7378 .7440 .7466 .7526 .7520 .7504 .7504 .7504 .7504 .7504 .7679 .7696 .7679 .7696 .7666 .7574 .7577 .7719 .7806 .7574 .7577 .7719 .7806 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7673 .7854 .7976 .8101	.5008 .4502 .3957 .3766 .3480 .3093 .3008 .3133 .3205 .3256 .3526 .3526 .3526 .3667 .3789 .4029 .4577 .4661 .3764 .3764 .3763 .3401 .3742 .4566 .5093 .4223 .3363 .3164 .4918 .3235 .2757 .3515 .5648 .6029 .4062

	SUCTION S	URFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
$\begin{array}{c} 30.57\\ 31.98\\ 33.40\\ 37.60\\ 39.08\\ 41.80\\ 43.25\\ 44.57\\ 46.03\\ 47.51\\ 48.95\\ 50.31\\ 51.78\\ 53.14\\ 54.62\\ 55.97\\ 57.36\\ 60.29\\ 61.67\\ 67.29\\ 70.13\\ 71.51\\ 73.03\\ 74.39\\ 75.74\\ 77.24\\ 78.62\\ 81.54\\ 82.88\\ 84.34\\ 85.70\\ 87.11\\ 88.50\\ 89.92\\ 91.35\\ 94.24\\ 95.65\\ 97.03\\ \end{array}$	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7154 .7117 .7085 .6992 .6933 .6905 .6908 .6960 .6998 .7085 .7137 .7181 .7208 .7250 .7345 .7367 .7375 .7376 .7375 .7376 .7380 .7485 .7494 .7581 .7650 .7649 .7548 .7562 .7750 .7649 .7548 .7562 .7750 .7753 .7623 .7753 .7623 .7759 .8016 .7923 .7834 .8030	.2042 .3197 .3990 .4549 .4297 .4022 .3973 .3843 .3769 .4077 .3886 .3649 .3202 .3392 .4029 .3530 .3276 .3522 .3525 .4101 .4272 .3985 .3804 .3581 .4141 .4352 .2940 .3115 .3396 .3464 .3834 .2917 .2388 .1904 .3625 .3950	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\\ \end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7110 .7033 .7005 .7027 .7061 .7187 .7266 .7283 .7279 .7302 .7366 .7391 .7450 .7450 .7450 .7450 .7450 .7437 .7479 .7539 .7612 .7633 .7609 .7526 .7531 .7668 .7531 .7668 .7751 .7796 .7631 .7796 .7631 .7811 .7970 .8042 .8047 .7933 .8055	.4465 .3949 .3477 .3325 .3061 .2745 .2693 .2780 .2856 .2937 .3201 .3310 .3403 .3678 .4169 .4237 .3403 .3111 .3453 .4215 .4695 .3908 .3096 .2879 .4508 .2914 .2506 .3097 .4815 .5391 .3848

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7165 .7131 .7098 .7007 .6950 .6926 .6928 .6982 .7020 .7108 .7161 .7208 .7235 .7276 .7375 .7375 .7399 .7404 .7409 .7515 .7523 .7613 .7613 .7682 .7613 .7682 .7678 .7574 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7586 .7781 .7682 .7648 .7574 .7586 .7781 .7586 .7781 .7996 .8050 .7948 .7857 .8060	. 1982 . 3242 . 4057 . 4637 . 4393 . 4152 . 4084 . 3945 . 3865 . 4166 . 3968 . 3756 . 3284 . 3484 . 4156 . 3638 . 3371 . 3626 . 3634 . 4231 . 4403 . 4129 . 3895 . 3464 . 3672 . 4222 . 4434 . 3672 . 4222 . 4434 . 3002 . 3161 . 3449 . 3530 . 3934 . 2957 . 2470 . 1937 . 3673 . 3144 . 4132	$\begin{array}{r} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7149 .7071 .7039 .7061 .7093 .7224 .7305 .7323 .7318 .7342 .7408 .7494 .7492 .7478 .7494 .7492 .7478 .7522 .7580 .7654 .7671 .7654 .7654 .7569 .7706 .7788 .7834 .7667 .7850 .8009 .8082 .8087 .7966 .8086	.4752 .4188 .363 .346(.316] .2875 .2843 .2943 .3028 .3114 .3397 .3520 .3624 .3899 .4427 .4505 .3655 .3617 .3261 .3650 .4487 .4995 .4141 .3272 .3062 .4487 .4995 .4141 .3272 .3062 .4141 .3275 .3286 .5227 .5749 .3978

SUCTION SURFACE				PRESSURE SURFACE				
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho	
$\begin{array}{c} 30.57\\ 31.98\\ 33.40\\ 37.60\\ 39.08\\ 41.80\\ 43.25\\ 44.57\\ 46.03\\ 47.51\\ 48.95\\ 50.31\\ 51.78\\ 53.14\\ 54.62\\ 55.97\\ 57.36\\ 60.29\\ 61.67\\ 67.29\\ 70.13\\ 71.51\\ 73.03\\ 74.39\\ 75.74\\ 77.24\\ 78.62\\ 81.54\\ 82.88\\ 84.34\\ 85.70\\ 87.11\\ 88.50\\ 89.92\\ 91.35\\ 94.24\\ 95.65\\ 97.03\\ \end{array}$	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 97.57 99.40 100.24 101.02	.7201 .7171 .7138 .7035 .6971 .6939 .6938 .6991 .7028 .7118 .7169 .7215 .7242 .7284 .7284 .7284 .7284 .7409 .7414 .7518 .7524 .7409 .7414 .7518 .7524 .7614 .7697 .7682 .7574 .7687 .7687 .7687 .7587 .7786 .7824 .7587 .7785 .7646 .7603 .7813 .7996 .8055 .7947 .7851 .8057	.2227 .3538 .4349 .4846 .4558 .4242 .4173 .4022 .3938 .4265 .4014 .3798 .324 .3507 .4149 .3663 .3408 .3657 .3664 .4211 .4383 .4063 .3408 .3657 .3664 .4211 .4383 .4063 .3937 .3417 .3632 .4217 .4438 .2955 .3109 .3399 .3494 .3926 .2923 .2326 .1837 .3668 .3144 .3997	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7189 .7107 .7073 .7092 .7127 .7259 .7339 .7358 .7354 .7354 .7379 .7445 .7469 .7531 .7528 .7515 .7557 .7612 .7686 .7702 .7675 .7586 .7589 .7728 .7812 .7859 .7728 .7812 .7859 .7683 .7866 .8027 .8099 .8104 .7978 .8096	.5070 .4440 .3836 .3629 .3350 .3062 .3002 .3133 .3254 .3375 .3666 .3802 .3918 .4187 .4757 .4841 .3911 .3904 .3561 .3934 .4766 .5282 .4419 .3555 .3353 .5086 .3408 .2945 .3577 .5619 .6188 .4337	

