
An Evaluation of Ada* for AI Applications

David R. Wallace, Intermetrics, Inc.

1. Abstract
Expert system technology seems to be the most promising type of AI application
for Ada. An expert system implemented with an expert system shell provides a
highly structured approach that fits well with the structured approach found in
Ada systems. The current commerciaJ expert system shells use Lisp. In this
highly structured situation a shell could be built that used Ada just as well.

On the other hand, if it is necessary to deal with some AI problems that are not
suited to expert systems, the use of Ada becomes more problematical. Ada was
not designed as an AI development language, and it is not suited to that. It is
possible that an application developed in, say, Common Lisp could be translated
to Ada for actual use in a particular application, but this could be difficult.
Some standard Ada packages could be developed to make such a translation
easier.

If the most general -41 programs need to be dealt with, a Common Lisp system
integrated with the Ada environment is probably necessary. Aside from problems
with language features, Ada, by itself, is not, well suited to the prototyping a.nd
incremental development that is well supported by Lisp.

2. Is Ada Suitable for AI Development?
In order to answer this question we must look at what is required for developing
AI applications.

2.1 AI Development Requirements

Two key phrases that describe AI development are:

0 rapid prototyping

0 iterative feedback development

AI systems are generally developed incrementally, where at each stage the current
behavior is observed in order to determine exactly what the next stage should be.
This requires great Rexibility and is best supported by a language that allows
either incremental compila.tion or interpretation. More specifically, AI
development often requires heuristic search techniques that must be developed

*Ada is a registered trademark of the U.S. Department of Defense (AJPO)

E.4.1.1

on-the-fly to match the particular problem at hand.

This type of development further requires flexible dynamically changing data
structures without strong typing. Any use of data declarations must be either
very limited or automated in some way. Otherwise, the overhead of constantly
modifying these declarations becomes unacceptable and what is worse, error
prone. This data problem has been dealt with very successfully in Prolog and
Sail by the use of an associative data base. This allows data access without
explicit knowledge of the surrounding structure.

In Iarger AI systems the concepts of data abstraction or object oriented
programming are used extensively. See [7] for some background on object
oriented programming in AI. The motivations for their use in AI is the same as
that elsewhere: use higher level concepts and hide implementation details in order
to make development, modification, and maintenance easier. Object oriented
programs have algorithms and data that are very closely coupled. In AI
applications this coupling can be very dynamic, having procedure values mixed in
with the data the procedure is going to use. This makes it very easy to creak
very powerful parametrized transformations. How a large data structure is
transformed can often be determined by values within itself. Much of the current
uses of data abstractions in AI code written in Lisp is somewhat unstructured.
This is partly since Lisp does not support data abstraction as a language feature.
However, data abstr:iction use is becoming more formali~ed via the increased use
of expert system shells (see below).

Most AI applications require some type of general value or attribute evaluation
and propagation mechanism. A simple example of this is the parameters and
variables in a Prolog program. The order in which these attributes are evaluated
and propagated is dynamically determined; thus it is impossibie to predict, their
storage requirements or lifetimes. This requires a very general storage
management system with garbage collection. Data on a stack will in general
have the wrong lifetime and data on a heap without garbage collection will
overflow during most AI applications.

I 2.2 Ada Features Favorable to AI Development

Ada is a modern programming language providing clear and up-to-date control
and data st,ri~ctiiring facilities. Thiis it, should he very good at. providing
programming support for well understood and highly structured programming
tasks.

E.4.1.2

I-

Compared with other languages of its type Ada also provides a great deal of
leverage in dealing with data abstraction and certain types of variability. The
key features that support this are overloading and generics. Packages with
overloading and generics provide a very powerful data abstraction mechanism.
Such features allow what appears to be one procedure to deal with a number of
different data types.

Another Ada strong point is its comprehensive support for modularity. The
package concept is a very useful way of organizing a data abstraction. With the
cross checking provided by the compiler it is very easy to divide a large task into
modular pieces that can be developed independently and reliably.

Ada is highly suited to any task that is highly structured, has a relatively static
behavior, and has a close correlation between control structure and storage
lifetimes. There are probably some AI applications that fit these requirements.

The package concept allows the construction of what are the equivalent of Ada
language extensions - in ternis of data abstractions. This means that predefined
library packages could be constructed to model the following:

0 Lisp list-processing language features, see e.g. [3]

0 associative database language features, see e.g. 141

Such features would go a long way in allowing reasonable AI programming in
Ada. However, there are potentially serious problems in implementing these
packages appropriately (see below).

2.3 AI Problem Areas for Ada

Ada is unsuitable for dealing with the variety of problems and approaches arising
in AI research applications.

