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ABSTRACT 
Trace-driven simulation is an important aid in performance analysis of computer systems. 

Capturing address traces for these simulations is a difficult problem for single processors and 
particularly for multicomputers. Even when existing trace methods can be used on 
multicomputers, thc amount of coltected data typically grows with the number of processors, so 
I P  and trace storage costs increase. A new technique is presented in this paper which modifies 
the executable code to dynamically collect the address trace from the user code and analyzes this 
trace during the execution of the program. This method helps resolve the I/O and storage 
problems and facilitates parallel analysis of the address trace. If a trace stared on disk is desired, 
the generated trace information can also be wriaen to files during execution, with a resultant 
drop in program execution speed. An initial implementation on the Intel ipSC/2 hypercube 
multicomputer is detailed, and sample simulation results are presented. The effect of this trace 
collection method on execution time is illustrated. 
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1. INTRODUCTION 

Tractdriven simulation is an important method of analyzing the performance of computer systems [1.2]. 

However, accurately and efficiently capturing address trace data for multicomputers is exaemely difficult. In this 

paper, we examine the problem of address trace generation and collection for multicomputers, which are non- 

shared distributed memory parallel processors of the multiple-instruction, multipledata stream class (MIMD) 131. 

This class of machines is in contrast to MIMD multiprocessors with a global shared memory. Recording the 

address traces far multicomputers typically requires large amounts of memory, and therefore the Ilo necessary for 

saving these traces is a significant ovezhe!ad. In addition. the traces garhered are typically valid far only the 

number of processing nodes that participated in the execution. 

Understanding how the execution time, speedup, and other system measures change as the number of 

processors change is of vital importance to multicomputer hardware, software, and application designers. This 

necessity mandates having several sets of traces for any single application problem - one set of traces for each 

possible dimension hypercube, for example. Also, since speedup is heavily dependent on the size and 

characteristics of the input data for most parallel applications, there is a need for application program traces for 

several Werent sets of inputs. Keeping all of these traces in storage rapidly becomes an impracticality for a large 

number of processing nodes. 

This paper presents a new software address w i n g  technique for multicomputers called TRAPEDS - 
TRAce-producing Execution Driven Simulation. This software technique m m e s  executable code (at the 

assembly language level), producing a new executable program which dynamically produces correct address traces 

of the user code and other information valuable in assessing computer system performance. The primary purpose 

of this tool is to enable hardware designers to model and simulate trade-offs in a multicomputer’s computation and 

communication capabilities for the specific parallel algorithms that are traced. 

As trace addresses are generated by the execution, analysis of cache performance and other design 

alternatives can be immediately performed, e h h t i n g  the need for storing large amounts of trace data, and 

thereby reducing the massive trace storage requirement and the VO bottleneck that would slow execution on a 

multicomputer. An added benefit of collecting and analyzing the address trace on the multicomputer is the 
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increases. The simulation speedup is dependent on the speedup of 

of synchronization, message-passing, and unbalanced or replicated 

computation are also present in the modified executable code. Our approach to producing address trace data has 

been implemented on an Intel ipSC/2 hypercube multicomputer. In our implementation on the iPSC/2, the 

execution of the program has been degraded by less than a factor of 50, which compares favorably with existing 

trace collection methods. Conventional stored trace data can also be obtained with the TRAPEDS approach with 

the resulting increase in storage cost and performance degradation. 

A brief review of popular existing trace methods is presented in 52. The W E D S  methodology is 

discussed in 53. and its implementation on the ipsC/2 is outlined in §4. 85 presents results of performance 

evaluation of this method along with preliminary memory reference observations. 

2. REVIEW OF EXISTING TRACING TECHNIQUES 

2.1. Hardware Monitoring Based Traces 

Hardware monitoring can directly record memory bus activity and the actual addresses sent to offchip 

caches or main memory modules. This monitoring capnves both user and operating system references, as well as 

multiprogrammed s ~ c a m s  of references. The effect of on-chip caches on the reference stream is also included, but 

this itnpfemcnturion effect is also a drawback of hardware monitoring. The primary limitations of this approach 

are its complexity, cost, and lack of easy flexibility. Because of limited memory and bandwidth, hardware 

monitors typically cannot capture all of the reference trace, and must settle for isolated collections of contiguous 

references, or counts of events, ratha than a listing of the events themselves. To collect trace information for all 

of the processors in a multicomputer, the complex hardware required grows at least linearly with the number of 

processors. 