	SUCTION	SURFACE			PRESSURE	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	 h/ho
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 73.03 74.39 75.74 77.24 78.62 81.54 82.88 84.34 85.70 87.11 88.50 89.92 91.35 94.24 95.65 97.03	$\begin{array}{r} 49.25\\ 50.84\\ 52.37\\ 56.50\\ 57.92\\ 60.34\\ 61.62\\ 62.74\\ 63.96\\ 65.26\\ 66.44\\ 67.53\\ 68.75\\ 69.77\\ 71.01\\ 71.99\\ 73.07\\ 75.38\\ 76.42\\ 80.63\\ 82.74\\ 83.72\\ 84.92\\ 85.88\\ 86.80\\ 87.96\\ 88.92\\ 91.06\\ 91.94\\ 92.98\\ 93.87\\ 94.82\\ 95.72\\ 96.63\\ 97.57\\ 99.40\\ 100.24\\ 101.02\\ \end{array}$.7804 .7745 .7693 .7532 .7446 .7384 .7375 .7475 .7475 .7475 .7573 .7627 .7679 .7700 .7743 .7850 .7875 .7871 .7857 .7871 .7857 .7847 .7928 .7920 .8015 .8093 .8094 .8065 .7931 .7935 .8199 .8199 .8199 .8199 .8199 .8144 .7971 .7907 .8147 .8365 .8418 .8267 .8137 .8393	.7929 .8023 .8223 .7849 .7274 .6585 .6471 .6320 .6282 .6767 .6366 .6120 .5389 .5676 .6679 .5948 .5574 .5931 .5900 .6476 .6745 .6322 .6237 .5421 .5611 .6319 .6609 .4808 .5116 .5445 .5372 .5828 .4685 .4159 .3351 .5835 .4738 .6912	28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7482 .7373 .7334 .7363 .7412 .7571 .7673 .7692 .7681 .7703 .7776 .7805 .7875 .7866 .7842 .7881 .7945 .8030 .8046 .8002 .7886 .7880 .8039 .8137 .8187 .7958 .8166 .8355 .8436 .8425 .8257 .8398	.5637 .5228 .4635 .4487 .4298 .3955 .4041 .4199 .4343 .4488 .4859 .5057 .5237 .5600 .6313 .6395 .5183 .5208 .4756 .5144 .6162 .6829 .5689 .4573 .4278 .6538 .4262 .3719 .4928 .7633 .8121 .5315
Table VIII (contd) <u>Heat transfer data for each run code</u>

SUCTION SURFACE				PRESSURE SURFACE				
% Surface Distance	% Axial Chord	Tw/Tg	h/ho	% Surface Distance	% Axial Chord	Tw/Tg	h/ho 	
$\begin{array}{c} 30.57\\ 31.98\\ 33.40\\ 37.60\\ 39.08\\ 41.80\\ 43.25\\ 44.57\\ 46.03\\ 47.51\\ 48.95\\ 50.31\\ 51.78\\ 53.14\\ 54.62\\ 55.97\\ 57.36\\ 60.29\\ 61.67\\ 67.29\\ 70.13\\ 71.51\\ 73.03\\ 74.39\\ 75.74\\ 77.24\\ 78.62\\ 81.54\\ 82.88\\ 84.34\\ 85.70\\ 87.11\\ 88.50\\ 89.92\\ 91.31\\ 94.24\\ 95.61\\ 97.0\\ \end{array}$	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 88.92 91.06 91.94 92.98 93.87 94.82 95.72 96.63 597.57 499.40 50.24 100.24 101.02	.7883 .7824 .7771 .7608 .7521 .7454 .7443 .7502 .7542 .7638 .7690 .7742 .761 .7803 .7911 .7934 .7929 .7913 .7911 .7934 .7929 .7913 .7960 .8054 .8131 .8129 .8102 .7963 .7966 .8184 .8129 .7966 .8184 .8169 .7994 .7930 .8166 .8382 .8435 .8435 .8435 .8411	.8312 .8476 .8705 .8330 .7700 .6927 .6782 .6624 .6585 .7059 .6613 .6372 .5600 .5912 .6985 .6203 .5805 .6191 .6166 .6733 .7005 .6593 .6608 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5694 .5888 .5537 .5999 .4865 .4380 .3593 .6013 .4870 .7138	$\begin{array}{c} 28.90\\ 30.78\\ 32.58\\ 34.38\\ 36.29\\ 41.70\\ 45.37\\ 47.14\\ 49.03\\ 50.84\\ 52.68\\ 54.48\\ 56.34\\ 58.12\\ 59.97\\ 61.77\\ 63.63\\ 65.41\\ 67.30\\ 69.07\\ 70.91\\ 72.72\\ 74.63\\ 76.40\\ 78.27\\ 81.91\\ 85.55\\ 87.39\\ 89.25\\ 91.03\\ 92.86\\ 96.55\end{array}$	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7606 .7499 .7451 .7470 .7510 .7641 .7726 .7739 .7723 .7737 .7803 .7831 .7895 .7884 .7857 .7891 .7955 .8038 .8053 .8009 .7892 .7887 .8045 .8144 .8194 .7961 .8169 .8359 .8439 .8429 .8265 .8411	.6490 .6046 .5266 .4985 .4731 .4175 .4109 .4273 .4395 .4498 .4823 .4996 .5160 .5510 .6200 .6265 .5049 .5017 .4551 .4939 .5984 .6674 .5503 .4392 .4115 .6312 .4042 .3538 .4694 .7276 .8000 .5257	

