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PREFACE

A Kalman filter was designed to yield optimal estimates
of geophysical parameters from (observed) VLBI group delay
data. The geophysical parameters are the polar motion
components, adjustments to nutation in obliquity and longi-
tude, and a change in the length of day parameter. VLBI
clock parameters and atmospheric zenith delay parameters
were simultaneously estimated with the geophysical param-
eters. The right ascension and declination of the VLBI
(radio) sources, and VLBI site positions were kept at a
priori values. The primary source of VLBI group delay
observations was the 1984-85 IRIS (International Radio
Interferometric Surveying) data set consisting of day long
VLBI observing sessions (at five day intervals). The Kalman
filter limits subjectivity in VLBI data analysis.

The scientific objective of Kalman filtering the VLBI
group delay data was to examine the relationship between
earthquakes and associated mass movements, and the Chandler
wobble of the earth. The Kalman filter produces precise
estimates of polar motion over time intervals of one day or
less. The estimated polar motion results were deconvolved
to produce excitation functions versus time. Changes in the
earth’s inertia tensor due to earthquakes and associated

mass movements may be seen in the observed excitation
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functions. The excitation signatures of the preceding
mass movements may appear as Heaviside step functions or
other manifestations. Such excitation studies have been
made in the past using less precise polar motion data; one
objective of this research was to characterize excitation
signatures associated with earthquakes more exactly using
contemporary data.

Several great earthquakes occurred during 1984-86, all
with magnitudes (Mg) approaching 8.0 or above. Excita-
tion functions were calculated at five day intervals around
the time of the 1985 great Chilean and 1985 great Mexican
earthquakes. The excitation results were produced for a
45 day window surrounding the epoch of each main event.
The observed excitations were compared with theoretical
excitation (elastic dislocation) values calculated by Chao
and Gross (1987).

Changes (ramps) in excitation are strongly correlated

with the time of the 1985 great Mexican earthquake, but

the changes in excitation are not statistically significant.

The excitation formal errors are typically 0.5 milliarc-
seconds. The observed excitation magnitude and direction
are very close to being in accord with the theoretical
estimates.

Two steps are observed in the x-component of excitation

twenty days prior to the 1985 great Chilean earthquake and

iv




roughly twenty days after. The step magnitudes are 1.5 mas
and 0.8 mas, respectively. The net excitation is 2.4 mas
in a direction 7.1 degrees East longitude. This is signi-
ficant. The observed excitation is thirteen times larger
than the theoretical value. The theoretical excitation
direction is 110 degrees East longitude. These Chilean
results are similar to the findings of Chao and Gross
(1985) for the great 1977 Sumba earthquake.

Finally, IRIS polar motion data are deconvolved near the
time of the great 1986 Taiwan earthquake. A step of 3.8
+/- 0.5 mas in the (observed) x-component of excitation
begins directly after the Taiwan main shock. Such a step
is very significant. All of the preceding results indicate
that earthquakes and associated mass movements play a larger
role in the excitation of the Chandler wobble than elastic
dislocation theory (alone) predicts. More observations are
needed before the earthquake excitation level can be
accurately estimated.

The earthquake related excitations may arise from:
1. the main shock; 2. (pre~ and post-seismic) movements of
lithospheric slabs during subduction; 3. viscous relaxation
(post-seismic) of the asthenosphere near the earthquake
region; 4. (pre-seismic) lithospheric flexure (bowing) near
subduction zones like that of Chile; 5. Aseismic fault slip.

Subduction (zones where most earthquakes occur) appears to

have a significant role in excitation of the Chandler wobble.
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Chapter 1.

INTRODUCTION

The Chandler wobble is a polar motion of fourteen month
period; specifically it is manifested as an angular displace-
ment between an axis fixed to a stationary geometric pole on
the surface of the earth and the spin axis of the earth.
Since the discovery of the wobble in 1891 (Chandler, 1891),
the sources of its excitation have been extensively investi-
gated without great success. J. Milne (1893) was one of
the first to suspect some relation between polar motion and
earthquakes.

Extensive varjation of latitude data have been recorded
and analyzed to examine the driving source of the fourteen
month wobble. More recently, theoretical elastic-dislocation
models have been developed to determine if earthquakes can
indeed drive Chandler wobble. Unfortunately, variation of
latitude observations taken with zenith telescopes or other
conventional optical techniques are not very precise; and
elastic-dislocation models, while explaining immediate fault
zone behavior fairly well, do not begin to model extensive mass
movements associated with earthquakes or the inelastic
behavior of the earth. This work examines the degree to which
earthquakes and related mass movements excite the Chandler

1



wobble.

Fortunately, we are not at an impasse in addressing this
question. In the last two decades several techniques have
been developed which more precisely measure the polar motion
of the earth. These include Lunar Laser Ranging (LLR),
Satellite Laser Ranging (SLR - via the LAGEOS satellite),
and Very Long Baseline Interferometry (VLBI). VLBI is
currently able to measure the components of polar motion
with an optimum precision of 0.5 milliarcseconds
(Robertson, 1985). Since VILBI observing sessions span
typically one to two days, one can readily study earth
orientation on time scales up to these lengths. Using
many day-long VLBI data sets, one can examine polar motion
over time periods of weeks to years. This study looks at
polar motion on time scales of several hours to several
months.

VLBI parameters such as polar motion components or
baseline lengths (the chord distance between two points on
the earth's surface) have been estimated in the past from
least squares analysis (Clark et al., 1985). A more power-
ful technique for parameter estimation is Kalman filtering/
smoothing, and a major aspect of the work presented here is
the application of Kalman filtering to VLBI observations to
produce optimal estimates of VLBI parameters.

The intent of this work is to investigate relationships
between earthquakes (and associated mass movements) and the

Chandler wobble of the earth using VLBI data. Some
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questions to be addressed are: To what degree do earthquakes
excite the Chandler wobble of the earth?; Does the Chandler
wobble trigger earthquakes?; Do the movements of lithospheric
slabs decoupled (from lithospheric plates) by earthquakes
excite the Chandler wobble?; To what degree does unsteady
bowing (lithospheric flexure) at ocean trenches excite the
Chandler wobble of the earth? VLBI polar motion estimates
appear to be approaching sufficient precision and temporal
resolution to begin answering the preceding questions in some
detail.

The arrangement of the chapters in this work follows.
In Chapter II polar motion fundamentals will be presented,
while Kalman filtering and smoothing will be introduced in
Chapter ITI. An introduction to Very Long Baseline Inter-
ferometry will be given in Chapter IV, and a review of
research into the relationships of earthquakes and Chandler
wobble will be presented in Chapter V. In Chapter V1, a
Kalman filter will be developed which produces polar motion
parameter estimates from VLBI group delay data. Filter
optimization and operation will be explained in Chapter VII
and VIIT. Results and conclusions will be presented in

Chapters IX and X.




Chapter 1I1.

THE EQUATIONS OF POLAR MOTION

It is now appropriate to define some parameters of earth
orientation and rotation. Consider that the earth is
rotating with some angular velocity with respect to a quasi-
inertial reference frame. The earth does not rotate at a
constant angular velocity, and as such, there are changes
in the length of day. In addition to rotational variations,
there are small amplitude oscillations of the earth in
directions orthogonal to the earth's mean rotation axis. The
Chandler wobble makes up a part of these oscillations which
are otherwise known collectively as polar motion. Chandler
wobble differs from nutation because it is not a forced
motion due to interactions of the earth with other planets,
moons or stars (Stacey, 1977).

The polar motion of the earth is made up of at least
three motions: the Chandler wobble, the annual wobble and
a secular trend in the polar motion. "The [Chandler] wobble
results from rotation of the Earth about an axis that
departs slightly from its axis of greatest moment of
inertia." (Stacey, 1977). The Chandler wobble manifests
itself as an oscillatory angular displacement between the spin

axis and axis of greatest moment of inertia of the earth;
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the period of oscillation is roughly fourteen months.

Superimposed on the Chandler wobble is a wobble of a
twelve-month period, the annual wobble; the annual wobble is
driven by interactions of the oceans and atmosphere
with the earth. The remaining component of polar motion
discussed here is the secular trend. The secular trend is
a long term drift in polar motion; it has a drift amplitude
of several milliarcseconds per year (Morabito and Eubanks,
1985) . The secular trend appears to be driven by isostatic
rebound of the earth after unloading by glacial melting
(after ice ages). More details about polar motion can be
found in Lambeck (1980).

The changes in length of day alluded to previously can
be measured by comparing time as kept using atomic time
standards to time found astronomically (by looking at the

rotational position of the earth with respect to quasars

(these guasi-stellar objects define a quasi-inertial reference

frame) or other stars). The latter time entity is known as
sidereal time. The difference between atomic clock time and
astronomical time is typically used to characterize changes
in length of day.

A type of astronomically-based time scale (like
sidereal time) commonly used in VLBI work is UT1 (Universal
Time). The atomic clock time scales, UTC (Coordinated Uni-
versal Time) and TAI (International Atomic Time), are also
used in the VLBI community. TAl differs from UTC by leap

seconds which are introduced into UTC by the Bureau Inter-
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nationale de 1'Heure (BIH - a world time keeping agency).
Leap seconds are corrections added into UTC to keep UTC
within one second of time determined from earth rotation
rate (Sullivan, 1984). The quantities UT1-UTC and UT1-TAI
describe changes in the length of day. For further infor-
mation about such time scales, please refer to Kaplan (1981)
and Ma (1978).

The mathematical development which describes polar motion
and rotation is now presented. Following the treatment (with
modifications) of Munk and MacDonald (1960), Conservation of
Angular Momentum is used to describe the wobble and rotation

of the earth

N = ~—  + wX L. (11.1)

N represents the torques acting on the earth, L is the total
angular momentum of the earth, and w is the angular velocity
of the earth. We are concerned with the motion of the
coordinate system x; (where i=1,2,3) which rotates with
angular velocity w with respect to the inertial system X;.
xi and Xj are coincident at some reference epoch.

It is now helpful to separate the total angular momentum

L into two parts

Ly = Cij(t)wj + li(t)' (11.2)

Cij(t) is the inertia tensor and 1;(t) represents a relative
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angular momentum term. The components of C can be expressed

as

Cij = JV o] (xkxkﬁij - xiXJ)dV (11.3)

where p is the density of the object of concern, V is the
volume, and éij is the Kronecker delta. The relative

angular momentum components are given by

1 = J P eijk Xj Uy av, (11.4)

v

where € i is the Levi-Civita symbol, and ug is the component

of velocity with respect to the xj-system.

Substitution of (11.2) into (I1.1) gives the Liouville

equation

N = ——g— (Cw+ 1) + wx(Cw+ 1), (11.5)
dt
Simplified versions of egquation (1I1.5) will now be formed
to determine elementary equations of motion for Chandler
wobble and changes in the length of day.

One can also describe the Chandler wobble as a normal
mode of the earth (Smith, 1977; Smith and Dahlen. 1981) and
can use elastic-gravitational normal mode theory to charac-
terize its behavior. It is an interesting note that
Dahlen suggests "We could really say the Chandler wobble was

just like every other normal mode if it were excited



principally by earthquakes, but that does not appear to be
the case.”

Perturbation theory is applied to the lLiouville
equation (II.5) to simplify it. For the case of polar motion
and earth rotation in which movements of figure axes and
rotation pole (and fluctuations in spin rate) are small
with respect to the reference coordinate system xj, the

following perturbation scheme works well

Ci1 = A + cqq, C22 = A + ca2, C33 = C + C33

Ci2 = c32 » Ci13 = ¢33 » Cag = Cog (11.6)

wy = le , w2 Qlllz , w3=(1+m3)().

In this model, A, A and C are the initial (pre-deformation)
moments of inertia of the earth with C being the largest
moment . cjj are the perturbations to the inertia tensor.
Clearly if all perturbations Cjj go to zero , we are left
with an axi-symmetric earth of major moment of inertia C and
equal minor moments A. This makes sense and is a fair
approximation to the geometry of the real earth.

The angular velocities w= (w;, wz, wg) are written as
perturbations of the mean angular velocity of the earth, Q.
w; and wp will be trivial if m; and mp go to zero,
but wg is generally of order Q: this is intuitively
gratifying, considering that one desires an earth which
continues to rotate at some nearly constant angular velocity,
regardless of the perturbations applied.

Substituting definitions (IIl.6) into the Liouville
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equation (I1.5), neglecting products and squares of pertur-
bations and other small terms, one arrives at the following

simplified Liouville equations

my ma
+ m2 = 02 ; - ml = "01 (11-7)
Op Op
mg = 04 (11.8)
where
2 2 . :
Q (C"A)Ql = ) c13 + 0023 + Q]l + ]2 - N2
2 2 . .
Q (C"A)OZ = Q17cag - Qcpg + Qlg - 11 + Ny (11.9)
2 2 t
0} 003 = --{) c3g - 913 + N3 dt’',
0

where the dot indicates differentiation of the designated
variable with respect to time, and o, = ((C - A)Q)/A is a
frequency parameter of the wobble. The r subscript denotes
that a "rigid” earth is being modelled. Equations (I1.7) are
very simplified descriptions of the Chandler wobble; they

do not model: the effects of an elastic earth on wobble;

the lack of participation of the core in wobble; the effects
of oceans; solid--fluid interactions at the core-mantle
boundary, etc. For further explanations about the pre-

ceding effects, please consult Lambeck (1980), Smith and



Dahlen (1981) and Dickman (1982).
Equations (JI.7) govern the polar motion of our earth

model, while equation (II.8) characterizes earth rotation.

my , mp are the parameters typically measured and

used to describe polar motion. The excitation functions
¢, , ¢, , 03 are not simple, and their earthly sources
are even more difficult to pin down. The atmosphere and

earthquakes are possible sources of excitation, for example.
The coordinate system first conventionally used for polar
motion measurements was that defined by the International
Latitude Service (ILS), an organization which made polar
motion observations. The x3 (polar) axis of the ILS
system (determined from the mean latitudes of five ILS
observatories from 1900-1905) is called the Conventional
International Origin (CIO). The x; and X, axes are
oriented along the Greenwich meridian and 90 degrees West
meridian, respectively, thereby completing the triad.
By conveantion, my; is taken along the +x; direction and my
is in the -xp direction.
This is a good opportunity to illustrate how the effect

of an earthquake would appear in measured polar motion

results. 1t is common to express the components of wobble
(my, mpy) as a complex number: m = my + 1 mp
(also @ = ©1 + 1i05). An equation for polar motion

as a function of modified excitation function terms is

presented in Munk and MacBonald (1960)
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m(t) = exp(iogt){mg —~iog Y(t)exp(~iagr)dr}, (11.10)

where mg is complex (mg=initial wobble amplitude), and

og is a wobble frequency term. Y and oy are modifi -

cations of ¢ and o., which account for the fact that the
elastic earth deforms in response to its rotation. Thus the
complex equation (I[.7) for a rigid earth, mo = ig.(m-0)

can be extended to the case of an elastic earth

m o iog(m - ¢), where m, ® and ¢ are complex (Munk and Mac
Donald, 1960; Lambeck, 1980).

One can model the earthquake excitation Yy as a Heaviside

step function, JH(t),

0 , t<O
JH(t) = (171.11)
J , t20
where J is a complex constant. The step function is useful

as an approximation of the earthquake excitation function
because mass movements associated with the release of
elastic energy during a seismic event should occur in a
time short compared with the period of the Chandler wobble

(Mansinha and Smylie, 1970). The earthquake occurs at time

t=0. Thus for t < 0O

m(t) = mg exp(iogt) (11.12)

and for t 2 O

11



m(t)=mgexp(iogt) + J(1-exp(iagt)). (11.13)

There is no change in rotation pole position at t=0 since
m(t) is continuous. However, the pole about which the polar
motion is taking place (the secular pole) does change as
does the radius of the polar motion about this new pole,

and thus m has a change in curvature.

The effect of a hypothetical earthquake and its
associated mass shift on polar motion is shown in Figure 1,
taken from Mansinha and Smylie (1970). A kink occurs in the
path of the pole at the time of the earthquake, and the
radius of the polar motion about the secular pole may also
change. The kink is not a step discontinuity in the polar
motion, even though the excitation function is discontinuous.
It has been difficult to resolve kinks in existing polar
motion data (Haubrich, 1970). It may be possible with Kalman
filtered VLBI data in coincidence with a sufficiently large
earthquake. The application of Kalman filtered VLBI data to
the study of earthquake excitation of Chandler wobble is the
central theme of this work.

The Chandler wobble is driven by some mechanism (or

mechanisms) and one would expect such an oscillation to be

damped by other physical processes. Likely damping processes
include mantle anelasticity and "... a non-equilibrium
oceanic response to wobble." (Dickman, 1986; see also Smith

and Dahlen, 1981). The Chandler wobble quality factor, Q,

which is used to characterize Chandler wobble (fractional)

12
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energy dissipation, has been estimated by various techniques

to be in a (preferred) range of 30 to 170 (Dickman, 1986).
The value of Q is directly proportional to how long it
would take to damp out the Chandler wobble. A Q of 100
corresponds to a damping time of roughly 38 years. The
excitations applied to the earth must be sufficient to
drive the Chandler wobble to observed excitation levels,
and one must account for losses in the driven earth system,
due to damping mechanisms, when one is trying to evaluate

the excitation sources.
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Chapter III.

KALMAN FILTERING AND SMOOTHING

This section describes the merits and structures of
Kalman filters and smoothers. Since the time of Gauss,
scientists and engineers have used least squares analysis of
measurements to provide best estimates of parameters of
interest. Least squares is applicable when the statistics
of an observable of interest are stationary. Data are
handled en masse and a single set of parameter estimates and
their statistical uncertainties is produced by the least
sgquares analysis. This procedure works wonderfully for
instructional physics-laboratory excercises in which one
measures the dimensions of say, a metal block; but it leaves
something to be desired in cases where dimensions are
changing in time, such as finding optimal estimates of the
distance and velocity of a rocket which has just been
launched. The Kalman filter algorithm was formulated in
early 1960's (Kalman, 1960; Kalman and Bucy, 1961) to deal
with such situations.

A Kalman filter is a recursive optimal estimator for
parameters of interest. Rather than forcing statistical
moments of observables to be stationary, the filter uses the

modelled physical dynamics of a given problem to provide

15



optimal estimates of parameters of concern in the time domain.

However, how optimal a parameter estimate turns out is
dependent on the accuracy and completeness of the physical
models employed in the filter. In general, measurements are
handled sequentially, and from a series of measurements, the
Kalman filter gives a series of parameter estimates in time.
For instance, in tracking a rocket each range measurement
input into a Kalman filter will produce an optimal estimate
of distance and velocity of the rocket from the filter
shortly thereafter. This process can continue in a
recursive manner until the payload has returned to earth.

It should be noted that Kalman filters are limited in
application to systems which satisfy the assumptions on
which such a filter is based. The main assumption is that
the Kalman filter be applied to systems which can be
modelled as (mathematically) Markov processes (for details
see Jazwinski (1970)). In addition, Kalman filters are
particularly useful in describing stochastic processes
such as white noise, random walks and integrated random
walks. The filter may fail when other stochastic behavior
operates; in such cases other optimal estimation techniques
should be sought.

The criteria for how optimal a Kalman filter is, are now
defined. The optimal estimates of the filter or smoother
should be unbiased, of minimum variance and consistent; that
is, the estimates should achieve the true value of a

parameter as the number of measurements increases (Gelb,

16



1974). The meanings of unbiased and minimum variance are
evident.

Before too much confusion is introduced by use of the
words filter and smoother, let each be defined. A filter
can produce estimates actively during the time over which
data are being taken. A smoother is generally applied to
data after the data have already been taken. Pictorial
definitions of filtering, smoothing and prediction are
displayed in Figure 2 (Gelb, 1974). Both Kalman filters
and smoothers will be developed in this work.

It is instructive to begin by looking at the more
familiar least squares analysis. An attempt will be made to
follow the mathematical notation of Jazwinski (1970). In
this dissertation (especially for Kalman filter notation)
capital Roman letters represent matrices and small Roman
letters are used to denote vectors. One can describe the
linear measurement process of an experiment by the

following equation

vy = Mx + v (111.1)

where y, x and v are column vectors and M is a matrix. In
the equation above y is a (m by one) vector of measurements
made in an experiment, X is a (n by one) vector of the
parameters to be estimated (the ultimate results of an
experiment) and M is a matrix (m by n) of factors (partial

derivatives if the problem is non-linear) relating the
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measurements to the parameters. v is a (m by one) vector of

measurement "noise” or uncertainty. n and m are positive

integers.

An optimal, minimum variance estimate of X, namely X, is

desired. Using the method of Gelb et al. (1974), one finds
{8 by calculating the value of x that minimizes the scalar

cost function (net squared estimation error), J
J = (y - MX) (y-MR) (111.2)

where the raised-T denotes matrix transpose. The result of

this procedure is

£ = (M) My. (171.3)

The -1 exponent refers to inversion of the matrix in paren-
theses. Thus, the sum of the squares of the (y - MX)
elements has been minimized in accordance with the defini-
tion that the optimal estimate be of minimum variance.
Equation ([II.3) gives the best estimate of x for the case
of unweighted least squares only.

Equation ([II.1) is very close in form to the measure-

ment equation of the Kalman filter. The discrete form of

the Kalman filter is taken (as modified) from Jazwinski (1970).

More complete descriptions of the filter can be found in
Jazwinski (1970), Gelb et al. (1974) and Brown (1983). The

equations which comprise the Kalman filter algorithm are
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derived in Appendix 1. The Kalman filter measurement

equation is

Vk = M(k)x) + vy (111.4)

where yi, M(K), xig and vy are the same as for the least squares
variables, except that the indices k refer to the time at
which the observation was made. Consequently, time(ktl)=ty,.4

is the observation epoch directly and temporally after

time(k)=t). For Kalman filtering, the time interval
tk+1 - tk does not have to be equal to the previous interval
tk - tkg-1. All (1I17.4) describes is the measurement

of data vector yk, which is related to the parameter vector
Xk, With the noise vector vi influencing the measure-
ment process at the observation time ty.

In contrast Lo least squares analysis, an assumption of
stationarity is not required in the Kalman filter. Rather,
the dynamical variations in the parameter xi are

modeled using the state vector model (Jazwinski, 1970)

Xk+1 = O(k+1 Kk)ixp + I'(k)wg (I11.5)

Xk+1 18 the parameter at time ty,; and xyi is the
parameter at time t). O®(k+1,k) is an (n by n) state
transition matrix describing the deterministic variation
in x going from time ty to ty,;. Wy is the state vector

which models stochastic variations in x, and (k)
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is the matrix which relates wy to x. Equation (III1.5),
as posed, thus models both the deterministic and stochastic
dynamic variations of x in time.
For completeness, the properties of the "noises"”
Vk, Wk are defined to be as follows (Jazwinski, 1970),

where E{*} is the expectation value of *

E{wg} = 0 , E{vk} = 0;
T \ T .
E{wygw) }=Q(k)bk]., E{vkv] }=R(k)0k) (111.6)

and R(k)>0.

Again O8k; is a Kronecker delta, Q(k) is a system noise
covariance and R(k) is a measurement noise covariance.
The first four relations suggest that wg and vy are
zero-mean, non-stationary white noise processes. The fact
that R(k)>0 helps to assure that the Kalman filter does not
diverge as it is applied. Equations (III.4), (III.5) and
(I11I1.6) are the system model of the discrete Kalman filter.
X(k|k) and P(k|k) are the Kalman filter analogs to
average values and variances of parameters In least squares
analysis. K(k+1) is the gain of a Kalman filter and is
quite similar to the gain of an electronic amplifier. The
notation (k|k), (k+1|k) which follows many of the Kalman
filter symbols merits explanation. The (k]k) notation is
simply that of conditional probability. R(k|k) is the

optimal estimate of x at time tk conditioned on the
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information in the previous measurements through yp.
X(k+1lk) is an optimal estimate at time ty,; of the
state parameter X based on the information of measurements
Vk; since measurement yyi,; is not included in the
measurement yi, X(k+1|k) amounts to a prediction of
of the estimate x at time ty,; based only on measure-
ments through y=yg. The notation is similar for error
covariance P. Also, a small k in single parentheses
following a variable, (k), denotes that the Kalman variable
is at time ty.

The operational steps for a discrete Kalman filter are

(Jazwinski, 1970)

(1) Store the state of the filter [&X(k|k).P(k|k)]): (II1.7)
where P(k|k) is the error covariance of &(k|k).

(2) Project the filter state forward in time (a prediction

step)
K(k+1]k) = 0(k+1,k)R(k|k) (111.8)

(3) Project the error covariance matrix forward in time

(another prediction step)
P(k+1|K)=0(k+1,k)P(k|k)OT (k+1,k)+I'(k)Q(k+1)I (k)  (II1.9)

(4) Determine the Kalman filter gain matrix, K
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K(k+1)=P(k+1|K)M' (k1) (M(k+1)P(k+1]k)M (kr1) (101.10)
+R(k+1)) !
(5) Combine measurement information yy,q with the projected

state X(k+1]k) to form the optimal state estimate at

time tg,,

R(k+1|k+1)=R8(k+1|k)+K(k+1){yy+1-M(k+1)R(k+1|k)} (I11.11)
(6) Update the error covariance matrix

P(k+1|k+1)={I—K(k+1)M(k+1)}P(k+1|k){I-K(k+1)M(k+l)}T(II[.12)

F K(Kk+1)R(K+1)K (k1)

(7) Go to the next time step by setting k=k+1, and return to

step (1) of this procedure. (IT1.13)

Filter steps (1)-(7) are now explained. X(k|k) and P(k|k)
are the most recent estimates of the state vector and its error
covariance. They are stored in step (1). If one is just
starting the Kalman filter X(k|k)=xg and P(k|k)=Py, where xg
is the vector of initial state conditions and Py is the
initial condition of the error covariance. Usually xg and
Py can be crude guesses of x and P or they can be based on
a priori information. If one has no a priori knowledge of
the value of parameter x, one should specify Py to be very
large as an approximation to infinity. In filter steps (2)

and (3), one uses the deterministic state transition matrix
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®(k+1,k) and the stochastic system (process) noise covari-
ance Q(k+1) to predict (project forward in time) the state
of the system in the future, {&(k+1{k),P(k+1]/k)}. This
procedure relies on accurate system modelling (equation
I11.5) to achieve consistent estimates. The filter utilizes
all the physical information about the system to estimate
state values and their uncertainty in the near future, i.e.
the next time epoch tig,7. @® = I (I is an identity matrix)
means that Xy,q = Xx Is constant in time (if no

random forcing is assumed), and Q = 0 implies that the
parameter vector Xy being estimated is strictly deter-
ministic.

In step (4) the gain matrix is computed. Clearly the
gain combines the predicted covariance of the estimates
P(k+1]k) and the measurement noise covariance R(k+1). The
gain is the multiplier which determines how much the
predicted parameter estimate X(k+1]k) will be adjusted when
the next parameter estimate X(k+1|k+1) is made.