2.2. Instruction Interrupt Based Traces 

Some computer systems provide the capability of inrerrupfing the execution of a program after each 

instruction. The virtual address references for each type of instruction can then be calculated. Since operating 

system routines typically disable these interrupts, the operating system execution cannot be traced. The need to 
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interrupt each instruction slows down the program execution considerably. For multicomputers, this distortion of 

instruction execution time inevitably changes the fashion in which different processing nodes interact with each 

other (except when the multicomputer message-passing is synchronized between a specified sender and receiver, 

such as in the Occam language [4] ), and thereby possibly changing the address trace. 

23. Software Simulation Based Traces 

Software simulation can also provide accurate user traces, and can simultaneously model the execution time 

of a processor, which can enable accurate modeling of the interaction between different processofi in 

multicomputers. This simulation can also provide emulation of operating system activities, although this 

emulation may not be exacf. Software simulation is slow, however, since the simulator must model much of the 

real hardware, including the actual ALU operations, flag setting, insauction fetching, and main memory storage 

and accesses [5,61. 

2.4. Microprogramming Based Traces 

ATUM [n is a recently introduced technique that alters a machine's microcode to capture address traces. 

This technique enables the capture of full address traces for multiprogrammed user code and operating system 

activity. It is also fast, with factor of 20 overhead reported. This technique was recently used to collect traces for 

a 4-processor system (81. Despite the significance of this approach, there are obstacles to implementing microcode 

alteration on exisring multicomputers. The main obstacle is that the processors on commercial multicomputers 

tend to be one-chip microprocessors, and either do not use microcode or contain their microcode in ROM (as in 

the iPSC/2, which uses the 80386 processor). Even if this microcode could be changed, there would typically not 

be extra space on the chip to allow the A " M  changes. 

23. TRAPEDS Based Traces 

The TRAPEDS method of this paper addresses the issues of producing accurate and efficient multicomputer 

traces with a reduction in the burdensome storage and I/O requirements of stored traces. The traces produced by 

this method do not include operating system references. Also, the c m n t  implementation on the iPSC/2 does not 

provide the ability to collect multiprogrammed traces. At the present time, multicomputers such as hypercubes are 
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rarely used in a multiprogramming mode, partly because each procesSing node has a lixed amount of space into 

which all currently executing programs must completely reside. TRAPEDS also attempts to mitigate the effects of 

execution time distortion on the interaction between processors by introducing a simulated time for each 

multicomputer processing node, and by passing these simulated times between nodes during communication. 

3. TRACE-PRODUCING EXECUTION-DRIVEN SIMULATION MEX"OD 

Executiondriven simulation is a term coined by Covington, et al. [9], for an approach to gathering accurate 

timing statistics for a program as it is executing. Briefly, the method estimates the time to execute each baric 

block in the assembly code, where a basic block is defined as a set of machine instructions that will always 

execute together in the absence of interrupts. Calls to a simulation timer update routine are placed at the 

beginning of each basic block in the assembly code, and the estimated execution time for that basic block is 

passed as a parameter to this routine. 'Ik execution of this modified program also updates the timer, simulating 

the program execution time. This method was also used by Fujimoto [lo], and in the instruction counting method 

introduced by Weinberger [ll]. 

The execution driven simulation approach can be easily extended to paform a static address analysis on 

each basic block. Static analysis can generate instruction address traces, but data addresses cannot be fully 

determined until execution, so information must be collccted and analyzed dynamically during program execution 

to produce full user address traces. Our paper extends the executiondriven simulation to enable full user address 

tracing for both instructions and data. 

The dynamic collection of information utilized in this paper requires additional modification of the assembly 

code. In addition, static analysis produces address information that must be stored in the virtual address space. 

