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Summary 

Advanced composite processing techniques for fiber reinforced metal matrix 

composites require the flexibility to meet several widespread objectives. The development 

of uniquely desired matrix microstructures and uniformly arrayed fiber spacings with 

sufficient bonding between fiber and matrix to transmit load between them without 

degradation to the fiber or matrix are the minimum requirements necessary of any fabrication 

process. For most applications these criteria can be met by fabricating composite monotapes 

which are then consolidated into composite panels or more complicated components such 

as fiber reinforced turbine blades. Regardless of the end component, composite monotapes 

are the building blocks from which near net shape composite structures can be formed. The 

most common methods for forming composite monotapes are the powder cloth, foil/fiber, 

plasma spray and arc spray processes. These practices, however, employ rapid solidification 

techniques in processing of the composite matrix phase. Consequently, rapid solidification 

processes play avital and yet generally overlooked role in composite fabrication. The present 

roles and future potential of rapid solidification processing in fabrication of continuous length 

fiber reinforced metal matrix composites will be discussed in the following paper. 

*Concurrently Visiting Scientist, NASA Lewis Research Cenrer. 
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Introduction 

Continuous length fiber reinforced metal matrix composites are a family of materials 

which are beginning to gain acceptance in the aerospace industry, where increased 

performance and not necessarily economics can dictate the use of new materials. These 

composites combine the high strength and stiffness of modern fibers with the environmental 

resistance and toughness of a metallic matrix in order to create a component with better 

overall material performance than possible with present monolithic metals. Gains in terms 

of higher strength-to-weight ratios, combined with high temperature corrosion and oxidation 

resistance are expected with the use of continuous fiber composites. These types of advanced 

materials have significant potential for use in aerospace propulsion and structural applications 

(1-3) and advanced space power systems (4-5). 

More than just an experimental curiosity, rapid solidification processes (RSP) are 

coming into there own as a viable materials fabrication alternative as evident from the 

numerous conferences and topical reviews recently dedicated to this subject (6-22). As 

apparent from these references and Table 1, rapid solidification encompasses a broad 

spectrum of technologies, from powder producing atomization techniques to the plasma spray 

process. Therefore, as interest in fiber reinforced metal matrix composite materials is 

rejuvenated, processing of continuous length fiber composites and the field of rapid 

solidification are beginning to merge. Whether used to create novel microstructures e.g. by 

melt spinning or simply because of the convenience of the fabrication technique such as the 

thermal spray processes, rapid solidification techniques have become an intimate part of the 

overall fabrication scheme for metal matrix composites. 

While methods for processing metallic materials have been established for many years, 

the fabrication of fiber reinforced metal matrix composites for structural applications has 

only reached a preliminary stage of development. Optimal solutions to many processing 

problems still remain to be solved. Special problems associated with the fabrication of 
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continuous fiber composites include the control of fiber spacing, complete densification of 

the matrix while maintaining matrix purity, and optimal bonding of the matrix to the fiber 

(good chemical bonding without excessive reaction). It is our intention in this chapter to 

demonstrate the viability of metal matrix composite fabrication and the solution to many of 

the aforementioned problems through the use of rapid solidification processing techniques 

for composite matrix development. 

At this stage in composite technology very little can be said about large scale production 

processes for fabrication of continuous fiber composites though a number of techniques have 

been developed on a laboratory or pilot plant scale. Some of the more common techniques 

include unidirectional solidification of eutectic or constitutionally appropriate alloys, liquid 

metal infiltration, conventional powder metallurgy processes, hot pressure bonding of a 

suitable matrix phase around fiber bundles or mats via the powder cloth or fiber/foil 

technique, or consolidation of matrix pre-coated fibers (e.g. by thermal spraying or plating). 

The first of these processes, unidirectional solidification or the generation of in-situ 

composites, has a number of naturally imposed restrictions which limits its usefulness as a 

manufacturing procedure. The number and type of materials which can be fabricated into 

composites by this technique is generally limited to eutectic or other constitutionally 

appropriate alloys. The fiber volume fraction in most of these systems is low, being controlled 

by the thermodynamic phase relationships of the system, and cannot be varied significantly 

(23,24). Finally, off- axis properties such as transverse strength and ductility are generally 

poor (25-27) with no convenient method for modifying off-axis properties through angle ply 

procedures. 

With liquid infiltration techniques, proper wetting between fibers and matrix without 

significant degradation of the fibers is important and yet difficult to achieve (28,29). The 

relative instability of available advanced filaments and their reactive nature in most metal 

melts has minimized the practicality of liquid state composite fabrication. Furthermore, fiber 

spacing is extremely difficult if not impossible to control. This technique may be useful for 
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producing small volumes of discontinuous fiber composite materials using metals with low 

melting points such as magnesium and aluminum alloys. It would, however, be impractical 

to infiltrate presently available fibers with refractory metals or high melting point 

intermetallic compounds because of severe chemical attack of the fibers (29). 

Presently, components under consideration for aerospace applications such as B/Al 

composite panels (30) or W/Superalloy turbine blades (3 1-33) are preferably produced by 

diffusion bonding or hot pressure consolidation of prefabricated monotapes. Monotape 

production is one area where rapid solidification techniques can have a great impact on the 

fabrication scheme of metal matrix composites. Thermal spray processes such as arc spray 

and plasma spray techniques inherently involve rapid solidification. These techniques can 

be directly utilized to produce composite monotapes which can then be cut, molded and 

bonded into appropriate composite structures. Monotapes or simple composite plates can 

also be fabricated from rapidly solidified constituents by the powder cloth or foil/fiber 

technique. Whether the use of an RS material as a composite matrix phase is intentional, 

taking advantage of the benefits gained from having a rapidly solidified microstructure, or 

because a rapid solidification process is the most convenient process available for matrix 

processing, RS processes are becoming increasingly important to composite fabrication. 