Finally, the updated parameter estimate %X(k+1|k+1) and
covariance P(k+1|k+1) are calculated in steps (5) and (6) of
the filter. These are the best estimates of x and P for time
step tyg,q1. In step (5), [yk+1 - M(k+1)R(k+1]k)] is a quantity
called the "innovation"” which reflects the difference between
measured data yyx,; and the modeled predictibn of what the
observation should be. Compare the innovation with the
measurement equation (III.4). Step (5) modifies the predicted

parameter estimate X(k+1}k) by adding to it the product of
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the gain and the innovation. Thus, the final state estimate
at some time includes the most recent measurement information.
Filter step (6) and its meaning are more complex than step (5).
If the gain were zero, P(k+1jk+1) would simply be equal to its
predicted value P(k+1|k). At the end of the filtering
process, k is set to k+1 and the recursive fiiter loop

begins again, and continues until the last measurement is
processed.

It is apparent that a matrix inversion is required in
step (4) of the filter, and one would like to avoid such
inversions if at all possible. Inversions take time to do
and may fail computationally. In the case of application
of the Kalman filter to VILB1 delay data, matrix inversion
can be avoided if VLBI delays are the only measurements
utilized in y. The concept of a VLBI delay will be
described shortly. It is sufficient to know that the delay
is indeed the primary observable in VLBI data acquisition.
Thus, for VLB[ delay analysis, yx becomes a scalar (m=1),
and the matrix inversion of filter step (4) becomes a simple
division.

However, multiple delays are usually measured at a given
time ty, presenting another barrier to avoiding the inversion
(m #1). An "iterative" approach for handling multiple
measurements is cryptically outlined in Jazwinski (1970).

To implement this, one must first model the measurement
noises vy as uncorrelated. This allows one to process

each delay at ty in a one-at-a-time fashion through the
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filter loop. Then, one proceeds through steps (1)-(7) for a
single delay, and thereby yk is now most definitely a scalar.
The procedure for avoiding the inversion follows.

During the first run at time ty through steps (1)-(7),
the state transition matrix ¢®(k+1,k) and system noise‘
covariance Q(k+1) use their values as normally calculated
(as calculated using the non-iterative Kalman filter).
However, upon completing this iteration, the time step is
not increased from k to k+1. Rather, the filter is forced
to stay at time tyg. Now the second measurement at time ty
is filtered (steps (1)-(6)), but ®(k+1,k) is set to
identity (I) and Q(k) is given zero value. This is because,
while the filter is iterating within multiple delay data at
time tg, the state vector x should not change determinist-
ically (thus ® = I) nor stochastically (thereby Q = 0).

Once all the delays at time ty have been filtered, the logic
of this paragraph is repeated at time tig,q. and so on. The
iterative filter can thereby loop through uncorrelated
measurement data without the added need of calling an inver-
sion subprogram into use.

The linear Kalman filter outlined in equations (I11.7)-
(III1.13) works well for linear physical problems. The
procedure which makes the Kalman filter suitable for non-
linear applications is termed "linearization" and while
many authors do not describe it in the literature because
linearization supposedly is widely known, it will be

outlined briefly here for completeness.
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Continuous (as opposed to discrete) non-linear system
equations analogous to the linear system equations (III.4)

and (III.5) from Jazwinski (1970) are

y(tg) = h(x(tg);ty) + vy (I111.14)
dXt
and - = f(X¢,t) + G(t)wg. (111.15)
dt

v(tg) is the continuous measurement vector, h(x(tg),tyg) is a
non-linear measurement function and vy is the measurement
noise. x¢ is the continuous parameter vector, f(x¢,t) is the

non-linear state dynamics function and wy is a white Gaussian

noise of zero mean. G(t) is the matrix which relates the white

noise vector to the parameter vector.

Equation (III.14) can be linearized by proposing the
existence of a reference measurement ;(tk) = h(;(tk).tk),
where the bars over y and x denote reference values. In
essence, one assumes reference values ; and x which approx-
imate the non-linear behavior of y and x. Subtracting the

reference value ; from both sides of equation (11I1.14), one

finds

v(tg)-y(tg)=h(x(tg), t)-h(x(tg), tg)+vg (I11.16)

[f one defines the variation in the measurement y(tg) from

the reference value ;(tk) as
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by (ty) = y(ty) - y(tg) (I11.17)

and then assumes that the difference between actual and
reference measurement functions can be represented by the
first term of a Taylor series expansion

dhj(x(ty),tg)

h(x(tg)ity)-h(X(ty),tg)= ox(ty) (I11.18)
Jx
J

where 6xy = x¢ - x(t), (111.19)

then the new measurement perturbation equation is

Oy (ty) = M{ty:x(ty)}ox(ty) + vy, (111.20)

_ dhj (x(ty);ty)
and M{tg;x(tg)}= . (I11.21)
8XJ'

The variation in measurements O6y(tyg) is related to the varia-
tions in parameters 6x(tg) by the matrix of partials M. In
awesome fashion, the non-linear equation (111.14), which
describes behavior of the total measurement y(tg), has been
converted to an equation of Kalman filter measurement form
(see equation 111.4). Equation (I1I11.20) deals not with

the total measurement y(tg), but with the variation in the
measurement dy(tg). Also equation (III[.20) is already

in discrete form.

Linearization of equation (I111.15) is somewhat more
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difficult. The reterence value in x is given as

dx(t) B
= f(x(t),t). (111.2

N
~—

dt

Subtracting (I¥1.22) from (III.15) one finds

d

(Xe-X(t))=T(x¢, 1) T(X¢, t)+G(t)we. (111.28)
dt

Employing definition (II1.19), the relation

_ af j(x(t).,t)
f(x¢, t)-f(x(t),t)= 6X ¢ (I11.24)
0X ;i
J

and defining

_ 3L (x(t),t)
F{t;x(t))

- (111.25)
8xj
(Jazwinski, 1970), one finds
d(6xy¢) _
—_— = F{t ;x(t)}0x¢ + G(t)wg. (111.26)
dt

(I111.26) is still a continuous state equation and must be
converted to discrete form. Details of the discretization
procedure occur later in this work and will not be given here.

The discrete version of (II[.26) is (Jazwinski,1970)

BX(Liag) = O(tpsq  ty:iX(ty))ox(ty) + Wlty,q) (I11.27)
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Equation (1II1.27) bears no small resemblance to equation
(III.5), but now the x variation, 06x, is being modeled as
opposed to x-total.

The state equations (I11.20) and (111.27) are very much

like (III.4) and (III.5). It can be shown (Jazwinski, 1970)

that
R(tpltp)=x(ty) + 6R(ty|ty) (111.28)
and that the covariances of x and 6x are identical. The

preceding facts allow one to use the linear Kalman filter
(steps (1)-(7)) to optimally estimate parameter variations
and the covariance of these variations for the system of
linearized equations (I111.20) and (IIJ.27). This lineari-
zation scheme will work as long as the approximations in
(111.18) and (I11.24) hold true. One may have difficulty
applying steps (1)-(7) to a strongly non-linear physical
system, and other more sophisticated forms of filters such
as the extended Kalman filter and adaptive Kalman filter may
be needed (Jazwinski, 1970). Fortunately, the Very Long
Baseline Interferometry (VLBI) state and measurement system
equations are only weakly non-linear (Ryan, 1984) and steps
(1)-(7) are very applicable.

The last segment of the Kalman filtering and smoothing
chapter is devoted to the latter topic. VLBI parameters are
not estimated in real time, and data from VLBI observing

sessions are available for analysis only long after a
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session is concluded. Thus it would make more sense to
smooth VLBI delay data instead of only filtering it.

The "fixed-interval" smoother is the Kalman smoother of
interest here. It is applied to a total data span of
fixed duration, typically one day long in the case of VLBIJ]
observations. The time interval between data points is not
necessarily constant. The following development of the
smoother is adapted from Brown (1983). This fixed-interval
smoother was developed by Rauch, Tung and Striebel (1965).

Consider a data set containing N+1 points. One applies
the Kalman filter (steps (1)-(7)) in a forward direction
(time progressing in a natural sense). As the process
continues, the optima) filter estimates X(k|k), X(k+1{k) and
the associated error covariances P(k|k), P(k+1|k) are stored
in memory locations for use in the smoother. The need to
store the estimates and covariances may limit the applica-
bility of the smoother to problems whose x and P values can
be accomodated in available computer memory. As the last
datum is handled by the Kalman filter, the fixed-interval
smoother is turned on. The smoother traverses the data set
in a backward time progression. The smoother then smoothes
the stored optimal estimates and error covariances. The
filtering step is a forward pass through the data, and the
smoothing step is a backward pass through the data.

The first smoothing step uses the last estimates from the
filter, [XR(N|N), P(N|N)], as initial conditions in the

following algorithm. The smoother gain A(k) is first calcu-
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lated

A(K) = P(k|k)OL (k+1,k)P Y (k+1]|k) (101.29)

Next the smoother optimal estimate and error covariance

are calculated

R(KIN) = R(K|K) + A(K){R(K+1|N)-R(k+1|k)) (111.30)
P(KIN) = P(k|k) + A(K){P(k+1|N)-P(k+1|K)}AT (k) ([11.31)
where k = N-1, N-2, ....,0. Egquations (I11.29)-(111.31)

are the complete, discrete, fixed-interval smoother algo-
rithm. The smoother has no prediction steps like the Kalman
filter; all the data which are to be processed are left from
the filter. Another point is that the optimal estimates
X(k|N), P(k|N) are undeniably the result of smoothing since
estimates at time ty are based on N observations, as is
indicated by the algorithm. Also note that a matrix inver-
sion is present in the gain calculation, and that it caannot
be avoided by iterative handling of the measurements as was
possible in filtering. The state transition matrix ¢ should
be calculated as was done for the iterative Kalman filter,
but note that the smoother traverses the filter estimates in
reverse time order.

The smoother state parameter estimate X(k|N) is some

modification of the filter estimates X(k|k) by a factor
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employing the product of smoother gain A(k) with some
differential variable, which is the difference of a filter
estimate and a smoother estimate, [X(k+1|N) --&(k+1]|k)].

The smoother covariance P(k|N) is calculated similarly to
X(k|{N), with slight additional complexity because P(k|N) is
a matrix, not a vector like X(k|N). While the smoother
involves fewer calculational steps than the filter, prac-
tical difficulties arise because one must store filter
information for smoothing, and one cannot avoid performing
matrix inversions while recursively smoothing.

The smoothing estimates [X(k|N), P(k|N)] should
generally be more precise than the filter estimates,
[&(k]lk), P(k]jk)]. Figure 3 illustrates how the mean square
error estimates of a Kalman filter and smoother may compare.
Smoothing results in a smaller mean square estimation error
than either forward or backward filtering alone, but as
always there is a concomitant loss of resolution. In this
work, the forward filter used with the VLBI group delay data
will be iterative and linearized as has been described
herein. The smoother will also deal with linearized varia-
bles and will be of the fixed-interval type producing opti-

mal estimates of parameters of geophysical interest.

33



5 /
& /
r4

3 /
<

2 FORWARD BACKWARD /
Sk —_  FLUERNG FILTERING

= ~ [ P {t)

E ~ (t) U

- s

> /,/

3 —

r4

<

[T¥]

b3

TIME ————>
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Chapter 1V.
FUNDAMENTALS OF VERY LONG BASELINE INTERFEROMETRY

Very Long Baseline [nterferometry (VLBI) was a child of
the 1960's, matured in the 1970's and is producing results
in the 1980's. It is a radio astronomy technique which
provides very precise values of parameters of astronomical,
geodetic and geophysical interest. Using VLBI, distances
between two points on the surface of the Earth can be
measured to a precision of several centimeters over a length
of thousands of kilometers. Positions of quasi-stellar
objects {(quasars) in space can be determined to about one
mas, which is a factor of 10 to 100 better than other current
astronomical techniques. With VLBI, one can look at contem-
porary plate tectonic motions instead of several-million-
year averages. Earth orientation angles and rotation rate
can also be found to high precision. This chapter describes
VLBI in some detail, so that one can understand the technique
and its associated complexities. Many other reviews on
VLBI are available in the theses and papers generated by the
East Coast VLBI Group (U.S.A). For example, see Robertson
{1975), Ma (1978), Herring (1983) and Lundqvist (1984).

Much of the VLBI work which is germane to geodesy, plate

tectonics, and tectonic plate stability is performed under
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the auspices of the NASA Crustal Dynamics Project (CDP).
VLBI measurements will be regularly made via the CDP until
at least the year 1990. VLBI is occurring between points
on the North American continent, Hawaii, Japan, Europe,
Kwajalein, etc. The majority of these observations are
carried out by groups affiliated with the East Coast (U.S.A.)
VILBI group or NGS (National Geodetic Survey).

Earth orientation VLBI measurements are carried out
at least once every five days by the IRIS (Internmational
Radio Interferometric Surveying) network with stations in
Massachusetts, Florida, Texas, Sweden and Germany. The
measurements of the IRIS network have effectively been
carried out since early 1984, The 1RIS data set of 1984-
85 will be the primary object of analysis of this research
work.

Simply put, VLBl is an interferometric experiment over
a very long baseline (or baselines), which is usually a line
between two surficial points on Earth of length up to about
10,000 kilometers. The signals for the interferometry
are radio wavelength and are generated by quasars and other
distant radio sources. A radio signal arriving at the earth
from such a source can be well approximated as a plane wave.
The radio signals can be received by radio antennas and
recorded with precise time information. If the respective
arrival times at several antennas of a given wavefront from
a radio source can be determined, then one can find the

difference in arrival time at one station with respect to
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another.

This difference in arrival time is called the delay, and
results from one VLBI antenna being closer to the source of
the plane wave than the other antenna. The delay provides
information on the distance between the two stations, and on
the orientation of the baseline with respect to the source.
"The technique can be likened to the manner in which two
blind people far apart on a beach can learn the direction
from which waves are coming. If they recorded the exact
time when each wave reached the toes of each observer they
could determine the angle of its arrival.” (Sullivan, 1984).
They might also begin to know the distance between themselves
after the arrival of many waves. Of course the previous
thoughts are severely simplified.

The simple geometry of a single baseline delay measure-
ment is shown in Figure 4 (Ma, 1978). The bascline B
connects the two VLBI stations and S is the unit vector
pointing from earth to the radio source. D is the distance
most directly associated with the delay being measured; an

incoming plane wave traverses distance D during the delay

time. The plane wave arrives first at station one, which
is the VLBI station closest to the source. The plane wave
then arrives at station two. The radio signals are

recorded independently on tape recorders at each station.
A clock, usually a hydrogen maser time and frequency
standard, is used to determine the time of plane wave

arrival at each station. The tapes from each station are
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sent to a "correlator"” where the delay between the arrival
times is found precisely. VLBI differs from connected-
element interferometry in that the endpoints of the inter-
ferometer are not connected electrically. A maser at each
VLBI station provides time information on the data tapes to
permit comparison of signal arrivals long after an experi-
ment is run.

The geometrical delay, Tg. associated with the

station geometry (see Figurec 4) is

Tg = —— (1v.1)

whére ¢ is the velocity of the plane wave and the dot
denotes a dot product of two vectors. The geometrical
delay is simply the distance D travelled by the plane wave
between the two stations -divided by wave velocity. The

angle between vectors B and $ can be estimated using
relation (IV.1).

While the fundamental physics of VIBI is trivial,
real world phenomena make VLBI modelling complex. The earth
rotates as each delay measurement is made; so the VLBI
observation geometry is not constant in time. The geometric
delay changes temporally, and the motions of the stations
cause Doppler shifts of the incoming radio signals. The
earth wobbles with annual and fourteen-month periods, and
precession and nutation occur. The earth is not rigid

in general, and effects of earth and ocean tides on VLBI
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observations must be modelled. The incoming radio waves
traverse the ionosphere and troposphere, and propagation
through these media affects the measured delays greatily.
Most of these effects are well described in Ma (1978),
Robertson (1975) and Lundquist (1984).

Herring et al. (1985) give a very clear description of
several coordinate systems used in VLBI work and how one
transforms a vector (such as a VLB]I baseline vector) between
the coordinate systems. The reference time epoch used in
VLBI research is based on the year 2000, and is Known as
J2000.0. The time epoch formerly used in VLBI work was

1950. The notation of Herring et al. (1985) differs

somewhat from that used in this dissertation. by is

B2poo herein; by (Herring) is Bierrestrial

herein. The polar motion components Xp and yp are

Xxgry and ygiy herein. The mean obliquity of data

(€g Herring) is given herein as €. Little else is
different. The passage from Herring et al. (1985) follows.

In this appendix we discuss in detail the rota-
tion matrices which are used in our analysis to
transform between 'crust-fixed' and inertial coor-
dinate systems. Our terrestrial coordinate system
is defined by a set of site coordinates which would
be invariant with time if there were no tectonic
motions of the VLBI sites. From these site coordi-
nates we compute the vectors between the sites, b,
in the crust-fixed coordinate systenm. For the central
epoch of each observation (typical duration 100-400
seconds), we compute the displacements of the sites
due to the solid earth tides using the algorithms
discussed in Herring et al. 1981. These displace-
ments are added to b to yield by = by +
ue, where ug is the (three dimensional) earth
tide displacement computed from a planetary ephemeris
of the sun and the moon, and the Love numbers h=0.609
and 1=0.085. (We assume zero phase lag.) We now
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apply a sequence of rotations to the coordinate system
in which by is given to determine the coordinates

of the baseline in inertial space, b;. This

sequence of rotations is:

bj = PNSW byg. (A.1)

We now discuss each of these rotations. We give
firstly the expression used in evaluating the elements
of the rotation matrices. We then discuss the
physical significance of the transformations. In

our discussion we will use the standard rotation
matrices (Goldstein 1950, p. 109):

i 0 o0 ¢ 0 -S§
Rx(€) =10 € S|, Ry(§) =l0 1 o},
0 -S ¢C S 0 C
cC § o0
R,(§) =|-§ ¢ o0 |,
o 0 1
where C = cosg , and S = sinf , and £ is the argument

of the rotation.
We discuss the rotations in the order in which they
are performed. The W matrix is given by:

W = Rx("yp)Ry(xp) ’ (A.2)

where x, and Vp describe the pole position

(see later discussion) with the sign convention used
by the BIH. The S matrix is given by:

S = R,(~GAST) |, (A.3)

where GAST is Greenwich apparent sidereal time given
by:

GAST = GMSTg + [d(GMST)/d(UT)] UT1 + A ycos €, (A.4)

where GMSTg is Greenwich mean sidereal time at

0 hr UT, d(GMST)/d(UT) is the derivative of GMST with
respect to universal time, UT (Aoki 1984), and Aycoset
is the 'equation of the equinoxes' with Ay being the
total nutation in longitude of date and € being the
true obliquity of date. The N matrix is given by

N = Rx(—eo)RZ(“AL.IJ)Rx(GOFAE) , (A.5)
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where €3 is the mean obliquity of date, and Ay and A€
are the nutation angles computed from the ITAU 1980
nutation series (Wahr 1981, Seidelmann 1982). The P
matrix is given by

P = Rz(ga)Ry("ea)Rz(za) , (A.6)

where {,, 64, and z, are the standard
arguments for precession (Lieske et al. 1977).

We now discuss the meaning of the transformations
given above. The W rotation moves the pole T of the
terrestrial coordinate system to the pole R of an
intermediate coordinate system (see Figure A.1)[Fig.
5 1. The pole R is approximately coincident with the
pole of the instantaneous rotation axis (we discuss
later in the appendix the specific definition of R).
The S matrix rotates the coordinate system about the
R pole. The combined PN matrix moves the pole R to
the pole I which would be fixed in inertial space if
the arguments of all of the transformations were
correct. If we use the TAU [International Astronomi-
cal Union] 1980 nutation series in the evaluation of
N, the PNSW transformation is not exactly correct
because we perform the sidereal rotation about the R
pole rather than about the earth's_ instantaneous
rotation axis, R . However, the R pole
moves relative to the crust with approximately a
diurnal period under the action of the external luni-
solar torques and, hence, in addition to the W trans-
formation (whose arguments are assumed to change
slowly compared to the diurnal period), we would need
to apply another transformation, the diurnal-polar-
motion (DNP) transformation (Kinoshita et al. 197Q).
Through second order in the separation of R and R
{maximum separation 25 mas), this latter technique
yields the same transformation as the technique of
rotating about R (see discussions in Kinoshita et al.
1979 and Seidelmann 1982). Consequently, the axis for
which the nutations are calculated is onme which would
be fixed relative to the crust of the earth if the
earth were not undergoing free motion. This axis is
the axis of figure of the Tisserand mean outer surface,
or simply, the 'body axis' (Wahr 1981). The inter-
pretation of x,, and y, is more complicated
than that for the nutation angles because the polar
motion is composed of two types of motion: the free
motion (Chandler wobble), and the forced motion
(which has an approximately annual period and is due
to interactions between the solid earth and the
atmosphere/ocean system).

Herring et al. (1985) make corrections to the 1980 IAU

Nutation Theory. A clear account of the physics of
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precession and nutation can be found in Stacey (1977).

Now that the various transformation matrices and
reference frames have been formulated, one should have
sufficient courage and background to be exposed 1o the
actual delay expression, which differs from the simple geo-
metrical delay Tg (Iv.1), due to Doppler and rotation

effects etc. It is (Robertson, 1975)

T =tg-R-{Ra-Ry}-{R'Ra+R-Rp}1g+ (LPT)Tq (1v.2)
where
tp=(Ry-Rp)-S-{(R+Rp) S} {(R;~Rp)-S){1-(R+Rp)-$} (1V.3)

S(1/2){(R+Rp) S} {(R;-Rp)-8}2 + 1,.

The variables of (IV.2) and (IV.3) are defined here (Ma,

1978)
T = the delay (usually in nanoseconds)
R = solar system barycentric position of the earth's

center
R{= geocentric position of station one (see Figure 4)
Ro= geocentric position of station two
S = unit vector directed from earth to source
Tp= propagation media delay

LPT :: Long Period Terms (explained in Ma, 1978).

Dots over variables indicate differentiation with respect to

coordinate time. Dots between variables denote dot products.

Expressions for the delay rate, <t,
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they will not be used in this work; the delay rate equations
can be found in Ma (1978). The value of the velocity of light
is set to unity (c=1) in expressions (IV.2) and (IV.3).
From (1V.2) and (IV.3) it is evident that the delay
t is directly proportional to the simple geometrical delay
(IV.1), which is (R; - Rp)+S, because baseline length B
= Rg- Rjy. Also the delay is directly proportional to
the propagation media delays, t,, which makes sense.
Equations (1V.2) and (IV.3) include terms resembling
velocities (ﬁ,ﬁl,ﬁz) and accelerations (ﬁ,gl,gz)
which are due to a Taylor expansion procedure in the
derivation of the delay. For the details see Robertson
{1975). Equations (IV.2) and (IV.3) are approximations
which neglect terms of order less than 10"15 seconds in
delay (Robertson, 1975). This approximation is reasonable
because group delay residual standard deviations are
generally on the order of 100 picoseconds or less.
Relatively little has been said about the general method
of determining the observed delay. For the moment, let the
group delay be designated by the symbol At. t will be used
again later to represent the group delay. The delay between
plane radio wave arrivals at two VLBI stations can simply be

expressed as (Shapiro and Knight, 1970)
cAt = n\ + O6N; 0O < 86X < \. (1v.4)

where ¢ is the velocity of the radio waves, n is an integer,
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A is the wavelength of the radio wave of concern, and 6\ is
some fraction of a wavelength. Note that the case of a non-
dispersive radio wave is being treated here. Clearly, the
propagation distance, cAt, between two stations can be

thought of as a combination of integral and fractional

wavelengths, as (IV.4) suggests, Using the relation
f = ¢c/)\, where f is frequency, one can convert (IV.4) to
2rf At = 2an + O (IV.5)

where ¢, the phase, is given by ® = (2rxd\N)/\.
Differentiating (IV.5) with respect zo frequency, one

can readily find (Shapiro and Knight, 1970)

do

-— = 2rAL. (IV.6)

df
Thus if one has phase information as a function of radio
frequency, one can readily determine the group delay, At.
The slope of the phase vs. frequency determines the group
delay. VLBI observations are commonly made at multiple
frequencies within two wide bands of radioc frequency known
as (Lundquist, 1984) S-band (2.3 GigaHertz) and X-band
(8.4 GigaHertz). The multiple frequencies within each band
are given in Lundqvist (1984). The technique of determining
group delays from phase observations at multiple frequencies
within wide radio bands is called "frequency synthesis".

The technique is due to Rogers (1970). The reason for
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making VLBI observations in both the 8§ and X bands will be
explained subsequently.
From (IV.6) one can derive an expression for the error
in the group delay, 6At (Shapiro and Knight, 1970)
o0

0At = (1v.7)
2r (fpax " fmin)

60 is the error in the phases ¢ and fy,x., fpi, are the
maximum and minimum frequencies enclosing the frequency
synthesis bandwidth (Shapiro and Knight, 1970). From
(IV.7) it is evident that the error in the delay, 8At, is
independent of the baseline length between two VLBI
antennas.

There is considerable work done in preparing and
executing a VLBI experiment, so it will be instructive to
describe the process. The logistics of the experiment, such
as equipment and personnel dispatching, etc., will not be

mentioned. More than two stations usually participate in an
experiment. The station antennas observe, in unison, about
ten or more radio sources sequentially up to a total of 200
scans in 24 hours. In NASA Crustal Dynamics Program experi-
ments, observation schedules are designed using the GSVC
program SKED with the guidance of a VLBI scientist, and these
schedules are sent in advance to the participating VLBI
stations. Schedules must advise each VLBI station when to
start and stop viewing a source, and these observational time

limits must reflect the times when a given source is visible
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at each station. Sources must be scanned long enough to
produce acceptable interference fringes. There are many
other complexities not addressed here.

The signals received at an antenna are stepped down from

radio to 2 MHz baseband frequencies and the resulting signals

are stored on tapes. Each tape also has time information from
the station maser. Once the experiment is completed, all
the tapes are sent to a correlator location. Crustal

Dynamics Project tapes are sent to the Haystack (Massachu-
setts) correlator. The correlation process and much of what
else goes on in VLBI experiments are described in Ma (1978).
The observed delay for each baseline at each scan is the
ultimate output of the correlator.

The delays are then sent on tape to an analysis team,
such as the VLBI group at Goddard Space Flight Center (GSFC).
Theoretical delays for each baseline are calculated using
the program CALC. The theoretical delays are used as
reference values in a linearization scheme similar to that of
equation (I11.17) and are based on a priori station
positions, quasar positions, UT1/polar motion values, etc.
The difference between the observed delay and the theoretical
delay is called the delay residual. Typically group delay
residuals are analyzed, but phase delay information is
available.

The delay residuals are used to solve (either by least
squares analysis or Kalman filtering/smoothing) for adjust-

ments to the a priori parameter values of station positions,
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earth orientation angles, clock variations etc. The esti -
mation program at GSFC is called SOLVE, and generally a
SOLVE solution requires several hours or more of analyst
time to process a single VLBI experiment. Much of the
analyst's time is used deciding polynomials to approximate
the c¢clock variations (arising from station maser behavior
and other physical phenomena) seen in VLBI residual data.
One goal of this work is to see if a Kalman filter can
solve for clock variations in the time domain with limited
analyst intervention, thus reducing analyst effort and also
eliminating the subjectivity of analyst clock modelling.
VILBI solution results generated by SOLVE are transferred
into various data bases, one of which is openly available to
geophysicists and astronomers. Outside users can use the
information to study current plate tectonics, crustal block
stability, earth rotation and orientation, or radio source
structure and position.