2.3.1 Compilation
For the most part Ada requires compilation. For the purposes of AI development
the lack of a reasonably fast interpre1,er or incremental compilation system is a
very serious problem. Dynamic debugging in this environment is often used to
determine the next stage of development. Without a fa s t interpreter it is very
difficult to get an appropriately dynamic debugging system. In AI development,
incomplete programs are often run with values supplied through the debugger
when missing sections are reached.

The strong typing and the large declaration overhead add a very high cost to the
iterative feedback loop used for AI development.

E.4.1.3

There are further problems caused by the use of a language that requires
compilation when a large system is under development; that is recornpilation. A
small change in one part of a large system may (and often does) force
recompilatiori and modification in rriost modules of t h e system. In a Lisp
development envirorirrierit the use of an interpreter eliminates the need for
recompilation and the flexibltb arid general data structures eliminate the need for
rewriting data declarations.

To be fair it should bc iiotcd that Ada is riiuch better tl:an most other languages
(like Pascal or C) in this area. Ada provides for modular consistency in a large
system with both recompilal ion analysis and intermodule type checking. And
further, Ada’s support for data abstraction, even though soniewhat static, a l lows
for limiting the global effect of local changes.

It should be noted here that Ada systcms that support increniental compilation
are just starting to become available; see e.g. [2]. Such a system could go a long
way toward alleviating these development problems.

2.3.2 Storage Management
As mentioned above under AI requireinelits, AI applications evaluak and
propagate values or attributes in a very complex and often unpredictable nianner.
In any case, it is rare that the lifetime of these attributes follows the control
structure of the program. This requires a system of managing memory
independent of the stack mechanism. Direct user control of such a systeiri (e.g.
explicit FREE) is out of the question because of the certainty of error. In any
real AI application it is also riot practical to simply avoid deallocation; no rnat,tcr
how much memory is availat~le it will be used up. This means there must be a
sophisticated memory riiaiiagerrient system with garbage collection. This
provides correct reclaniation of storage when data lifetime is over. It is unlikely
that Ada systems will provide such a feature because its high overhead conflicts
with real time requirements. However, it should be pointed ou t that the Ada
definition does not precludc: garbage collection, see section 4.8 of the Ada
reference Manual. This is a feature that could be associated with a pragnia.

User defined garbage collectim would require the creation of a storage exception
that, when raised, would call a user subprogram to deal with it. This
subprogram would need to use unsafe practices to do low-level heap manipulation
and bookkeeping. Ada does not have the language features to allow higher-level
control of storage for garbage collection. This is due to problems with its data
abstraction capability which is discussed in the next section.

E.4.1.4

2.3.3 Existing AI Packages
One further problem with ,4da, especially for near term use, is the lack of
existing AI packages. There are, of course, many existing AI packages written in
LISP.

2.4 Is Ada Suitable for AI Re-implementation?

If we assume some AI system has already been developed in an existing AI
language, then we could consider translating it to Ada. This would avoid the
problems mentioned above with the AI development cycle. Further, this
approach has been used in a number of AI applications. There is a hazard here,
however, since it may not be possible or practical to translate all AI systems to
Ada. Translation problems can be mitigated by using AI-language coding
standards to limit hard-to-t,ranslate features and usages. However, hard to
translate features and usages are legitimate and necessary for some applications.
Translation problems are likely to arise in two areas:

data abstraction usage

garbage collection

Garbage collection was discussed in the previous section. In general, a Lisp
program using the full data lifetime capability will not be translatable to Ada.

Ada does not have a true daka abstraction facility. Even though Lisp does not
support data abstraction as a language feature per se, its flexibility allows the
user to define and use powerful data abstractions. Ada supports encapsulated
data types via the PACKAGE feature, but does not provide explicit abstract
type construction features. This will create translation problems. Missing
functions or features include:

updating structures within the package to reflect the instantiation of an o b j e c t :
Ada does allow auxiliary structures within a package but there is no
automatic way to coordhate it with object creation. Such use is necessary,
for instance, to do storage allocation with garbage collection.

t y p e instantiation parameters or run-time t y p e attributes:
For instance, a user cannot create a string type with string-length as a type-
attribute.

initialization and finalization of an object:
These are necessary when data types interact with their type context. For
example, in the case of garbage collection, it is necessary to record
information both when an object is allocated and when it is de-allocated. Ada
only allows a limited form of initialization; i.e. when the data representation

E.4.1.5

is a record structure. However, there is no way to do finalization.

For more details on the abstract type problems of Ada see the SRI analysis of
Ada for AI uses, [5].

2.5 Expert System Shells in Ada

Expert systems are best built using a shell, like ART (automated reasoning tool)
or KEE (knowledge engineering environment). These shells have their own
syntax and provide a disciplined and highly structured way of building expert
systems. The shell provides not only the inference mechanism for the expert
system but also the modular and hierarchical organization. This area provides
the most promise for the use of Ada.