For these reasons. addresses collected during execution may not be identical to the actual addresses in the 

unmodified code. Calculating the correct data addresses at execution time, therefore, is a major element of the 

TRAPEDS method. The steps used to produce a modified executable program am described in what follows. All 

steps are accomplished automatically by the TRAPEDS softwm. 



3.1. TRAPEDS Steps in Modifying the Executable File 

STEP 1: 

The original program’s some files are compiled and linked with the library functions to produce the 

original executable file as is illustrated in Figure 1. This file is analyzed to record the beginning virtual 

addresses of the text (program), initialized data. and uninitialized data sections. 

STEP 2: 

All source written in C is compiled to assembly language. Together with any source files written directly in 

assembly language, these compiled programs form the suite of assembly language files that will be modified 

by the W E D S  software. 

STEP 3: 

For each resulting assembly language file, the comxponding machine language instructions in the executable 

file arc analyzed. Utilizing both the assembly language and machine cock is advantageous because 

extracting virtual address information requires the actual machine language instructions. However, it is far 

easier to modify the associated assembly language program to capture necessary run rime address 

information. 

STEP 4: 

The assembly source is broken into basic blocks by noting labels and statements such as jumps, calls, and 

r e m s  that can break the normal sequential execution of the program. In a separate assembly language file 

(named auxf i1e . s  in this discussion), the starting addresseof the basic block is recorded. the first of 

several types of data that will be recorded in auxf i l e .  s for each basic block. A call to the basic block 

performance simulation routine @ereafter called X-bbgerf) is inserted at the beginning of each basic 

block in the assembly source file. A pointer to the auxf i l e  . s address information is also saved in a 

global variable before this call to X-bbgerf. Note that since the dynamic address information is 

collected during the execution of a basic block the call to X-bbgerf must analyze the previously 

executed basic block. This is conceptualized in Figure 2, which shows the high-level organization of 

X-bbgerf in a C-like syntax. 



6 

c h P % e  
source file 

A 

C language 
source file 

C 

, I 
I 1 

Assembly 
WPWF 

fileA 

Assembly Assembly 
m w 3 e  w w g e  

source file B file C 

X-bbgerf f and simulation Assemble and link 

Modified Modified Modified 
Assembly 

fileA file B file C 
Assembly Assembly 

routines W 

auxf i l e  . s 

I I file 

n 

Figure 1. TRAPEDS steps for creating modified executable files. 
(shown analyzing three source files - two C files and one assembly file) 
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long X-bbgointer, X-last-bbgointer; 

X-bbgerf 0 
1 

long auxfile-array-address = X-last-bbgointer; 

/ *  calculate addresses using information in auxfi1e.s 
and run time information saved by the modified assembly file * /  

/ *  call cache simulation routine */ 

/ *  update simulated execution time */  

X-last-bbgointer - X-bbgointer; / *  X-bbgointer is the global 
variable saved before each 
call to X-bbgerf 0 * /  

Figure 2 High-level structure of X-bbgerf, the basic block performance analysis routine. 

STEP 5: 

For each instruction that accesses memory, the type of access and the addressing mode of its memory 

references m recorded in auxf ile . s. Also recorded art the number of instruction fetches required to 

load the instructions executed since the previous memory reference. 

STEP 6: 

For each memory reference, the calculation of the virtual address may involve staric address information 

such as address displacements. dynamic address information such as a base andor index register values, or a 

combination of static and dynamic values. Any static information is saved after the type of access in 

auxf ile . s. 

STEP 7: 

For each dynamic part of the address, instructions are inserted into the assembly code to save their values at 

run time by moving them to a reserved area of global memory. After processing by X-bbgerf, these 

values can be discarded. Hence, this reserved memory area need only be large enough to store the largest 

number of dynamic address values needed in any given basic block of the executable file. 

STEP 8: 

The modified assembly files are assembled again. and linked with X-bbgerf and any simulation routines 
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called by X-bbgerf, resulting in a modified executable file capable of generating address trace 

information. The problem mentioned earlier involving changed virtual addresses still exists at this point, 

however. 