RUN CODE 45304

Table VIII (contd) <u>Heat transfer data for each run code</u>

RUN	CODE	45305

			KUN (-0	DE 45305			
	SUCTION	SURFACE				PRESSURF	SURFACE	
% Surface Distance	% Axial Chord	Tw/Tg	 h/ho	•	% Surface Distance	% Axial Chord	 Tw/Ta	
30.57 31.98 33.40 37.60 39.08 41.80 43.25 44.57 46.03 47.51 48.95 50.31 51.78 53.14 54.62 55.97 57.36 60.29 61.67 67.29 70.13 71.51 873.03 74.39 82.88 91.54 92.88 91.35	49.25 50.84 52.37 56.50 57.92 60.34 61.62 62.74 63.96 65.26 66.44 67.53 68.75 69.77 71.01 71.99 73.07 75.38 76.42 80.63 82.74 83.72 84.92 85.88 86.80 87.96 83.72 84.92 85.88 82.74 83.72 84.92 85.88 85.88 82.74 83.72 84.92 85.88 85.88 82.74 83.72 84.92 85.88 85.88 85.80 87.96 83.72 84.92 85.88 85.88 85.80 85.80 85.26 1.06 1.94 1.06 1.94 1.02 1.02 1.02	.7829 .7779 .7734 .7569 .7481 .7414 .7403 .7462 .7504 .7604 .7657 .7707 .7726 .7767 .7875 .7898 .7898 .7894 .7875 .7898 .7894 .7875 .7859 .7933 .7919 .8011 .8087 .8085 .8057 .7920 .7920 .8141 .8087 .8085 .8057 .7920 .7920 .8141 .8179 .8123 .7950 .7886 .8117 .8327 .8383 .8239 .8112 .8360	.7370 .7966 .8428 .8130 .7504 .6728 .6584 .6418 .6378 .6882 .6454 .6154 .5385 .5674 .6704 .5935 .5548 .5922 .5890 .6490 .6756 .6318 .6283 .5447 .5651 .6321 .6563 .4890 .5193 .5478 .5817 .4653 .4081 .3381 .5859 .4816 .6772		28.90 30.78 32.58 34.38 36.29 41.70 45.37 47.14 49.03 50.84 52.68 54.48 56.34 58.12 59.97 61.77 63.63 65.41 67.30 69.07 70.91 72.72 74.63 76.40 78.27 81.91 85.55 87.39 89.25 91.03 92.86 96.55	34.95 37.26 39.43 41.55 43.76 49.81 53.70 55.56 57.47 59.28 61.08 62.81 64.57 66.24 67.92 69.55 71.18 72.73 74.37 75.85 77.38 78.84 80.37 81.77 83.24 86.03 88.71 90.05 91.42 92.66 93.93 96.47	.7671 .7570 .7521 .7532 .7567 .7679 .7750 .7758 .7735 .7745 .7806 .7826 .7885 .7869 .7839 .7871 .7931 .8010 .8022 .7975 .7857 .7848 .8004 .8101 .8148 .7918 .8122 .8310 .8389 .8379 .8359	.7480 .6859 .5954 .5535 .5213 .4522 .4373 .4503 .4604 .4699 .5015 .5145 .5250 .5547 .6222 .6281 .5056 .5034 .4526 .4884 .5879 .6515 .5364 .4269 .3953 .6129 .3953 .7635 .7635 .7635 .7635 .4972

RUN CODE	SUCTION SIDE	LEADING EDGE	PRESSURE SIDE
	CD BLR	CD BLR	CD BLR
$\begin{array}{c} 34000\\ 34103\\ 34104\\ 34105\\ 34135\\ 34135\\ 34135\\ 34300\\ 43103\\ 43000\\ 43103\\ 43105\\ 44106\\ 44107\\ 44108\\ 44105\\ 44106\\ 44107\\ 44108\\ 44133\\ 44105\\ 45105\\ 45$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 0.000 0.796 1.486 0.779 1.982 0.748 2.538 0.746 2.556 0.743 2.528 0.745 2.509 0.732 1.246 0.735 1.700 0.738 2.265 0.000 0.000 0.753 1.345 0.761 1.908 0.758 2.449 0.756 2.517 0.755 2.418 0.779 1.344 0.779 1.344 0.772 1.760 0.767 2.353 0.000 0.000 0.760 1.338 0.758 1.801 0.778 2.531 0.762 4.110 0.754 5.267 0.775 2.444 0.755 1.375 0.765 1.375 0.765 1.375 0.750 2.444 0.757 1.852 0.743 2.527 0.775 1.852 0.744 2.463 0.789 1.383 0.750 1.712 0.734 2.229 0.768 3.703 0.768 4.571 0.755 1.695 0.735 2.223 0.000 0.000 0.771 1.875 0.755 1.695 0.735 2.223 0.000 0.000 0.775 1.893 0.759 2.426 0.755 1.695 0.735 2.223 0.000 0.000 0.775 1.893 0.759 2.426 0.758 2.597 0.752 2.426 0.758 2.597 0.752 2.426 0.758 2.597 0.744 1.223 0.736 1.654 0.738 2.241

Table IX. <u>Discharge coefficient and blowing ratio data for</u> <u>heat transfer runs</u>

APPENDIX B

HEAT TRANSFER DATA COMPARISON PLOTS

Figures 43-97 contain data comparison plots for the downstream and leading edge film-cooled C3X cascade. Figures 43 and 44 show normalized heat transfer coefficient distribution plots for the baseline (i.e., non-film cooling) runs. The remaining figures contain Stanton number reduction (SNR) plots for all combinations of the parametric variation. The figure titles describe which parameter is varied and display the run codes for the data series. For a complete explanation of the run code, refer to Test Conditions (Section III). The values of all parameters indicating which are kept constant and which ones are varied, are shown by the plot descriptor.

Effects of downstream coolant-to-gas pressure ratio variation on SNR distribution -- series 3410X.

Effects of downstream coolant-to-gas pressure ratio variation on SNR distribution -- series 4330X.

SNR distribution -- series 4430X.

SNR distribution -- séries 45X04.

⁻⁻ series 4X303. Figure 95.

-- series 4X305.

APPENDIX C

TABULATED THROAT PASSAGE STATIC PRESSURE DATA

Tabulated throat passage static pressure data for each run code of the downstream and leading edge film-cooled C3X cascade are presented in Tables X and XI. These data sets are listed in run code order, and the actual operating conditions associated with each run code were given previously in Table VI. Table X contains the upper passage throat static pressure data while Table XI contains the lower passage data. Throat passage static pressure data are tabulated as static-to-inlet total pressure ratio versus percent surface distance from the upper vane surface midspan to lower vane surface