Detailed composite fabrication process parameters are almost universally considered 

proprietary or restricted information. Therefore, the authors’ intent in this paper is to describe 

general rapid solidification processes and their advantages followed by a discussion of the 

application of rapid solidification processing to composite monotape and component 

fabrication. 
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Racid Solidification Process= 

Over a quarter of a century ago a new frontier for the processing of materials was 

established by the efforts of Paul Duwez (34-38) and others (39-42). While not the first to 

investigate rapid quench rate techniques (43-44), it was the efforts of Duwez which are 

recognized for beginning the revolution in rapid solidification technology. During one of his 

initial experiments Duwez melted a small amount of metal in the bottom of a tube. By sudden 

gas pressurization the molten metal was ejected onto a copper plate resulting in a "splat" of 

frozen metal with a solidification rate on the order of lo6 K/s. Since then, thousands of 

technical papers have been published in the area of rapid solidification technology (RST) 

and everyday new commercial applications are emerging (45-53). 

Today the term "rapid solidification" which is defined as a "rapid" quenching from the 

liquid state, covers a broad range of material processes. Traditionally, for a process to be 

considered in the rapid solidification regime its cooling rate would have to have been on the 

order of 104 K/s or greater. Now the concept of rapid solidification is more general and 

processes with lower cooling rates such as some powder producing techniques have been 

included under the RST definition. 

Rapid solidification technology, therefore, incorporates a large number of different 

processes. These processes can be classified either as a function of their resulting products 

(e.g powder producing techniques), as a function of the resulting microstructure (grain and 

particle size), or as a function of cooling rate (generally measured by secondary dendrite arm 

spacing). A useful comparison of secondary dendrite arm spacing versus solidification rate 

for several different alloys is shown in Figure 1 (54-56). Superimposed on the figure are some 

common processing techniques, indicating the range in homogenization which can be 

achieved for different processes. 

For solidification rates in excess of about 105 K/s (as observed during melt spinning) 

the resulting microstructure becomes cellular rather than dendritic. Figure 2, a transmission 

electron bright field image, shows the cellular structure formed in a melt spun NiAl alloy 
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containing 0.5 at.% W. A fine dispersion of tungsten particles helps delineate the cell and 

grain boundaries. 

Common products obtained by rapid solidification techniques include powders, flakes, 

ribbons, wires and foils. An essential factor associated with almost all current rapid 

solidification techniques is that the as-solidified product is very small (micron size) in at least 

one dimension. In other words the surface to volume ratio for the product is very large. This 

is essential in obtaining very large cooling or solidification rates. 

An important objective of all rapid solidification processes is to produce a solid phase 

of uniform composition with no "micro" or ''macro" scale segregation of alloying elements 

(57). Other effects which may result from rapid solidification rates are: an increase in solid 

solubility of alloying elements, a significant decrease in grain size, and possibly formation of 

unusual metastable crystalline phases or production of non-crystalline (amorphous) phases. 

For most applications, however, rapidly solidified alloys must be consolidated into bulk forms, 

either monolithic or composite. The consolidation processes and parameters (especially time 

and temperature) are very critical since many of the microstructures exhibited by RS materials 

are metastable. Many RS materials are intended for use at elevated temperature, therefore, 

prolonged exposure at elevated temperature during both consolidation and service could 

destroy any benefits accrued from the microstructural modifications introduced by RS 

processing. The addition of insoluble elements or those which will form fine precipitates can 

result in both pinning of the grain boundaries, controlling grain coarsening during the 

consolidation process, and increased strength of the alloy (58-60). Thus increased 

homogeneity, grain refinement and strengthening effects remain the primary advantages of 

RS materials as applied to high temperature structural applications. The main techniques 

available for rapid solidification processing are summarized in Table 1 and the more common 

techniques are also shown schematically in Figure 3. Numerous reviews describing these 

techniques have been published (24,45- 53,61-62), therefore, only a brief description of the 

processes most relevant to composite fabrication is included here. Details on the numerous 
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processing parameters which can affect final product quality such as melt composition, melt 

superheat, chamber atmosphere, crucible composition, crucible configuration and substrate 

condition, composition and temperature can be found in the references listed in Table 1. For 

simplicity, the different processes have been divided into two main categories; (i) atomization 

methods and (ii) chill methods. A third general category for rapid quenching is surface 

techniques which includes such processes as laser surface melting. This category is not 

included in the following discussion since it is not relevant to composite fabrication. 

Elemental and prealloyed powders used in typical powder metallurgy processes are 

commonly produced by atomization techniques. Several examples of the morphology and 

microstructure of powders produced by atomization methods are shown in Figure 4. The 

common feature of all atomization processes is that they are based on the disruption of a 

molten metal stream by external forces such as another fluid (gas or water), mechanical 

disturbances, or electric fields. 

Figure 3a is a schematic representation of a two-fluid atomization process. This process 

consists of a high pressure fluid impacting a continuous stream of liquid metal resulting in a 

broad distribution of particle sizes. Figures 4al and 4a* are examples of the morphology 

and microstructure of NiCrAlY powder produced by argon gas atomization. Ultrasonic and 

supersonic atomization techniques can greatly reduce the range in particle size distribution 

and also increase cooling rate. This is accomplished by use of high velocity gas pulses which 

break the molten metal stream into very fine droplets (< 30 p m). The fine liquid droplets 

then solidify convectively at high rates resulting in a narrow size range of fine powder. 