3.2. Solving the virtual address modilkation problem 

The discussion in this section is based on UNIX' System V, but the principles considered apply to other 

UMX operating systems, and many other operating systems as well. In UNlX System V, an executable file is 

commonly divided into three segments - . text ,  .data, a@ .bss [12]. The .bss segment (the stack) starts at 

virtual a d h s  0, and the . t ex t  and . data segments start at an identical virtual address (usually address 0, but 

not necessarily). The . t ex t  sectwn Within the . t ex t  segment contains user code. The .data segment has 

two adjacent sections - the first section contains initialized internal static data and external data,* which we shall 

refer to as initialized permanent data, because the location of the data is reserved during the entire execution of the 

program. The second section contains uninitiafized permanent data. The . bss segment contains no initial data, 

and merely indicates that a stack segment is required. The . t ex t  and .data segments and sections are pictured 

in Figure 3(a). 

The initialized .data section starts in the next page table directory after the last one used by the text 

section, in the first page of that directory, with an offset into that page equal to the first unused memory offset in 

the last page of texf This allows the . t ex t  and .data sections, which are physically adjacent in the executable 

file, to be loaded adjacently into physical memory. This also implies that any changes in the size of the . t ex t  

section will change the starting virtual address of the .data section. In addition, the extra permanent data in 

auxf i le .3 ,  X-bbjerf, and the performance analysis routines called by X-bbgerf change the virtual 

addresses in the .data sections. 

In TRAPEDS, the solution involves ensuring that all newly created permanent data are initiufized and placed 

at the beginning of the initialized . data section, as illustrated in Figure 3@). In this case, all the original data in 
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Figure 3. Placement of code and data in the virtual address space of the executable files. 
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the .data sections will be displaced by an equivalent amount. This displacement is a result of both the . text  

and . data section changes, and can be easily determined by comparing symbol table infonnation in the modified 

and original executable files. Another requirement is that either static or dynamic analysis should be easily able to 

determine which segment the referenced data is in, because . bss segment addressing remains udected by the 

changes in the . tex t  and .data sections (no address adjustment is needed). 

Uninitialized 
permanent 

.data section 

I 

One subtle problem remaining is that X-bbgerf and its simulation routines directly or indirectly call 

several library mutines, some of which may define initialized or uninitialized permanent data. If these routines 

were already called in the original executable file, calling them in X-bbgerf could cause their associated 
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permanent data could be placed into the .data sections in a Merent order in the original executable file. This 

problem is overcome by a dummy assembly language routine that calls each routine in the same order as they are 

found in the original executable file. This dummy assembly language routine is linked at the start of the .text 

section and must never be called. 

A second problem arises when X-bbgerf or its simulation routines directly or indirectly call library 

routines with permanent data that were not called by the original some files. In practice most library routines do 

not define permanent data, and this problem does not exist with our current performance routines. The solution to 

this problem involves linking the previously uncalled library routines to X-bbgerf and its routines during a 

first-pass linking phase. If the permanent data in these libmy routines is uninitialized (very rare), this data must 

be initialized. With this procedure, all new permanent data will be placed befon the original permanent data by 

the normal linking of all routines. 

4. IMPLEMENTATION ON THE 80386-BASED IPSC/2 

The Intel ipsC/2 hypercube is an 80386/80387-based multicomputer that can contain up to 128 processing 

nodes, each with up to 16 Megabytes of main memory. The W E D S  method was implemented for a 16 node 

ipSC/2 with 4 Megabytes of main memory at each node. Each prousor also has a 64 Kbyte zero wait-state 

write-through cache with a 4 byte line size and direct mapping. The 80386 pre-fetches instructions into a 16 byte 

buffer via its 4 byte data bus [141. 

