
I JPL Publicatiort 88-41

Incremental Development and
Prototyping in Current Laboratory
Software Development Projects:
Preliminary Analysis
Martha Ann Griesel

December 15,1988

National Aeronautics and
Space Administratlon

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Callfornia

~

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.
88-41

2. Government Accession No. 3. Recipient's Catalog No.

JET PROPULSION LABORATORY
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

Laboratory Software Development Projects:
Preliminary Analysis

7. Author($)

9. Performing Organization Name and Address

Martha Ann Griesel

13. Type of Report and Period Covered

6. Performing Organization Code

8. Performing Organization Report No

IO. Work Unit No.

JPL Publication
12. Sponsoring Agency Name and Address

9 . Security Classif. (of this report) 20. Security Clarsif. (of this page) 21. No. of Pages

Unclassified 39

14. Sponsoring Agency Code
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

22. Price

15. Supplementary Notes

16. Abstract

Several Laboratory software development projects that followed nonstandard developmei
processes, which were hybrids of incremental development and prototyping, are
being studied.
decision to use a nonstandard development process and affecting its success are
analyzed.
is proposed, together with software development approaches which have been found
effective for each category. These approaches include both documentation and
review requirements.

In this report, factors in the project environment leading to the

A simple characterization of project environment based on this analysis

7. Key Words (Selected by Author($)) 18. Distribution Statement

Computer Programming and Software Unclassified - Unlimited I

JPL 0184 A 9 1 8 3

JPL Publication 88-41

Incremental Development and
Prototyping in Current Laboratory
Software Development Projects:
Preliminary Analysis
Martha Ann Griesel

December 15,1988

runsn
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

ABSTRACT

Several Laboratory software development projects that
followed nonstandard development processes, which were
hybrids of incremental development and prototyping,
are being studied. In this report, factors in the
project environment leading to the decision to use a
nonstandard development process and affecting its
success are analyzed. A simple characterization of
project environments based on this analysis is
proposed, together with software development ap-
proaches which have been found effective for each
category. These approaches include both documentation
and review requirements.

iii

CONTENTS

1 . INTRODUCTION . 1
1.1 SOFTWARE ENGINEERING BACKGROUND 1
1.2 RESEARCHMETHOD . 3
1.3 REPORT STRUCTURE . 4

2 . CASESTUDIES . 5
2.1 CASEA . 5

2.1.1 Decision-Making Factors 6
2.1.2 Development Process 7
2.1.3 Retrospective . 8

2.2 CASEB . 10
2.2.1 Decision-Making Factors 11
2.2.2 Development Process 12
2.2.3 Retrospective . 14

2.3 CASEC . 14
2.3.1 Decision-Making Factors 15
2.3.2 Development Process 16
2.3.3 Retrospective . 16

2.4 CASED . 18
2.4.1 Decision-Making Factors 18
2.4.2 Development Process 1 9
2.4.3 Retrospective . 22

2.5 CASEE . 22
2.5.1 Decision-Making Factors 23
2.5.2 Development Process 23
2.5.3 Retrospective . 26

3 . CONCLUSIONS AND RECOMMENDATIONS 27
3.1 CHARACTERIZATION OF PROJECT ENVIRONMENTS 27
3.2 SOFlTwARE DEVELOPMENT PROCESS ATTRIBUTES 30

3.2.1 Experimental Type 30
3.2.2 Evolutionary Type 31
3.2.3 Established Type 32

3.3 PRELIMINARY CONCLUSIONS 32

REFERENCES . 35

V

PRECEDING PAGE BLANK NOT FILMED

FIGURES

1 . Typical System Life Cycle . 2

2 . Case A Software Development Process 9

3 . Case B Software Development Process 13

4 . The Prototyping Paradigm and its Relationship
to the Conventional Software Development Paradigm 17

5 . Case D Software Configuration Management Process 21

6 . Case E Software Development Process 25

TABLES

1 . Classification of Case Histories 29

vi

SECTION 1

INTRODUCTION

The purpose of this study is to discern and document the decision points
which have led to using incremental development and prototyping approaches
in Jet Propulsion Laboratory (JPL) software development projects. Project
histories will be analyzed to provide guidelines to managers for selecting
prototyping and incremental development processes, and to identify key
elements and characteristics of these processes. The focus of the initial
phase of the work is on documenting, in case studies, the environment in
which the decisions were made, the specific project factors that prompted
each decision, and effects of the decisions on software development.

A s the experience base of project histories grows, those aspects of proj-
ect environment critical to software development can be identified and
used to characterize the environment. Basic similarities in development
processes then can be identified, abstracted from their specific project
environments, and codified. This will provide developers and managers
with software development process paradigms, including documentation and

. review requirements, to choose in place of the conventional development
paradigm, and the criteria for choosing them.

This report presents case studies from five Laboratory projects, a prelim-
inary characterization of project environments based on analysis of these
cases, and some software development strategies they suggest.

1.1 SOFTWARE ENGINEERING BACKGROUND

The standard Laboratory system development process, as presented in [7] ,
is illustrated in Figure 1. This complete life cycle spans system life
from concept to retirement. The software development phases reflect the
conventional paradigm for systems whose requirements can be reasonably
well specified at project initiation, and for which the development en-
vironment is stable. The software development processes considered in
this study, incremental development and prototyping, represent methods for
managing risk in an uncertain and changing environment.
environments are evolving requirements and changing hardware technology.
These are not new approaches to software development; they are used in
practice and discussed frequently in the literature [8 , 15, 1 6 1 . Nor do
they fall outside the standard development process, which can be tailored
for different environments. However, in uncertain environments, incre-
mental development and prototyping approaches usually have been applied on
an ad hoc basis. For these cases they lack accepted representative para-
digms, the associated guidelines for tailoring the conventional develop-
ment process, and criteria for when to use them.

Examples of such

Both the terms "incremental development" and "prototyping" are used in the
literature with several meanings [8]. For the purpose of this study, they
are defined as follows:

1

-
CONCEPT
DEFINITKW

Figure 1. Typical System L i f e Cycle

From: J P L Software Management Standard [7] , page 1 - 6

SYSTEM

2

I I
I

IMPLEMENTATION
AND
ACCEPTANCE
TEST I

SUBSYSTEM --d

Incremental development is a series of complete, robust
implementations of functional subsets of system requirements.

A prototvpe is an implementation (of the entire system or a
specific functional element) in which certain aspects of the
implementation have been minimized in order that others may be
maximized.

A typical prototype might minimize robustness and efficiency in order to
maximize the number of included application functions and shorten the
schedule (thus minimizing the risk of not having a baseline functionality
delivered by an immovable deadline). Note that the definition of incre-
mental development assumes that a complete set of system rzquirements ex-
ists, although they all need not be well-specified. The two concepts can
simultaneously apply to the same project in two ways, both of which have
been implemented in Laboratory projects.