					ĺ														
			TOTANCE	FROM 11	IPPER VA	NE MIDS	SPAN TC	D LOWER	ANE MI	IDSPAN	VIA THE	ENDWALL	TOTAL	DISTANC	Ξ = 11.	008 cm	(4.296	in)	
RUN CODE	FERC	ENTAGE D	TONUTOT		-						-								
		N SURFAC	E (UPPE	TR VANE)		62 U 4	0 604	ENDWALL	530 0	, 590	0.639	0.679	PRES: 0.704	SURE SUR C.733	NFACE (L 0.778	ОМЕК VA	NE) 0.913	0.953	
	0.131	0.171	642.0	0.300												1			1
	1 0 657	0 657	0 654	0.637	0.6	56 0.1	680 0.	.690 0.1	698 0	. 703	0.701	0.680	0.662	0.661	0.652	0.670	0.673 0.682	0.668 0.668	
24000	1 0 664	0.665	0.662	0.658	0.6	362 0.1	687 0	.697 0.	706 0	. 711	0.712	0.692	0.671	0.668	0.009 0.657	0.010	0.675	0.661	
24104	0.658	0.659	0.656	0.652	0.6	57 0.	683 0	.692 0.	701 0	.706	0.707	0,687	0.665	0.00T	0.654	0.676	0.678	0.664	
34105	0.661	0.663	0.661	0.654	0.6	365 0.	686 0	.695 0.	704 0	. 708	0.706	0.685	0.000	0.664	0.657	0.675	0.676	0.663	
34135	0.661	0.663	0.661	0.653	0.6	564 0.	685 0	.695 0.	704 0	0.708	0.705	0.600	0.673	0.670	0.663	0.681	0.682	0.669	
34145	0.667	0.668	0.666	0.658	9.0	570 0.	690 0	.700 0.	2 09 0	0.713	01/10	160.0	0.662	0.658	0.649	0.670	0,673	0.660	
34155	0.657	0.659	0.657	0.638	9.0	661 0.	684 0	.692 0.	700 0	1./04	00/-0	0.681	0.663	0.662	0.653	0.671	0.674	0.664	
34303	0.656	3 0.658	0.654	0.637	9.6 	656 0.	680 0	.690 0.	1 669 C	0.703	10/.0	0.680	0.662	0.661	0.652	0.670	0.673	0.662	
34304	[0.657	7 0.657	0.653	0.636	0.6	656 0.	.680	.690 0.	698	0. /U3	101.0	0.681	0.663	0.662	0.652	0.671	0.674	0.662	
34305	0.65	3 0.658	0.654	0.637	0.6	657 0.	.680 0	.690 0.	6633	cu/.u	10/.0	10.584	0 564	0.565	0.564	0.573	0.574	0.560	
43000	0.557	7 0.560	0.555	0.557	0.1	569 0.	.583 C	. 594 0.	602	0.60/	0.098		0.568	0.564	0,562	0.571	0.581	0.565	
43103	0.56	5 0.567	0.564	0.564	. 0	570 0.	.592 C	.603 0	.611 (0.615	219.0	10.10 1 10.583	0 562	0.563	0.561	0.570	0.570	0.556	
43104	0.55	5 0.557	0.552	0.555	2 0.2	568 0.	.582 (.592 0	. 600	cna.u	180.U	725 0 1	0.535	0.535	0.534	0.543	0.543	0.528	
43105	0.52	7 0.530	0.525	0.530	0.0	544 0	.556 (0.567 0	4/6.	B/C.0	7/C.U	1 0 5 10	0 548	0.549	0.547	0.556	0.556	0.542	
43135	0.54	1 0.544	0.539	1 0.543		555 0.	.568 (0.579 0	.587	265.0	0.303	023 0 1	0.548	0.549	0.547	0.556	0.556	0.542	
43145	0.54	1 0.544	0.539	9.543	3 0.	556 0	, 569 (0.580 0	583	0.593	0.304	222.0 1	0 534	0.534	0.534	0.543	0.543	0.527	
43155	0.52	7 0.530	0.524	0.530	0 0.	544 0	.555	0.567 0	.575	9/5.0	0/0.0	783 0 1	0 566	0.567	0.565	0.574	0.575	0.562	
43303	0.55	9 0.561	1 0.556	§ 0.55	8 0.	571 0	. 585	0.596 0	.604	0.509	109.U	1 0.588	0 566	0.568	0.565	0.575	0.575	0.563	
43304	22.0	9 0.562	2 0.557	0.55	0	572 0	- 587	0.597 0	509. 202	019.0	100.U	i 0 588	0.567	0.568	0.566	0.575	0.576	0.563	-
43305	0.56	0 0.562	2 0.558	3 0.56(0 - 0.	572 0	.586	0.597 0	cua.	010.0	700.0	1 0 585	0.564	0.566	0.554	0.575	0.576	0.561	
44000	0.56	3 0.564	4 0.555	9 0.55	1 0.	571 0	.589	0.600 0	.608	0.509	100.0		0 570	0.569	0.556	0.577	0.579	0.565	5
44103	0.56	6 0.567	7 0.56	3 0.55	6 0.	577 0	. 595	0.605 0	.613	0,613	0,000	013 0 1	0.556	5 0,556	0.543	0.565	0.566	0.551	
44104	0.55	5 0.556	6 0.55	3 0.54	9 0.	.570 0	. 587	0.596 0	.602	0.6U3	060.U		0.559	9 0.551	0.552	0.562	0.572	255.0 2	\$
44105	0.56	1 0.56	3 0.56(0 0.56	1 0.	.568 0	. 590	0.601 0	.609	110.0	0.001	1 0 584	0.55	5 0.548	0.535	0.560	0.564	0.552	\sim
44106	0.55	58 0.56(0 0.55	7 0.55	.0 0	. 565 0	. 588	0.598 (0.605	0.000	0,000	0.586	50.56	3 0.555	0.555	0.567	0.57(0.553	3
44107	0.56	54 0.56	6 0.56	2 0.56	. 0.	. 570	. 592	0.603 L	110.0	0.010	0,606	1 0.58	4 0.56	0 0.554	4 0.552	0.565	0.56	9 0.552	2
44108	0.56	53 0.56.	5 0.56	2 0.56	54 0.	.570 0	0.591	0.602 (1.011	779.0		-							