On the 80386, all explicit references to memory use the same addresing modes for the segment offset, 

which are subsets of the following general addressing mode: 

[base-register] + (index-register * scale-factor) + displacement 

The displacement and scale factor, if present, constitute static information saved in auxfi1e.s during the 

assembly code modification. The base register and index register, if present. constitute dynamic infonnation that 

must be saved at execution time. When only one program is running on a hypercube node, the . bss, . text, 
and . data segments all start at address 0. Hence, the segment offset is equal to the virtual address. 
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Number of bytes 
of code fetched 

since 
last memory access 

Access type 

As shown before, this virtual address may not be correct. In the 80386, the instruction implicitly or 

explicitly indicates the segment used for memory references. Any references to the . data segment that also use 

Scale factor 
mode (empty if not needed) 

a base register have incorrect (modilied) addresses, and the correcting offset is subtracted from the calculated 

address for these cases. 

X-bbgerf recognizes several types of memory accesses, such as push, push memory, pop. pop memory, 

read memory, read and write memory, write memory, read 2 words of memory, etc.. The segment (usually 

. data or .bas) referenced is also stored as part of the access type. Combined with the addressing mode, these 

types of accesses provide a full description of every memory access. 

The current implementation ncords the type of access and addressing mode in auxf i l e  . s as shown in 

Figure 4. If the recorded addressing mode contains a displacement, this displacement is placed in the 4 bytes 

following the mode information. The auxf i l e  . s information for each basic block also contains the starting text 

address of the basic block, and along with the code fetching information saved in bits 16-23, allows X-bbgerf 

to fully reconstruct and interleave the code and data accesses to form an accurate trace. 

In collecting traces on a multicomputer it is important to model the interaction between processors as 

accurately as possible. The trace collection slows down the execution of each program and thus potentially 

changes the order in which processors send messages. In this implementation, one of the functions of 

X - b b g e r f  is to simulate the elapsed number of cycles in each processor’s execution. This number of cycles is 

stored in an 8 byte field x-t ime ,  since using only 4 bytes to count cycles would cause wraparound of the time 

to zero in less than 5 minutes of simulated execution time of the 16-MHz 80386 processor. The information 

stored in auxf i l e  . s for each basic block also contains the estimated number of processor cycles for that basic 

0 

31 2 4 2 3  16 15 8 7  0 

Figure 4. Structure of the type of access and addressing mode information in auxf i l e  . s. 
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, block (assuming no cache misses). and X- t ime  is incremented by that amount when the basic block is executed. 

The effects of cache misses are modeled simplistidy by adding a fixed number of cycles penalty for each type of 

memory access. The 80386 also contains a 32 entry 4 way associative TLB. but the TLB and the effects of TLB 

misses are not modeled in the current implementation. 

The iPSCI2 message-passing routines have a top layer of code implemented in C that calls the actual 

operating system code. This top layer of code was provided to allow simple modifica tionsof message passing. 

"he W E D S  simulation routines contain redefined message sends that send an extra message containing 

x-t ime for every normal message send. The receive routines are recoded to receive x-t i m e  after every normal 

receive. In this manner communication can be synchronized to model the actual execution, even though the 

modified executions may be interacting differently. Each modified send and receive routine models the cost of 

communication (both latency and per byte transmission speed) in a simple manner which does not account far 

possible delays in message routing caused by network congestion. two or more messages arriving at a node in the 

same time interval, etc. Thus the modeled communication contains several inaccuracies. However, synchronizing 

the processors through the simulated x-t i m e  values is more likely to produce accurate traces because an attempt 

is made to counter the effects of execution overhead. Another purpose of X-t ime is modeling the performance 

of the iPSC/2 hypercube as various hardware parameters are changed. Graphs of simulated speedup will be 

compared to actual speedup in 55. 

5. TRAPEDS PERFORMANCE AND CACHE SIMULATION RESULTS 

This section discusses W E D S  simulation pe.rfommce and data collected by the W E D S  method. 

Benchmark studies of the overhead of this method an particularly emphasized, since the modified executable file 

requires more memory space and more execution time than the original executable file. 