Rotary methods are also very common atomization type processes. The rotating 

electrode process (REP) is one such method for producing high quality, spherical powders. 

This process, illustrated in Figure 3b, is based on the melting of an alloy electrode rotated 

at a relatively high rate of speed. The molten alloy droplets are then ejected centrifugally 

and solidify in an inert environment. Figures 4bl and 4b2 are examples of the extremely 

spherical nature of Ti-24N-llNb (at%) powders produced by this technique. Several variants 
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of the rotary process exist. One of the higher cooling rate processes, the rapid solidification 

rate (RSR) process, consists of a rotating disk which is used to break up a molten metal 

stream ejecting the droplets into a bed of high pressure gas cooling jets. 

The chill methods, based on the work of Duwez, obtain their high cooling rates by heat 

extraction through a substrate. Solidification rates in excess of 106 K/s are readily achievable 

by these systems. The chill techniques normally make use of a moving substrate so that 

localized heating of the substrate and the deposit is minimized. The most common technique 

is the Chill Block Melt Spinning (CBMS) method and its variations, Free Fall Melt Spinning 

(FFMS) and Planar Flow Melt Spinning (PFMS). Figure 3d is a schematic setup of the CBMS 

process. During the CBMS process the molten metal is ejected from the crucible in which 

it was melted, through a nozzle and onto a rotating wheel with solidification occurring during 

contact with the substrate. The wheel can be either flat, producing ribbon, or notched, 

resulting in flake production. The product then flies off into a catcher device before one 

complete revolution of the wheel. This process is presently being used as a research tool as 

well as on a pilot plant scale production basis to produce RS material. Melt overflow (Figure 

3e) and melt drag processes avoid the use of ceramic crucibles with built in orifices by making 

use of water cooled Cu hearths, thereby minimizing contamination of the melt. With the 

elimination of ceramic molds it is possible to more cleanly melt reactive metals such as 

titanium and silicon based alloys. Both of these modified chill block methods are being used 

quite successfully on a commercial basis. With the increased demand of high melting point 

refractory metal and intermetallic compounds for aerospace applications new melting 

techniques and crucible innovations are being combined with the melt spinning techniques. 

Arc melting, plasma melting and levitation processes are just a few of the innovations being 

implemented within the melt spinning process. 

The main drawback in using rapidly solidified products is the need to safely handle and 

consolidate the RS materials into full density bulk components. Several general techniques 

are used for consolidation such as hot pressing, hot isostatic pressing, forging, extrusion, and 
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dynamic and explosive compaction processes (16). However, near net shape materials can 

also be formed by thermal spray processes. With these processes a continuous and controlled 

deposition of atomized product is sprayed onto a substrate to build up multiple layers of 

rapidly solidified material. Several techniques have been developed for thermal spraying 

with near net shape products in mind. They include spray atomization techniques such as 

the Osprey process (46,62), plasma spraying (42) and the arc spray process (63). The latter 

two processes are already used on a regular basis for the fabrication of composite monotapes 

(63-64). Fabrication of composite components and monotapes by the thermal spray processes 

as well as from RS products such as flake, ribbon and powder will be described in the following 

sections. 

Use o f Rapidly Solidified Co nstituents in Monotape o r Composite Fabrication: 
Powder Cloth and Foil,/Fiber Techniqua 

Any useful composite fabrication technique must provide a component which meets 

minimum prescribed design parameters and yet still be versatile enough to create parts of 

complex shape. For example, a common requirement in many components designated for 

composite reinforcement is the incorporation of hollow cooling or weight reduction passages 

(65-67). The entire fabrication scheme must also be cost effective and reproducible. 

The powder cloth and fiber/foil techniques come as close as any process in meeting 

these requirements and are the most cost effective (68) and readily adaptable techniques for 

commercial exploitation (69). These processes are generally known as hot pressure bonding 

techniques because the individual composite components, matrix and fiber, are formed into 

composite monotapes or panels by a static pressure consolidation process carried out at 

elevated temperature. The general concept is shown schematically in Figure 5. From this 

process, simple sheets or plates can be formed and utilized as honeycomb facing or creep 

formed into cylindrical or complex blade shapes (70). This process is also an important source 

of monolayer filament tapes or monotapes which are used to form complex composite shapes 

9 



by laminate layering and pressing techniques (31,6567). 

Monotape fabrication by the powder cloth technique simply consists of sandwiching a 

fiber mat between two metal powder filled "cloths" and consolidating. The entire processing 

sequence from matrix alloy selection to finished composite monotape is shown schematically 

in Figure 6. The powder cloth is formed by combining theprealloyed matrixpowder (produced 

by any of the techniques described previously) with a suitable organic binder, usually TeflonR 

powder (71-72), and blending the mixture with the aid of a high purity stoddard solution (72). 

Once the slurry of powder, binder and stoddard solution is appropriately mixed the majority 

of the stoddard solution is evaporated off by the application of low heat. The remaining 

dough like mixture is then rolled into a pliable powder cloth. During the blending and rolling 

process the polymeric binder forms an interlocking network holding the powder particles 

together in a cloth like sheet. A typical powder cloth, an example of which is shown in Figure 

7, generally contains 4-15% organic binder by weight. 

The S ic  fiber mat shown in Figure 7 is also held together by a fugitive binder. The 

fibers are first wound onto a lathe mounted drum or mandrel using a translating wire guide 

assembly to provide a desired uniform spacing of the fibers. Then an organic binder dissolved 

in a suitable solvent, for example polystyrene dissolved in toluene (71,73-74), is sprayed or 

painted over the fibers. The organic binder can also be applied directly to the filaments 

during the winding procedure by passing the fibers through the binder solution just before 

they are wound onto the mandrel (74). As the solvent evaporates a polymer film is left, 

encasing the fibers. The fiber mat is then removed from the drum and cut into segments 

which fit into the hot press. 