(1) A prototype, where areas to be minimized have been identified,
may have functional subsets implemented by increments; in this
case "complete" has a reduced definition corresponding to how
each functional element is to be prototyped.

(2) A project following either a conventional or an incremental
development paradigm may prototype a functional element
scheduled for later implementation in parallel with its
main development.

Such mixed modes are being found more frequently than pure development of
any type, suggesting that managers and developers are trying multiple
approaches when faced with uncertainty. This phenomenon emphasizes the
necessity of determining why a nonstandard development process was chosen,
because different motivations are associated with different project envi-
ronments. For example, some prototypes were developed for proof-of-
concept, and some to help the sponsor become sufficiently familiar with
automation to make requirements generation possible.

1.2 RESEARCH METHOD

The data collection procedure was adapted from standard research methods
used for exploratory and descriptive studies [1 3 Chapter 3 1 . It includes
both interviewing project personnel and studying pertinent project docu-
ments.
ces. A discussion of the method is given in the research plan [2] . Infor-
mation from the interviews and documents form the case studies which con-
stitute the experience base for analysis. Hypotheses suggested by analysis
of the experience base will be tested in future work. This will provide a
basis for understanding the characteristics and structure of both the soft-
ware development environments and processes, and the relationships between
them.

Project documents for the case histories are given in the referen-

3

1.3 REPORT STRUCTURE

Case studies for several Laboratory software development projects will be
given in the next section. Each study includes:

(1) A brief description of the system to be developed and the
sponsor environment.

(2) A discussion of decisions which led to using a nonstandard
development process.

(3) A schematic of the development process, or one of its key
elements, showing the associated documentation and reviews.

(4) Appraisal by the individuals involved of what worked and
what did not, identifying the advantages and pitfalls they
see in retrospect.

Factors contributing to decisions were identified by project personnel
analyzing what had occurred.
recognized at the time the decisions were made.

These factors were not always consciously

The report concludes with a discussion of those points that arise in enough
cases to start abstracting information, structure, and decision-making
guidelines, and with a proposed project environment characterization.

4

SECTION 2

CASE STUDIES

Two general factors were found in all cases, and arose in almost all
interviews. These will be presented first, and not repeated in every case.

(1) When creating their software development plan, individuals relied
heavily on their personal experience.
worked on successful projects that followed a conventional para-
digm were proponents of these more traditional methods; those
who had worked on successful prototypes were sensitive to oppor-
tunities to develop prototypes. Conversely, individuals who,
directly or vicariously, had had a previously unsuccessful
experience with a given software development process did not
want to use that process. This was particularly true with
prototyping.

Those who had previously

(2) Schedules rarely permitted using resources to evaluate available
tools, or learn to use them. Therefore those tools familiar to
the developers, and already procured, were usually chosen; a
recurring example was screen generators. In some instances,
perceived lack of evaluation, learning, and procurement time
resulted in few tools being used, even when the developer thought
they would be helpful.

One observation also applies to the set of projects, rather than to any
one particular effort. Those projects that were most successful completed
each prototype, or increment, in about the planned time. An excessive
amount of pushing planned implementation segments off to a later increment,
or totally redoing a prototype, was usually an indication of trouble.
Such delays often meant that requirements evolution was out of control, or
that communications among sponsor, user, and developer were too noisy.

O n e note on terminology: the term llproject" is used throughout these case
studies to denote a software development activity with a single purpose,
sponsor, and management structure. It does not necessarily denote a
Laboratory Project; some case studies are of Projects, some are Division
Managed Tasks, and others are single activities within larger NASA
Programs.

2.1 CASE A

This case illustrates a proof-of-concept prototype that became an opera-
tional system. This prototype was requested by a sponsor who had previous
experience with software development at the Laboratory and needed rapid
system development. In return for cost and schedule considerations (proj-
ect was to be completed within 24 months at fixed total cost), the sponsor
waived their extensive software documentation and review requirements, and
requested that the Laboratory do likewise. They accepted the risk that

5

system development on such a short time schedule might prove infeasible,
and that the system would either never be completed or would fail.
sponsor also provided hardware very early in the project, both at JPL and
at their own operational sites, and wanted the on-site hardware operating,
even on a very minimal system, as soon as possible.
system was being automated, and most of the users were not computer liter-
ate.
(e.g., transportation flights) simultaneously at several geographically
dispersed locations.
following:

The

An in-place manual

The system was to perform near-real-time monitoring of resources

This involved the development and management of the

(1) Local area networks and a wide area network.
(2) Distributed mini/super-mini computer system.
(3) Replicated, survivable, synchronized databases.
(4) Ultra-large screen display systems.

Work was performed under the usual Laboratory "best effort" agreement.

2.1.1 Decision-Making Factors

Lack of sponsor's computer literacy -
viduals in the sponsoring organization w h o had tried to automate some of
their existing manual system on a personal computer, most of the users
were not computer literate. It was hard for them to determine how to im-
plement their requirements because they did not know the potential of an
automated system. In addition, the Laboratory was not familiar with the
problem domain. The first prototype was therefore developed to give the
sponsor something, however minimal functionally, to use and gain experi-
ence, and give Laboratory personnel a chance, through interaction with the
users, to learn the problem domain. This initial prototype was intended
to be thrown away, but became the first increment for an operational
sys tem .

Although there were a few indi-

Lack of existing hiph-tech system - A small increment of the system
functionality, even five percent, was of use to the sponsor, especially
because the first increment would include the basic network, providing a
needed communications capability. Hence, an incremental approach gave the
sponsor a growing, useful system as expeditiously as possible. This
approach would not necessarily work if an existing system were being
replaced with a "higher tech" system.

Sponsor wanted in-place hardware put to use as soon as ~ossible - Using
off-the-shelf software wherever possible accelerated initial operational
capability. For example, the first increment included a few applications
functions, a local area net, and an off-the-shelf mail package. In addi-
tion, the architecture from another Laboratory project that faced similar
networking and distributed system problems was reused, saving both time
and uncertainty in design.
factor in effect when individuals move from a shrinking to a growing
project, bringing ideas with them. The technical focus of line organi-

This was possible because of the serendipity

6

zations in a matrix management structure makes this more likely, because
ideas from past projects are more apt to be relevant.

Need to keeD sDonsor motivated - Several aspects of the close, cooper-
ative relationship established with the sponsor coupled sponsor satisfac-
tion and the software development methodology.