Table X. <u>Upper throat passage static pressure data</u>

165

ORIGINAL PAGE IS OF POOR QUALITY

KUN CODE	PERCI	INTAGE	DISTAN	E FROM	UPPER V	ANE M	NVASGI	MOT QL	ER VANE	MIDSP/	VIN N	THE ENDW.	ALL: TOT	AL DIST	ANCE = 1	1.008 c	m (4.29	6 in)
	SUCTION	SURFAC	CE (UPE	PER VANE				ENDM	ALL	1 			Æ	ESSURE	SURFACE	(LOWER	VANE)	
			647.0	90£.U 0	-	362	604.0	0.470	0.530	0.590	0.639	0.67	9 0.70	4 0.733	0.778	0,840	0.913	0.953
44133	0.545	0.547	0.544	0.542	0	562 (9.579	0 588	0 503	102 0		-						-
44135	0.556	0.557	0.555	0.551	0	572 (580	202.0		Hen . o	000.0		7C.0.2	8 0.546	0.532	0.554	0.555	0.541
44144	0.557	0.558	0.554	0.548				161-0	500.U	0.604	0.599	0.58	1 0.55	7 0.557	0.544	0.565	0.566	0.551
44145	0.566	0.567	0.563	0 556			0007.0	/RC.U	0.605	0.606	0.598	0.58	0 0.55	9 0.559	0.546	0.568	0.569	0.554
44155	0.559	0.559	0.555	0.548			<u>المجا</u>	0.605	0.613	0.614	0.607	0.58	8 0.56	0.568	0.555	0.576	0.577	0.563
44203	0.555	0.556	0.552	575 U			890.	0.399	0.606	0.607	0.599	0.58	1 0.56(0.561	0.548	0.569	0.570	0.554
44204	0.554	0.555	155 0	C 543 0			48C.	0.595	0.602	0.603	0.599	0.57	9 0.555	0.553	0.540	0.562	0.565	0.552
44205	0.557	0.558	425.0	345 0			- 583 	0.594	0.601	0.602	0.598	0.57	8 0.554	0.551	0.538	0.560	0.564	0.550
44303	0.555	0.556	0.552	575 U				0.596	0.603	0.605	0.601	0.58	1 0.556	0.554	0.540	0.563	0.566	0.553
44304	0.562	0.563	0.559	155.0				0.594	0.601	0.603	0.599	0.57	9 0.555	0.553	0.539	0.561	0.565	0.552
44305	0.561	0.562	835.0	100.0			8	0.601	0.608	0.611	0.607	0.58	5 0.563	0.561	0.547	0.569	0.573	0.560
44306	0.560	0.563	0 559	135 0			060.0	. 601	0.608	0.610	0.606	0.58	5 0.562	0.559	0.546	0.567	0.571	0.557
44307	0.560	0.562	0.559	105.0				. 600	0.608	0.610	0.605	0.583	3 0.562	0.555	0.556	0.567	0.571	0.554
44308	0.566	0.568	2022.0	100.0			586.	. 600	0.608	0.610	0.604	0.582	2 0.560	0.552	0.554	0.565	0.569	0.552
44.333	0.554 (0.555	0 551	144 0			46C.	. 605	0.613	0_615	0 607	0.585	6 C.563	0.550	5.353	010.0	0.574	ů. ŠŠ6
44344	0.561 (0.562	0.558		, , , ,		787 197	294	0.602	0.603	0.599	0.578	0.555	0.552	0.539	0.561	0.565	0.551
44355	0.561 (0.562	0.558	0.550				. 601	.609 (0.611	0.607	0.585	0.562	0.559	0.546	0.568	0.572	0.558
45000	0.540 (.544	0.540	545 0			0 690	009.	.608	0.610	0.606	0.585	0.562	0.559	0.547	0.568	0.571	0.558
45103	0.556 (. 560	0.555	0.558				98C.	. 593	0.595	0.588	0.571	0.537	0.541	0.533	0.550	0.550	0.536
45104	0.555 0	. 558	0.554	0.557	75.0		0 782 0 0	0 660.5	- 207	. 609	0.601	0.583	0.556	0.557	0.552	0.565	0.566	0.553
45105	0.557 0	. 560	0.556	0.559	1 0 57				000.	. 508	0.600	0.582	0.554	0.556	0.550	0.563	0.564	0.551
45135	0.553 0	. 556 (0.552	0.555	0.56			000.0	00/ 09:	0.610	0.602	0.584	0.553	0.557	0.551	0.565	0.566	0.553
45145	0.558 0	. 561 (0.557	0.561	25 0	, c		0 950.0	- P04 0	. 607 (0.599	0.580	0.549	0.552	0.546	0.560	0.561	0.548
45155	0.553 0	. 556 (.552	0.555				0 100	0 609.	.612 (0.604	0.585	0.554	0.558	0.551	0.566	0.567	0.553
45303	0.550 0	.554 0	.549	0.553	0 - 20 - 10 - 10			0 960.	.605 0	. 607 (0.598	0.580	0.549	0.553	0.546	0.561	0.562	0.548
45304	0.554 0	.558 0	. 553	0.556	0.57			0 460	.601 0 505	.604	. 595	0.578	0.553	0.551	0.548	0.559	0.560	0.547
45305	0.551 0	. 554 0	.550	0.553	0.561				0 000.	.607	.599	0.582	0.554	0.555	0.550	0.563	0.565	0.551
						; ; ;		0 450	. 602 0	.604 0	. 595	0.578	0.550	0.550	0.547	0.559	0.560	0.547