The conversion of delay residual information to VLBI
parameters of physical interest generally progresses towards
solutions with better fits. Many SOLVE analysis sessions
are required before solutions achieve stable form. In
early (initial) solutions, BIH rapid service (preliminary)
UT! and polar motion values are used as a priori reference
parameters. Later, final values of UT1 and polar motion are
taken from the BIH Circular D. Meteorological information
for calibrating the atmospheric delays in the observed

delays is included in SOLVE runs as soon as it is available.
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If the physical models in CALC or SOLVE are improved, new
computer runs are made with updated versions of the
software. The process continues until a solution fit capnnot
be improved, currently less than 50 picoseconds RMS group
delay residual error.

There are some physical phenomena which grossly affect
delay data. The models used by the East Coast VLBI group to
minimize the effects of these phenomena on delays are
described below. These include: the ionospheric correction,
"clock” models, cable calibration, and various atmospheric
models. This section is intended as a brief and contemporary
explanation; some other phenomena affecting delay values,
such as antenna axis offset, are not covered in this work,
and generally can be found in Ma (1978).

It was mentioned previously that VLBI delay data are
taken in two frequency bands, the S and X radio bands. This
is done to remove the effects of the ionosphere on the delay.
Charged particles are present in the ionosphere and delay
incident VLBI signals. Delay due to passage of VLBI signals
through the ionosphere (Tjqon) is frequency dependent

and can be modelled via the relation (Ma, 1978)
2

where k is a constant and f is the observing frequency of
the band of interest.

Following Ma (1978), if ty and t, are the group delays
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observed at frequencies fi1 and fyo (for instance, at X and S

band) and tyotyg)] is the actual group delay with ionospheric

delay removed, then one can write

2
T1 © Tactual ' k/fy (Iv.9)
Ty = Tactual * k/f22 (1V.10)

Since 1y, t3, fy and fy, are known for a VLB] experiment, while
k and tactyal are unknown, there are two equations and two
unknowns. One can solve for k and t,ctyal- With some
slight algebraic manipulation
2 2
(ty-t2)(f1)7(£f2)

k = (IV.11)
(fz)z"(fl)2

and

(v1 - t2)

Tactual = T1~ (Iv.12)

1 - (£1/£5)2
Tactual 18 a single delay deduced from observations at two
frequency bands and is relatively free from any ionospheric
delay contribution.

Once a radio signal has penetrated the earth's iono-
sphere, it must traverse the atmosphere. As the VLBI signal
passes through the atmosphere, the refractive index of the
medium increases, and the path of the plane wave is no longer
straight. Ideal and actual radio signal paths through the

atmosphere are illustrated in Figure 6 (Lundqvist,1984;
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From distant
radio source

Atmosphere

Earth

n*sdS < n + dG

Fig. 6. The signa)l from the distant radio source
will propagate along the path S, instead of the
geometrically shorter path G, to the antenna at
the surface of the earth due to the increasing
refractive index down through the atmosphere
(From Elgered, 1983; Lundgqvist, 1984).
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Elgered, 1983). Clearly the actual curved path travelled
by the radio wave is longer than the ideal straight path that
would be taken if the earth had no atmosphere; thus there is
a delay associated with the propagation of a VLBI signal
through the atmosphere due to additional path length. The
atmospheric delay is roughly due to a dry component, from
the air in the atmosphere, and a wet component, fram
water vapor in the atmosphere (an approximate description).
The additional path length due to the dry component, Lg,

is given by (Moran, 1976; Ma, 1978)

Lq = 77.6 ——E——— Pg (cm), (IV.13)
mg
where
R = 8.3144 x 107 erg/mole = universal gas constant
g = acceleration of gravity (at station) - cm/sec2
m = molecular weight of dry air = 28.966
Pgp = dry air pressure (millibars).

It is much more difficult to estimate the wet component
path length because of the highly inhomogeneous distribution
of atmospheric water vapor. Consider that the determination
of the moisture content in the atmosphere plays a large role
in weather prediction, which is problematic at best. One
might then appreciate the task of estimating the wet compo-
nent path length faced in VIBI. The wet component path
length depends on the amount of water vapor in the direction

of the radio source being observed. A means of determining
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the wet delay observationally using a Water Vapor Radiometer
{WVR) will be set forth later. The wet component path length
is roughly ten-to fifteen percent of the dry component path
length (Ma, 1978).

Even if directly observed atmospheric delay information
is available, one normally adjusts the atmosphere delay in
the zenith direction at each VLBl station. A priori atmo-
spheric delays can be determined using barometric pressure
(air column height) calculations or they can be set at
atmospheric delay values from previous VLBI experiments.

It is desirable to determine atmospheric path delays
independently of VLBI measurements by using WVR's or radio-
sondes, but until recently this has rarely been done.

Several scaling equations relating zenith delay to
actual path delay are, or will be, commonly used by East
Coast VLBI analysis teams. The first is due to C.C. Chao
(1972), and is a modified cosecant function (Flgered and
Lundqvist, 1984)

Ly

L(EL) = . (1Vv.14)
sin(EL) + 0.00143

tan(EL) + 0.0445
where L(EL) is the path length at the elevation angle EL and
where L, is the zenith path length. Elevation angles are
measured relative to the horizon, so that the EL of zenith
equals 90 degrees. The Chao model constants were found by
best least-square fits to radiosonde profile ray-tracing

results (Elgered and Lundgvist, 1984). The Chao model only
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requires elevation angle and zenith delay length for appli-
cation, so it is generally applied to VLBI observations in
which no ancillary meteorological data were recorded.

A more sophisticated mapping function is due to Marini
(1974) for elevation angles greater than ten degrees (Elgered
and Lundqvist, 1984)

1 (A +B) (cm)

L = (IV.15)
f(lat,h) sin(EL) + B

(A+B)(sin(EL)+0.015)

where
A = (2.277x10 3)x(P+(1255/T + 0.05) x e)
B = (2.644x10 °)x exp(-0.14372xh)
h = height of station above sea level (kilometers)
lat = station latitude
f(lat,h)=1.0 - (0.0026 x cos(2 lat)) - (0.00031 x h)
e = water vapor partial pressure (millibars)
P = total pressure (mbar)
T = absolute temperature (K)

Obviously meteorological data must be recorded at the

VLBI observing station in order to apply the Marini model.

1f meteorological data are available, the Marini model is
generally used in preference over the Chao model for atmos-
pheric delay calibration. However, VLBI analysts are free to
choose the atmospheric model that allows the best least
squares fit in the delay residuals.

Davis et al. (1985) give a newer relation between zenith
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path length and path length at a

Ly

specific elevation

(IV.16)

L(EL) =
sin(EL) +

a1

tan(EL) +

az

sin(EL) + ag

where aj;, ap, ag are again determined from best fits to ray

tracings.

than the Chao and Marini models,

This mapping function gives much better results

especially at elevation

angles below about ten degrees (Davis et al.,

1985) .

As was suggested earlier, it would seem better to observe
atmospheric delay directly, and remove it from VLBI data,
than to find the zenith atmospheric delay from VLBI data.
Since the dry part of the delay is readily determined, it
is only necessary to measure the contribution of the wet
atmospheric delay at elevation. The wet delay can be calcu-
lated by inverting brightness temperatures observed at 22
GHz and 31 GHz using water vapor radiometers (Clark et al.,

1985; Resch et al., 1984). Brightness temperature is a

quantity which characterizes the radiation given off by a
black body using Planck's radiation law; in this instance
microwave radiometers scan the radiation given off by the

atmosphere. The water vapor radiometer technique relies on

the fact that a water vapor resonant absorption line exists
at 22 GHz, but not at 31 GHz. Thus the integrated water 1
vapor content along some elevation angle can be estimated

from the brightness temperature results. Several water

i
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vapor radiometers are being tested at Crustal Dynamics
Project (CDP) VLBI stations and should see active duty in
the next several years.

Since WVR data have rarely been available in the past,
it would be useful if some means could be discovered to
retrieve wet atmospheric delay results directly from VLBI
observations, so that VLBI data taken in the past decade
could yield better results. Using a Kalman filter, Davis
et al. (1985) were able to estimate wet atmospheric delays as
a function of time (at each VLB1 observation). These atmos-
pheric delays, formed by Kalman filtering VLBI delay data
only, match well (aside from slight biases) WVR atmospheric
delay results observed independently of the VLBI delays.

VLBI delay observations also include the effects of
"clock"” variations. Such clock variations are time-like
signals which are superimposed on VLBI delay signals; the
clock variations are separated from VLBI signals through
least squares or Kalman filter analysis. Differential
clock variations between stations add directly into the
observed VLBI delays, and are principally due to three
sources: maser time (and frequency) variability, phase
calibration and cable calibration signal failures.

The maser at a VLBI station is used as a time and fre-
quency standard. A precise frequency standard is needed to
step the incoming radio signals down to video frequencies
suitable for recording. The hydrogen masers are typically

stable to one part in 1014 in time, with hoped-for
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improvement by one or two orders of magnitude as supercooled
maser cavities come into operation. However, masers behave
less well if their environment is not thermally controlled
or if they are not isolated from other ills such as stray
magnetic fields. The nuisance signal put into a VLBI
delay by two masers at each end of a given baseline is the
relative time difference between the masers. Most of
the time difference between masers is a "ramp" function in
time (otherwise known as a "rate"). Such a constant change
in maser time as a function of time is due to an offset in
the frequency of each maser, and can also be observed in a
controlled laboratory environment. More often than not, any
non-linearities visible in a maser-maser intercomparison are
due to electronics external to the masers; the masers are
indeed stable to one part in ]014 in time (Chiu, 1984).
Laboratory maser behavior indicates that "clock" fine
structure irregularities usually seen imposed on the
dominant clock rate trend are created by phase calibrator
signal variations or other changes in signal path. The
phase calibrator at a VLBI station generates pulses from
the station frequency standard and injects them into the
main signal path at the feed horn of the receiver. The
phase calibrator pulses then follow the same signal path as
the quasar signals until their recording on magnetic tape
in video format. The purpose of the phase calibration is
to correct for retardation and dispersion in the cable and

electronics as the signal passes from feed to recorder. "The
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arrival time associated with a signal is derived directly
from the phase calibrator injected with that signal [the
signal from maser to phase calibrator)." (Ma, 1978)

Unluckily, the electrical reference signal passing
from the station frequency standard to the phase injector
is also carried by cable, and is subject to environmental,
dispersive and retardation effects, thus changing measured
delay values. Care must be taken to maintain the integrity
and physical dimensions of the maser-to-phase injector
cable. Several members of the East Coast VLBI group are
currently working to minimize phase calibrator (and asso-
ciated) variability affecting the total VI.BI delays. Such
variability ultimately shows up in VLBI delay residual data.
Cable calibration techniques are used to control the effects
of thermal expansion and cable stretching on the length of
the cable running from the station frequency standard to the
VLBI receiver(s).

Together, maser time fluctuations, phase and cable
calibration related alterations, and other jumps are
referred to as "clock"” variations by the VLBI analyst.

Clock variations must be removed from VLBI delay data in
order to obtain reliable astronomical and geophysical
results. This is done within the VLBI program SOLVE with
considerable analyst intervention. The analyst looks at
delay residuals plotted as a function of time. (Note that
the process being described here takes place only for least

squares analysis, not in Kalman filtering/smoothing.)
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Trends in the residuals are usually apparent, and the
analyst tries to fit the delay residual plot with a poly-

nomial (or polynomials) of the form
Te = ag + agt + a2t2 + ... + A sin(Qt) + B cos(Qt) (IVv.17)

where T, is the clock polynomial, ag, a;, ag,..., A, B are
constants which are evaluated in SOLVE to provide the best
least-squares fit to the delay residuals, t is some measure
of the time during the observing session, and Q is the
diurnal rotation frequency of the earth. Sinusoidal
(diurnal) behavior is sometimes observed in the residual
plots, and this can be fitted using the constants A and B.

Sometimes one cannot fit a single polynomial to the
clock variability (on a single baseline) for a given data
set. The analyst then may divide the data set into several
time intervals; residuals in each interval of the experiment
are then fit with a clock polynomial of their own. Clock
polynomial analysis becomes very subjective and time-
consuming. The value of a Kalman filtering/smoothing
approach is thus clear; one does not have to divide a given
data set into small time intervals for analysis.

The statistics of the delay residuals are found when
the clock polynomials are included in the SOLVE least squares
solution. These statistics are useful in judging the
goodness of clock (and general) fit of a solution. Least

squares data analysis continues until the data fit is good;
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i.e. approaches levels consistent with contemporary data.

I now present the parameters of particular interest to
this work, and how the measurement partial derivatives of
these parameters are calculated for use in the Kalman filter/
smoother. The partial derivatives are the components of M(k)
in equation (III.4). The parameters of primary interest in
this research are: the components of earth wobble, x and
y (my, my are freely interchanged with x,-y herein);
the change in length of day, (UTC - UT1); the Kalman filter
clock offset and rate terms, t, and t;,.; the atmos-
pheric wet zenith path delay parameters, L,, and adjust-
ments to the nutations in obliquity and longitude, A€ and A V.
The clock coefficients and atmospheric parameters are
clearly "nuisance” parameters in a study of polar motion,
but the clock and atmospheric delays must be accurately
modelled to give reliable and precise earth orientation
results.

Partial derivatives for polar motion and earth rotation
are formulated by combining equations (IV.1) and (A.1)

(Ma, 1978)
~B2000° 52000 ~(PNSWRterr)*S2000

Tg = = (IV.18)
C C

where the 2000 and terr subscripts denote the J2000 and
terrestrial reference frames, respectively. The source unit
vector S is in the J2000 reference frame. (The spin matrix,

$, and the source vector, S399g, are not the same
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entity.) The partials of the delay with respect to the
polar motion parameters are found by differentiating
equation (IV.18) with respect to xgpy and ygiyg (as

modified from Lundqvist, 1984)

ot aw
= -(1/c) PNS———-—'—Bterr D 52000 (IV.19)
O(XBIH »YBIH) O(XBiH »YBIH)

The partials of the wobble matrix W with respect to xyy

and ygjy are (Ma, 1978)

ow HRY(XB[H)
= Ry(ypryg) ——— (1V.20)
OXBIH OXB[H
and
oW dRx(yprH)
= Ry(xBIH)- (1vV.21)
dVBIH 9YBIH

The partial derivatives of the nutation matrix with
respect to the nutation in obliquity and longitude can be

readily arrived at using equation (A.5)

N = Ry (-€)Ry (-AY) Ry (€+AE) (1V.22)

and differentiating IV.22 with respect to the obliquity

angle
9N dRy (€ +AE)
- = Rg(-€)Rgz(-AY) ———, (1v.23)
a(a€) 3(A€E)
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where

1 0 0
Ry (€E+AE) = 0 cos (E+AE) sin(€+A€) (IV.24)
0 -sin(€+A€) cos (€ +A€)
Then
0 0 0
9N
——— = Rg(-€)R,(-AY) 0 ~-sin(€+A€) cos(€E+A€) (IV.25)
3 (A€)
0 -cos(€E+AE) -sin(€E+AE)

We proceed similarly for the nutation in longitude

= Ry(-€)———— R, (E+AE), (1v.26)
a(AY) * Ay *
where

cos(-AY) sin(-A¢Y) 0
Ry (-AY) = -sin(-AYy) cos(-A¥) O (IV.27)

0 0 1

SO

—~sinAYy -cosAy 0
anN

Ay

= Ry(-€) cosAy “sinAY 0 | Ry(€+A€E). (1V.28)

0 0 0

The partial derivative of the delay with respect to the
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length of day parameter is approximated in a manner similar

to the wobble partials

9t / ER]

9(UTC-UT1) o(UTC-UT1)

= ~(1/c) '\PN WBiepr

. 52000 (IV.29)

The partial derivative of S with respect to the time offset,

UTC - UT1, is given by (Ma, 1978)

~-$in(GAST) cos (-GAST)
9S

= ~-cos (GAST) -sin(-GAST)
o(UTC-UT1)
0 0

where GAST is Greenwich Apparent Sidereal Time.

d(GMST)

d(UT)

Atmospheric and clock partial derivatives are found

(1vV.30)

differently than the earth orientation measurement partials.

The effect of the atmospheric path delay,

delay (t) of a specific baseline is (Ma,

L(2) - L(1)

where L(1) and L(2) are atmospheric path

stations (1) and (2). Recall that station

distance to the source under observation

on the total

(IV.31)

lengths at VLBI1

is closer

at the time the delay is measured. Ma (1978) gives the

partial of VLBI delay with respect to atmospheric path

length in his dissertation.

than station (2)

in

The partial derivative of delay with respect to the clock

offset parameter may be difficult to understand at this moment.
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The meaning of the model should become clear later on.
The observed delay t includes clock offset effects, tocag.

Then the measurement partial is simply

ot

= t1, {1v.32)
dag
where the sign is determined as in the subprogram MARTL (a
modified form of the subroutine PARTL) within the analysis
program SOLVE. The expression (IV.32) is the partial deriv-
ative for use with the Kalman filter/smoother, and is also
the partial used in estimating the clock offset constant,
the first term in the least squares clock polynomial (IV.17).
The Kalman filter clock rate partial is assumed to be zero:
this is an overly simple clock rate partial which models the
clock ramp to be zero during a VLBI measurement. Such an
assumption is only valid (to a fair degree) because VLBI
measurements on a given source take place over a short

time (roughly five to ten minutes). The primary partial
derivatives used herein for Kalman filter VLBI analysis

have thus been explained.

65




Chapter V.

EARTHQUAKLES AND THE CHANDLER WOBBLE (A REVIEW)

The main thrust of this work is to clarify whether
earthquakes are a significant excitation source of the
Chandler wobble of the earth. Apparently, other mechanisms
may be able to drive the wobble. such as atmospheric mass
movements or core ‘mantle coupling, but the literature rele-
vant to these phenomena will not be widely explored here
{see Wilson et al., 1976 and Barnes et al., 1983). Liter-
ature concerning earthquake excitation of the Chandler
wobble will be examined.

Interest in the effects of earthquakes on polar motion
in the late 1960's led to the organization of a NATO
Advanced Study Institute on "Earthquake Displacement Fields
and the Rotation of the Earth" (Mansinha, Smylie and Beck,
1970), which was held in 1969. The edited volume based on
this conference provides a good historical basis for any
earthquake-excitation polar motion study. Prior to 1965,
the changes in the earth's inertia tensor due to earthquakes
were thought to be inadeguate to excite Chandler wobble.
Press (1965) demonstrated that mass displacements during a
great earthquake extend over distances much further than

were thought previously. Perhaps, since more mass is
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involved in earthquakes than was previously thought,
wobble may be excited by the larger associated inertia
tensor changes.
An example of the involvement of mass at distance from

a large earthquake and its effect on Chandler wobble
is given by Stacey (1977). He considers an exemplary
inertia tensor change for maintaining the Chandler wobble to
be about 1.3 x 1028 kg—mz, and considers that great
earthquakes, such as that of 1964 in Alaska, may be the prime
movers of the Chandler wobble. The inertia tensor change
due to an Alaskan-like earthquake is found (Stacey, 1977)
by approximating the earthquake geometry by two blocks of
dimensions 800 km x 200 km x 200 km, and density 3000 kg/ms,
separated by a mean distance of 200 km, and displaced by
22 meters. The resulting inertia tensor change computed
using the simple earthquake model is 8.5 x 1026 kg—mz,
which obviously falls short of Stacey's excitation require-
ment of 1.3 x 1028 kg~m2.

However, if mass displacements at larger distances
are included in the calculation of the perturbation of the
inertia, Stacey (1977) states that the inertia tensor
change due to the earthquake and associated mass movements
is on the order of the required moment adjustment, 1.3 x
1028 kg~m2. Thereby a great earthquake event might
be able to significantly excite the Chandler wobble. Still,

many geophysicists are not convinced that a great earthquake,

occuring once or twice per decade, is sufficient to maintain
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the Chandler wobble, though even they are not very sure of
the time required for the Chandler wobble to damp out
(Stacey, 1977).

More compelling evidence in support of the forcing of
Chandler wobble by earthquakes was given by Mansinha and
Smylie (1970) at the NATO Advanced Study Institute. Recall
that Figure 1 depicts the modification of the Chandler
wobble pole path due to a sudden mass shift in the earth.
The rotation pole orbits about a shifted secular pole after
excitation, with the orbital radius generally of different
magnitude than prior to excitation. Mansinha and Smylie
(1970) exploit the fact that a "kink" (change in curvature)
is generated in the polar motion path due to a mass shift and
try to correlate kinks in real data with large earthquakes,
of Magnitude M > 7.5. The polar motion data (with annual
wobble component removed) were from the BIH and ILS-1IPMS
(International Polar Motion Service) for the years 1957.0 to
1968.0.

The procedure by which kinks in the data are revealed
is now described. If polar motion is continuous, the
rotation pole moves through angle a in & days with
respect to the "mean pole", with angle a given by (Mansinha

and Smylie, 1970)

2r
— x 0, (V.1)

438

where 438 is their approximate period in days of the Chandler
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wobble. A kink due to a shift in mass will disrupt the
observed continuous polar motion. Mansinha and Smylie

(1970) start their analysis, say at 1957.0, and fit a

curve between two pole positions of the BIH data set (the
analysis is done independently for ILS-IPMS data). ILS -1PMS
and B1H measurements are made at regular time intervals.
After the first arc is constructed between the two points,
the arc is extended by assuming the same circular path

(a predictive step) to approximate the next BIH datum. The
predicted datum location on an x-y polar motion plot is

then compared with the actual BIH datum location. If the
prediction falls within some acceptance distance, a, of the
actual BIH datum, no "kink" in the data has been observed,
and a new arc is fitted to the three BIH data points in order
to continue the comparison procedure between actual and
predicted data (Mansinha and Smylie, 1970). The acceptance
distance, a, is proportional to the error in the BIH measure-
ments (a has centi-arcsecond units).

If the actual BIH polar motion position is further from
the predicted datum than the acceptance distance "a", a break
or "kink" in the pole path has been detected (Mansinha and
Smylie, 1970). A new arc is now created using the aberrant
BIH datum as a starting point and the comparison process
continues again. The breaks found in the ILS-1PMS and BIH
data were then compared against (M > 7.5) earthquake event
times for 1957.0 to 1968.0 (Mansinha and Smylie, 1970), and

random probability criteria were used to determine if the

69



breaks and the earthquakes were correlated. "For a = 0.015,
12 out of 22 earthquakes fall within #10 days of a break and
17 out of 22 earthquakes fall within *20 days of a break.
The corresponding values of RP [random probability] are
1.3 x 102 and 1.6 x 10 ° respectively." (Mansinha and
Smylie, 1970). The random probability function used in the
study (cumulative binomial distribution) was (Mansinha and
Smylie, 1970)
n n . .
RP = % pl(1-p)"7 7. (V.2)
j=k \i

"The elementary probability p is the probability of a date,
drawn at random, falling within w [w= correlation window;
= 26 ] of a break |[kink] and is given by the proportion
of time axis of the total span of 11 years that is occupied

t

by segments w wide on each side of a break." (Mansinha and
Smylie, 1970). Results are for BIH data sampled every
ten days. Considering that only 22 large events occurred
during the 11 year data span, and that 17 out of 22
earthquakes fall within *20 days of a break, one might be
inclined to believe that the polar motion breaks and
earthquakes are well correlated.

Unfortunately, the study by Mansinha and Smylie (1970)
may have been ahead of its time, although the method has a
simple and believable mathematical basis. The polar motion
data used in the analysis was only sampled at ten-~day inter-

vals, which leaves much to be desired in time resolution.
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Also, Mansinha and Smylie (1970) note that the uncertainty
of the polar motion data was on the order of ten milliarc-
seconds, which is much larger than present-day uncertainties.
However, current VLBI polar motion data sets do not

approach the length (11 years) of the BIH and ILS-IPMS data
used by Mansinha and Smylie. As a final point, Morabito

and Eubanks (1985) intercompare ILS-IPMS polar motion data
with concurrent polar motion component estimates determined
by VLBI, satellite laser ranging and lunar laser ranging
techniques and find differences between modern data and ILS-
IPMS data of 50.3 milliarcseconds rms in the X component of
wobbble and 23.3 milliarcseconds rms in the Y component;
these differences are primarily due to seasonal variations
in the ILS-IPMS data, but considerable differences still
exist even after the seasonal variations are removed from
the data. Morabito and Eubanks (1985) state that "These

results indicate that any geophysical conclusions derived

from ILS data should be interpreted with caution."” The
intercompared data spanned 1976-1979. Morabito and Eubanks'
warning should be strongly heeded. Nevertheless, the work

of Mansinha and Smylie (1970) was preeminent, and acted as
a first step in contemporary Chandler wobble excitation
research.

Dahlen (1973) uses a SNREI ("... spherically symmetric
non-rotating Earth which is in hydrostatic equilibrium and
has an isotropic elastic constitutive relation."- Smith,

1974) Earth model to calculate the pole shifts due to the
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1960 Chilean and 1964 Alaskan earthquakes. The changes in
the product of inertia components Cy3, Czg3 (which are of
primary interest in polar motion excitation-- see equations
11.7 and 11.9) of the earth model due to an earthquake at

colatitude 83 and longitude ®3 are (Dahlen, 1973)

ACI3=M0{F1(h)[[sin2asin6cosk+1/2coszasin26sink)

w

xsin20gcos®p--2(1/2sin2asin2dsink-cos2asindcos\) (v.
xsinOosjn00]+?2(h)[—sin263inksin260cosoo]
+F3(h)[(sinacosZﬁsinX—cosacosbcosX)coszoocosoo

+(sinacosdcoshtcosacos2dsinA)cosBgsindg]}

AC23=M0{F1(h)[(sin2asinﬁcosk+1/2cosZasin26sinX)

x sin20gsin®dp+2[1/2sin2asin2bdsinX-cos2asinbcos)\) (V.4)
X sinOocosoo+F2(h)[—sin26sinksinzeosin00]
+F3(h)[sinucostsinX~cosucosbcosx)cosaﬂosinQO

-(sinacosbcosh+cosacos26sin)\)cosOgcosdqg],

where h is the earthquake depth, 6 is earthquake dip, a is
the strike, X\is the slip angle and Mg is the scalar moment
of the earthquake. F}(h), Fé(h), and Fé(h) are canonical
functions of depth computed for the SNREI Earth model under
consideration; details about them can be found in Dahlen
(1973) . Clearly the product of inertia perturbations ACyg
and ACp3 of equations (V.3) and (V.4) are directly
proportional to the seismic moment Mg of a given

earthquake; thus AC;3 and ACy3 are critically

72



dependent on moment determinations.

The pole shifts due to ACy3 and ACyp3 are calculated by
Dahlen (1973) for the 1960 Chilean and 1964 Alaskan earth-
quakes, and are compared with pole path shifts as seen in
BIH polar motion data (Smylie and Mansinha, 1968). Dahlen
(1973) finds that his theoretical polar motion shifts are an
order of magnitude less than those observed by S$Smylie and
Mansinha (1968), although the pole path shift directions
determined with each method are in agreement. Noise contam-
ination is blamed by Dahlen (1973) as the phenomenon which
precludes observation of large polar motion path shifts in
BIH data. He also coancludes that "The direct observation
of the effect of a large earthquake on the path of the
Earth's rotation pole will not be possible until some way
is found to reduce the noise contamination in the
observed polar motion path by at least a factor of ten."
VLBI data is more precise than the BIH data of 1968 by at
least a factor of five to ten, so kinks in polar motion
paths due to large earthguakes might be observed presently.