Requirements team - This comprised both sponsor and Laboratory
individuals, the expert users of the system helping to write the
requirements. They started with a high-level "wish list" and kept
tailoring it throughout the life of the project as both user and
developer became more familiar with both the problem and the oppor-
tunities for automation. This led to increments that were vertical
(new depth to an old functionality) as well as horizontal (new
functionality).

Sponsor participation in testing - System development benefitted
from functional validation of each increment by the expert users
uncovering some of the problems. This helped minimize Laboratory per-
sonnel time in some of the test phases, thus helping to meet the short
development schedule.

Releases every six months - Frequent software releases kept the vital
feedback channels open with the users (they had something new to look
at), and kept the sponsor confident the schedule was being met.

2.1.2 Development Process

A modified form of incremental development was used because not all the
requirements could be determined until the sponsor had some experience
with the system. Thus increments added both more functionality in already
developed areas and new functionality. Also, after the first release,
system and function development was simultaneous. Adherence to the spon-
sor's extensive documentation and development cycle was waived in interest
of cost and schedule since the system was a prototype. However, the proto-
type quickly evolved into an operational system, and the project was asked
to document each release "after the fact." This was successful f o r two
reasons: first, the development team was sufficiently integrated that
architecure and module interface issues could be handled in frequent design
meetings; and, second, the design of workstation screens, which was a large
portion of the design effort, was done by successive screen prototypes
iterated with the user and concurrently documented in User Guides.
User Guides became surrogate design documents, with the design presented
from the user's point of view. Final system design documentation was
written specifically to satisfy system maintenance requirements.

These

Schematically, the six-month development cycles were as follows. Documents
associated with each cycle segment are given in parentheses.

7

Initial Very High Level Functional Requirements Document
I

I
P

I to get started

Design and Development (User Guide)
T I

3 months I 3 months
I I
I P

Integration, Test and Installation (Sys. Int. and Test Plan)

A more comprehensive illustration of the software development process is
given in Figure 2.
the implementation of each increment. A single Design Book, including data
flow diagrams and source code, was maintained on the computer with the
system under configuration control.
copy.
each phase of an increment has its documentation: the User Guide for design
and development, and the System Integration and Test Plan (SITP) for inte-
gration, test, and installation. More formal design documentation required
for maintenance was to be delivered with the final system.

The User Guides became the requirements documents for

Thus, at any time there was only one
Note that This Design Book was to be delivered with each release.

Referring to Figure 2, note the key role of the Configuration Control Board
in damping requirements and design evolution.
delivered, the individual user could no longer ask the individual imple-
mentor for a change, as was the normal mode of operation during the six-
month development period. Changes had to be submitted to the board and
added to the "wish list." Only those approved by the board were imple-
mented. The damping action provided by the Board was reflected by the rate
of growth in the number of approved change requests: 70 approved requests
during the first one-third of the project, 100 during the first half, with
none during the second half.

Once an increment had been

2.1.3 Retrospective

(1) Close cooperation between sponsor and developer is crucial when a
system is being evolved, not built to predetermined specifications,
on a relatively inflexible schedule. This cooperation extends to
both technical areas, e.g., working together to evolve requirements
and to test the system, and administrative areas, e.g., providing
development hardware when needed.

(2) This approach to incremental development, using six-month increments
and adding functionality both vertically and horizontally with User
Guides as surrogate design documents, should work well on horizontal,
screen-driven (i.e., highly interactive) applications. As used here,
"horizontal" means a system comprising several loosely coupled
applications subsystems.

8

9

The Laboratory set up one-to-one points of contact with key individ-
uals in the sponsor's organization, the expert users functionally
responsible for an area.
cally assigned to work with the developer, and kept in position, and
out of normal job rotation, until the completion of the system. This
mirroring of the sponsor's organization supported good technical com-
munications and cooperation throughout the project.

These key sponsor personnel were specifi-

The hardware was decided on and made available shortly after the
beginning of the project and supported the off-the-shelf software
that was needed for rapid development.

The informal Design Book was not found to provide sufficient documen-
tation for maintenance. A specific effort to analyze and document
the design of the delivered system was required.

The moderate size (about sixty people) and reasonably restricted tech-
nical focus of this project allowed the close teamwork essential for
a more loosely structured, less formal development process. Most of
the people were very experienced software developers. This approach
to system development may not work with a large number o f novices on
the team.

A configuration control board was used to stop requirements evolution
(see Figure 2). Final requirements, agreed upon by the board, are
necessary for final system delivery.

CASE B

This case illustrates the direct translation of a manual system, requested
by the sponsor as a proof-of-concept, and illustrates the use of proto-
typing in proof-of-concept development. Specifically, the sponsor wanted
to determine if automation in the form of microcomputers operating in a
local area network environment would help in resource management for a
large, complex airlift unit. Resources included aircraft, personnel,
material handling, maintenance and support equipment, and supplies. The
lessons learned from the prototyping process were to be used by the sponsor
in drafting the Request for Proposal (RFP) for the operational system.
Experience with the prototype would also raise the level of computer lit-
eracy of the sponsor's user community (from near zero), further supporting
the RFP.

The system included five functional area nodes, each requiring a local
area network. Communications was also required between these nodes. After
the preliminary design phase it became evident that the choice of hardware
was constrained. The sponsor wanted the individual workstations all to be
the same personal computer specified by the sponsor. Each workstation was
also to provide, besides its functional area capability, standard office
automation. In this prototype, requirements gathering and design were
minimized to reduce schedule and cost.

10

2.2.1 Decision-Making Factors

Requirements gathering - was to be minimized - System requirements were to
emulate the manual system that was already in place. Existing procedures
were also tied to the manual system, and could not be considered for change
until the capabilities of an automated system were demonstrated.

Off-the-shelf tools were used - An evaluation of available tools was
made and the best tools procured. Available tools were very poor.

Design phase minimized - This prohibited initial development of standard
tools packages. Thus, some functional elements implemented later in the
development, after some tools had been developed in parallel with function-
ality, were faster and more user friendly than those implemented earlier.

Inconsistency in implementation of the manual svstem bv different person-
& - Several factors in this area contributed to making a stable design
difficult. This is instability of requirements, not their healthy evolu-
tion. As an example, the man-machine interface was different in different
areas.

The individuals performing the tasks being emulated were periodically
transferred, and although the tasks and procedures were the same, each
individual's approach to a task was slightly different.

Interacting with the developer was an additional duty for sponsor
personnel, giving it less priority and time. Contrast this with Case
A, where supporting the developer was a recognized part of the user's
job.

The initial Functional Requirements Documents, which had been agreed
to by the sponsor, could only generally convey what was desired in
the automated system. This was due partly to the sponsor's lack of
computer literacy, and consequent lack of understanding of the poten-
tial of an automated information system.