Table X. (contd) <u>Upper throat passage static pressure data</u>

166

ORIGINAL PAGE IS OF POOR QUALITY

				MC da a	lipper	VANE MII	OT NO	LOWER VI	NNE MIDS	PAN VIA	THE ENDW	ALL: TOT/	L DISTA	ACE = 11	008 cm		(ii)	
													PRESS	IRE SURI	ACE (LO	WER VA	4E)	
	0.047	SUCTI 0.086	ON SURI	FACE (U) 0.222	PPER VA 0.267	NE) 0.296	0.320	0.362	ENDM 0.409	ALL 0.530	0.590	0.679	0.704	0.733 (.778 0	.840	0.913 (0.953
									0 624	0.658	0.669	0.667	0.652	0.654 (0.660 0	1,641	0.668	0.681
34000	0.602	0.606	0.606	0.605	0.601	0.602	66C.0		0.530	0.667	0 680	0.675	0.660	0.662 (0.668 0	0.650	0.675	0.688
34103	0.610	0.613	0.613	0.612	0.608	0.607	0.599	/ng.n	0.000	0.00	0 676	0.670	0.655	0.657 (0.664 (0.645	0.671	0.684
34104	0.604	0.608	0.608	0.606	0.603	0.602	0.594	0.602	C20.U	0.000	0.679	0.674	0.660	0.661	0.668 (0.649	0.675	0.687
34105	0.607	0.610	0.610	0.609	0.605	0.604	0.596	1 0.503	670 N	0.000 0 666	0.678	0.674	0.659	0.661	0.667 (0.648	0.674	0,687
34135	0.608	0.611	0.611	0.609	0.606	0.605	0.598	0.603	0.629	0000.0	0.000	0 678	0.664	0.665	0.672 (0.653	0.679	0.691
34145	0.614	0.616	0.616	0.615	0.611	0.611	0.603	0.608	0.034	0.0/0	0.674	0.670	0.656	0.657	0.663 (0.644	0.671	0.684
34155	0.605	0.608	0.608	0.606	0.602	0.602	0.594	0.600	0.020	0.000	0.071	0 670	0.655	0.657	0.664	0.645	0.672	0.684
34303	0.606	0.608	0.608	0.607	0.603	0.603	0.598	0.598	0.623	0.000	1/0.0	0.668	0.653	0.655	0.662	0.643	0.670	0.682
34304	0.603	0.606	0.606	0.605	0.601	0.601	0.596	0.597	0.622	eca.u	T/0.0	0.000	0.654	0.656	0.662	0.644	0.671	0.683
34305	0.606	0.607	0.607	0.606	0.601	0.602	0.597	0.598	0.623	0,650	1/9.0	500'0	0.561	0 567	0.570	0.551	0.584	0.603
43000	0.624	0.508	0.509	0.506	0.499	0.502	0.507	0.518	0.534	Cac.0	110.0	1 0 576	102.0 0 567	0.570	0.578	0.558	0.589	0.602
43103	0.512	0.513	0.512	0.511	0.505	0.508	0.511	0.516	0.530	1/5.0	090C.U	010.0	0.567	0 568	0.572	0.552	0.585	0.605
43104	0.663	0.506	0.506	0.505	0.500	0.501	0.505	0.511	0.531	Cac.0	0/C'N	1 0 55B	0 551	0.559	0.565	0.545	0.582	0.601
43105	0.715	0.501	0.500	0.498	0.491	0.492	967.0	0.503	0.524	0.55 c	0000.0	00000	0 555	0.563	0.567	0.548	0.583	0.602
43135	0.832	0.503	0.502	0.500	0.495	0.496	0.500	0.50	0.525	955.0 033 0	0. 509 173 0	495 U 1	0.556	0.563	0.567	0.548	0.583	0.602
43145	0.795	0.503	0.502	0.500	0.494	0.495	0.499	0.50	0.526	800.U	1/0.0	0 558	0 551	0.559	0.564	0.545	0.581	0.600
43155	0.729	0.500	0.499	0.497	0.490	0.491	0.495	0.50	525.0 J	0.00 233 0	000.0	425 U I	0.564	0.570	0.574	0.555	0.587	0.606
43303	0.912	0.508	0.509	0.507	0.502	0.503	0.508	0.510	200.0 8 255 0 0	000.0	0.2.2	1 0.574	0.564	0.570	0.574	0.555	0.587	0.606
43304	0.907	0.509	0.509	0.507	0.502	0.504	0.508	10.U	200.0 0	0.566	0.578	0.575	0.565	0.571	0.575	0.555	0.588	0.607
43305	0.902	0.510	0.510	0.508	0.502	0.503	0.508	TC . N	200.0 0 5	0.566	0 580	0.576	0.562	0.565	0.573	0.553	0.592	0,609
44000	0.510	0.510	0.510	0.509	0.500	0.504	0.509	1c.0	200.0 1		0 583	1 0 581	0,566	0.570	0.577	0.556	0.595	0.612
44103	0.509	0.510	0.510	0.509	0.502	0.506	0.509	TC.0	200 - 0 - 20	595 0	0 578	0 574	0.561	0.565	0.573	0.552	0.593	0.609
44104	0.505	0.506	0.505	0.504	0.497	0.500	0.504	nc.u	9 0.320 0 5 5 5	101.U 0	0.582 0	1 0 569	0.561	0.564	0.576	0.552	0.594	0.611
44105	0.509	0.510	0.509	0.508	0.501	0.504	0.507	16.0	3 U. 220	100°.U 8	0 579	1 0.573	0.558	0.564	0.573	0.551	0.592	0.607
44106	0.508	0.509	0.508	0.506	0.496	0.501	0.504	10.0	7C.U 1	10.00 0 560	0.583	0.574	0.564	0.567	0.575	0.554	0.591	0.610
44107	0.512	0.514	0.513	0.509	0.495	0.502	0.506	TC.0 -	50.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0 587	1 0.574	0.564	0.565	0.576	0.553	0.592	0.611
44108	0.514	0.516	0.514	0.509	0.49	3 0.502	0.506			000-D 6		-						

Table XI. Lower throat passage static pressure data

167

ORIGINAL PAGE IS OF POOR QUALITY

RUN CODE	E E	RCENTAG	E DISTA	NCE FRO	M UPPE	R VANE	MIDSPAN	TO LOWER	VANE	VIDSPAN	VIA THE	ENDWALL :	TOTAL D	ISTANCE		8 cm (4.	296 in)	
	0.047	SUC 0.086	TION SUI	RFACE (1	UPPER V	VANE)	5 0.320	 0.3	1 1 62 0.4	CNDWALL	30 0.59		7 7 7 7 7 7 7	RESSURE	SURFACE	(LOWER	VANE)	
																0 0.040	0.913	0.953
94133	0.502	0.503	0.501	0.500	0.492	.0.49	5 0.499	0.5	0.5	24 0.5	59 0.57	2 1 0.5	67 0 5	56 0 56	1 0 57/			
CE144	0.506	0.506	0.505	0.504	0.497	0.500	0.504	0.51	0.5	28 0.5	65 0.57		73 0 56			000.0 0	160.0	0.607
44144	0.505	0.506	0.505	0.504	0.496	0.500	0.504	0.5(0.5	27 0.5	64 0.57	2 0 - 2 2 0 - 2				200.0 0	280.0	0.608
44145	0.509	0.510	0.509	0.508	0.500	0.504	0.508	0.5	12 0.5	32 0.5	68 0.58	2 - 2.0			0/0.0 a	200.0 0	0.593	0.609
1 CC144	0.507	0.508	0.507	0.506	0.498	0.502	0.505	0.50	17 0.5	27 0.5	63 0.57	6 0.5	75 0.56	2 0.56	0.574 6 0.574	455-0 4	46C.U	0.510 0.610
44204	0 506	80C.U	10C.U	0.506	0.498	0.501	0.505	0.50	6 0.5	26 0.5	62 0.57	6 0.5	74 0.56	1 0.56	6 0.574	0.553	0.594	0.609
44205	0.508	905.0	0.508	0.506 0	0 408	0.499	0.503	0.50	5 0.5	25 0.5	61 0.57	5 0.5	72 0.56	0 0.56	5 0.574	0.552	0.593	0.608
44303	0.506	0.508	0.507	0.506	0 4 97	005 0	205.U	0.50	2.0	27 0.51	53 0.576	5 0.57	73 0.56	0 0.56	5 0.574	0.552	0.594	0.608
44304	0.510	0.512	0.511	0.509	0.502	002.0	400°0	05.0 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 0.5(51 0.57	5 0.57	13 0.56	0 0.56	5 0.574	0.553	0.594	0.609
44305	0.508	0.510	0.509	0.507	0 408	400-0	505 0	05.0 -	а 0.57	23 0.5 6	56 0.580	0 0.57	8 0.56	5 0.56	0.577	0.555	0.596	0.611
44306	0.511	0.513	0.512	0.508	0 500	005.0	202 0	05.0	6 0.27	39 0.56	36 0.579	9 0.57	5 0.56	1 0.56	0.574	0.552	0.594	0.609
44307	0.512	0.514	0.513	0.507	0.497	01	cuc.u		0.52	26 0.56	6 0.581	0.57	2 0.56	2 0,565	0.573	0.552	0.590	0.609
44308	0.516	0.518	0.517	0.510	0.500	102.0	505 U		9 0.52 0 0	0.56	5 0.580	0.57	2 0.56	1 0.56/	0.573	0.552	0.590	0.608
44333	0.505	0.508	0.507	0.505	n 497	1005 0	000-00 00-00		0.52	9 0.56	9 0.584	0.57	6 0.56	5 0.566	0.576	0.553	0.592	0.611
44344	0.508	0.510	0.510	0.508	0.500	0 503	0 507	5 - C - L	0.52	5. 0 . 1	C/C.U 1.	0.57	3 0.56	1 0.566	0.574	0.553	0.594	0.609
44355	0.507	0.509	0.508	0.506	0.497	0.500	0 504		7C.U 0	8 U.56	5 0.579	0.57	7 0.563	3 0.568	0.576	0.554	0.596	0.610
45000	0.508	0.506	0.510	0.504	0.497	0.499	0.505		20.0	0 0.00 0 0 0	9/د.U د ۲.۲۰	0.57	5 0.561	0.565	0.574	0.552	0.593	0.608
45103	0.509	0.507	0.510	0.507	0.504	0.506	0.510	0.512	5. 0 5. 0		0.580 0	0.57	6 0.562	0.570	0.577	0.549	0.596	0.605
45104	0.511	0.508	0.511 (0.508	0.504	0.506	0.510	0.513	0.53	1 0.57	1 0.585	1/C.U	9 0.564	0.568	0.578	0.553	0.598	0.611
1 50104	0.511	0.510	0.513 (0.510	0.506	0.507	0.512	0.515	0.53	3 0.57	4 0.590	0.592	502.0 S	0.575	0.581 0.581	0.555	0.509 0 500	0.611 611
45145	0.511 C	, 306 . () 60C.U	0.507	0.502	0.504	0.509	0.512	0.53(0.57	1 0.587	0.588	3 0.570	0.572	0.579	0.552	0.597	0.608
45155	0.510 C	0.506 0	9.510 0	2009 0	COL.0	0.503 0	0.511	0.514	0.533	3 0.573	3 0.590	0.591	0.572	0.575	0.581	0.553	0.598 (0.609
45303	0.506 0	0.505 0	0.508 0	. 504 0	201.0	005 0	80C.U	0.511	0.53(0.571	0.587	0.585	0.570	0.572	0.579	0.552	0.598 (.609
45304	0.510 6	0.507 0).510 0	0.506 0	0.501	0.502	- coc.o	80C.U	0.526	0.565	0.577	0.574	0.562	0.565	0.576	0.552	0.597 (.610
45305	0.508 0	0.506 0	0 509 0	1.505 0	1.499	667.0	1 202.0	010.0	975 0	0.566	0.579	0.577	0.563	0.566	0.576	0.552	0.597 (.611
						•	-	5 5 7 5	07C'N	COC.0 .	0.577	0.575	0.561	0.565	0.576	0.551	0.597 (.610