Dahlen (1973) next examines the cumulative effect of
many large earthquakes on Chandler wobble power P, which

is computed via the formula

P = <R™> (V.5)
“o

where Q is the Chandler wobble quality factor, wg is the

characteristic oscillation frequency of the wobble, and
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<R2> "... is the mean squared polar shift per unit time

associated with the earthquake sequence." Since Q and <R2>
are not accurately known, any power estimated using (V.5)
is only of limited accuracy. Dahlen accounts for this in
some fashion by considering several values of Q in his
power calculations, and he also compares the magnitude-
moment relations of Brune (1968), and Aki (1967, 1972)
and the effect of each on the power calculations. The
magnitude-moment relations are displayed in Figure 7 (from
Dahlen, 1973).

[t appears that the Aki wz model (1967, 1972) provides
a better fit to observed surface wave and ficld data than
Brune's (1968) magnitude -moment relationship, if the Sanriku
(1933) datum is not included in the fitting process. There
is some justification for not including the Sanriku
earthquake in forming a general magnitude moment relation.
O'Connell and Dziewonski (1976) state that it is difficult
to assign a source mechanism to Sanriku since the event
occurred near the junction of the Eurasian, Pacific and
Philippine plates, and its moment is somewhat low for large,
shallow, subduction-zone events. In any event, use of Aki's
(1967, 1972) wz moment-magnitude relation gives a more
favorable outlook (by power comparisons) of earthquake exci-
tation of the Chandler wobble than does the Brune (1968)
relationship.

For the calculated Chandler power values as a function

of Q and moment estimation process, please refer to Dahlen
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(1973). Dahlen (1973) ultimately decides "... that the
Earth's seismic activity can account for no more than 10 per-
cent (for Q = 100), and probably even significantly less, of
the observed level of excitation of the Earth's Chandler
wobble."” But since the value of the quality factor, Q, is
ill-constrained, it is difficult for anyone to know if such a
conclusion is valid, or certainly finatl.

In a much different vein, evidence was found by Kanamori
and Cipar (1974) to support the hypothesis that earthguake
events are accompanied by large, slow, aseismic deformations.
The foundation for their study comes from a long-period
strain seismogram recorded during the Chilean earthquake of
22 May, 1960. On the seismogram, accompanying the P wave
arrival from a Mg= 6.8 foreshock, which occurred fifteen
minutes prior to the main Chilean event, Kanamori and Cipar
(1974) observe a long-period wave of period 300-600 seconds.
That such a signal is real may be a valid question, but
Kanamori and Cipar (1974) respond to this by stating that
the seismogram shows a quiet, noise-free trace prior to the
foreshock, and also note that such a long period precursor
may be evident for the Chilean 1960 event, but not for other
earthquakes because the Chilean earthquake is one of the
largest evenis ever recorded using "modern"” seismographs.
They do admit, however, that the long-period precursor signal
could be due to instrumental instability.

Next, Kanamori and Cipar (1974) determine fault param-

eters for the 1960 main Chilean earthquake and the long-
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period precursor by matching synthetic seismograms to the
obscrved strain seismogram traces. They find a moment of
2.7 x 1030 dyne-cm for the main shock and 3.5 x 1030 dyne-cm
for the aseismic long-period precursor. The aseismic moment
is of the same order as the moment of the elastic main shock.
Kanamori and Cipar (1974) postulate that the Chilean sequence
occurred as follows: "About fifteen minutes before the main
shock a gradual slip having time constant of about 450 sec
started taking place at the boundary between the downgoing
oceanic lithosphere and the relatively weak asthenosphere
beneath the [South American] continent. This slip caused a
stress concentration at the lithosphere-lithosphere boundary
above. The large foreshock may represent a brittle fracture
caused by such a stress concentration. Eventually this
stress concentration exceeded the breaking strength of the
lithosphere-lithosphere boundary causing a major catastropic
failure, the main shock." They also suggest that the Chilean
aseismic slip may have occurred for hours or days before the
main shock and feel that precursory long-period phenomena,
even if only observed ten to fifteen minutes befcre a main
shock, may be useful in preparing human populations near the
epicenter for an impending event. Obviously, further study
of aseismic stress releases is warranted.

Press and Briggs (1975) find correlations between
Chandler wobble and earthquake activity through a pattern
recognition analysis, the details of which are too many to

be included here. They conclude that earthquakes of certain
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positions (latitude, longitude, slip and fault orientation)
are associated with years of increasing Chandler wobble
amplitude, and hypothesize that large preseismic and post-
scismic deformations (over hours or days) play a part in
Chandler wobble forcing, in addition to the slip occurring
during the main earthquake shocks. Press and Briggs (1975)
also note that earthquakes along the Kurile-Japan-Marianas
seismic belt and in China do not show a correlation with
increasing Chandler wobble amplitude, and suppose that
",..:; perhaps slow deformation occurs in these belts during
aseismic periods many years before or after major
earthquakes . " For the most part, Press and Briggs (1975)
conclude that Chandler wobble excitation is due to large
mass displacements associated with earthquakes.

Synthetic curves which mimic ILS polar motion data (with
annual wobble removed) have been generated by O0'Connell
and Dziewonski (1976) for the time period 1901-1970, by the
superposition of polar motion shifts from 234 large earthguakes
of Mg27.8. The polar motion shifts are found from
changes in the earth inertia tensor, ACjj, which are related
to the earthquake moment tensor Myp; via the following equa-

tion (0'Connell and Dziewonski, 1976)

ACiJ' = Dijkl Mki. (V.6)

where Dj k) is a tensor with components determined by

choice of earth model, and latitude and longitude of a
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given earthquake epicenter. For details, see O0'Connell
and Dziewonski (1976). The source moments Mi; for the 234
earthquakes are approximated using simple double couple
moments (of scalar moment Mg) in unison with plate
tectonic information (0'Connell and Dziewonski, 1976).

The seismic moments Mg are calculated from surface
wave magnitudes Mg reported by Duda (1965), and other

sources, using the relation (0'Connell and Dziewonski,

1976)

Logyp Mg = 8.8 + 2.5 Mg - (V.7)

Once the pole shifts are calculated, the synthetic wobble

m(t) is found with the expression (0'Connell and Dziewonski,

1976)

m(t)=m(tglexp{iw(t-tg)}+ (v.8)
+ L osH(t-ty) {1-(1+wg/Q)explin(t-tyg)l]},
k

where m(tg) is the reference (starting) position of the
Chandler wobble pole at time equals tg, @ = @g(1 + i/2Q),
wg is the Chandler wobble frequency, Q is the Chandler wobble
quality factor, H(t-tyg) is a step function, sy is the pole
shift due to an earthgquake at the epoch ty, Q is the diurnal
rotation frequency, and t is the time for which the synthetic
signal m(t) is produced. The real and imaginary parts of

m(t) are the Chandler wobble components, x; and -Xx, respec-

79



tively.
Synthetic polar motion curves for the x; wobble component

(for various Q values) and smoothed ILS data with annual

wobble removed are presented in Figure 8. The curve
for Qs = Qgynthetic * 100 resembles the ILS curve in general
form, but the match is by no means exact. 0'Connell and

Dziewonski (1976) then compute power spectra of the various
synthetic and ILS curves and compare the Chandler wobble
peaks. In general, the agreement of [LS and synthetic data
is fair. O0'Connell and Dziewonski (1976) conclude that
earthquake-associated mass movements may account for about
fifty per cent of Chandler wobble excitation.

There is a major problem with the work of O0'Connell
and Dziewonski (1976). Kanamori (1976) points out that the
surface wave magnitude used in Duda (1965) and by O0'Connell
and Dziewaonski (1976) is not the same as the Mg referred to
in the relation Logyg Mg = 8.8 + 2.5 Mg. The net effect of
this error is that O0'Connell and Dziewonski (1976) overesti-
mate the scalar moment Mg of many of the earthquakes used in
their study by a factor of 5.6 (Kanamori, 1976), and thereby
overestimate many of the Chandler wobble shifts due to these
earthquakes. This casts doubt upon the results of 0'Connell
and Dziewonski (1976). Another problem with O0'Connell and
Dziewonski's work is that their comparison was made in the
time domain, as opposed to the excitation domain; Chao
(1985) addresses this problem in detail. Kanamori (1976)

also states that the direct effect of earthquakes on Chandler
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Fig. 8.

from excitation by large earthquakes;
is determined by Qg. ILS is smoothed
polar motion with annual term removed.
component along the Greenwich meridian

(From O0'Connell and Dziewonski, 1976).
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wobble as calculated in a correct manner (using proper Mg
values) is probably an order of magnitude too small to give
observed wobble amplitudes. He does acknowledge that large
aseismic deformations accompanying earthquakes may indeed
be responsible for driving the Chandler wobble, and proposes
that these deformations may be detected in the future with
global arrays of ultra-long period seismological instruments.
In his 1977 article, Kanamori asserts that the Gutenberg
and Richter (Gutenberg, 1956) magnitude-energy relation
log E = 1.5M + 11.8 is of questionable applicability to
earthquakes of rupture length of 100 km or more (but works
well for smaller rupture lengths). E is the energy released
from an earthquake and M is the magnitude determined from
seismic records. "This [problem] arises from the fact that
for such a great earthquake the magnitude M which is deter-
mined at the period of 20 s (or converted from m (body wave
magnitude) determined at shorter periods) does not represent
the entire rupture process of an earthquake. In fact,
there is little correlation between M and the rupture length
for great earthquakes." (Kanamori, 1977).
Kanamori then derives, following laborious and rigorous

analysis of large earthquakes, an alternate energy-magnitude

relation for great events

log Wo = 1.5 M, + 11.8. (V.9)

My, is the new magnitude for great earthquakes and Wj

82



is the minimum strain energy drop for great earthquakes.
According to Kanamori (1977), the minimum strain energy
drop is equal to the seismic wave energy. Also he states

that Wo can be calculated using the approximation

Wo =~ Mg/(2x10%), (V.10)

where Mg is the seismic moment of an earthquake (CGS
units).

The minimum strain energy drop Wo (and seismic wave
energy released) is then calculated for (shallow) great
earthquakes from 1904 to 1976 (Kanamori, 1977) and the
results (5-year running averages) as a function of time are
presented in Figure 9. In addition to Wg, the Chandler

wobble amplitude; N, the annual number of earthquakes of

v

Mg 7.0 (a five-year running average); and a five-

vear running average of E (explained earlier) are included
in the figure. The correlation between Wy and wobble
amplitude is high, and it appears that the wobble amplitude
leads Wg. N seems to lead the Chandler wobble ampli-

tude.

Kanamori (1977) proposes one explanation for the
results in Figure 9. "One possible mechanism that accounts
for the correlation between the wobble, Wgp, and the
activity of moderate to large earthquakes [as indicated by

N] is that an increase in wobble amplitude triggers

worldwide seismic activity and accelerates plate motion,
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which eventually leads to great decoupling earthquakes [i.e.
decoupling along major plate boundaries]. This decoupling
causes the decline of moderate to large earthquake
activity."

Kanamori's (1977) analysis is straightforward. An
alternate magnitude scale to describe the magnitude-energy
relationship of great earthquakes is necessary. The
correlation of wobble amplitude and energy released by great
earthquakes is striking. The data do indicate that a
Chandler wobble amplitude peak does precede a maximum in
the seismic wave energy (1950 to 1965). The paper does
not include the effects of aseismic slip. Kanamori's
(1977) work suggests that the Chandler wobble triggers
earthquakes, as opposed to vice versa.

1t was mentioned earlier in this work that the Chandler
wobble is a long period normal mode of the earth. It is
because of this long periodicity that the Chandler wobble is
of geophysical interest; few geophysical phenomena have been
observed (or exist) at this fregquency. Smith (1977) looks
at the excitation of the Chandler wobble by seismic events
by treating wobble as a normal mode. He uses his (1974)
equations describing "... the infinitesimal free elastic-
gravitational oscillations of a rotating, slightly elliptical
Earth ... " to compute polar shifts due to the 1960 Chilean
(modelled as a two-event source) and 1964 Alaskan earthquakes,
which are two of the largest seismic events in recent history.

The details of Smith (1974) are not fully described here.
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Smith's (1977) normal mode calculation of Chandler wobble
shifts differs from elastic dislocation methods typically
applied to the excitation problem; it also avoids difficul-
ties encountered in equations of motion describing the static
deformation of the fluid core of an earth which is not
rotating, which are used in such elastic dislocation calcu-
lations (Smith, 1977). Thus, Smith's (1977) analysis might
be used to determine which of the many quasi-static Chandler
wobble excitation studies is most correct.

Smith (1977) represents the particle displacement field,
s(r), of the Chandler wobble normal mode by a truncated
series of spheroidal vector fields, olm , and toroidal vector
fields, t ",

s(r) = tlil(r) + oztl(r) + tstl(r) (v.11)

where r is a radius variable. Equation (V.11) is inserted
into the differential equations of motion of Smith (1974),
and the solutions of these equations approximate normal mode
eigenfunctions describing the Chandler wobble. The excita-
tion theory developed by Dahlen and Smith (1975) is then
applied to the calculated eigenfunctions to find the
Chandler wobble shifts due to the aforementioned
earthgquakes (Smith, 1977).

Smith (1977) argues that the truncated series (equation
V.11) is accurate enough for his Chandler wobble study. He

bases this on the fact that "... the principle response of
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an elastic sotid body to rotational disturbances was charac-
terized by 1=2 spheroidal distortion.” (Smith, 1977). Also
Smith (1977) suggests use of equation (V.11) is valid
because (to first order in ellipticity) equation (V.11) is

n

of the correct form which represents the response of

an incompressible, homogeneous, inviscid rotating fluid core
to slight rotations of a rigid mantle...." Eqguation (V.11)
does include an 1=2 spheroidal term. However, it is
probably more realistic to conclude that Smith used the
truncated particle displacement series (V.11) so that the
computations and analysis could be carried out with reason-
able effort. Smith's (1977) calculations should be
performed again using more terms in the particle displace-
ment series.

Smith (1977) presents the polar motion shift results
in terms of a magnitude and a direction, in degrees East of
Greenwich, rather than by two wobble components. For
comparison, values found by Dahlen (1973) using a quasi-
static calculation are given in parentheses. For the first
event of the 1960 Chile source model (Chile (1)) the
magnitude is 0702116 (070210) and the direction is 114.30
(1160). For the second event (Chile (2)) the values are
0702808 (0°0280) and 117.7° (118%). Finally, the shift
magnitude and direction for the 1964 Alaska earthquake are
0700723 (0°0073) and 201.3° (202°): (smith, 1977).

Obviously the agreement of the polar shifts and

associated directions between Smith (1977) and Dahlen (1973)
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is very good, implying that the quasi-static calculation of
Dahlen (1973) is among the better attempts to determine polar
shift magnitudes using a dislocation source on a non-rotating
earth. No conclusion is made in Smith's (1977) paper as to
whether earthquakes are the primary source of Chandler

wobble excitation.

Mansinha, Smylie and Chapman (1979) revisit the Chandler
wobble, and again conclude that earthquakes are the major
driving mechanism of the Chandler wobble. They correct the
static dislocation theory of Smylie and Mansinha (1971) for
errors made in transforming planar dislocation models to a

more realistic spherical geometry. These corrections bring
pole path shift amplitudes and directions (degrees East of
Greenwich) of Smylie and Mansinha (1971) into better
agreement with the estimates of Smith (1977), with the
resulting amplitudes being different by no more than a
factor of one-half to two. Mansinha, Smylie and Chapman
(1979) use the SNREI model of Dahlen (1971, 1973) in their
computations of the shifts, and speculate that pole shifts
observed (astronomically) in the future may be used to
constrain focal mechanisms of earthquakes.

The cumulative effects of earthquakes on wobble is then
studied by Mansinha, Smylie and Chapman (1979). They
characterize the root-mean-square (rms) Chandler wobble

amplitude using the relation
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b . Ngt
RMS amplitude = sp {-~— (s54/5y)0 ¢ —— /2 (v.12)

2c-b 2

where s, is the average polar shift due to the largest
magnitude considered, sg is that due to the smallest magni-
tude considered (with Ng the corresponding frequency), and

t is the damping time of the Chandler wobble."” "b" and "c¢"
are constants derived from frequency-magnitude and pole path
shift-magnitude relations respectively. Mansinha, Smylie

and Chapman (1979) then use the 30 largest earthquakes from
1901 to 1964 as taken from O0'Connell and Dziewonski (1976), to
form a plot (Figure 10) of rms Chandler wobble excitation

as a function of the constant "c¢" mentioned previously. They
assume a damping time of 20 years (Q = 32).

Mansinha, Smylie and Chapman's (1979) calculations as
shown on Figure 10 surely support the view that earthquakes
are, at worst, a large contributor to Chandier wobble
excitation and, at best, the primary excitation source.
Mansinha, Smylie and Chapman (1979) continue to use BIH data
as the observational standard of comparison for their
theoretical results, and base cumulative earthquake excita-
tion conclusions on their magnitude-moment of choice.

Rescarch which indirectly supports the hypothesis that
earthquakes primarily excite the Chandler wobble was done by
Wahr (1983) in an attempt to determine the level at which
atmospheric phenomena drive the Chandler wobble. Wahr
(1983) considers earthquakes and the atmosphere as the most

plausible means of exciting the Chandler wobble, but
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Fig. 10, Cumulative Chandler wobble excitation by
earthquakes. Shaded area indicates domain of

possible excitations (boundaries are extremes).
Range is from 0.08 to 0.50 while observed level

is 0.15, Some of the more extreme values of
seismic moment would provide too much Chandler

excitation. S1 is a reference pole shift
associated with a reference magnitude My
see reference for details. (From Mansinha,
Smylie and Chapman, 1979).
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concludes that the atmosphere is not the main source of
excitation. Atmospheric data and models are used by Wahr

to compute power, coherence and phase spectra of atmospheric
excitation sources such as atmospheric pressure, the
pressure-driven ocean, mountain torques due to variations in
pressure at different locations on a mountain, and wind drag
over the surface of the earth. These spectra are compared
to excitation spectra from ILS data for the years 1900-1973
to investigate if atmospheric effects do drive Chandler
wobble.

Wahr (1983) considers several ways to look at mechanisms
driving Chandler wobble: one way is by examining excitation
functions, Y, and associated derived guantities such as
excitation power spectra in frequency space; another is by
examining the wobble components (mj;, my) in the time domain.
Wahr uses the former technique. The ultimate result of
Wahr's study is that no more than 20-25 percent of the
Chandler wobble observed (1LS) excitation is due to atmos-
pheric and oceanic sources. Wahr (1983) does not take into
account the effects of ground water storage or El1 Nino
events.

In more recent work, Gross and Chao (1984) deconvolve
LAGEOS (satellite for laser ranging) Chandler wobble polar
motion data for the period 21 January, 1977 to 20 January,
1984 to look at the excitation function of the wobble. They
observe a shift in the excitation axis by 07040 in the -54

degrees East longitude direction during the time period
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8/13/77 to 9/2/77, and assume the shift is due to the Sumba
earthquake of 8/19/717. The correlation in time of the two
events is quite good. However, when Gross and Chao (1984)
compare their observation with Dahlen's theoretically
derived value of the Sumba shift due to elastic dislocation
models (070003 towards 93 degrees East longitude), they
they find little agreement between theory and experiment.
Gross and Chao (1984) conclude that the LAGEOS observation
may have resulted from some discontinuity in processing
LAGEOS data.

Gross and Chao (1984,1985) also consider the possibility
that the descending slab associated with the 1977 Sumba
earthquake may have broken away from its parent oceanic
lithosphere and excited the Chandler wobble in its downgoing
motion; but they reach no conclusion about this hypothesis.
They (1985) also look for a correlation between polar motion
excitation and the 1982-83 E1 Nino and believe they observe
one. The 1982-83 E1 Nino was particularly strong and may
have been involved in Chandler wobble excitation.

Gross (1986) compares Chandler wobble excitation
function power spectra derived from theoretical static
deformation fields of 1287 large earthquakes during 1977-
1983 (a time involving one great earthquake) with power
spectra of observed excitations derived from LAGEOS earth
orientation measurements. He finds that the earthquake
(amplitude) power is about 56 deciBels (dB) less than the

power necessary to drive the observed Chandler wobble.
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Gross concludes that the static deformation fields of
earthgquakes during 1977-83 are not the primary excitation
source of the Chandler wobble, but also notes that no ex-
tremely large earthquakes, such as the 1960 Chilean or 1964
Alaskan events occurred during this time interval. He
leaves open the possibility of Chandler wobble excitation
by aseismic slip, whose contributions to Chandler wobble
have not been currently evaluated.

In another investigation, Robertson (1985) examines IRIS
VLBI polar motion components plotted against one another
over five-day intervals during 1984 and early 1985. He
observes variations in the data similar to the breaks
observed by Mansinha and Smylie (1970), but is hesitant to
correlate the variations with another large Chilean
earthquake which occurred in early 1985. Perhaps it is
better to be cautious in interpreting early VLB1 results.

Hinnov (1985) takes a much different route to explain
the Chandler wobble excitation by water storage and air mass
loading. éhe uses Northern Hemisphere precipitation and
temperature observations for the years 1900-1979 to form an
excitation series. The air mass and water storage excitation
data display almost zero phase lag and significant coherence
with ILS polar motion observations near the Chandler
frequency. Hinnov (1985) believes that the aforementioned
meteorological phenomena can fully explain Chandler wobble
excitation.

1t is of interest to note that geophysical observers do
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do not always see eye-to-eye with theoreticians regarding
numerical agreement of strain magnitudes. The following are
two early quotes on the subject. "Surface strain observa-
tions are at least an order of magnitude greater than
predicted by the elastic theory of dislocations.” (Mansinha
and Smylie, 1970). And from a question at the 1969 NATO
Advanced Study Institute about the effects of earthquakes

on earth rotation: " Although you [Richard Haubrich, Uni-
versity of California/San Diego] mentioned that the exci-
tation from historical [earthquake] events is at least an
order of magnitude too small to maintain the observed wobble,
1 [M.W. Major, Colorado School of Mines] am not clear as to
how one arrives at the magnitude of the excitation. The
main problem is that most of us see strain steps at distances
which are embarrassingly large compared to those predicted
by either the half-space or spherical dislocation theory."

(Mansinha, Smylie and Beck, 1970).
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Chapter VI.

KALMAN FILTERING OF VLBI DELAY DATA FOR EARTH ROTATION AND
ORIENTATION PARAMETERS

A Kalman filter has been designed to make optimal
estimates of earth rotation and orientation parameters
which are derived from Very Long Baseline Interferometry
delay data. Generally the filter will be applied to one
to two day long VLBI data sets. Such a data set will have
several hundred or more delay observations, and should allow
one to estimate polar motion and earth rotation variations
over times of a few hours to two days. If one desires
observational data of longer duration, one can examine mul-
tiple data sets,

Earlier it was mentioned that the derivation of equation

(III.5)

Xk+1 = ®(k+1,Kk) x + I'(k) wy

would follow, and this will be handled now. Equation (I1I1I.5)
describes the dynamical behavior of the state vector xip in
time. Recall O0(k+1,k) is the state transition matrix

which models deterministic changes in X as one proceeds from
time ty to time ty,,. Wy 1s a stochastic noise input in

the state equation, with I'(k) accounting for proportion-

95



ality. Equation (I11.5), or relations like it, which
describe the physical variations of the estimated parameter
vector x, are usually found from continuous (as opposed to
discrete) differential equations characterizing the physical
systenm.

The continuous differential equation form of (I11.5) is

typically given as (in notation of Gelb, 1974)

x(t) = F(L)x(t) + G(t)w(t), (VI.1)

where x(t) is the state vector, w(t) is the stochastic
forcing function and F(t), G(t) are proportionality matri-
ces. Consider, as a first step towards understanding the
system represented by (Vl.1), that there is no random
forcing w(t) and that F(t) is time invariant. The differ-
ential equation representing this simplified system is just
dx(t)
-—— = F x(t). (VI.2)
dt
If one rearranges the above differential equation and inte-

grates from time typ to ty,;

Xk+1 tk+1

dx(t)

— = F dt, (VI1.3)
l x(t) .
Xk tk

or one can readily find that

96



Xge1 = lexp{F(tg, 1 - )}l xi. (VI.4)

where Xy, Xg41 are the parameter values at times ty, ty,q
respectively. See¢e also Gelb et al. (1974).

Thus the state vector xyx,1 is related to the state
vector at the previous time X, by the quantity exp{F(tg,;-tg)}.

The matrix exponential is defined by (Gelb et al., 1974)

. A2 A3
e =1 + A + + t . (VI.5)
2! 3!
whevre 1 is the identity matrix. The state transition matrix
o(k+1,k) is
®(k+1,k) = exp(F(typ,q - tg)) (VI.6)

The state transition matrix depends only on the time interval
(tk+q - tk) as should be the case for a stationary system.
Equation (VI.6) relates the continuous matrix F and the
discrete state transition matrix, ®(k+1l,k).

Through a derivation procedure similar to the abhove, one
can find the relationship between state vectors xyg., xg.1 for
a non-stationary process with no random forcing

Tk

+1
Xkt = [{expl . F(t) dt)}] xy (V1.7)
Jtk

Evidently, the state transition matrix now takes the form
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ket
®(k+1,k) = exp( F(t) dt). (VI.8)

tk
Using the general form (V1.8) for O®(k+1,k) one can readily
prove some mathematical facts about the properties of the
state transition matrix.
The first small proof is quite simple:

th 0
o(k,k) = exp( F(t) dt) = e = 1. (VI1.9)

tk
In words, a state transition matrix not proceeding in the
forward or backward direction in time (and thus remaining
at the instant of concern, tg) is equal to the identity
matrix. The proof of a second small fact begins with state
transition matrices going the opposite direction in time
over the same time interval

Lkorl

o(k+1,k) = exp! [F(t) dt)
tk

Lk tk+i
O(k,k+1) = exp( F(t) dt) = expl(- F(t) dt).
tk+1 tk

From the above equation, it is apparent that
O(k,kr1) = © 1(k+1,k) (V1.10)

Equation (VI.10) illustrates the fact that for a physical
system of given state transition matrix, the state transition

matrix going backwards in time, O(k,k+1) is equal to the
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inverse of the state transition matrix going forward in time
over the same time interval. Relations (VI.9) and (VI.10)
illustrate the properties of the state transition matrix,
and may help the reader to become familiar with the dynamic
system models used in Kalman filtering/smoothing.

Now that one has found the discrete state transition
matrix ®(k+1,k)}) from the continuous matrix F(t), one should

consider the case of a dynamical system with random inputs

x(t) = F(U)x(t) + G(t)w(t).

Please observe that w(t) is a continuous variable differing
from the discrete noise process, Wy. The subscequent deriva-

tion uses the fact that

d
—O0(t,tg) = F(t)o(t,ty), (VI.11)
dt

which can be found from equation (VJ.8); and also uses the

property of the state transition matrix

o(tz,to) = O(tz,tl)O(tl.to). (V1.12)

Relationship (V1.12) can be shown to be true in the method of

Gelb et al. (1974)

X(t2)50(t2.tl)X(t1)=0(t2.tl)m(tl,to)x(to).

But x(tpy) = o(ta.tg)x(tg),
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s0o that 0(t2,to)==0(t2.t1)0(tl.to) Q.E.D.