The shell structure can be used to limit the complexity of features used and their
interaction. Further, the shelf can generate a large number of type declaration or
long select statements where this would be impossible by hand. This is often
what is necessary to cope with strong typing.

In an expert system, general attribute propagation among rules requires garbage
collection. However, the problems with the data abstractions in Ada can be dealt
with if, for instance, explicit subprogram calls are inserted at key points in the
Ada program to coordinate allocation and de-allocation. It is not feasible to have
such calls inserted by a user, but they can be inserted reliably by the shell.

The modular and hierarchical aspects of shells are well supported by Ada. On a
large system this will support team development well. However, as mentioned
above it is necessary to have version control and recompilation analysis when
using a compilable language. Languages such as Pascal or C would have very
serious drawbacks in this environment. Fortunately, Ada is designed to support
consistent separate compilation so it is very well suited to this task. However,
during development the compilation costs could become very high.

3. Mixed Environments of Ada and AI Language
If Ada is only well suited to use with expert system shells, as described above,
then other use of AI must use existing methods. Currently the accepted
approach to dealing with the most general AI programs is the use of Common
Lisp. Common Lisp is becoming the standard AI programming language in the
U.S. Prolog is not yet a major force, although developments in this area should
be watched, especia.11~ in light of Japanese efforts. The way to solve this
dilemma is to integrate a Common Lisp system with the Ada environment. For
proper iiitegration such a Lisp system would need lo be supplied by Ihe same

E.4.1.6

vendor that supplied the Ada system. In this way Ada. can be integrated with AI
Language tools and support. They can use shared list-processing and database
packages and have the ability to call each other.

3.1 Impact on Development Tools

As long as Lisp components are under the same configuration management
system, there should be no real problems. A Lisp system may require some of its
own special tools, but these should not interact with the other tools.

3.2 Interfaces and Characteristics

The interface between Lisp and Ada is potentially complex. This can be made
simpler by sharing standard packages (see below). However, in this case the only
good solution is to require appropriate integration.

3.3 Operational Concepts

The biggest problem area in a mixed system is probably garbage collection. As
described above, hand generated Ada is not designed to deal with this well. The
only safe solution to this is to limit the actual AI work to the Lisp components.
One can restrict the Ada components from allocation and de-allocation, unless
they are correctly generated by, for instance, an expert system shell.

The storage management problem could be much simpler if it were possible to
build packages that could deal with their own storage management without extra
user calls. There appear to be only two ways to do this:

low-level unsafe programming practices within the package

0 language extensions to extend the data abstraction capabilities of Ada

Neither is particularly desirable.

i
8.4 Standard Packages

Standard packages that would be desirable for AI applications in Ada include:

0 List Processing Predefined Package Library

0 Associative Database Predefined Package Library

E.4.1.7

4. Conclusion
Because of its design goals Ada has some limitations in comparison with very
powerful AI languages like Common Lisp. Except in very special applications,
translation from Lisp to Ada is not feasible. Further, the modes of AI
development are poorly supported by the Ada system. Ada is not well suited to
the prototyping and increniental development required for AI work. Real
promise, however comes in the area of expert system shells. The shells can be
used to generate consistent Ada code that could not be generated by hand and
further can generate complex constructs to bypass language feature mismatch
problems. This should not be too surprising since thc shell can use compiler
implementation techniques used in Lisp.

If serious AI application beyond expert systems is anticipated, a mixed
environment would be necessary. A language like Lisp provides the riglil
language features along with support for AI style development. The most
reasonable choice would be integrating Common Lisp in the Ada environment.
However, access to some Lisp features from Ada would need to be restricted to
ensure system reliability.

5 . Bibliography
Appelbe, W. F., "Abstract data types in Ada," Journal of Pascal, Ada and

Crowe, M., I). Machay, M. Hughes, C. Nicol, "An interactive Ada
compiler," Ada UK News, 6(4), Oct. 1985, pp. 47-50.

Olgivie, J., "lJsing variant records: some basic Lisp functions in Modula-
2," Journal of Pascal, Ada and Modula-2, 4(2), 1985, pp. 15-20.

Poutanen, O., K-M. Varanki, T. Valimaki, "Notes on building a relational
database management system in Ada," Ada in Use, Conf. Proc., Paris,
May 1985, pp. 14-24.

Schwattz, R.L. and P.M. Melliar-Smith, "On the suitability of Ada for
artificial intelligence applications," Project 1019, July 1980, SRJ
International.

Schwartz, R.L. and P.M. Melliar-Smith, "The finalization operation for
abstract data types," Proc. of the 5th Int. Conf. on Software Engineering,
March 1981, pp. 273-282.

Stefik, M. and D. Bobrow, "Object oriented programming," AI Magazine,

Modula-2, 3(lj, 1984, pp. 26-29, 36.

VI(4), 1986, PI). 40-62.

E.4.1.8