5.1. Space and Time Overhead 

Both the . text  section and the initialized permanent .data section are substantially lengthened by 

additional information. This amount of additional information increases with the number of basic blocks and 

memory references in the o r i w  . text  section. The cache model is part of the additional .data section, and 
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program 

Function 

is listed separately because it is not dependent on the size of the original . t ex t  section. Table 1 shows the 

difference between the original and modified section sizes for three iPSC/2 hypercube node programs. Much of 

the additional data overhead is for a cache memory model array which is included in the simulation routines, and 

is shown large enough to store up to 16K tags for a direct mapped cache. The dependence of . t ex t  and . data 

section overhead on original . t ex t  section sue is also apparent. When compared to the total PSCD node 

memory space (4 Megabytes), the space overheads are quite small. 

Original Additional Additional Additional Total 
. t ex t  . t ex t  .data cachemodel additional 
bytes bytes bytes bytes bytes 

Extra execution time is incurred saving register values and calling X-bbgerf at the start of each basic 

block. Extra overhead is also incurred for any simulation routines called by X-bbgerf. It is desirable to 

separate the effects of these two overheads, since for a given program and hypercube dimension the overhead due 

to X-bbgerf execution should be relatively constant, while the simulation routines can be changed for each 

new run (e.g., changing from a direct mapped cache to a set-associative cache model or simulating two or more 

cache models in the same run will cause an increase in the cache model simulation time). The plots to be shown 

for execution overhead assume the following definition: 

Gaussian Elimination 121% 6764 5172 
FFr 15273 8194 7496 
Simplex Algorithm 18780 1 I272 9832 

uccwion  over^^ = modified file execution time 
original file execution time 

--,- 

65536 77472 
65536 81226 
65536 86640 

To separate the effects of address generation from simulation, performance benchmarks were run against a parallel 

version of the simplex algorithm [15]. This algorithm has moderate but not excessive parallelism, and this 

parallelism is sensitive to changes in the input data size, allowing some control over algorithm speedup. The 

complexity of sequential simplex is roughly proportional to m2n, where m is the number of rows in the input 

mahix, and n is the number of columns. For each graph shown, the the number of rows and columns in the input 

~ ~ ~~ ~~ ~ 

Table 1. Space overhead for modified executable files (in number of bytes). 
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are displayed. 

In the fust performance experiment X - b b g e r f  generates addresses and calls the cache simularion routine, 

but the simulation routine immediately rehuns to X - b b 2 e r f .  A plot of the execution overhead for the original 

and modified executable files is shown in Figure 5. Execution overhead due to TRAPEDS is = 30 for execution 

on a single node. As the number of nodes increases, however, the overhead factor decreases. This is a 

consequence of the parallel nature of the address tracing overhead. 

Because the overhead is decreasing with the hypercube dimension, the speedup S (mod)n of the modified 

executable file is higher than the speedup Sn for the original file, where these speedups are defined as: 

sinale node modified file execution time 
modified f i le  execution time 

sn = s1 'nnle no& oriainal file execution tiine 
original file execution time 

S(m0d)n = 

Figure 6 illuserates this effect for two different sets of input data The positive effect on S (mod)n decreases as the 

parallelism of the original program increases. 

50 
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1 
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40 Simplex algorithm, 
executed for input dam - 27x 59 a h  - 56x 164 adlittle - %x 175 share2b - 117x342 sharelb 
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1 2  4 8 16 
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Figure 5. Execution overhead for trace address generation only. 
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Figure 6. Speedup for generating trace addresses only. 

The second experiment shows the performance overhead when a direct mapped cache simulation model is 

used to find cache hit ratios. Figure 7 shows this overhead for different sizes of hypercubes. For a program 

executing on a single hypercube node, &e execution overhead for producing mce addresses and simulating cache 

hits and misses for a direct mapped cache is less than a factor of 50. Again, increasing the number of hypercube 

nodes decreases the execution overhead, this time even more dramatically, which implies improved speedup 

S (mod), 

Even for the simple direct mapped cache model used, the cache simulation constitutes a significant portion 

of the total execution overhead. Additional complexity in the cache model or simulating cache performance for 

two or more caches will increase the execution overhead further, but the resulting analysis will be conducted with 

an even higher degree of parallelism. 