Or verbally, the state transition matrix over multiple time
intervals can be represented as the product of the state
transition matrices of each interval (this does not include
random inputs).

The original derivation with random forcing follows
Gelb et al. (1974). Starting with the fact that
X(t) = 0(t,tg) x(tg) is the discrete solution to the
homogeneous differential equation (VI.2) with F time
dependent, one proposes that the solution to (VI.1) is of

the form

x(t) = ®(t,tg)&(t) (VI.13)

One then substitutes (VI.13) into (VI.1)

d
—{0(t, tg)E(L)I=F(t)O(L, tg)E(Lt)+G(Lt)w(L), (Vi.14)
dt

and upon taking the derivative and using the relation (V1.11)

one finds

F(E)O(t, tg)E(t)+0(t, tg)E(t) "F(t)O(t, tg)E(t)+G(t)w(t) (VI.15)

The time indices t and ty (as opposed to ty and tyg,;) are
used here for convenience. Eliminating terms in (VI.15) and
invoking (V1.10) one obtains the equation (as per Gelb

et al., 1974)
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E(t) =0(tg,t)6(tIw (L), (V1.16)
which can be integrated directly to yield

t
E(t) = E(tg) + O(tg,Tt)G(t)w(t)dr, (V1.17)
Jto
Again following the method of Gelb et al. (1974), one
inserts (V1.17) into equation (VI.13), and noting that
E(tg) = x(tg), thereby arrives at
t

x(t) = o(t,tg)x(tg)+ [0(t.tQ)O(tO,t)G(t)w(t)dt, (vi.18)
Jto

which simplifies using relation (VI.12) to

x(t) = O0(t,tg)x(tg)+ J;(t.t)G(t)w(t)dt. (VI.19)
to
Most apparently, if w(t) is zero (no random forcing!), then
equation (VI.19) reduces to the homogeneous solution x(t) =
o(t, tg) x(tg), as should be the case.
The second term on the right-hand side of equation

(VI.19) represents the stochastic contribution to the state
parameter x(t). Equation (V1.19) can also be written for

the time interval typ to tg,; (Gelb et al., 1974)
X(tgs3)=0(tg,q.tg)x(tg) + (Vi.20)

X

+1
(Lksp,t)G()w(T)dT,

x ex
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and if one uses the following definition

tk+l
I'(k)wg = IO({kfl.t)G(t)w(t)dT. (Vli.21)

tk

one can write (VI.20) as
Xk+1 = O(k+1,k) xp + [gwyg, (vi.22)

using slightly modified notation. Egquation (V1.22) is the
discrete (difference equation) form of continuous equation
(vi.1), and is also equation (JI11.5), which is what was to

be derived in this section. The pair of equations (VI[.22)
and (111.4) are the models on which one builds a Kalman
filter/smoother. In general, one starts filter design with
knowledge of the continuous dynamics of a problem as given

by equation (VI.1) and then forms more useful discrete equa-
tions like (VI.22) to work in combination with discrete meas-
urement data.

Before proceeding further with the polar motion problenm,
it is proper to describe the two noise covariances, R(k) and
Q(k), which are needed in the structure of the Kalman filter.
R(k) is the measurement error covariance matrix, while Q(k)
is the more inscrutable system {(or process) noise covariance

matrix. Recall from (III.6) that

E{wiw) } = Q(K) by (VI.23)
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E{vivi )} = R(K) by (VI.24)

and R(k) > 0. (VI.25)
where 6] is a Kronecker delta. R(k) is the more easily
explained covariance, so it will be discussed first. The

covariances R(k) and Q(k) are used in the Kalman filter as
opposed to the noises vig and wg.

The measurement covariance R(k) is related to the uncer-
tainties vk in the measurements yp. Equation (VI.24)
suggests how R(k) is calculated. In the case of VLBI delay
measurements, the Kalman filter used herein handles one
measurement at a time. Thus R(k) = vk2 for the scalar case.
Also notice that R(k) > 0 for any measurement, which means
that no measurement is perfect (i.e. has no uncertainty).

The standard deviation in the delay measurements is

equal to vy and is given by (Ma, 1978; Whitney, 1974)

Vi = , (V1.26)
wgSNR
where wg is the "... standard deviation of the observing

frequencies used to sample over the observing bandwidth..."

and SNR is the signal to noise ratio of the observation. The
signal to noise ratio is found from (Ma, 1978)

2p

SNR (28T7) 172,

1o

where B is the recorded bandwidth, T is the integration time
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and p :Y(K)l/z. According to Ma (1978), Y is the fringe visi-
bility and is equal to one "... for a completely unresolved

source ..." and

Ta1 Taz2

(Ta1*Tgy)(Taa+Tg2)

where
Ta1 » Ta2 = source antenna temperatures
Tgi1 « Tga = system [receiver] noise temperatures.

The 1 and 2 subscripts denote the antennas at either end of
the VLBI baseline of interest. Furthermore, the source

antenna temperatures are defined by (Ma, 1978)

FEA
T, =
2k
where F = source flux density
E = antenna efficiency
A = [antenna] collecting area
k = Boltzmann's constant

The VLBI delay uncertainties are typically calculated for use
in least-squares analysis and stored in VLB]I observation (com-
puter) files, so they are taken directly from these locations
for use in Kalman filtering. The measurement covariances

R(k) used herein do not include the effect of unknown

systematic errors which could introduce biases into the

estimates.
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The determination of Q(k) is not as straightforward as
that for finding R(k). In fact, it is not just Q{(k)
that is required in the Kalman filtering step (111.9), but
rather [(K)Q(k)I'"(k). The quantity T(k)Q(K)T (k) is

found using equation (VI.21)

T+
Prwg = J O(t,g,t)G6(t)w(T)drT. (vi.27)
tk

Taking the transpose of the above, and changing the dummy

variable from t to a results in

: Yol

wi T T = | wia)eT (@) T (ty, . a)da, (V1.28)
tk

and by multiplying (v1.27) with (VI.28) and taking the expec-

tation (E) of each side of the product. one finds, with the

aid of (V1.23)
' W T L , T
I'Q(k)ly = E{D'pwpwili ) (VI.29)

tk+1 tk+1 T T T

=£ { O(tgs+1.t)6(t)W(T)w (a)G (a)® (tg,y,a)drda}.
tx tk

The expectation operation is an integration process,

and since the order in which the integrations are done in

(VI.29) should not affect the ultimate result, one can write

(VI.29) as
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. r [tk+1 [tk+1 ‘ ‘ A
r'cQ(K)Ty = O(ty,1,T)G(T) (VI.30)
tk Itk

x E{w(t)w (a)}G  (a)  (ty,q. a)drda.

The expectation of the continuous white noise product
E{w(t) wT(u)} is well known (Gelb et al., 1974) with the
value of Q(t) 6(t - a), where 6(t - a) is a Dirac delta
function. Placing Q(t) 6(t - a) into equation (VI.30)
and integrating over alpha, one concludes (Gelb et al.,

1974)

T th+l T P
FQ(k)Iry = O(tk+1.T)G(TIQ(T)G (T)® (ty,y,.Tt)dT. (Vi.31)
tk
Equation (V1.31) relates the s§stem (process) noise covari-
ance Q(k) to a (continuous) spectral density matrix, Q(t).
For more details, see Gelb et al. (1974). The term
PkQ(k)FkT is inserted directly into the Kalman filter
equations. In the research performed herein 'y is set to
identity, I (for convenience), and any proportionality
constants are absorbed into Q(k), the system covariance
matrix.

While it is relatively easy to estimate the uncertainties
in delay measurements vig, and thereby the measurement covari-
ance R(k), it is not so easy fo fix the values of the system
noise wp and its associated covariance, Q(k). People are
sometimes critical of Kalman filtering becausc they don't

understand how Q(k) is determined. [t is sufficient to say
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that there are several methods that can be used to find Q(k),
but it should be understood that wy and Q(k) are strictly
related to the physics of the system being modelled, and as
such, can be found at least in approximate fashion. For a
strictly deterministic system, Q(k) = 0. The topic of wg
and Q(k) determination will arise at several subsequent
points in this work. An example should help highlight one
method of how wy can be arrived at. More exact methods are
available.

Let one consider, as is done in VLBI, how time is kept
by a maser. Conventional hydrogen masers presently keep
time to one part in 1014 or 1015. This is approximately
one nanosecond in one day! This number does not account
for deterministic variations in maser time due to expansion
of the maser oscillation cavity, electrical problems etc.
It makes sense to believe that the stochastic variations in

14

maser time wy are on the order of one part in 10 . Thus

the system covariance matrix can be approximated crudely as

Q(k) = (1.0/1.0x1014)2. More sophisticated maser time

("clock”) models will be discussed later. It should be
pointed out that for estimation of some parameters, such as
the time kept by maser, the parameter estimates are only
weakly dependent on the exact choice of system noise covari-
ance Q(k), and thus approximate values of Q(k) can be used in
the Kalman filter. Finally, one does not always know the
exact system noise information to use in the filter.

Now that the covariances have been described, the
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details of the system equation (i.e. equation II1.5) for the
various parameters of interest in VLBI-polar motion research
will be set forth. Much should be known to the reader
already about the measurement equation (II11.4), as the
delays yg, the uncertainties in the delays vy, and the meas-
urement partials M(k) have been described earlier; as such,
the measurement equation will not be particularized further.
On to the system equation. The vector of parameters to be

estimated (Xi) using VLBI delay data in this work is

[

tc(1R) \
Ter(1R)
Lz1
tc(2R)
Terp(2R)
Xk = Lgo (vi.32)

X

y
UT1-TAI
AY

\ A€ /

where x, y and UT1-TAI are the polar motion and rotation
components of primary interest, and Tgjock/rate(iR) are
"clock” parameters for the relative time between VLBl station
i and some reference station R. One VLBI observation site is

chosen as the reference station in each VLBI data set. Ay and

A€ are adjustments to the nutation series. {Lz; =Lyi., L2,
L,3, ...} are the atmospheric (wet zenith) delays as esti-
mated at each station j. The number of clock and atmosphere

terms to be estimated depends on the number of antennas

participating in the VLBI observations. Also, the position
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(declination and right ascension) of the quasars and radio
sources observed in the VLBl data runs and the terrestrial
coordinates of the stations participating in the observing
will not be estimated as a part of x. Instead, these posi-
tions will be taken from multiple data set, least squares
analyses of VLBI data done previously; these solutions are
updated periodically by the VLBI personnel at NASA GSFC.
While this may not be the best mecans of fixing the gquasar
and VLBI station positions, such a procedure is necessary
because of computer limitations, and has been shown in the
past to be a reliable way to arrive at accurate parameter
estimates.

The discrete, system dynamical equations will now be
derived for the polar motion components, my; and mjy. Recall
from equations (II.7) that simple Chandler wobble (with no a
priori excitation function forcing; i, Y= 0) is

described by the coupled relations

1t
Q

mq may (VI.33)

ﬁz = omy, (VI1.34)

where o, has been replaced by the actual Chandler wobble
frequency, o. The excitation functions are being set to
zero so that one is assuming no pre-conceived form of the
excitation functions which are of geophysical interest. The

VLBI astronomical measurements will be used to infer what

109



may be happening to drive the Chandler wobble of the earth,
Equations (VI.33) and (VI.34) can be written in matrix

form as

. ﬁl /o -0 my /o -0
X = _ = | = X, (V1.35)
\o 0 \o 0

an equation which does not account for any stochastic vari-
ations in m; and mp. Relation (VI.35) clearly resembles

equation (VI.1)
x(t) = F(t) x(t)

with no stochastic forcing terms. By comparison of equations

(Vi.1) and (V1.35), one can conclude that

0 -0
F(t) = F - (V1.36)
a 0
and that F is time invariant. If ¥ is time invariant, one

can find the discrete state transition matrix ®(tyg,3., tyg)
from F by equation (VI.5) and (VI.6)
] 2
{Flty,1-tg)}

O(k+1,k)=exp{F(tg,q-tg)}= I+F(tg,q-tg)+ +
2!

Inserting (VI.36) into equation (VI.6) one finds (with At =

tker o ti)
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(oAt)? (oat)? (oAt)S

2! 4! ' 3!
®(kvrl , k) = 3 2 4
(oAt)"’ (cAt) ({0At)
(oAt) - ————— +. .. , 1 - +

or in more familiar form

(V1.37)

cos (0At), -sin(oAt)
O(tg,1.tg) = )

sin(gAt), cos (CAt)

The discrete form of the polar motion system dynamics with

no stochastic inputs can thus be written

my cos(0At), -sin(oAat))/my
( (v1.38)

ma/x+1 sin(oAt), cos (0At)/ \my [k

In VLBI work, At is on the order of minutes, thereby making
the argument oAt small; thus O(tkg,;. tx) is approximately
the identity matrix. The sinusoidal form of the state tran-
sition matrix makes sense since the original continuous dy-

namic relations (VI[.33) and (VI.34) model a coupled oscil-

lator.

Equation (VI.38) is incomplete and now requires stochas-
tic input terms. The polar motion process noise is assumed
to be a random walk (or integrated white noise) which can

be described by the equation
x(t) = G(t) w(t) (VI.39)

or more explicitly

111



lill\ 1 0 LA
% = ‘ - (VI.40)
mz/ 0 1 L)
where w; and wp are white noise. G(t) is obviously identity
here. The covariance of this integrated white noise process,

Q'(k), can be found from equation (VI.31): (Q' is used for
notation to represent the process covariance with the factors

FkPkT absorbed.)

T tk+1 T
Q' (K)=I'gQ(K)TK =| O(ty,1.T)6(T)Q(T)G (T)O(ty,q,t)dt. (Vi.41)
tk

The components of the system noise spectral density matrix

are defined as

ai1 q12

]

Q(t) (vl.42)

921 922
With the preceding definitions inserted into equation (VI.41)

and ®(tyi,q., tg) as defined by equation (VI.37), one finds

a411' d12'

[

Q' (k) (V1.43)

921 9d22

th+1 (cosoAx. —sjnoAt\ (qll g12 \/cosSUAt, sinoAt d
T,

sinocAt, cosuAt / 921 422 /\-sinoAt, cosuAt

tg

where At now is tyg,; -t. One can approximate equation

(VI1.43), with O0(ty,;.,t) = I, as
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th+1 <011 q12
Q' (k) = dec. (VI.44)

tk d21 4dg22

A further approximation made in the filter model for the
polar motion stochastic (process) covariance is that the
m; and mp spectral densities are not correlated,

thereby giving

Q'(k) = dt. (VI.45)
Jtk 0 422

If q;1; and gpp are constant over the range of integration,
one can further approximate (V1.45) as
933 (tk+1-tk) 0
Q' (k) = (V1.46)
0 qooltk+i-tg)

In general, if one is going to determine the numerical
values of q31 and qpp by a trial-and-error technique during
simulations with VLBI data, then the simple form of equation
Vi.46 is conducive to this task. Eventually it will be
demonstrated herein that the polar motion is quite deter-
ministic (Q'(k) = 0) and thus the form of the covariance
found here really doesn't matter. But it is always a good
practice to set up a Kalman filter model with all parameters
having non-zero process noise covariances.

Now that o(k+1,k) and Q'(k) have been determined for
the polar motion parameters, the state transition matrix

and process noise covariance will be posed for the earth
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rotation parameter mg. From equation (11.8), again

with zero excitation (Y3}, one has the continuous state

equation for rotation with no random inputs

).(=l3‘-=0.

(V1.47)

Comparison of (VI.47) with equation (VI.1) shows that

F(t) = 0 and thus from relationship (VI.6),
the state transition matrix for mg is
o(k+1,k) =1,

or one in the scalar case. Again, a random

it is clear that

(V1.48)

walk process

is assumed for the stochastic contribution to the rotational

component, mg (the same as UT1-TAI), and thus

}.(=-3=W.

(V1.49)

The process covariance for the rotational component is

simply
tk+1
Q'(k) = Q(t)dr
tk
since ®(ty,;.t) and G(t) are both identity.
that Q(t) is invariant in time is also made

covariance 1is

Q'(K) = Qtgsq - ty)-

(VI.50)

The assumption

and the resulting

(VI.51)

A stochastic equation of the form x = w (with O(tg+).tg)

= I) represents a parameter X whose value is deterministic-

ally constant, but has random variations driving it, in this
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case a random walk. According to Gelb et al. (1974), a
" random walk process results when uncorrelated signals
are integrated. It derives its name from the example of a
man who takes fixed-length steps in arbitrary directions.

In the limit, when the anumber of steps is large and the indi-
vidual steps are short in length, the distance travelled in a
particular direction resembles the random walk process.”
There are many naturally occurring entities of interest to
mankind that are randomly driven by integrated white noise,
and the assumption of parameters being uncorrelated is
common.

One also has to estimate offsets to the nutation in

obliquity and longitude with respect to the (reference

value) IAU (1980) theory of nutation (Kaplan, 1981).

Recently Herring et al. (1985) have discovered annual vari-
ations of several marcsec amplitude from the 1980 IAU model,
so0 these offsets are estimated using crude Kalman filter
models here. The state transition matrix is set to identity
and the process noise covariance matrix for nutation is
similar in form to equation (VI1.46)

g1 (tgsy1-tg), O
Q'(k) = (V1.52)
0 q22(tk+)-tg)

Perhaps better models will be needed in the future, but the
ones used here should suffice for the present in dealing with
data sets of one day duration or less. Currently, there are

insufficient data to make any reliable adjustment to the
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precession constant.

1t is of interest to examine the system model for VLBI
"clock"” parameters which were detailed earlier. As stated
previously, a VLBI clock is actually not just time as kept
by a maser, but rather also bears the influences of the
phase injection and cable calibration procedures. It may
also be composed of other time-like variations due to unknown
physical phenomena and oddities in the VLBI observing system
and experiment. It is a rare case when one can fully
account for all the sources contributing to the clocks.

In general a constant ramp function dominates the clock
signals along a given baseline. This ramp function is due
to offsets in frequency of the masers at each end of a
baseline, and should be modelled deterministically. The
clock behavior along a baseline is modelled using two param-
eters, a clock offset t, (i.e. a bias) and a clock rate T,
(i.e. a ramp). The continuous system model describing the
clock dynamics is as follows

Te 0 1\ Te

- ) , (V1.53)

Ter Y 0/ Ter
and simply indicates that the derivative of the clock offset
is the clock rate, and that the derivative (with respect to
time) of the clock rate is zero. That is, the clock rate is
reasonably constant in time as is true for most masers. The
model could be made more general by allowing the clock rate

to change in time, but such a model may be too elaborate for
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present purposes, especially for the case of single-day VLBI
experiments.
Equation (VI.53) can be readily made discrete using

equations (VI.5) and (VI.8). The result is:

Te 1 tkr1tk \ Te
| (VI.54)

Ter/k+1 Y 1 / Ter/k
This equation may seem overly simple to model all that has
; been discussed, but the stochastic terms have not yet been

included. In addition, because the Kalman filter produces

' innovations (adjustments) to the clock parameters as it
; processes (passes through) the measurements, the optimal
| estimates of the clock parameters X(k+1|k+1) will reflect
t the actual clock variations in the data. So, even though we
E are limited by our understanding of the "clock" system to
simple models, the Kalman filter will account to some extent
for the neglected variations.

Now that the state transition matrix has been fixed, the
| stochastic fluctuations of a VLBI clock must be modelled.
Recall that the clock being solved for in VLBl is actually

! the relative clock behavior at one VLBI station with respect

to the clock at some reference station, and as such is pro-

stations. The random variation in this time difference at

|
|
} portional to the difference in the maser times at the two
|
f
‘ the outputs of the hydrogen masers, on the time scales of

; interest in VLBI, takes the form of flicker noise (Allan,
: 1983), which is a noise process with a power spectrum that
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is inversely proportional to frequency. Power laws for,
and illustrations of the form of, flicker and random walk
noise as well as other fundamental noises, are displayed
in Figure 11 (taken from Allan, 1983). It has been shown
{Brown, 1984) that a flicker noise process can only be
handled approximately in a Kalman filter, whereas the cases
of white noise and a random walk can be treated exactly.
This is due to the fact that the power spectrum S(f) of
flicker noise is not inversely proportional to an even power
of frequency.

The clock covariances are modified from the work of

Jones and Tryon (1982) and Tryon and Jones (1982) and take
the form

Q'clock(k) = Q¢lock(tke1~tk) (VI.55)

Q' clock rate(k)=Qclock rateltkr1-tk). (V1.56)
It was felt that these models should be satisfactory for
describing maser behavior over a day since Jones and Tryon's
study was for a maser intercomparison over several months.

A random walk works well for "clocks" even though maser
noise is flicker-like because maser timing variations are
dominated by changes in signal path (in the VLBI electron-
ics) rather than by noise in the maser. Thus, one really
wants to model these environmental effects, and a random walk

model for stochastic clock fluctations is probably as good
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as any other. It is certainly more physical than a white
noise model alone.

Very early on in the research presented here a comparison
was made between least squares analysis of a VLBI data set
and a crude Kalman filter run estimating a single clock pa-
rameter only (no rate was estimated). In actuality what was
being solved for was not purely a clock parameter but also
included the influences of other parameters not being esti-
mated, such as zenith atmosphere delays etc. The clock model
employed an identity state transition matrix and an inte-
grated white noise stochastic model. The results show that
the residuals from each technique are comparable and of
similar distribution and thus demonstrated that an early
version of the Kalman filter was operational. The study is
presented here for its instructional value.

The example is a comparison of residuals on the baseline
running between Algonquin Park (Ontario, Canada) and Fort
Davis, Texas. The VLBI measurement session spanned two days
and began on 24 August, 1984. The least squares delay re-
siduals are shown in Figure 12a, while the Kalman filtered
clock estimates are presented in Figure 12b.

In Figure 12a, the time during which the VLBI mea-
surements were made (in days) is displayed on the ordinate,
while the delay residuals (nanoseconds) are on the abscissa.
Each weighted VLBl datum is identified by a capital Roman
letter. Data taken, but not used in the weighted least

squares solution, are designated by a small Roman letter on
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the figure. The letters are used to identify the radio
source (such as 3C273B, 3C 345, etc.) observed by the VLBI
antennas; the key to the right of the least squares plot
defines the source associated with each letter. The plot
shown has had clock offset and rate contributions removed
from the delay residuals by least squares analysis. The
resulting delay residual "fine structure" plot is sinusoidal
in shape with an amplitude of 6 nanoseconds. The sinu-
soidal shape may be artificial, and could be due to several
"breaks"” in the clock behavior. 1t is the VLBI analyst's
job to fit polynomials to the sinusoid; these polynomials
would approximate the VLBI clock behavior on the Algongqguin-
Fort Davis baseline. A very good fit to the clock curve
would leave (as a remainder) a linear trend of delay resid-
uals; the residuals would run (in time) along a line centered
at 0.0 nanoseconds in the updated delay residual plot. The
scatter of the newly fitted delay residuals should be
considerably less than 6 nanoseconds, and typically is
about 50 - 150 picoseconds.

For comparison, the clock parameter estimates from the
Kalman filter are shown as a function of experiment time
{a running Julian date - in days) in Figure 12b. In this
plot the quasar and radio sources are not designated by
letter, but the clock offset estimates are denoted by
crosses. The curves of Figures 12a and 12b are visibly alike
allowing one to conclude that the Kalman filter estimates

match residuals found by the least squares analysis. There
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is a time offset in the results of Figure 12b which has been
removed (by fitting) in Figure 12a. It would probably be
more proper to compare the residuals of each technigue, but
residual plots from the Kalman filter were not available at
this early stage of this work. Producing a Kalman filter
which could saslve for clock variations as a function of

time (with limited analyst intervention) was a primary goal

of this dissertation.

The Kalman filtered clock curve of Figure 12b was arrived

at using an integrated white noise covariance Q'(k) =
Q(tkgs+q - tg) as opposed to some flicker noise method.
In addition, clock parameter estimates are relatively
insensitive to the noise level magnitude of the random walk
model, Q, as long as it is in the domain of physical reality
for masers (and calibration delays) used in VLBI work.

The clock contributions dominate the measured VLBI

group delay residuals, in general, while the second largest

VLBI nuisance factor arises from wet atmospheric path delays.

The associated parameter being solved for using the Kalman
filter is the adjustment to the atmospheric path delay in
the zenith direction at each station. The dry part of the
atmospheric path delay is usually not solved for but rather
is adjusted using the Marini model dry atmosphere cali-
bration which was mentioned earlier.

The choice of the wet zenith delay deterministic model
was limited by the fact that only one parameter for each

VLBI observing station is set up in the SOLVE analysis
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program for atmospheric delay estimation. Thus, the simple
model of:

O(tpeq.ty) = I (V1.57)

is used. In the future, one would anticipate estimation of
an atmospheric delay rate term as VLBI data analysis becomes
more sophiscated. For now it is assumed that the wet zenith
delay adjustment is roughly constant, although again because
of its Markov foundation, the Kalman filter can still track
non-constant atmospheric changes, even if they are not
modelled. The zenith‘wct delay covariance can be modelled
by a random walk process, as has been shown by Davis et al.
(1985).

This concludes the derivations of state transition
matrices and system (process) noise covariances needed to
Kalman filter and smooth VLBl group delay data. The
reader is probably wondering how all of the preceding fits
together. This will be illustrated . First the measure-
ment equation will be specifically written out (recall that

the general form of the equation is yg = M(k)xg + vi):
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(VI.58)

9t 9t ot 9t 9T 9Tt OT ot j \
, e X

9x 8y 8(UT1-TAIL) 9AY BAe 8t Oty 0L, y

T = |—,—

t Vdelay:

Remember that t is the VLBI group delay and v(delay) is the
uncertainty in the delay. The variables x, y, UT1-TAI, A,
A€, t,, top and L, have been explained earlier
(see equation VI.32 and related text). Equation (V1.58)
simply relates the group delay t to parameters X at each
observing epoch ty. The subscripts k have been left out of
(Vi.58) to avoid clutter.

The discrete system dynamical equation (i.e. equation

I111.5) 1is
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(V1.59)

X \ (cos(oAt),»sin(oAt).O, Ce e e X
v E ;sjn(oAm), cos{oAt),0, . . . . . . . y
UTl*TAlg 0 0 1 o . . . . . . UT1-TAI
AY 0 0 o 10 . . . .. AY
A€ 0 0 o o010 . . . . A€
T ) 0 0 0 001At O T
Ter 0 0 0 000100 Ter
010
010
\ L, / \ .0 1/ \ L,/
k+1 k
+ Wk,

where At = tig,y - tx. Notice that if At is small, the
state transition matrix, ®(k+1,k) for this problem approxi-
mates an identity matrix. If one had no information about
the physics or behavior of the VLBI parameters above, one
could possibly start with an assumption of o(k+i1,k) = I for
initial filter runs. Also, the fact that all the VLBI pa-
rameters above are given non-zero stochastic noise terms
(w # 0) is only to allow the filter form to be somewhat
general . One may find that some of the VLBI parameters are
purely deterministic.

Equations (VI.58) and (VI.59) comprise the measurement/
system dynamics model employed herein for Kalman filtering/

smoothing VLBI group delay data. The previously derived
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covariances, R(k) and Q(k), and measurement partials, M(k),
in addition to ®(k+1,k) from equation (VIi.59), are inserted
in the Kalman filter/smoother algorithms. The net results

of the filtering/smoothing will be the optimal parameter

estimates X and their associated error covariances P.
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Chapter VII.