Table XI. (contd) Lower throat passage static pressure data

ORIGINAL PAGE IS OF POOR QUALITY

NOMENCLATURE

ACF	Aerothermodynamic Cascade Facility
ASME	American Society of Mechanical Engineers
ASTM	American Society for Testing and Materials
CA	chromel-alumel
CAD/CAM	computer-aided design/computer-aided manufacturing
clnt	coolant
с _р	specific heat at constant pressure
CPU	central processing unit
C _r	correction factor for thermal entrance region effects
CRT	cathode ray tube
D	cooling hole diameter
dT/dn	surface normal temperature gradient
FEM	finite element model
h	heat transfer coefficient
h _{FC}	heat transfer coefficient with film cooling
h/h _o	normalized heat transfer coefficient
h _{NFC}	heat transfer coefficient without film cooling
h _o	reference heat transfer coefficient for normalization
HP	Hewlett-Packard
LDA	laser Doppler anemometer
le	leading edge
Μ	mega
Ma	Mach number
Mal	upstream or vane row inlet Mach number
Ma ₂	downstream or vane row exit Mach number
Nu _D	diameter Nusselt number

P _c /P _t	coolant-to-inlet total pressure ratio (blowing strength)
P _c ,ds/P _t	downstream film coolant-to-inlet total pressure ratio
^P c,1e ^{∕P} t	leading edge film coolant-to-inlet total pressure ratio
P _c ,ps/P _t	pressure side film coolant-to-inlet total pressure ratio
P _c ,ss/P _t	suction side film coolant-to-inlet total pressure ratio
P/D	hole pitch-to-diameter ratio
Pr	Prandtl number
ps	pressure side
Ps	surface static pressure
₽ _s /₽ _t	local static-to-inlet total pressure ratio
PT1	cascade inlet total pressure
R	gas constant
Re	Reynolds number
ReD	diameter Reynolds number
Rel	upstream or vane row inlet Reynolds number
Re ₂	downstream or vane row exit Reynolds number
S	hole spacing
S	percent surface distance
SS	suction side
S/D	hole spacing-todiameter ratio
SNR	Stanton number reduction
St _{FC}	Stanton number with film cooling
St _{NFC}	Stanton number without film ccoling
Т	temperature
т _с	coolant plenum temperature
T _c /T _g	coolant-to-gas absolute temperature ratio (thermal dilution)
Т _g	cascade inlet total temperature
TT1	cascade inlet total temperature

_

Τ _w	vane surface temperature
™ _w /T _g	vane surface-to-gas absolute temperature ratio
u	freestream velocity
u _c	coolant velocity
x	streamwise coordinate
У	surface normal coordinate
ρ	freestream density
ρ _c	coolant density

.....

REFERENCES

- L. D. Hylton, M. S. Michelc, E. R. Turner, D. A. Nealy, and R. E. York, "Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes," NASA CR-168015, May 1983.
- E. R. Turner, M. D. Wilson, L. D. Hylton, and R. M. Kaufman, "Turbine Vane External Heat Transfer", Vol. I, NASA CR-174827, July 1985.
- 3. A. B. Turner, "Local Heat Transfer Measurements on a Gas Turbine Blade," Journal of Mechanical Engineering Sciences, Vol 13, pp 1-12, 1971.
- 4. M. E. Crawford and W. M. Kays, <u>Convective Heat and Mass Transfer</u>, McGraw-Hill, 1980.
- S. J. Kline and F. A. McClintock, "Describing Uncertainties in Single-Sample Experiments," <u>Mechanical Engineering</u>, January 1953.
- L. D. Hylton, V. Nirmalan, B. K. Sultanian, and R. M. Kaufman, "Turbine Airfoil Film Cooling," Turbine Engine Hot Section Technology - 1987, NASA CP-2493, 1987.