A monotape is formed by sandwiching the fiber mat between powder cloths and 

consolidating. Several layers of alternating powder cloths and fiber mats can also be laid up 

at the same time to form a composite panel. The binder removal or thermal debinding step 

can take place in the hot press, under a vacuum or a low pressure inert gas atmosphere, 

usually without leaving a residue (71,73). A light retaining pressure is first applied to the 
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stack of powder cloths and fiber mats when introduced into the hot press to hold everything 

in place during the binder burnout stage before the final pressing temperature and pressure 

is reached (73). Therefore, both binder removal and partial or complete consolidation of 

the monotape or composite panel can occur in a single step (73,75). A pictorial review of 

the steps involved in the powder cloth technique for composite fabrication is shown in Figure 

8. More complex components (other than simple plates) can be formed by stacking cut 

monotapes in desired orientations and then hot pressure bonding them together as illustrated 

in Figure 9 (76). This process is described in more detail in a later section. 

The powder cloth process is one of the most versatile methods for producing both fiber 

composite finished products and "building block" materials in the form of composite 

monotapes. Almost all metals and ceramics can be produced in powder form so that the 

choice of matrix material for this process is limitless. The powder cloth technique as described 

above or with slight variations has been used in the past on W/superalloy (77-78), aluminide 

intermetallic matrix (72,75), W/FeCrNY (65,68,71), and U02/W composites (79-82). These 

and other composite systems made by the powder cloth technique are listed in Table 11. 

Examples of more recent composite systems fabricated by the powder cloth technique are 

shown in Figure 10. It should be noted that the SiC/Ti-24Al-llNb composite in Figure 10 

was fabricated from the same REP powders as shown in Figure 4b and the W/NiN composite 

was produced from the vacuum atomized powder shown in Figure 4c. 

The minimum requirement for judging the viability of a composite fabrication technique 

for a system with continuous aligned fibers should be the attainment of a rule-of-mixtures 

(ROM) strength. If attained, this would indicate that sufficient bonding between the matrix 

and fiber has occurred to permit load transmittal between the matrix and fiber phases. No 

loss of strength (compared to ROM) would also mean that bonding occurred without severe 

reaction between the fiber and matrix phases, that the fibers were not damaged during the 

hot pressing procedure and that the matrix was not embrittled during processing. In other 

words, if a rule-of-mixtures strength is obtained then the composite processing technique is 
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capable of producing a composite part without significantly degrading the strengths of any 

of the individual components of the composite (fiber or matrix). 

Viability of the powder cloth technique for producing intermetallic matrix composites 

has been demonstrated by Brindley (83) by attainment of near rule-of-mixtures strengths in 

the SiC/Ti-24Al-llNb system when low oxygen starting materials were used. These results 

are shown in Figure 11. Near rule-of- mixtures strengths have been reported in other 

composite systems fabricated by the powder cloth process as well (71). 

Almost all composite systems fabricated to date by the powder cloth technique, 

including those illustrated in Figure 10, have made use of this technique because it was 

convenient. However, fine grain sizes which can be achieved by RS processing can also be 

extremely beneficial for properties. Schulson and Barker (84) have shown that fine grain 

sizes are preferable for low temperature ductility in intermetallics, while Whittenberger (85) 

has shown that a fine grain size can even increase the elevated temperature strength of nickel 

aluminides. With this in mind, a fine grained NiAl alloy was produced by melt spinning for 

use as a composite matrix phase and is presently under investigation at NASA Lewis Research 

Center. In preliminary studies a composite produced with this fine grained NiAl alloy has 

demonstrated improved thermal cycling resistance over NiAl composites made from 

conventional powders. An example of a NiAl based composite made from melt spun ribbon 

is shown in Figure 12. Submicron size tungsten particles are responsible for pinning the grain 

boundaries and retention of the fine grain size in this alloy even after high temperature 

consolidation (58,86). 

The foil/fiber process for forming composites or monotapes is very similar to the powder 

cloth technique just discussed. Foil/filament arrays are formed by winding fibers with a 

predetermined filament spacing onto a large diameter mandrel forming a fiber mat (Figure 

7) or by winding fibers directly onto the 

mandrel or drum. A fugitive binder, e.g. 

surface of the matrix foil which is placed over the 

polystyrene or an acrylic (71,73-74,87) is then used 
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to hold the filaments in place before the consolidation process. This time, however, the 

matrix is in the form of a dense foil instead of a powder cloth. With the application of heat 

and pressure the binder phase is removed by volatilization and the matrix is forced to flow 

between the filaments until opposite surfaces meet and all remaining voids are filled (87). 

Diffusion bonding will occur if the foil surfaces are clean and oxide free. Optimum fabrication 

parameters (time, temperature, pressure), determined primarily by trial and error (73,88), 

are dependent upon matrix composition, filament type and filament spacing. Foil thickness 

and filament spacing dictate the volume fraction of reinforcement. 

Rapid solidification is not the only method or even the most common process for forming 

thin foils of metals. Before the advent of RSP, thin foils primarily of Al and Al alloys were 

made by conventional rolling techniques for use in composite fabrication by the foil/fiber 

process (89-98). The benefit of RS processed foils lies in improvements in mechanical 

properties due to microstructural refinement, as well as the economic advantages gained 

from producing foils by RS techniques compared to wrought methods (99). Furthermore, 

some alloys including many of the high temperature alloys of interest as matrix materials 

cannot be mechanically worked into foils thin enough for use in composite fabrication. On 

the other hand, almost any alloy can be melted and cast into thin foils by modified melt 

spinning or melt overflow type techniques. 