TUNING THE KALMAN FILTER

To tune a Kalman filter is to define the values of the
stochastic noise covariances used in the filter. Generally,
one starts with some initial idea of what the variability of
a parameter is based on knowledge of the physical system.
For instance, one could analyze water vapor radiometer data
to discover the stochastic variation in wet atmospheric path
delay along zenith. Once one has some inkling of the range
of applicable stochastic noise, one can then use some other
method to home in on more precise process noise values.,

The method employed herein is strictly one of trial and
error. This would not be feasible to do if the number of
parameters being estimated were large. The tuning of a
Kalman filter is usually the most inscrutable facet of its
application. Some authors even characterize tuning as being
more of an art than a science, although tuning always has a
tie to reality in that the process noise level used in a
filter must be physically believable.

The ability to tune the Kalman filter used in this study
by a brute force technique like trial and error is allowed
by its limited realm of applicability. The VLB{ data to be

analyzed using the Kalman filter are the 1984-1985 1RIS
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{International Radio Interferometric Survey) observation set,
which consists of single-day VILBI measurement sessions run
once every five days. The IRIS radio astronomy antennas are
located at Westford, Massachusetts; Fort Davis, Texas (HRAS-
Harvard Radio Astronomy Station); Richmond, Florida;
Wettzell, Germany; and Onsala, Sweden. Since the Onsala
observatory is not a full-time participant in IRIS, data
from the Onsala baselines will not be analyzed. Also for
the purposes of this study, the observing station at
Westford will be the clock reference; that is, it will be the
station whose masers other station masers will be compared
to along any given baseline. This will simplify the tuning
procedure.

The trial-and-error tuning method has a very simple
basis -- one adjusts the process covariance values until
the Kalman filter residuals yyi,q1 - M(k+1) K(k+1]|k) are
minimized. For clarification, the preceding residuals are
not the delay residuals yp - ;k- Most Kalman filter
tuning procedures are based on adjusting process covariances
to minimize the Kalman filter residuals and their variances
and to make the statistics of the residuals behave in a
Gaussian manner. The residuals are examined along each
baseline as opposed to all at once in a group.

The [RIS Kalman filter tuning was not done for all
parameters at once, but rather was done for the parameters
which have the greatest effect on the residuals first, then

those parameters having the next greatest effect,etc., until
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all tuning was completed. The parameters with greatest
impact on VLBI residuals are those of the clock offsets and
rates, and the clock offset and rate process covariances
along a given baseline were found simultaneously. The clock
parameter estimates were made using data from the baselines
Westford-Richmond, Westford-Fort Davis(HRAS) and Westford-
Wettzell; relative clock behavior along any other baseline
in the Westford-Richmond-HRAS-Wettzell system can be found
from combinations of clock solutions along the baselines
which use Westford as a reference. What is specifically
being determined by trial and error are Q(clock) and Q(clock
rate) in equations (VJ.55) and (V1.56). Once these values
are fixed, they will be used in the processing of the 1984-
85 IRIS data.

In order to find a Q(clock) and Q{clock rate) that will
work in processing all the IRIS data, one would like to
tune by examining the residuals of a one-day data set which
exhibits behavior typical of most of the IRIS observation
dates. A data set $84MAR04XP (version 13) from the
IRIS series was arbitrarily selected for the tuning opera-
tion, mostly because it was the data set used in constructing
much of the filter structure and software. The designation
$84MARO4XP means that the data collection started on 4 March,
1984 and that the data set was processed by the NASA Goddard
Space Flight Center VLB analysis group. The least squares
analysis residuals of $84MARO4XP (ver. 13) seemed well

behaved, which allowed one some confidence in this choice of
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a tune-up data set. The tuning results are summarized in
Table One.

The tuning procedure along each baseline consisted of
at least two steps: first, examine the average residuals
(or their standard deviations) as a function of Q(clock),
Q(rate) in four-decade intervals over the wide Q ranges
Q(clock) = {10—31, 10~15 seconds}, Q(rate) = {10_38.10—22
secondsnl} and choose a subsection of the Q ranges for
further study; second, examine average residuals and/or
their standard deviations over the subsection until
{Q(clock), Q(rate)} are found to the nearest decade in the
Q domains. Further specification to better than one power
of ten of Q(clock), Q(rate) for each baseline is probably
not warranted at this time, unless one would want to Kalman
filter phase delay. In general, there are only insignifi-
cant changes in the average residual or standard deviation
over a decade in either Q value, in the region of minimum
average residual.

Figure 13 depicts the results of the coarse clock
tuning procedure along the Westford-HRAS baseline. Contours
of constant average value are drawn to highlight the
structure in the plot. A region of minimal average
residuals extends from the center of the graph to the upper
right-hand corner along a line in which both Q(clock) and
Q(rate) are increasing; the average delay residual varies
little along this line.

In Figure 14 a coarse plot of the "average residual”
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standard deviations is displayed. The structure is similar

to the plot of average residual values, and contours of
constant standard deviation are drawn. A region for further
tuning is surrounded by a square made up of dotted lines.

This area has been chosen for further tuning because the
standard deviations of the residuals are close to minimum
value and the residual standard deviations don't change

much within the region surrounded by the dotted line.

Similar plots are made for the finer (single-decade reso-
lution) tuning study and ultimately the best Q(clock) and
Q(rate) are chosen from such a graph. This trial-and-error
procedure was also followed for the Westford-Richmond and
Westford-Wettzell clocks, and it was reassuring to find that
the plots used to select Q values for each baseline all resem-
bled one another. In addition, the Q values found in this
manner have been applied herein to non-IRIS data with good
residual fit results.

The clock tuning done by trial and error yielded
process noise standard deviations of about 10 - 100 pico-
seconds for clock offset and one part in 1014 for clock
rate, which are both physically reasonable. A part in 1014
for the clock rate process noise makes sense because the
VLBI masers are supposed to operate at this specification
over the period of several hours. The standard deviation of
10 - 100 picoseconds in clock offset agrees with current
GSFC VLBI data analysis uncertainties in which the all-

inclusive "clock" is a dominant factor.
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After the process noise covariances for clock offset and
rate were found, the process (or stochastic) noise level for
the wet (atmospheric) zenith delays, a set of nuisance pa-
rameters, had to be fixed by trial and error. Characteriza-
tion of these delays at each observing location is important
for VLBI data sets in which no (or bad) water vapor radio-
meter (WVR) data are available, which at present, almost
always seems to be the case. The implementation of WVR's is
currently in its infancy.

The random walk covariance level at each station (HRAS,
Wettzell, Westford, Richmond) was estimated using data from
two individual baselines: HRAS-Richmond and Westford-
Wettzell. Along the Westford-Wettzell baseline, the previ-
ously determined clock models were used in solving for clock
parameters in addition to wet zenith delay parameter adjust-
ments at Westford and Wettzell. The wet atmosphere delay
covariances were adjusted until the delay residuals were
minimized. A similar procedure was followed for HRAS-
Richmond. As with the clock tuning, the residuals were

estimated using atmosphere delay covariance levels over a

coarse range of 10718 (o 1073% seconds in four decade inter-
vals. This range was chosen because it is on the order of
the square of nanoseconds to picoseconds ~ the level at

which one might expect to see atmospheric delay variations.
Figure 15 depicts the delay residual standard deviations as
a function of covariance level for each of the stations at

the end of the HRAS-Richmond baseline. The dotted line on
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the figure again indicates the region over which fine
tuning (at one-decade intervals) took place, and from which
the final covariance levels were found.

The standard deviations of wet zenith group delay were
found to be on the order of tens of picoseconds, which again
agrees with the physical value of what one would expect as
the wet delay uncertainty. It should be noted here that
estimates of the wet zenith delay adjustment should be
directly comparable in magnitude and shape to the delays
output by water vapor radiometers. Now that the covariance
levels have been set for the clock and atmosphere nuisance
parameters one caa now turn attention to the more physically
important parameters of polar motion, earth rotation and
nutation.

The covariance levels for the two components of polar
motion were found (simultaneously with clocks and atmos-
pheres) using the method of trial and error for the VLBI
triad Westford-Wettzell-HRAS. The Richmond station was not
used in order to save time during tuning -- the trial-and-
error method becomes somewhat long-winded after a while.
Residuals were only examined for the baseline HRAS-Wettzell, 5
which should be sensitive to polar motion. VLBI baselines
trending North-South are generally sensitive to at least
one polar motion component; for more about this topic,
please refer to Lundqvist (1984). The polar motion covari-
ance levels being determined are g7 and g2 in equa-

tion (VI.46).
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The results of the polar motion tuning are presented in
Figure 16. The covariance level range is 1.0 x 10_18
to 1.0 x 10_30 radiansz/sec for each component of
polar motion, and again the area chosen for further fine
tuning is marked by the dotted line. The standard devia-
tion of the group delay residuals is sometimes used in the
process noise covariance estimation procedure rather than
the average residuals because the spread in the residuals
seems to be a more useful indicator in tuning than some
average residual. The average residual is usually very
close to zero. In addition the standard deviation of the
average residual is positive in value.

The polar motion process covariance levels are roughly
the same for both components and very small in value.
The small covariance levels indicate that the polar motion
parameters are deterministic to a high degree. The non-
Zzero polar motion process covariances found through trial
and error are retained in the filter only so the filter does
not "close up" on itself. A filter which closes up is one
that no longer modifies parameter estimates even though new
data are being processed. It is a condition in Kalman
filters that should be avoided, even if by injection of
slightly extra artificial noise.

The tune-up of nutation and obliquity was similar to
that of polar motion except that polar motion parameters
were estimated also, in addition to nutation adjustments,

clock terms and atmospheric parameters. The nutation in
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Figure 16. Kalman filter standard deviations of
residuals for polar motion covariance level tuning.
Baseline is HRAS (Texas) to Wettzell (Germany).
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obliquity and longitude adjustments also proved to be very
close to deterministic. Better nutation models (determin-
istic and stochastic) should probably be implemented in the
near future.

The last remaining covariance level to be found is for
UT1-TAI, length of day adjustments. All previously men-
tioned parameters were solved for and the residual standard
deviation was observed as a function of the process covari-
ance level, Q, in egquation (V1.51). The change in length of
day is found to be very nearly deterministic. Thus all the
parameters of interest (nutation, polar motion, earth rota-
tion) appear to be quite deterministic while the nuisance
parameters (clock, clock rate, wet atmosphere zenith delay)
bear strong stochastic components. In the future, what is
here modelled as stochastic may become deterministic as
sclentists become more familiar with the physics of clocks
and atmospheres.

Table One summarizes the process noise covariance

information for the parameters estimated in this work. It
is interesting to note that all atmospheric process covari-
ance levels are the same except for the HRAS station at
Fort Davis, Texas which appears to be less variable than
its eastern U.S. counterparts. It seems that the general
lack of water vapor in west Texas is exhibited in a low
relative covariance level, at least for the day of data
being used to tune the Kalman filter. 1In addition the

Westford-HRAS clock rate covariance level is anomalously
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Table One- Kalman Filter Covariance Levels

COVARIANCE LEVELS (Westford = reference station)

CLOCK LEVELS

Baseline clock offset clock rate
-1

_43e0)  _gelsech)
Westford-Wettzell 10 10
Westford-Richmond 10_23 10—30
Westford-HRAS(085) 19723 10732
ATMOSPHERE DELAY LEVELS
Station Level (sec)
Westford 10724
Wettzell 10724
HRAS (085) 1072%
Richmond 10_24
POLAR MOTION
Each component 10728 (rad?®/sec)
NUTATION
Each component 10730 (radz/sec)
UT1 - UTC

-28

One component 10 (sec)
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(but not severely) low, suggesting that the relative maser
behavior along the Fort Davis-Westford baseline is better
than along other baselines.

It should be stressed that the process covariance levels
of Table One should produce good-to-excellent residuals
if applied to 1984-85 IRIS data sets for which they were
designed. However, as improvements in the Mark I1II VLBI
data-taking systems are made in the future, one may have to
modify the Kalman filter deterministic and process
covariance models applied here. In addition, finer tuning
may be needed if one is to filter phase delay data rather
than group delay observations.

Apparently there is some precedent for this trial-and-
error approach to Kalman filter tuning. Fitzgerald (1967)
uses a trial and error Kalman filter tuning technique for
aeronautical guidance problems. There are more sophis-
ticated techniques for determining the process covariances Q
and also for the measurement covariances R than the trial-
and-error method. For details about these procedures see
sections 8.8 through 8.11 of Jazwinski (1970). Simply put,
these methods use predicted residuals r(k+1}k) and the
constraint that the predicted residuals be consistent with
their theoretical statistical properties, to estimate the
process covariances used in a Kalman filter. A specific
example (for 1=1) of a predicted residual is

r(k+1|k) = yg+1 - M(k+1)k(k+1[k). (VITI.1)

An advantage of this technique is that one is using obser-
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vational data to tune the Kalman filter. Time considerations
and computer limitations prevented implementation of such a
filter for this work. The smoother requires no further
tuning because it only operates on the output of the Kalman

filter.
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Chapter VIII.

FILTER OPERATION AND ILLUSTRATIVE EXAMPLES

This chapter explains the manner in which the Kalman
filter was used to process VLBI group delay data. Some
illustrative examples are presented to clarify what is going
on. In general the filter can be set up to automatically
generate the estimates, error covariances etc. which are
used as input to the smoother. Once the filter run has
finished, the smoother is simply turned on. Thus again the
filter operation will be emphasized here. The smoother
depends on a proper filter run in order to produce optimal
results.

So far, much has been described about the state transi-
tion matrix ¢(k+1,k) and the process noise covariance Q, but
little has been said about the a priori estimates, Xxg., and
error covariances, Pg, used to initially start the filter;
lack of emphasis on this subject is a distinct shortcoming
in most Kalman filter texts. It is very desirable to
start a Kalman filter run with the best a priori values
possible. The source of such a priori's could be previous
Kalman filter end point estimates which stop at the start
epoch of the subsequent Kalman filter run, or could be

measurements of a priori parameters made just before the
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start of data taking.

In parameter estimation of IRIS VLBI data there are
usually no prior measurement data since the preceding
observing session was five days earlier. The end point
estimates from the earlier session could be used as a prioris
for the current filter run, but this is not done here
because it is thought that the maser time offsets will
change greatly in the (four) intervening days due to
the clock ramp signals inherent in maser time keeping.
Perhaps it is better to start a Kalman filter run with the
belief that one has no information about the a prioris.
This is the tactic employed in this research.

To utilize the assumption that nothing is known about
the a prioris, one sets xg (actually, the adjustments to
parameters with respect to reference values) to zero and
Pp to infinity. Instead of setting the error covariance,
Pg, to infinity, it is sufficient to set Py to
some large value much larger than the parameter errors are
thought to be. For the purpose of IRIS VLBI parameter esti-
mation, Py is assumed (for simplicity) to be a diagonal
matrix with null values for off-diagonal elements, and with
Pp diagonal elements given in Table Two. It can be seen
that some of the initial covariance values are not overly
large (i.e. approaching infinity), but the filter seems to
guickly recover from this.

Since the amount of VLBI data for single IRIS runs is

limited to about one day duration, it was necessary to
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Table Two - Kalman Filter Initial Conditions

Initial Conditions

Parameter Xg Pg
-16 2
Clock offset 0.0 sec 1.0x10 sec
-28
Clock rate 0.0 1.0x10
-16 2
Atmospheric delay 0.0 sec 1.0x10 sec
. . -18 . 2
Polar motion 0.0 radian 30.0x10 radian
(each component)
-7 2
UT1 - UTC 0.0 sec 5.0x10 sec
. , -18 . 2
Nutation 0.0 radian 30.0x10 radian

(each component)
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iteratively Kalman filter the VLBI group delay data. Po

was set to the values listed in Table Two for all runs.

For the first iteration, xg was set to zero. The ending
estimates x from the first iteration were input as a prioris
into the second Kalman filter iteration, and each iteration
was repeated in a similar fashion. The iterative procedure
was concluded when the estimated residuals showed minimum
standard deviation. Usually this occurred after three or
four iterations. One would believe that the number of
iterations could be reduced by starting with larger Pg
values, but there was no excess programming time to look
into this possibility. In general, the standard deviation
of the residuals found using the iterative Kalman filter-
ing method matched those arrived at via least squares anal-
ysis. This result validates the belief that the Kalman
filter method can be used to eliminate analyst intervention
necessary in VLBI optimal estimation using batch least
squares. Kalman filtering on a "state of the art" computer,
as opposed to the antiquated (Hewlett-Packard) HP-1000,
would be a dream.

Now that most of the preliminary details have been
unravelled, it will be quite useful to familiarize the
reader with some examples of Kalman filtering. The initial
examples reflect the analysis of IRIS data set $85SEP20XI,
version 11, Figures 17 a and b depict the clock (offset)
and clock rate (filter) estimates as a function of experi-

ment running time (horizontal scale) for the baseline
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as a function of time as produced by Kalman
filter. Note convergence to actual clock offset
at the beginning of the run. (b) Wettzell-
Westford clock rate as output by the Kalman
filter. Note that the relative clock rate is
approximately, but not absolutely, constant as a
function of time.
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Wettzell to Westford. The clock offset plot is clearly
dominated by a ramp function which is actually the relative
behavior of the Wettzell maser with respect to the Westford
hydrogen maser; an offset in frequency of each maser gives
rise to a ramp function in time, and the difference of two
ramp functions is the ramp function shown. Notice at the
beginning of the clock offset plot that it takes a short
time for the Kalman filter to converge on the proper clock
offset estimates. The clock rate portion of Figure 17 is
not as continuously linear as the clock offset plot,

but it can be seen that the clock rate is roughly constant
(considering the small vertical scale of the plot) with

0_14 to -220. x 10"14 seconds/second.

value between -206. x 1
The approximately constant clock rate estimate again
indicates that the masers along the baseline Westford-
Wettzell are working well. There are three distinct changes
in slope visible in the clock rate plot which can probably
be attributed to phase injection delays and/or cable cali-
bration effects. The changes in slope on the clock rate
plot suggest that the deterministic "clock” model (of the
Kalman filter) which includes clock rates, but no clock
acceleration parameter, is approximate. The model will work
better in some situations than in others.

Clock offset along Westford-Wettzell with much of the
dominating clock offset and rate removed is depicted in

Figure 18. That the clock rate has at least three distinct

values is now clearly reflected in the finer scale clock
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offset estimates. This figure is included to remind one
that fine structure can be hidden by dominant trends in
data.

The other "nuisance" parameters in VLBI optimal esti-
mates are the wet zenith (atmospheric) delays (at Westford
and Wettzell) which can be viewed in Figure 19. It is
obvious from comparison of the "clock"” plots and Figure 19
that the clocks will affect VLBI observations more than the
wet zenith delay. However, it should be remarked that the
plots of Figure 19 are for a day when variations in wet
zenith delay are quite small. The graphs of Figure 19
give the moisture content adjustment in the zenith direction
at each station from VLBI data alone; this illustrates the
sensitivity of Very Long Baseline Interferometry as a
measurement technique.

Now that some examples about the nuisance parameters
have been presented, one can examine the polar motion esti-
mates displayed in Figure 20. The Kalman filter standard
deviations (from the square root of the relevant error
covariance elements) are shown as bars with the polar
motion component estimates on the figures. The polar motion
and UT1-TAI estimates are made with respect to reference
polar motion and UT1-TAI values from BIH (Bureau de 1'Heure)
publications (BlH Circular D or Rapid Service documents).
Since BIH data are only found at five-day intervals, the
reference values are determined by fitting a curve to the

BIH polar motion data at the epoch of observation and at
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two BIH values on either side of this IRIS datum; one then
interpolates to get polar motion reference estimates (used
in the VLBI program CALC) at each VLBI observing epoch.

A look at the general features of Figures 20 a and b
reveals that the adjustments in polar motion in time are
very nearly constant, especially considering the fine scale
of the plots. One can also readily observe the estimates
converging as more and more data are processed, as should be
the case. The polar motion error bars originally start with
amplitudes of about 2.0 milliarcseconds which fall to values
of 1.5 milliarcseconds or less at the end of the Kalman
filter run. These error bar values lead one to conclude
that the Kalman filtered VLBI polar motion estimates are
good to the one-milliarcsecond level at best.

In Figure 20 b, one can distinguish a not so gradual
change in the x-component (m;) of polar motion of about
0.4 milliarcseconds from the time 0.3 to 0.4 days. There

is no corresponding change in the y-component of polar

motion and, of course, a change of 0.4 milliarcseconds in
the x-component is not statistically significant. Neverthe-
less, it is interesting to note that this change in the
x-component is well correlated in time with a large after-
shock of the Great Michoacan, Mexico earthquake of 19 Sep-
tember, 1985. The aftershock event was of magnitude Mg =
7.6, moment 2.4 x 1027 dyne-cm with epicenter at 17.8020 N
latitude and 101.647° W longitude (depth = 31 km) and

occurred on 21 September, 1985 at 1:37:13.4 UTC (Preliminary
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Determination of Epicenters, USGS, September, 1985). The
VLBI experiment started at 17:37 UTC on 20 September, 1985
and ran for about one day, with the 0.3-0.4 day time range
(when the change in the x-component of polar motion
occurred) lasting from 00:49 UTC to 3:13 UTC on the 21st of
September. The time of the aftershock falls well within the
time range 00:49 to 3:13 UTC.

It should be remarked that variations in clock and atmo-
sphere parameters did occur from 00:49 to 3:13 UTC, and that
these variations could influence the polar motion x-compo-
nent results. But if this is indeed the case, one would
expect such clock and atmosphere contributions to appear in
the y-component of polar motion also. Such behavior is not
evident and suggests that the change in the x-component of
polar motion may be real, even though not measurable to our
statistical satisfaction. Future improvements in VLBI
measurement precision should allow resolution of whether
such an observed variation is real.

A return to the original topic of presenting examples
is warranted. The change in length-of-day estimates for
data set $85SEP20XI.version 11 appear in Figure 21. The
figure shows that UT1-TAI is quite constant over the one-day
VLBI session, although a very slight slope is evident in the
estimates once the filter has recovered from the UT1-TAI a
priori values at a time of 0.07 days. The error bars of the
estimates are quite large until a priori recovery, which is

what one would expect. Following the recovery, the
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estimates converge and the error in the estimates decreases
to 0.1 milliseconds or less. The reduction in the UT1-TAIl
errors over one day is relatively larger than that observed
for the polar motion and nutation parameters.

The adjustments to the nutation in obliquity and longi-
tude are revealed in Figure 22. The nutation offsets are
estimated with respect to reference values given by the
1980 IAU (Kaplan, 1981) nutation series. Again the nuta-
tion in obliquity and longitude offsets are roughly
constant, and converge as the filter processes more and more
data. The nutation in obliquity estimates are determined to
a much higher precision than those of the nutation in longi-
tude; this behavior is commonly repeated in other Kalman
filtered VLBI data sets. A step observed in both nutation
estimates at time equals 0.84 days is due to influences of
"clock" parameters; it is evident that the clocks are re-

sponsible because both nutation parameters are affected.

The last items of educational interest are the residual
plots for a final run of the Kalman filter, which are given
in Figure 23. The residuals are broken up into groups by
baseline and, on a given plot, they would ideally be
expected to have zero mean and some statistically predict-
able value of standard deviation. The residuals are dis-~
played versus the running time during the observing session
(on the vertical scale) so a VLBI analyst can spot trends
in the data. The residuals along the Westford-Wettzell

baseline bear some remnants of the "clock" conduct shown
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previously, but at a much reduced amplitude. In general,
the clock parameters have successfully absorbed such clock-
like trends.

Little average bias can be observed in the group delay
residuals of Westford-Wettzell and Westford-Richmond, while
a somewhat larger offset in average delay is visible for the
Richmond-Wettzell baseline. Perhaps the bias could be
removed by a slight retuning of the Kalman filter, but in
most analyses such time-consuming procedures were avoided.
The standard deviations of the group delays are in the 120-
picosecond range which is typical for the data handled in
this work. No large amplitude trends are evident in the
residuals of each baseline, emphasizing that the Kalman
filter produces results consistent with those attained via
other current VLBI analysis techniques.

A few more illustrative examples involving data sets
other than $85SEP20XI follow. Data from $84MARO4XP are
used to compare filter estimates with Rauch-Tung-Striebel
(1965) smoother results. Filter estimates for wet zenith
delay at Westford and Wettzell are in Figures 24. The corre-
sponding smoother results are brought out in Figure 25.

The rough, discontinuous wet delay fluctuations quite
visible in Figure 24 become much smoother and more contin-
uous in Figure 25, as one might expect. The smoother

does "smooth"” the data in the traditional sense. While the
filter and smoother estimates are not very different in

amplitude, the smoother uses all the information available
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in the VLBI group delay data, and should produce slightly
more accurate estimates than the filter.

A comparison is now presented of wet zenith path delay as
determined by Water Vapor Radiometer (Figure 26) and Kalman
smoothed wet zenith path delay (Figure 27) as estimated
using VLBI group delay data. The comparison is intended to be
more for instructional purposes than for strict quantitative
use. The data set used in the example is $85DEC10X, version
6, with observing antennas at Westford, Wettzell and Onsala.
Since the Kalman filter/smoother was not tuned for use with
the Onsala station, covariance levels were set to values
which seemed to be reasonable, and residuals were examined
to make sure they fit well.

In Figure 26 one can see that the WVR data density is
quite high, with a gap during the middle of the run, while
the data density is less for the Kalman filtered/smoothed
zenith delay results. Nevertheless, it is apparent that the
WVR and Kalman smoother zenith delays are roughly comparable
in form and amplitude. There is a bias of approximately
2.0 centimeters delay between the WVR and Kalman smoother
results which is probably due to the method by which the
Water Vapor Radiometer measurements (i.e. brightness temper-
atures) are converted to wet vapor zenith delays. However,
some of the bias could be due to somewhat approximate filter
tuning.

The Kalman smoother estimates do not have a gap near the

middle of the experiment as do the WVR results, which
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suggests that Kalman smoother wet zenith delays can be avail-
able at times when WVR observations may not be. Also one
may observe that the smoother and WVR plots "track" one
another quite well during the initial half of the VLBI
data-taking session, while the match is not so good during
the second half of the run. This can easily be explained

by the fact that in the filter/smoother, the wet zenith
delay is modelled to be deterministically constant as a
function of time (with no wet atmospheric rate model). At
the start of the VLBI session, the smoother, even with such
a limited model, keeps up with the wet zenith delay slope
until this slope changes. At this point the filter/smoother
has to deal with a change in wet atmospheric delay rate (a
zenith delay acceleration!) while it expects the wet zenith
delay adjustment to be constant. The result is that the

wet zenith delay estimates become poor while the filter/
smoother tries to adjust to the new wet zenith delay slope.
Still the smoother does produce a descending limb of wet
zenith group delays.

The final example in this chapter is included to demon-
strate that wet zenith delay adjustments can vary greatly
during the single-day period of a VLBI observing session.
The results can be viewed in Figures 28, and are from
VLBI experiment $86APR0O6X.version 5. The stations
involved in the experiment were at Hatcreek, California;
Owen's Valley Radio Observatory (OVRO), California; and

Mojave, California. The data are very dense because the
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purpose of this experiment was to allow VLBI scientists to
use phase delay observations during analysis as opposed to
group delays; the former are more precise than the latter but
phase delay analysis is more difficult than group delay

work.