The sponsor's inability to send personnel to the Laboratory to get early
hands-on experience with the development system also may have slowed design
stabilization.

Use of off-the-shelf technology - The sponsor directed that off-the-shelf
hardware and software be used whenever possible.
when the workstations were constrained to be specific personal computers
(based on criteria other than the availability of commercial software),
because the choices of compatible hardware and software were thereby
limited. Products which performed the required functions on the specified
hardware were not always available from established vendors. Dealing with
newer vendors increased the risk of not meeting the development schedule
(because the vendor's promises might be over optimistic) and subsequent
maintenance (because the vendor might disappear).

This led to greater risk

11

Only one set of develoDment hardware - This required test of the current
increment simultaneously with the initial development of the next incre-
ment, which affected increment development schedules.

2.2.2 Development Process

The project followed traditional methods to the extent possible, taking
into account that this was a proof-of-concept in support of an RFP, and
required rapid development. The project was conducted in phases, as
follows. A more detailed diagram of the overall development process is
given in Figure 3 .

System Definition Phase - initial planning and conceptual design.
Documents generated were: Functional Requirements (FRD), Functional
Design (FDD), RFP for development hardware and associated software
(including networking). The development process elements, with
associated documentation, were as follows. This corresponds to the
portion of Figure 3 from requirements analysis through hardware
selection. Associated documents are given in parentheses.

General Requirements - - - - > Issue RFP - - - > Redesign for HW
(F R D , F D D , RFP) (R e v i s e F D D)

ImDlementation Phase - consisted of three sub-phases.

(1) Architectural Design Phase - resulted in publication of General
Design Document (GDD), based on the FDD. Also, the first version
of some of the User Guides (bottom-up software design references)
was developed, along with a preliminary version of the Programmer
Reference Manual. Fundamental code was also developed and deliv-
ered at this time, including office automation. The development
process elements were as follows.

Architecture and System Design - - > Implement - -> Test
(GDD, Prelim. User Guides
and Programmers' Ref. Manuals)

(2) Phase One - foundation, communications, database software.

(3) Phase Two - baseline set of database display and edit applica-
tions, and communications software.

(4) Phase Three - included both enhancements to Phases One and Two
software (vertical increments) and additional functionality
(horizontal increments).

Each increment was developed following a development process based on a
standard paradigm. This is illustrated in the system design through deli-
very segment of Figure 3 . System test and integration was hampered, or
new increment design was hampered, by the necessity of performing both on
the same hardware. Neither formal acceptance testing nor code audits were

12

Hardware Survey
I i

System Hardware Selection

I General Design Document

Users Guide

UDdate of I FRD, GDD. Users Guide
Code & Unit Test

I

~~ r Subsystem &&tion

Configuration Management

4
System Integration & Test

4
User Testing at Site 1

Delivery 1

Lan u eAnd sis

DBMS Analysis

Schedule & Costin

Task Implementation

ADPE Plan

lsystem RFP

"Implementation Plan
Review at JPL" I

Quarterly Reviews
Suonsor I

Figure 3. Case B Software Development Process

13

performed due to lack of funding, the timing of software deliveries, and
the nature of the system being developed, i.e., not an operational system.
Each of the final increments was developed in three to six months. A
"Lessons Learned" document was also produced both to support the RFP and
subsequent system development, and to prevent the rediscovery of pitfalls.

2.2.3 Retrospective

Both development and integration and test hardware are needed for
rapid incremental development. Being able to begin development on
the next increment while finishing integration testing on the current
one can save schedule time. This was also shown in Case A .

Even with a minimal set of documentation, an interface control docu-
ment under configuration control is needed.

Obtaining rapid development by minimizing the design phase led to
five different screen generators where one generic one would have
been better. These were mainly off-the-shelf. More time was needed
for the normal activity of analyzing and integrating the requirements
found by different requirements gatherers who talked to different
users and covered different functionalities.

Design phases lacked the necessary face-to-face interaction with the
users. The continual personnel changes in the sponsor's organization
added to this problem. Contrast with the experience in Case A where
the sponsor was able to keep personnel in place throughout develop-
ment.

Using commercial off-the-shelf software from an as-yet-unproven vendor
can introduce risk in meeting schedules dependent on vendor perfor-
mance, and assuring system maintenance. Availability of commercial
software should be taken into account when choosing hardware whenever
using off-the-shelf software is deemed otherwise advantageous.

A "Lessons Learned" document is very valuable. It helps preserve not
only the understanding of good ways to inject automation into a
problem domain, but also the knowledge of where potential problems
and blind alleys lie.

CASE C

This case illustrates prototyping in parallel with and supporting a large
software development project which is following a conventional paradigm.
It arises from an attempt to minimize the risk associated with change for
the large ground information system that performs data capture and pro-
cessing of engineering and science data for planetary and earth observing
missions. Changing requirements from new instruments and new missions,
and the enhanced capability made possible by new technology, result in

14

system changes. Prototyping a new technique, or configuration of hardware
and off-the-shelf and JPL developed software, in parallel with and a little
in advance of system software development can provide the following to the
developer:

(1) Insight into what is "safe" to incorporate in the main system.

(2) Analysis of the relative merits of different technologies and
configurations.

(3) Strategies for integration into the main system.

The prototype itself is not intended to be integrated into the system.
Technology is transferred chiefly by transferring the individuals who
developed the prototype into main system development.

2.3.1 Decision-Making Factors

This case concerns only the prototyping activity and its relationship to
main system development. It differs from the other cases in that it covers
many small activities, e.g., a prototype of an individual functional ele-
ment or communications architecture, and not the development of a single
integrated system. The ground information system which this prototyping
effort supports is developed using a modified conventional paradigm which
includes some incremental development, often of large, complex increments.
This allows smoother insertion of the results of the prototyping activity.

Needed to determine if off-the-shelf software was acceDtable - Tradition-
ally, software had been developed specifically for this application; off-
the-shelf packages were believed to be neither sufficiently robust nor
sufficiently flexible to handle the specific problems encountered in such
a large information-handling system. Commercial packages were built into
small prototype systems to determine if they could meet specific applica-
tion needs. Note this is not the same as testing a commercial product in
an applications vacuum.

Needed to change data base hardware/software - The only prototyping in
this instance was the testing to determine how well various available
products performed in specific real-time environments. Such experimen-
tation could not be done with the entire system, but needed a separate,
smaller parallel capability.

Desired near-real-time capabilitv for low rate science instruments -
Currently, images produced by some instruments on a platform are processed
in near-real-time during an encounter, but science users of other instru-
ments have to wait for more fully processed information. A system is being
developed to perform near-real-time processing for some of these other
instruments. Rapid incremental development was chosen in order that the
capability be available during the next encounter. The system is a proto-
type in the sense that providing science functionality on time and within

15

budget is maximized, with the understanding that some fatal error could
occur during encounter, thus minimizing some robustness, error handling,
testing, etc. Note this is basically the same risk assumed in Case A ,
that the system may not work.