Presently, RS titanium alloy foils are the primary material of interest for further 

fabrication into continuous fiber composites using the foil/fiber process (99- 100). The major 

reason for this is that two major problems encountered in titanium metal matrix composite 

fabrication can be solved by use of rapid solidification technology. The first problem is the 

relatively high cost of wrought titanium alloy foil which involves numerous cycles of vacuum 

annealing and cold rolling using a low reduction ratio in order to prevent cracking. In contrast, 

RS technology can be economically advantageous by producing thin sheet directly from the 

melt (99). The second major problem is the magnitude of the matrix/fiber reaction zone 

which typically occurs during processing, resulting in severe degradation of composite 
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properties. Higher loads at lower temperatures cannot be used to correct for this problem 

because the maximum pressing load is controlled by the diametral compression strength of 

the fiber. However, plastic flow occurs in fine grained RS foils at lower temperatures than 

wrought foils. This results in less reaction zone growth (99) and less chance in damaging 

ceramic fibers during the pressing procedure because of the lower loads and temperatures 

necessary for consolidation. 

Composite plates suitable for mechanical testing or as structural panels can be 

fabricated in a single step by laying up alternate layers of foil sheets and fiber mats and 

subsequently consolidating. RS foils can even be cast directly onto the fibers by a melt 

overflow technique which would also lend itself to a semi-continuous type of process. Other 

minor variations on the powder cloth and fiber/foil techniques exist (e.g 65,74,101,108) but 

the basic principles are similar to what has been described. 
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. .  Jhermal Sprav Techn'am I for Monotape Fabrlcatlon 

The use of thermal spray processes, to fabricate composite monotapes is a natural 

extension of forming structural components (102) and coatings (103-104) by plasma spray 

deposition. These processes are considered rapid solidification techniques because cooling 

rates, even though varying from about 103-106 K/s, fall well within the rapid solidification 

regime. This wide variation in cooling rate is primarily due to differences in distance between 

the spray gun and substrate as well as substrate temperature. In fact one of the first techniques 

used to study the rapid solidification of materials was plasma spraying (42) and it is still used 

today as a tool to study rapidly quenched metals (105). 

Kreider (106-109) was the first person to optimize a thermal spray technique for 

continuous fiber composite fabrication and did so primarily for aluminum matrix composites 

using a plasma spray process. Today there are basically two types of thermal spray processes 

used for composite monotape fabrication. These are the plasma spray process (106-110), 

shown in figure 3f, and a more recent technique developed by Westfall (111-112) known as 

the arc spray process which is described in Figure 13. These and the previously discussed 

hot pressure bonding techniques for composite fabrication are compared in Table 111. 

The primary difference between the two thermal spray techniques is the design of the 

spray gun and the type of feedstock necessary for the spraying process. For a plasma spray 

system, fine spherical powder is used as the feed material for spraying. The powder to be 

deposited is injected into a plasma stream usually within the throat of the gun as illustrated 

in Figure 3f. The plasma is generally at 10,000 K and travelling on the order of Mach I11 

(102). Therefore, if the powder is too coarse in size it will not melt before impacting the 

substrate and if too fine in size it will vaporize in the plasma stream. General practice is to 

use powder screened to a particular mesh size e.g. -400 mesh or an average diameter of about 

37 p m (102). 

For the arc spray technique, the feed material for the matrix phase is in the form of 

continuous wire, generally 0.16- 0.32 cm (0.0625-0.125") in diameter. During this process, 
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two wire feeds of opposite charge are forced through the arc spray gun at a controlled rate. 

This causes an electric arc to be struck between the wires melting the wire tips. The resulting 

molten metal droplets are then sprayed onto the substrate by a stream of argon gas which 

passes through the gun and directly past the arc (4). An advantage of the arc spray process 

over plasma spraying is that the as-deposited matrix material has a much lower oxygen content 

because the starting material (wire vs. powder) will almost always be cleaner (113). 

As-consolidated oxygen levels for arc sprayed composites is generally on the order of several 

hundred ppm (4,113) while for plasma sprayed materials the oxygen level is an order of 

magnitude higher (113). The primary disadvantage in the arc spray process is that it is not 

always convenient or even possible to procure continuous strands of prealloyed wire of brittle 

alloys. Clad bimetallic and hollow core elemental powder filled composite wires, however, 

can potentially be used for creating most desired matrix compositions. For example, W/nickel 

aluminide monotapes have been successfully fabricated by the arc spray process using a 

composite wire formed from elemental constituents as feed stock for the spray gun (1 14). 

A flow diagram of the general processing scheme used for monotape fabrication by 

thermal spray processes is shown in Figure 14. A protective foil wrapped drum or mandrel 

is covered with a predetermined spaced array of fibers, (similar to forming a fiber mat), which 

are then sprayed with a layer of matrix material. The mandrel is usually rotated and traversed 

in front of a stationary spray gun to ensure spraying of an even layer of matrix alloy. This 

sprayed matrix material mechanically bonds the wires in place by filling the interstices , 

between and even to a limited extent behind the fibers. The monotape can then be removed 

from the mandrel or it can be overwrapped with another layer of fibers and resprayed forming 

a unidirectional composite panel. A typical example of a thermally sprayed W/Nb monotape 

and the resulting RS microstructure can be observed in Figure 15. The as-sprayed monotapes 

contain 10-30% porosity depending on spraying conditions and drum speed (70,112). Hot 

consolidation processes are then used to fully consolidate the monotape or composite 

component. 
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ComDonent Fab rication from Comoosite Monot- 