The OVRO and Hatcreek wet zenith delay estimates from
the Kalman filter show some initial recovery from a priori
values, then reach a roughly steady state zenith delay, and
finally experience a turbulent transition to a second steady
state zenith delay which is of larger amplitude than the
first delay level. This sequence of events is due to
movement of a storm front across California. Some of the
wet zenith delay fluctuation observed during the turbulent
transition between the (steady state) zenith delay levels
is due to use of poor quasar/radio source positions in the
solution during this time interval. The wet zenith delay
amplitude change during the onset of the storm front {s
about one nanosecond, which is quite large and should not be
ignored for VLBI estimation purposes. The Kalman filter
readily includes the change of wet zenith delay as a part
of the solution, while current VLBI least squares data
analysis usually models the wet zenith delay as being

constant over an one-day VLBI experiment.

170



Chapter IX.
PRINCIPAL RESULTS

This research began with the hope that a large earthquake
(magnitude 8.0+) would occur during an I[RIS and/or Crustal
Dynamics Project VLBI experiment, and thus would allow one
to look at the effect of such an earthquake on the earth's
polar motion during a single-day IRIS run. Using the
Kalman filter one could look at the polar motion estimates
as a function of time and thereby examine the influence of
an earthquake during the one-day length of data. Some
questions to be answered would be: Were there any precur-
sory phenomena to the event?; Is the effect of an earthquake
dominated by the main shock?; Is the earthquake signature
actually a kink in the polar motion estimates?; and so on.

To the author's chagrin, however, no major earthquake
coincided with a 1984-85 VLBI observing session. The
largest event occurring during 1984-85 IRIS observing was
the Mexican aftershock described earlier; and, as was stated
previously, any effect of this earthquake on polar motion
was smaller than the polar motion error estimates and
(therefore) not significant. It is indeed fortunate only for
the purposes of this study that two large earthquakes with

moments of about 1028 dyne-cm happened at all during
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1985. These were the Michoacan, Mexico earthquake of 19
September, 1985 and the event near the coast of central
Chile on 3 March, 1985. At the 1986 Spring meeting of the
American Geophysical Union, Adam Dziewonski of Harvard
University stated that these Chilean and Mexican earth-
quakes are the first events of moment greater than 1.0 x
1028 dyne-cm since 1977.

Since these large events are available for further study,
and such events are few and far between, this work has been
relegated to determining if the major Mexican and Chilean
earthquakes have had any effect on polar motion using the
available IRIS data with five-day sampling interval. For
both the Mexican and Chilean events, ten IRIS data sets
surrounding each shock (see Table 3) were Kalman filtered to
determine the polar motion components on each of the ten
dates.

The filtering method applied was the iterative approach
highlighted in the previous chapter. The use of ten IRIS
data sets gives a forty-five day window around each event,
and allows an individual scientist the chance to process
the data by himself -- the analysis of more data might take
too much time, and such heroics are left to the national
VLBI analysis teams. The forty-five day time window might
allow one to see breaks in polar motion as Mansinha and
Smylie (1970) observed, especially since they found that
breaks in polar motion typically occurred within t20 days

of an earthquake. But, one should be forewarned that the
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Table Three- Data Sets Analyzed Using Kalman Filter

Mexico data interval

Data set Version
$85AUG26X1 8
$85AUG31X1 8
$85SEPO5X1] 11
$85SEP10X1 11
$85SEP15XI 8
$85SEP20Y1 11
$85SEP25X1 10
$85SEP30XI 11
$850CTO5X1 11
$850CT10XI 11

Chile data interval

Data set Version
$85FEBO7XB. 13
$85FEB12X1I 14
$85FEB17X1 11
$85FEB22X1 11
$8S5FEB27XI 11
$85MAR04X1 11
$85MAR14X1 12
$85MAR19X1 11
$85MAR24X1 11
$85MAR29X1 11
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Mexican and Chilean earthquakes of this effort are somewhat
smaller than the Alaskan and Chilean earthquakes which took
place between 1957.0 and 1968.0, the data interval which
Mansinha and Smylie examined. More complete studies of
IRIS data should be done in the future when more data are
available to test further the hypothesis that large earth-
quakes signicantly drive the Chandler wobble.

The data sets processed in this study are listed in
Table Three. For the Mexico results, 3714 group delay
observations were filtered, while 3501 group delays were
processed for the Chilean event. No smoothing of the
results was done. The outcome of filtering each data set
is the adjustment in_both polar motion components at the
ending epoch of each run. These adjustments are made with
respect to BIH reference values.

The Kalman filter (polar motion) adjustments are dis-
played in Figures 29 through 32. These adjustments are
compared with VLBI polar motion adjustment values as
produced by least squares analysis. The least squares
values were taken from a BIH--VLBI selection option of the
SOLVE analysis program from which one can choose either BIH
or VLBI polar motion results as reference values for further
data analysis. The BIH reference was chosen for the work
completed here and is given as the zero amplitude (adjust-
ment) horizontal axis on Figures 29 through 32.

It is apparent from perusal of Figures 29 tﬁrough 32

that the least squares and Kalman filtered adjustments
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Adjustments to Polar
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Figure 29. Polar motion (X-component) adjust-
ments (Kalman filtered and least squares esti-
mates) as a function of time. Time interval
surrounds epoch of the 1985 great Mexican
earthquake. The Kalman filter and least squares
adjustments track one another with a slight bias.
BIH estimates are at a level of zero mas on this
graph. LSQ values circled.



Adjustments to Polar
Motion (Y) (mas)
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Figure 30. Polar motion (Y—bonponent) adjustments
(Kalman filtered and least squares estimates) as

a function of time. Time interval surrounds epoch
of the 1985 great Mexican earthquake.

176



Adjustments to Polar
Motion (X) (mas)

20.00

15.00

10.00

5.00

—-10.00

—15.00 :
000 1000 20.00 3000 40.00 50.00

Time in days

Figure 31. Polar motion (X-component) adjustments
(Kalman filtered and least squares estimates) as

a function of time. Time interval surrounds epoch
of the 1985 great Chilean earthquake. '
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Adjustments to Polar
Motion (Y) (mas)
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Figure 32. Polar motion (Y-component) adjustments
(Kalman filtered and least squares estimates) as

a function of time. Time interval surrounds epoch
of the 1985 great Chilean earthquake.
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track one another quite closely on the plot, as might be
expected since they come from the same data sets; only the
data analysis differs. Biases between the least sguares and
Kalman filtered estimates are also evident. 1In addition,
considerable offsets of more than several milliarcseconds
can be observed between the VLBI polar motion adjustments
and the BIH reference values. Such offsets are expected
since the BIH incorporates data from techniques other than
VLBI, as well as VLBI, in forming their polar motion esti-
mates. If error bars were indicated with the VLBI estimates,
they would be of approximate amplitudes of one milliarc-
second. The error bars are not placed on the figures to
facilitate comparison of the adjustments.

Part of the bias between the Kalman filtered and least
squares polar motion estimates arises because the Kalman
filtered estimates are from the end epoch of the IRIS run,
whereas the least sgquares estimates are for the epoch 0:00
UTC contained in the IRIS run which is usually about
eighteen hours earlier. Thus in Figures 29 through 32,
polar motion estimates at (slightly) temporally offset
epochs are being compared, thereby introducing uncertainty
into the intercomparison. The uncertainty could be as much
as 4 mas (Dickman, 1987). The comparison is only intended
to demonstrate that the Kalman filtered polar motion esti-
mates are reliable as was indicated by the tracking of least
squares and Kalman filtered results. The remainder of the

bias could be attributed to the fact that nutation adjust-
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ments were not made in the least squares analysis or that
the Kalman filter is not pe?fectly tuned. Some of the
tuning deficiency may be due to the fac; that the VLBI
measurement errors are usually larger than the theoretical
formal errors. Differences in the way wet atmospheric
zenith delays are treated in the two analysis techniques
may also contribute to the biases. The average biases in
the x and y components of polar motion for the Mexican
earthquake results are 1.7 *+ 0.6 marcsec and 1.8 + 1.2
marcsec respectively, and 3.3 + 0.6 marcsec and 2.4 * 1.1
marcsec respectively around the time of the Chilean event.

The ultimate results of this dissertation are presented
in Figures 33 and 34. Two figures are the climax of this
extensive effort? This limited outcome might remind one of
high energy physics research in which several years of work
are required to set up an experiment which is run in only
several weeks or months. In Figure 33 the Kallan'filtered
polar motion adjustments are added to BIH a priori‘polar
motion values (see equation 111.19) to produce the total
polar motion estimates in x and y. The total polar motion
component estimates are plotted versus one another in the
figures. Annual wobble or the secular trend of polar
motion have not been removed from these estimates.

Figure 33 depicts a polar motion curve around the time
of the Michoacan, Mexican event. The curve is quite
circular in general. Straight line segments have been

drawn betweén the polar motion estimate points. The polar

180



Y-Component
(mas)

480.00

26 Aug., 1985

460.00
440.00

420.00

ol

Earthquake

400.00
380.00

360.00

10 Oct.,

340.00 ,
120.00 140.00 160.00 180.00 200.00 220.00

X-Component
{mas)

Figure 33. Polar motion (X and Y components)
estimates as output by Kalman filter. Estimation
interval surrounds epoch of the 1985 great Mexican

earthquake. The arrow indicates the time of the
main event. Polar motion formal errors are about
one mas. Large error bars drawn on graph indi-

cate approximate error level when Mansinha and
Smylie (1970- BIH data) studies took place.
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Figure 34. Polar motion (X and Y components)
estimates as produced by Kalman filter. Estimate
interval surrounds epoch of the 1985 great Chilean
earthquake. The arrow indicates the time of the
main event. Polar motion formal errors are about

one mas.
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motion errors in x and y are typically 1 mas. Experiment
dates are indicated at the end points of the curve, and an
arrow indicates the approximate time of the great Mexican
earthquake of 1985. A large pair of error bars of amplitude
10 marcsec by 10 marcsec are drawn on the plot to illustrate
the approximate noise level which was prevalent in the (BIH)
data Mansinha and Smylie (1970) worked with.

The most striking feature of Figure 33 is the kink in
the polar motion curve which is sharply coincident with
the time of the 1985 Michoacan, Mexico earthquake. The
_kink appears to be real and is of amplitude greater than the
one-sigma errors (=1 mas), although it is only a little
larger in size than corresponding three-sigma errors (=3 mas).
The time correlation between the main event and kink in
polar motion is impressive. One does not even require the
curve fitting procedure of Mansinha and Smylie (1970) to
see that it exists.

The kink in the polar motion curve of Figure 33 begins
prior to the 1985 Mexican event and continues until after
the earthquake. This would lead one to believe that
large mass movements occur before, during and after the
main shock and are responsible for the kink in the polar
motion curve and change in polar motion path. One could
find the amplitude of the pole shift by a curve fitting
procedure. It is doubtful that the observed kink in polar
motion is due to the elastic event alone.

The polar motion curve of Figure 34 illustrates the
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time period surrounding the 1985 Chilean earthquake.
There were a large number of foreshocks and aftershocks
associated with the main event, many of which occurred in
swarms. The curve of Figure 34 is fairly smooth with no
kink evident at the approximate time of the main event
(indicated with an arrow). There is no polar motion datum
on 9 March 1985, and this hinders the ability to resolve a
kink in the curve during the earthquake. It should be
pointed out that the Chilean earthquake was of magnitude
7.8 as compared with 8.1 for the Michoacan, Mexico event,
and this may be one reason to beljeve that it is easier to
observe a kink in the polar motion at the time of the
Mexican event.

One might notice that the ends of the curve in Figure
34 deviate from a true circular (or elliptical) path. This
has been emphasized on the plot by adding an approximate
path (fit by eye to the interior data) at the ends of the
curve . The actual polar motion path begins to diverge from
circular form at times of about t15 days from the Chilean
main shock. These deviations may be manifestations of the
effect of the Chilean earthquake sequence (and associated
mass movements) on polar motion (i.e. kinks in the path).
That the breaks occur within +15 days of the Chilean main
shock casts a favorable light on the conclusions of Mansinha
and Smylie (1970), for most of their polar motion breaks
were within 20 days of a large earthquake. The author has

noticed that the times of the Chilean kinks coincide fairly

184



well with the epochs at which earthquake swarms (affiliated
with the main event) begin to occur and subside (Preliminary
Determination of Epicenters, U.$.G6.S8., February-March, 1985).
IRIS polar motion estimates (source: IRIS Earth Orien-
tation Bulletin A, No. 29, July, 1986) over the intervals
of the 1985 Chilean and Mexican earthquakes are displayed
in Figures 35 and 36 for comparison with Figures 33 and 34
(Kalman filter results). Aside from small biases, the
polar motion path in Figure 36 closely matches that of
Figure 34. Figures 33 and 35 are also quite similar in
shape except at the endpoints of 26 August, 1985 and 10
October, 1985. A quick look at Figure 30 of the VLBI y-
component adjustments will confirm that the end point least
squares estimates are quite different from the rest of the
Kalman filtered and least squares adjustments. This
suggests that these (least squares) end point values should
be questioned, since the rest of the group of adjustments are
maintaining a relatively constant bias with respect to BIH
reference values. In any event, Figure 33 appears to
bring out the existence of a kink in the polar motion curve
which is not so certain in Figure 35.
The (Kalman filtered) polar motion results of Figures
33 and 34 are deconvolution filtered using the method
applied by Gross and Chao (1985; see also Backus and Gilbert,
1970) to LAGEOS polar motion estimates. Deconvolving the
VLBI data in this manner produces excitation functions, Y(t),

in which one should be able to directly observe shifts in
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Figure 35. Polar motion (X and Y components)
estimates as produced by IRIS. Estimate interval

surrounds epoch of the 1985 great Mexican
earthquake.
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Figure 36. Polar motion (X and Y components)
estimates as produced by IRIS. Estimation
interval surrounds epoch of the 1985 great
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the position of the pole about which polar motion takes
place. IT IS STRESSED HERE that the excitation results
presented subsequently include polar motion data for the
first ten or eleven data points in each time series analyzed;
the remaining points in each excitation series are zero
padding (i.e. zeroes added to allow fast Fourier transforms
to be used in the deconvolution). These points are not based
on VLBI data and thus should be ignored in examining the
results. They are included here for completeness in data
presentation.

Prior to deconvolution, a least squares it of an offset,
trend and sinusoid was made to remove polar motion long
term behavior from the optimal estimates, thus leaving data
which only bears the effects of earthquake or other short
time excitation. A single sinusoid was used to represent
the superposed annual wobble and Chandler wobble paths
because the data being ftit is of short duration. The fits
obtained using an offset, trend and a sinusoid for each
of the wobble components were as good as those obtained
using an offset, trend and two sinusoids.

The deconvolution filter applied to the polar motion
data (after fitting and Fourier transformation to the

frequency domain) is (Gross and Chao, 1985)

G (w)
Viw) = , (IX.1)
!iG(w)|i2+(uN)2

where the asterisk indicates complex conjugation, and the
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bars denote the taking of a norm. aN will be discussed
shortly. G(w) is the earth's transfer function (Gross

and Chao, 1985)

Oo
G(w) = . (IX.2)
00 - W
where
gg = (2x/T) (1 + i/2Q). (IX.3)

T is the Chandler wobble period, Q is the guality factor of
the Chandler wobble and op is the angular frequency (Gross
and Chao, 1985). The Chandler wobble period T was taken as
434 days; Q was taken as 106.

The equation relating the Fourier transformed polar
motion M(w) and excitation function Y(w) is (Gross and Chao,

1985)

M(w) = Y(w)G(w) + N(w) (1X.4)

According to Gross and Chao (1985) the N(w) term represents
"... the frequency content of the noise in the measurements
of m(t).[polar motion estimates]” I[f the N(w) were missing
from 1X.4, the equation would relate what is going on in
frequency space of a convolution process. To find Y (w)

aone would simply divide
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1
Y(w) = ——— M(w).
G(w)
and then Fourier transform Jy(w) to find (). In this case,
the filter applied to the transformed polar motion data is
1/6(w) = 6 /]16]2.

One can observe from equation (1X.1) that the filter
actually applied to the transformed polar motion data M(w)
is somewhat more general. Notice that if aN is set to
zero, the general deconvolution filter becomes the éimple
deconvolution filter. Also if aN becomes very large, V{(w)
approaches zero.

aN is an adjustable parameter which controls how much
measurement noise is allowed to remain in the excitation
function estimates. For aN small, much noise exists in the
excitation functions but temporal resolution is high. For
aN large, resolution is lost but the noise level is
reduced. The trade-off between noise reduction and
achievement of fair resolution can both be reached by
choosing some intermediate value for aN in the deconvolution
filter. Once the filter has been applied to M(w), the
results are Fourier transformed to find the excitation
functions in time, Y(t).

The polar motion data of Figures 33 and 34 are handled
in the aforementioned manner, and the results are displayed
in Figures 37 and 38. The x and y components of excitation,
Yy and ¢y, are calculated for the Mexican and Chilean

data using aN values of 0.22, 0.5 and 1.0 following the
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Figure 37. Excitation Function (X-component)
versus time. Time interval surrounds epoch of
the 1985 great Mexican earthquake. Excitation
function errors are about 0.5 mas. (a) aN = 0.22
( N is a deconvolution parameter) (b) aN = 0.5
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ordinate.

191



Excitation Function

(x-mas)
0.10
]
3
]
—0.00 - /\

—-0.10

1|lJllL¢4<i:.
—

—-0.20

\
Earthquake v t

loerpt et ot rerrr el riero

—-0.30
£nd PM
Data
"‘0.40 [ T T T 1T T T T T TV IrT T T T T T rr i T T rIrrTy rrTrrTrT T I
0.00 20.00 40.00 60.00 80.00
Fig. 37b. Time in days



Excitation Function

(x-mas)

0.00

lityea el

—-0.05

|
e
o

drstvrrr o vrr sy p by teaaa eyt

A

-0.15
Earthquake
-0.20
End PM
Data
—-0.25 |JSLINE LI TN I A N A T A N A e 1 N SN S N D I N N Y Bt
0.00 20.00 40.00 60.00 80.00

Fig. 37c. Time in days

193




Excitation Function
(y-mas)

1.00

0.50

//\
N

\

A

: / End PM

\ / Data
\ /t

\J Earthquake

0.00

T

—0.50

—-1.00

rrerere vl IIJ_LLJJmhiiiLLJ_Lll,ILI IR BN

!
un
o

1

(AL JNL N e e e I e e e e e e e
0.00 20.00 40.00 60.00 80.00

Fig. 37d. Time in days

Figure 37. Excitation Function (Y--component)
versus time, Time interval surrounds epoch of
the 1985 great Mexican earthquake. Excitation
function errors are about 0.5 mas. (d) aN = 0.22
(e) aN = 0.5 (f) aN = 1.0.

194



Excitation Function

(y-mas)
0.20 3 /\
] \
—0.00 3
3///ﬁ\\\\ End PM
—-0.20 j \ Data
-
_.{
.
—4 \
—-0.40 % \ / Earthquake
—0.60 =
—0.80"TTIIITI1I]I#IllIlll[fm"_'ﬁ"l—flll7lllllllj
0.00 20.00 40.00 60.00 80.00

i days
Fig. 37e. Time in day

195



Excitation Function
(y-mas)

0.10

—0.00

drrvgyryveadarriareea]
\J
-

— / End
0.10 j/ \ / D:taPM
]
-
]
~0.20 3 \
E / Earthquake
—~0.30 5
:
—0.40 j#f?l S e e e T I T T A R
0.00 20.00 40.00 60.00 80.00
Fig. 37f. Time in days

196



Excitation Function
(x-mas)

4.00

3.00

2.00

1.00

0.00

—1.00

—2.00

-3.0

U

e "

e

b v s bogggg et rerrr i boereaeiad

o

0
0.

Fi

o
m O

S
/b 1

s //X/ Earthquake End PM
Data

TrT T T rrpri ey i T T ey rrTrT T T T
20.00 40.00 60.00 80.C0

38a. Time in days

Figure 38. Excitation Function (X-component)

versus

time. Time interval surrounds epoch of

the 1985 great Chilean earthquake. Excitation

functi

on errors are about 0.5 mas. (a) aN = 0.22

(b) aN = 0.5 (this plot has been detrended).

(c) aN

1.0.

197



Excitation Function
(x-mas)

1.00 E

A

0.50

PR

e

0.00

—-0.50

//‘\.—\ /f

~ ! \ /

Earthquake #//

1 End PM

Data

—1.00

-1.50

—2.00

vitr e revasd oo v vt neiea b p sl s et gl

-2.50 i‘l‘T“l'”l e T B0 U M e o B

0.00 20.00 40.00 60.00 80.00

Fi 38b Time in days
g. .



Excitation Function
(x-mas)

0.80

0.60

JERERNSRNENENUNERE|

—0.40

0.40
0.20 3\
= |
—-0.00 2 |
p
g 5‘1, t
-0.20 § |
3 Earthquake End PM
4 Data

—0.60 jrl'n B 100 S50 S o 6 O I S e S I A D I S O e

0.00 20.00 40.00 60.00 80.00

Fig. 38c. Time in days

199



Excitation
{(y-mas)

2.00

Function

]
0.00 4 |/ t \
] / \\
E ; Earthquake \
2l
“‘2.00 i ‘\g
\
1
3
~4.00 5 . f\
4 \
: /‘\/,/\\\
. End PM \ /
j Data
—6.00 -
_Bix)3777TTTTTTTFW?TTTT7TTT?TTVIﬁ]1lllIll]ﬂ
0.00 20.00 40.00 60.00 80.00
Fjg_ 38d. Time in days
Figure 38. Excitation Function (Y-component)

versus time.
the 1985 great Chilean earthquake.
function errors are about 0.5 mas.
0.5 (f) aN=

{e) aN

1.0.

200

Time interval surrounds epoch of

Excitation
(d) aN = 0.22



Excitation Function
(y-mas)

0.00

)
|

———

lit11i11

|
o
o
Trm— .

Earthquake

——

-2.00

-3.00

—4.00

Ll o e s g il it L1
m
=
a o
v
: -

-5.00 ‘J“r"r LI N IR e e e e e I e e e | TTTTT T TTTT]
0.00 20.00 40.00 60.00 80.00
Fig. 38e.

Time in days

201



Excitation Function

(y-mas)
0.00 ]
:
0 3 ,/—v/\——//\

—-0.50 =
] | t \
N |
d Earthquake \
= '
iy \x\

—-1.00 = | \
3
-
|

~1.50 3 1
j
2 End PM //\/\
j Data
.

—-2.00 -
1
-

_2.50 i'T—T'_]‘—I_'r"1-"l—'T'T—T-I r{T¥ 7 v 1111 'r-—l L S A I A A | [ L S A A O I L ] -

0.00 20.00 40.00 60.00 80.00 -

Fig. 38f Time in days

202



method of Gross and Chao (1985). The Fourier transforms
were typically done with 16 data values.

It can be observed in the figures that vertical
exaggeration (and thus possibly measurement noise content)
is large for aN small (aN = 0.22) as was expected. The
data from the figures for aN=0.5 will be analyzed further
here since 0.5 is the value chosen as realistic by Gross
and Chao (1985). Please note that all subsequent
conclusions are based on this assumption. Also be aware
that a linear trend has been removed from Yy, (t) for
the Chile data.

The excitation data for Mexico (aN=0.5) show small
changes in ¢x, ¢y which are more gradual in
structure than a step function. Variations in ¢ start
before the main seismic shock and continue on after the
shock. The rates of change in (x, yy seem to be greatest
within +5 days of the main Mexican shock. These changes in
) are at the sub-milliarcsecond level and are thereby not
significant when compared with the formal error level of
about 0.5 milliarcsecond in each component of .

The Chile excitation functions bear changes which are
much larger than those of the Michoacan, Mexico event.
These excitation steps occur within *25 days of the main
shocks and a net change in excitation of about -2.4
milliarcseconds is found in the x-component of . This
Yx change takes place in two steps. 2.4 marcseconds is

significant when compared with a formal error of 0.5 milli-
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arcsecond.

Zheng Ying (1986) presents strain results before, during
and after large earthquakes. He proposes that strain steps
can be observed a few months before a large earthquake and
one month after such an earthquake. These observations
confirm to a fair degree what is found herein using VLBI
data near the epoch of the 1985 great Chilean earthquake.

Since the VLBI polar motion results were deconvolved to
produce excitation functions, it is appropriate to also
deconvolve polar motion error estimates for comparison with
these results. This will only be done for the 1985 Chile
polar motion errors. The results are presented in Table
Four. The deconvolution changes average polar motion
errors of 1.2 and 1.2 mas (in x and y respectively) to
average excitation errors of 0.5 and 0.5 mas. The exci-
tation shifts observed (around the time of the 1985
Chilean earthquake) are significant, at least at the one-
sigma formal error level.

Theoretically predicted shifts and directions (in
degrees East longitude) calculated by Chao and Gross (1987)
for earthquake dislocations only are compared with VLBI and
LAGEOS observations of excitation shifts and directions in
Table Five. The Sumba data are from LAGEOS observations,
while the VLBI results are from this study. Observation is
not strictly comparable with theory in this instance since
the theory only models the effects of the elastic event on

polar motion. The ratio of observed excitation to
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Table Four- Chile Polar Motion and Excitation Function Errors

(mas)

Measurement Polar Motion Excitation

Date (1985) X y X y

Feb 07 1.05 1.03 0.21 0.77
Feb 12 1.11 1.16 0.26 0.69
Feb 17 1.13 1.11 0.30 0.63
Feb 22 1.07 1.05 0.34 0.56
Feb 27 1.20 1.26 0.39 0.52
Mar 04 1.53 1.48 0.48 0.42
Mar 09 - - - -

Mar 14 1.24 1.18 0.57 0.34
Mar 19 1.32 1.09 0.64 0.26
Mar 24 0.99 0.99 0.69 0.22
Mar 29 1.07 1.11 0.76 0.19
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Table Five- Comparison of Observed and Theoretical Excitations

Observed values ¥ x Ty ¥l (marcsec) Arg(¥)

Mexico -0.2 0.3 0.36 -56.3% E
long.

Chile -2.4 -0.3 2.42 7.1° E
long.

* 0

Sumba - - 40.0 -54.0" E
long.

Theoretical values | ¥l (marcsec) Arg(T)

Mexico .084 —83o E

Chile 0.18 110° E

Sumba 0.21 160° E

Ratios {( Y-observed/ ¥-theory)

Mexico 4.29

Chile 13.44

Sumba 190.48

¥ - Sumba event data from Gross and Chao (1985), and Chao

and Gross (1987)
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theoretical excitation is calculated also. Results are for
the 1977 Sumba earthquake and for the 1985 Chile and Mexico
earthquakes.

The observed excitation shifts and direction due to
the 1985 Mexico earthquake are roughly in agreement with
theory. The excitation directions are only rotated 27
degrees from one another and |{y|'s are close in value for
theory and experiment. This is especially true when one
considers that the formal error in either component of
(observed) excitation is less than one mas. One might
characterize the Mexico event as one in which polar motion
theory and experiment are roughly in accordance.

For the Chilean event the observed and theoretical
excitation directions and magnitudes diverge more strongly
than for Mexico. The theoretical and observed excitation
directions are about 103 degrees apart, and the calculated
amplitude ratio is about 13.4. This suggests that more
may be taking place geophysically during the great Chilean
earthquake of 1985 than is predicted theoretically.