2.3.2 Development Process

These prototype activities functioned in parallel with the traditional
ground information system design effort.
prototyping in the conventional software development paradigm have been
discussed in the literature [8] . Figure 4 illustrates the general
relationship.

General methods for incorporating

Technology transfer was often through the individual user who interacted
with both the prototype and the related portion of the ground data system.
A s illustrated below, the system user sees and understands the potential
of the prototype and incorporates it in the main system requirements docu-
ment.

Looking at Figure 4 , the above mechanism is seen to correspond to the
"extract information about user requirements" and "extract information
useful to system design" paths. Individual engineers who worked on both
the prototype and the related portion of the ground information system
provided another important means of this technology transfer that links
the two development processes.

Documents were used to save and distribute information. Those used in the
activity were:

(1) Functional Requirements Document
(2) Design memoranda.
(3) Interim reports.

Demonstrations were used extensively. Due to the role this prototype
activity played in absorbing the risk and doing proof-of-concept for the
main system, the demonstrations were considered more important than the
documents.

2.3.3 Retrospective

(1) This case points out the experimental aspect of prototyping. Reducing
the risk associated with introducing new technology into on-going
systems, or system upgrades, requires learning by experimenting with
the new technology in the context of the application. In this case,

1 6

i

I
. . .

I
I

\ I

I
I
I
I
I
I
I
I
I
I
I
I

I
I

I I
I
I
I
I
I

I
I
I I

17
ORIGINAL PAGE IS
OF POOR QUALmY

prototyping has proven to be a method for experimenting for reasonable
cost.

(2) The real technology transfer occurred when the individual who devel-
oped the prototype returned to the main system development project and
took the ideas and experience and vision gained in his head - not in
documents or in software. This is a typical technology transfer
mechanism. and works well for such "local" transfers.

2 . 4 CASE D

This case illustrates software development of a system whose heart is a
simulation model. The sponsor wanted to simulate complex outcomes of
decisions by competing decision makers. The resulting system was to be
used to train large groups of decision makers and their supporting staffs.
Simulation results were shown on workstations. These outcomes were to
seem "real" to the trainees using the workstations; for the sponsor's
application, this required special graphics. The training system was to
be data-driven, in order that the trainers and trainees could change the
scenario. A minicomputer was required to process the resulting complex
simulation. Several microcomputers were used to control the workstations.
These processors were locally connected by local area networks and globally
by a wide area network. The simulation was written in Simscript, with all
environment and process descriptors contained in a database.

System development included both prototyping and incremental approaches.
At the beginning of the project, the sponsor was only partly computer
literate, and the Laboratory was not applications literate. Also, the
Laboratory was only slightly familiar with the simulation language. Often,
before an applications function requested by the sponsor could be under-
stood and modeled by Laboratory personnel, consultation with a domain
expert was required. These domain experts frequently did not work directly
for the sponsor, but in another part of the sponsor's organization. This
three-way interaction further complicated the learning process. The spon-
sor requested use of the most current version of the system (even if not
yet formally delivered) for periodic training. This interaction influenced
the functionality requested in the next increment, and, as in Case A, pro-
vided some system testing. The project was conducted under a standard
"level of effort" agreement.

2.4.1 Decision-Making Factors

Requirements understood by neither the developer nor the sponsor - The
sponsor had only general goals that translated into quite general
requirements. Furthermore, the Laboratory's initial unfamiliarity with
the sponsor's problem domain hampered the developer's capability to con-
tribute to the initial requirements. Thus, the requirements evolved as
the sponsor saw successive versions of the system and Laboratory personnel
gained understanding of the problem domain. The initial system was a

18

learning experience with respect to subsequent system development, as is
the current operational version with respect to the next major version.

Sponsor's desire to use undelivered "most current" versions for traininp;
exercises - Training exercises were treated as functional validations.
Each new increment was usually fairly thoroughly tested in such an exercise
by the time it reached the final integration test phase.
already had completed integration and test as it was incorporated in the
system. Some of these exercises involved many trainees, making the func-
tional validation reasonably thorough.
not possible on the smaller development system which had, for example,
fewer workstations. One hundred requests reflecting software problems and
requirements modification desired by the sponsor were sometimes generated
at such a functional validation.

Each small piece

This degree of thoroughness was

Sponsor requirements were evolving - Repeated revisions of requirements
can lead to extensive rework, causing schedule slips and budget overruns.
By developing small enough increments, excessive rework was often avoided.
Incremental development can be used in this manner to reduce the risk
associated with evolving requirements.

Sponsor maximized some factors at exDense of others in each increment -
Even operational versions were prototypes in the sense of this study.
example, one version maximizes speed of system operation and distributed
system aspects.

For

2.4.2 Development Process

Three systems are being sequentially developed, two of them operational.
However, each of the first two will have been a prototype to the third in
two senses.

(1) Portions, both of application functions and system features
(e.g., user interface), were minimized to maximize other portions
at the sponsor's request. Only for the third system is the spon-
sor able to state complete system requirements at the beginning
of development.

(2) Each successive system was sufficiently different from the
previous one that only personnel, ideas, and some software tools
were inherited from one to the next. Code initially inherited
was usually radically modified, modules being rewritten two to
seven times.

By the definitions being used for this study, the first version is
considered a prototype, followed by incremental development of the next
version. Thus, the development sequence is as follows.

19

Prototype - - - > Wish List - - ->

>- - -> Model Concepts - - - > Design - - - > Implementation - - - > Test
t I

The focus of this discussion will be the incremental development portion
of the process, model through test. Cycles were 3 to 12 months in duration
depending on the complexity of the functionality being added.
functionalities, each following its own cycle, were added simultaneously.
Internal builds, i.e., fixing the current state of the system, were fre-
quent. Official deliveries to the sponsor were at approximately one-year
intervals and contained an integrated set of functions. Not-formally-
delivered code used for functional validation was not left in the sponsor's
possession after the training exercises.

Several

The following documentation was part of this development process

(1) Sponsor's Wish List, i.e., requirements, in priority order.
(2) Model Concept (Software Requirements) Document.
(3) Model Software Design (for each concept).

(a) Software modules.
(b) Data structure.
(c) Test plans.

(a) High level programmers' maintenance guide.
(b)
(c) Workstation detailed design.

(4) Design Documents.

Detailed design in pseudo code.

Code walkthroughs by a board consisting of the code author, modeler/
designer, the software supervisor, and a few programmers selected by him,
were conducted during implementation. This was believed to be essential
for a large (250K lines of simulation language code), complex system under
rapid development.
and information exchange among development personnel.