Thermal spray processes and the hot pressure bonding techniques are a convenient 

source of prefabricated components (monotapes) which can be easily processed into 

composite parts with angle-ply structures. Although potential exists for high purity product, 

monotapes are currently being produced with a range of interstitial impurity levels depending 

upon fabrication method. Residual oxygen levels resulting from the plasma spray process, 

at about 2000-5000 ppm depending on the alloy being deposited (113,115), can be an order 

of magnitude greater than for any of the other techniques (4,72,75,113). This can be aproblem 

in some materials since high oxygen contents can have a devastating effect on matrix alloys 

prone to oxygen embrittlement such as titanium based alloys (113,115) and intermetallics 

(1 18). The powder cloth, foil/fiber, and arc spray processes can all produce monotapes with 

oxygen levels in the hundreds of ppm range (4,72,75,113). While the arc spray process has 

the lowest oxygen pickup of the thermal spray techniques the foil/fiber process is potentially 

the cleanest of all the techniques, especially if grooved foils are used to hold the fibers in 

place instead of organic binders. While all the binder can be theoretically burned off in the 

powder cloth and foil/fiber processes there is a tendency with these processes for a slight 

pickup in C (20-500 ppm) (72,75) due to the presence of any trapped organic binder. Carbon 

pickup is not a problem associated with any of the thermal spray processes. 

A n  advantage to fabrication of monotapes by thermal spray processes is the elimination 

of the initial hot press and binder removal step necessary with the hot pressure bonding 

procedures. This can result in savings of both fabrication time and cost (112). Another 

advantage of the thermal spray processes is that the matrix material can be sprayed onto 

relatively complex shapes. Shapes of revolution can be produced simply by winding, and 

more complex shapes can be produced by winding fiber onto flexible frames and then 

deforming or orienting the frames (106). Experimental rocket nozzles of tungsten wire and 

tungsten matrix have been produced by this process (1 10) demonstrating the versatility 

inherent in the thermal spray techniques. 
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Hot consolidation of preforms or stacks of monotapes produced by any of the techniques 

previously discussed has been extensively used to form plate or sheet type composite 

components (for examples see Table 11). Even when restricting structures to this simple 

geometry there is considerable room for flexibility. Figure 16 is an example of the cross 

section of a structural panel made from a SiC/Fe-40Al(at%) composite containing stainless 

steel cooling passages. This particular panel was fabricated by the powder cloth technique 

to demonstrate the versatility of the process. 

The use of monotapes to form more complex components has been demonstrated by 

the fabrication of composite turbine blades (31,65,119-120). Figure 9 is an illustration of a 

simplified version of this process. However, even this process is capable of producing solid 

blade shapes that are close to final dimensions and in need of only limited touch up machining 

(3 1,651 19). Intricate demonstration components such as a composite turbine blade 

containing internal cooling passages and trailing edge cooling slots have also been fabricated 

(31). Furthermore, an economic assessment of the processing routine (121) indicates that 

the manufacturing cost of a W fiber reinforced turbine blade should be competitive with 

current blade production costs using a directional solidification technique. Further details 

on the fabrication of fiber reinforced turbine blades can be found in the article by D. Petrasek 

in this same volume. 

All the composite fabrication techniques discussed, have the advantage of maintaining 

accurately controlled fiber volume fractions and fiber distribution. This is because the spacing 

between fibers in any particular layer is extremely uniform and can be fixed to whatever 

distance is deemed appropriate. Furthermore, the thickness or total volume of the matrix 

phase applied can also be accurately controlled. This is a significant advantage over 

conventional powder metallurgy techniques such as extrusion and molten metal infiltration 

techniques in which fiber placement and spacing cannot be controlled. In addition, a 
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structural component can even be produced with a gradient of fiber reinforcement through 

the thickness of the part. This can be easily accomplished in all of the techniques discussed 

by simply varying the spacing between fibers in the different layers. 

Conclusions 

In this paper we have attempted to point out the advantages and versatility of composite 

fabrication techniques which in one form or another involve the use of rapid solidification 

technology. Because composite fabrication and RSP have become so interrelated it is to the 

advantage of the processing engineer to make the best use of the RS processing stage in order 

to optimize not only the composite processing procedure but composite properties as well. 

Potential for new composite processing schemes incorporating state-of-the-art RSP and the 

creation of "designer microstructures'' developed for future matrix phases of engineered 

composite materials are nearly limitless. 
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Table  1 
Rapid Solidification Techniques 

P Descr i or i on ProducC/Dimnsions I Cool i2 Rarc -- Process Warn 

A t a i z a t i o n  Methods 

Fluid Atanizat ion 
(Wormally t w i n  j e t s )  

High Pressure f l u i d  irrpact- 
i n g  a continuous stream o f  
l iquid metal. . - tcs  ( A r ,  N2) 

Ul t rason ic  G.A: Desintegra- 
t i o n  occurs by high inten- 
s i t y  pulsed waves. 

-Uater I 

I 

For Gas-. Lou 02 contaminacion Gas: 
-Spherical and smooth powder 102-103 
50/100 urn Oia SSGA: 

up to 106 
Supersonic t . A :  
10-50 urn 
Ul t rason ic  L A :  
<30 srn I UsGI: 

105 1 
Uater: 

102-104 I For Uater: High 02 Contamina- 
t i o n  
- I r r e g u l a r  p a r t i c u l a t e s  I ?S/200 urn Dia 

Laser-Melting/Spin Focussed (COz) laser beam is Spherical p a r t i c l e s  
A tan iza t ion  ]used t o  melt the too o f  a IC0 urn Oia 

- 
L5-53 
122-1; 

128-1: 

p 5 .  