The Sumba (1977) results resemble those of Chile more
so than those of Mexico. The observed and theoretical
excitation directions are 146 degrees apart (almost
oppositely directed from one another). The amplitude ratio
is approximately 190. As one might recall from earlier on
in this work, Gross and Chao (1985) suggest that the extra
(and differently directed) excitation may involve the

decoupling (due to slab pull) of a slab segment from the
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subducted oceanic lithosphere during the Sumba event, and
may be due to subsequent movement of the broken off slab.
Independent evidence (tectonic force calculations) that this
"slab-pull-and-break"” event did occur near the time of the
Sumba earthquake is éiven by Spence (1986). The similar;ty
of excitation results for Chile and Sumba leads one to
believe that a slab-pull-and-break event has occurred in
Chile also. If so, such slab movements associated with
great earthquakes may contribute significantly to the
Chandler wobble excitation budget. In addition, unsteady
movements of subducting lithosphere may excite polar
motion.

Several other earthquakes potentially capable of
exciting the Chandler wobble of the earth have occurred in
1985-86: Adak, Alaska; Taiwan; and Kermadec Islands. The
Kermadec Islands earthquake is of particular interest since
it was a magnitude Mg=8.2 event (EO0S, 2 December, 1986),
and it compares in size with the Mexican and Chilean great
earthquakes. Unfortunately, research into the effects of
these events on polar motion was not performed due to lack
of resources and facilities. 1In a related topic, one
could check if a decoupled slab of lithosphere was formed
during the 1985 Chilean earthquake by making calculations
like those of Spence (1986). This would provide some
independent confirmation that slab-pull-and-break took
place.

Since the author was unable to Kalman filter VLBI data
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around the times (Sept.-Nov., 1986) of the Kermadec Islands
earthquake (20 Oct., 1986, Mg=8.2; EOS, 2 December, 1986)
and of the Taiwan earthquake (14 Nov., 1986, M =7.8; EOS,
13 January, 1987), data from the IRIS Earth Orientation
Bulletin A (January, 1987) will be examined. These data
are polar motion results produced by the National Geodetic
Survey (NGS), and they were estimated using least squares
analysis. The raw data can be observed in Figure 39

(Pole position 1983-1986). The data of interest are shown
near the end of the pole position curve (marked by the
Roman letter B). The pole position estimates displayed in
Figure 39 includes annual wobble and Chandler wobble
components.

The data of interest from Figure 39 are deconvolved
using the method of Gross and Chao (1985), and the exci-
tation function estimates are shown in Figure 40. A
linear trend (-.062 mas/day) has been removed from the Y,

component results. The Yy plot shows little net change

in the excitation as a function of time. The detrended Yy
component shows a net (maximum) change in excitation of 3.8
mas; this is very significant when compared to a typical
excitation function error of about 0.5 milliarcseconds.

The x-component of excitation starts to change directly
after the main Taiwan shock, and increases greatly there-
after. Prior to the main Taiwan shock, the x-component of
excitation is quite constant. The correlation of the onset

of x excitation change with the time of the Taiwanese
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Orientation Bulletin A, January, 1987).

210




Excitation Function

(x-mas)

5.00 3
:; W—H“

4.00 3 /\
! 2
3 I
]

3.00 o
3 f
: ;‘

2.00 g /
3 / t
— {
S /

1.00 3
3 End PM
3 Data

0.00 3
3/—-——\’—‘/,/

—1.00 ' ' .
Kermadec Taiwan
-2.00 Frrrrrrr T T T T T T T T T T T T T T T T T T
0.00 20.00 40.00 60.00 80.00

Fig. 40a. Time in days
Figure 40, Excitation Function versus time.

Time interval is near the epochs of the 1986

great Tonga-Kermadec and Taiwan earthquakes.

Excitation function errors are about 0.5 mas.
N = 0.5. (a) X-component (detrended) (b) Y-
component.

211



Excitation Function
(y-mas)

2.00

I |
—

1.50

/i)‘llJ!J (I I O W
j

1.00 2\ \\ f
1 /| End PM
{ \\ / Data
t Kermadec t\ /
\
0.50 3 \ ,/
% Taiwan \/
3
0.00 ":—I‘T'T‘I’T‘T“T‘T'I'T’r“rlellrlllllrl N S S T D O N T A
0.00 20.00 40.00 60.00 80.00
Fig. 40b. ) e

212



event is striking. The Taiwanese main shock precedes the
change in polar motion excitation, thus inferring that
earthquake (and post-seismic mass movement induced) exci-
tation of the Chandler wobble is taking place. The source
of such post-seismic excitation might be due to movements

of lithospheric slab and/or "...viscous relaxation of the
underlying asthenosphere..." around the earthquake zone (Au,
1980; Nur and Marko, 1974; Cohen, 1979; Spence and Turcotte,
1979). In either case, mass movements associated with the
main earthquake shock seem to be affecting the Chandler
wobble.

Finally some comment should be made about how much
aseismic events (and seismic events) associated with the
Mexican, Chilean, Taiwan and Sumba earthqguakes contributed
to polar motion excitation. The sum of the excitations
associated with these four events (occurring from 1977-1986)
has a maximum value of about 46.6 marcsec. If one then adds
in the theoretically determined excitations (Smith, 1977)
associated with the Chilean and Alaskan earthquakes of 1960
and 1964, one arrives at a total excitation (related to
only six great earthquakes) of about 103 marcsec. If the
Sumba results are not included, the excitation level would
be 63 marcsec. This excitation level is considerable;
examination of an excitation data set of duration similar
in length to the Chandler wobble damping time would allow
us to draw more valid conclusions about earthgquake-

associated excitation of polar motion. In addition, the
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level of polar motion excitation due to great earthquakes
and associated mass movements may vary with time, and other
sources of excitation could dominate solid earth mass
effects at various times during earth history.

The polar motion results derived in this work can be
interpreted in a plate tectonic/geophysical framework.
(This is not to say that atmospheric and oceanic phenomena
are totally unrelated to Chandler wobble excitation). There
is evidence that the Chandler wobble was excited following
the 1985 Chilean and 1986 Taiwan great earthquakes. This
excitation could be attributed to one or more geophysical
phenomena: post-seismic movement of a lithospheric slab
(Gross, 1985) and/or (post-seismic) viscous relaxation of the
asthenosphere under the earthquake zone (Au, 1980).

For the 1985 Chilean earthquake, there is also (VLBI1)
evidence of pre-seismic (before the main shock) Chandler
wobble excitation. Thus, VLBI could be used as a (temporal
and spatial) earthquake prediction tool. If VLBI data
could be shipped and processed in a timely fashion, perhaps
one could make predictions of seismic main shocks in a
range of several days to about one month prior to an
event. The pre-seismic changes in wobble seen in the VLBI
data would also demonstrate the validity of Kanamori's
(1977) work.

A possible source of (pre-seismic) Chandler wobble
excitation is the bulging of the lithosphere at a Chilean-

like subduction zone prior to a main shock. Such bulging
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could change the inertia tensor of the earth, thereby
exciting the Chandler wobble. Calculations should be made
to determine the theoretical excitation of such bulging.
Figures 41 and 42 (Turcotte et al., 1978; Uyeda, 1979) show
such (bending and) bulging which may precede great
earthquakes such as the 1985 Chilean event. The amount of
bulging may increase greatly just prior (several months
before) the main shock (thereby driving a great thrust
earthquake) . Such bulging might not occur at a plate
margin such as the one near Taiwan (refer to Figure 42) and
thus explain why Chandler wobble excitation steps are not
observed prior to the 1986 Taiwan earthquake. Pre-seismic
excitation may also be due to aseismic fault slippage.

The main emphasis of the preceding lines of thought is that
most of the earthquakes of our planet occur at subduction
zones, and it appears that a considerable portion of

polar motion excitation may be driven by subduction-
related phenomena.

More VLBI data are needed during time periods surround-
ing large/great earthquakes to determine the actual effects
of such earthquakes on the Chandler wobble. Kanamori (1977)
presents a listing of the great (shallow) earthquakes of
1904-1976; there are roughly nine such earthquakes per
decade over this time span. Seismic events, and related
major mass movements, are a significant contributor to the

to the Chandler wobble excitation budget.

215



ORIGINAL PAGE 1S
OF POOR QUALITY

Fig. 41. Bending of an elastic or elastic-
perfectly plastic plate in response to applied
bending moment M, vertical force Q@ and horizon-
tal force S, with hydrostatic restoring force
applied by the seawater above and assumed

fluid mantle below. Redrawn with simplification
from Turcotte et al., 1978.
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Chapter X.

CONCLUSIONS

The primary goals of this work were first, to show
that a Kalman filter can be used successfully to analyze
Very Long Baseline Interferometry group delay data with
emphasis on handling clock variability; and second, to shed
some light on the problem as to what degree earthquakes
excite the Chandler wobble of the earth. The former tech-
nological objective has been completed to a reasonable
extent while the latter scientific objective continues to
elude total resolution as it has so often during the past
century. Many more IRIS observing sessions will pass
before the latter problem is adequately solved.

The Kalman filter design put forth herein does a satis-
factory job of estimating clock terms, wet atmospheric
zenith delays, earth orientation and rotation parameters
and nutation offsets. The clock models can handle all but
very large changes in clock rate. Very large clock rate
changes could be accounted for either by making manual
adjustments during the data processing or by implementing
a clock model which includes clock acceleration parameters.
With any luck, most large clock rate changes will be arti-

facts found only in VLBI data sets of the past.
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Wet atmospheric zenith delays estimated using the
Kalman filter were found to generally match the zenith delays
determined from water vapor radiometer observations, except
for slight biases. This confirms work originally performed
by Tom Herring and Jim Davis at the Harvard/Smithsonian
Center for Astrophysics.

Polar motion estimates from the Kalman filter match the
values found via least squares analysis to modest precision,
usually better than the agreement of BIH results and VLBI
least squares estimates. The sources of biases seen
between the least squares values and Kalman filter estimates
have not been isolated due to time and funding constraints,
but the causes are thought to be differences in analysis
methods and assumptions. It could also be that the filter
is producing more objective results than least squares
methods, since Kalman filtering of VLBI delays requires
minimal analyst intervention once the filter has been tuned.
Nutation and change in length of day estimates were also
made using the Kalman filter, but are not presented here
because they were not parameters of interest to this
study -- they were estimated in order to produce reliable
polar motion results.

The trial and error method of tuning the Kalman filter
took much time and computer cycles but did produce good
results. More recently discovered tuning methods (than
trial and error) based on the adjustment of statistics of

filter residuals to meet theoretical expectations should be
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employed in future undertakings.

It should be obvious from the last several chapters that
the Rauch-Tung-Striebel smoother was only rarely applied to
VLB1 group delay data. "Why?" would be an appropriate
question. The Rauch-Tung-Striebel smoother requires the
storage of all parameter error covariance matrices from the
forward Kalman filter pass. A typical Kalman filter run
could easily generate tens-of-thousands to hundreds-of-
thousands of covariance elements which are difficult to
store in memory. For this reason the smoother was only used
in limited (i.e. small number of estimated parameters)
applications. Filtering the data in a backward time direc-
tion (back filtering) after forward filtering is probably a
better idea than smoothing because storage required for
back fkltering is minimal.

Some reference is now made to general problems encoun-
tered in this research. The largest single cause of grief
was having to use an Hewlett-Packard-1000 computer. While
the HP-1000 is an excellent machine for computer instruc-
tion, it presents a nightmare for number crunching. The
ability to load large programs is limited, and one is
required to add significant amounts of software to use the
extended memory (EMA) features, which is the default opera-
tional mode on many modern computers. Unfortunately, most
of the NASA VLBI data handling and analysis programs (CALC,
SOLVE, Data Base Handler) are written for the HP-1000 and

the code is not very transportable.

220



There were several other forays into the absurd which
wasted much time during this research. Several weeks were
spent implementing an algorithm called the epsilon
technique (Gelb, 1974) in an attempt to make early versions
of the Kalman filter operate properly. One should be warned
that the epsilon technique is probably not needed in Kalman
filter implementation on a modern computer, and at best only
offers an additional adjustable parameter with which one can
vary filter output. Efforts should be directed at properly
setting up the state transition matrices and process noise
noise models rather than invoking the epsilon technique.

The other major sink of time and effort involved an attempt
to use a flicker noise generator for the betterment of Kalman
filter clock models. As has been alluded to earlier, the
clock noise is probably dominated by changes in signa]'path
rather than by a (flicker) maser noise component, so sever-
al months were "spent" on this activity.

Many approximations were made in the course of this
research, and it would be prudent to re-emphasize a few of
them. In the clock process noise covariance calculation,
terms involving the time interval tyg,; - tx of the state
transition matrix (see equation VI.29) were not included in
the calculation. This is because the clock model applied
herein was modified from the work of maser experts (Jones
and Tryon, 1982). In retrospect, such an approximation
should not be made, but the author was giving in to simpli-

fications which made filter set-up easier.

221



An approximation forced more by the SOLVE program
structure than by anything else was that requiring the wet
atmosphere zenith delay to be constant. It would be more
accurate to allow for deterministic rate variations in the
wet zenith delay, as are actually observed in WVR data.
There is a tradeoff in having such extra (rate) parameters
in a Kalman filter: the more accurate parameter model will
necessitate additional filter tuning. Still, atmospheric
rate parameters are part of a more precise VLBI future.

It is obvious that much more IRIS data will be needed
before any ultimate conclusions about the effects of
earthquakes on the earth's polar motion can be drawn.

This may take some time, as no very large events occurred
between 1977 and 1985; this lack of activity over long time
intervals might lead one to believe that earthgquakes are not
the only source of Chandler wobble excitation. Still, no
conclusion is firm until more is understood about the
damping of the Chandler wobble.

One kink observed in the polar motion curve of 1985
appears to be real and extremely coincident with the great
Michoacan, Mexico earthquake. Polar motion kinks are also
found within 215 days of the large 1985 Chilean event. The
current IRIS one-sigma formal error level is about one
milliarcsecond in each component of polar motion. This
is a factor of at least ten better than the BIH results
studied by Mansinha and Smylie (1970). Thus, while Mansinha

and Smylie were able to study the effect of very large
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earthquakes (Alaska and Chile of the 1960's) on polar motion
with low precision, this study has examined the effects of
somewhat smaller events at significantly higher precision.
One is forced to conclude that more and better data

are needed. Another outcome of this study is that Kalman
filters will be available to look at polar motion path fine
structure (in time) should a very large earthquake take
place during an IRIS cbserving session.

Excitation functions determined from the optimal esti-
mates of polar motion show statistically non-significant
excitation of the Chandler wobble by the 1985 Michoacan,
Mexico earthquake. The observed excitation at the time of
the Mexican event coincides closely (in amplitude and
direction) with theoretical values found. The static
deformation field models do not incorporate the effects
of aseismic slip or other mass movements.

Significant excitation of the Chandler wobble (at least
at the one-sigma level of measurement error) is observed
(using VLBI) near the time of the great Chilean earthquake
of 1985. The magnitude of the excitation change is about
2.4 milliarcseconds as compared with a formal error of
about 0.5 milliarcsecond. Such an excitation is much larger
than theoretical seismic models permit. The excitation is
also (roughly) oppositely directed from theoretical vectors.

The 1985 Chilean earthquake appears to affect the
Chandler wobble in a manner similar to the great Sumba

earthquake of 1977, although the effects are not as large.
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1t may be that lithospheric slabs are being broken off of
the subducted lithospheric plate during the main seismic
shock of such a large earthquake. Thereby, the decoupled
slabs are moving after such an event and change the inertia
tensor of the earth. Independent tectonic force studies
verify that such a slab-pull-and-break mechanism is
realistic. We will need to know the degree of Chandler
wobble excitation by such slab movements and the frequency
of such events in order to discover to what degree this
tectonic phenomenon drives the Chandler wobble. If the
excitation step of the 1977 Sumba event is actually forty
milliarcseconds, then decoupled lithospheric slabs drive
the Chandler wobble at a large percentage of the total
observed excitation level.

The 1R1IS VLBI results around the time of the 1986
Taiwan earthquake show that the time of the Taiwan main
event is strongly correlated with polar motion excitation.
A change in excitation level directly follows the time of
the 1986 great Taiwan event. The excitation is probably
due to post-seismic movements of lithospheric slabs
decoupled from lithospheric plates, or due to relaxation
of the asthenosphere near the fault zone. The preceding
mechanisms are likely candidates for post-seismic Chandler
wobble excitation. One source of pre-seismic Chandler
wobble excitation is posed to be (changes in the inertia
tensor due to) lithospheric flexure at subduction zones

such as the one near Chile. Aselismic fault creep is
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another possibility.

The future of Very Long Baseline Interferometry studies
of the earth's polar motion is certainly bright, but every
effort should be made to optimize IRIS results. Surely
water vapor radiometers will aid in minimizing the effect
of wet path delays on VLB]1 observations. More must be done
to improve other calibrations also. Perhaps IRIS obser-
vations could be made daily (instead of at 5-day intervals)
in the next several years also.

As a final remark emphasizing something which has been
pointed out before, the IRIS network of Westford-Wettzell-
Fort Davis-Richmond-Onsala is far from the best observing
configuration for earth orientation and rotation. A grid
utilizing Westford (or Canada), Wettzell, a southern Argen-
tinian station and an antenna in southern Africa would be
better. Of course, efforts are being made in this direction
and perhaps someday economic and political considerations

will permit such an array to exist.
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APPENDIX 1.

KALMAN FILTER DERIVATION

The discrete Kalman filter will be derived. The abbre-
viated treatment presented herein follows Gelb et al. (1974).
The equations which form the foundation of the Kalman filter

are (II[.4), (II1.5) and (I11.6):

Vk = MgXg + Vg (A1.1)
Xk+1 © kak + Pkwk (AI.Z)
E{wg)} = 0. E{vi} = 0 (AI1.3)

T : T
E{wgw) }=Qgdk1. Elvgv) }=Rgdxk1-

Equation (AI.1) describes the measurement process,
equation (AI.2) models the dynamics of the parameter vector
Xk, and equations (AI.3) give the assumed properties of
the measurement noise vy and process noise wy.

Vg is the vector containing the measurement information,
and My relates the parameters to be estimated to this
information. ®p is the state transition matrix which

models how xk,.; is related to xyi, and I'k relates
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the process noise to Xkg;3. Qg and Ri are the

process noise and measurement noise covariances. Capital
Jetters usually denote matrices while small letters are
reserved for vectors.

The first step of the Kalman filter algorithm to be
derived here shows the relationship besilwcecen optimal param-
eter estimates in time. Beginning with equation (AI.2)
and taking the expectation value of this equation, one

finds

E{xkg+1)} = OgE{xK} + TkE{wg}.

Carets are used to denote optimal parameter estimates (also
recall that E{wg}=0). The result of taking the expec-

tation is

Rkl = OkXyg. (Al.4)

Equation (Al.4) demonstrates how optimal parameter estimates
are projected in time. In the notation of Jazwinski (1970),

equation (AI.4) is written as

&(k+11k) = o(k+1,k)R(k|k}.

The next derivation shows how the error covariance
matrix Py is projected from time ty to time tkag -

The optimal estimates at times ty and tg.,q are
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assumed fto be related to the parameter vectors by

Rk+1 = Rk+1 - Xkt (A1.5)
ﬁk = Rk - Xk,
where the tilde designates estimation errors. Subtracting
equation (AI.2) from (Al.4) leads to
Kk+1 = OkXk - I'kwg- (A1.6)

The error covariance at time tyg,q is

" o T )
Pkr1 = E{&yg+1X8k+1 } (A1.7)
. .« T
= E{(kakurkwk)(mkxk—lkwk) }.
where the superscript T denotes the transpose operation.
Using equations (A1.3), and working through some algebra

results (where Py = E{Rkﬁkq}) in the

covariance update
T . T
Pr+1 = OxPyrOr™ + IpQklk - (A1.8)

This is another step in the Kalman filter algorithm, and in

the notation of Jazwinski (1974) is

P(k+11K) = ®(k-1.K)P(k'k)O (k+1.k) + T(k)Q(K)IF (k).
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How measurements are combined with Kalman filter esti-
mates to yield updated estimates will now be illustrated.
It is given that optimal estimates at times immediately
before (-) and immediately after (+) a discrete measure-

ment are related to parameter estimates by the egquatioas

Rk(+r) = xg = Xk(+) (AI.9)
ﬁk(“) = Xk * ik(*) (AT.10)
where the tilde again denotes estimatlion errors. The recur-

sive estimator is assumed to have the form

Rg(+) = K'k&k(~) + KgVk. (A1.11)

where K'y and Kig are Kalman gain matrices (which
are yvet to be determined). Equation (AI.11) simply means
that the optimal parameter estimate (after a discrete
measurement) is related to some combination of the optimal
parameter estimate (before the discrete measurement is
taken) and the measurement itself. The relative contribu-
tion of Xy(-) and yk are determined by the gain
coefficients K'y and Ky.

insertion of eguations (Al.1), (A1.9) and (AI.10) into

equation (AI.11) produces

R(+) = {Kyi'-T+KgMp )t x+Kg " & (- ) +Kgvg. (A1.12)
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Taking the expectation of equation (AI.12) and assuming
E{%g(-)} = 0 (the estimator derived herein produces

unbiased results), one finds

E(R(+)) = {Kg'-T+KyMp}E(xg). (A1.13)

For the updated estimates to be unbiased, it is required
that E{%Xk}=0; this can be achieved by setting

Ki'= I-KyMg., (AI.14)
where 1 is the identity matrix. Placing egquation (AI.14)
into equation (AI.11) yields equation (AI.15)

~

E(+) = &k(-) + Kgl(yk-MgRg(-)), (AT.15)

which is another step in the Kalman filter algorithm. In

conditional probability notation the equation is

R(k+1jk+1) = K(k+1{k) + K(k+1)(yg+1-M(k+1)&(k+1]k)).

The error covariance can also be updated in a manner
similar to equation (AI1.15). This starts by using equation
(AT.9) and a variation of equation (Al.15)

-~

Rg(+) = {I-KMp}&yg(-) + Kgyg (AT.16)

to form Rpl+) = Rel+) - xi

= ([-KgMp)&p(-) + Kpg(Mgxg+vg) Xk
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And x(+)={I1-KgMg}xg(-) + Kygvi- (AT.17)
The updated error covariance is
" ~ T
Pr(+) = E{Xp(+)&x(+) }. (A1.18)

Using equations (A1.3), (AI1.17) and (Al1.18), and the defi-

nition Pg(~) = E{%c(-)%x(-) " }. one finds

Pr(+) = (I-KxMg)Py(-) (I-KyMg)® +

KkRkKkT. (A1.19)
The updated error covariance is related to a combination of
the prior error covariance and the measuremeunt error
covariance. In the notation employed by Jazwinski (1970),

the update equation is

P(k+1|k+l) = (I-K(k+1)M(k+1))P(k+1|k)(I-K(k+1)M(k+1))"
fOR(k+1)R(k+1)K' (k+1).
k|

The last equation to be derived in the Kalman filter
algorithm is that determining an optimal gain factor kk.
This is found by minimizing the error in the updated
covariance Py(+) (actually the sum of the Py (+)
diagonal elements) with respect to the undetermined gain
factor Ky. The details of'this procedure are given
in Gelb et al. (1974) and yield the result
K = Prl(-)Mg {MP(-)Mg +R}

(A1.20)

L
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The optimal Kalman filter gain compares the parameter error
covariance and measurement error covariance. Notice that if
the measurement covariance is very large (i.e. poor data),
the Kalman gain will be small, and the updated parameter
estimate (see equation (AI.15)) will have a value not much
different from the predicted estimate Xy(-). Equation

(AI.20) in conditional probability notation is
K(k+1) = P(k*-lsk)MT(k*rl){M(k+1)P(k+1!k)Mr(k*-l)«“R(kﬂ)}"l.

All of the Kalman filter (algorithm) steps have now been

derived.
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CTS O FAULT PARAMETERS AND LOCATION ON CHANGES 1IN
UCTS OF INERTIA

For completeness, a short discourse is presented here
h illustrates the effects of earthquake strike, dip,

, colatitude, longitude and depth on the changes in
products of inertia ACqy3 and ACz3. This section

ely follows the work of Dahlen (1971, 1973}).

Equations V.3 and V.4 (presented previously) relate
ges in the products of inertia, ACy3 and ACpg3, to

ke, dip, slip, colatitude, longitude and depth. Dahlen's
1, 1973) orientation conventions for strike, dip and

are as follows: the strike angle a is measured counter-

clockwise from North (at the Earth's surface); the dip & is

the
and

hori

tude

angle between the Earth's surface and the fault plane;
the slip angle N is measured counter-clockwise from
zontal (in the fault plane).

Daklen (1971) calculates a product of inertia ampli-

AC = (ACI32 + AC232)1/2 for several types

of faults, with various combinations of colatitude, strike

and dip. Specific test case results (Dahlen, 1971) are

presented for a vertical, strike-slip fault (e.g. the San

Andr

eas fault) at a depth of 20 kilometers (Figure AII.1)

and a shallow dip (6 = 200) thrust fault (e.g. Chilean
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subduction zone) at a depth of 20 kilometers (Figure Al11.2).
It is evident on Figure AIIl.1 (strike slip fault) that
the AC amplitude is largest for a colatitude of ninety
degrees, ignoring the effects of strike orientation; i.e.
a strike slip fault at the equator has the largest relative
influence on AC when considering the effects of colatitude.
The fault strike has maximal effects on AC (for a strike
slip fault) at integer multiples of ninety degrees (a = 0
degrees, 90 degrees,...). 1t appears that a Nourth-South
trending strike-slip fault has the same effect on AC as
an East-West trending (strike-slip) fault.
The effects of a shallow angle thrust (dip slip X=90°)
fault on AC are shown in Figure AII.2 (Dahlen, 1971).
AC is at a maximum for a colatitude of 60 degrees and for
a strike angle of 90 degrees. Thus a shallow angle thrust
fault at 60o colatitude and trending east-west has
maximal effects on AC. It appears from the Figures
(AIT.1 and AII.2 - for the cases studied here) that a
strike-slip earthquake can produce slightly greater
changes in AC than the shallow angle thrust fault; one
may notice that longitude is not varied in Dahlen's
(1971) Figures. Knowledge of the symmetry of the earth
would dictate that AC is not strongly dependent on
longitude.
Up until this point, little has been said about the
dependence of AC on the depth of an earthquake. AC is

dependent on depth h through the canonical functions, F&(h).
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Fé(h) and ?é(h). The canonical functions are displayed
versus depth h in Figure Al1.3 (Dahlen, 1973). The
canonical functions all increase with increasing depth,
with F} and ~?é increasing much more linearly than
F%. The simplest conclusion that can be drawn is
(ignoring the other parameters) that AC increases with
depth h.

However, it should be remarked that subducted
(typically dip slip) lithosphere can extend to far

greater depths (= 700 km) than lithospheric plates

typically participating in strike-slip motion (=100 km).

On the basis of this observation, it would be valid to
conclude that AC would be much larger for subduction-

related earthquakes than for strike-slip events.
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Figure AI1.3. Plot of Ty(h),-Ta(h),T3(h)
for SNREI Earth model 8073AW. (from Dahlen,1973---
for details about 8073AW, see Dahlen, 1973)
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