It provided both a check on the code and functionality,

Once a baseline system was in place, configuration management (Figure 5)
became the heart of this highly adaptable process. In fact, Figure 5
actually shows the complete iterative software development process, begin-
ning with the "sponsor" box at the top of the diagram. Engineering change
requests for functional changes and test incident reports for problems
found during integration test and functional validation were the formal
vehicles for initiating change. Engineering change requests were also
used to introduce functionality for a new increment. The proper concept
and design reviews for implementing these changes were assured by the con-
figuration control board, which met three times a week. Control of actual
software and documents, which were changed concurrently with the software,
resided with the librarian. Configuration control was maintained using
commercial software. All software additions and modifications could be
traced to formal change requests.

JJ
I
I
I

ORIGINAL PAGE IS
OF POOR QCALtTY

I
I
I

I n

I
I
I
I
I
I
I I

I

2 1

2.4.3 Retrospective

Due to the way it grew from continually changing requirements,
directly from concept to code, the system is not modular.
capabilities can trigger hitherto hidden errors. In particular, at
the beginning of the project many design decisions were made at the
coding level, leaving a legacy of unforeseen global effects. Thus,
the system has become difficult to fix or modify, potentially adding
to maintenance costs.

Adding new

For this size software development effort, the configuration manage-
ment system can be designed to effectively manage the iterations of
the incremental process. This provides a mechanism for controlling
and adapting to changing requirements.

Code inspections (walkthroughs) are vital in this development envi-
ronment. They should cover code readability, content, and structure:
does it do what it is supposed to without obvious software errors,
logic errors, or undesirable side effects; does it conform to project
software standards: and is the documentation readable?

The excellence of the system in meeting sponsor functional require-
ments is due to a great extent to the small group of very experienced,
motivated modelers and programmers. Note the contrast with Case A in
which experienced personnel were also relied on heavily, but software
developers, not modelers.

A cooperative sponsor, e.g., in providing access to application domain
experts outside his immediate jurisdiction and to needed facilities
and personnel for functional validation, makes this less structured,
more evolutionary method of system development possible.

The practice of using the most current system build, not-formally-
delivered, for sponsor training exercises was valuable. It supported
evolution of the requirements, increased both sponsor's and
developer's understanding of the potential of automation in the
application domain, and significantly enhanced the thoroughness of
system functional testing. Similar experience was found in Case A .

CASE E

This case illustrates large data management system development for science
community users.
locations, usually universities, better access to data collected during
NASA missions, both past and upcoming.
four functions:

The database was designed to give scientists at diverse

This entailed the system performing

(1)
(2) Data cataloging.
(3) Data archiving.
(4) Data distribution.

Data quality assurance and standardization.

22

A central node contains the high level catalog and distributed discipline
nodes (one per discipline) the actual data, detailed catalogs and science
data analysis tools. The system provides a data standardizing interface
between mission design teams and university Principal Investigators (PIS).
The project has been sponsored by NASA, and was not requested by the
science community. PIS at universities often were restoring and cataloging
their own subset of the data. A prototype was needed to demonstrate the
value to them of a central catalog, data standards, and access among dis-
cipline nodes and universities. Incorporating software already completed
or being developed at discipline nodes entailed imposition of some software
development standards on the nodes with which they were not accustomed.

2.5.1 Decision-Making Factors

Need to demonstrate value of system to science community - An initial
proof-of-concept prototype system was developed to demonstrate the
following to the community of PIS:

(1) A central catalog node would benefit them.

(2) A more integrated and standardized system was better than
continuing to Itgo it on their own."

The PI'S active involvement was required for the system to support science
needs.

Rapid changes in the technology needed for implementation - Hardware,
which had performed satisfactorily, was in place at the completion of the
prototype. However, the technologies involved, such as data storage de-
vices and workstation displays, are continually changing. By the end of a
several year development, these changes may have provided significantly
superior hardware for the application. Thus, a multi-phase incremental
type of development was initiated, allowing new technology to be considered
and inserted at the beginning of each new phase.

Need to maintain funding -
delivery (early delivery of partial functionality during integration and
test) were scheduled to enhance active involvement and interest of the
science community.
quirements.

Both a second follow-on prototype and a pre-

These also aided in revising and solidifying user re-

2.5.2 Development Process

The project had two initial prototypes, and system development was in three
increments.

prototype 1 - - - > prototype 2 - - - > increment 1 - - - >

>--->increment 2 - - - > increment 3 = complete system

23

The initial prototype focussed on three separate aspects of system
development:

(1) Developing a high level central catalog, with functionality
limited to the cataloging function.

(2) Developing testbed discipline nodes at the PI’S home sites, con-
tinuing the work by PIS already in progress on subsets of the
data.

(3) Investigating the applicability of new technologies, such as
optical disks and enhanced work station displays.

The second prototype of the catalog function integrated the central and a
detailed catalog for one discipline and provided a two-thirds complete
user interface, and data quality assurance and standardization. The demon-
stration of this prototype used real data.

The first increment inherited conceptual design (captured after the fact
as was system design in Case A) and hardware from the first prototype. It
inherited software tools, about half the implemented user interface, and
most of the data quality assurance and standardization from the second
prototype.
Software tools were also inherited from the participating portion of the
scientific community. Existing networks were used to communicate between
dispersed sites.

Both prototypes helped define and modify user requirements.

An increment, which is anticipated to take about two years to complete, is
developed through a complete, conventional life-cycle, from requirements
analysis through integration and test. The phases, a modified version of
the J P L standard [7] , are as follows.

(1) System Requirements Analysis.
(2) System Functional Design.
(3) Detailed Software Design.
(4) System Implementation and Test.
(5) System Integration / Acceptance Test.

This development process is illustrated in Figure 6 . The first increment
was not further subdivided into smaller increments to ensure a single con-
sistent detailed design. This software development paradigm has been
tailored to the specific needs of a system in which the integration of
database technology is significant. The choice of documentation was also
influenced by database structure and management considerations, e.g., with
the addition of a Data Administration Plan. A U$er Requirements Document
was also added to capture the requirements of the science community.
Maintaining current documentation was important for both intra-project
coordination and communication with the users.

24

25

2.5.3 Retrospective

The first prototype was not documented, i.e., there was no written
record of requirements, design, implementation (except the source
code), testing or lessons learned. In reaction, the project began
documenting subsequent work quite extensively.
different responses:

This has evoked two

(a) The development finally has some form; time is no longer being
wasted on divergent paths, and a viable system is beginning to
emerge.