122-li 

83,133 

- 
34 

35 

36-131 
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14-141 

- 
!9 

r o t a t i n g  rod. DroplLts are 
l t e d  by the cent r i fuga l  
e and cooled by i n e r t  

i m r s e d  in d i e l e c t r i c  
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Table 1 Concluded 

C h i l l  Methods 

Molten metal i s  expelled out Ribbons 105-10' 
onto a r o t a t i n g  wheel ( f l a t  25/50 prn th i ck  
o r  notched). 

wnded ius t  above the ro ta t -  

Rapid Spinning Cup 
(RSt) I #Stream o f  molten metal i s  

e jected onto a th i ck  layer 
o f  r o t a t i n g  l i q u i d  located 
in the i n t e r i o r  wal l  of a 

I Isoinnins CUD. 

P is ton and A m i 1  I T w i n  P is tons 
Droplet  o f  molten metal is 
inpacted by piston(s). 

Plasma Spray 
Oeposi t i o n  

Molten metal i s  propelled 
onto a substrate by a hot 
ion ized gas emanating fra 
the plasma torch. I f  depos- 
i t e d  layers are kept very 
th in ,  rap id  s o l i d i f i c a t i o n  
i s  possible. Potent ia l  fo r  
near ne t  shape. Coherent 
Dews i t .  

Arc Spray I E l e c t r i c a l l y  opposed charged 
u i r e s  of the a l l o y  t o  be 
sprayed are fed together to 
produce a con t ro l l ed  arc. 
the molten metal i s  atomized 
and by a stream of gas i s  

~ 

105-106 

70'-106 

105-106 

I 
isphericat t o  i r regu la r  p o w -  106 
ider/f lakes 
SO mn Dia 
50 pm t h i ck  

splac 
5-300 wn t h i c k  

Porous layer  
> 50 Nrn t h i c k  

Porous f i l m  
> 50 pn t h i ck  

, 
106-106 

103-106 

102-10s Ill-ll2 

- 
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1 

Arc Spray u /cu 

Arc Spray U/Nb or Nb-1Zr 

Arc Spray U/FeCrAIY 

Arc Spray U/ Incoloy 907 
U/316 SS 

UlUaspal loy  

Arc Spray UlKanthal  

Table 2 
Fabrication Of Fiber Reinforced Composite Systems 

S t r u c t u r a l  Panel 2 - S t i f f e n e r s  

Cartxrstion L i n e r  3 

P l a t e s ,  Tubes 4,5,174 

P l a t e s  31,33,66,111,112,175- 
1 76 

P l a t e s  33,175-  176 

Tubes 177 
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Table  3 

Foi I /F iber  Arc Spray 

LOU LOU 

General Comparison of Monotape Fabrication Techniques 

Plasma Spray 

High oxygen Contamina- 
t i o n  

5 

Prac t i ca l  Uaximm 
Fiber Loading 

40-50 V01.r .50 v0l.X 

V i  r e  F o i l  o r  sheet 

Hot p ; r j ) d ie  

Vacuun hot Press 

Fiber wo21drun 

Arc spray F a c i l i t y  
+ H I P  o r  Hot Press I 

~~ 

s t a r t i n g  Cod. of 
Matr ix  

.50 V0 l .X  

Pouder 

Fiber wo2:run 
Plasm spray F a c i l i t y  
+ H I P  or Hot Press 

L im i t i ng  S i r e  of 
uonotaoe 

~~ ~ 

uin. E q u i p n e n t  
Requiremnts 

Pouder Cloth 

Lou t o  intermediate 

LO-50 vo1.x 

-- 

Pouder 

Hoc pres d i e  
( C A  

Vacuun hot press 

CONVENTIONAL RAP ID 
SOLIDIFICATION SOLIDIFICATION cu _I_ 

.1 

.001 
10-3 100 103 106 109 

COOLING RATE, K/SEC 

FIGURE 1. - DEPENDENCE OF SECONDARY DENDRITE ARM SPACING ON COOL- 
ING RATE FOR SEVERAL ALLOYS5q-56. 

FIGURE 2. - TEM BRIGHT FIELD IMAGE OF A MELT-SPUN NiAl ALLOY 
WITH 0.5 AT.% W ADDITION SHOWING A CELLULAR STRUCTURE. 
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‘ -GAS STREAM 

VACUUM 

( a )  GAS A T O M I Z A T I O N ~ ~ ~ .  - 
-TRANSFER 

TUBE 

- L I Q U I D  
METAL 

INERT GAS-- p - V A C U U M  

TUNGSTEN ,’ 

LCOLLECTION PAR1 

(b) ROTATING ELECTRODE PROCESS135. 

RELT FLOW 
0.16 KG/SEC 
(1250 LB/HR ) -  

EJECTION GAS PRESSURE & r SOL ID IF ICATION 
I CONVECTION AND 
I CONDUCTION COOLING 
\ (-~,OOO.OOO DEG/SEC) 

i . .- 

(C )  VACUUM (SOLUBLE GAS) ATOMIZATION53. ( d )  CHILL BLOCK MELT SPINNING. 

SPRAY 

TUNGSTEN 

2-1/2 I N .  . 6 IN.  
( 6 4  TO 152 nn) 

CONNECTION I 
AND WATER I N  

( e )  MELT OVERFLOW15’. ( f )  PLASMA SPRAY DEPOSITION173, 
FIGURE 3. - SCHEMATIC REPRESENTATION OF RS POWDER AND RIBBON PRODUCING TECHNIQUES. 
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( a )  NiCrAlY POWDERS PRODUCED BY ARGON ATOMIZATION. 
FIGURE 4. - EXAMPLES OF THE MORPHOLOGY(1) AND MICROSTRUC- 

TURE(~) OF POWDERS PREPARED BY VARIOUS ATOMIZATION 
TECHNIQUES. 