Also of interest is the execution overhead when traces are being saved to disk. For this experiment, each 

hypercube node was assigned a specific disk output file for trace address storage. On the iPSC/2, all 

communication to the host machine (which is the only processor with direct access to the disk) must pass through 

a single hypercube node, called node 0. Thus node 0 and the host machine provide a substantial YO bottleneck as 
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Figure 7. Execution overhead for trace address generation and direct mapped cache simulation. 

the number of nodes increase. The disk space on our system was limited, so we simulated the writing of these 

files by periodically reverting to the beginning of the file before writing the trace information. This procedure st i l l  

requires the same node communication as is q u i &  for full trace storage, thus the location of disk writes are the 

only factor altered. Figure 8 shows the results of this experiment 

It is obvious that storing the traces from the iPSCL2 is very costly, and this cost increases substantially as 

the number of nodes in the hypercube increases. The size of a block of addresses influences this overhead. Larger 

block sizes appear to be inefficient for a small number of nodes, but become more attractive as the number of 

nodes in the iPSCI2 incrtases. For 16 nodes, saving the rraces addresses to disk is about 2 orders of magnitude 

slower than generating and analyzing these addresses concurrently. In general, it makes little sense to store the 

multicomputer traces if the multicomputer is available for use in w e  analysis, and if the extra analysis routines 

do not cause the execution module’s size to grow beyond the memory limit of a multicomputer node. 

5.2. Cache Data From Multicomputer Traces 

Although the purpose of this paper is not the analysis of multicomputer cache performance, a small sample 

of memory access and cache hit ratio data will be presented to discuss some multicomputer issues different than 
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Figure 8. Execution overhead for generating addresses and storing them to disk files. 

issues found in single processor studies. One such issue is the variance of number of memory accesses and cache 

hits among different nodes of a multicomputer. Another example issue is how the number of memory accesses 

and the cache hit ratio change with the number of nodes for a given problem. 

To illustrate variance in the number of memory accesses, Figure 9 shows the total number of text reads, data 

writes, and data reads for the simplex algorithm on a 4 node hypercube. This data was captured by X-bbgerf 

as it generated the isddresses. Given the difficulty of collecting traces via existing methods, it is tempting to 

capture an address w e  from a single node and assume it is representative. For a variety of obvious reasons - 
unbalanced workload, unbalanced communication and synchronization requirements, etc., this will not always be 

me. 

Figure 10 shows the dependence of cache hit ratio on the number of nodes for the simplex algorithm with a 

64 Kbyte direct mapped cache with a 4 byte line sue. This data was captured by a cache model called by 

X-bbgerf after it generated each address. .For the input datasets shown, the highest hit ratio is always found 

for the single processor case. This indicates that most of the code and data for these problems fits well in the 64 

Kbyte cache. As the number of processors increases, less total work is done by each processor, taking less 
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Figure 9. Total number of text reads, data reads, and data writes for a 4 node hypercube execution. 

advantage of the code and data that already resides in the cache. It is likely that a larger number of nodes will 

yield a better cache hit ratio for problems with large amounts of data that can be partitioned well among the nodes. 
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Finure 10. Effect of number of nodes on the cache hit ratio for a 64 Kbyte direct mapped cache, 4 byte line she. 
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6. CONCLUSIONS 

This paper presents TRAPEDS, a new method of producing address traces. This method analyzes the 

program at the assembly language level to create modified executable files that produce the address fraces. The 

modified executable files run less than a factor of 50 slower than the original executable files, which compares 

favorably with existing software trace gathering approaches. Benchmark studies show that the executim overhead 

of the TRAPEDS method decreases as the number of processors traced increases. 

Drawbacks of the W E D S  approach include no traces of operating system addresses, no current ability to 

collect multiprogrammed traces. and slower execution than with hardware trace capture. Only virtual addresses of 

user code are captured with TRAPEDS. 

The TRAPEDS method has particular advantages for multicomputer systems. The problems of VO and 

storage for piice generation and (race usage for multicomputers are resolved by analyzing in parallel the generated 

addresses during the collection process. 
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