+U.S. GOVERNMENT PRINTING OFFICE:1 +89 -8 +8 -1 6 2/ 81007

National Aeronautics and Space Administration	Report Documentation Pa	ge	
1. Report No. NASA CR-182133	2. Government Accession No.	3. Recipient's Cata	alog No.
 Title and Subtitle The Effects of Leading Edge and Vane Heat Transfer 	Downstream Film Cooling on Turbine	5. Report Date November 19	88
7. Author(s) L.D. Hylton, V. Nirmalan, B.K. S	Sultanian, and R.M. Kaufman	8. Performing Orga Allison EDR	nization Report No.
		10. Work Unit No.	
 Performing Organization Name and Addree Allison Gas Turbine Division General Motors Corporation P.O. Box 420 Indianapolis, Indiana, 46206-0420 	\$\$	11. Contract or Gran NAS3-24619	it No.
2. Sponsoring Agency Name and Address		Contractor Re Final	port
National Aeronautics and Space Ac Lewis Research Center Cleveland, Ohio 44135-3191	ministration	14. Sponsoring Agen	cy Code
Project Manager, Herbert J. Gladde	en, Internal Fluid Mechanics Division, N	IASA Lewis Researc	h Center.
Project Manager, Herbert J. Gladd	en, Internal Fluid Mechanics Division, N	VASA Lewis Researc	h Center.
Project Manager, Herbert J. Gladd Abstract This report addresses the progress un use in improving the predictive desig downstream film cooling with and wi made in a two-dimensional cascade p airfoils under contract NAS3-22761 a The principal independent parameters coolant-to-gas temperature ratio, and engine conditions and the test matrix w of interest, namely, exit Mach numbe pressure ratio. Data from this contrac data bases generated in the previous t that considerable cooling benefits can process was shown to be a complex fit with the injection of relatively cold fit turbulence augmentation, produced by obtained in this program and presented airfoil designer and computational ana cooled turbine airfoils.	en, Internal Fluid Mechanics Division, N der contract NAS3-24619 toward the goal n capabilities for external heat transfer to thout leading edge showerhead film coolin reviously used to obtain vane surface heat and leading edge showerhead film cooled a Mach number, Reynolds number, turbul coolant-to-gas pressure ratio-were mainta vas structured to provide an assessment of r, exit Reynolds number, coolant-to-gas te t provide a data base for downstream film wo studies. The vane external heat transfe be achieved by utilizing downstream film unction of two competing mechanisms. Th tid, results in a decrease in the heat transf the injection process, results in increased d in this report illustrate the interaction of lyst the information required to improve h	of establishing a rele- turbine vanes, includin g. Experimental meas transfer distributions of infoils under contract ence, wall-to-gas temp ined over ranges consis- the independent influer mperature ratio, and co cooled turbine vanes r data obtained in this cooling. The downstra- e thermal dilution effe er to the airfoil. Conv- heat transfer to the ai- these variables and sh eat transfer design cap	h Center. vant data base for ng the effects of urements were on nonfilm cooled NAS3-23695. verature ratio, istent with actual nee of parameters coolant-to-gas and extends the program indicate eam film cooling ect, associated versely, the rfoil. The data nould provide the pabilities for film
Project Manager, Herbert J. Gladd Abstract This report addresses the progress un use in improving the predictive desig downstream film cooling with and wi made in a two-dimensional cascade pr airfoils under contract NAS3-22761 a The principal independent parameters coolant-to-gas temperature ratio, and engine conditions and the test matrix y of interest, namely, exit Mach numbe pressure ratio. Data from this contrac data bases generated in the previous t that considerable cooling benefits can process was shown to be a complex fit with the injection of relatively cold fit turbulence augmentation, produced by obtained in this program and presented airfoil designer and computational ana cooled turbine airfoils.	en, Internal Fluid Mechanics Division, N der contract NAS3-24619 toward the goal n capabilities for external heat transfer to thout leading edge showerhead film coolin reviously used to obtain vane surface heat and leading edge showerhead film cooled a Mach number, Reynolds number, turbul coolant-to-gas pressure ratio-were mainta was structured to provide an assessment of r, exit Reynolds number, coolant-to-gas te t provide a data base for downstream film wo studies. The vane external heat transfe be achieved by utilizing downstream film unction of two competing mechanisms. Th tid, results in a decrease in the heat transf the injection process, results in increased d in this report illustrate the interaction of lyst the information required to improve h	of establishing a rele- turbine vanes, includir g. Experimental meas transfer distributions of irfoils under contract ence, wall-to-gas temp ined over ranges cons- the independent influer mperature ratio, and c cooled turbine vanes r data obtained in this cooling. The downstra- e thermal dilution effe er to the airfoil. Conv heat transfer to the ai these variables and sh eat transfer design cap	h Center. want data base for ng the effects of urements were on nonfilm cooled NAS3-23695. werature ratio, istent with actual nee of parameters coolant-to-gas and extends the program indicate eam film cooling act, associated versely, the rfoil. The data nould provide the pabilities for film
Project Manager, Herbert J. Gladd Abstract This report addresses the progress un use in improving the predictive desig downstream film cooling with and wi made in a two-dimensional cascade pr airfoils under contract NAS3-22761 a The principal independent parameters coolant-to-gas temperature ratio, and engine conditions and the test matrix v of interest, namely, exit Mach numbe pressure ratio. Data from this contrac data bases generated in the previous t that considerable cooling benefits can process was shown to be a complex fit with the injection of relatively cold fit turbulence augmentation, produced by obtained in this program and presented airfoil designer and computational ana cooled turbine airfoils. Key Words (Suggested by Author(s)) Turbines; Heat transfer; Film coolin Airfoils; Cascades	en, Internal Fluid Mechanics Division, N der contract NAS3-24619 toward the goal n capabilities for external heat transfer to thout leading edge showerhead film coolin reviously used to obtain vane surface heat and leading edge showerhead film cooled a Mach number, Reynolds number, turbul coolant-to-gas pressure ratio-were mainta was structured to provide an assessment of r, exit Reynolds number, coolant-to-gas te t provide a data base for downstream film wo studies. The vane external heat transfe be achieved by utilizing downstream film unction of two competing mechanisms. Th tid, results in a decrease in the heat transf the injection process, results in increased 1 in this report illustrate the interaction of lyst the information required to improve h [] [] [] [] [] [] [] [] [] [] [] [] []	of establishing a rele- turbine vanes, includir g. Experimental meas transfer distributions of irfoils under contract ence, wall-to-gas temp ined over ranges cons- the independent influer mperature ratio, and c cooled turbine vanes r data obtained in this cooling. The downstrue e thermal dilution effe- er to the airfoil. Conv- heat transfer to the ai these variables and sh eat transfer design cap ement I – Unlimited egory 34	h Center. want data base for ng the effects of urements were on nonfilm cooled NAS3-23695. werature ratio, istent with actual nee of parameters coolant-to-gas and extends the program indicate eam film cooling ect, associated versely, the rfoil. The data nould provide the babilities for film

NASA FORM	1626	OCT	86	
-----------	------	-----	----	--

*For sale by the National Technical Information Service, Springfield, Virginia 22161