(b) Ti-24AI-llNb POWDERS PRODUCED BY THE ROTATING ELECTRODE 
PROCESS. 

FIGURE 4. - CONTINUED. 
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tc) N i A l  POWDERS PRODUCED BY VACUUM ATOMIZATION. 

FIGURE 4 .  - CONCLUDED. 

PRESSURE AND HEAT 

,--MATRIX FOIL 
/ 

* 
OR POWDER 
CLOTH 

_-REINFORCING 
FIBERS 

4 
FIGURE 5 .  - HOT PRFSSURF BONDING TECHNIQUE IOR COMPOSIIE 

rARR l C A l  ION. 
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PREALLOYED 
POWDER 

SPINNING 

ALLOY 
R I BBON 

BLEND POWDER WITH 
FUGITIVE BINDER AND 
STODDARD. SOLUTION I -1 

POWDER 
CLOTH 

FABRICATE FIBER 
MATS USING 

FUGITIVE BINDER 

(THERMAL DEBINDING) 

MONOTAPE 

FIGURE 6 .  - COMPOSITE MONOTAPE FABRICATION FROM RAPIDLY 
SOLIDIFIED CONSTITUENTS. 

OHiGiIVAL PAGE PS 
M poolp QUALIW 
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POWDER CLOTH 

FIBER MAT 

FIGURE 7. - EXAMPLES OF AN ACTUAL POWDER CLOTH AND FIBER MAT USED IN THE HOT PRESSURE BONDING PROCESS OF COMPOSITE 
FABRICATION. 

/$$lyF 

-\ &&. 
+ TEFLON POWDER 

+ STOOOARO SOLUTION 

MIX + ROLL = 

POWDER CLOTH \\ f HOT PRESS 

FIBER WINDING COMPOSITE MICROSTRUCTURE 

FIGURE 8. - POWDER CLOTH METHOD OF COMPOSITE FABRICATION. 
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a HEATED D I E  

BONDED CROSS-PLY 

MONOTAPES STACKING A IRFOIL  
SHAPE 

HEATED 
D I E  

STACK UP CONSTRUCTION FOR GAS 
TURBINE BUCKET OR BLADE 

FORMING OF 
COMPLEX SHAPE 

BY HOT PRESSING 

STACKING OF MONOTAPES 

FIGURE 9 .  - COMPLEX SHAPED PARTS CAN BE FABRICATED BY BONDING 
OF STACKED MONOTAPES. 

S i  C / T i  3Al +Nb 

U/Fe 40A I U/N iA I  

FIGURE 10. - I N T E R K T A L L I C  MATRIX COMPOSITES PRODUCED BY THE POWDER CLOTH TECHNIQUE, 
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*-=I* ---- ROM RANGE (40 VOL X FIBER) 
a 

SIC FIBER (SCS-6. 140 p) 

S i C / T i - 2 4 A l - l 1 N b  (40 VOL X FIBER) 
T i - 2 4 A l - l l N b  

3500 

2500 

2000  
W 

W 

+ 1000 r 
2 500 + 1 3 

0 

+ 1 3 1 
0 200 400 600 800 1000 " 1200 

TEMPERATURE. OC 

FIGURE 11. - TENSILE STRENGTH VERSUS TEMPERATURE 
FOR S i c  FIBERS, T i - Z 4 A l - l l N b  MATRIX AND Sic/ 
T i  -24AI -11Nb COMPOSITE INDICATING CLOSE AGREE- 
MENT TO RULE-OF-MIXTURES STRENGTHS FOR LOW 
OXYGEN CONTAINING COMPOSITES. 

FIGURE 12. - ( a )  SiC/NiA1+0.5 A T . %  W COMPOSITE MADE FROM 
PULVERIZED MELT SPUN RIBBON BY THE POWDER CLOTH TECHNIQUE 
AND (b) TEM IMAGE OF NiA1+0.5 AT.% W MELT SPUN RIBBON 
AFTER ANNEALING AT 1300 OC FOR 1 HR, SHOWING GRAIN BOUNO- 
ARIES PINNED BY W PARTICLES. 
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LeRC U.S. PATENT NO. 4518625 

G 
FIBER WINDING HOT PRESSING 

s c w n c  OF OPERATION 

ARC SPRAYING 

/ 

STACKED 
MONOTAPES 

SPRAYED MONOTAPE HOT ISOSTATIC PRESSING 

FIGURE 13. - ARC SPRAY METHOD OF COMPOSITE FABRICATION. 
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CHOOSE 
MATRIX 
ALLOY 

PROCURE FIBERS OR FABRICATE 
ALLOY OR 

COMPOSITE WIRE 
POWDER 

MOUNT FIBERS ON 
MANDREL OR 

ROTATING DRUM 

ARC SPRAY 0 PLASMA 
SPRAY 

qYz--b-' COMPOSITE 

FIGURE 14. - MONOTAPE FABRICATION FOR THERMAL SPRAY PROCESSES. 

FIGURE 15. - W/Nb MONOTAPE PREPARED BY THE ARC SPRAY PROCESS. 

INTERMETALLIC MATRIX COMPOSITES 
COOLED STRUCTURE FABRICATION DEVELOPMENT 

I \ 

i4oprnsic FIBER-' '- Fe-AI INTERMETALLIC MATRIX 

FIGURE 16. - COMPOSITE PANEL WITH COOLING PASSAGES PREPARED 
BY THE POWDER CLOTH TECHNIQUE. 
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