(b) The documentation is in danger of becoming excessive for the
size of the project. Completion of a document is so important
that time is not always taken to ensure that the document is
readable, or even that its content is complete and appropriate
to the development phase (e . g . , design) it represents.

Turnover of personnel following demonstration of the first prototype
exacerbated the loss of information due to lack of documentation.

The prototypes were valuable in showing that the conceptual model was
too ambitious and complex to be implemented within available develop-
ment resources.

Database standards (e.g., universal interface standards, labels,
nomenclature) need t o be in place early in the development cycle.
However, these facets of the system are often not visible in early
development, thus are often disregarded (see number 5 below).

The developer will often focus on the visible parts of the system
(e.g., user interface) when producing a prototype with a demonstration
as the main review. A written prototype plan describing what is to
be learned from the prototype is needed to ensure emphasis is properly
placed during development.

The incremental approach has led to some difficult negotiations with
the science community. They fear that the project may terminate after
the delivery of the first increment. Therefore, each discipline has
tried to negotiate all its functionality into the first increment.

Lack of formal change requests in the early part of development al-
lowed creeping requirements without offsetting schedule adjustments.
The user community has many requirements it wants satisfied, all im-
mediately. Formal change control was found to be necessary to ensure
the users understood the costs o f their requested additions. This is
analogous to the manner in which the configuration control board was
used to control requirements evolution in Cases A and D.

Definition of terms is even more crucial for a large data management
system than a general software system. The data dictionary needs to
include variable names as well as function and data nomenclature.

26

SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

Choice of the software development process was found to depend primarily on
two factors, with the first outweighing the second.

(1) Developers chose the process with which they had been most SUC-
cessful on previous projects.

(2) The project chose the process specifically requested by the spon-
sor, at least in name. However, agreement on a name does not
mean agreement on a development process, because a name can be
used for different processes, depending on the reference source.

Interviewees did not mention that any analysis had been performed in choos-
ing a development process, although single factors, such as the need to
quickly determine if system development was feasible, were sometimes cited.
No specific guidance is available from current standards for analyzing or
dealing with some of these more non-standard software development
environments.

The case studies were analyzed to determine if a characterization of proj-
ect environments could be developed on which the selection of a software
development process paradigm could be based.
zation is given in the remainder of this section.

The resulting characteri-

3.1 CHARACTERIZATION OF PROJECT ENVIRONMENTS

Three environmental attributes were isolated as influencing the applica-
bility of a software development process paradigm.
discussed in all the interviews, often being introduced into the discussion
by the interviewee.

These attributes were

(1) The degree of maturity of the end users' (and sponsor's) under-
standing of their requirements for an automated system, and the
degree of precision with which the sponsor could state those
requirements.

(2) The depth of the developer's (i.e., in this study the Labora-
tory's) understanding of the users' problem domain.

(3) The developer's level of familiarity with the hardware and soft-
ware: had it been used in like projects in the past, or were new
applications involved (e.g., hypercube or Ada)?

Software development projects were found to fall into three types that
could be characterized by rating the project "low, "moderate, or "very
high" for each of these attributes.
types for easier reference.

Names will be given to the environment

27

Experimental - The project was rated low for at least two of the
attributes.

Evolutionary - The project was rated moderate for at least two
of the attributes, and the user requirement
attribute was never rated low.

Established - The project was rated very high for all three of
the attributes.

Typical examples of the experimental type are:

(1) The initial stage of a project where the developer is trying to
understand the problem and the user is trying to understand
automation.

(2) The situation in which a well-understood system is being upgraded
and is to be implemented on a concurrent processor, thus poten-
tially affecting familiarity with both hardware and requirements.

Typical examples of the evolutionary type are:

(1) The evolving systems for which the user or developer gain insight
into application of automation within the problem domain as ex-
perience is gained when each release is tested and becomes (in
some sense) operational.

(2) The methodically growing system for which the requirements are
known, but potential implementation opportunities and problems
are unknown in a new hardware or software environment.

Typical examples of the established type at the Laboratory are the large
ground information systems.

Table 1 gives the ratings and resulting environment types for the projects
discussed in the last section. These ratings are based on the assessments
made by different individuals on each project. Note that Case C is divided
into two subcases. Case C1 includes those activities for which the hard-
ware or software being introduced was deemed to strongly affect require-
ments, resulting in a low requirements rating and experimental classifi-
cation. In case C2 are those activities with more incremental changes
that did not extend as drastically into requirements, resulting in a
moderate requirements rating. They were considered to be evolutionary
increments of the main system.

Projects were found to progress through these types like stages, experi-
mental to either evolutionary or established, evolutionary to established.
An additional pattern was "experimental eddies" accompanying a conventional
paradigm to determine if a requirement or technology change was appropri-
ate. Examples of this were discussed in Case C. It is interesting to
note that the use of prototyping in experimental and evolutionary type

28

Table 1. Classification of Case Histories

Environmental Attributes

Degree of Maturity of Sponsor’s L L L M L M L
Requirements

Depth of Developer’s Knowledge L L M M L M L
of Problem Domain

Level of Developer‘s Familiarity H M L M L H M
with HW and SW

Environment Type: Ex Ex Ex Ev Ex Ev Ex

* C1 and C2 represent the different subcases of Case C

D1 is the initial prototype, D2 the subsequent development

Environmental Attribute Ratings - low (L), moderate (M), very high (H)

Environment Type - Experimental (Ex), Evolutionary (Ev),
Established (Est)

2 9

environments is very similar to that proposed in Mayhew and Dearnley's
theory-based classification of prototyping [1 4] .

The term "rapid" did not appear in any of the above. A rapid development
may be of any type. Substituting a process suited for one type, for
example, the experimental type, because it was perceived to lead to more
rapid development than the paradigm for a type which better matched the
project environment, was never found to succeed.

3.2 SOFTWARE DEVELOPMENT PROCESS ATTRIBUTES

Each project environment type led to different software development
processes, including different normal lifetimes, documentation and review
requirements, and demands on support from the project environment. In
general, projects with less definition required a more exceptionally sup-
portive environment. In this section, development process attributes will
be given for each type. For the experimental and evolutionary types, the
attributes come from analysis of the case histories. For the established
type, attributes were drawn from discussions of the typical system life
cycle given in the literature 18 , 1 6 1 .

3.2.1 Experimental Type

Most often used prototyping, with the goal being an initial state-
ment of user requirements, architecture, and design concept.

Required a close, mutually supportive relationship between the user
and the developer, with shared vision and goals.

Project never exceeded six months, and was sometimes as short as
two months.

Hardware of some kind was in place from the beginning of the proj-
ect. This was not always the hardware eventually used for the tar-
get or development system.

Making the delivered prototype version one, or the first increment,
of a delivered system frequently failed.
supporting the rule.

Case A is the exception

Off-the-shelf software, inherited code or architecture, or develop-
ment tools (or all of the above) were used and considered an essen-
tial element in successful delivery.

Documentation was minimal, but some was considered essential.
Documents most often cited were:

(1) Initial project plan, telling what is going to be tried, and
how (e.g., the "Prototype Development Plan" of Figure 4) .
This may be very brief, and included in the task plan.

30

(2) Design document, containing functional model and archi-
tecture that worked, plus those that did not work, and why
(briefly).

(3) Proposed user requirements document, with requirements semi-
ordered by priority (several items may have the same rank).

The only review was usually a final demonstration.

3.2.2 Evolutionary Type

Most often used incremental development, with design and require-
ments being modified, based on experience with increments already
delivered. This was still a learning process.

The extent to which prototyping was used, if at all, depended on
other environmental factors.

Required intelligent user involvement.

Maximum development lifetime before system succumbed to lack of
flexibility and robustness in the evolving design was about two
years.
requirements.

Designs were often limited by initial choices based on early

Times for developing one increment ranged from six months to one
year; less than six months was not considered sufficient for a
robust implementation of a moderately complex function.

Current documentation is especially important in this type of de-
velopment environment; out-of-date documents causing confusion and
misunderstanding. Documents most often cited were:

(1) User requirements, with those not yet implemented ordered by
priority.

(2) High level design, including architectural design, and over-
all system model or concept (the goal the system is evolving
toward).

(3) Detailed design, including interface specification.

(4) User guides, sometimes used as supplemental design documents
for increments or functional elements.

(5) Integration and test plan.

(6) Data dictionary where appropriate to the application
(including terms, data names, and variable names).

3 1

Other documents may be required for specialized systems (e.g., large
database systems).

Reviews were usually held for requirements, design, and delivery of
each increment. Code walkthroughs were used extensively during
implementation, for coordination as well as detecting problems.

3.2.3 Established Type

This is the type covered by conventional application of the JPL
Standard [7] .

Minimum development time to produce a robust system for use by other
than the developer's organization seemed to be about two years.

This type required the least interaction with the sponsor and user,
because a mature, well specified set of requirements existed.

Hardware procurement often proceeded concurrently with requirements
definition and high level design.

Documentation fulfilled its primary function of supporting system
upgrade and maintenance.

Integration test and acceptance test, and their associated plans,
were significant parts of the development cycle.

3 . 3 PRELIMINARY CONCLUSIONS

Highly tailored standards are needed for experimental and evolu-
tionary project types, including criteria for determining project
type. Documentation requirements should take into account that
projects evolve from one type to the next (experimental to evo-
lutionary to established). The documentation for each type
should be designed to smoothly integrate into that for the "next"
type *

If a project has been planned to progress from one development
type to the next, it should do so within planned time limits, and
these time limits should reasonably agree with the normal life-
time of the pertinent development type. Projects which do not
progress from one development type to the next as planned should
be considered for termination.

Configuration management provides the feedback control necessary
for a system to emerge from evolving requirements.
the endless, perhaps even oscillating, change possible when each
delivered increment sparks a "now if we could only have" gleam
in the sponsor's eye, and each requested change gives the profes-

It controls

32

sional software developer an opportunity to make the system "even
bet t e r 'I technic a1 1 y .

(4) Support needs to be provided to projects in analyzing their
project environment and choosing the software development para-
digm best suited to it.

(5) Training is needed to help individuals work within and feel com-
fortable with the development paradigm chosen for a project.

(6) Projects for which off-the-shelf software and development tools
were needed most, often to meet tight schedules, did not feel
they could risk allotting time to search for, evaluate, or
acquire these tools. Support in assessing the needs of the
project, selecting the best tools, and acquiring those tools, is
needed. This support could be provided either centrally, or
through a network of organizations and consultants. Varying
levels of support, in terms of time and thoroughness of analysis,
should be provided, because different projects have very
different needs and resources. The steps to take to obtain the
level of support a project needs should be well publicized.

(7) For prototyping and incremental approaches to be successful as
methods to develop and refine requirements, close cooperation
between sponsor and developer is required. This creates an
environment in which sponsor and development personnel can learn
more about the uses of automation in the application domain. If
it appears that this cooperative environment can not be
established, serious consideration should be given to whether
the project should be undertaken.

(8) Both development and integration and test hardware are needed to
take advantage of the opportunities to shorten development sche-
dules provided by an incremental approach. This allows develop-
ment to start on the next increment while integration and testing
is being completed on the current increment.

33

REFERENCES

1.

2.

3.

4.

5 .

6 .

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Distributed Management Information and Control System (DMICS): Lessons
Learned; JPL Internal Document D-4940, October 28, 1987.

Incremental Development and Prototyping in Current Laboratory Software
Development Projects: Research Plan, Griesel, M. A.; (JPL Internal
Project Report) February, 1988.

Joint Exercise Support System (JESS) Executive Overview; JPL Internal
Document D-3917, January, 1987.

Joint Exercise Support System (JESS) Software Management Plan; (JPL
Internal Project Report) February, 1987.

Joint Exercise Support System Technical Summary; (JPL Internal Project
Report) February, 1988.

JPL Highlights - 1987 - The Global Decision Support System; Memorandum
3630-87-080, de Gyurky to Bane, dtd. August 11, 1987.

JPL Software Management Standard, Version 2.0; JPL Internal Document
D-4000, December, 1987.

New Paradigms for Software Development, Agresti, W. W.; IEEE Computer
Society Press, Washington, D. C., 1986.

Planetary Data System Project Plan, Renfrow, J. T.; JPL Internal
Document D-3492, May 2, 1986.

Planetary Data System Software Management Plan, Revision 1.0; JPL
Internal Document D-3487, August 10, 1987.

"Prototype Proposed Charter"; from SFOC Prototype Interim Report No.
8 , Appendix A, JPL Internal Document D-4574, July 15, 1987.

Space Flight Operations Center Prototype Phase 1 Summary Report; JPL
Internal Document D-3340, May 1 6 , 1986.

Research Methods in Social Relations, Sellitz, C., Jahoda, M.,
Deutsch, M. and Cook, S . W.; Holt, Rinehart and Winston, New York,
1959.

"An Alternative Prototyping Classification," Mayhew, P. J., and
Dearnley, P. A . ; The Computer Journal 30 (1987) 481-484.

Software Engineering: A Practitioner's Approach, Pressman, R. S . ;
McGraw Hill, New York, 1987.

"A Spiral Model of Software Development and Enhancement," Boehm, B.
W., IEEE Computer, May, 1988, 61-72.

35

PRECEDING PAGE B U N K NOT FILMED

